]> Git Repo - qemu.git/blame - target/arm/internals.h
target/arm: Implement BLXNS
[qemu.git] / target / arm / internals.h
CommitLineData
ccd38087
PM
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
fcf5ef2a 21 * between different source files within target/arm/ but which are
ccd38087
PM
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
abc24d86
MD
28#include "hw/registerfields.h"
29
99a99c1f
SB
30/* register banks for CPU modes */
31#define BANK_USRSYS 0
32#define BANK_SVC 1
33#define BANK_ABT 2
34#define BANK_UND 3
35#define BANK_IRQ 4
36#define BANK_FIQ 5
37#define BANK_HYP 6
38#define BANK_MON 7
39
d4a2dc67
PM
40static inline bool excp_is_internal(int excp)
41{
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
05188cc7 51 || excp == EXCP_SEMIHOST;
d4a2dc67
PM
52}
53
ccd38087
PM
54/* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57#define GTIMER_SCALE 16
58
abc24d86
MD
59/* Bit definitions for the v7M CONTROL register */
60FIELD(V7M_CONTROL, NPRIV, 0, 1)
61FIELD(V7M_CONTROL, SPSEL, 1, 1)
62FIELD(V7M_CONTROL, FPCA, 2, 1)
3e3fa230 63FIELD(V7M_CONTROL, SFPA, 3, 1)
abc24d86 64
4d1e7a47
PM
65/* Bit definitions for v7M exception return payload */
66FIELD(V7M_EXCRET, ES, 0, 1)
67FIELD(V7M_EXCRET, RES0, 1, 1)
68FIELD(V7M_EXCRET, SPSEL, 2, 1)
69FIELD(V7M_EXCRET, MODE, 3, 1)
70FIELD(V7M_EXCRET, FTYPE, 4, 1)
71FIELD(V7M_EXCRET, DCRS, 5, 1)
72FIELD(V7M_EXCRET, S, 6, 1)
73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
35337cc3
PM
75/* We use a few fake FSR values for internal purposes in M profile.
76 * M profile cores don't have A/R format FSRs, but currently our
77 * get_phys_addr() code assumes A/R profile and reports failures via
78 * an A/R format FSR value. We then translate that into the proper
79 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
80 * Mostly the FSR values we use for this are those defined for v7PMSA,
81 * since we share some of that codepath. A few kinds of fault are
82 * only for M profile and have no A/R equivalent, though, so we have
83 * to pick a value from the reserved range (which we never otherwise
84 * generate) to use for these.
85 * These values will never be visible to the guest.
86 */
87#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
88#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
89
2a923c4d
EI
90/*
91 * For AArch64, map a given EL to an index in the banked_spsr array.
7847f9ea
PM
92 * Note that this mapping and the AArch32 mapping defined in bank_number()
93 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
94 * mandated mapping between each other.
2a923c4d
EI
95 */
96static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
97{
98 static const unsigned int map[4] = {
99a99c1f
SB
99 [1] = BANK_SVC, /* EL1. */
100 [2] = BANK_HYP, /* EL2. */
101 [3] = BANK_MON, /* EL3. */
2a923c4d
EI
102 };
103 assert(el >= 1 && el <= 3);
104 return map[el];
105}
106
c766568d
PM
107/* Map CPU modes onto saved register banks. */
108static inline int bank_number(int mode)
109{
110 switch (mode) {
111 case ARM_CPU_MODE_USR:
112 case ARM_CPU_MODE_SYS:
113 return BANK_USRSYS;
114 case ARM_CPU_MODE_SVC:
115 return BANK_SVC;
116 case ARM_CPU_MODE_ABT:
117 return BANK_ABT;
118 case ARM_CPU_MODE_UND:
119 return BANK_UND;
120 case ARM_CPU_MODE_IRQ:
121 return BANK_IRQ;
122 case ARM_CPU_MODE_FIQ:
123 return BANK_FIQ;
124 case ARM_CPU_MODE_HYP:
125 return BANK_HYP;
126 case ARM_CPU_MODE_MON:
127 return BANK_MON;
128 }
129 g_assert_not_reached();
130}
131
ccd38087
PM
132void switch_mode(CPUARMState *, int);
133void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
134void arm_translate_init(void);
135
136enum arm_fprounding {
137 FPROUNDING_TIEEVEN,
138 FPROUNDING_POSINF,
139 FPROUNDING_NEGINF,
140 FPROUNDING_ZERO,
141 FPROUNDING_TIEAWAY,
142 FPROUNDING_ODD
143};
144
145int arm_rmode_to_sf(int rmode);
146
9208b961
EI
147static inline void aarch64_save_sp(CPUARMState *env, int el)
148{
149 if (env->pstate & PSTATE_SP) {
150 env->sp_el[el] = env->xregs[31];
151 } else {
152 env->sp_el[0] = env->xregs[31];
153 }
154}
155
156static inline void aarch64_restore_sp(CPUARMState *env, int el)
157{
158 if (env->pstate & PSTATE_SP) {
159 env->xregs[31] = env->sp_el[el];
160 } else {
161 env->xregs[31] = env->sp_el[0];
162 }
163}
164
f502cfc2
PM
165static inline void update_spsel(CPUARMState *env, uint32_t imm)
166{
dcbff19b 167 unsigned int cur_el = arm_current_el(env);
f502cfc2
PM
168 /* Update PSTATE SPSel bit; this requires us to update the
169 * working stack pointer in xregs[31].
170 */
171 if (!((imm ^ env->pstate) & PSTATE_SP)) {
172 return;
173 }
9208b961 174 aarch64_save_sp(env, cur_el);
f502cfc2
PM
175 env->pstate = deposit32(env->pstate, 0, 1, imm);
176
61d4b215
EI
177 /* We rely on illegal updates to SPsel from EL0 to get trapped
178 * at translation time.
f502cfc2 179 */
61d4b215 180 assert(cur_el >= 1 && cur_el <= 3);
9208b961 181 aarch64_restore_sp(env, cur_el);
f502cfc2
PM
182}
183
1853d5a9
EI
184/*
185 * arm_pamax
186 * @cpu: ARMCPU
187 *
188 * Returns the implementation defined bit-width of physical addresses.
189 * The ARMv8 reference manuals refer to this as PAMax().
190 */
191static inline unsigned int arm_pamax(ARMCPU *cpu)
192{
193 static const unsigned int pamax_map[] = {
194 [0] = 32,
195 [1] = 36,
196 [2] = 40,
197 [3] = 42,
198 [4] = 44,
199 [5] = 48,
200 };
201 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
202
203 /* id_aa64mmfr0 is a read-only register so values outside of the
204 * supported mappings can be considered an implementation error. */
205 assert(parange < ARRAY_SIZE(pamax_map));
206 return pamax_map[parange];
207}
208
73c5211b
PM
209/* Return true if extended addresses are enabled.
210 * This is always the case if our translation regime is 64 bit,
211 * but depends on TTBCR.EAE for 32 bit.
212 */
213static inline bool extended_addresses_enabled(CPUARMState *env)
214{
11f136ee
FA
215 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
216 return arm_el_is_aa64(env, 1) ||
217 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
73c5211b
PM
218}
219
8bcbf37c
PM
220/* Valid Syndrome Register EC field values */
221enum arm_exception_class {
222 EC_UNCATEGORIZED = 0x00,
223 EC_WFX_TRAP = 0x01,
224 EC_CP15RTTRAP = 0x03,
225 EC_CP15RRTTRAP = 0x04,
226 EC_CP14RTTRAP = 0x05,
227 EC_CP14DTTRAP = 0x06,
228 EC_ADVSIMDFPACCESSTRAP = 0x07,
229 EC_FPIDTRAP = 0x08,
230 EC_CP14RRTTRAP = 0x0c,
231 EC_ILLEGALSTATE = 0x0e,
232 EC_AA32_SVC = 0x11,
233 EC_AA32_HVC = 0x12,
234 EC_AA32_SMC = 0x13,
235 EC_AA64_SVC = 0x15,
236 EC_AA64_HVC = 0x16,
237 EC_AA64_SMC = 0x17,
238 EC_SYSTEMREGISTERTRAP = 0x18,
239 EC_INSNABORT = 0x20,
240 EC_INSNABORT_SAME_EL = 0x21,
241 EC_PCALIGNMENT = 0x22,
242 EC_DATAABORT = 0x24,
243 EC_DATAABORT_SAME_EL = 0x25,
244 EC_SPALIGNMENT = 0x26,
245 EC_AA32_FPTRAP = 0x28,
246 EC_AA64_FPTRAP = 0x2c,
247 EC_SERROR = 0x2f,
248 EC_BREAKPOINT = 0x30,
249 EC_BREAKPOINT_SAME_EL = 0x31,
250 EC_SOFTWARESTEP = 0x32,
251 EC_SOFTWARESTEP_SAME_EL = 0x33,
252 EC_WATCHPOINT = 0x34,
253 EC_WATCHPOINT_SAME_EL = 0x35,
254 EC_AA32_BKPT = 0x38,
255 EC_VECTORCATCH = 0x3a,
256 EC_AA64_BKPT = 0x3c,
257};
258
259#define ARM_EL_EC_SHIFT 26
260#define ARM_EL_IL_SHIFT 25
094d028a 261#define ARM_EL_ISV_SHIFT 24
8bcbf37c 262#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
094d028a 263#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
8bcbf37c
PM
264
265/* Utility functions for constructing various kinds of syndrome value.
266 * Note that in general we follow the AArch64 syndrome values; in a
267 * few cases the value in HSR for exceptions taken to AArch32 Hyp
268 * mode differs slightly, so if we ever implemented Hyp mode then the
269 * syndrome value would need some massaging on exception entry.
270 * (One example of this is that AArch64 defaults to IL bit set for
271 * exceptions which don't specifically indicate information about the
272 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
273 */
274static inline uint32_t syn_uncategorized(void)
275{
276 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
277}
278
279static inline uint32_t syn_aa64_svc(uint32_t imm16)
280{
281 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
282}
283
35979d71
EI
284static inline uint32_t syn_aa64_hvc(uint32_t imm16)
285{
286 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287}
288
e0d6e6a5
EI
289static inline uint32_t syn_aa64_smc(uint32_t imm16)
290{
291 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
292}
293
fc05f4a6 294static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
295{
296 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 297 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
298}
299
37e6456e
PM
300static inline uint32_t syn_aa32_hvc(uint32_t imm16)
301{
302 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
303}
304
305static inline uint32_t syn_aa32_smc(void)
306{
307 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
308}
309
8bcbf37c
PM
310static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
311{
312 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
313}
314
fc05f4a6 315static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
316{
317 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 318 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
319}
320
321static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
322 int crn, int crm, int rt,
323 int isread)
324{
325 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
326 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
327 | (crm << 1) | isread;
328}
329
330static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
331 int crn, int crm, int rt, int isread,
fc05f4a6 332 bool is_16bit)
8bcbf37c
PM
333{
334 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 335 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
336 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
337 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
338}
339
340static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
341 int crn, int crm, int rt, int isread,
fc05f4a6 342 bool is_16bit)
8bcbf37c
PM
343{
344 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 345 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
346 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
347 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
348}
349
350static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
351 int rt, int rt2, int isread,
fc05f4a6 352 bool is_16bit)
8bcbf37c
PM
353{
354 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 355 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
356 | (cv << 24) | (cond << 20) | (opc1 << 16)
357 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
358}
359
360static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
361 int rt, int rt2, int isread,
fc05f4a6 362 bool is_16bit)
8bcbf37c
PM
363{
364 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 365 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
366 | (cv << 24) | (cond << 20) | (opc1 << 16)
367 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
368}
369
fc05f4a6 370static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
8c6afa6a
PM
371{
372 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 373 | (is_16bit ? 0 : ARM_EL_IL)
8c6afa6a
PM
374 | (cv << 24) | (cond << 20);
375}
376
00892383
RH
377static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
378{
379 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 380 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
00892383
RH
381}
382
094d028a
PM
383static inline uint32_t syn_data_abort_no_iss(int same_el,
384 int ea, int cm, int s1ptw,
385 int wnr, int fsc)
00892383
RH
386{
387 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
094d028a
PM
388 | ARM_EL_IL
389 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
390}
391
392static inline uint32_t syn_data_abort_with_iss(int same_el,
393 int sas, int sse, int srt,
394 int sf, int ar,
395 int ea, int cm, int s1ptw,
396 int wnr, int fsc,
397 bool is_16bit)
398{
399 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
400 | (is_16bit ? 0 : ARM_EL_IL)
401 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
402 | (sf << 15) | (ar << 14)
403 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
00892383
RH
404}
405
7ea47fe7
PM
406static inline uint32_t syn_swstep(int same_el, int isv, int ex)
407{
408 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 409 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
7ea47fe7
PM
410}
411
3ff6fc91
PM
412static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
413{
414 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 415 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
3ff6fc91
PM
416}
417
0eacea70
PM
418static inline uint32_t syn_breakpoint(int same_el)
419{
420 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
421 | ARM_EL_IL | 0x22;
422}
423
06fbb2fd
GB
424static inline uint32_t syn_wfx(int cv, int cond, int ti)
425{
426 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
427 (cv << 24) | (cond << 20) | ti;
428}
429
9ee98ce8
PM
430/* Update a QEMU watchpoint based on the information the guest has set in the
431 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
432 */
433void hw_watchpoint_update(ARMCPU *cpu, int n);
434/* Update the QEMU watchpoints for every guest watchpoint. This does a
435 * complete delete-and-reinstate of the QEMU watchpoint list and so is
436 * suitable for use after migration or on reset.
437 */
438void hw_watchpoint_update_all(ARMCPU *cpu);
46747d15
PM
439/* Update a QEMU breakpoint based on the information the guest has set in the
440 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
441 */
442void hw_breakpoint_update(ARMCPU *cpu, int n);
443/* Update the QEMU breakpoints for every guest breakpoint. This does a
444 * complete delete-and-reinstate of the QEMU breakpoint list and so is
445 * suitable for use after migration or on reset.
446 */
447void hw_breakpoint_update_all(ARMCPU *cpu);
9ee98ce8 448
3826121d
SF
449/* Callback function for checking if a watchpoint should trigger. */
450bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
451
40612000
JB
452/* Adjust addresses (in BE32 mode) before testing against watchpoint
453 * addresses.
454 */
455vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
456
3ff6fc91
PM
457/* Callback function for when a watchpoint or breakpoint triggers. */
458void arm_debug_excp_handler(CPUState *cs);
459
98128601
RH
460#ifdef CONFIG_USER_ONLY
461static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
462{
463 return false;
464}
465#else
466/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
467bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
468/* Actually handle a PSCI call */
469void arm_handle_psci_call(ARMCPU *cpu);
470#endif
471
dc3c4c14
PM
472/**
473 * arm_clear_exclusive: clear the exclusive monitor
474 * @env: CPU env
475 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
476 */
477static inline void arm_clear_exclusive(CPUARMState *env)
478{
479 env->exclusive_addr = -1;
480}
481
e14b5a23
EI
482/**
483 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
484 * @s2addr: Address that caused a fault at stage 2
485 * @stage2: True if we faulted at stage 2
486 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
c528af7a 487 * @ea: True if we should set the EA (external abort type) bit in syndrome
e14b5a23
EI
488 */
489typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
490struct ARMMMUFaultInfo {
491 target_ulong s2addr;
492 bool stage2;
493 bool s1ptw;
c528af7a 494 bool ea;
e14b5a23
EI
495};
496
8c6084bf 497/* Do a page table walk and add page to TLB if possible */
03ae85f8
PM
498bool arm_tlb_fill(CPUState *cpu, vaddr address,
499 MMUAccessType access_type, int mmu_idx,
e14b5a23 500 uint32_t *fsr, ARMMMUFaultInfo *fi);
8c6084bf 501
deb2db99
AR
502/* Return true if the stage 1 translation regime is using LPAE format page
503 * tables */
504bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
30901475
AB
505
506/* Raise a data fault alignment exception for the specified virtual address */
b35399bb
SS
507void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
508 MMUAccessType access_type,
509 int mmu_idx, uintptr_t retaddr);
30901475 510
c79c0a31
PM
511/* arm_cpu_do_transaction_failed: handle a memory system error response
512 * (eg "no device/memory present at address") by raising an external abort
513 * exception
514 */
515void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
516 vaddr addr, unsigned size,
517 MMUAccessType access_type,
518 int mmu_idx, MemTxAttrs attrs,
519 MemTxResult response, uintptr_t retaddr);
520
bd7d00fc
PM
521/* Call the EL change hook if one has been registered */
522static inline void arm_call_el_change_hook(ARMCPU *cpu)
523{
524 if (cpu->el_change_hook) {
525 cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
526 }
527}
528
61fcd69b
PM
529/* Return true if this address translation regime is secure */
530static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
531{
532 switch (mmu_idx) {
533 case ARMMMUIdx_S12NSE0:
534 case ARMMMUIdx_S12NSE1:
535 case ARMMMUIdx_S1NSE0:
536 case ARMMMUIdx_S1NSE1:
537 case ARMMMUIdx_S1E2:
538 case ARMMMUIdx_S2NS:
539 case ARMMMUIdx_MPriv:
540 case ARMMMUIdx_MNegPri:
541 case ARMMMUIdx_MUser:
542 return false;
543 case ARMMMUIdx_S1E3:
544 case ARMMMUIdx_S1SE0:
545 case ARMMMUIdx_S1SE1:
546 case ARMMMUIdx_MSPriv:
547 case ARMMMUIdx_MSNegPri:
548 case ARMMMUIdx_MSUser:
549 return true;
550 default:
551 g_assert_not_reached();
552 }
553}
554
ccd38087 555#endif
This page took 0.290879 seconds and 4 git commands to generate.