]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
80c71a24 | 25 | #include "qemu/osdep.h" |
45aba42f KW |
26 | #include <zlib.h> |
27 | ||
da34e65c | 28 | #include "qapi/error.h" |
45aba42f | 29 | #include "qemu-common.h" |
737e150e | 30 | #include "block/block_int.h" |
45aba42f | 31 | #include "block/qcow2.h" |
58369e22 | 32 | #include "qemu/bswap.h" |
3cce16f4 | 33 | #include "trace.h" |
45aba42f | 34 | |
46b732cd PB |
35 | int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size) |
36 | { | |
37 | BDRVQcow2State *s = bs->opaque; | |
38 | int new_l1_size, i, ret; | |
39 | ||
40 | if (exact_size >= s->l1_size) { | |
41 | return 0; | |
42 | } | |
43 | ||
44 | new_l1_size = exact_size; | |
45 | ||
46 | #ifdef DEBUG_ALLOC2 | |
47 | fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); | |
48 | #endif | |
49 | ||
50 | BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); | |
51 | ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset + | |
52 | new_l1_size * sizeof(uint64_t), | |
53 | (s->l1_size - new_l1_size) * sizeof(uint64_t), 0); | |
54 | if (ret < 0) { | |
55 | goto fail; | |
56 | } | |
57 | ||
58 | ret = bdrv_flush(bs->file->bs); | |
59 | if (ret < 0) { | |
60 | goto fail; | |
61 | } | |
62 | ||
63 | BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); | |
64 | for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { | |
65 | if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { | |
66 | continue; | |
67 | } | |
68 | qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, | |
69 | s->cluster_size, QCOW2_DISCARD_ALWAYS); | |
70 | s->l1_table[i] = 0; | |
71 | } | |
72 | return 0; | |
73 | ||
74 | fail: | |
75 | /* | |
76 | * If the write in the l1_table failed the image may contain a partially | |
77 | * overwritten l1_table. In this case it would be better to clear the | |
78 | * l1_table in memory to avoid possible image corruption. | |
79 | */ | |
80 | memset(s->l1_table + new_l1_size, 0, | |
81 | (s->l1_size - new_l1_size) * sizeof(uint64_t)); | |
82 | return ret; | |
83 | } | |
84 | ||
2cf7cfa1 KW |
85 | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, |
86 | bool exact_size) | |
45aba42f | 87 | { |
ff99129a | 88 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 | 89 | int new_l1_size2, ret, i; |
45aba42f | 90 | uint64_t *new_l1_table; |
fda74f82 | 91 | int64_t old_l1_table_offset, old_l1_size; |
2cf7cfa1 | 92 | int64_t new_l1_table_offset, new_l1_size; |
45aba42f KW |
93 | uint8_t data[12]; |
94 | ||
72893756 | 95 | if (min_size <= s->l1_size) |
45aba42f | 96 | return 0; |
72893756 | 97 | |
b93f9950 HR |
98 | /* Do a sanity check on min_size before trying to calculate new_l1_size |
99 | * (this prevents overflows during the while loop for the calculation of | |
100 | * new_l1_size) */ | |
101 | if (min_size > INT_MAX / sizeof(uint64_t)) { | |
102 | return -EFBIG; | |
103 | } | |
104 | ||
72893756 SH |
105 | if (exact_size) { |
106 | new_l1_size = min_size; | |
107 | } else { | |
108 | /* Bump size up to reduce the number of times we have to grow */ | |
109 | new_l1_size = s->l1_size; | |
110 | if (new_l1_size == 0) { | |
111 | new_l1_size = 1; | |
112 | } | |
113 | while (min_size > new_l1_size) { | |
21cf3e12 | 114 | new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); |
72893756 | 115 | } |
45aba42f | 116 | } |
72893756 | 117 | |
84c26520 HR |
118 | QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); |
119 | if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { | |
2cf7cfa1 KW |
120 | return -EFBIG; |
121 | } | |
122 | ||
45aba42f | 123 | #ifdef DEBUG_ALLOC2 |
2cf7cfa1 KW |
124 | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", |
125 | s->l1_size, new_l1_size); | |
45aba42f KW |
126 | #endif |
127 | ||
128 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
9a4f4c31 | 129 | new_l1_table = qemu_try_blockalign(bs->file->bs, |
de82815d KW |
130 | align_offset(new_l1_size2, 512)); |
131 | if (new_l1_table == NULL) { | |
132 | return -ENOMEM; | |
133 | } | |
134 | memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); | |
135 | ||
0647d47c SH |
136 | if (s->l1_size) { |
137 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); | |
138 | } | |
45aba42f KW |
139 | |
140 | /* write new table (align to cluster) */ | |
66f82cee | 141 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 142 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 143 | if (new_l1_table_offset < 0) { |
de82815d | 144 | qemu_vfree(new_l1_table); |
5d757b56 KW |
145 | return new_l1_table_offset; |
146 | } | |
29c1a730 KW |
147 | |
148 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
149 | if (ret < 0) { | |
80fa3341 | 150 | goto fail; |
29c1a730 | 151 | } |
45aba42f | 152 | |
cf93980e HR |
153 | /* the L1 position has not yet been updated, so these clusters must |
154 | * indeed be completely free */ | |
231bb267 HR |
155 | ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, |
156 | new_l1_size2); | |
cf93980e HR |
157 | if (ret < 0) { |
158 | goto fail; | |
159 | } | |
160 | ||
66f82cee | 161 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
162 | for(i = 0; i < s->l1_size; i++) |
163 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
d9ca2ea2 | 164 | ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, |
9a4f4c31 | 165 | new_l1_table, new_l1_size2); |
8b3b7206 | 166 | if (ret < 0) |
45aba42f KW |
167 | goto fail; |
168 | for(i = 0; i < s->l1_size; i++) | |
169 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
170 | ||
171 | /* set new table */ | |
66f82cee | 172 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
f1f7a1dd | 173 | stl_be_p(data, new_l1_size); |
e4ef9f46 | 174 | stq_be_p(data + 4, new_l1_table_offset); |
d9ca2ea2 | 175 | ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), |
9a4f4c31 | 176 | data, sizeof(data)); |
8b3b7206 | 177 | if (ret < 0) { |
45aba42f | 178 | goto fail; |
fb8fa77c | 179 | } |
de82815d | 180 | qemu_vfree(s->l1_table); |
fda74f82 | 181 | old_l1_table_offset = s->l1_table_offset; |
45aba42f KW |
182 | s->l1_table_offset = new_l1_table_offset; |
183 | s->l1_table = new_l1_table; | |
fda74f82 | 184 | old_l1_size = s->l1_size; |
45aba42f | 185 | s->l1_size = new_l1_size; |
fda74f82 HR |
186 | qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), |
187 | QCOW2_DISCARD_OTHER); | |
45aba42f KW |
188 | return 0; |
189 | fail: | |
de82815d | 190 | qemu_vfree(new_l1_table); |
6cfcb9b8 KW |
191 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, |
192 | QCOW2_DISCARD_OTHER); | |
8b3b7206 | 193 | return ret; |
45aba42f KW |
194 | } |
195 | ||
45aba42f KW |
196 | /* |
197 | * l2_load | |
198 | * | |
199 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
200 | * is used; otherwise the L2 table is loaded from the image file. | |
201 | * | |
202 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
203 | * the image file failed. | |
204 | */ | |
205 | ||
55c17e98 KW |
206 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
207 | uint64_t **l2_table) | |
45aba42f | 208 | { |
ff99129a | 209 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 210 | |
9be38598 EH |
211 | return qcow2_cache_get(bs, s->l2_table_cache, l2_offset, |
212 | (void **)l2_table); | |
45aba42f KW |
213 | } |
214 | ||
6583e3c7 KW |
215 | /* |
216 | * Writes one sector of the L1 table to the disk (can't update single entries | |
217 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
218 | */ | |
219 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
e23e400e | 220 | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 221 | { |
ff99129a | 222 | BDRVQcow2State *s = bs->opaque; |
a1391444 | 223 | uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; |
6583e3c7 | 224 | int l1_start_index; |
f7defcb6 | 225 | int i, ret; |
6583e3c7 KW |
226 | |
227 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
a1391444 HR |
228 | for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; |
229 | i++) | |
230 | { | |
6583e3c7 KW |
231 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); |
232 | } | |
233 | ||
231bb267 | 234 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, |
cf93980e HR |
235 | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); |
236 | if (ret < 0) { | |
237 | return ret; | |
238 | } | |
239 | ||
66f82cee | 240 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
d9ca2ea2 | 241 | ret = bdrv_pwrite_sync(bs->file, |
9a4f4c31 KW |
242 | s->l1_table_offset + 8 * l1_start_index, |
243 | buf, sizeof(buf)); | |
f7defcb6 KW |
244 | if (ret < 0) { |
245 | return ret; | |
6583e3c7 KW |
246 | } |
247 | ||
248 | return 0; | |
249 | } | |
250 | ||
45aba42f KW |
251 | /* |
252 | * l2_allocate | |
253 | * | |
254 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
255 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
256 | * table) copy the contents of the old L2 table into the newly allocated one. | |
257 | * Otherwise the new table is initialized with zeros. | |
258 | * | |
259 | */ | |
260 | ||
c46e1167 | 261 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f | 262 | { |
ff99129a | 263 | BDRVQcow2State *s = bs->opaque; |
6583e3c7 | 264 | uint64_t old_l2_offset; |
8585afd8 | 265 | uint64_t *l2_table = NULL; |
f4f0d391 | 266 | int64_t l2_offset; |
c46e1167 | 267 | int ret; |
45aba42f KW |
268 | |
269 | old_l2_offset = s->l1_table[l1_index]; | |
270 | ||
3cce16f4 KW |
271 | trace_qcow2_l2_allocate(bs, l1_index); |
272 | ||
45aba42f KW |
273 | /* allocate a new l2 entry */ |
274 | ||
ed6ccf0f | 275 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 276 | if (l2_offset < 0) { |
be0b742e HR |
277 | ret = l2_offset; |
278 | goto fail; | |
5d757b56 | 279 | } |
29c1a730 KW |
280 | |
281 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
282 | if (ret < 0) { | |
283 | goto fail; | |
284 | } | |
45aba42f | 285 | |
45aba42f KW |
286 | /* allocate a new entry in the l2 cache */ |
287 | ||
3cce16f4 | 288 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
289 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
290 | if (ret < 0) { | |
be0b742e | 291 | goto fail; |
29c1a730 KW |
292 | } |
293 | ||
294 | l2_table = *table; | |
45aba42f | 295 | |
8e37f681 | 296 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
297 | /* if there was no old l2 table, clear the new table */ |
298 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
299 | } else { | |
29c1a730 KW |
300 | uint64_t* old_table; |
301 | ||
45aba42f | 302 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 303 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
304 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
305 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
306 | (void**) &old_table); |
307 | if (ret < 0) { | |
308 | goto fail; | |
309 | } | |
310 | ||
311 | memcpy(l2_table, old_table, s->cluster_size); | |
312 | ||
a3f1afb4 | 313 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); |
45aba42f | 314 | } |
29c1a730 | 315 | |
45aba42f | 316 | /* write the l2 table to the file */ |
66f82cee | 317 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 318 | |
3cce16f4 | 319 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
72e80b89 | 320 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
29c1a730 | 321 | ret = qcow2_cache_flush(bs, s->l2_table_cache); |
c46e1167 | 322 | if (ret < 0) { |
175e1152 KW |
323 | goto fail; |
324 | } | |
325 | ||
326 | /* update the L1 entry */ | |
3cce16f4 | 327 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 | 328 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
e23e400e | 329 | ret = qcow2_write_l1_entry(bs, l1_index); |
175e1152 KW |
330 | if (ret < 0) { |
331 | goto fail; | |
c46e1167 | 332 | } |
45aba42f | 333 | |
c46e1167 | 334 | *table = l2_table; |
3cce16f4 | 335 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 336 | return 0; |
175e1152 KW |
337 | |
338 | fail: | |
3cce16f4 | 339 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
8585afd8 HR |
340 | if (l2_table != NULL) { |
341 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); | |
342 | } | |
68dba0bf | 343 | s->l1_table[l1_index] = old_l2_offset; |
e3b21ef9 HR |
344 | if (l2_offset > 0) { |
345 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | |
346 | QCOW2_DISCARD_ALWAYS); | |
347 | } | |
175e1152 | 348 | return ret; |
45aba42f KW |
349 | } |
350 | ||
2bfcc4a0 KW |
351 | /* |
352 | * Checks how many clusters in a given L2 table are contiguous in the image | |
353 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
354 | * to the first cluster, the search is stopped and the cluster is not counted | |
355 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
356 | * cluster which may require a different handling) | |
357 | */ | |
b6d36def | 358 | static int count_contiguous_clusters(int nb_clusters, int cluster_size, |
61653008 | 359 | uint64_t *l2_table, uint64_t stop_flags) |
45aba42f KW |
360 | { |
361 | int i; | |
3ef95218 | 362 | QCow2ClusterType first_cluster_type; |
78a52ad5 | 363 | uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; |
15684a47 HR |
364 | uint64_t first_entry = be64_to_cpu(l2_table[0]); |
365 | uint64_t offset = first_entry & mask; | |
45aba42f | 366 | |
564a6b69 | 367 | if (!offset) { |
45aba42f | 368 | return 0; |
564a6b69 | 369 | } |
45aba42f | 370 | |
564a6b69 HR |
371 | /* must be allocated */ |
372 | first_cluster_type = qcow2_get_cluster_type(first_entry); | |
373 | assert(first_cluster_type == QCOW2_CLUSTER_NORMAL || | |
fdfab37d | 374 | first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC); |
15684a47 | 375 | |
61653008 | 376 | for (i = 0; i < nb_clusters; i++) { |
2bfcc4a0 KW |
377 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; |
378 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 379 | break; |
2bfcc4a0 KW |
380 | } |
381 | } | |
45aba42f | 382 | |
61653008 | 383 | return i; |
45aba42f KW |
384 | } |
385 | ||
4341df8a EB |
386 | /* |
387 | * Checks how many consecutive unallocated clusters in a given L2 | |
388 | * table have the same cluster type. | |
389 | */ | |
390 | static int count_contiguous_clusters_unallocated(int nb_clusters, | |
391 | uint64_t *l2_table, | |
3ef95218 | 392 | QCow2ClusterType wanted_type) |
45aba42f | 393 | { |
2bfcc4a0 KW |
394 | int i; |
395 | ||
fdfab37d | 396 | assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN || |
4341df8a | 397 | wanted_type == QCOW2_CLUSTER_UNALLOCATED); |
2bfcc4a0 | 398 | for (i = 0; i < nb_clusters; i++) { |
4341df8a | 399 | uint64_t entry = be64_to_cpu(l2_table[i]); |
3ef95218 | 400 | QCow2ClusterType type = qcow2_get_cluster_type(entry); |
45aba42f | 401 | |
fdfab37d | 402 | if (type != wanted_type) { |
2bfcc4a0 KW |
403 | break; |
404 | } | |
405 | } | |
45aba42f KW |
406 | |
407 | return i; | |
408 | } | |
409 | ||
672f0f2c AG |
410 | static int coroutine_fn do_perform_cow_read(BlockDriverState *bs, |
411 | uint64_t src_cluster_offset, | |
412 | unsigned offset_in_cluster, | |
86b862c4 | 413 | QEMUIOVector *qiov) |
45aba42f | 414 | { |
aaa4d20b | 415 | int ret; |
1b9f1491 | 416 | |
86b862c4 | 417 | if (qiov->size == 0) { |
99450c6f AG |
418 | return 0; |
419 | } | |
420 | ||
66f82cee | 421 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 | 422 | |
dba28555 | 423 | if (!bs->drv) { |
672f0f2c | 424 | return -ENOMEDIUM; |
dba28555 HR |
425 | } |
426 | ||
aef4acb6 SH |
427 | /* Call .bdrv_co_readv() directly instead of using the public block-layer |
428 | * interface. This avoids double I/O throttling and request tracking, | |
429 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
430 | */ | |
aaa4d20b | 431 | ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, |
86b862c4 | 432 | qiov->size, qiov, 0); |
1b9f1491 | 433 | if (ret < 0) { |
672f0f2c | 434 | return ret; |
1b9f1491 KW |
435 | } |
436 | ||
672f0f2c AG |
437 | return 0; |
438 | } | |
439 | ||
440 | static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs, | |
441 | uint64_t src_cluster_offset, | |
4652b8f3 | 442 | uint64_t cluster_offset, |
672f0f2c AG |
443 | unsigned offset_in_cluster, |
444 | uint8_t *buffer, | |
445 | unsigned bytes) | |
446 | { | |
447 | if (bytes && bs->encrypted) { | |
448 | BDRVQcow2State *s = bs->opaque; | |
4652b8f3 DB |
449 | int64_t sector = (s->crypt_physical_offset ? |
450 | (cluster_offset + offset_in_cluster) : | |
451 | (src_cluster_offset + offset_in_cluster)) | |
aaa4d20b | 452 | >> BDRV_SECTOR_BITS; |
aaa4d20b KW |
453 | assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); |
454 | assert((bytes & ~BDRV_SECTOR_MASK) == 0); | |
b25b387f DB |
455 | assert(s->crypto); |
456 | if (qcrypto_block_encrypt(s->crypto, sector, buffer, | |
457 | bytes, NULL) < 0) { | |
672f0f2c | 458 | return false; |
f6fa64f6 | 459 | } |
45aba42f | 460 | } |
672f0f2c AG |
461 | return true; |
462 | } | |
463 | ||
464 | static int coroutine_fn do_perform_cow_write(BlockDriverState *bs, | |
465 | uint64_t cluster_offset, | |
466 | unsigned offset_in_cluster, | |
86b862c4 | 467 | QEMUIOVector *qiov) |
672f0f2c | 468 | { |
672f0f2c AG |
469 | int ret; |
470 | ||
86b862c4 | 471 | if (qiov->size == 0) { |
672f0f2c AG |
472 | return 0; |
473 | } | |
474 | ||
231bb267 | 475 | ret = qcow2_pre_write_overlap_check(bs, 0, |
86b862c4 | 476 | cluster_offset + offset_in_cluster, qiov->size); |
cf93980e | 477 | if (ret < 0) { |
672f0f2c | 478 | return ret; |
cf93980e HR |
479 | } |
480 | ||
66f82cee | 481 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
a03ef88f | 482 | ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster, |
86b862c4 | 483 | qiov->size, qiov, 0); |
1b9f1491 | 484 | if (ret < 0) { |
672f0f2c | 485 | return ret; |
1b9f1491 KW |
486 | } |
487 | ||
672f0f2c | 488 | return 0; |
45aba42f KW |
489 | } |
490 | ||
491 | ||
492 | /* | |
493 | * get_cluster_offset | |
494 | * | |
ecfe1863 KW |
495 | * For a given offset of the virtual disk, find the cluster type and offset in |
496 | * the qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 497 | * |
ecfe1863 KW |
498 | * On entry, *bytes is the maximum number of contiguous bytes starting at |
499 | * offset that we are interested in. | |
45aba42f | 500 | * |
ecfe1863 KW |
501 | * On exit, *bytes is the number of bytes starting at offset that have the same |
502 | * cluster type and (if applicable) are stored contiguously in the image file. | |
503 | * Compressed clusters are always returned one by one. | |
45aba42f | 504 | * |
68d000a3 KW |
505 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
506 | * cases. | |
45aba42f | 507 | */ |
1c46efaa | 508 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
ecfe1863 | 509 | unsigned int *bytes, uint64_t *cluster_offset) |
45aba42f | 510 | { |
ff99129a | 511 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
512 | unsigned int l2_index; |
513 | uint64_t l1_index, l2_offset, *l2_table; | |
45aba42f | 514 | int l1_bits, c; |
c834cba9 HR |
515 | unsigned int offset_in_cluster; |
516 | uint64_t bytes_available, bytes_needed, nb_clusters; | |
3ef95218 | 517 | QCow2ClusterType type; |
55c17e98 | 518 | int ret; |
45aba42f | 519 | |
b2f65d6b | 520 | offset_in_cluster = offset_into_cluster(s, offset); |
ecfe1863 | 521 | bytes_needed = (uint64_t) *bytes + offset_in_cluster; |
45aba42f | 522 | |
b2f65d6b | 523 | l1_bits = s->l2_bits + s->cluster_bits; |
45aba42f | 524 | |
b2f65d6b KW |
525 | /* compute how many bytes there are between the start of the cluster |
526 | * containing offset and the end of the l1 entry */ | |
527 | bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)) | |
528 | + offset_in_cluster; | |
45aba42f | 529 | |
b2f65d6b KW |
530 | if (bytes_needed > bytes_available) { |
531 | bytes_needed = bytes_available; | |
45aba42f KW |
532 | } |
533 | ||
1c46efaa | 534 | *cluster_offset = 0; |
45aba42f | 535 | |
b6af0975 | 536 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
537 | |
538 | l1_index = offset >> l1_bits; | |
68d000a3 | 539 | if (l1_index >= s->l1_size) { |
3ef95218 | 540 | type = QCOW2_CLUSTER_UNALLOCATED; |
45aba42f | 541 | goto out; |
68d000a3 | 542 | } |
45aba42f | 543 | |
68d000a3 KW |
544 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
545 | if (!l2_offset) { | |
3ef95218 | 546 | type = QCOW2_CLUSTER_UNALLOCATED; |
45aba42f | 547 | goto out; |
68d000a3 | 548 | } |
45aba42f | 549 | |
a97c67ee HR |
550 | if (offset_into_cluster(s, l2_offset)) { |
551 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
552 | " unaligned (L1 index: %#" PRIx64 ")", | |
553 | l2_offset, l1_index); | |
554 | return -EIO; | |
555 | } | |
556 | ||
45aba42f KW |
557 | /* load the l2 table in memory */ |
558 | ||
55c17e98 KW |
559 | ret = l2_load(bs, l2_offset, &l2_table); |
560 | if (ret < 0) { | |
561 | return ret; | |
1c46efaa | 562 | } |
45aba42f KW |
563 | |
564 | /* find the cluster offset for the given disk offset */ | |
565 | ||
24990c5b | 566 | l2_index = offset_to_l2_index(s, offset); |
1c46efaa | 567 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b6d36def | 568 | |
b2f65d6b | 569 | nb_clusters = size_to_clusters(s, bytes_needed); |
c834cba9 HR |
570 | /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned |
571 | * integers; the minimum cluster size is 512, so this assertion is always | |
572 | * true */ | |
573 | assert(nb_clusters <= INT_MAX); | |
45aba42f | 574 | |
3ef95218 | 575 | type = qcow2_get_cluster_type(*cluster_offset); |
fdfab37d EB |
576 | if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN || |
577 | type == QCOW2_CLUSTER_ZERO_ALLOC)) { | |
578 | qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" | |
579 | " in pre-v3 image (L2 offset: %#" PRIx64 | |
580 | ", L2 index: %#x)", l2_offset, l2_index); | |
581 | ret = -EIO; | |
582 | goto fail; | |
583 | } | |
3ef95218 | 584 | switch (type) { |
68d000a3 KW |
585 | case QCOW2_CLUSTER_COMPRESSED: |
586 | /* Compressed clusters can only be processed one by one */ | |
587 | c = 1; | |
588 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
589 | break; | |
fdfab37d | 590 | case QCOW2_CLUSTER_ZERO_PLAIN: |
68d000a3 | 591 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f | 592 | /* how many empty clusters ? */ |
4341df8a | 593 | c = count_contiguous_clusters_unallocated(nb_clusters, |
fdfab37d | 594 | &l2_table[l2_index], type); |
68d000a3 KW |
595 | *cluster_offset = 0; |
596 | break; | |
fdfab37d | 597 | case QCOW2_CLUSTER_ZERO_ALLOC: |
68d000a3 | 598 | case QCOW2_CLUSTER_NORMAL: |
45aba42f KW |
599 | /* how many allocated clusters ? */ |
600 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
fdfab37d | 601 | &l2_table[l2_index], QCOW_OFLAG_ZERO); |
68d000a3 | 602 | *cluster_offset &= L2E_OFFSET_MASK; |
a97c67ee | 603 | if (offset_into_cluster(s, *cluster_offset)) { |
fdfab37d EB |
604 | qcow2_signal_corruption(bs, true, -1, -1, |
605 | "Cluster allocation offset %#" | |
a97c67ee HR |
606 | PRIx64 " unaligned (L2 offset: %#" PRIx64 |
607 | ", L2 index: %#x)", *cluster_offset, | |
608 | l2_offset, l2_index); | |
609 | ret = -EIO; | |
610 | goto fail; | |
611 | } | |
68d000a3 | 612 | break; |
1417d7e4 KW |
613 | default: |
614 | abort(); | |
45aba42f KW |
615 | } |
616 | ||
29c1a730 KW |
617 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
618 | ||
c834cba9 | 619 | bytes_available = (int64_t)c * s->cluster_size; |
68d000a3 | 620 | |
45aba42f | 621 | out: |
b2f65d6b KW |
622 | if (bytes_available > bytes_needed) { |
623 | bytes_available = bytes_needed; | |
624 | } | |
45aba42f | 625 | |
c834cba9 HR |
626 | /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; |
627 | * subtracting offset_in_cluster will therefore definitely yield something | |
628 | * not exceeding UINT_MAX */ | |
629 | assert(bytes_available - offset_in_cluster <= UINT_MAX); | |
ecfe1863 | 630 | *bytes = bytes_available - offset_in_cluster; |
45aba42f | 631 | |
3ef95218 | 632 | return type; |
a97c67ee HR |
633 | |
634 | fail: | |
635 | qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | |
636 | return ret; | |
45aba42f KW |
637 | } |
638 | ||
639 | /* | |
640 | * get_cluster_table | |
641 | * | |
642 | * for a given disk offset, load (and allocate if needed) | |
643 | * the l2 table. | |
644 | * | |
645 | * the l2 table offset in the qcow2 file and the cluster index | |
646 | * in the l2 table are given to the caller. | |
647 | * | |
1e3e8f1a | 648 | * Returns 0 on success, -errno in failure case |
45aba42f | 649 | */ |
45aba42f KW |
650 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
651 | uint64_t **new_l2_table, | |
45aba42f KW |
652 | int *new_l2_index) |
653 | { | |
ff99129a | 654 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
655 | unsigned int l2_index; |
656 | uint64_t l1_index, l2_offset; | |
c46e1167 | 657 | uint64_t *l2_table = NULL; |
80ee15a6 | 658 | int ret; |
45aba42f | 659 | |
b6af0975 | 660 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
661 | |
662 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
663 | if (l1_index >= s->l1_size) { | |
72893756 | 664 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
665 | if (ret < 0) { |
666 | return ret; | |
667 | } | |
45aba42f | 668 | } |
8e37f681 | 669 | |
2cf7cfa1 | 670 | assert(l1_index < s->l1_size); |
8e37f681 | 671 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
a97c67ee HR |
672 | if (offset_into_cluster(s, l2_offset)) { |
673 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
674 | " unaligned (L1 index: %#" PRIx64 ")", | |
675 | l2_offset, l1_index); | |
676 | return -EIO; | |
677 | } | |
45aba42f KW |
678 | |
679 | /* seek the l2 table of the given l2 offset */ | |
680 | ||
8e37f681 | 681 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 682 | /* load the l2 table in memory */ |
55c17e98 KW |
683 | ret = l2_load(bs, l2_offset, &l2_table); |
684 | if (ret < 0) { | |
685 | return ret; | |
1e3e8f1a | 686 | } |
45aba42f | 687 | } else { |
16fde5f2 | 688 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
689 | ret = l2_allocate(bs, l1_index, &l2_table); |
690 | if (ret < 0) { | |
691 | return ret; | |
1e3e8f1a | 692 | } |
16fde5f2 KW |
693 | |
694 | /* Then decrease the refcount of the old table */ | |
695 | if (l2_offset) { | |
6cfcb9b8 KW |
696 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), |
697 | QCOW2_DISCARD_OTHER); | |
16fde5f2 | 698 | } |
45aba42f KW |
699 | } |
700 | ||
701 | /* find the cluster offset for the given disk offset */ | |
702 | ||
24990c5b | 703 | l2_index = offset_to_l2_index(s, offset); |
45aba42f KW |
704 | |
705 | *new_l2_table = l2_table; | |
45aba42f KW |
706 | *new_l2_index = l2_index; |
707 | ||
1e3e8f1a | 708 | return 0; |
45aba42f KW |
709 | } |
710 | ||
711 | /* | |
712 | * alloc_compressed_cluster_offset | |
713 | * | |
714 | * For a given offset of the disk image, return cluster offset in | |
715 | * qcow2 file. | |
716 | * | |
717 | * If the offset is not found, allocate a new compressed cluster. | |
718 | * | |
719 | * Return the cluster offset if successful, | |
720 | * Return 0, otherwise. | |
721 | * | |
722 | */ | |
723 | ||
ed6ccf0f KW |
724 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
725 | uint64_t offset, | |
726 | int compressed_size) | |
45aba42f | 727 | { |
ff99129a | 728 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 729 | int l2_index, ret; |
3948d1d4 | 730 | uint64_t *l2_table; |
f4f0d391 | 731 | int64_t cluster_offset; |
45aba42f KW |
732 | int nb_csectors; |
733 | ||
3948d1d4 | 734 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 735 | if (ret < 0) { |
45aba42f | 736 | return 0; |
1e3e8f1a | 737 | } |
45aba42f | 738 | |
b0b6862e KW |
739 | /* Compression can't overwrite anything. Fail if the cluster was already |
740 | * allocated. */ | |
45aba42f | 741 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 742 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
743 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
744 | return 0; | |
745 | } | |
45aba42f | 746 | |
ed6ccf0f | 747 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 748 | if (cluster_offset < 0) { |
29c1a730 | 749 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
750 | return 0; |
751 | } | |
752 | ||
45aba42f KW |
753 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
754 | (cluster_offset >> 9); | |
755 | ||
756 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
757 | ((uint64_t)nb_csectors << s->csize_shift); | |
758 | ||
759 | /* update L2 table */ | |
760 | ||
761 | /* compressed clusters never have the copied flag */ | |
762 | ||
66f82cee | 763 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
72e80b89 | 764 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 765 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
a3f1afb4 | 766 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
4c1612d9 | 767 | |
29c1a730 | 768 | return cluster_offset; |
4c1612d9 KW |
769 | } |
770 | ||
99450c6f | 771 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m) |
593fb83c | 772 | { |
ff99129a | 773 | BDRVQcow2State *s = bs->opaque; |
99450c6f AG |
774 | Qcow2COWRegion *start = &m->cow_start; |
775 | Qcow2COWRegion *end = &m->cow_end; | |
672f0f2c | 776 | unsigned buffer_size; |
b3cf1c7c AG |
777 | unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); |
778 | bool merge_reads; | |
672f0f2c | 779 | uint8_t *start_buffer, *end_buffer; |
86b862c4 | 780 | QEMUIOVector qiov; |
593fb83c KW |
781 | int ret; |
782 | ||
672f0f2c | 783 | assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); |
b3cf1c7c AG |
784 | assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); |
785 | assert(start->offset + start->nb_bytes <= end->offset); | |
ee22a9d8 | 786 | assert(!m->data_qiov || m->data_qiov->size == data_bytes); |
672f0f2c | 787 | |
99450c6f | 788 | if (start->nb_bytes == 0 && end->nb_bytes == 0) { |
593fb83c KW |
789 | return 0; |
790 | } | |
791 | ||
b3cf1c7c AG |
792 | /* If we have to read both the start and end COW regions and the |
793 | * middle region is not too large then perform just one read | |
794 | * operation */ | |
795 | merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; | |
796 | if (merge_reads) { | |
797 | buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; | |
798 | } else { | |
799 | /* If we have to do two reads, add some padding in the middle | |
800 | * if necessary to make sure that the end region is optimally | |
801 | * aligned. */ | |
802 | size_t align = bdrv_opt_mem_align(bs); | |
803 | assert(align > 0 && align <= UINT_MAX); | |
804 | assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= | |
805 | UINT_MAX - end->nb_bytes); | |
806 | buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; | |
807 | } | |
808 | ||
809 | /* Reserve a buffer large enough to store all the data that we're | |
810 | * going to read */ | |
672f0f2c AG |
811 | start_buffer = qemu_try_blockalign(bs, buffer_size); |
812 | if (start_buffer == NULL) { | |
813 | return -ENOMEM; | |
814 | } | |
815 | /* The part of the buffer where the end region is located */ | |
816 | end_buffer = start_buffer + buffer_size - end->nb_bytes; | |
817 | ||
ee22a9d8 | 818 | qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0)); |
86b862c4 | 819 | |
593fb83c | 820 | qemu_co_mutex_unlock(&s->lock); |
b3cf1c7c AG |
821 | /* First we read the existing data from both COW regions. We |
822 | * either read the whole region in one go, or the start and end | |
823 | * regions separately. */ | |
824 | if (merge_reads) { | |
86b862c4 AG |
825 | qemu_iovec_add(&qiov, start_buffer, buffer_size); |
826 | ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); | |
b3cf1c7c | 827 | } else { |
86b862c4 AG |
828 | qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); |
829 | ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); | |
b3cf1c7c AG |
830 | if (ret < 0) { |
831 | goto fail; | |
832 | } | |
672f0f2c | 833 | |
86b862c4 AG |
834 | qemu_iovec_reset(&qiov); |
835 | qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); | |
836 | ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); | |
b3cf1c7c | 837 | } |
593fb83c | 838 | if (ret < 0) { |
99450c6f | 839 | goto fail; |
593fb83c KW |
840 | } |
841 | ||
672f0f2c AG |
842 | /* Encrypt the data if necessary before writing it */ |
843 | if (bs->encrypted) { | |
4652b8f3 DB |
844 | if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, |
845 | start->offset, start_buffer, | |
846 | start->nb_bytes) || | |
847 | !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, | |
848 | end->offset, end_buffer, end->nb_bytes)) { | |
672f0f2c AG |
849 | ret = -EIO; |
850 | goto fail; | |
851 | } | |
852 | } | |
853 | ||
ee22a9d8 AG |
854 | /* And now we can write everything. If we have the guest data we |
855 | * can write everything in one single operation */ | |
856 | if (m->data_qiov) { | |
857 | qemu_iovec_reset(&qiov); | |
858 | if (start->nb_bytes) { | |
859 | qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); | |
860 | } | |
861 | qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes); | |
862 | if (end->nb_bytes) { | |
863 | qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); | |
864 | } | |
865 | /* NOTE: we have a write_aio blkdebug event here followed by | |
866 | * a cow_write one in do_perform_cow_write(), but there's only | |
867 | * one single I/O operation */ | |
868 | BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO); | |
869 | ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); | |
870 | } else { | |
871 | /* If there's no guest data then write both COW regions separately */ | |
872 | qemu_iovec_reset(&qiov); | |
873 | qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); | |
874 | ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); | |
875 | if (ret < 0) { | |
876 | goto fail; | |
877 | } | |
878 | ||
879 | qemu_iovec_reset(&qiov); | |
880 | qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); | |
881 | ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); | |
672f0f2c | 882 | } |
99450c6f AG |
883 | |
884 | fail: | |
885 | qemu_co_mutex_lock(&s->lock); | |
886 | ||
593fb83c KW |
887 | /* |
888 | * Before we update the L2 table to actually point to the new cluster, we | |
889 | * need to be sure that the refcounts have been increased and COW was | |
890 | * handled. | |
891 | */ | |
99450c6f AG |
892 | if (ret == 0) { |
893 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
894 | } | |
593fb83c | 895 | |
672f0f2c | 896 | qemu_vfree(start_buffer); |
86b862c4 | 897 | qemu_iovec_destroy(&qiov); |
99450c6f | 898 | return ret; |
593fb83c KW |
899 | } |
900 | ||
148da7ea | 901 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f | 902 | { |
ff99129a | 903 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 904 | int i, j = 0, l2_index, ret; |
593fb83c | 905 | uint64_t *old_cluster, *l2_table; |
250196f1 | 906 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 907 | |
3cce16f4 | 908 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 909 | assert(m->nb_clusters > 0); |
45aba42f | 910 | |
5839e53b | 911 | old_cluster = g_try_new(uint64_t, m->nb_clusters); |
de82815d KW |
912 | if (old_cluster == NULL) { |
913 | ret = -ENOMEM; | |
914 | goto err; | |
915 | } | |
45aba42f KW |
916 | |
917 | /* copy content of unmodified sectors */ | |
99450c6f | 918 | ret = perform_cow(bs, m); |
593fb83c KW |
919 | if (ret < 0) { |
920 | goto err; | |
29c1a730 KW |
921 | } |
922 | ||
593fb83c | 923 | /* Update L2 table. */ |
74c4510a | 924 | if (s->use_lazy_refcounts) { |
280d3735 KW |
925 | qcow2_mark_dirty(bs); |
926 | } | |
bfe8043e SH |
927 | if (qcow2_need_accurate_refcounts(s)) { |
928 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
929 | s->refcount_block_cache); | |
930 | } | |
280d3735 | 931 | |
3948d1d4 | 932 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 933 | if (ret < 0) { |
45aba42f | 934 | goto err; |
1e3e8f1a | 935 | } |
72e80b89 | 936 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 937 | |
c01dbccb | 938 | assert(l2_index + m->nb_clusters <= s->l2_size); |
45aba42f KW |
939 | for (i = 0; i < m->nb_clusters; i++) { |
940 | /* if two concurrent writes happen to the same unallocated cluster | |
aaa4d20b KW |
941 | * each write allocates separate cluster and writes data concurrently. |
942 | * The first one to complete updates l2 table with pointer to its | |
943 | * cluster the second one has to do RMW (which is done above by | |
944 | * perform_cow()), update l2 table with its cluster pointer and free | |
945 | * old cluster. This is what this loop does */ | |
946 | if (l2_table[l2_index + i] != 0) { | |
45aba42f | 947 | old_cluster[j++] = l2_table[l2_index + i]; |
aaa4d20b | 948 | } |
45aba42f KW |
949 | |
950 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
951 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
952 | } | |
953 | ||
9f8e668e | 954 | |
a3f1afb4 | 955 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
45aba42f | 956 | |
7ec5e6a4 KW |
957 | /* |
958 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
6cfcb9b8 KW |
959 | * |
960 | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | |
961 | * clusters), the next write will reuse them anyway. | |
7ec5e6a4 | 962 | */ |
564a6b69 | 963 | if (!m->keep_old_clusters && j != 0) { |
7ec5e6a4 | 964 | for (i = 0; i < j; i++) { |
6cfcb9b8 KW |
965 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, |
966 | QCOW2_DISCARD_NEVER); | |
7ec5e6a4 KW |
967 | } |
968 | } | |
45aba42f KW |
969 | |
970 | ret = 0; | |
971 | err: | |
7267c094 | 972 | g_free(old_cluster); |
45aba42f KW |
973 | return ret; |
974 | } | |
975 | ||
bf319ece KW |
976 | /* |
977 | * Returns the number of contiguous clusters that can be used for an allocating | |
978 | * write, but require COW to be performed (this includes yet unallocated space, | |
979 | * which must copy from the backing file) | |
980 | */ | |
ff99129a | 981 | static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, |
bf319ece KW |
982 | uint64_t *l2_table, int l2_index) |
983 | { | |
143550a8 | 984 | int i; |
bf319ece | 985 | |
143550a8 KW |
986 | for (i = 0; i < nb_clusters; i++) { |
987 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
3ef95218 | 988 | QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry); |
143550a8 KW |
989 | |
990 | switch(cluster_type) { | |
991 | case QCOW2_CLUSTER_NORMAL: | |
992 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
993 | goto out; | |
994 | } | |
bf319ece | 995 | break; |
143550a8 KW |
996 | case QCOW2_CLUSTER_UNALLOCATED: |
997 | case QCOW2_CLUSTER_COMPRESSED: | |
fdfab37d EB |
998 | case QCOW2_CLUSTER_ZERO_PLAIN: |
999 | case QCOW2_CLUSTER_ZERO_ALLOC: | |
bf319ece | 1000 | break; |
143550a8 KW |
1001 | default: |
1002 | abort(); | |
1003 | } | |
bf319ece KW |
1004 | } |
1005 | ||
143550a8 | 1006 | out: |
bf319ece KW |
1007 | assert(i <= nb_clusters); |
1008 | return i; | |
1009 | } | |
1010 | ||
250196f1 | 1011 | /* |
226c3c26 KW |
1012 | * Check if there already is an AIO write request in flight which allocates |
1013 | * the same cluster. In this case we need to wait until the previous | |
1014 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
1015 | * |
1016 | * Returns: | |
1017 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
1018 | * bytes from guest_offset that can be read before the next | |
1019 | * dependency must be processed (or the request is complete) | |
1020 | * | |
1021 | * -EAGAIN if we had to wait for another request, previously gathered | |
1022 | * information on cluster allocation may be invalid now. The caller | |
1023 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 1024 | */ |
226c3c26 | 1025 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 1026 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 | 1027 | { |
ff99129a | 1028 | BDRVQcow2State *s = bs->opaque; |
250196f1 | 1029 | QCowL2Meta *old_alloc; |
65eb2e35 | 1030 | uint64_t bytes = *cur_bytes; |
250196f1 | 1031 | |
250196f1 KW |
1032 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
1033 | ||
65eb2e35 KW |
1034 | uint64_t start = guest_offset; |
1035 | uint64_t end = start + bytes; | |
1036 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
1037 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 1038 | |
d9d74f41 | 1039 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
1040 | /* No intersection */ |
1041 | } else { | |
1042 | if (start < old_start) { | |
1043 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 1044 | bytes = old_start - start; |
250196f1 | 1045 | } else { |
65eb2e35 | 1046 | bytes = 0; |
250196f1 KW |
1047 | } |
1048 | ||
ecdd5333 KW |
1049 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
1050 | * be valid any more, so we'd have to clean up the old L2Metas | |
1051 | * and deal with requests depending on them before starting to | |
1052 | * gather new ones. Not worth the trouble. */ | |
1053 | if (bytes == 0 && *m) { | |
1054 | *cur_bytes = 0; | |
1055 | return 0; | |
1056 | } | |
1057 | ||
65eb2e35 | 1058 | if (bytes == 0) { |
250196f1 KW |
1059 | /* Wait for the dependency to complete. We need to recheck |
1060 | * the free/allocated clusters when we continue. */ | |
1ace7cea | 1061 | qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); |
250196f1 KW |
1062 | return -EAGAIN; |
1063 | } | |
1064 | } | |
1065 | } | |
1066 | ||
65eb2e35 KW |
1067 | /* Make sure that existing clusters and new allocations are only used up to |
1068 | * the next dependency if we shortened the request above */ | |
1069 | *cur_bytes = bytes; | |
250196f1 | 1070 | |
226c3c26 KW |
1071 | return 0; |
1072 | } | |
1073 | ||
0af729ec KW |
1074 | /* |
1075 | * Checks how many already allocated clusters that don't require a copy on | |
1076 | * write there are at the given guest_offset (up to *bytes). If | |
1077 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
1078 | * this host offset are counted. | |
1079 | * | |
411d62b0 KW |
1080 | * Note that guest_offset may not be cluster aligned. In this case, the |
1081 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1082 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
1083 | * |
1084 | * Returns: | |
1085 | * 0: if no allocated clusters are available at the given offset. | |
1086 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
1087 | * is allocated and doesn't need COW, but doesn't have the right | |
1088 | * physical offset. | |
1089 | * | |
1090 | * 1: if allocated clusters that don't require a COW are available at | |
1091 | * the requested offset. *bytes may have decreased and describes | |
1092 | * the length of the area that can be written to. | |
1093 | * | |
1094 | * -errno: in error cases | |
0af729ec KW |
1095 | */ |
1096 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 1097 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec | 1098 | { |
ff99129a | 1099 | BDRVQcow2State *s = bs->opaque; |
0af729ec KW |
1100 | int l2_index; |
1101 | uint64_t cluster_offset; | |
1102 | uint64_t *l2_table; | |
b6d36def | 1103 | uint64_t nb_clusters; |
c53ede9f | 1104 | unsigned int keep_clusters; |
a3f1afb4 | 1105 | int ret; |
0af729ec KW |
1106 | |
1107 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
1108 | *bytes); | |
0af729ec | 1109 | |
411d62b0 KW |
1110 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
1111 | == offset_into_cluster(s, *host_offset)); | |
1112 | ||
acb0467f KW |
1113 | /* |
1114 | * Calculate the number of clusters to look for. We stop at L2 table | |
1115 | * boundaries to keep things simple. | |
1116 | */ | |
1117 | nb_clusters = | |
1118 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1119 | ||
1120 | l2_index = offset_to_l2_index(s, guest_offset); | |
1121 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1122 | assert(nb_clusters <= INT_MAX); |
acb0467f | 1123 | |
0af729ec KW |
1124 | /* Find L2 entry for the first involved cluster */ |
1125 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1126 | if (ret < 0) { | |
1127 | return ret; | |
1128 | } | |
1129 | ||
1130 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
1131 | ||
1132 | /* Check how many clusters are already allocated and don't need COW */ | |
1133 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
1134 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
1135 | { | |
e62daaf6 KW |
1136 | /* If a specific host_offset is required, check it */ |
1137 | bool offset_matches = | |
1138 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
1139 | ||
a97c67ee HR |
1140 | if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { |
1141 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | |
1142 | "%#llx unaligned (guest offset: %#" PRIx64 | |
1143 | ")", cluster_offset & L2E_OFFSET_MASK, | |
1144 | guest_offset); | |
1145 | ret = -EIO; | |
1146 | goto out; | |
1147 | } | |
1148 | ||
e62daaf6 KW |
1149 | if (*host_offset != 0 && !offset_matches) { |
1150 | *bytes = 0; | |
1151 | ret = 0; | |
1152 | goto out; | |
1153 | } | |
1154 | ||
0af729ec | 1155 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 1156 | keep_clusters = |
acb0467f | 1157 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
61653008 | 1158 | &l2_table[l2_index], |
0af729ec | 1159 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); |
c53ede9f KW |
1160 | assert(keep_clusters <= nb_clusters); |
1161 | ||
1162 | *bytes = MIN(*bytes, | |
1163 | keep_clusters * s->cluster_size | |
1164 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
1165 | |
1166 | ret = 1; | |
1167 | } else { | |
0af729ec KW |
1168 | ret = 0; |
1169 | } | |
1170 | ||
0af729ec | 1171 | /* Cleanup */ |
e62daaf6 | 1172 | out: |
a3f1afb4 | 1173 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
0af729ec | 1174 | |
e62daaf6 KW |
1175 | /* Only return a host offset if we actually made progress. Otherwise we |
1176 | * would make requirements for handle_alloc() that it can't fulfill */ | |
a97c67ee | 1177 | if (ret > 0) { |
411d62b0 KW |
1178 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
1179 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
1180 | } |
1181 | ||
0af729ec KW |
1182 | return ret; |
1183 | } | |
1184 | ||
226c3c26 KW |
1185 | /* |
1186 | * Allocates new clusters for the given guest_offset. | |
1187 | * | |
1188 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
1189 | * contain the number of clusters that have been allocated and are contiguous | |
1190 | * in the image file. | |
1191 | * | |
1192 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
1193 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
1194 | * case if the cluster at host_offset is already in use. If *host_offset is | |
1195 | * zero, the clusters can be allocated anywhere in the image file. | |
1196 | * | |
1197 | * *host_offset is updated to contain the offset into the image file at which | |
1198 | * the first allocated cluster starts. | |
1199 | * | |
1200 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
1201 | * function has been waiting for another request and the allocation must be | |
1202 | * restarted, but the whole request should not be failed. | |
1203 | */ | |
1204 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
b6d36def | 1205 | uint64_t *host_offset, uint64_t *nb_clusters) |
226c3c26 | 1206 | { |
ff99129a | 1207 | BDRVQcow2State *s = bs->opaque; |
226c3c26 KW |
1208 | |
1209 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
1210 | *host_offset, *nb_clusters); | |
1211 | ||
250196f1 KW |
1212 | /* Allocate new clusters */ |
1213 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
1214 | if (*host_offset == 0) { | |
df021791 KW |
1215 | int64_t cluster_offset = |
1216 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
1217 | if (cluster_offset < 0) { | |
1218 | return cluster_offset; | |
1219 | } | |
1220 | *host_offset = cluster_offset; | |
1221 | return 0; | |
250196f1 | 1222 | } else { |
b6d36def | 1223 | int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
1224 | if (ret < 0) { |
1225 | return ret; | |
1226 | } | |
1227 | *nb_clusters = ret; | |
1228 | return 0; | |
250196f1 | 1229 | } |
250196f1 KW |
1230 | } |
1231 | ||
10f0ed8b KW |
1232 | /* |
1233 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
1234 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
1235 | * the new allocation can match the specified host offset. | |
1236 | * | |
411d62b0 KW |
1237 | * Note that guest_offset may not be cluster aligned. In this case, the |
1238 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1239 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
1240 | * |
1241 | * Returns: | |
1242 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
1243 | * *host_offset is left unchanged. | |
1244 | * | |
1245 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
1246 | * new allocation doesn't cover all of the requested area. | |
1247 | * *host_offset is updated to contain the host offset of the first | |
1248 | * newly allocated cluster. | |
1249 | * | |
1250 | * -errno: in error cases | |
10f0ed8b KW |
1251 | */ |
1252 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 1253 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b | 1254 | { |
ff99129a | 1255 | BDRVQcow2State *s = bs->opaque; |
10f0ed8b KW |
1256 | int l2_index; |
1257 | uint64_t *l2_table; | |
1258 | uint64_t entry; | |
b6d36def | 1259 | uint64_t nb_clusters; |
10f0ed8b | 1260 | int ret; |
564a6b69 | 1261 | bool keep_old_clusters = false; |
10f0ed8b | 1262 | |
564a6b69 | 1263 | uint64_t alloc_cluster_offset = 0; |
10f0ed8b KW |
1264 | |
1265 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1266 | *bytes); | |
1267 | assert(*bytes > 0); | |
1268 | ||
f5bc6350 KW |
1269 | /* |
1270 | * Calculate the number of clusters to look for. We stop at L2 table | |
1271 | * boundaries to keep things simple. | |
1272 | */ | |
c37f4cd7 KW |
1273 | nb_clusters = |
1274 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1275 | ||
f5bc6350 | 1276 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1277 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
b6d36def | 1278 | assert(nb_clusters <= INT_MAX); |
f5bc6350 | 1279 | |
10f0ed8b KW |
1280 | /* Find L2 entry for the first involved cluster */ |
1281 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1282 | if (ret < 0) { | |
1283 | return ret; | |
1284 | } | |
1285 | ||
3b8e2e26 | 1286 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1287 | |
1288 | /* For the moment, overwrite compressed clusters one by one */ | |
1289 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1290 | nb_clusters = 1; | |
1291 | } else { | |
3b8e2e26 | 1292 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1293 | } |
1294 | ||
ecdd5333 KW |
1295 | /* This function is only called when there were no non-COW clusters, so if |
1296 | * we can't find any unallocated or COW clusters either, something is | |
1297 | * wrong with our code. */ | |
1298 | assert(nb_clusters > 0); | |
1299 | ||
fdfab37d EB |
1300 | if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC && |
1301 | (entry & QCOW_OFLAG_COPIED) && | |
564a6b69 HR |
1302 | (!*host_offset || |
1303 | start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK))) | |
1304 | { | |
1305 | /* Try to reuse preallocated zero clusters; contiguous normal clusters | |
1306 | * would be fine, too, but count_cow_clusters() above has limited | |
1307 | * nb_clusters already to a range of COW clusters */ | |
1308 | int preallocated_nb_clusters = | |
1309 | count_contiguous_clusters(nb_clusters, s->cluster_size, | |
1310 | &l2_table[l2_index], QCOW_OFLAG_COPIED); | |
1311 | assert(preallocated_nb_clusters > 0); | |
10f0ed8b | 1312 | |
564a6b69 HR |
1313 | nb_clusters = preallocated_nb_clusters; |
1314 | alloc_cluster_offset = entry & L2E_OFFSET_MASK; | |
10f0ed8b | 1315 | |
564a6b69 HR |
1316 | /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2() |
1317 | * should not free them. */ | |
1318 | keep_old_clusters = true; | |
10f0ed8b KW |
1319 | } |
1320 | ||
564a6b69 HR |
1321 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
1322 | ||
ff52aab2 | 1323 | if (!alloc_cluster_offset) { |
564a6b69 HR |
1324 | /* Allocate, if necessary at a given offset in the image file */ |
1325 | alloc_cluster_offset = start_of_cluster(s, *host_offset); | |
1326 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, | |
1327 | &nb_clusters); | |
1328 | if (ret < 0) { | |
1329 | goto fail; | |
1330 | } | |
1331 | ||
1332 | /* Can't extend contiguous allocation */ | |
1333 | if (nb_clusters == 0) { | |
1334 | *bytes = 0; | |
1335 | return 0; | |
1336 | } | |
1337 | ||
1338 | /* !*host_offset would overwrite the image header and is reserved for | |
1339 | * "no host offset preferred". If 0 was a valid host offset, it'd | |
1340 | * trigger the following overlap check; do that now to avoid having an | |
1341 | * invalid value in *host_offset. */ | |
1342 | if (!alloc_cluster_offset) { | |
1343 | ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, | |
1344 | nb_clusters * s->cluster_size); | |
1345 | assert(ret < 0); | |
1346 | goto fail; | |
1347 | } | |
ff52aab2 HR |
1348 | } |
1349 | ||
83baa9a4 KW |
1350 | /* |
1351 | * Save info needed for meta data update. | |
1352 | * | |
85567393 | 1353 | * requested_bytes: Number of bytes from the start of the first |
83baa9a4 KW |
1354 | * newly allocated cluster to the end of the (possibly shortened |
1355 | * before) write request. | |
1356 | * | |
85567393 | 1357 | * avail_bytes: Number of bytes from the start of the first |
83baa9a4 KW |
1358 | * newly allocated to the end of the last newly allocated cluster. |
1359 | * | |
85567393 | 1360 | * nb_bytes: The number of bytes from the start of the first |
83baa9a4 KW |
1361 | * newly allocated cluster to the end of the area that the write |
1362 | * request actually writes to (excluding COW at the end) | |
1363 | */ | |
85567393 KW |
1364 | uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); |
1365 | int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); | |
1366 | int nb_bytes = MIN(requested_bytes, avail_bytes); | |
88c6588c | 1367 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1368 | |
83baa9a4 KW |
1369 | *m = g_malloc0(sizeof(**m)); |
1370 | ||
1371 | **m = (QCowL2Meta) { | |
88c6588c KW |
1372 | .next = old_m, |
1373 | ||
411d62b0 | 1374 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1375 | .offset = start_of_cluster(s, guest_offset), |
1376 | .nb_clusters = nb_clusters, | |
83baa9a4 | 1377 | |
564a6b69 HR |
1378 | .keep_old_clusters = keep_old_clusters, |
1379 | ||
83baa9a4 KW |
1380 | .cow_start = { |
1381 | .offset = 0, | |
85567393 | 1382 | .nb_bytes = offset_into_cluster(s, guest_offset), |
83baa9a4 KW |
1383 | }, |
1384 | .cow_end = { | |
85567393 KW |
1385 | .offset = nb_bytes, |
1386 | .nb_bytes = avail_bytes - nb_bytes, | |
83baa9a4 KW |
1387 | }, |
1388 | }; | |
1389 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1390 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1391 | ||
411d62b0 | 1392 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
85567393 | 1393 | *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); |
83baa9a4 KW |
1394 | assert(*bytes != 0); |
1395 | ||
10f0ed8b KW |
1396 | return 1; |
1397 | ||
1398 | fail: | |
1399 | if (*m && (*m)->nb_clusters > 0) { | |
1400 | QLIST_REMOVE(*m, next_in_flight); | |
1401 | } | |
1402 | return ret; | |
1403 | } | |
1404 | ||
45aba42f KW |
1405 | /* |
1406 | * alloc_cluster_offset | |
1407 | * | |
250196f1 KW |
1408 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1409 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1410 | * |
250196f1 | 1411 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1412 | * other fields in m are meaningless. |
148da7ea KW |
1413 | * |
1414 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1415 | * contiguous clusters that have been allocated. In this case, the other |
1416 | * fields of m are valid and contain information about the first allocated | |
1417 | * cluster. | |
45aba42f | 1418 | * |
68d100e9 KW |
1419 | * If the request conflicts with another write request in flight, the coroutine |
1420 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1421 | * |
1422 | * Return 0 on success and -errno in error cases | |
45aba42f | 1423 | */ |
f4f0d391 | 1424 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
d46a0bb2 KW |
1425 | unsigned int *bytes, uint64_t *host_offset, |
1426 | QCowL2Meta **m) | |
45aba42f | 1427 | { |
ff99129a | 1428 | BDRVQcow2State *s = bs->opaque; |
710c2496 | 1429 | uint64_t start, remaining; |
250196f1 | 1430 | uint64_t cluster_offset; |
65eb2e35 | 1431 | uint64_t cur_bytes; |
710c2496 | 1432 | int ret; |
45aba42f | 1433 | |
d46a0bb2 | 1434 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); |
710c2496 | 1435 | |
72424114 | 1436 | again: |
16f0587e | 1437 | start = offset; |
d46a0bb2 | 1438 | remaining = *bytes; |
0af729ec KW |
1439 | cluster_offset = 0; |
1440 | *host_offset = 0; | |
ecdd5333 KW |
1441 | cur_bytes = 0; |
1442 | *m = NULL; | |
0af729ec | 1443 | |
2c3b32d2 | 1444 | while (true) { |
ecdd5333 KW |
1445 | |
1446 | if (!*host_offset) { | |
1447 | *host_offset = start_of_cluster(s, cluster_offset); | |
1448 | } | |
1449 | ||
1450 | assert(remaining >= cur_bytes); | |
1451 | ||
1452 | start += cur_bytes; | |
1453 | remaining -= cur_bytes; | |
1454 | cluster_offset += cur_bytes; | |
1455 | ||
1456 | if (remaining == 0) { | |
1457 | break; | |
1458 | } | |
1459 | ||
1460 | cur_bytes = remaining; | |
1461 | ||
2c3b32d2 KW |
1462 | /* |
1463 | * Now start gathering as many contiguous clusters as possible: | |
1464 | * | |
1465 | * 1. Check for overlaps with in-flight allocations | |
1466 | * | |
1467 | * a) Overlap not in the first cluster -> shorten this request and | |
1468 | * let the caller handle the rest in its next loop iteration. | |
1469 | * | |
1470 | * b) Real overlaps of two requests. Yield and restart the search | |
1471 | * for contiguous clusters (the situation could have changed | |
1472 | * while we were sleeping) | |
1473 | * | |
1474 | * c) TODO: Request starts in the same cluster as the in-flight | |
1475 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1476 | * set cluster_offset to write to the same cluster and set up | |
1477 | * the right synchronisation between the in-flight request and | |
1478 | * the new one. | |
1479 | */ | |
ecdd5333 | 1480 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1481 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1482 | /* Currently handle_dependencies() doesn't yield if we already had |
1483 | * an allocation. If it did, we would have to clean up the L2Meta | |
1484 | * structs before starting over. */ | |
1485 | assert(*m == NULL); | |
2c3b32d2 KW |
1486 | goto again; |
1487 | } else if (ret < 0) { | |
1488 | return ret; | |
ecdd5333 KW |
1489 | } else if (cur_bytes == 0) { |
1490 | break; | |
2c3b32d2 KW |
1491 | } else { |
1492 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1493 | * the allocations below) so that the next dependency is processed | |
1494 | * correctly during the next loop iteration. */ | |
0af729ec | 1495 | } |
710c2496 | 1496 | |
2c3b32d2 KW |
1497 | /* |
1498 | * 2. Count contiguous COPIED clusters. | |
1499 | */ | |
1500 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1501 | if (ret < 0) { | |
1502 | return ret; | |
1503 | } else if (ret) { | |
ecdd5333 | 1504 | continue; |
2c3b32d2 KW |
1505 | } else if (cur_bytes == 0) { |
1506 | break; | |
1507 | } | |
060bee89 | 1508 | |
2c3b32d2 KW |
1509 | /* |
1510 | * 3. If the request still hasn't completed, allocate new clusters, | |
1511 | * considering any cluster_offset of steps 1c or 2. | |
1512 | */ | |
1513 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1514 | if (ret < 0) { | |
1515 | return ret; | |
1516 | } else if (ret) { | |
ecdd5333 | 1517 | continue; |
2c3b32d2 KW |
1518 | } else { |
1519 | assert(cur_bytes == 0); | |
1520 | break; | |
1521 | } | |
f5bc6350 | 1522 | } |
10f0ed8b | 1523 | |
d46a0bb2 KW |
1524 | *bytes -= remaining; |
1525 | assert(*bytes > 0); | |
710c2496 | 1526 | assert(*host_offset != 0); |
45aba42f | 1527 | |
148da7ea | 1528 | return 0; |
45aba42f KW |
1529 | } |
1530 | ||
1531 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1532 | const uint8_t *buf, int buf_size) | |
1533 | { | |
1534 | z_stream strm1, *strm = &strm1; | |
1535 | int ret, out_len; | |
1536 | ||
1537 | memset(strm, 0, sizeof(*strm)); | |
1538 | ||
1539 | strm->next_in = (uint8_t *)buf; | |
1540 | strm->avail_in = buf_size; | |
1541 | strm->next_out = out_buf; | |
1542 | strm->avail_out = out_buf_size; | |
1543 | ||
1544 | ret = inflateInit2(strm, -12); | |
1545 | if (ret != Z_OK) | |
1546 | return -1; | |
1547 | ret = inflate(strm, Z_FINISH); | |
1548 | out_len = strm->next_out - out_buf; | |
1549 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1550 | out_len != out_buf_size) { | |
1551 | inflateEnd(strm); | |
1552 | return -1; | |
1553 | } | |
1554 | inflateEnd(strm); | |
1555 | return 0; | |
1556 | } | |
1557 | ||
66f82cee | 1558 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1559 | { |
ff99129a | 1560 | BDRVQcow2State *s = bs->opaque; |
45aba42f KW |
1561 | int ret, csize, nb_csectors, sector_offset; |
1562 | uint64_t coffset; | |
1563 | ||
1564 | coffset = cluster_offset & s->cluster_offset_mask; | |
1565 | if (s->cluster_cache_offset != coffset) { | |
1566 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1567 | sector_offset = coffset & 511; | |
1568 | csize = nb_csectors * 512 - sector_offset; | |
3e4c7052 SH |
1569 | |
1570 | /* Allocate buffers on first decompress operation, most images are | |
1571 | * uncompressed and the memory overhead can be avoided. The buffers | |
1572 | * are freed in .bdrv_close(). | |
1573 | */ | |
1574 | if (!s->cluster_data) { | |
1575 | /* one more sector for decompressed data alignment */ | |
1576 | s->cluster_data = qemu_try_blockalign(bs->file->bs, | |
1577 | QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512); | |
1578 | if (!s->cluster_data) { | |
1579 | return -ENOMEM; | |
1580 | } | |
1581 | } | |
1582 | if (!s->cluster_cache) { | |
1583 | s->cluster_cache = g_malloc(s->cluster_size); | |
1584 | } | |
1585 | ||
66f82cee | 1586 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
fbcbbf4e | 1587 | ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, |
9a4f4c31 | 1588 | nb_csectors); |
45aba42f | 1589 | if (ret < 0) { |
8af36488 | 1590 | return ret; |
45aba42f KW |
1591 | } |
1592 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1593 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1594 | return -EIO; |
45aba42f KW |
1595 | } |
1596 | s->cluster_cache_offset = coffset; | |
1597 | } | |
1598 | return 0; | |
1599 | } | |
5ea929e3 KW |
1600 | |
1601 | /* | |
1602 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1603 | * all clusters in the same L2 table) and returns the number of discarded | |
1604 | * clusters. | |
1605 | */ | |
1606 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
b6d36def HR |
1607 | uint64_t nb_clusters, enum qcow2_discard_type type, |
1608 | bool full_discard) | |
5ea929e3 | 1609 | { |
ff99129a | 1610 | BDRVQcow2State *s = bs->opaque; |
3948d1d4 | 1611 | uint64_t *l2_table; |
5ea929e3 KW |
1612 | int l2_index; |
1613 | int ret; | |
1614 | int i; | |
1615 | ||
3948d1d4 | 1616 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1617 | if (ret < 0) { |
1618 | return ret; | |
1619 | } | |
1620 | ||
1621 | /* Limit nb_clusters to one L2 table */ | |
1622 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1623 | assert(nb_clusters <= INT_MAX); |
5ea929e3 KW |
1624 | |
1625 | for (i = 0; i < nb_clusters; i++) { | |
c883db0d | 1626 | uint64_t old_l2_entry; |
5ea929e3 | 1627 | |
c883db0d | 1628 | old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); |
a71835a0 KW |
1629 | |
1630 | /* | |
808c4b6f HR |
1631 | * If full_discard is false, make sure that a discarded area reads back |
1632 | * as zeroes for v3 images (we cannot do it for v2 without actually | |
1633 | * writing a zero-filled buffer). We can skip the operation if the | |
1634 | * cluster is already marked as zero, or if it's unallocated and we | |
1635 | * don't have a backing file. | |
a71835a0 KW |
1636 | * |
1637 | * TODO We might want to use bdrv_get_block_status(bs) here, but we're | |
1638 | * holding s->lock, so that doesn't work today. | |
808c4b6f HR |
1639 | * |
1640 | * If full_discard is true, the sector should not read back as zeroes, | |
1641 | * but rather fall through to the backing file. | |
a71835a0 | 1642 | */ |
c883db0d | 1643 | switch (qcow2_get_cluster_type(old_l2_entry)) { |
bbd995d8 EB |
1644 | case QCOW2_CLUSTER_UNALLOCATED: |
1645 | if (full_discard || !bs->backing) { | |
1646 | continue; | |
1647 | } | |
1648 | break; | |
1649 | ||
fdfab37d EB |
1650 | case QCOW2_CLUSTER_ZERO_PLAIN: |
1651 | if (!full_discard) { | |
bbd995d8 EB |
1652 | continue; |
1653 | } | |
1654 | break; | |
1655 | ||
fdfab37d | 1656 | case QCOW2_CLUSTER_ZERO_ALLOC: |
bbd995d8 EB |
1657 | case QCOW2_CLUSTER_NORMAL: |
1658 | case QCOW2_CLUSTER_COMPRESSED: | |
1659 | break; | |
1660 | ||
1661 | default: | |
1662 | abort(); | |
5ea929e3 KW |
1663 | } |
1664 | ||
1665 | /* First remove L2 entries */ | |
72e80b89 | 1666 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
808c4b6f | 1667 | if (!full_discard && s->qcow_version >= 3) { |
a71835a0 KW |
1668 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); |
1669 | } else { | |
1670 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1671 | } | |
5ea929e3 KW |
1672 | |
1673 | /* Then decrease the refcount */ | |
c883db0d | 1674 | qcow2_free_any_clusters(bs, old_l2_entry, 1, type); |
5ea929e3 KW |
1675 | } |
1676 | ||
a3f1afb4 | 1677 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
5ea929e3 KW |
1678 | |
1679 | return nb_clusters; | |
1680 | } | |
1681 | ||
d2cb36af EB |
1682 | int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, |
1683 | uint64_t bytes, enum qcow2_discard_type type, | |
1684 | bool full_discard) | |
5ea929e3 | 1685 | { |
ff99129a | 1686 | BDRVQcow2State *s = bs->opaque; |
d2cb36af | 1687 | uint64_t end_offset = offset + bytes; |
b6d36def | 1688 | uint64_t nb_clusters; |
d2cb36af | 1689 | int64_t cleared; |
5ea929e3 KW |
1690 | int ret; |
1691 | ||
f10ee139 | 1692 | /* Caller must pass aligned values, except at image end */ |
0c1bd469 | 1693 | assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
f10ee139 EB |
1694 | assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || |
1695 | end_offset == bs->total_sectors << BDRV_SECTOR_BITS); | |
5ea929e3 | 1696 | |
d2cb36af | 1697 | nb_clusters = size_to_clusters(s, bytes); |
5ea929e3 | 1698 | |
0b919fae KW |
1699 | s->cache_discards = true; |
1700 | ||
5ea929e3 KW |
1701 | /* Each L2 table is handled by its own loop iteration */ |
1702 | while (nb_clusters > 0) { | |
d2cb36af EB |
1703 | cleared = discard_single_l2(bs, offset, nb_clusters, type, |
1704 | full_discard); | |
1705 | if (cleared < 0) { | |
1706 | ret = cleared; | |
0b919fae | 1707 | goto fail; |
5ea929e3 KW |
1708 | } |
1709 | ||
d2cb36af EB |
1710 | nb_clusters -= cleared; |
1711 | offset += (cleared * s->cluster_size); | |
5ea929e3 KW |
1712 | } |
1713 | ||
0b919fae KW |
1714 | ret = 0; |
1715 | fail: | |
1716 | s->cache_discards = false; | |
1717 | qcow2_process_discards(bs, ret); | |
1718 | ||
1719 | return ret; | |
5ea929e3 | 1720 | } |
621f0589 KW |
1721 | |
1722 | /* | |
1723 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1724 | * all clusters in the same L2 table) and returns the number of zeroed | |
1725 | * clusters. | |
1726 | */ | |
1727 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
170f4b2e | 1728 | uint64_t nb_clusters, int flags) |
621f0589 | 1729 | { |
ff99129a | 1730 | BDRVQcow2State *s = bs->opaque; |
621f0589 KW |
1731 | uint64_t *l2_table; |
1732 | int l2_index; | |
1733 | int ret; | |
1734 | int i; | |
06cc5e2b | 1735 | bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP); |
621f0589 KW |
1736 | |
1737 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1738 | if (ret < 0) { | |
1739 | return ret; | |
1740 | } | |
1741 | ||
1742 | /* Limit nb_clusters to one L2 table */ | |
1743 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1744 | assert(nb_clusters <= INT_MAX); |
621f0589 KW |
1745 | |
1746 | for (i = 0; i < nb_clusters; i++) { | |
1747 | uint64_t old_offset; | |
06cc5e2b | 1748 | QCow2ClusterType cluster_type; |
621f0589 KW |
1749 | |
1750 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1751 | ||
06cc5e2b EB |
1752 | /* |
1753 | * Minimize L2 changes if the cluster already reads back as | |
1754 | * zeroes with correct allocation. | |
1755 | */ | |
1756 | cluster_type = qcow2_get_cluster_type(old_offset); | |
1757 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN || | |
1758 | (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) { | |
1759 | continue; | |
1760 | } | |
1761 | ||
72e80b89 | 1762 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
06cc5e2b | 1763 | if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) { |
621f0589 | 1764 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); |
6cfcb9b8 | 1765 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
621f0589 KW |
1766 | } else { |
1767 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1768 | } | |
1769 | } | |
1770 | ||
a3f1afb4 | 1771 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
621f0589 KW |
1772 | |
1773 | return nb_clusters; | |
1774 | } | |
1775 | ||
d2cb36af EB |
1776 | int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset, |
1777 | uint64_t bytes, int flags) | |
621f0589 | 1778 | { |
ff99129a | 1779 | BDRVQcow2State *s = bs->opaque; |
d2cb36af | 1780 | uint64_t end_offset = offset + bytes; |
b6d36def | 1781 | uint64_t nb_clusters; |
d2cb36af | 1782 | int64_t cleared; |
621f0589 KW |
1783 | int ret; |
1784 | ||
f10ee139 EB |
1785 | /* Caller must pass aligned values, except at image end */ |
1786 | assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); | |
1787 | assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || | |
1788 | end_offset == bs->total_sectors << BDRV_SECTOR_BITS); | |
1789 | ||
621f0589 KW |
1790 | /* The zero flag is only supported by version 3 and newer */ |
1791 | if (s->qcow_version < 3) { | |
1792 | return -ENOTSUP; | |
1793 | } | |
1794 | ||
1795 | /* Each L2 table is handled by its own loop iteration */ | |
d2cb36af | 1796 | nb_clusters = size_to_clusters(s, bytes); |
621f0589 | 1797 | |
0b919fae KW |
1798 | s->cache_discards = true; |
1799 | ||
621f0589 | 1800 | while (nb_clusters > 0) { |
d2cb36af EB |
1801 | cleared = zero_single_l2(bs, offset, nb_clusters, flags); |
1802 | if (cleared < 0) { | |
1803 | ret = cleared; | |
0b919fae | 1804 | goto fail; |
621f0589 KW |
1805 | } |
1806 | ||
d2cb36af EB |
1807 | nb_clusters -= cleared; |
1808 | offset += (cleared * s->cluster_size); | |
621f0589 KW |
1809 | } |
1810 | ||
0b919fae KW |
1811 | ret = 0; |
1812 | fail: | |
1813 | s->cache_discards = false; | |
1814 | qcow2_process_discards(bs, ret); | |
1815 | ||
1816 | return ret; | |
621f0589 | 1817 | } |
32b6444d HR |
1818 | |
1819 | /* | |
1820 | * Expands all zero clusters in a specific L1 table (or deallocates them, for | |
1821 | * non-backed non-pre-allocated zero clusters). | |
1822 | * | |
4057a2b2 HR |
1823 | * l1_entries and *visited_l1_entries are used to keep track of progress for |
1824 | * status_cb(). l1_entries contains the total number of L1 entries and | |
1825 | * *visited_l1_entries counts all visited L1 entries. | |
32b6444d HR |
1826 | */ |
1827 | static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, | |
ecf58777 | 1828 | int l1_size, int64_t *visited_l1_entries, |
4057a2b2 | 1829 | int64_t l1_entries, |
8b13976d HR |
1830 | BlockDriverAmendStatusCB *status_cb, |
1831 | void *cb_opaque) | |
32b6444d | 1832 | { |
ff99129a | 1833 | BDRVQcow2State *s = bs->opaque; |
32b6444d HR |
1834 | bool is_active_l1 = (l1_table == s->l1_table); |
1835 | uint64_t *l2_table = NULL; | |
1836 | int ret; | |
1837 | int i, j; | |
1838 | ||
1839 | if (!is_active_l1) { | |
1840 | /* inactive L2 tables require a buffer to be stored in when loading | |
1841 | * them from disk */ | |
9a4f4c31 | 1842 | l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); |
de82815d KW |
1843 | if (l2_table == NULL) { |
1844 | return -ENOMEM; | |
1845 | } | |
32b6444d HR |
1846 | } |
1847 | ||
1848 | for (i = 0; i < l1_size; i++) { | |
1849 | uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; | |
1850 | bool l2_dirty = false; | |
0e06528e | 1851 | uint64_t l2_refcount; |
32b6444d HR |
1852 | |
1853 | if (!l2_offset) { | |
1854 | /* unallocated */ | |
4057a2b2 HR |
1855 | (*visited_l1_entries)++; |
1856 | if (status_cb) { | |
8b13976d | 1857 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1858 | } |
32b6444d HR |
1859 | continue; |
1860 | } | |
1861 | ||
8dd93d93 HR |
1862 | if (offset_into_cluster(s, l2_offset)) { |
1863 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" | |
1864 | PRIx64 " unaligned (L1 index: %#x)", | |
1865 | l2_offset, i); | |
1866 | ret = -EIO; | |
1867 | goto fail; | |
1868 | } | |
1869 | ||
32b6444d HR |
1870 | if (is_active_l1) { |
1871 | /* get active L2 tables from cache */ | |
1872 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, | |
1873 | (void **)&l2_table); | |
1874 | } else { | |
1875 | /* load inactive L2 tables from disk */ | |
fbcbbf4e | 1876 | ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, |
9a4f4c31 | 1877 | (void *)l2_table, s->cluster_sectors); |
32b6444d HR |
1878 | } |
1879 | if (ret < 0) { | |
1880 | goto fail; | |
1881 | } | |
1882 | ||
7324c10f HR |
1883 | ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, |
1884 | &l2_refcount); | |
1885 | if (ret < 0) { | |
ecf58777 HR |
1886 | goto fail; |
1887 | } | |
1888 | ||
32b6444d HR |
1889 | for (j = 0; j < s->l2_size; j++) { |
1890 | uint64_t l2_entry = be64_to_cpu(l2_table[j]); | |
ecf58777 | 1891 | int64_t offset = l2_entry & L2E_OFFSET_MASK; |
3ef95218 | 1892 | QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry); |
32b6444d | 1893 | |
fdfab37d EB |
1894 | if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && |
1895 | cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { | |
32b6444d HR |
1896 | continue; |
1897 | } | |
1898 | ||
fdfab37d | 1899 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
760e0063 | 1900 | if (!bs->backing) { |
32b6444d HR |
1901 | /* not backed; therefore we can simply deallocate the |
1902 | * cluster */ | |
1903 | l2_table[j] = 0; | |
1904 | l2_dirty = true; | |
1905 | continue; | |
1906 | } | |
1907 | ||
1908 | offset = qcow2_alloc_clusters(bs, s->cluster_size); | |
1909 | if (offset < 0) { | |
1910 | ret = offset; | |
1911 | goto fail; | |
1912 | } | |
ecf58777 HR |
1913 | |
1914 | if (l2_refcount > 1) { | |
1915 | /* For shared L2 tables, set the refcount accordingly (it is | |
1916 | * already 1 and needs to be l2_refcount) */ | |
1917 | ret = qcow2_update_cluster_refcount(bs, | |
2aabe7c7 HR |
1918 | offset >> s->cluster_bits, |
1919 | refcount_diff(1, l2_refcount), false, | |
ecf58777 HR |
1920 | QCOW2_DISCARD_OTHER); |
1921 | if (ret < 0) { | |
1922 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1923 | QCOW2_DISCARD_OTHER); | |
1924 | goto fail; | |
1925 | } | |
1926 | } | |
32b6444d HR |
1927 | } |
1928 | ||
8dd93d93 | 1929 | if (offset_into_cluster(s, offset)) { |
bcb07dba EB |
1930 | qcow2_signal_corruption(bs, true, -1, -1, |
1931 | "Cluster allocation offset " | |
8dd93d93 HR |
1932 | "%#" PRIx64 " unaligned (L2 offset: %#" |
1933 | PRIx64 ", L2 index: %#x)", offset, | |
1934 | l2_offset, j); | |
fdfab37d | 1935 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
8dd93d93 HR |
1936 | qcow2_free_clusters(bs, offset, s->cluster_size, |
1937 | QCOW2_DISCARD_ALWAYS); | |
1938 | } | |
1939 | ret = -EIO; | |
1940 | goto fail; | |
1941 | } | |
1942 | ||
231bb267 | 1943 | ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); |
32b6444d | 1944 | if (ret < 0) { |
fdfab37d | 1945 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
320c7066 HR |
1946 | qcow2_free_clusters(bs, offset, s->cluster_size, |
1947 | QCOW2_DISCARD_ALWAYS); | |
1948 | } | |
32b6444d HR |
1949 | goto fail; |
1950 | } | |
1951 | ||
720ff280 | 1952 | ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0); |
32b6444d | 1953 | if (ret < 0) { |
fdfab37d | 1954 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
320c7066 HR |
1955 | qcow2_free_clusters(bs, offset, s->cluster_size, |
1956 | QCOW2_DISCARD_ALWAYS); | |
1957 | } | |
32b6444d HR |
1958 | goto fail; |
1959 | } | |
1960 | ||
ecf58777 HR |
1961 | if (l2_refcount == 1) { |
1962 | l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); | |
1963 | } else { | |
1964 | l2_table[j] = cpu_to_be64(offset); | |
e390cf5a | 1965 | } |
ecf58777 | 1966 | l2_dirty = true; |
32b6444d HR |
1967 | } |
1968 | ||
1969 | if (is_active_l1) { | |
1970 | if (l2_dirty) { | |
72e80b89 | 1971 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
32b6444d HR |
1972 | qcow2_cache_depends_on_flush(s->l2_table_cache); |
1973 | } | |
a3f1afb4 | 1974 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1975 | } else { |
1976 | if (l2_dirty) { | |
231bb267 HR |
1977 | ret = qcow2_pre_write_overlap_check(bs, |
1978 | QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, | |
32b6444d HR |
1979 | s->cluster_size); |
1980 | if (ret < 0) { | |
1981 | goto fail; | |
1982 | } | |
1983 | ||
18d51c4b | 1984 | ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, |
9a4f4c31 | 1985 | (void *)l2_table, s->cluster_sectors); |
32b6444d HR |
1986 | if (ret < 0) { |
1987 | goto fail; | |
1988 | } | |
1989 | } | |
1990 | } | |
4057a2b2 HR |
1991 | |
1992 | (*visited_l1_entries)++; | |
1993 | if (status_cb) { | |
8b13976d | 1994 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1995 | } |
32b6444d HR |
1996 | } |
1997 | ||
1998 | ret = 0; | |
1999 | ||
2000 | fail: | |
2001 | if (l2_table) { | |
2002 | if (!is_active_l1) { | |
2003 | qemu_vfree(l2_table); | |
2004 | } else { | |
a3f1afb4 | 2005 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
2006 | } |
2007 | } | |
2008 | return ret; | |
2009 | } | |
2010 | ||
2011 | /* | |
2012 | * For backed images, expands all zero clusters on the image. For non-backed | |
2013 | * images, deallocates all non-pre-allocated zero clusters (and claims the | |
2014 | * allocation for pre-allocated ones). This is important for downgrading to a | |
2015 | * qcow2 version which doesn't yet support metadata zero clusters. | |
2016 | */ | |
4057a2b2 | 2017 | int qcow2_expand_zero_clusters(BlockDriverState *bs, |
8b13976d HR |
2018 | BlockDriverAmendStatusCB *status_cb, |
2019 | void *cb_opaque) | |
32b6444d | 2020 | { |
ff99129a | 2021 | BDRVQcow2State *s = bs->opaque; |
32b6444d | 2022 | uint64_t *l1_table = NULL; |
4057a2b2 | 2023 | int64_t l1_entries = 0, visited_l1_entries = 0; |
32b6444d HR |
2024 | int ret; |
2025 | int i, j; | |
2026 | ||
4057a2b2 HR |
2027 | if (status_cb) { |
2028 | l1_entries = s->l1_size; | |
2029 | for (i = 0; i < s->nb_snapshots; i++) { | |
2030 | l1_entries += s->snapshots[i].l1_size; | |
2031 | } | |
2032 | } | |
2033 | ||
32b6444d | 2034 | ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, |
4057a2b2 | 2035 | &visited_l1_entries, l1_entries, |
8b13976d | 2036 | status_cb, cb_opaque); |
32b6444d HR |
2037 | if (ret < 0) { |
2038 | goto fail; | |
2039 | } | |
2040 | ||
2041 | /* Inactive L1 tables may point to active L2 tables - therefore it is | |
2042 | * necessary to flush the L2 table cache before trying to access the L2 | |
2043 | * tables pointed to by inactive L1 entries (else we might try to expand | |
2044 | * zero clusters that have already been expanded); furthermore, it is also | |
2045 | * necessary to empty the L2 table cache, since it may contain tables which | |
2046 | * are now going to be modified directly on disk, bypassing the cache. | |
2047 | * qcow2_cache_empty() does both for us. */ | |
2048 | ret = qcow2_cache_empty(bs, s->l2_table_cache); | |
2049 | if (ret < 0) { | |
2050 | goto fail; | |
2051 | } | |
2052 | ||
2053 | for (i = 0; i < s->nb_snapshots; i++) { | |
d737b78c LV |
2054 | int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size * |
2055 | sizeof(uint64_t), BDRV_SECTOR_SIZE); | |
32b6444d HR |
2056 | |
2057 | l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); | |
2058 | ||
fbcbbf4e | 2059 | ret = bdrv_read(bs->file, |
9a4f4c31 KW |
2060 | s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, |
2061 | (void *)l1_table, l1_sectors); | |
32b6444d HR |
2062 | if (ret < 0) { |
2063 | goto fail; | |
2064 | } | |
2065 | ||
2066 | for (j = 0; j < s->snapshots[i].l1_size; j++) { | |
2067 | be64_to_cpus(&l1_table[j]); | |
2068 | } | |
2069 | ||
2070 | ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, | |
4057a2b2 | 2071 | &visited_l1_entries, l1_entries, |
8b13976d | 2072 | status_cb, cb_opaque); |
32b6444d HR |
2073 | if (ret < 0) { |
2074 | goto fail; | |
2075 | } | |
2076 | } | |
2077 | ||
2078 | ret = 0; | |
2079 | ||
2080 | fail: | |
32b6444d HR |
2081 | g_free(l1_table); |
2082 | return ret; | |
2083 | } |