]> Git Repo - qemu.git/blame - translate-all.c
cputlb: remove useless arguments to tlb_unprotect_code_phys, rename
[qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
5b6dd868 61#include "translate-all.h"
510a647f 62#include "qemu/bitmap.h"
0aa09897 63#include "qemu/timer.h"
5b6dd868
BS
64
65//#define DEBUG_TB_INVALIDATE
66//#define DEBUG_FLUSH
67/* make various TB consistency checks */
68//#define DEBUG_TB_CHECK
69
70#if !defined(CONFIG_USER_ONLY)
71/* TB consistency checks only implemented for usermode emulation. */
72#undef DEBUG_TB_CHECK
73#endif
74
75#define SMC_BITMAP_USE_THRESHOLD 10
76
5b6dd868
BS
77typedef struct PageDesc {
78 /* list of TBs intersecting this ram page */
79 TranslationBlock *first_tb;
80 /* in order to optimize self modifying code, we count the number
81 of lookups we do to a given page to use a bitmap */
82 unsigned int code_write_count;
510a647f 83 unsigned long *code_bitmap;
5b6dd868
BS
84#if defined(CONFIG_USER_ONLY)
85 unsigned long flags;
86#endif
87} PageDesc;
88
89/* In system mode we want L1_MAP to be based on ram offsets,
90 while in user mode we want it to be based on virtual addresses. */
91#if !defined(CONFIG_USER_ONLY)
92#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
93# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
94#else
95# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
96#endif
97#else
98# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
99#endif
100
03f49957
PB
101/* Size of the L2 (and L3, etc) page tables. */
102#define V_L2_BITS 10
103#define V_L2_SIZE (1 << V_L2_BITS)
104
5b6dd868
BS
105/* The bits remaining after N lower levels of page tables. */
106#define V_L1_BITS_REM \
03f49957 107 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
108
109#if V_L1_BITS_REM < 4
03f49957 110#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
111#else
112#define V_L1_BITS V_L1_BITS_REM
113#endif
114
115#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
116
117#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
118
119uintptr_t qemu_real_host_page_size;
120uintptr_t qemu_host_page_size;
121uintptr_t qemu_host_page_mask;
122
123/* This is a multi-level map on the virtual address space.
124 The bottom level has pointers to PageDesc. */
125static void *l1_map[V_L1_SIZE];
126
57fec1fe
FB
127/* code generation context */
128TCGContext tcg_ctx;
d19893da 129
5b6dd868
BS
130static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
131 tb_page_addr_t phys_page2);
a8a826a3 132static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 133
57fec1fe
FB
134void cpu_gen_init(void)
135{
136 tcg_context_init(&tcg_ctx);
57fec1fe
FB
137}
138
d19893da 139/* return non zero if the very first instruction is invalid so that
5fafdf24 140 the virtual CPU can trigger an exception.
d19893da
FB
141
142 '*gen_code_size_ptr' contains the size of the generated code (host
143 code).
144*/
9349b4f9 145int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 146{
57fec1fe 147 TCGContext *s = &tcg_ctx;
1813e175 148 tcg_insn_unit *gen_code_buf;
d19893da 149 int gen_code_size;
57fec1fe
FB
150#ifdef CONFIG_PROFILER
151 int64_t ti;
152#endif
153
154#ifdef CONFIG_PROFILER
b67d9a52
FB
155 s->tb_count1++; /* includes aborted translations because of
156 exceptions */
57fec1fe
FB
157 ti = profile_getclock();
158#endif
159 tcg_func_start(s);
d19893da 160
2cfc5f17
TS
161 gen_intermediate_code(env, tb);
162
6db8b538
AB
163 trace_translate_block(tb, tb->pc, tb->tc_ptr);
164
ec6338ba 165 /* generate machine code */
57fec1fe 166 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
167 tb->tb_next_offset[0] = 0xffff;
168 tb->tb_next_offset[1] = 0xffff;
57fec1fe 169 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 170#ifdef USE_DIRECT_JUMP
57fec1fe
FB
171 s->tb_jmp_offset = tb->tb_jmp_offset;
172 s->tb_next = NULL;
d19893da 173#else
57fec1fe
FB
174 s->tb_jmp_offset = NULL;
175 s->tb_next = tb->tb_next;
d19893da 176#endif
57fec1fe
FB
177
178#ifdef CONFIG_PROFILER
b67d9a52
FB
179 s->tb_count++;
180 s->interm_time += profile_getclock() - ti;
181 s->code_time -= profile_getclock();
57fec1fe 182#endif
54604f74 183 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 184 *gen_code_size_ptr = gen_code_size;
57fec1fe 185#ifdef CONFIG_PROFILER
b67d9a52
FB
186 s->code_time += profile_getclock();
187 s->code_in_len += tb->size;
188 s->code_out_len += gen_code_size;
57fec1fe
FB
189#endif
190
d19893da 191#ifdef DEBUG_DISAS
8fec2b8c 192 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
193 qemu_log("OUT: [size=%d]\n", gen_code_size);
194 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 195 qemu_log("\n");
31b1a7b4 196 qemu_log_flush();
d19893da
FB
197 }
198#endif
199 return 0;
200}
201
5fafdf24 202/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 203 */
74f10515 204static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 205 uintptr_t searched_pc)
d19893da 206{
74f10515 207 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
208 TCGContext *s = &tcg_ctx;
209 int j;
6375e09e 210 uintptr_t tc_ptr;
57fec1fe
FB
211#ifdef CONFIG_PROFILER
212 int64_t ti;
213#endif
214
215#ifdef CONFIG_PROFILER
216 ti = profile_getclock();
217#endif
218 tcg_func_start(s);
d19893da 219
2cfc5f17 220 gen_intermediate_code_pc(env, tb);
3b46e624 221
bd79255d 222 if (tb->cflags & CF_USE_ICOUNT) {
2e70f6ef 223 /* Reset the cycle counter to the start of the block. */
28ecfd7a 224 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 225 /* Clear the IO flag. */
99df7dce 226 cpu->can_do_io = 0;
2e70f6ef
PB
227 }
228
d19893da 229 /* find opc index corresponding to search_pc */
6375e09e 230 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
231 if (searched_pc < tc_ptr)
232 return -1;
57fec1fe
FB
233
234 s->tb_next_offset = tb->tb_next_offset;
235#ifdef USE_DIRECT_JUMP
236 s->tb_jmp_offset = tb->tb_jmp_offset;
237 s->tb_next = NULL;
238#else
239 s->tb_jmp_offset = NULL;
240 s->tb_next = tb->tb_next;
241#endif
1813e175
RH
242 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
243 searched_pc - tc_ptr);
57fec1fe
FB
244 if (j < 0)
245 return -1;
d19893da 246 /* now find start of instruction before */
ab1103de 247 while (s->gen_opc_instr_start[j] == 0) {
d19893da 248 j--;
ab1103de 249 }
28ecfd7a 250 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 251
e87b7cb0 252 restore_state_to_opc(env, tb, j);
57fec1fe
FB
253
254#ifdef CONFIG_PROFILER
b67d9a52
FB
255 s->restore_time += profile_getclock() - ti;
256 s->restore_count++;
57fec1fe 257#endif
d19893da
FB
258 return 0;
259}
5b6dd868 260
3f38f309 261bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
262{
263 TranslationBlock *tb;
264
265 tb = tb_find_pc(retaddr);
266 if (tb) {
74f10515 267 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
268 if (tb->cflags & CF_NOCACHE) {
269 /* one-shot translation, invalidate it immediately */
270 cpu->current_tb = NULL;
271 tb_phys_invalidate(tb, -1);
272 tb_free(tb);
273 }
a8a826a3
BS
274 return true;
275 }
276 return false;
277}
278
5b6dd868 279#ifdef _WIN32
2d8ac5eb 280static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
281{
282 DWORD old_protect;
283 VirtualProtect(addr, size,
284 PAGE_EXECUTE_READWRITE, &old_protect);
285}
286#else
2d8ac5eb 287static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
288{
289 unsigned long start, end, page_size;
290
291 page_size = getpagesize();
292 start = (unsigned long)addr;
293 start &= ~(page_size - 1);
294
295 end = (unsigned long)addr + size;
296 end += page_size - 1;
297 end &= ~(page_size - 1);
298
299 mprotect((void *)start, end - start,
300 PROT_READ | PROT_WRITE | PROT_EXEC);
301}
302#endif
303
47c16ed5 304void page_size_init(void)
5b6dd868
BS
305{
306 /* NOTE: we can always suppose that qemu_host_page_size >=
307 TARGET_PAGE_SIZE */
5b6dd868 308 qemu_real_host_page_size = getpagesize();
5b6dd868
BS
309 if (qemu_host_page_size == 0) {
310 qemu_host_page_size = qemu_real_host_page_size;
311 }
312 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
313 qemu_host_page_size = TARGET_PAGE_SIZE;
314 }
315 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 316}
5b6dd868 317
47c16ed5
AK
318static void page_init(void)
319{
320 page_size_init();
5b6dd868
BS
321#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
322 {
323#ifdef HAVE_KINFO_GETVMMAP
324 struct kinfo_vmentry *freep;
325 int i, cnt;
326
327 freep = kinfo_getvmmap(getpid(), &cnt);
328 if (freep) {
329 mmap_lock();
330 for (i = 0; i < cnt; i++) {
331 unsigned long startaddr, endaddr;
332
333 startaddr = freep[i].kve_start;
334 endaddr = freep[i].kve_end;
335 if (h2g_valid(startaddr)) {
336 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
337
338 if (h2g_valid(endaddr)) {
339 endaddr = h2g(endaddr);
340 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
341 } else {
342#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
343 endaddr = ~0ul;
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345#endif
346 }
347 }
348 }
349 free(freep);
350 mmap_unlock();
351 }
352#else
353 FILE *f;
354
355 last_brk = (unsigned long)sbrk(0);
356
357 f = fopen("/compat/linux/proc/self/maps", "r");
358 if (f) {
359 mmap_lock();
360
361 do {
362 unsigned long startaddr, endaddr;
363 int n;
364
365 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
366
367 if (n == 2 && h2g_valid(startaddr)) {
368 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
369
370 if (h2g_valid(endaddr)) {
371 endaddr = h2g(endaddr);
372 } else {
373 endaddr = ~0ul;
374 }
375 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 }
377 } while (!feof(f));
378
379 fclose(f);
380 mmap_unlock();
381 }
382#endif
383 }
384#endif
385}
386
387static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
388{
389 PageDesc *pd;
390 void **lp;
391 int i;
392
5b6dd868
BS
393 /* Level 1. Always allocated. */
394 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
395
396 /* Level 2..N-1. */
03f49957 397 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
398 void **p = *lp;
399
400 if (p == NULL) {
401 if (!alloc) {
402 return NULL;
403 }
e3a0abfd 404 p = g_new0(void *, V_L2_SIZE);
5b6dd868
BS
405 *lp = p;
406 }
407
03f49957 408 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
409 }
410
411 pd = *lp;
412 if (pd == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
e3a0abfd 416 pd = g_new0(PageDesc, V_L2_SIZE);
5b6dd868
BS
417 *lp = pd;
418 }
419
03f49957 420 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
421}
422
423static inline PageDesc *page_find(tb_page_addr_t index)
424{
425 return page_find_alloc(index, 0);
426}
427
428#if !defined(CONFIG_USER_ONLY)
429#define mmap_lock() do { } while (0)
430#define mmap_unlock() do { } while (0)
431#endif
432
433#if defined(CONFIG_USER_ONLY)
434/* Currently it is not recommended to allocate big chunks of data in
435 user mode. It will change when a dedicated libc will be used. */
436/* ??? 64-bit hosts ought to have no problem mmaping data outside the
437 region in which the guest needs to run. Revisit this. */
438#define USE_STATIC_CODE_GEN_BUFFER
439#endif
440
441/* ??? Should configure for this, not list operating systems here. */
442#if (defined(__linux__) \
443 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
444 || defined(__DragonFly__) || defined(__OpenBSD__) \
445 || defined(__NetBSD__))
446# define USE_MMAP
447#endif
448
449/* Minimum size of the code gen buffer. This number is randomly chosen,
450 but not so small that we can't have a fair number of TB's live. */
451#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
452
453/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
454 indicated, this is constrained by the range of direct branches on the
455 host cpu, as used by the TCG implementation of goto_tb. */
456#if defined(__x86_64__)
457# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
458#elif defined(__sparc__)
459# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
460#elif defined(__aarch64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
462#elif defined(__arm__)
463# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
464#elif defined(__s390x__)
465 /* We have a +- 4GB range on the branches; leave some slop. */
466# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
467#elif defined(__mips__)
468 /* We have a 256MB branch region, but leave room to make sure the
469 main executable is also within that region. */
470# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
471#else
472# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
473#endif
474
475#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
476
477#define DEFAULT_CODE_GEN_BUFFER_SIZE \
478 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
479 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
480
481static inline size_t size_code_gen_buffer(size_t tb_size)
482{
483 /* Size the buffer. */
484 if (tb_size == 0) {
485#ifdef USE_STATIC_CODE_GEN_BUFFER
486 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
487#else
488 /* ??? Needs adjustments. */
489 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
490 static buffer, we could size this on RESERVED_VA, on the text
491 segment size of the executable, or continue to use the default. */
492 tb_size = (unsigned long)(ram_size / 4);
493#endif
494 }
495 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
496 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
497 }
498 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
499 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
500 }
0b0d3320 501 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
502 return tb_size;
503}
504
483c76e1
RH
505#ifdef __mips__
506/* In order to use J and JAL within the code_gen_buffer, we require
507 that the buffer not cross a 256MB boundary. */
508static inline bool cross_256mb(void *addr, size_t size)
509{
510 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
511}
512
513/* We weren't able to allocate a buffer without crossing that boundary,
514 so make do with the larger portion of the buffer that doesn't cross.
515 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
516static inline void *split_cross_256mb(void *buf1, size_t size1)
517{
518 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
519 size_t size2 = buf1 + size1 - buf2;
520
521 size1 = buf2 - buf1;
522 if (size1 < size2) {
523 size1 = size2;
524 buf1 = buf2;
525 }
526
527 tcg_ctx.code_gen_buffer_size = size1;
528 return buf1;
529}
530#endif
531
5b6dd868
BS
532#ifdef USE_STATIC_CODE_GEN_BUFFER
533static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
534 __attribute__((aligned(CODE_GEN_ALIGN)));
535
536static inline void *alloc_code_gen_buffer(void)
537{
483c76e1
RH
538 void *buf = static_code_gen_buffer;
539#ifdef __mips__
540 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
541 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
542 }
543#endif
544 map_exec(buf, tcg_ctx.code_gen_buffer_size);
545 return buf;
5b6dd868
BS
546}
547#elif defined(USE_MMAP)
548static inline void *alloc_code_gen_buffer(void)
549{
550 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
551 uintptr_t start = 0;
552 void *buf;
553
554 /* Constrain the position of the buffer based on the host cpu.
555 Note that these addresses are chosen in concert with the
556 addresses assigned in the relevant linker script file. */
557# if defined(__PIE__) || defined(__PIC__)
558 /* Don't bother setting a preferred location if we're building
559 a position-independent executable. We're more likely to get
560 an address near the main executable if we let the kernel
561 choose the address. */
562# elif defined(__x86_64__) && defined(MAP_32BIT)
563 /* Force the memory down into low memory with the executable.
564 Leave the choice of exact location with the kernel. */
565 flags |= MAP_32BIT;
566 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
567 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
568 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
569 }
570# elif defined(__sparc__)
571 start = 0x40000000ul;
572# elif defined(__s390x__)
573 start = 0x90000000ul;
479eb121
RH
574# elif defined(__mips__)
575 /* ??? We ought to more explicitly manage layout for softmmu too. */
576# ifdef CONFIG_USER_ONLY
577 start = 0x68000000ul;
578# elif _MIPS_SIM == _ABI64
579 start = 0x128000000ul;
580# else
581 start = 0x08000000ul;
582# endif
5b6dd868
BS
583# endif
584
0b0d3320 585 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 586 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
587 if (buf == MAP_FAILED) {
588 return NULL;
589 }
590
591#ifdef __mips__
592 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 593 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
594 that 256mb crossing. This time don't specify an address. */
595 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
596 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
597 flags, -1, 0);
598 if (buf2 != MAP_FAILED) {
599 if (!cross_256mb(buf2, size1)) {
600 /* Success! Use the new buffer. */
601 munmap(buf, size1);
602 return buf2;
603 }
604 /* Failure. Work with what we had. */
605 munmap(buf2, size1);
606 }
607
608 /* Split the original buffer. Free the smaller half. */
609 buf2 = split_cross_256mb(buf, size1);
610 size2 = tcg_ctx.code_gen_buffer_size;
611 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
612 return buf2;
613 }
614#endif
615
616 return buf;
5b6dd868
BS
617}
618#else
619static inline void *alloc_code_gen_buffer(void)
620{
8b98ade3 621 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 622
483c76e1
RH
623 if (buf == NULL) {
624 return NULL;
625 }
626
627#ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
630 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
631 /* Success! Use the new buffer. */
632 free(buf);
633 buf = buf2;
634 } else {
635 /* Failure. Work with what we had. Since this is malloc
636 and not mmap, we can't free the other half. */
637 free(buf2);
638 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
639 }
5b6dd868 640 }
483c76e1
RH
641#endif
642
643 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
644 return buf;
645}
646#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
647
648static inline void code_gen_alloc(size_t tb_size)
649{
0b0d3320
EV
650 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
651 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
652 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
653 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
654 exit(1);
655 }
656
0b0d3320
EV
657 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
658 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
659
660 /* Steal room for the prologue at the end of the buffer. This ensures
661 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
662 from TB's to the prologue are going to be in range. It also means
663 that we don't need to mark (additional) portions of the data segment
664 as executable. */
0b0d3320
EV
665 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
666 tcg_ctx.code_gen_buffer_size - 1024;
667 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 668
0b0d3320 669 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 670 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
671 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
672 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
673 tcg_ctx.tb_ctx.tbs =
674 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
675}
676
677/* Must be called before using the QEMU cpus. 'tb_size' is the size
678 (in bytes) allocated to the translation buffer. Zero means default
679 size. */
680void tcg_exec_init(unsigned long tb_size)
681{
682 cpu_gen_init();
683 code_gen_alloc(tb_size);
0b0d3320
EV
684 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
685 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
686 page_init();
687#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
688 /* There's no guest base to take into account, so go ahead and
689 initialize the prologue now. */
690 tcg_prologue_init(&tcg_ctx);
691#endif
692}
693
694bool tcg_enabled(void)
695{
0b0d3320 696 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
697}
698
699/* Allocate a new translation block. Flush the translation buffer if
700 too many translation blocks or too much generated code. */
701static TranslationBlock *tb_alloc(target_ulong pc)
702{
703 TranslationBlock *tb;
704
5e5f07e0 705 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
706 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
707 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
708 return NULL;
709 }
5e5f07e0 710 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
711 tb->pc = pc;
712 tb->cflags = 0;
713 return tb;
714}
715
716void tb_free(TranslationBlock *tb)
717{
718 /* In practice this is mostly used for single use temporary TB
719 Ignore the hard cases and just back up if this TB happens to
720 be the last one generated. */
5e5f07e0
EV
721 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
722 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 723 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 724 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
725 }
726}
727
728static inline void invalidate_page_bitmap(PageDesc *p)
729{
730 if (p->code_bitmap) {
731 g_free(p->code_bitmap);
732 p->code_bitmap = NULL;
733 }
734 p->code_write_count = 0;
735}
736
737/* Set to NULL all the 'first_tb' fields in all PageDescs. */
738static void page_flush_tb_1(int level, void **lp)
739{
740 int i;
741
742 if (*lp == NULL) {
743 return;
744 }
745 if (level == 0) {
746 PageDesc *pd = *lp;
747
03f49957 748 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
749 pd[i].first_tb = NULL;
750 invalidate_page_bitmap(pd + i);
751 }
752 } else {
753 void **pp = *lp;
754
03f49957 755 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
756 page_flush_tb_1(level - 1, pp + i);
757 }
758 }
759}
760
761static void page_flush_tb(void)
762{
763 int i;
764
765 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 766 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
767 }
768}
769
770/* flush all the translation blocks */
771/* XXX: tb_flush is currently not thread safe */
772void tb_flush(CPUArchState *env1)
773{
a47dddd7 774 CPUState *cpu = ENV_GET_CPU(env1);
5b6dd868
BS
775
776#if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 778 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 779 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 780 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 781 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 782#endif
0b0d3320
EV
783 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
784 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 785 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 786 }
5e5f07e0 787 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 788
bdc44640 789 CPU_FOREACH(cpu) {
8cd70437 790 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
791 }
792
eb2535f4 793 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
794 page_flush_tb();
795
0b0d3320 796 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
797 /* XXX: flush processor icache at this point if cache flush is
798 expensive */
5e5f07e0 799 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
800}
801
802#ifdef DEBUG_TB_CHECK
803
804static void tb_invalidate_check(target_ulong address)
805{
806 TranslationBlock *tb;
807 int i;
808
809 address &= TARGET_PAGE_MASK;
810 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 811 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
812 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
813 address >= tb->pc + tb->size)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address, (long)tb->pc, tb->size);
817 }
818 }
819 }
820}
821
822/* verify that all the pages have correct rights for code */
823static void tb_page_check(void)
824{
825 TranslationBlock *tb;
826 int i, flags1, flags2;
827
828 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
829 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
830 tb = tb->phys_hash_next) {
5b6dd868
BS
831 flags1 = page_get_flags(tb->pc);
832 flags2 = page_get_flags(tb->pc + tb->size - 1);
833 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb->pc, tb->size, flags1, flags2);
836 }
837 }
838 }
839}
840
841#endif
842
0c884d16 843static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
844{
845 TranslationBlock *tb1;
846
847 for (;;) {
848 tb1 = *ptb;
849 if (tb1 == tb) {
0c884d16 850 *ptb = tb1->phys_hash_next;
5b6dd868
BS
851 break;
852 }
0c884d16 853 ptb = &tb1->phys_hash_next;
5b6dd868
BS
854 }
855}
856
857static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
858{
859 TranslationBlock *tb1;
860 unsigned int n1;
861
862 for (;;) {
863 tb1 = *ptb;
864 n1 = (uintptr_t)tb1 & 3;
865 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
866 if (tb1 == tb) {
867 *ptb = tb1->page_next[n1];
868 break;
869 }
870 ptb = &tb1->page_next[n1];
871 }
872}
873
874static inline void tb_jmp_remove(TranslationBlock *tb, int n)
875{
876 TranslationBlock *tb1, **ptb;
877 unsigned int n1;
878
879 ptb = &tb->jmp_next[n];
880 tb1 = *ptb;
881 if (tb1) {
882 /* find tb(n) in circular list */
883 for (;;) {
884 tb1 = *ptb;
885 n1 = (uintptr_t)tb1 & 3;
886 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
887 if (n1 == n && tb1 == tb) {
888 break;
889 }
890 if (n1 == 2) {
891 ptb = &tb1->jmp_first;
892 } else {
893 ptb = &tb1->jmp_next[n1];
894 }
895 }
896 /* now we can suppress tb(n) from the list */
897 *ptb = tb->jmp_next[n];
898
899 tb->jmp_next[n] = NULL;
900 }
901}
902
903/* reset the jump entry 'n' of a TB so that it is not chained to
904 another TB */
905static inline void tb_reset_jump(TranslationBlock *tb, int n)
906{
907 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
908}
909
0c884d16 910/* invalidate one TB */
5b6dd868
BS
911void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
912{
182735ef 913 CPUState *cpu;
5b6dd868
BS
914 PageDesc *p;
915 unsigned int h, n1;
916 tb_page_addr_t phys_pc;
917 TranslationBlock *tb1, *tb2;
918
919 /* remove the TB from the hash list */
920 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
921 h = tb_phys_hash_func(phys_pc);
5e5f07e0 922 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
923
924 /* remove the TB from the page list */
925 if (tb->page_addr[0] != page_addr) {
926 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
927 tb_page_remove(&p->first_tb, tb);
928 invalidate_page_bitmap(p);
929 }
930 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
931 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
932 tb_page_remove(&p->first_tb, tb);
933 invalidate_page_bitmap(p);
934 }
935
5e5f07e0 936 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
937
938 /* remove the TB from the hash list */
939 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 940 CPU_FOREACH(cpu) {
8cd70437
AF
941 if (cpu->tb_jmp_cache[h] == tb) {
942 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
943 }
944 }
945
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb, 0);
948 tb_jmp_remove(tb, 1);
949
950 /* suppress any remaining jumps to this TB */
951 tb1 = tb->jmp_first;
952 for (;;) {
953 n1 = (uintptr_t)tb1 & 3;
954 if (n1 == 2) {
955 break;
956 }
957 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
958 tb2 = tb1->jmp_next[n1];
959 tb_reset_jump(tb1, n1);
960 tb1->jmp_next[n1] = NULL;
961 tb1 = tb2;
962 }
963 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
964
5e5f07e0 965 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
966}
967
5b6dd868
BS
968static void build_page_bitmap(PageDesc *p)
969{
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
972
510a647f 973 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
974
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (uintptr_t)tb & 3;
978 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE) {
986 tb_end = TARGET_PAGE_SIZE;
987 }
988 } else {
989 tb_start = 0;
990 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
991 }
510a647f 992 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
993 tb = tb->page_next[n];
994 }
995}
996
648f034c 997TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
998 target_ulong pc, target_ulong cs_base,
999 int flags, int cflags)
1000{
648f034c 1001 CPUArchState *env = cpu->env_ptr;
5b6dd868 1002 TranslationBlock *tb;
5b6dd868
BS
1003 tb_page_addr_t phys_pc, phys_page2;
1004 target_ulong virt_page2;
1005 int code_gen_size;
1006
1007 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1008 if (use_icount) {
1009 cflags |= CF_USE_ICOUNT;
1010 }
5b6dd868
BS
1011 tb = tb_alloc(pc);
1012 if (!tb) {
1013 /* flush must be done */
1014 tb_flush(env);
1015 /* cannot fail at this point */
1016 tb = tb_alloc(pc);
1017 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1018 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1019 }
1813e175 1020 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1021 tb->cs_base = cs_base;
1022 tb->flags = flags;
1023 tb->cflags = cflags;
1024 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1025 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1026 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1027
1028 /* check next page if needed */
1029 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1030 phys_page2 = -1;
1031 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1032 phys_page2 = get_page_addr_code(env, virt_page2);
1033 }
1034 tb_link_page(tb, phys_pc, phys_page2);
1035 return tb;
1036}
1037
1038/*
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1043 * this TB.
1044 */
35865339 1045void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1046{
1047 while (start < end) {
35865339 1048 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1049 start &= TARGET_PAGE_MASK;
1050 start += TARGET_PAGE_SIZE;
1051 }
1052}
1053
1054/*
1055 * Invalidate all TBs which intersect with the target physical address range
1056 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1057 * 'is_cpu_write_access' should be true if called from a real cpu write
1058 * access: the virtual CPU will exit the current TB if code is modified inside
1059 * this TB.
1060 */
1061void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1062 int is_cpu_write_access)
1063{
1064 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1065 CPUState *cpu = current_cpu;
baea4fae 1066#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1067 CPUArchState *env = NULL;
1068#endif
5b6dd868
BS
1069 tb_page_addr_t tb_start, tb_end;
1070 PageDesc *p;
1071 int n;
1072#ifdef TARGET_HAS_PRECISE_SMC
1073 int current_tb_not_found = is_cpu_write_access;
1074 TranslationBlock *current_tb = NULL;
1075 int current_tb_modified = 0;
1076 target_ulong current_pc = 0;
1077 target_ulong current_cs_base = 0;
1078 int current_flags = 0;
1079#endif /* TARGET_HAS_PRECISE_SMC */
1080
1081 p = page_find(start >> TARGET_PAGE_BITS);
1082 if (!p) {
1083 return;
1084 }
1085 if (!p->code_bitmap &&
1086 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1087 is_cpu_write_access) {
1088 /* build code bitmap */
1089 build_page_bitmap(p);
1090 }
baea4fae 1091#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1092 if (cpu != NULL) {
1093 env = cpu->env_ptr;
d77953b9 1094 }
4917cf44 1095#endif
5b6dd868
BS
1096
1097 /* we remove all the TBs in the range [start, end[ */
1098 /* XXX: see if in some cases it could be faster to invalidate all
1099 the code */
1100 tb = p->first_tb;
1101 while (tb != NULL) {
1102 n = (uintptr_t)tb & 3;
1103 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1104 tb_next = tb->page_next[n];
1105 /* NOTE: this is subtle as a TB may span two physical pages */
1106 if (n == 0) {
1107 /* NOTE: tb_end may be after the end of the page, but
1108 it is not a problem */
1109 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1110 tb_end = tb_start + tb->size;
1111 } else {
1112 tb_start = tb->page_addr[1];
1113 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1114 }
1115 if (!(tb_end <= start || tb_start >= end)) {
1116#ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb_not_found) {
1118 current_tb_not_found = 0;
1119 current_tb = NULL;
93afeade 1120 if (cpu->mem_io_pc) {
5b6dd868 1121 /* now we have a real cpu fault */
93afeade 1122 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1123 }
1124 }
1125 if (current_tb == tb &&
1126 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1127 /* If we are modifying the current TB, we must stop
1128 its execution. We could be more precise by checking
1129 that the modification is after the current PC, but it
1130 would require a specialized function to partially
1131 restore the CPU state */
1132
1133 current_tb_modified = 1;
74f10515 1134 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1135 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1136 &current_flags);
1137 }
1138#endif /* TARGET_HAS_PRECISE_SMC */
1139 /* we need to do that to handle the case where a signal
1140 occurs while doing tb_phys_invalidate() */
1141 saved_tb = NULL;
d77953b9
AF
1142 if (cpu != NULL) {
1143 saved_tb = cpu->current_tb;
1144 cpu->current_tb = NULL;
5b6dd868
BS
1145 }
1146 tb_phys_invalidate(tb, -1);
d77953b9
AF
1147 if (cpu != NULL) {
1148 cpu->current_tb = saved_tb;
c3affe56
AF
1149 if (cpu->interrupt_request && cpu->current_tb) {
1150 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1151 }
1152 }
1153 }
1154 tb = tb_next;
1155 }
1156#if !defined(CONFIG_USER_ONLY)
1157 /* if no code remaining, no need to continue to use slow writes */
1158 if (!p->first_tb) {
1159 invalidate_page_bitmap(p);
1160 if (is_cpu_write_access) {
9564f52d 1161 tlb_unprotect_code(start);
5b6dd868
BS
1162 }
1163 }
1164#endif
1165#ifdef TARGET_HAS_PRECISE_SMC
1166 if (current_tb_modified) {
1167 /* we generate a block containing just the instruction
1168 modifying the memory. It will ensure that it cannot modify
1169 itself */
d77953b9 1170 cpu->current_tb = NULL;
648f034c 1171 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1172 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1173 }
1174#endif
1175}
1176
1177/* len must be <= 8 and start must be a multiple of len */
1178void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1179{
1180 PageDesc *p;
5b6dd868
BS
1181
1182#if 0
1183 if (1) {
1184 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1185 cpu_single_env->mem_io_vaddr, len,
1186 cpu_single_env->eip,
1187 cpu_single_env->eip +
1188 (intptr_t)cpu_single_env->segs[R_CS].base);
1189 }
1190#endif
1191 p = page_find(start >> TARGET_PAGE_BITS);
1192 if (!p) {
1193 return;
1194 }
1195 if (p->code_bitmap) {
510a647f
EC
1196 unsigned int nr;
1197 unsigned long b;
1198
1199 nr = start & ~TARGET_PAGE_MASK;
1200 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1201 if (b & ((1 << len) - 1)) {
1202 goto do_invalidate;
1203 }
1204 } else {
1205 do_invalidate:
1206 tb_invalidate_phys_page_range(start, start + len, 1);
1207 }
1208}
1209
1210#if !defined(CONFIG_SOFTMMU)
1211static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1212 uintptr_t pc, void *puc,
1213 bool locked)
5b6dd868
BS
1214{
1215 TranslationBlock *tb;
1216 PageDesc *p;
1217 int n;
1218#ifdef TARGET_HAS_PRECISE_SMC
1219 TranslationBlock *current_tb = NULL;
4917cf44
AF
1220 CPUState *cpu = current_cpu;
1221 CPUArchState *env = NULL;
5b6dd868
BS
1222 int current_tb_modified = 0;
1223 target_ulong current_pc = 0;
1224 target_ulong current_cs_base = 0;
1225 int current_flags = 0;
1226#endif
1227
1228 addr &= TARGET_PAGE_MASK;
1229 p = page_find(addr >> TARGET_PAGE_BITS);
1230 if (!p) {
1231 return;
1232 }
1233 tb = p->first_tb;
1234#ifdef TARGET_HAS_PRECISE_SMC
1235 if (tb && pc != 0) {
1236 current_tb = tb_find_pc(pc);
1237 }
4917cf44
AF
1238 if (cpu != NULL) {
1239 env = cpu->env_ptr;
d77953b9 1240 }
5b6dd868
BS
1241#endif
1242 while (tb != NULL) {
1243 n = (uintptr_t)tb & 3;
1244 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1245#ifdef TARGET_HAS_PRECISE_SMC
1246 if (current_tb == tb &&
1247 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1248 /* If we are modifying the current TB, we must stop
1249 its execution. We could be more precise by checking
1250 that the modification is after the current PC, but it
1251 would require a specialized function to partially
1252 restore the CPU state */
1253
1254 current_tb_modified = 1;
74f10515 1255 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1256 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1257 &current_flags);
1258 }
1259#endif /* TARGET_HAS_PRECISE_SMC */
1260 tb_phys_invalidate(tb, addr);
1261 tb = tb->page_next[n];
1262 }
1263 p->first_tb = NULL;
1264#ifdef TARGET_HAS_PRECISE_SMC
1265 if (current_tb_modified) {
1266 /* we generate a block containing just the instruction
1267 modifying the memory. It will ensure that it cannot modify
1268 itself */
d77953b9 1269 cpu->current_tb = NULL;
648f034c 1270 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1271 if (locked) {
1272 mmap_unlock();
1273 }
0ea8cb88 1274 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1275 }
1276#endif
1277}
1278#endif
1279
1280/* add the tb in the target page and protect it if necessary */
1281static inline void tb_alloc_page(TranslationBlock *tb,
1282 unsigned int n, tb_page_addr_t page_addr)
1283{
1284 PageDesc *p;
1285#ifndef CONFIG_USER_ONLY
1286 bool page_already_protected;
1287#endif
1288
1289 tb->page_addr[n] = page_addr;
1290 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1291 tb->page_next[n] = p->first_tb;
1292#ifndef CONFIG_USER_ONLY
1293 page_already_protected = p->first_tb != NULL;
1294#endif
1295 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1296 invalidate_page_bitmap(p);
1297
5b6dd868
BS
1298#if defined(CONFIG_USER_ONLY)
1299 if (p->flags & PAGE_WRITE) {
1300 target_ulong addr;
1301 PageDesc *p2;
1302 int prot;
1303
1304 /* force the host page as non writable (writes will have a
1305 page fault + mprotect overhead) */
1306 page_addr &= qemu_host_page_mask;
1307 prot = 0;
1308 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1309 addr += TARGET_PAGE_SIZE) {
1310
1311 p2 = page_find(addr >> TARGET_PAGE_BITS);
1312 if (!p2) {
1313 continue;
1314 }
1315 prot |= p2->flags;
1316 p2->flags &= ~PAGE_WRITE;
1317 }
1318 mprotect(g2h(page_addr), qemu_host_page_size,
1319 (prot & PAGE_BITS) & ~PAGE_WRITE);
1320#ifdef DEBUG_TB_INVALIDATE
1321 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1322 page_addr);
1323#endif
1324 }
1325#else
1326 /* if some code is already present, then the pages are already
1327 protected. So we handle the case where only the first TB is
1328 allocated in a physical page */
1329 if (!page_already_protected) {
1330 tlb_protect_code(page_addr);
1331 }
1332#endif
5b6dd868
BS
1333}
1334
1335/* add a new TB and link it to the physical page tables. phys_page2 is
1336 (-1) to indicate that only one page contains the TB. */
1337static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1338 tb_page_addr_t phys_page2)
1339{
1340 unsigned int h;
1341 TranslationBlock **ptb;
1342
1343 /* Grab the mmap lock to stop another thread invalidating this TB
1344 before we are done. */
1345 mmap_lock();
1346 /* add in the physical hash table */
1347 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1348 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1349 tb->phys_hash_next = *ptb;
1350 *ptb = tb;
1351
1352 /* add in the page list */
1353 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1354 if (phys_page2 != -1) {
1355 tb_alloc_page(tb, 1, phys_page2);
1356 } else {
1357 tb->page_addr[1] = -1;
1358 }
1359
1360 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1361 tb->jmp_next[0] = NULL;
1362 tb->jmp_next[1] = NULL;
1363
1364 /* init original jump addresses */
1365 if (tb->tb_next_offset[0] != 0xffff) {
1366 tb_reset_jump(tb, 0);
1367 }
1368 if (tb->tb_next_offset[1] != 0xffff) {
1369 tb_reset_jump(tb, 1);
1370 }
1371
1372#ifdef DEBUG_TB_CHECK
1373 tb_page_check();
1374#endif
1375 mmap_unlock();
1376}
1377
5b6dd868
BS
1378/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1379 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1380static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1381{
1382 int m_min, m_max, m;
1383 uintptr_t v;
1384 TranslationBlock *tb;
1385
5e5f07e0 1386 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1387 return NULL;
1388 }
0b0d3320
EV
1389 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1390 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1391 return NULL;
1392 }
1393 /* binary search (cf Knuth) */
1394 m_min = 0;
5e5f07e0 1395 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1396 while (m_min <= m_max) {
1397 m = (m_min + m_max) >> 1;
5e5f07e0 1398 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1399 v = (uintptr_t)tb->tc_ptr;
1400 if (v == tc_ptr) {
1401 return tb;
1402 } else if (tc_ptr < v) {
1403 m_max = m - 1;
1404 } else {
1405 m_min = m + 1;
1406 }
1407 }
5e5f07e0 1408 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1409}
1410
ec53b45b 1411#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1412void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1413{
1414 ram_addr_t ram_addr;
5c8a00ce 1415 MemoryRegion *mr;
149f54b5 1416 hwaddr l = 1;
5b6dd868 1417
41063e1e 1418 rcu_read_lock();
29d8ec7b 1419 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1420 if (!(memory_region_is_ram(mr)
1421 || memory_region_is_romd(mr))) {
41063e1e 1422 rcu_read_unlock();
5b6dd868
BS
1423 return;
1424 }
5c8a00ce 1425 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1426 + addr;
5b6dd868 1427 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1428 rcu_read_unlock();
5b6dd868 1429}
ec53b45b 1430#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1431
239c51a5 1432void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1433{
1434 TranslationBlock *tb;
1435
93afeade 1436 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868 1437 if (!tb) {
a47dddd7 1438 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
93afeade 1439 (void *)cpu->mem_io_pc);
5b6dd868 1440 }
74f10515 1441 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1442 tb_phys_invalidate(tb, -1);
1443}
1444
1445#ifndef CONFIG_USER_ONLY
1446/* mask must never be zero, except for A20 change call */
c3affe56 1447static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1448{
5b6dd868
BS
1449 int old_mask;
1450
259186a7
AF
1451 old_mask = cpu->interrupt_request;
1452 cpu->interrupt_request |= mask;
5b6dd868
BS
1453
1454 /*
1455 * If called from iothread context, wake the target cpu in
1456 * case its halted.
1457 */
1458 if (!qemu_cpu_is_self(cpu)) {
1459 qemu_cpu_kick(cpu);
1460 return;
1461 }
1462
1463 if (use_icount) {
28ecfd7a 1464 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1465 if (!cpu_can_do_io(cpu)
5b6dd868 1466 && (mask & ~old_mask) != 0) {
a47dddd7 1467 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1468 }
1469 } else {
378df4b2 1470 cpu->tcg_exit_req = 1;
5b6dd868
BS
1471 }
1472}
1473
1474CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1475
1476/* in deterministic execution mode, instructions doing device I/Os
1477 must be at the end of the TB */
90b40a69 1478void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1479{
a47dddd7 1480#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1481 CPUArchState *env = cpu->env_ptr;
a47dddd7 1482#endif
5b6dd868
BS
1483 TranslationBlock *tb;
1484 uint32_t n, cflags;
1485 target_ulong pc, cs_base;
1486 uint64_t flags;
1487
1488 tb = tb_find_pc(retaddr);
1489 if (!tb) {
a47dddd7 1490 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1491 (void *)retaddr);
1492 }
28ecfd7a 1493 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1494 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1495 /* Calculate how many instructions had been executed before the fault
1496 occurred. */
28ecfd7a 1497 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1498 /* Generate a new TB ending on the I/O insn. */
1499 n++;
1500 /* On MIPS and SH, delay slot instructions can only be restarted if
1501 they were already the first instruction in the TB. If this is not
1502 the first instruction in a TB then re-execute the preceding
1503 branch. */
1504#if defined(TARGET_MIPS)
1505 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1506 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1507 cpu->icount_decr.u16.low++;
5b6dd868
BS
1508 env->hflags &= ~MIPS_HFLAG_BMASK;
1509 }
1510#elif defined(TARGET_SH4)
1511 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1512 && n > 1) {
1513 env->pc -= 2;
28ecfd7a 1514 cpu->icount_decr.u16.low++;
5b6dd868
BS
1515 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1516 }
1517#endif
1518 /* This should never happen. */
1519 if (n > CF_COUNT_MASK) {
a47dddd7 1520 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1521 }
1522
1523 cflags = n | CF_LAST_IO;
1524 pc = tb->pc;
1525 cs_base = tb->cs_base;
1526 flags = tb->flags;
1527 tb_phys_invalidate(tb, -1);
1528 /* FIXME: In theory this could raise an exception. In practice
1529 we have already translated the block once so it's probably ok. */
648f034c 1530 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1531 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1532 the first in the TB) then we end up generating a whole new TB and
1533 repeating the fault, which is horribly inefficient.
1534 Better would be to execute just this insn uncached, or generate a
1535 second new TB. */
0ea8cb88 1536 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1537}
1538
611d4f99 1539void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1540{
1541 unsigned int i;
1542
1543 /* Discard jump cache entries for any tb which might potentially
1544 overlap the flushed page. */
1545 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1546 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1547 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1548
1549 i = tb_jmp_cache_hash_page(addr);
8cd70437 1550 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1551 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1552}
1553
1554void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1555{
1556 int i, target_code_size, max_target_code_size;
1557 int direct_jmp_count, direct_jmp2_count, cross_page;
1558 TranslationBlock *tb;
1559
1560 target_code_size = 0;
1561 max_target_code_size = 0;
1562 cross_page = 0;
1563 direct_jmp_count = 0;
1564 direct_jmp2_count = 0;
5e5f07e0
EV
1565 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1566 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1567 target_code_size += tb->size;
1568 if (tb->size > max_target_code_size) {
1569 max_target_code_size = tb->size;
1570 }
1571 if (tb->page_addr[1] != -1) {
1572 cross_page++;
1573 }
1574 if (tb->tb_next_offset[0] != 0xffff) {
1575 direct_jmp_count++;
1576 if (tb->tb_next_offset[1] != 0xffff) {
1577 direct_jmp2_count++;
1578 }
1579 }
1580 }
1581 /* XXX: avoid using doubles ? */
1582 cpu_fprintf(f, "Translation buffer state:\n");
1583 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1584 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1585 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1586 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1587 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1588 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1589 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1590 tcg_ctx.tb_ctx.nb_tbs : 0,
1591 max_target_code_size);
5b6dd868 1592 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1593 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1594 tcg_ctx.code_gen_buffer) /
1595 tcg_ctx.tb_ctx.nb_tbs : 0,
1596 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1597 tcg_ctx.code_gen_buffer) /
1598 target_code_size : 0);
1599 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1600 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1601 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1602 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1603 direct_jmp_count,
5e5f07e0
EV
1604 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1605 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1606 direct_jmp2_count,
5e5f07e0
EV
1607 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1608 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1609 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1610 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1611 cpu_fprintf(f, "TB invalidate count %d\n",
1612 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1613 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1614 tcg_dump_info(f, cpu_fprintf);
1615}
1616
246ae24d
MF
1617void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1618{
1619 tcg_dump_op_count(f, cpu_fprintf);
1620}
1621
5b6dd868
BS
1622#else /* CONFIG_USER_ONLY */
1623
c3affe56 1624void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1625{
259186a7 1626 cpu->interrupt_request |= mask;
378df4b2 1627 cpu->tcg_exit_req = 1;
5b6dd868
BS
1628}
1629
1630/*
1631 * Walks guest process memory "regions" one by one
1632 * and calls callback function 'fn' for each region.
1633 */
1634struct walk_memory_regions_data {
1635 walk_memory_regions_fn fn;
1636 void *priv;
1a1c4db9 1637 target_ulong start;
5b6dd868
BS
1638 int prot;
1639};
1640
1641static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1642 target_ulong end, int new_prot)
5b6dd868 1643{
1a1c4db9 1644 if (data->start != -1u) {
5b6dd868
BS
1645 int rc = data->fn(data->priv, data->start, end, data->prot);
1646 if (rc != 0) {
1647 return rc;
1648 }
1649 }
1650
1a1c4db9 1651 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1652 data->prot = new_prot;
1653
1654 return 0;
1655}
1656
1657static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1658 target_ulong base, int level, void **lp)
5b6dd868 1659{
1a1c4db9 1660 target_ulong pa;
5b6dd868
BS
1661 int i, rc;
1662
1663 if (*lp == NULL) {
1664 return walk_memory_regions_end(data, base, 0);
1665 }
1666
1667 if (level == 0) {
1668 PageDesc *pd = *lp;
1669
03f49957 1670 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1671 int prot = pd[i].flags;
1672
1673 pa = base | (i << TARGET_PAGE_BITS);
1674 if (prot != data->prot) {
1675 rc = walk_memory_regions_end(data, pa, prot);
1676 if (rc != 0) {
1677 return rc;
1678 }
1679 }
1680 }
1681 } else {
1682 void **pp = *lp;
1683
03f49957 1684 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1685 pa = base | ((target_ulong)i <<
03f49957 1686 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1687 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1688 if (rc != 0) {
1689 return rc;
1690 }
1691 }
1692 }
1693
1694 return 0;
1695}
1696
1697int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1698{
1699 struct walk_memory_regions_data data;
1700 uintptr_t i;
1701
1702 data.fn = fn;
1703 data.priv = priv;
1a1c4db9 1704 data.start = -1u;
5b6dd868
BS
1705 data.prot = 0;
1706
1707 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1708 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1709 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1710 if (rc != 0) {
1711 return rc;
1712 }
1713 }
1714
1715 return walk_memory_regions_end(&data, 0, 0);
1716}
1717
1a1c4db9
MI
1718static int dump_region(void *priv, target_ulong start,
1719 target_ulong end, unsigned long prot)
5b6dd868
BS
1720{
1721 FILE *f = (FILE *)priv;
1722
1a1c4db9
MI
1723 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1724 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1725 start, end, end - start,
1726 ((prot & PAGE_READ) ? 'r' : '-'),
1727 ((prot & PAGE_WRITE) ? 'w' : '-'),
1728 ((prot & PAGE_EXEC) ? 'x' : '-'));
1729
1730 return 0;
1731}
1732
1733/* dump memory mappings */
1734void page_dump(FILE *f)
1735{
1a1c4db9 1736 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1737 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1738 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1739 walk_memory_regions(f, dump_region);
1740}
1741
1742int page_get_flags(target_ulong address)
1743{
1744 PageDesc *p;
1745
1746 p = page_find(address >> TARGET_PAGE_BITS);
1747 if (!p) {
1748 return 0;
1749 }
1750 return p->flags;
1751}
1752
1753/* Modify the flags of a page and invalidate the code if necessary.
1754 The flag PAGE_WRITE_ORG is positioned automatically depending
1755 on PAGE_WRITE. The mmap_lock should already be held. */
1756void page_set_flags(target_ulong start, target_ulong end, int flags)
1757{
1758 target_ulong addr, len;
1759
1760 /* This function should never be called with addresses outside the
1761 guest address space. If this assert fires, it probably indicates
1762 a missing call to h2g_valid. */
1763#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1764 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1765#endif
1766 assert(start < end);
1767
1768 start = start & TARGET_PAGE_MASK;
1769 end = TARGET_PAGE_ALIGN(end);
1770
1771 if (flags & PAGE_WRITE) {
1772 flags |= PAGE_WRITE_ORG;
1773 }
1774
1775 for (addr = start, len = end - start;
1776 len != 0;
1777 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1778 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1779
1780 /* If the write protection bit is set, then we invalidate
1781 the code inside. */
1782 if (!(p->flags & PAGE_WRITE) &&
1783 (flags & PAGE_WRITE) &&
1784 p->first_tb) {
d02532f0 1785 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1786 }
1787 p->flags = flags;
1788 }
1789}
1790
1791int page_check_range(target_ulong start, target_ulong len, int flags)
1792{
1793 PageDesc *p;
1794 target_ulong end;
1795 target_ulong addr;
1796
1797 /* This function should never be called with addresses outside the
1798 guest address space. If this assert fires, it probably indicates
1799 a missing call to h2g_valid. */
1800#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1801 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1802#endif
1803
1804 if (len == 0) {
1805 return 0;
1806 }
1807 if (start + len - 1 < start) {
1808 /* We've wrapped around. */
1809 return -1;
1810 }
1811
1812 /* must do before we loose bits in the next step */
1813 end = TARGET_PAGE_ALIGN(start + len);
1814 start = start & TARGET_PAGE_MASK;
1815
1816 for (addr = start, len = end - start;
1817 len != 0;
1818 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1819 p = page_find(addr >> TARGET_PAGE_BITS);
1820 if (!p) {
1821 return -1;
1822 }
1823 if (!(p->flags & PAGE_VALID)) {
1824 return -1;
1825 }
1826
1827 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1828 return -1;
1829 }
1830 if (flags & PAGE_WRITE) {
1831 if (!(p->flags & PAGE_WRITE_ORG)) {
1832 return -1;
1833 }
1834 /* unprotect the page if it was put read-only because it
1835 contains translated code */
1836 if (!(p->flags & PAGE_WRITE)) {
1837 if (!page_unprotect(addr, 0, NULL)) {
1838 return -1;
1839 }
1840 }
5b6dd868
BS
1841 }
1842 }
1843 return 0;
1844}
1845
1846/* called from signal handler: invalidate the code and unprotect the
1847 page. Return TRUE if the fault was successfully handled. */
1848int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1849{
1850 unsigned int prot;
1851 PageDesc *p;
1852 target_ulong host_start, host_end, addr;
1853
1854 /* Technically this isn't safe inside a signal handler. However we
1855 know this only ever happens in a synchronous SEGV handler, so in
1856 practice it seems to be ok. */
1857 mmap_lock();
1858
1859 p = page_find(address >> TARGET_PAGE_BITS);
1860 if (!p) {
1861 mmap_unlock();
1862 return 0;
1863 }
1864
1865 /* if the page was really writable, then we change its
1866 protection back to writable */
1867 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1868 host_start = address & qemu_host_page_mask;
1869 host_end = host_start + qemu_host_page_size;
1870
1871 prot = 0;
1872 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1873 p = page_find(addr >> TARGET_PAGE_BITS);
1874 p->flags |= PAGE_WRITE;
1875 prot |= p->flags;
1876
1877 /* and since the content will be modified, we must invalidate
1878 the corresponding translated code. */
d02532f0 1879 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1880#ifdef DEBUG_TB_CHECK
1881 tb_invalidate_check(addr);
1882#endif
1883 }
1884 mprotect((void *)g2h(host_start), qemu_host_page_size,
1885 prot & PAGE_BITS);
1886
1887 mmap_unlock();
1888 return 1;
1889 }
1890 mmap_unlock();
1891 return 0;
1892}
1893#endif /* CONFIG_USER_ONLY */
This page took 1.074252 seconds and 4 git commands to generate.