]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
80c71a24 | 25 | #include "qemu/osdep.h" |
45aba42f KW |
26 | #include <zlib.h> |
27 | ||
da34e65c | 28 | #include "qapi/error.h" |
45aba42f | 29 | #include "qemu-common.h" |
737e150e | 30 | #include "block/block_int.h" |
45aba42f | 31 | #include "block/qcow2.h" |
58369e22 | 32 | #include "qemu/bswap.h" |
3cce16f4 | 33 | #include "trace.h" |
45aba42f | 34 | |
2cf7cfa1 KW |
35 | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, |
36 | bool exact_size) | |
45aba42f | 37 | { |
ff99129a | 38 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 | 39 | int new_l1_size2, ret, i; |
45aba42f | 40 | uint64_t *new_l1_table; |
fda74f82 | 41 | int64_t old_l1_table_offset, old_l1_size; |
2cf7cfa1 | 42 | int64_t new_l1_table_offset, new_l1_size; |
45aba42f KW |
43 | uint8_t data[12]; |
44 | ||
72893756 | 45 | if (min_size <= s->l1_size) |
45aba42f | 46 | return 0; |
72893756 | 47 | |
b93f9950 HR |
48 | /* Do a sanity check on min_size before trying to calculate new_l1_size |
49 | * (this prevents overflows during the while loop for the calculation of | |
50 | * new_l1_size) */ | |
51 | if (min_size > INT_MAX / sizeof(uint64_t)) { | |
52 | return -EFBIG; | |
53 | } | |
54 | ||
72893756 SH |
55 | if (exact_size) { |
56 | new_l1_size = min_size; | |
57 | } else { | |
58 | /* Bump size up to reduce the number of times we have to grow */ | |
59 | new_l1_size = s->l1_size; | |
60 | if (new_l1_size == 0) { | |
61 | new_l1_size = 1; | |
62 | } | |
63 | while (min_size > new_l1_size) { | |
64 | new_l1_size = (new_l1_size * 3 + 1) / 2; | |
65 | } | |
45aba42f | 66 | } |
72893756 | 67 | |
cab60de9 | 68 | if (new_l1_size > INT_MAX / sizeof(uint64_t)) { |
2cf7cfa1 KW |
69 | return -EFBIG; |
70 | } | |
71 | ||
45aba42f | 72 | #ifdef DEBUG_ALLOC2 |
2cf7cfa1 KW |
73 | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", |
74 | s->l1_size, new_l1_size); | |
45aba42f KW |
75 | #endif |
76 | ||
77 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
9a4f4c31 | 78 | new_l1_table = qemu_try_blockalign(bs->file->bs, |
de82815d KW |
79 | align_offset(new_l1_size2, 512)); |
80 | if (new_l1_table == NULL) { | |
81 | return -ENOMEM; | |
82 | } | |
83 | memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); | |
84 | ||
45aba42f KW |
85 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); |
86 | ||
87 | /* write new table (align to cluster) */ | |
66f82cee | 88 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 89 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 90 | if (new_l1_table_offset < 0) { |
de82815d | 91 | qemu_vfree(new_l1_table); |
5d757b56 KW |
92 | return new_l1_table_offset; |
93 | } | |
29c1a730 KW |
94 | |
95 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
96 | if (ret < 0) { | |
80fa3341 | 97 | goto fail; |
29c1a730 | 98 | } |
45aba42f | 99 | |
cf93980e HR |
100 | /* the L1 position has not yet been updated, so these clusters must |
101 | * indeed be completely free */ | |
231bb267 HR |
102 | ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, |
103 | new_l1_size2); | |
cf93980e HR |
104 | if (ret < 0) { |
105 | goto fail; | |
106 | } | |
107 | ||
66f82cee | 108 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
109 | for(i = 0; i < s->l1_size; i++) |
110 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
9a4f4c31 KW |
111 | ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset, |
112 | new_l1_table, new_l1_size2); | |
8b3b7206 | 113 | if (ret < 0) |
45aba42f KW |
114 | goto fail; |
115 | for(i = 0; i < s->l1_size; i++) | |
116 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
117 | ||
118 | /* set new table */ | |
66f82cee | 119 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
45aba42f | 120 | cpu_to_be32w((uint32_t*)data, new_l1_size); |
e4ef9f46 | 121 | stq_be_p(data + 4, new_l1_table_offset); |
9a4f4c31 KW |
122 | ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size), |
123 | data, sizeof(data)); | |
8b3b7206 | 124 | if (ret < 0) { |
45aba42f | 125 | goto fail; |
fb8fa77c | 126 | } |
de82815d | 127 | qemu_vfree(s->l1_table); |
fda74f82 | 128 | old_l1_table_offset = s->l1_table_offset; |
45aba42f KW |
129 | s->l1_table_offset = new_l1_table_offset; |
130 | s->l1_table = new_l1_table; | |
fda74f82 | 131 | old_l1_size = s->l1_size; |
45aba42f | 132 | s->l1_size = new_l1_size; |
fda74f82 HR |
133 | qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), |
134 | QCOW2_DISCARD_OTHER); | |
45aba42f KW |
135 | return 0; |
136 | fail: | |
de82815d | 137 | qemu_vfree(new_l1_table); |
6cfcb9b8 KW |
138 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, |
139 | QCOW2_DISCARD_OTHER); | |
8b3b7206 | 140 | return ret; |
45aba42f KW |
141 | } |
142 | ||
45aba42f KW |
143 | /* |
144 | * l2_load | |
145 | * | |
146 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
147 | * is used; otherwise the L2 table is loaded from the image file. | |
148 | * | |
149 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
150 | * the image file failed. | |
151 | */ | |
152 | ||
55c17e98 KW |
153 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
154 | uint64_t **l2_table) | |
45aba42f | 155 | { |
ff99129a | 156 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 157 | |
9be38598 EH |
158 | return qcow2_cache_get(bs, s->l2_table_cache, l2_offset, |
159 | (void **)l2_table); | |
45aba42f KW |
160 | } |
161 | ||
6583e3c7 KW |
162 | /* |
163 | * Writes one sector of the L1 table to the disk (can't update single entries | |
164 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
165 | */ | |
166 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
e23e400e | 167 | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 168 | { |
ff99129a | 169 | BDRVQcow2State *s = bs->opaque; |
a1391444 | 170 | uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; |
6583e3c7 | 171 | int l1_start_index; |
f7defcb6 | 172 | int i, ret; |
6583e3c7 KW |
173 | |
174 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
a1391444 HR |
175 | for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; |
176 | i++) | |
177 | { | |
6583e3c7 KW |
178 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); |
179 | } | |
180 | ||
231bb267 | 181 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, |
cf93980e HR |
182 | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); |
183 | if (ret < 0) { | |
184 | return ret; | |
185 | } | |
186 | ||
66f82cee | 187 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
9a4f4c31 KW |
188 | ret = bdrv_pwrite_sync(bs->file->bs, |
189 | s->l1_table_offset + 8 * l1_start_index, | |
190 | buf, sizeof(buf)); | |
f7defcb6 KW |
191 | if (ret < 0) { |
192 | return ret; | |
6583e3c7 KW |
193 | } |
194 | ||
195 | return 0; | |
196 | } | |
197 | ||
45aba42f KW |
198 | /* |
199 | * l2_allocate | |
200 | * | |
201 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
202 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
203 | * table) copy the contents of the old L2 table into the newly allocated one. | |
204 | * Otherwise the new table is initialized with zeros. | |
205 | * | |
206 | */ | |
207 | ||
c46e1167 | 208 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f | 209 | { |
ff99129a | 210 | BDRVQcow2State *s = bs->opaque; |
6583e3c7 | 211 | uint64_t old_l2_offset; |
8585afd8 | 212 | uint64_t *l2_table = NULL; |
f4f0d391 | 213 | int64_t l2_offset; |
c46e1167 | 214 | int ret; |
45aba42f KW |
215 | |
216 | old_l2_offset = s->l1_table[l1_index]; | |
217 | ||
3cce16f4 KW |
218 | trace_qcow2_l2_allocate(bs, l1_index); |
219 | ||
45aba42f KW |
220 | /* allocate a new l2 entry */ |
221 | ||
ed6ccf0f | 222 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 223 | if (l2_offset < 0) { |
be0b742e HR |
224 | ret = l2_offset; |
225 | goto fail; | |
5d757b56 | 226 | } |
29c1a730 KW |
227 | |
228 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
229 | if (ret < 0) { | |
230 | goto fail; | |
231 | } | |
45aba42f | 232 | |
45aba42f KW |
233 | /* allocate a new entry in the l2 cache */ |
234 | ||
3cce16f4 | 235 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
236 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
237 | if (ret < 0) { | |
be0b742e | 238 | goto fail; |
29c1a730 KW |
239 | } |
240 | ||
241 | l2_table = *table; | |
45aba42f | 242 | |
8e37f681 | 243 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
244 | /* if there was no old l2 table, clear the new table */ |
245 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
246 | } else { | |
29c1a730 KW |
247 | uint64_t* old_table; |
248 | ||
45aba42f | 249 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 250 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
251 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
252 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
253 | (void**) &old_table); |
254 | if (ret < 0) { | |
255 | goto fail; | |
256 | } | |
257 | ||
258 | memcpy(l2_table, old_table, s->cluster_size); | |
259 | ||
a3f1afb4 | 260 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); |
45aba42f | 261 | } |
29c1a730 | 262 | |
45aba42f | 263 | /* write the l2 table to the file */ |
66f82cee | 264 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 265 | |
3cce16f4 | 266 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
72e80b89 | 267 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
29c1a730 | 268 | ret = qcow2_cache_flush(bs, s->l2_table_cache); |
c46e1167 | 269 | if (ret < 0) { |
175e1152 KW |
270 | goto fail; |
271 | } | |
272 | ||
273 | /* update the L1 entry */ | |
3cce16f4 | 274 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 | 275 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
e23e400e | 276 | ret = qcow2_write_l1_entry(bs, l1_index); |
175e1152 KW |
277 | if (ret < 0) { |
278 | goto fail; | |
c46e1167 | 279 | } |
45aba42f | 280 | |
c46e1167 | 281 | *table = l2_table; |
3cce16f4 | 282 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 283 | return 0; |
175e1152 KW |
284 | |
285 | fail: | |
3cce16f4 | 286 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
8585afd8 HR |
287 | if (l2_table != NULL) { |
288 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); | |
289 | } | |
68dba0bf | 290 | s->l1_table[l1_index] = old_l2_offset; |
e3b21ef9 HR |
291 | if (l2_offset > 0) { |
292 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | |
293 | QCOW2_DISCARD_ALWAYS); | |
294 | } | |
175e1152 | 295 | return ret; |
45aba42f KW |
296 | } |
297 | ||
2bfcc4a0 KW |
298 | /* |
299 | * Checks how many clusters in a given L2 table are contiguous in the image | |
300 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
301 | * to the first cluster, the search is stopped and the cluster is not counted | |
302 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
303 | * cluster which may require a different handling) | |
304 | */ | |
b6d36def | 305 | static int count_contiguous_clusters(int nb_clusters, int cluster_size, |
61653008 | 306 | uint64_t *l2_table, uint64_t stop_flags) |
45aba42f KW |
307 | { |
308 | int i; | |
78a52ad5 | 309 | uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; |
15684a47 HR |
310 | uint64_t first_entry = be64_to_cpu(l2_table[0]); |
311 | uint64_t offset = first_entry & mask; | |
45aba42f KW |
312 | |
313 | if (!offset) | |
314 | return 0; | |
315 | ||
a99dfb45 | 316 | assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); |
15684a47 | 317 | |
61653008 | 318 | for (i = 0; i < nb_clusters; i++) { |
2bfcc4a0 KW |
319 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; |
320 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 321 | break; |
2bfcc4a0 KW |
322 | } |
323 | } | |
45aba42f | 324 | |
61653008 | 325 | return i; |
45aba42f KW |
326 | } |
327 | ||
a99dfb45 KW |
328 | static int count_contiguous_clusters_by_type(int nb_clusters, |
329 | uint64_t *l2_table, | |
330 | int wanted_type) | |
45aba42f | 331 | { |
2bfcc4a0 KW |
332 | int i; |
333 | ||
334 | for (i = 0; i < nb_clusters; i++) { | |
335 | int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); | |
45aba42f | 336 | |
a99dfb45 | 337 | if (type != wanted_type) { |
2bfcc4a0 KW |
338 | break; |
339 | } | |
340 | } | |
45aba42f KW |
341 | |
342 | return i; | |
343 | } | |
344 | ||
345 | /* The crypt function is compatible with the linux cryptoloop | |
346 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
347 | supported */ | |
ff99129a | 348 | int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, |
f6fa64f6 DB |
349 | uint8_t *out_buf, const uint8_t *in_buf, |
350 | int nb_sectors, bool enc, | |
351 | Error **errp) | |
45aba42f KW |
352 | { |
353 | union { | |
354 | uint64_t ll[2]; | |
355 | uint8_t b[16]; | |
356 | } ivec; | |
357 | int i; | |
f6fa64f6 | 358 | int ret; |
45aba42f KW |
359 | |
360 | for(i = 0; i < nb_sectors; i++) { | |
361 | ivec.ll[0] = cpu_to_le64(sector_num); | |
362 | ivec.ll[1] = 0; | |
f6fa64f6 DB |
363 | if (qcrypto_cipher_setiv(s->cipher, |
364 | ivec.b, G_N_ELEMENTS(ivec.b), | |
365 | errp) < 0) { | |
366 | return -1; | |
367 | } | |
368 | if (enc) { | |
369 | ret = qcrypto_cipher_encrypt(s->cipher, | |
370 | in_buf, | |
371 | out_buf, | |
372 | 512, | |
373 | errp); | |
374 | } else { | |
375 | ret = qcrypto_cipher_decrypt(s->cipher, | |
376 | in_buf, | |
377 | out_buf, | |
378 | 512, | |
379 | errp); | |
380 | } | |
381 | if (ret < 0) { | |
382 | return -1; | |
383 | } | |
45aba42f KW |
384 | sector_num++; |
385 | in_buf += 512; | |
386 | out_buf += 512; | |
387 | } | |
f6fa64f6 | 388 | return 0; |
45aba42f KW |
389 | } |
390 | ||
aaa4d20b KW |
391 | static int coroutine_fn do_perform_cow(BlockDriverState *bs, |
392 | uint64_t src_cluster_offset, | |
393 | uint64_t cluster_offset, | |
394 | int offset_in_cluster, | |
395 | int bytes) | |
45aba42f | 396 | { |
ff99129a | 397 | BDRVQcow2State *s = bs->opaque; |
aef4acb6 SH |
398 | QEMUIOVector qiov; |
399 | struct iovec iov; | |
aaa4d20b | 400 | int ret; |
1b9f1491 | 401 | |
aaa4d20b | 402 | iov.iov_len = bytes; |
de82815d KW |
403 | iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); |
404 | if (iov.iov_base == NULL) { | |
405 | return -ENOMEM; | |
406 | } | |
aef4acb6 SH |
407 | |
408 | qemu_iovec_init_external(&qiov, &iov, 1); | |
1b9f1491 | 409 | |
66f82cee | 410 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 | 411 | |
dba28555 | 412 | if (!bs->drv) { |
bd604369 KW |
413 | ret = -ENOMEDIUM; |
414 | goto out; | |
dba28555 HR |
415 | } |
416 | ||
aef4acb6 SH |
417 | /* Call .bdrv_co_readv() directly instead of using the public block-layer |
418 | * interface. This avoids double I/O throttling and request tracking, | |
419 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
420 | */ | |
aaa4d20b KW |
421 | ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, |
422 | bytes, &qiov, 0); | |
1b9f1491 KW |
423 | if (ret < 0) { |
424 | goto out; | |
425 | } | |
426 | ||
8336aafa | 427 | if (bs->encrypted) { |
f6fa64f6 | 428 | Error *err = NULL; |
aaa4d20b KW |
429 | int64_t sector = (cluster_offset + offset_in_cluster) |
430 | >> BDRV_SECTOR_BITS; | |
f6fa64f6 | 431 | assert(s->cipher); |
aaa4d20b KW |
432 | assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); |
433 | assert((bytes & ~BDRV_SECTOR_MASK) == 0); | |
434 | if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base, | |
435 | bytes >> BDRV_SECTOR_BITS, true, &err) < 0) { | |
f6fa64f6 DB |
436 | ret = -EIO; |
437 | error_free(err); | |
438 | goto out; | |
439 | } | |
45aba42f | 440 | } |
1b9f1491 | 441 | |
231bb267 | 442 | ret = qcow2_pre_write_overlap_check(bs, 0, |
aaa4d20b | 443 | cluster_offset + offset_in_cluster, bytes); |
cf93980e HR |
444 | if (ret < 0) { |
445 | goto out; | |
446 | } | |
447 | ||
66f82cee | 448 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
aaa4d20b KW |
449 | ret = bdrv_co_pwritev(bs->file->bs, cluster_offset + offset_in_cluster, |
450 | bytes, &qiov, 0); | |
1b9f1491 KW |
451 | if (ret < 0) { |
452 | goto out; | |
453 | } | |
454 | ||
455 | ret = 0; | |
456 | out: | |
aef4acb6 | 457 | qemu_vfree(iov.iov_base); |
1b9f1491 | 458 | return ret; |
45aba42f KW |
459 | } |
460 | ||
461 | ||
462 | /* | |
463 | * get_cluster_offset | |
464 | * | |
ecfe1863 KW |
465 | * For a given offset of the virtual disk, find the cluster type and offset in |
466 | * the qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 467 | * |
ecfe1863 KW |
468 | * On entry, *bytes is the maximum number of contiguous bytes starting at |
469 | * offset that we are interested in. | |
45aba42f | 470 | * |
ecfe1863 KW |
471 | * On exit, *bytes is the number of bytes starting at offset that have the same |
472 | * cluster type and (if applicable) are stored contiguously in the image file. | |
473 | * Compressed clusters are always returned one by one. | |
45aba42f | 474 | * |
68d000a3 KW |
475 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
476 | * cases. | |
45aba42f | 477 | */ |
1c46efaa | 478 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
ecfe1863 | 479 | unsigned int *bytes, uint64_t *cluster_offset) |
45aba42f | 480 | { |
ff99129a | 481 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
482 | unsigned int l2_index; |
483 | uint64_t l1_index, l2_offset, *l2_table; | |
45aba42f | 484 | int l1_bits, c; |
b2f65d6b KW |
485 | unsigned int offset_in_cluster, nb_clusters; |
486 | uint64_t bytes_available, bytes_needed; | |
55c17e98 | 487 | int ret; |
45aba42f | 488 | |
b2f65d6b | 489 | offset_in_cluster = offset_into_cluster(s, offset); |
ecfe1863 | 490 | bytes_needed = (uint64_t) *bytes + offset_in_cluster; |
45aba42f | 491 | |
b2f65d6b | 492 | l1_bits = s->l2_bits + s->cluster_bits; |
45aba42f | 493 | |
b2f65d6b KW |
494 | /* compute how many bytes there are between the start of the cluster |
495 | * containing offset and the end of the l1 entry */ | |
496 | bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)) | |
497 | + offset_in_cluster; | |
45aba42f | 498 | |
b2f65d6b KW |
499 | if (bytes_needed > bytes_available) { |
500 | bytes_needed = bytes_available; | |
45aba42f | 501 | } |
b2f65d6b | 502 | assert(bytes_needed <= INT_MAX); |
45aba42f | 503 | |
1c46efaa | 504 | *cluster_offset = 0; |
45aba42f | 505 | |
b6af0975 | 506 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
507 | |
508 | l1_index = offset >> l1_bits; | |
68d000a3 KW |
509 | if (l1_index >= s->l1_size) { |
510 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 511 | goto out; |
68d000a3 | 512 | } |
45aba42f | 513 | |
68d000a3 KW |
514 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
515 | if (!l2_offset) { | |
516 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 517 | goto out; |
68d000a3 | 518 | } |
45aba42f | 519 | |
a97c67ee HR |
520 | if (offset_into_cluster(s, l2_offset)) { |
521 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
522 | " unaligned (L1 index: %#" PRIx64 ")", | |
523 | l2_offset, l1_index); | |
524 | return -EIO; | |
525 | } | |
526 | ||
45aba42f KW |
527 | /* load the l2 table in memory */ |
528 | ||
55c17e98 KW |
529 | ret = l2_load(bs, l2_offset, &l2_table); |
530 | if (ret < 0) { | |
531 | return ret; | |
1c46efaa | 532 | } |
45aba42f KW |
533 | |
534 | /* find the cluster offset for the given disk offset */ | |
535 | ||
536 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
1c46efaa | 537 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b6d36def HR |
538 | |
539 | /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ | |
b2f65d6b | 540 | nb_clusters = size_to_clusters(s, bytes_needed); |
45aba42f | 541 | |
68d000a3 KW |
542 | ret = qcow2_get_cluster_type(*cluster_offset); |
543 | switch (ret) { | |
544 | case QCOW2_CLUSTER_COMPRESSED: | |
545 | /* Compressed clusters can only be processed one by one */ | |
546 | c = 1; | |
547 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
548 | break; | |
6377af48 | 549 | case QCOW2_CLUSTER_ZERO: |
381b487d | 550 | if (s->qcow_version < 3) { |
a97c67ee HR |
551 | qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" |
552 | " in pre-v3 image (L2 offset: %#" PRIx64 | |
553 | ", L2 index: %#x)", l2_offset, l2_index); | |
554 | ret = -EIO; | |
555 | goto fail; | |
381b487d | 556 | } |
a99dfb45 KW |
557 | c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], |
558 | QCOW2_CLUSTER_ZERO); | |
6377af48 KW |
559 | *cluster_offset = 0; |
560 | break; | |
68d000a3 | 561 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f | 562 | /* how many empty clusters ? */ |
a99dfb45 KW |
563 | c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], |
564 | QCOW2_CLUSTER_UNALLOCATED); | |
68d000a3 KW |
565 | *cluster_offset = 0; |
566 | break; | |
567 | case QCOW2_CLUSTER_NORMAL: | |
45aba42f KW |
568 | /* how many allocated clusters ? */ |
569 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
61653008 | 570 | &l2_table[l2_index], QCOW_OFLAG_ZERO); |
68d000a3 | 571 | *cluster_offset &= L2E_OFFSET_MASK; |
a97c67ee HR |
572 | if (offset_into_cluster(s, *cluster_offset)) { |
573 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" | |
574 | PRIx64 " unaligned (L2 offset: %#" PRIx64 | |
575 | ", L2 index: %#x)", *cluster_offset, | |
576 | l2_offset, l2_index); | |
577 | ret = -EIO; | |
578 | goto fail; | |
579 | } | |
68d000a3 | 580 | break; |
1417d7e4 KW |
581 | default: |
582 | abort(); | |
45aba42f KW |
583 | } |
584 | ||
29c1a730 KW |
585 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
586 | ||
b2f65d6b | 587 | bytes_available = (c * s->cluster_size); |
68d000a3 | 588 | |
45aba42f | 589 | out: |
b2f65d6b KW |
590 | if (bytes_available > bytes_needed) { |
591 | bytes_available = bytes_needed; | |
592 | } | |
45aba42f | 593 | |
ecfe1863 | 594 | *bytes = bytes_available - offset_in_cluster; |
45aba42f | 595 | |
68d000a3 | 596 | return ret; |
a97c67ee HR |
597 | |
598 | fail: | |
599 | qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | |
600 | return ret; | |
45aba42f KW |
601 | } |
602 | ||
603 | /* | |
604 | * get_cluster_table | |
605 | * | |
606 | * for a given disk offset, load (and allocate if needed) | |
607 | * the l2 table. | |
608 | * | |
609 | * the l2 table offset in the qcow2 file and the cluster index | |
610 | * in the l2 table are given to the caller. | |
611 | * | |
1e3e8f1a | 612 | * Returns 0 on success, -errno in failure case |
45aba42f | 613 | */ |
45aba42f KW |
614 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
615 | uint64_t **new_l2_table, | |
45aba42f KW |
616 | int *new_l2_index) |
617 | { | |
ff99129a | 618 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
619 | unsigned int l2_index; |
620 | uint64_t l1_index, l2_offset; | |
c46e1167 | 621 | uint64_t *l2_table = NULL; |
80ee15a6 | 622 | int ret; |
45aba42f | 623 | |
b6af0975 | 624 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
625 | |
626 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
627 | if (l1_index >= s->l1_size) { | |
72893756 | 628 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
629 | if (ret < 0) { |
630 | return ret; | |
631 | } | |
45aba42f | 632 | } |
8e37f681 | 633 | |
2cf7cfa1 | 634 | assert(l1_index < s->l1_size); |
8e37f681 | 635 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
a97c67ee HR |
636 | if (offset_into_cluster(s, l2_offset)) { |
637 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
638 | " unaligned (L1 index: %#" PRIx64 ")", | |
639 | l2_offset, l1_index); | |
640 | return -EIO; | |
641 | } | |
45aba42f KW |
642 | |
643 | /* seek the l2 table of the given l2 offset */ | |
644 | ||
8e37f681 | 645 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 646 | /* load the l2 table in memory */ |
55c17e98 KW |
647 | ret = l2_load(bs, l2_offset, &l2_table); |
648 | if (ret < 0) { | |
649 | return ret; | |
1e3e8f1a | 650 | } |
45aba42f | 651 | } else { |
16fde5f2 | 652 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
653 | ret = l2_allocate(bs, l1_index, &l2_table); |
654 | if (ret < 0) { | |
655 | return ret; | |
1e3e8f1a | 656 | } |
16fde5f2 KW |
657 | |
658 | /* Then decrease the refcount of the old table */ | |
659 | if (l2_offset) { | |
6cfcb9b8 KW |
660 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), |
661 | QCOW2_DISCARD_OTHER); | |
16fde5f2 | 662 | } |
45aba42f KW |
663 | } |
664 | ||
665 | /* find the cluster offset for the given disk offset */ | |
666 | ||
667 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
668 | ||
669 | *new_l2_table = l2_table; | |
45aba42f KW |
670 | *new_l2_index = l2_index; |
671 | ||
1e3e8f1a | 672 | return 0; |
45aba42f KW |
673 | } |
674 | ||
675 | /* | |
676 | * alloc_compressed_cluster_offset | |
677 | * | |
678 | * For a given offset of the disk image, return cluster offset in | |
679 | * qcow2 file. | |
680 | * | |
681 | * If the offset is not found, allocate a new compressed cluster. | |
682 | * | |
683 | * Return the cluster offset if successful, | |
684 | * Return 0, otherwise. | |
685 | * | |
686 | */ | |
687 | ||
ed6ccf0f KW |
688 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
689 | uint64_t offset, | |
690 | int compressed_size) | |
45aba42f | 691 | { |
ff99129a | 692 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 693 | int l2_index, ret; |
3948d1d4 | 694 | uint64_t *l2_table; |
f4f0d391 | 695 | int64_t cluster_offset; |
45aba42f KW |
696 | int nb_csectors; |
697 | ||
3948d1d4 | 698 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 699 | if (ret < 0) { |
45aba42f | 700 | return 0; |
1e3e8f1a | 701 | } |
45aba42f | 702 | |
b0b6862e KW |
703 | /* Compression can't overwrite anything. Fail if the cluster was already |
704 | * allocated. */ | |
45aba42f | 705 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 706 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
707 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
708 | return 0; | |
709 | } | |
45aba42f | 710 | |
ed6ccf0f | 711 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 712 | if (cluster_offset < 0) { |
29c1a730 | 713 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
714 | return 0; |
715 | } | |
716 | ||
45aba42f KW |
717 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
718 | (cluster_offset >> 9); | |
719 | ||
720 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
721 | ((uint64_t)nb_csectors << s->csize_shift); | |
722 | ||
723 | /* update L2 table */ | |
724 | ||
725 | /* compressed clusters never have the copied flag */ | |
726 | ||
66f82cee | 727 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
72e80b89 | 728 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 729 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
a3f1afb4 | 730 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
4c1612d9 | 731 | |
29c1a730 | 732 | return cluster_offset; |
4c1612d9 KW |
733 | } |
734 | ||
593fb83c KW |
735 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) |
736 | { | |
ff99129a | 737 | BDRVQcow2State *s = bs->opaque; |
593fb83c KW |
738 | int ret; |
739 | ||
85567393 | 740 | if (r->nb_bytes == 0) { |
593fb83c KW |
741 | return 0; |
742 | } | |
743 | ||
744 | qemu_co_mutex_unlock(&s->lock); | |
85567393 | 745 | ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes); |
593fb83c KW |
746 | qemu_co_mutex_lock(&s->lock); |
747 | ||
748 | if (ret < 0) { | |
749 | return ret; | |
750 | } | |
751 | ||
752 | /* | |
753 | * Before we update the L2 table to actually point to the new cluster, we | |
754 | * need to be sure that the refcounts have been increased and COW was | |
755 | * handled. | |
756 | */ | |
757 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
758 | ||
759 | return 0; | |
760 | } | |
761 | ||
148da7ea | 762 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f | 763 | { |
ff99129a | 764 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 765 | int i, j = 0, l2_index, ret; |
593fb83c | 766 | uint64_t *old_cluster, *l2_table; |
250196f1 | 767 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 768 | |
3cce16f4 | 769 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 770 | assert(m->nb_clusters > 0); |
45aba42f | 771 | |
5839e53b | 772 | old_cluster = g_try_new(uint64_t, m->nb_clusters); |
de82815d KW |
773 | if (old_cluster == NULL) { |
774 | ret = -ENOMEM; | |
775 | goto err; | |
776 | } | |
45aba42f KW |
777 | |
778 | /* copy content of unmodified sectors */ | |
593fb83c KW |
779 | ret = perform_cow(bs, m, &m->cow_start); |
780 | if (ret < 0) { | |
781 | goto err; | |
45aba42f KW |
782 | } |
783 | ||
593fb83c KW |
784 | ret = perform_cow(bs, m, &m->cow_end); |
785 | if (ret < 0) { | |
786 | goto err; | |
29c1a730 KW |
787 | } |
788 | ||
593fb83c | 789 | /* Update L2 table. */ |
74c4510a | 790 | if (s->use_lazy_refcounts) { |
280d3735 KW |
791 | qcow2_mark_dirty(bs); |
792 | } | |
bfe8043e SH |
793 | if (qcow2_need_accurate_refcounts(s)) { |
794 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
795 | s->refcount_block_cache); | |
796 | } | |
280d3735 | 797 | |
3948d1d4 | 798 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 799 | if (ret < 0) { |
45aba42f | 800 | goto err; |
1e3e8f1a | 801 | } |
72e80b89 | 802 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 803 | |
c01dbccb | 804 | assert(l2_index + m->nb_clusters <= s->l2_size); |
45aba42f KW |
805 | for (i = 0; i < m->nb_clusters; i++) { |
806 | /* if two concurrent writes happen to the same unallocated cluster | |
aaa4d20b KW |
807 | * each write allocates separate cluster and writes data concurrently. |
808 | * The first one to complete updates l2 table with pointer to its | |
809 | * cluster the second one has to do RMW (which is done above by | |
810 | * perform_cow()), update l2 table with its cluster pointer and free | |
811 | * old cluster. This is what this loop does */ | |
812 | if (l2_table[l2_index + i] != 0) { | |
45aba42f | 813 | old_cluster[j++] = l2_table[l2_index + i]; |
aaa4d20b | 814 | } |
45aba42f KW |
815 | |
816 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
817 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
818 | } | |
819 | ||
9f8e668e | 820 | |
a3f1afb4 | 821 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
45aba42f | 822 | |
7ec5e6a4 KW |
823 | /* |
824 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
6cfcb9b8 KW |
825 | * |
826 | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | |
827 | * clusters), the next write will reuse them anyway. | |
7ec5e6a4 KW |
828 | */ |
829 | if (j != 0) { | |
7ec5e6a4 | 830 | for (i = 0; i < j; i++) { |
6cfcb9b8 KW |
831 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, |
832 | QCOW2_DISCARD_NEVER); | |
7ec5e6a4 KW |
833 | } |
834 | } | |
45aba42f KW |
835 | |
836 | ret = 0; | |
837 | err: | |
7267c094 | 838 | g_free(old_cluster); |
45aba42f KW |
839 | return ret; |
840 | } | |
841 | ||
bf319ece KW |
842 | /* |
843 | * Returns the number of contiguous clusters that can be used for an allocating | |
844 | * write, but require COW to be performed (this includes yet unallocated space, | |
845 | * which must copy from the backing file) | |
846 | */ | |
ff99129a | 847 | static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, |
bf319ece KW |
848 | uint64_t *l2_table, int l2_index) |
849 | { | |
143550a8 | 850 | int i; |
bf319ece | 851 | |
143550a8 KW |
852 | for (i = 0; i < nb_clusters; i++) { |
853 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
854 | int cluster_type = qcow2_get_cluster_type(l2_entry); | |
855 | ||
856 | switch(cluster_type) { | |
857 | case QCOW2_CLUSTER_NORMAL: | |
858 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
859 | goto out; | |
860 | } | |
bf319ece | 861 | break; |
143550a8 KW |
862 | case QCOW2_CLUSTER_UNALLOCATED: |
863 | case QCOW2_CLUSTER_COMPRESSED: | |
6377af48 | 864 | case QCOW2_CLUSTER_ZERO: |
bf319ece | 865 | break; |
143550a8 KW |
866 | default: |
867 | abort(); | |
868 | } | |
bf319ece KW |
869 | } |
870 | ||
143550a8 | 871 | out: |
bf319ece KW |
872 | assert(i <= nb_clusters); |
873 | return i; | |
874 | } | |
875 | ||
250196f1 | 876 | /* |
226c3c26 KW |
877 | * Check if there already is an AIO write request in flight which allocates |
878 | * the same cluster. In this case we need to wait until the previous | |
879 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
880 | * |
881 | * Returns: | |
882 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
883 | * bytes from guest_offset that can be read before the next | |
884 | * dependency must be processed (or the request is complete) | |
885 | * | |
886 | * -EAGAIN if we had to wait for another request, previously gathered | |
887 | * information on cluster allocation may be invalid now. The caller | |
888 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 889 | */ |
226c3c26 | 890 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 891 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 | 892 | { |
ff99129a | 893 | BDRVQcow2State *s = bs->opaque; |
250196f1 | 894 | QCowL2Meta *old_alloc; |
65eb2e35 | 895 | uint64_t bytes = *cur_bytes; |
250196f1 | 896 | |
250196f1 KW |
897 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
898 | ||
65eb2e35 KW |
899 | uint64_t start = guest_offset; |
900 | uint64_t end = start + bytes; | |
901 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
902 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 903 | |
d9d74f41 | 904 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
905 | /* No intersection */ |
906 | } else { | |
907 | if (start < old_start) { | |
908 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 909 | bytes = old_start - start; |
250196f1 | 910 | } else { |
65eb2e35 | 911 | bytes = 0; |
250196f1 KW |
912 | } |
913 | ||
ecdd5333 KW |
914 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
915 | * be valid any more, so we'd have to clean up the old L2Metas | |
916 | * and deal with requests depending on them before starting to | |
917 | * gather new ones. Not worth the trouble. */ | |
918 | if (bytes == 0 && *m) { | |
919 | *cur_bytes = 0; | |
920 | return 0; | |
921 | } | |
922 | ||
65eb2e35 | 923 | if (bytes == 0) { |
250196f1 KW |
924 | /* Wait for the dependency to complete. We need to recheck |
925 | * the free/allocated clusters when we continue. */ | |
926 | qemu_co_mutex_unlock(&s->lock); | |
927 | qemu_co_queue_wait(&old_alloc->dependent_requests); | |
928 | qemu_co_mutex_lock(&s->lock); | |
929 | return -EAGAIN; | |
930 | } | |
931 | } | |
932 | } | |
933 | ||
65eb2e35 KW |
934 | /* Make sure that existing clusters and new allocations are only used up to |
935 | * the next dependency if we shortened the request above */ | |
936 | *cur_bytes = bytes; | |
250196f1 | 937 | |
226c3c26 KW |
938 | return 0; |
939 | } | |
940 | ||
0af729ec KW |
941 | /* |
942 | * Checks how many already allocated clusters that don't require a copy on | |
943 | * write there are at the given guest_offset (up to *bytes). If | |
944 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
945 | * this host offset are counted. | |
946 | * | |
411d62b0 KW |
947 | * Note that guest_offset may not be cluster aligned. In this case, the |
948 | * returned *host_offset points to exact byte referenced by guest_offset and | |
949 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
950 | * |
951 | * Returns: | |
952 | * 0: if no allocated clusters are available at the given offset. | |
953 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
954 | * is allocated and doesn't need COW, but doesn't have the right | |
955 | * physical offset. | |
956 | * | |
957 | * 1: if allocated clusters that don't require a COW are available at | |
958 | * the requested offset. *bytes may have decreased and describes | |
959 | * the length of the area that can be written to. | |
960 | * | |
961 | * -errno: in error cases | |
0af729ec KW |
962 | */ |
963 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 964 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec | 965 | { |
ff99129a | 966 | BDRVQcow2State *s = bs->opaque; |
0af729ec KW |
967 | int l2_index; |
968 | uint64_t cluster_offset; | |
969 | uint64_t *l2_table; | |
b6d36def | 970 | uint64_t nb_clusters; |
c53ede9f | 971 | unsigned int keep_clusters; |
a3f1afb4 | 972 | int ret; |
0af729ec KW |
973 | |
974 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
975 | *bytes); | |
0af729ec | 976 | |
411d62b0 KW |
977 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
978 | == offset_into_cluster(s, *host_offset)); | |
979 | ||
acb0467f KW |
980 | /* |
981 | * Calculate the number of clusters to look for. We stop at L2 table | |
982 | * boundaries to keep things simple. | |
983 | */ | |
984 | nb_clusters = | |
985 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
986 | ||
987 | l2_index = offset_to_l2_index(s, guest_offset); | |
988 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 989 | assert(nb_clusters <= INT_MAX); |
acb0467f | 990 | |
0af729ec KW |
991 | /* Find L2 entry for the first involved cluster */ |
992 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
993 | if (ret < 0) { | |
994 | return ret; | |
995 | } | |
996 | ||
997 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
998 | ||
999 | /* Check how many clusters are already allocated and don't need COW */ | |
1000 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
1001 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
1002 | { | |
e62daaf6 KW |
1003 | /* If a specific host_offset is required, check it */ |
1004 | bool offset_matches = | |
1005 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
1006 | ||
a97c67ee HR |
1007 | if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { |
1008 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | |
1009 | "%#llx unaligned (guest offset: %#" PRIx64 | |
1010 | ")", cluster_offset & L2E_OFFSET_MASK, | |
1011 | guest_offset); | |
1012 | ret = -EIO; | |
1013 | goto out; | |
1014 | } | |
1015 | ||
e62daaf6 KW |
1016 | if (*host_offset != 0 && !offset_matches) { |
1017 | *bytes = 0; | |
1018 | ret = 0; | |
1019 | goto out; | |
1020 | } | |
1021 | ||
0af729ec | 1022 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 1023 | keep_clusters = |
acb0467f | 1024 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
61653008 | 1025 | &l2_table[l2_index], |
0af729ec | 1026 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); |
c53ede9f KW |
1027 | assert(keep_clusters <= nb_clusters); |
1028 | ||
1029 | *bytes = MIN(*bytes, | |
1030 | keep_clusters * s->cluster_size | |
1031 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
1032 | |
1033 | ret = 1; | |
1034 | } else { | |
0af729ec KW |
1035 | ret = 0; |
1036 | } | |
1037 | ||
0af729ec | 1038 | /* Cleanup */ |
e62daaf6 | 1039 | out: |
a3f1afb4 | 1040 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
0af729ec | 1041 | |
e62daaf6 KW |
1042 | /* Only return a host offset if we actually made progress. Otherwise we |
1043 | * would make requirements for handle_alloc() that it can't fulfill */ | |
a97c67ee | 1044 | if (ret > 0) { |
411d62b0 KW |
1045 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
1046 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
1047 | } |
1048 | ||
0af729ec KW |
1049 | return ret; |
1050 | } | |
1051 | ||
226c3c26 KW |
1052 | /* |
1053 | * Allocates new clusters for the given guest_offset. | |
1054 | * | |
1055 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
1056 | * contain the number of clusters that have been allocated and are contiguous | |
1057 | * in the image file. | |
1058 | * | |
1059 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
1060 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
1061 | * case if the cluster at host_offset is already in use. If *host_offset is | |
1062 | * zero, the clusters can be allocated anywhere in the image file. | |
1063 | * | |
1064 | * *host_offset is updated to contain the offset into the image file at which | |
1065 | * the first allocated cluster starts. | |
1066 | * | |
1067 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
1068 | * function has been waiting for another request and the allocation must be | |
1069 | * restarted, but the whole request should not be failed. | |
1070 | */ | |
1071 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
b6d36def | 1072 | uint64_t *host_offset, uint64_t *nb_clusters) |
226c3c26 | 1073 | { |
ff99129a | 1074 | BDRVQcow2State *s = bs->opaque; |
226c3c26 KW |
1075 | |
1076 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
1077 | *host_offset, *nb_clusters); | |
1078 | ||
250196f1 KW |
1079 | /* Allocate new clusters */ |
1080 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
1081 | if (*host_offset == 0) { | |
df021791 KW |
1082 | int64_t cluster_offset = |
1083 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
1084 | if (cluster_offset < 0) { | |
1085 | return cluster_offset; | |
1086 | } | |
1087 | *host_offset = cluster_offset; | |
1088 | return 0; | |
250196f1 | 1089 | } else { |
b6d36def | 1090 | int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
1091 | if (ret < 0) { |
1092 | return ret; | |
1093 | } | |
1094 | *nb_clusters = ret; | |
1095 | return 0; | |
250196f1 | 1096 | } |
250196f1 KW |
1097 | } |
1098 | ||
10f0ed8b KW |
1099 | /* |
1100 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
1101 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
1102 | * the new allocation can match the specified host offset. | |
1103 | * | |
411d62b0 KW |
1104 | * Note that guest_offset may not be cluster aligned. In this case, the |
1105 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1106 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
1107 | * |
1108 | * Returns: | |
1109 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
1110 | * *host_offset is left unchanged. | |
1111 | * | |
1112 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
1113 | * new allocation doesn't cover all of the requested area. | |
1114 | * *host_offset is updated to contain the host offset of the first | |
1115 | * newly allocated cluster. | |
1116 | * | |
1117 | * -errno: in error cases | |
10f0ed8b KW |
1118 | */ |
1119 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 1120 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b | 1121 | { |
ff99129a | 1122 | BDRVQcow2State *s = bs->opaque; |
10f0ed8b KW |
1123 | int l2_index; |
1124 | uint64_t *l2_table; | |
1125 | uint64_t entry; | |
b6d36def | 1126 | uint64_t nb_clusters; |
10f0ed8b KW |
1127 | int ret; |
1128 | ||
10f0ed8b | 1129 | uint64_t alloc_cluster_offset; |
10f0ed8b KW |
1130 | |
1131 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1132 | *bytes); | |
1133 | assert(*bytes > 0); | |
1134 | ||
f5bc6350 KW |
1135 | /* |
1136 | * Calculate the number of clusters to look for. We stop at L2 table | |
1137 | * boundaries to keep things simple. | |
1138 | */ | |
c37f4cd7 KW |
1139 | nb_clusters = |
1140 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1141 | ||
f5bc6350 | 1142 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1143 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
b6d36def | 1144 | assert(nb_clusters <= INT_MAX); |
f5bc6350 | 1145 | |
10f0ed8b KW |
1146 | /* Find L2 entry for the first involved cluster */ |
1147 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1148 | if (ret < 0) { | |
1149 | return ret; | |
1150 | } | |
1151 | ||
3b8e2e26 | 1152 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1153 | |
1154 | /* For the moment, overwrite compressed clusters one by one */ | |
1155 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1156 | nb_clusters = 1; | |
1157 | } else { | |
3b8e2e26 | 1158 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1159 | } |
1160 | ||
ecdd5333 KW |
1161 | /* This function is only called when there were no non-COW clusters, so if |
1162 | * we can't find any unallocated or COW clusters either, something is | |
1163 | * wrong with our code. */ | |
1164 | assert(nb_clusters > 0); | |
1165 | ||
a3f1afb4 | 1166 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
10f0ed8b | 1167 | |
10f0ed8b | 1168 | /* Allocate, if necessary at a given offset in the image file */ |
411d62b0 | 1169 | alloc_cluster_offset = start_of_cluster(s, *host_offset); |
83baa9a4 | 1170 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, |
10f0ed8b KW |
1171 | &nb_clusters); |
1172 | if (ret < 0) { | |
1173 | goto fail; | |
1174 | } | |
1175 | ||
83baa9a4 KW |
1176 | /* Can't extend contiguous allocation */ |
1177 | if (nb_clusters == 0) { | |
10f0ed8b KW |
1178 | *bytes = 0; |
1179 | return 0; | |
1180 | } | |
1181 | ||
ff52aab2 HR |
1182 | /* !*host_offset would overwrite the image header and is reserved for "no |
1183 | * host offset preferred". If 0 was a valid host offset, it'd trigger the | |
1184 | * following overlap check; do that now to avoid having an invalid value in | |
1185 | * *host_offset. */ | |
1186 | if (!alloc_cluster_offset) { | |
1187 | ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, | |
1188 | nb_clusters * s->cluster_size); | |
1189 | assert(ret < 0); | |
1190 | goto fail; | |
1191 | } | |
1192 | ||
83baa9a4 KW |
1193 | /* |
1194 | * Save info needed for meta data update. | |
1195 | * | |
85567393 | 1196 | * requested_bytes: Number of bytes from the start of the first |
83baa9a4 KW |
1197 | * newly allocated cluster to the end of the (possibly shortened |
1198 | * before) write request. | |
1199 | * | |
85567393 | 1200 | * avail_bytes: Number of bytes from the start of the first |
83baa9a4 KW |
1201 | * newly allocated to the end of the last newly allocated cluster. |
1202 | * | |
85567393 | 1203 | * nb_bytes: The number of bytes from the start of the first |
83baa9a4 KW |
1204 | * newly allocated cluster to the end of the area that the write |
1205 | * request actually writes to (excluding COW at the end) | |
1206 | */ | |
85567393 KW |
1207 | uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); |
1208 | int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); | |
1209 | int nb_bytes = MIN(requested_bytes, avail_bytes); | |
88c6588c | 1210 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1211 | |
83baa9a4 KW |
1212 | *m = g_malloc0(sizeof(**m)); |
1213 | ||
1214 | **m = (QCowL2Meta) { | |
88c6588c KW |
1215 | .next = old_m, |
1216 | ||
411d62b0 | 1217 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1218 | .offset = start_of_cluster(s, guest_offset), |
1219 | .nb_clusters = nb_clusters, | |
83baa9a4 KW |
1220 | |
1221 | .cow_start = { | |
1222 | .offset = 0, | |
85567393 | 1223 | .nb_bytes = offset_into_cluster(s, guest_offset), |
83baa9a4 KW |
1224 | }, |
1225 | .cow_end = { | |
85567393 KW |
1226 | .offset = nb_bytes, |
1227 | .nb_bytes = avail_bytes - nb_bytes, | |
83baa9a4 KW |
1228 | }, |
1229 | }; | |
1230 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1231 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1232 | ||
411d62b0 | 1233 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
85567393 | 1234 | *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); |
83baa9a4 KW |
1235 | assert(*bytes != 0); |
1236 | ||
10f0ed8b KW |
1237 | return 1; |
1238 | ||
1239 | fail: | |
1240 | if (*m && (*m)->nb_clusters > 0) { | |
1241 | QLIST_REMOVE(*m, next_in_flight); | |
1242 | } | |
1243 | return ret; | |
1244 | } | |
1245 | ||
45aba42f KW |
1246 | /* |
1247 | * alloc_cluster_offset | |
1248 | * | |
250196f1 KW |
1249 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1250 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1251 | * |
250196f1 | 1252 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1253 | * other fields in m are meaningless. |
148da7ea KW |
1254 | * |
1255 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1256 | * contiguous clusters that have been allocated. In this case, the other |
1257 | * fields of m are valid and contain information about the first allocated | |
1258 | * cluster. | |
45aba42f | 1259 | * |
68d100e9 KW |
1260 | * If the request conflicts with another write request in flight, the coroutine |
1261 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1262 | * |
1263 | * Return 0 on success and -errno in error cases | |
45aba42f | 1264 | */ |
f4f0d391 | 1265 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
d46a0bb2 KW |
1266 | unsigned int *bytes, uint64_t *host_offset, |
1267 | QCowL2Meta **m) | |
45aba42f | 1268 | { |
ff99129a | 1269 | BDRVQcow2State *s = bs->opaque; |
710c2496 | 1270 | uint64_t start, remaining; |
250196f1 | 1271 | uint64_t cluster_offset; |
65eb2e35 | 1272 | uint64_t cur_bytes; |
710c2496 | 1273 | int ret; |
45aba42f | 1274 | |
d46a0bb2 | 1275 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); |
710c2496 | 1276 | |
72424114 | 1277 | again: |
16f0587e | 1278 | start = offset; |
d46a0bb2 | 1279 | remaining = *bytes; |
0af729ec KW |
1280 | cluster_offset = 0; |
1281 | *host_offset = 0; | |
ecdd5333 KW |
1282 | cur_bytes = 0; |
1283 | *m = NULL; | |
0af729ec | 1284 | |
2c3b32d2 | 1285 | while (true) { |
ecdd5333 KW |
1286 | |
1287 | if (!*host_offset) { | |
1288 | *host_offset = start_of_cluster(s, cluster_offset); | |
1289 | } | |
1290 | ||
1291 | assert(remaining >= cur_bytes); | |
1292 | ||
1293 | start += cur_bytes; | |
1294 | remaining -= cur_bytes; | |
1295 | cluster_offset += cur_bytes; | |
1296 | ||
1297 | if (remaining == 0) { | |
1298 | break; | |
1299 | } | |
1300 | ||
1301 | cur_bytes = remaining; | |
1302 | ||
2c3b32d2 KW |
1303 | /* |
1304 | * Now start gathering as many contiguous clusters as possible: | |
1305 | * | |
1306 | * 1. Check for overlaps with in-flight allocations | |
1307 | * | |
1308 | * a) Overlap not in the first cluster -> shorten this request and | |
1309 | * let the caller handle the rest in its next loop iteration. | |
1310 | * | |
1311 | * b) Real overlaps of two requests. Yield and restart the search | |
1312 | * for contiguous clusters (the situation could have changed | |
1313 | * while we were sleeping) | |
1314 | * | |
1315 | * c) TODO: Request starts in the same cluster as the in-flight | |
1316 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1317 | * set cluster_offset to write to the same cluster and set up | |
1318 | * the right synchronisation between the in-flight request and | |
1319 | * the new one. | |
1320 | */ | |
ecdd5333 | 1321 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1322 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1323 | /* Currently handle_dependencies() doesn't yield if we already had |
1324 | * an allocation. If it did, we would have to clean up the L2Meta | |
1325 | * structs before starting over. */ | |
1326 | assert(*m == NULL); | |
2c3b32d2 KW |
1327 | goto again; |
1328 | } else if (ret < 0) { | |
1329 | return ret; | |
ecdd5333 KW |
1330 | } else if (cur_bytes == 0) { |
1331 | break; | |
2c3b32d2 KW |
1332 | } else { |
1333 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1334 | * the allocations below) so that the next dependency is processed | |
1335 | * correctly during the next loop iteration. */ | |
0af729ec | 1336 | } |
710c2496 | 1337 | |
2c3b32d2 KW |
1338 | /* |
1339 | * 2. Count contiguous COPIED clusters. | |
1340 | */ | |
1341 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1342 | if (ret < 0) { | |
1343 | return ret; | |
1344 | } else if (ret) { | |
ecdd5333 | 1345 | continue; |
2c3b32d2 KW |
1346 | } else if (cur_bytes == 0) { |
1347 | break; | |
1348 | } | |
060bee89 | 1349 | |
2c3b32d2 KW |
1350 | /* |
1351 | * 3. If the request still hasn't completed, allocate new clusters, | |
1352 | * considering any cluster_offset of steps 1c or 2. | |
1353 | */ | |
1354 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1355 | if (ret < 0) { | |
1356 | return ret; | |
1357 | } else if (ret) { | |
ecdd5333 | 1358 | continue; |
2c3b32d2 KW |
1359 | } else { |
1360 | assert(cur_bytes == 0); | |
1361 | break; | |
1362 | } | |
f5bc6350 | 1363 | } |
10f0ed8b | 1364 | |
d46a0bb2 KW |
1365 | *bytes -= remaining; |
1366 | assert(*bytes > 0); | |
710c2496 | 1367 | assert(*host_offset != 0); |
45aba42f | 1368 | |
148da7ea | 1369 | return 0; |
45aba42f KW |
1370 | } |
1371 | ||
1372 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1373 | const uint8_t *buf, int buf_size) | |
1374 | { | |
1375 | z_stream strm1, *strm = &strm1; | |
1376 | int ret, out_len; | |
1377 | ||
1378 | memset(strm, 0, sizeof(*strm)); | |
1379 | ||
1380 | strm->next_in = (uint8_t *)buf; | |
1381 | strm->avail_in = buf_size; | |
1382 | strm->next_out = out_buf; | |
1383 | strm->avail_out = out_buf_size; | |
1384 | ||
1385 | ret = inflateInit2(strm, -12); | |
1386 | if (ret != Z_OK) | |
1387 | return -1; | |
1388 | ret = inflate(strm, Z_FINISH); | |
1389 | out_len = strm->next_out - out_buf; | |
1390 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1391 | out_len != out_buf_size) { | |
1392 | inflateEnd(strm); | |
1393 | return -1; | |
1394 | } | |
1395 | inflateEnd(strm); | |
1396 | return 0; | |
1397 | } | |
1398 | ||
66f82cee | 1399 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1400 | { |
ff99129a | 1401 | BDRVQcow2State *s = bs->opaque; |
45aba42f KW |
1402 | int ret, csize, nb_csectors, sector_offset; |
1403 | uint64_t coffset; | |
1404 | ||
1405 | coffset = cluster_offset & s->cluster_offset_mask; | |
1406 | if (s->cluster_cache_offset != coffset) { | |
1407 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1408 | sector_offset = coffset & 511; | |
1409 | csize = nb_csectors * 512 - sector_offset; | |
66f82cee | 1410 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
9a4f4c31 KW |
1411 | ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data, |
1412 | nb_csectors); | |
45aba42f | 1413 | if (ret < 0) { |
8af36488 | 1414 | return ret; |
45aba42f KW |
1415 | } |
1416 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1417 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1418 | return -EIO; |
45aba42f KW |
1419 | } |
1420 | s->cluster_cache_offset = coffset; | |
1421 | } | |
1422 | return 0; | |
1423 | } | |
5ea929e3 KW |
1424 | |
1425 | /* | |
1426 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1427 | * all clusters in the same L2 table) and returns the number of discarded | |
1428 | * clusters. | |
1429 | */ | |
1430 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
b6d36def HR |
1431 | uint64_t nb_clusters, enum qcow2_discard_type type, |
1432 | bool full_discard) | |
5ea929e3 | 1433 | { |
ff99129a | 1434 | BDRVQcow2State *s = bs->opaque; |
3948d1d4 | 1435 | uint64_t *l2_table; |
5ea929e3 KW |
1436 | int l2_index; |
1437 | int ret; | |
1438 | int i; | |
1439 | ||
3948d1d4 | 1440 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1441 | if (ret < 0) { |
1442 | return ret; | |
1443 | } | |
1444 | ||
1445 | /* Limit nb_clusters to one L2 table */ | |
1446 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1447 | assert(nb_clusters <= INT_MAX); |
5ea929e3 KW |
1448 | |
1449 | for (i = 0; i < nb_clusters; i++) { | |
c883db0d | 1450 | uint64_t old_l2_entry; |
5ea929e3 | 1451 | |
c883db0d | 1452 | old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); |
a71835a0 KW |
1453 | |
1454 | /* | |
808c4b6f HR |
1455 | * If full_discard is false, make sure that a discarded area reads back |
1456 | * as zeroes for v3 images (we cannot do it for v2 without actually | |
1457 | * writing a zero-filled buffer). We can skip the operation if the | |
1458 | * cluster is already marked as zero, or if it's unallocated and we | |
1459 | * don't have a backing file. | |
a71835a0 KW |
1460 | * |
1461 | * TODO We might want to use bdrv_get_block_status(bs) here, but we're | |
1462 | * holding s->lock, so that doesn't work today. | |
808c4b6f HR |
1463 | * |
1464 | * If full_discard is true, the sector should not read back as zeroes, | |
1465 | * but rather fall through to the backing file. | |
a71835a0 | 1466 | */ |
c883db0d HR |
1467 | switch (qcow2_get_cluster_type(old_l2_entry)) { |
1468 | case QCOW2_CLUSTER_UNALLOCATED: | |
760e0063 | 1469 | if (full_discard || !bs->backing) { |
c883db0d HR |
1470 | continue; |
1471 | } | |
1472 | break; | |
1473 | ||
1474 | case QCOW2_CLUSTER_ZERO: | |
808c4b6f HR |
1475 | if (!full_discard) { |
1476 | continue; | |
1477 | } | |
1478 | break; | |
c883db0d HR |
1479 | |
1480 | case QCOW2_CLUSTER_NORMAL: | |
1481 | case QCOW2_CLUSTER_COMPRESSED: | |
1482 | break; | |
1483 | ||
1484 | default: | |
1485 | abort(); | |
5ea929e3 KW |
1486 | } |
1487 | ||
1488 | /* First remove L2 entries */ | |
72e80b89 | 1489 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
808c4b6f | 1490 | if (!full_discard && s->qcow_version >= 3) { |
a71835a0 KW |
1491 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); |
1492 | } else { | |
1493 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1494 | } | |
5ea929e3 KW |
1495 | |
1496 | /* Then decrease the refcount */ | |
c883db0d | 1497 | qcow2_free_any_clusters(bs, old_l2_entry, 1, type); |
5ea929e3 KW |
1498 | } |
1499 | ||
a3f1afb4 | 1500 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
5ea929e3 KW |
1501 | |
1502 | return nb_clusters; | |
1503 | } | |
1504 | ||
1505 | int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, | |
808c4b6f | 1506 | int nb_sectors, enum qcow2_discard_type type, bool full_discard) |
5ea929e3 | 1507 | { |
ff99129a | 1508 | BDRVQcow2State *s = bs->opaque; |
5ea929e3 | 1509 | uint64_t end_offset; |
b6d36def | 1510 | uint64_t nb_clusters; |
5ea929e3 KW |
1511 | int ret; |
1512 | ||
1513 | end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); | |
1514 | ||
1515 | /* Round start up and end down */ | |
1516 | offset = align_offset(offset, s->cluster_size); | |
ac95acdb | 1517 | end_offset = start_of_cluster(s, end_offset); |
5ea929e3 KW |
1518 | |
1519 | if (offset > end_offset) { | |
1520 | return 0; | |
1521 | } | |
1522 | ||
1523 | nb_clusters = size_to_clusters(s, end_offset - offset); | |
1524 | ||
0b919fae KW |
1525 | s->cache_discards = true; |
1526 | ||
5ea929e3 KW |
1527 | /* Each L2 table is handled by its own loop iteration */ |
1528 | while (nb_clusters > 0) { | |
808c4b6f | 1529 | ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); |
5ea929e3 | 1530 | if (ret < 0) { |
0b919fae | 1531 | goto fail; |
5ea929e3 KW |
1532 | } |
1533 | ||
1534 | nb_clusters -= ret; | |
1535 | offset += (ret * s->cluster_size); | |
1536 | } | |
1537 | ||
0b919fae KW |
1538 | ret = 0; |
1539 | fail: | |
1540 | s->cache_discards = false; | |
1541 | qcow2_process_discards(bs, ret); | |
1542 | ||
1543 | return ret; | |
5ea929e3 | 1544 | } |
621f0589 KW |
1545 | |
1546 | /* | |
1547 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1548 | * all clusters in the same L2 table) and returns the number of zeroed | |
1549 | * clusters. | |
1550 | */ | |
1551 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
b6d36def | 1552 | uint64_t nb_clusters) |
621f0589 | 1553 | { |
ff99129a | 1554 | BDRVQcow2State *s = bs->opaque; |
621f0589 KW |
1555 | uint64_t *l2_table; |
1556 | int l2_index; | |
1557 | int ret; | |
1558 | int i; | |
1559 | ||
1560 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1561 | if (ret < 0) { | |
1562 | return ret; | |
1563 | } | |
1564 | ||
1565 | /* Limit nb_clusters to one L2 table */ | |
1566 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1567 | assert(nb_clusters <= INT_MAX); |
621f0589 KW |
1568 | |
1569 | for (i = 0; i < nb_clusters; i++) { | |
1570 | uint64_t old_offset; | |
1571 | ||
1572 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1573 | ||
1574 | /* Update L2 entries */ | |
72e80b89 | 1575 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
621f0589 KW |
1576 | if (old_offset & QCOW_OFLAG_COMPRESSED) { |
1577 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | |
6cfcb9b8 | 1578 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
621f0589 KW |
1579 | } else { |
1580 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1581 | } | |
1582 | } | |
1583 | ||
a3f1afb4 | 1584 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
621f0589 KW |
1585 | |
1586 | return nb_clusters; | |
1587 | } | |
1588 | ||
1589 | int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) | |
1590 | { | |
ff99129a | 1591 | BDRVQcow2State *s = bs->opaque; |
b6d36def | 1592 | uint64_t nb_clusters; |
621f0589 KW |
1593 | int ret; |
1594 | ||
1595 | /* The zero flag is only supported by version 3 and newer */ | |
1596 | if (s->qcow_version < 3) { | |
1597 | return -ENOTSUP; | |
1598 | } | |
1599 | ||
1600 | /* Each L2 table is handled by its own loop iteration */ | |
1601 | nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); | |
1602 | ||
0b919fae KW |
1603 | s->cache_discards = true; |
1604 | ||
621f0589 KW |
1605 | while (nb_clusters > 0) { |
1606 | ret = zero_single_l2(bs, offset, nb_clusters); | |
1607 | if (ret < 0) { | |
0b919fae | 1608 | goto fail; |
621f0589 KW |
1609 | } |
1610 | ||
1611 | nb_clusters -= ret; | |
1612 | offset += (ret * s->cluster_size); | |
1613 | } | |
1614 | ||
0b919fae KW |
1615 | ret = 0; |
1616 | fail: | |
1617 | s->cache_discards = false; | |
1618 | qcow2_process_discards(bs, ret); | |
1619 | ||
1620 | return ret; | |
621f0589 | 1621 | } |
32b6444d HR |
1622 | |
1623 | /* | |
1624 | * Expands all zero clusters in a specific L1 table (or deallocates them, for | |
1625 | * non-backed non-pre-allocated zero clusters). | |
1626 | * | |
4057a2b2 HR |
1627 | * l1_entries and *visited_l1_entries are used to keep track of progress for |
1628 | * status_cb(). l1_entries contains the total number of L1 entries and | |
1629 | * *visited_l1_entries counts all visited L1 entries. | |
32b6444d HR |
1630 | */ |
1631 | static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, | |
ecf58777 | 1632 | int l1_size, int64_t *visited_l1_entries, |
4057a2b2 | 1633 | int64_t l1_entries, |
8b13976d HR |
1634 | BlockDriverAmendStatusCB *status_cb, |
1635 | void *cb_opaque) | |
32b6444d | 1636 | { |
ff99129a | 1637 | BDRVQcow2State *s = bs->opaque; |
32b6444d HR |
1638 | bool is_active_l1 = (l1_table == s->l1_table); |
1639 | uint64_t *l2_table = NULL; | |
1640 | int ret; | |
1641 | int i, j; | |
1642 | ||
1643 | if (!is_active_l1) { | |
1644 | /* inactive L2 tables require a buffer to be stored in when loading | |
1645 | * them from disk */ | |
9a4f4c31 | 1646 | l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); |
de82815d KW |
1647 | if (l2_table == NULL) { |
1648 | return -ENOMEM; | |
1649 | } | |
32b6444d HR |
1650 | } |
1651 | ||
1652 | for (i = 0; i < l1_size; i++) { | |
1653 | uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; | |
1654 | bool l2_dirty = false; | |
0e06528e | 1655 | uint64_t l2_refcount; |
32b6444d HR |
1656 | |
1657 | if (!l2_offset) { | |
1658 | /* unallocated */ | |
4057a2b2 HR |
1659 | (*visited_l1_entries)++; |
1660 | if (status_cb) { | |
8b13976d | 1661 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1662 | } |
32b6444d HR |
1663 | continue; |
1664 | } | |
1665 | ||
8dd93d93 HR |
1666 | if (offset_into_cluster(s, l2_offset)) { |
1667 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" | |
1668 | PRIx64 " unaligned (L1 index: %#x)", | |
1669 | l2_offset, i); | |
1670 | ret = -EIO; | |
1671 | goto fail; | |
1672 | } | |
1673 | ||
32b6444d HR |
1674 | if (is_active_l1) { |
1675 | /* get active L2 tables from cache */ | |
1676 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, | |
1677 | (void **)&l2_table); | |
1678 | } else { | |
1679 | /* load inactive L2 tables from disk */ | |
9a4f4c31 KW |
1680 | ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, |
1681 | (void *)l2_table, s->cluster_sectors); | |
32b6444d HR |
1682 | } |
1683 | if (ret < 0) { | |
1684 | goto fail; | |
1685 | } | |
1686 | ||
7324c10f HR |
1687 | ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, |
1688 | &l2_refcount); | |
1689 | if (ret < 0) { | |
ecf58777 HR |
1690 | goto fail; |
1691 | } | |
1692 | ||
32b6444d HR |
1693 | for (j = 0; j < s->l2_size; j++) { |
1694 | uint64_t l2_entry = be64_to_cpu(l2_table[j]); | |
ecf58777 | 1695 | int64_t offset = l2_entry & L2E_OFFSET_MASK; |
32b6444d | 1696 | int cluster_type = qcow2_get_cluster_type(l2_entry); |
320c7066 | 1697 | bool preallocated = offset != 0; |
32b6444d | 1698 | |
ecf58777 | 1699 | if (cluster_type != QCOW2_CLUSTER_ZERO) { |
32b6444d HR |
1700 | continue; |
1701 | } | |
1702 | ||
320c7066 | 1703 | if (!preallocated) { |
760e0063 | 1704 | if (!bs->backing) { |
32b6444d HR |
1705 | /* not backed; therefore we can simply deallocate the |
1706 | * cluster */ | |
1707 | l2_table[j] = 0; | |
1708 | l2_dirty = true; | |
1709 | continue; | |
1710 | } | |
1711 | ||
1712 | offset = qcow2_alloc_clusters(bs, s->cluster_size); | |
1713 | if (offset < 0) { | |
1714 | ret = offset; | |
1715 | goto fail; | |
1716 | } | |
ecf58777 HR |
1717 | |
1718 | if (l2_refcount > 1) { | |
1719 | /* For shared L2 tables, set the refcount accordingly (it is | |
1720 | * already 1 and needs to be l2_refcount) */ | |
1721 | ret = qcow2_update_cluster_refcount(bs, | |
2aabe7c7 HR |
1722 | offset >> s->cluster_bits, |
1723 | refcount_diff(1, l2_refcount), false, | |
ecf58777 HR |
1724 | QCOW2_DISCARD_OTHER); |
1725 | if (ret < 0) { | |
1726 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1727 | QCOW2_DISCARD_OTHER); | |
1728 | goto fail; | |
1729 | } | |
1730 | } | |
32b6444d HR |
1731 | } |
1732 | ||
8dd93d93 HR |
1733 | if (offset_into_cluster(s, offset)) { |
1734 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | |
1735 | "%#" PRIx64 " unaligned (L2 offset: %#" | |
1736 | PRIx64 ", L2 index: %#x)", offset, | |
1737 | l2_offset, j); | |
1738 | if (!preallocated) { | |
1739 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1740 | QCOW2_DISCARD_ALWAYS); | |
1741 | } | |
1742 | ret = -EIO; | |
1743 | goto fail; | |
1744 | } | |
1745 | ||
231bb267 | 1746 | ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); |
32b6444d | 1747 | if (ret < 0) { |
320c7066 HR |
1748 | if (!preallocated) { |
1749 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1750 | QCOW2_DISCARD_ALWAYS); | |
1751 | } | |
32b6444d HR |
1752 | goto fail; |
1753 | } | |
1754 | ||
74021bc4 | 1755 | ret = bdrv_pwrite_zeroes(bs->file->bs, offset, s->cluster_size, 0); |
32b6444d | 1756 | if (ret < 0) { |
320c7066 HR |
1757 | if (!preallocated) { |
1758 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1759 | QCOW2_DISCARD_ALWAYS); | |
1760 | } | |
32b6444d HR |
1761 | goto fail; |
1762 | } | |
1763 | ||
ecf58777 HR |
1764 | if (l2_refcount == 1) { |
1765 | l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); | |
1766 | } else { | |
1767 | l2_table[j] = cpu_to_be64(offset); | |
e390cf5a | 1768 | } |
ecf58777 | 1769 | l2_dirty = true; |
32b6444d HR |
1770 | } |
1771 | ||
1772 | if (is_active_l1) { | |
1773 | if (l2_dirty) { | |
72e80b89 | 1774 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
32b6444d HR |
1775 | qcow2_cache_depends_on_flush(s->l2_table_cache); |
1776 | } | |
a3f1afb4 | 1777 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1778 | } else { |
1779 | if (l2_dirty) { | |
231bb267 HR |
1780 | ret = qcow2_pre_write_overlap_check(bs, |
1781 | QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, | |
32b6444d HR |
1782 | s->cluster_size); |
1783 | if (ret < 0) { | |
1784 | goto fail; | |
1785 | } | |
1786 | ||
9a4f4c31 KW |
1787 | ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, |
1788 | (void *)l2_table, s->cluster_sectors); | |
32b6444d HR |
1789 | if (ret < 0) { |
1790 | goto fail; | |
1791 | } | |
1792 | } | |
1793 | } | |
4057a2b2 HR |
1794 | |
1795 | (*visited_l1_entries)++; | |
1796 | if (status_cb) { | |
8b13976d | 1797 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1798 | } |
32b6444d HR |
1799 | } |
1800 | ||
1801 | ret = 0; | |
1802 | ||
1803 | fail: | |
1804 | if (l2_table) { | |
1805 | if (!is_active_l1) { | |
1806 | qemu_vfree(l2_table); | |
1807 | } else { | |
a3f1afb4 | 1808 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1809 | } |
1810 | } | |
1811 | return ret; | |
1812 | } | |
1813 | ||
1814 | /* | |
1815 | * For backed images, expands all zero clusters on the image. For non-backed | |
1816 | * images, deallocates all non-pre-allocated zero clusters (and claims the | |
1817 | * allocation for pre-allocated ones). This is important for downgrading to a | |
1818 | * qcow2 version which doesn't yet support metadata zero clusters. | |
1819 | */ | |
4057a2b2 | 1820 | int qcow2_expand_zero_clusters(BlockDriverState *bs, |
8b13976d HR |
1821 | BlockDriverAmendStatusCB *status_cb, |
1822 | void *cb_opaque) | |
32b6444d | 1823 | { |
ff99129a | 1824 | BDRVQcow2State *s = bs->opaque; |
32b6444d | 1825 | uint64_t *l1_table = NULL; |
4057a2b2 | 1826 | int64_t l1_entries = 0, visited_l1_entries = 0; |
32b6444d HR |
1827 | int ret; |
1828 | int i, j; | |
1829 | ||
4057a2b2 HR |
1830 | if (status_cb) { |
1831 | l1_entries = s->l1_size; | |
1832 | for (i = 0; i < s->nb_snapshots; i++) { | |
1833 | l1_entries += s->snapshots[i].l1_size; | |
1834 | } | |
1835 | } | |
1836 | ||
32b6444d | 1837 | ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, |
4057a2b2 | 1838 | &visited_l1_entries, l1_entries, |
8b13976d | 1839 | status_cb, cb_opaque); |
32b6444d HR |
1840 | if (ret < 0) { |
1841 | goto fail; | |
1842 | } | |
1843 | ||
1844 | /* Inactive L1 tables may point to active L2 tables - therefore it is | |
1845 | * necessary to flush the L2 table cache before trying to access the L2 | |
1846 | * tables pointed to by inactive L1 entries (else we might try to expand | |
1847 | * zero clusters that have already been expanded); furthermore, it is also | |
1848 | * necessary to empty the L2 table cache, since it may contain tables which | |
1849 | * are now going to be modified directly on disk, bypassing the cache. | |
1850 | * qcow2_cache_empty() does both for us. */ | |
1851 | ret = qcow2_cache_empty(bs, s->l2_table_cache); | |
1852 | if (ret < 0) { | |
1853 | goto fail; | |
1854 | } | |
1855 | ||
1856 | for (i = 0; i < s->nb_snapshots; i++) { | |
d737b78c LV |
1857 | int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size * |
1858 | sizeof(uint64_t), BDRV_SECTOR_SIZE); | |
32b6444d HR |
1859 | |
1860 | l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); | |
1861 | ||
9a4f4c31 KW |
1862 | ret = bdrv_read(bs->file->bs, |
1863 | s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, | |
1864 | (void *)l1_table, l1_sectors); | |
32b6444d HR |
1865 | if (ret < 0) { |
1866 | goto fail; | |
1867 | } | |
1868 | ||
1869 | for (j = 0; j < s->snapshots[i].l1_size; j++) { | |
1870 | be64_to_cpus(&l1_table[j]); | |
1871 | } | |
1872 | ||
1873 | ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, | |
4057a2b2 | 1874 | &visited_l1_entries, l1_entries, |
8b13976d | 1875 | status_cb, cb_opaque); |
32b6444d HR |
1876 | if (ret < 0) { |
1877 | goto fail; | |
1878 | } | |
1879 | } | |
1880 | ||
1881 | ret = 0; | |
1882 | ||
1883 | fail: | |
32b6444d HR |
1884 | g_free(l1_table); |
1885 | return ret; | |
1886 | } |