]> Git Repo - qemu.git/blame - target/arm/internals.h
target/arm: Convert v8.2-fp16 from feature bit to aa64pfr0 test
[qemu.git] / target / arm / internals.h
CommitLineData
ccd38087
PM
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
fcf5ef2a 21 * between different source files within target/arm/ but which are
ccd38087
PM
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
abc24d86
MD
28#include "hw/registerfields.h"
29
99a99c1f
SB
30/* register banks for CPU modes */
31#define BANK_USRSYS 0
32#define BANK_SVC 1
33#define BANK_ABT 2
34#define BANK_UND 3
35#define BANK_IRQ 4
36#define BANK_FIQ 5
37#define BANK_HYP 6
38#define BANK_MON 7
39
d4a2dc67
PM
40static inline bool excp_is_internal(int excp)
41{
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
05188cc7 51 || excp == EXCP_SEMIHOST;
d4a2dc67
PM
52}
53
ccd38087
PM
54/* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57#define GTIMER_SCALE 16
58
abc24d86
MD
59/* Bit definitions for the v7M CONTROL register */
60FIELD(V7M_CONTROL, NPRIV, 0, 1)
61FIELD(V7M_CONTROL, SPSEL, 1, 1)
62FIELD(V7M_CONTROL, FPCA, 2, 1)
3e3fa230 63FIELD(V7M_CONTROL, SFPA, 3, 1)
abc24d86 64
4d1e7a47
PM
65/* Bit definitions for v7M exception return payload */
66FIELD(V7M_EXCRET, ES, 0, 1)
67FIELD(V7M_EXCRET, RES0, 1, 1)
68FIELD(V7M_EXCRET, SPSEL, 2, 1)
69FIELD(V7M_EXCRET, MODE, 3, 1)
70FIELD(V7M_EXCRET, FTYPE, 4, 1)
71FIELD(V7M_EXCRET, DCRS, 5, 1)
72FIELD(V7M_EXCRET, S, 6, 1)
73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
d02a8698
PM
75/* Minimum value which is a magic number for exception return */
76#define EXC_RETURN_MIN_MAGIC 0xff000000
77/* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
79 */
80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
81
35337cc3
PM
82/* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
93 */
94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96
597610eb
PM
97/**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
102 */
103void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
105
2a923c4d
EI
106/*
107 * For AArch64, map a given EL to an index in the banked_spsr array.
7847f9ea
PM
108 * Note that this mapping and the AArch32 mapping defined in bank_number()
109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110 * mandated mapping between each other.
2a923c4d
EI
111 */
112static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
113{
114 static const unsigned int map[4] = {
99a99c1f
SB
115 [1] = BANK_SVC, /* EL1. */
116 [2] = BANK_HYP, /* EL2. */
117 [3] = BANK_MON, /* EL3. */
2a923c4d
EI
118 };
119 assert(el >= 1 && el <= 3);
120 return map[el];
121}
122
c766568d
PM
123/* Map CPU modes onto saved register banks. */
124static inline int bank_number(int mode)
125{
126 switch (mode) {
127 case ARM_CPU_MODE_USR:
128 case ARM_CPU_MODE_SYS:
129 return BANK_USRSYS;
130 case ARM_CPU_MODE_SVC:
131 return BANK_SVC;
132 case ARM_CPU_MODE_ABT:
133 return BANK_ABT;
134 case ARM_CPU_MODE_UND:
135 return BANK_UND;
136 case ARM_CPU_MODE_IRQ:
137 return BANK_IRQ;
138 case ARM_CPU_MODE_FIQ:
139 return BANK_FIQ;
140 case ARM_CPU_MODE_HYP:
141 return BANK_HYP;
142 case ARM_CPU_MODE_MON:
143 return BANK_MON;
144 }
145 g_assert_not_reached();
146}
147
ccd38087
PM
148void switch_mode(CPUARMState *, int);
149void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
150void arm_translate_init(void);
151
152enum arm_fprounding {
153 FPROUNDING_TIEEVEN,
154 FPROUNDING_POSINF,
155 FPROUNDING_NEGINF,
156 FPROUNDING_ZERO,
157 FPROUNDING_TIEAWAY,
158 FPROUNDING_ODD
159};
160
161int arm_rmode_to_sf(int rmode);
162
9208b961
EI
163static inline void aarch64_save_sp(CPUARMState *env, int el)
164{
165 if (env->pstate & PSTATE_SP) {
166 env->sp_el[el] = env->xregs[31];
167 } else {
168 env->sp_el[0] = env->xregs[31];
169 }
170}
171
172static inline void aarch64_restore_sp(CPUARMState *env, int el)
173{
174 if (env->pstate & PSTATE_SP) {
175 env->xregs[31] = env->sp_el[el];
176 } else {
177 env->xregs[31] = env->sp_el[0];
178 }
179}
180
f502cfc2
PM
181static inline void update_spsel(CPUARMState *env, uint32_t imm)
182{
dcbff19b 183 unsigned int cur_el = arm_current_el(env);
f502cfc2
PM
184 /* Update PSTATE SPSel bit; this requires us to update the
185 * working stack pointer in xregs[31].
186 */
187 if (!((imm ^ env->pstate) & PSTATE_SP)) {
188 return;
189 }
9208b961 190 aarch64_save_sp(env, cur_el);
f502cfc2
PM
191 env->pstate = deposit32(env->pstate, 0, 1, imm);
192
61d4b215
EI
193 /* We rely on illegal updates to SPsel from EL0 to get trapped
194 * at translation time.
f502cfc2 195 */
61d4b215 196 assert(cur_el >= 1 && cur_el <= 3);
9208b961 197 aarch64_restore_sp(env, cur_el);
f502cfc2
PM
198}
199
1853d5a9
EI
200/*
201 * arm_pamax
202 * @cpu: ARMCPU
203 *
204 * Returns the implementation defined bit-width of physical addresses.
205 * The ARMv8 reference manuals refer to this as PAMax().
206 */
207static inline unsigned int arm_pamax(ARMCPU *cpu)
208{
209 static const unsigned int pamax_map[] = {
210 [0] = 32,
211 [1] = 36,
212 [2] = 40,
213 [3] = 42,
214 [4] = 44,
215 [5] = 48,
216 };
217 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
218
219 /* id_aa64mmfr0 is a read-only register so values outside of the
220 * supported mappings can be considered an implementation error. */
221 assert(parange < ARRAY_SIZE(pamax_map));
222 return pamax_map[parange];
223}
224
73c5211b
PM
225/* Return true if extended addresses are enabled.
226 * This is always the case if our translation regime is 64 bit,
227 * but depends on TTBCR.EAE for 32 bit.
228 */
229static inline bool extended_addresses_enabled(CPUARMState *env)
230{
11f136ee
FA
231 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
232 return arm_el_is_aa64(env, 1) ||
233 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
73c5211b
PM
234}
235
8bcbf37c
PM
236/* Valid Syndrome Register EC field values */
237enum arm_exception_class {
238 EC_UNCATEGORIZED = 0x00,
239 EC_WFX_TRAP = 0x01,
240 EC_CP15RTTRAP = 0x03,
241 EC_CP15RRTTRAP = 0x04,
242 EC_CP14RTTRAP = 0x05,
243 EC_CP14DTTRAP = 0x06,
244 EC_ADVSIMDFPACCESSTRAP = 0x07,
245 EC_FPIDTRAP = 0x08,
246 EC_CP14RRTTRAP = 0x0c,
247 EC_ILLEGALSTATE = 0x0e,
248 EC_AA32_SVC = 0x11,
249 EC_AA32_HVC = 0x12,
250 EC_AA32_SMC = 0x13,
251 EC_AA64_SVC = 0x15,
252 EC_AA64_HVC = 0x16,
253 EC_AA64_SMC = 0x17,
254 EC_SYSTEMREGISTERTRAP = 0x18,
490aa7f1 255 EC_SVEACCESSTRAP = 0x19,
8bcbf37c
PM
256 EC_INSNABORT = 0x20,
257 EC_INSNABORT_SAME_EL = 0x21,
258 EC_PCALIGNMENT = 0x22,
259 EC_DATAABORT = 0x24,
260 EC_DATAABORT_SAME_EL = 0x25,
261 EC_SPALIGNMENT = 0x26,
262 EC_AA32_FPTRAP = 0x28,
263 EC_AA64_FPTRAP = 0x2c,
264 EC_SERROR = 0x2f,
265 EC_BREAKPOINT = 0x30,
266 EC_BREAKPOINT_SAME_EL = 0x31,
267 EC_SOFTWARESTEP = 0x32,
268 EC_SOFTWARESTEP_SAME_EL = 0x33,
269 EC_WATCHPOINT = 0x34,
270 EC_WATCHPOINT_SAME_EL = 0x35,
271 EC_AA32_BKPT = 0x38,
272 EC_VECTORCATCH = 0x3a,
273 EC_AA64_BKPT = 0x3c,
274};
275
276#define ARM_EL_EC_SHIFT 26
277#define ARM_EL_IL_SHIFT 25
094d028a 278#define ARM_EL_ISV_SHIFT 24
8bcbf37c 279#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
094d028a 280#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
8bcbf37c
PM
281
282/* Utility functions for constructing various kinds of syndrome value.
283 * Note that in general we follow the AArch64 syndrome values; in a
284 * few cases the value in HSR for exceptions taken to AArch32 Hyp
285 * mode differs slightly, so if we ever implemented Hyp mode then the
286 * syndrome value would need some massaging on exception entry.
287 * (One example of this is that AArch64 defaults to IL bit set for
288 * exceptions which don't specifically indicate information about the
289 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
290 */
291static inline uint32_t syn_uncategorized(void)
292{
293 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
294}
295
296static inline uint32_t syn_aa64_svc(uint32_t imm16)
297{
298 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
299}
300
35979d71
EI
301static inline uint32_t syn_aa64_hvc(uint32_t imm16)
302{
303 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
304}
305
e0d6e6a5
EI
306static inline uint32_t syn_aa64_smc(uint32_t imm16)
307{
308 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
309}
310
fc05f4a6 311static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
312{
313 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 314 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
315}
316
37e6456e
PM
317static inline uint32_t syn_aa32_hvc(uint32_t imm16)
318{
319 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
320}
321
322static inline uint32_t syn_aa32_smc(void)
323{
324 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
325}
326
8bcbf37c
PM
327static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
328{
329 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
330}
331
fc05f4a6 332static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
333{
334 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 335 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
336}
337
338static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
339 int crn, int crm, int rt,
340 int isread)
341{
342 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
343 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
344 | (crm << 1) | isread;
345}
346
347static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
348 int crn, int crm, int rt, int isread,
fc05f4a6 349 bool is_16bit)
8bcbf37c
PM
350{
351 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 352 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
353 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
354 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
355}
356
357static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
358 int crn, int crm, int rt, int isread,
fc05f4a6 359 bool is_16bit)
8bcbf37c
PM
360{
361 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 362 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
363 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
364 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
365}
366
367static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
368 int rt, int rt2, int isread,
fc05f4a6 369 bool is_16bit)
8bcbf37c
PM
370{
371 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 372 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
373 | (cv << 24) | (cond << 20) | (opc1 << 16)
374 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
375}
376
377static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
378 int rt, int rt2, int isread,
fc05f4a6 379 bool is_16bit)
8bcbf37c
PM
380{
381 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 382 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
383 | (cv << 24) | (cond << 20) | (opc1 << 16)
384 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
385}
386
fc05f4a6 387static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
8c6afa6a
PM
388{
389 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 390 | (is_16bit ? 0 : ARM_EL_IL)
8c6afa6a
PM
391 | (cv << 24) | (cond << 20);
392}
393
490aa7f1
RH
394static inline uint32_t syn_sve_access_trap(void)
395{
396 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
397}
398
00892383
RH
399static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
400{
401 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 402 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
00892383
RH
403}
404
094d028a
PM
405static inline uint32_t syn_data_abort_no_iss(int same_el,
406 int ea, int cm, int s1ptw,
407 int wnr, int fsc)
00892383
RH
408{
409 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
094d028a
PM
410 | ARM_EL_IL
411 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
412}
413
414static inline uint32_t syn_data_abort_with_iss(int same_el,
415 int sas, int sse, int srt,
416 int sf, int ar,
417 int ea, int cm, int s1ptw,
418 int wnr, int fsc,
419 bool is_16bit)
420{
421 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
422 | (is_16bit ? 0 : ARM_EL_IL)
423 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
424 | (sf << 15) | (ar << 14)
425 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
00892383
RH
426}
427
7ea47fe7
PM
428static inline uint32_t syn_swstep(int same_el, int isv, int ex)
429{
430 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 431 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
7ea47fe7
PM
432}
433
3ff6fc91
PM
434static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
435{
436 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 437 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
3ff6fc91
PM
438}
439
0eacea70
PM
440static inline uint32_t syn_breakpoint(int same_el)
441{
442 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
443 | ARM_EL_IL | 0x22;
444}
445
58803318 446static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
06fbb2fd
GB
447{
448 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
58803318 449 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
06fbb2fd
GB
450 (cv << 24) | (cond << 20) | ti;
451}
452
9ee98ce8
PM
453/* Update a QEMU watchpoint based on the information the guest has set in the
454 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
455 */
456void hw_watchpoint_update(ARMCPU *cpu, int n);
457/* Update the QEMU watchpoints for every guest watchpoint. This does a
458 * complete delete-and-reinstate of the QEMU watchpoint list and so is
459 * suitable for use after migration or on reset.
460 */
461void hw_watchpoint_update_all(ARMCPU *cpu);
46747d15
PM
462/* Update a QEMU breakpoint based on the information the guest has set in the
463 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
464 */
465void hw_breakpoint_update(ARMCPU *cpu, int n);
466/* Update the QEMU breakpoints for every guest breakpoint. This does a
467 * complete delete-and-reinstate of the QEMU breakpoint list and so is
468 * suitable for use after migration or on reset.
469 */
470void hw_breakpoint_update_all(ARMCPU *cpu);
9ee98ce8 471
3826121d
SF
472/* Callback function for checking if a watchpoint should trigger. */
473bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
474
40612000
JB
475/* Adjust addresses (in BE32 mode) before testing against watchpoint
476 * addresses.
477 */
478vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
479
3ff6fc91
PM
480/* Callback function for when a watchpoint or breakpoint triggers. */
481void arm_debug_excp_handler(CPUState *cs);
482
98128601
RH
483#ifdef CONFIG_USER_ONLY
484static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
485{
486 return false;
487}
488#else
489/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
490bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
491/* Actually handle a PSCI call */
492void arm_handle_psci_call(ARMCPU *cpu);
493#endif
494
dc3c4c14
PM
495/**
496 * arm_clear_exclusive: clear the exclusive monitor
497 * @env: CPU env
498 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
499 */
500static inline void arm_clear_exclusive(CPUARMState *env)
501{
502 env->exclusive_addr = -1;
503}
504
1fa498fe
PM
505/**
506 * ARMFaultType: type of an ARM MMU fault
507 * This corresponds to the v8A pseudocode's Fault enumeration,
508 * with extensions for QEMU internal conditions.
509 */
510typedef enum ARMFaultType {
511 ARMFault_None,
512 ARMFault_AccessFlag,
513 ARMFault_Alignment,
514 ARMFault_Background,
515 ARMFault_Domain,
516 ARMFault_Permission,
517 ARMFault_Translation,
518 ARMFault_AddressSize,
519 ARMFault_SyncExternal,
520 ARMFault_SyncExternalOnWalk,
521 ARMFault_SyncParity,
522 ARMFault_SyncParityOnWalk,
523 ARMFault_AsyncParity,
524 ARMFault_AsyncExternal,
525 ARMFault_Debug,
526 ARMFault_TLBConflict,
527 ARMFault_Lockdown,
528 ARMFault_Exclusive,
529 ARMFault_ICacheMaint,
530 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
531 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
532} ARMFaultType;
533
e14b5a23
EI
534/**
535 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
1fa498fe
PM
536 * @type: Type of fault
537 * @level: Table walk level (for translation, access flag and permission faults)
538 * @domain: Domain of the fault address (for non-LPAE CPUs only)
e14b5a23
EI
539 * @s2addr: Address that caused a fault at stage 2
540 * @stage2: True if we faulted at stage 2
541 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
c528af7a 542 * @ea: True if we should set the EA (external abort type) bit in syndrome
e14b5a23
EI
543 */
544typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
545struct ARMMMUFaultInfo {
1fa498fe 546 ARMFaultType type;
e14b5a23 547 target_ulong s2addr;
1fa498fe
PM
548 int level;
549 int domain;
e14b5a23
EI
550 bool stage2;
551 bool s1ptw;
c528af7a 552 bool ea;
e14b5a23
EI
553};
554
1fa498fe
PM
555/**
556 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
557 * Compare pseudocode EncodeSDFSC(), though unlike that function
558 * we set up a whole FSR-format code including domain field and
559 * putting the high bit of the FSC into bit 10.
560 */
561static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
562{
563 uint32_t fsc;
564
565 switch (fi->type) {
566 case ARMFault_None:
567 return 0;
568 case ARMFault_AccessFlag:
569 fsc = fi->level == 1 ? 0x3 : 0x6;
570 break;
571 case ARMFault_Alignment:
572 fsc = 0x1;
573 break;
574 case ARMFault_Permission:
575 fsc = fi->level == 1 ? 0xd : 0xf;
576 break;
577 case ARMFault_Domain:
578 fsc = fi->level == 1 ? 0x9 : 0xb;
579 break;
580 case ARMFault_Translation:
581 fsc = fi->level == 1 ? 0x5 : 0x7;
582 break;
583 case ARMFault_SyncExternal:
584 fsc = 0x8 | (fi->ea << 12);
585 break;
586 case ARMFault_SyncExternalOnWalk:
587 fsc = fi->level == 1 ? 0xc : 0xe;
588 fsc |= (fi->ea << 12);
589 break;
590 case ARMFault_SyncParity:
591 fsc = 0x409;
592 break;
593 case ARMFault_SyncParityOnWalk:
594 fsc = fi->level == 1 ? 0x40c : 0x40e;
595 break;
596 case ARMFault_AsyncParity:
597 fsc = 0x408;
598 break;
599 case ARMFault_AsyncExternal:
600 fsc = 0x406 | (fi->ea << 12);
601 break;
602 case ARMFault_Debug:
603 fsc = 0x2;
604 break;
605 case ARMFault_TLBConflict:
606 fsc = 0x400;
607 break;
608 case ARMFault_Lockdown:
609 fsc = 0x404;
610 break;
611 case ARMFault_Exclusive:
612 fsc = 0x405;
613 break;
614 case ARMFault_ICacheMaint:
615 fsc = 0x4;
616 break;
617 case ARMFault_Background:
618 fsc = 0x0;
619 break;
620 case ARMFault_QEMU_NSCExec:
621 fsc = M_FAKE_FSR_NSC_EXEC;
622 break;
623 case ARMFault_QEMU_SFault:
624 fsc = M_FAKE_FSR_SFAULT;
625 break;
626 default:
627 /* Other faults can't occur in a context that requires a
628 * short-format status code.
629 */
630 g_assert_not_reached();
631 }
632
633 fsc |= (fi->domain << 4);
634 return fsc;
635}
636
637/**
638 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
639 * Compare pseudocode EncodeLDFSC(), though unlike that function
640 * we fill in also the LPAE bit 9 of a DFSR format.
641 */
642static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
643{
644 uint32_t fsc;
645
646 switch (fi->type) {
647 case ARMFault_None:
648 return 0;
649 case ARMFault_AddressSize:
650 fsc = fi->level & 3;
651 break;
652 case ARMFault_AccessFlag:
653 fsc = (fi->level & 3) | (0x2 << 2);
654 break;
655 case ARMFault_Permission:
656 fsc = (fi->level & 3) | (0x3 << 2);
657 break;
658 case ARMFault_Translation:
659 fsc = (fi->level & 3) | (0x1 << 2);
660 break;
661 case ARMFault_SyncExternal:
662 fsc = 0x10 | (fi->ea << 12);
663 break;
664 case ARMFault_SyncExternalOnWalk:
665 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
666 break;
667 case ARMFault_SyncParity:
668 fsc = 0x18;
669 break;
670 case ARMFault_SyncParityOnWalk:
671 fsc = (fi->level & 3) | (0x7 << 2);
672 break;
673 case ARMFault_AsyncParity:
674 fsc = 0x19;
675 break;
676 case ARMFault_AsyncExternal:
677 fsc = 0x11 | (fi->ea << 12);
678 break;
679 case ARMFault_Alignment:
680 fsc = 0x21;
681 break;
682 case ARMFault_Debug:
683 fsc = 0x22;
684 break;
685 case ARMFault_TLBConflict:
686 fsc = 0x30;
687 break;
688 case ARMFault_Lockdown:
689 fsc = 0x34;
690 break;
691 case ARMFault_Exclusive:
692 fsc = 0x35;
693 break;
694 default:
695 /* Other faults can't occur in a context that requires a
696 * long-format status code.
697 */
698 g_assert_not_reached();
699 }
700
701 fsc |= 1 << 9;
702 return fsc;
703}
704
3b39d734
PM
705static inline bool arm_extabort_type(MemTxResult result)
706{
707 /* The EA bit in syndromes and fault status registers is an
708 * IMPDEF classification of external aborts. ARM implementations
709 * usually use this to indicate AXI bus Decode error (0) or
710 * Slave error (1); in QEMU we follow that.
711 */
712 return result != MEMTX_DECODE_ERROR;
713}
714
8c6084bf 715/* Do a page table walk and add page to TLB if possible */
03ae85f8
PM
716bool arm_tlb_fill(CPUState *cpu, vaddr address,
717 MMUAccessType access_type, int mmu_idx,
bc52bfeb 718 ARMMMUFaultInfo *fi);
8c6084bf 719
deb2db99
AR
720/* Return true if the stage 1 translation regime is using LPAE format page
721 * tables */
722bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
30901475
AB
723
724/* Raise a data fault alignment exception for the specified virtual address */
b35399bb
SS
725void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
726 MMUAccessType access_type,
727 int mmu_idx, uintptr_t retaddr);
30901475 728
c79c0a31
PM
729/* arm_cpu_do_transaction_failed: handle a memory system error response
730 * (eg "no device/memory present at address") by raising an external abort
731 * exception
732 */
733void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
734 vaddr addr, unsigned size,
735 MMUAccessType access_type,
736 int mmu_idx, MemTxAttrs attrs,
737 MemTxResult response, uintptr_t retaddr);
738
08267487 739/* Call any registered EL change hooks */
b5c53d1b
AL
740static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
741{
742 ARMELChangeHook *hook, *next;
743 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
744 hook->hook(cpu, hook->opaque);
745 }
746}
bd7d00fc
PM
747static inline void arm_call_el_change_hook(ARMCPU *cpu)
748{
08267487
AL
749 ARMELChangeHook *hook, *next;
750 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
751 hook->hook(cpu, hook->opaque);
bd7d00fc
PM
752 }
753}
754
61fcd69b
PM
755/* Return true if this address translation regime is secure */
756static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
757{
758 switch (mmu_idx) {
759 case ARMMMUIdx_S12NSE0:
760 case ARMMMUIdx_S12NSE1:
761 case ARMMMUIdx_S1NSE0:
762 case ARMMMUIdx_S1NSE1:
763 case ARMMMUIdx_S1E2:
764 case ARMMMUIdx_S2NS:
62593718
PM
765 case ARMMMUIdx_MPrivNegPri:
766 case ARMMMUIdx_MUserNegPri:
61fcd69b 767 case ARMMMUIdx_MPriv:
61fcd69b
PM
768 case ARMMMUIdx_MUser:
769 return false;
770 case ARMMMUIdx_S1E3:
771 case ARMMMUIdx_S1SE0:
772 case ARMMMUIdx_S1SE1:
62593718
PM
773 case ARMMMUIdx_MSPrivNegPri:
774 case ARMMMUIdx_MSUserNegPri:
61fcd69b 775 case ARMMMUIdx_MSPriv:
61fcd69b
PM
776 case ARMMMUIdx_MSUser:
777 return true;
778 default:
779 g_assert_not_reached();
780 }
781}
782
81621d9a
PM
783/* Return the FSR value for a debug exception (watchpoint, hardware
784 * breakpoint or BKPT insn) targeting the specified exception level.
785 */
786static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
787{
788 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
789 int target_el = arm_debug_target_el(env);
790 bool using_lpae = false;
791
792 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
793 using_lpae = true;
794 } else {
795 if (arm_feature(env, ARM_FEATURE_LPAE) &&
796 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
797 using_lpae = true;
798 }
799 }
800
801 if (using_lpae) {
802 return arm_fi_to_lfsc(&fi);
803 } else {
804 return arm_fi_to_sfsc(&fi);
805 }
806}
807
500d0484
RH
808/* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
809 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
810 */
811#define MEMOPIDX_SHIFT 8
812
5529bf18
PM
813/**
814 * v7m_using_psp: Return true if using process stack pointer
815 * Return true if the CPU is currently using the process stack
816 * pointer, or false if it is using the main stack pointer.
817 */
818static inline bool v7m_using_psp(CPUARMState *env)
819{
820 /* Handler mode always uses the main stack; for thread mode
821 * the CONTROL.SPSEL bit determines the answer.
822 * Note that in v7M it is not possible to be in Handler mode with
823 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
824 */
825 return !arm_v7m_is_handler_mode(env) &&
826 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
827}
828
55203189
PM
829/**
830 * v7m_sp_limit: Return SP limit for current CPU state
831 * Return the SP limit value for the current CPU security state
832 * and stack pointer.
833 */
834static inline uint32_t v7m_sp_limit(CPUARMState *env)
835{
836 if (v7m_using_psp(env)) {
837 return env->v7m.psplim[env->v7m.secure];
838 } else {
839 return env->v7m.msplim[env->v7m.secure];
840 }
841}
842
ccd38087 843#endif
This page took 0.31998 seconds and 4 git commands to generate.