]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
16017c48 PM |
4 | * The code in this source file is derived from release 2a of the SoftFloat |
5 | * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and | |
6 | * some later contributions) are provided under that license, as detailed below. | |
7 | * It has subsequently been modified by contributors to the QEMU Project, | |
8 | * so some portions are provided under: | |
9 | * the SoftFloat-2a license | |
10 | * the BSD license | |
11 | * GPL-v2-or-later | |
12 | * | |
13 | * Any future contributions to this file after December 1st 2014 will be | |
14 | * taken to be licensed under the Softfloat-2a license unless specifically | |
15 | * indicated otherwise. | |
8d725fac | 16 | */ |
158142c2 | 17 | |
a7d1ac78 PM |
18 | /* |
19 | =============================================================================== | |
20 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | |
21 | Arithmetic Package, Release 2a. | |
158142c2 FB |
22 | |
23 | Written by John R. Hauser. This work was made possible in part by the | |
24 | International Computer Science Institute, located at Suite 600, 1947 Center | |
25 | Street, Berkeley, California 94704. Funding was partially provided by the | |
26 | National Science Foundation under grant MIP-9311980. The original version | |
27 | of this code was written as part of a project to build a fixed-point vector | |
28 | processor in collaboration with the University of California at Berkeley, | |
29 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
a7d1ac78 | 30 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
158142c2 FB |
31 | arithmetic/SoftFloat.html'. |
32 | ||
a7d1ac78 PM |
33 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
34 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
35 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
36 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
37 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
158142c2 FB |
38 | |
39 | Derivative works are acceptable, even for commercial purposes, so long as | |
a7d1ac78 PM |
40 | (1) they include prominent notice that the work is derivative, and (2) they |
41 | include prominent notice akin to these four paragraphs for those parts of | |
42 | this code that are retained. | |
158142c2 | 43 | |
a7d1ac78 PM |
44 | =============================================================================== |
45 | */ | |
158142c2 | 46 | |
16017c48 PM |
47 | /* BSD licensing: |
48 | * Copyright (c) 2006, Fabrice Bellard | |
49 | * All rights reserved. | |
50 | * | |
51 | * Redistribution and use in source and binary forms, with or without | |
52 | * modification, are permitted provided that the following conditions are met: | |
53 | * | |
54 | * 1. Redistributions of source code must retain the above copyright notice, | |
55 | * this list of conditions and the following disclaimer. | |
56 | * | |
57 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
58 | * this list of conditions and the following disclaimer in the documentation | |
59 | * and/or other materials provided with the distribution. | |
60 | * | |
61 | * 3. Neither the name of the copyright holder nor the names of its contributors | |
62 | * may be used to endorse or promote products derived from this software without | |
63 | * specific prior written permission. | |
64 | * | |
65 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
66 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
67 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
68 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
69 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
70 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
71 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
72 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
73 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
74 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | |
75 | * THE POSSIBILITY OF SUCH DAMAGE. | |
76 | */ | |
77 | ||
78 | /* Portions of this work are licensed under the terms of the GNU GPL, | |
79 | * version 2 or later. See the COPYING file in the top-level directory. | |
80 | */ | |
81 | ||
2ac8bd03 PM |
82 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
83 | * target-dependent and needs the TARGET_* macros. | |
84 | */ | |
d38ea87a | 85 | #include "qemu/osdep.h" |
a94b7839 | 86 | #include <math.h> |
6fff2167 | 87 | #include "qemu/bitops.h" |
6b4c305c | 88 | #include "fpu/softfloat.h" |
158142c2 | 89 | |
dc355b76 | 90 | /* We only need stdlib for abort() */ |
dc355b76 | 91 | |
158142c2 FB |
92 | /*---------------------------------------------------------------------------- |
93 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
94 | | division and square root approximations. (Can be specialized to target if | |
95 | | desired.) | |
96 | *----------------------------------------------------------------------------*/ | |
88857aca | 97 | #include "fpu/softfloat-macros.h" |
158142c2 | 98 | |
a94b7839 EC |
99 | /* |
100 | * Hardfloat | |
101 | * | |
102 | * Fast emulation of guest FP instructions is challenging for two reasons. | |
103 | * First, FP instruction semantics are similar but not identical, particularly | |
104 | * when handling NaNs. Second, emulating at reasonable speed the guest FP | |
105 | * exception flags is not trivial: reading the host's flags register with a | |
106 | * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp], | |
107 | * and trapping on every FP exception is not fast nor pleasant to work with. | |
108 | * | |
109 | * We address these challenges by leveraging the host FPU for a subset of the | |
110 | * operations. To do this we expand on the idea presented in this paper: | |
111 | * | |
112 | * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a | |
113 | * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615. | |
114 | * | |
115 | * The idea is thus to leverage the host FPU to (1) compute FP operations | |
116 | * and (2) identify whether FP exceptions occurred while avoiding | |
117 | * expensive exception flag register accesses. | |
118 | * | |
119 | * An important optimization shown in the paper is that given that exception | |
120 | * flags are rarely cleared by the guest, we can avoid recomputing some flags. | |
121 | * This is particularly useful for the inexact flag, which is very frequently | |
122 | * raised in floating-point workloads. | |
123 | * | |
124 | * We optimize the code further by deferring to soft-fp whenever FP exception | |
125 | * detection might get hairy. Two examples: (1) when at least one operand is | |
126 | * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result | |
127 | * and the result is < the minimum normal. | |
128 | */ | |
129 | #define GEN_INPUT_FLUSH__NOCHECK(name, soft_t) \ | |
130 | static inline void name(soft_t *a, float_status *s) \ | |
131 | { \ | |
132 | if (unlikely(soft_t ## _is_denormal(*a))) { \ | |
133 | *a = soft_t ## _set_sign(soft_t ## _zero, \ | |
134 | soft_t ## _is_neg(*a)); \ | |
135 | s->float_exception_flags |= float_flag_input_denormal; \ | |
136 | } \ | |
137 | } | |
138 | ||
139 | GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32) | |
140 | GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64) | |
141 | #undef GEN_INPUT_FLUSH__NOCHECK | |
142 | ||
143 | #define GEN_INPUT_FLUSH1(name, soft_t) \ | |
144 | static inline void name(soft_t *a, float_status *s) \ | |
145 | { \ | |
146 | if (likely(!s->flush_inputs_to_zero)) { \ | |
147 | return; \ | |
148 | } \ | |
149 | soft_t ## _input_flush__nocheck(a, s); \ | |
150 | } | |
151 | ||
152 | GEN_INPUT_FLUSH1(float32_input_flush1, float32) | |
153 | GEN_INPUT_FLUSH1(float64_input_flush1, float64) | |
154 | #undef GEN_INPUT_FLUSH1 | |
155 | ||
156 | #define GEN_INPUT_FLUSH2(name, soft_t) \ | |
157 | static inline void name(soft_t *a, soft_t *b, float_status *s) \ | |
158 | { \ | |
159 | if (likely(!s->flush_inputs_to_zero)) { \ | |
160 | return; \ | |
161 | } \ | |
162 | soft_t ## _input_flush__nocheck(a, s); \ | |
163 | soft_t ## _input_flush__nocheck(b, s); \ | |
164 | } | |
165 | ||
166 | GEN_INPUT_FLUSH2(float32_input_flush2, float32) | |
167 | GEN_INPUT_FLUSH2(float64_input_flush2, float64) | |
168 | #undef GEN_INPUT_FLUSH2 | |
169 | ||
170 | #define GEN_INPUT_FLUSH3(name, soft_t) \ | |
171 | static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \ | |
172 | { \ | |
173 | if (likely(!s->flush_inputs_to_zero)) { \ | |
174 | return; \ | |
175 | } \ | |
176 | soft_t ## _input_flush__nocheck(a, s); \ | |
177 | soft_t ## _input_flush__nocheck(b, s); \ | |
178 | soft_t ## _input_flush__nocheck(c, s); \ | |
179 | } | |
180 | ||
181 | GEN_INPUT_FLUSH3(float32_input_flush3, float32) | |
182 | GEN_INPUT_FLUSH3(float64_input_flush3, float64) | |
183 | #undef GEN_INPUT_FLUSH3 | |
184 | ||
185 | /* | |
186 | * Choose whether to use fpclassify or float32/64_* primitives in the generated | |
187 | * hardfloat functions. Each combination of number of inputs and float size | |
188 | * gets its own value. | |
189 | */ | |
190 | #if defined(__x86_64__) | |
191 | # define QEMU_HARDFLOAT_1F32_USE_FP 0 | |
192 | # define QEMU_HARDFLOAT_1F64_USE_FP 1 | |
193 | # define QEMU_HARDFLOAT_2F32_USE_FP 0 | |
194 | # define QEMU_HARDFLOAT_2F64_USE_FP 1 | |
195 | # define QEMU_HARDFLOAT_3F32_USE_FP 0 | |
196 | # define QEMU_HARDFLOAT_3F64_USE_FP 1 | |
197 | #else | |
198 | # define QEMU_HARDFLOAT_1F32_USE_FP 0 | |
199 | # define QEMU_HARDFLOAT_1F64_USE_FP 0 | |
200 | # define QEMU_HARDFLOAT_2F32_USE_FP 0 | |
201 | # define QEMU_HARDFLOAT_2F64_USE_FP 0 | |
202 | # define QEMU_HARDFLOAT_3F32_USE_FP 0 | |
203 | # define QEMU_HARDFLOAT_3F64_USE_FP 0 | |
204 | #endif | |
205 | ||
206 | /* | |
207 | * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over | |
208 | * float{32,64}_is_infinity when !USE_FP. | |
209 | * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup. | |
210 | * On power64 however, using isinf() reduces fp-bench performance by up to 50%. | |
211 | */ | |
212 | #if defined(__x86_64__) || defined(__aarch64__) | |
213 | # define QEMU_HARDFLOAT_USE_ISINF 1 | |
214 | #else | |
215 | # define QEMU_HARDFLOAT_USE_ISINF 0 | |
216 | #endif | |
217 | ||
218 | /* | |
219 | * Some targets clear the FP flags before most FP operations. This prevents | |
220 | * the use of hardfloat, since hardfloat relies on the inexact flag being | |
221 | * already set. | |
222 | */ | |
223 | #if defined(TARGET_PPC) || defined(__FAST_MATH__) | |
224 | # if defined(__FAST_MATH__) | |
225 | # warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \ | |
226 | IEEE implementation | |
227 | # endif | |
228 | # define QEMU_NO_HARDFLOAT 1 | |
229 | # define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN | |
230 | #else | |
231 | # define QEMU_NO_HARDFLOAT 0 | |
232 | # define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline)) | |
233 | #endif | |
234 | ||
235 | static inline bool can_use_fpu(const float_status *s) | |
236 | { | |
237 | if (QEMU_NO_HARDFLOAT) { | |
238 | return false; | |
239 | } | |
240 | return likely(s->float_exception_flags & float_flag_inexact && | |
241 | s->float_rounding_mode == float_round_nearest_even); | |
242 | } | |
243 | ||
244 | /* | |
245 | * Hardfloat generation functions. Each operation can have two flavors: | |
246 | * either using softfloat primitives (e.g. float32_is_zero_or_normal) for | |
247 | * most condition checks, or native ones (e.g. fpclassify). | |
248 | * | |
249 | * The flavor is chosen by the callers. Instead of using macros, we rely on the | |
250 | * compiler to propagate constants and inline everything into the callers. | |
251 | * | |
252 | * We only generate functions for operations with two inputs, since only | |
253 | * these are common enough to justify consolidating them into common code. | |
254 | */ | |
255 | ||
256 | typedef union { | |
257 | float32 s; | |
258 | float h; | |
259 | } union_float32; | |
260 | ||
261 | typedef union { | |
262 | float64 s; | |
263 | double h; | |
264 | } union_float64; | |
265 | ||
266 | typedef bool (*f32_check_fn)(union_float32 a, union_float32 b); | |
267 | typedef bool (*f64_check_fn)(union_float64 a, union_float64 b); | |
268 | ||
269 | typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s); | |
270 | typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s); | |
271 | typedef float (*hard_f32_op2_fn)(float a, float b); | |
272 | typedef double (*hard_f64_op2_fn)(double a, double b); | |
273 | ||
274 | /* 2-input is-zero-or-normal */ | |
275 | static inline bool f32_is_zon2(union_float32 a, union_float32 b) | |
276 | { | |
277 | if (QEMU_HARDFLOAT_2F32_USE_FP) { | |
278 | /* | |
279 | * Not using a temp variable for consecutive fpclassify calls ends up | |
280 | * generating faster code. | |
281 | */ | |
282 | return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && | |
283 | (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO); | |
284 | } | |
285 | return float32_is_zero_or_normal(a.s) && | |
286 | float32_is_zero_or_normal(b.s); | |
287 | } | |
288 | ||
289 | static inline bool f64_is_zon2(union_float64 a, union_float64 b) | |
290 | { | |
291 | if (QEMU_HARDFLOAT_2F64_USE_FP) { | |
292 | return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && | |
293 | (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO); | |
294 | } | |
295 | return float64_is_zero_or_normal(a.s) && | |
296 | float64_is_zero_or_normal(b.s); | |
297 | } | |
298 | ||
299 | /* 3-input is-zero-or-normal */ | |
300 | static inline | |
301 | bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c) | |
302 | { | |
303 | if (QEMU_HARDFLOAT_3F32_USE_FP) { | |
304 | return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && | |
305 | (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) && | |
306 | (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO); | |
307 | } | |
308 | return float32_is_zero_or_normal(a.s) && | |
309 | float32_is_zero_or_normal(b.s) && | |
310 | float32_is_zero_or_normal(c.s); | |
311 | } | |
312 | ||
313 | static inline | |
314 | bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c) | |
315 | { | |
316 | if (QEMU_HARDFLOAT_3F64_USE_FP) { | |
317 | return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && | |
318 | (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) && | |
319 | (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO); | |
320 | } | |
321 | return float64_is_zero_or_normal(a.s) && | |
322 | float64_is_zero_or_normal(b.s) && | |
323 | float64_is_zero_or_normal(c.s); | |
324 | } | |
325 | ||
326 | static inline bool f32_is_inf(union_float32 a) | |
327 | { | |
328 | if (QEMU_HARDFLOAT_USE_ISINF) { | |
329 | return isinf(a.h); | |
330 | } | |
331 | return float32_is_infinity(a.s); | |
332 | } | |
333 | ||
334 | static inline bool f64_is_inf(union_float64 a) | |
335 | { | |
336 | if (QEMU_HARDFLOAT_USE_ISINF) { | |
337 | return isinf(a.h); | |
338 | } | |
339 | return float64_is_infinity(a.s); | |
340 | } | |
341 | ||
342 | /* Note: @fast_test and @post can be NULL */ | |
343 | static inline float32 | |
344 | float32_gen2(float32 xa, float32 xb, float_status *s, | |
345 | hard_f32_op2_fn hard, soft_f32_op2_fn soft, | |
346 | f32_check_fn pre, f32_check_fn post, | |
347 | f32_check_fn fast_test, soft_f32_op2_fn fast_op) | |
348 | { | |
349 | union_float32 ua, ub, ur; | |
350 | ||
351 | ua.s = xa; | |
352 | ub.s = xb; | |
353 | ||
354 | if (unlikely(!can_use_fpu(s))) { | |
355 | goto soft; | |
356 | } | |
357 | ||
358 | float32_input_flush2(&ua.s, &ub.s, s); | |
359 | if (unlikely(!pre(ua, ub))) { | |
360 | goto soft; | |
361 | } | |
362 | if (fast_test && fast_test(ua, ub)) { | |
363 | return fast_op(ua.s, ub.s, s); | |
364 | } | |
365 | ||
366 | ur.h = hard(ua.h, ub.h); | |
367 | if (unlikely(f32_is_inf(ur))) { | |
368 | s->float_exception_flags |= float_flag_overflow; | |
369 | } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) { | |
370 | if (post == NULL || post(ua, ub)) { | |
371 | goto soft; | |
372 | } | |
373 | } | |
374 | return ur.s; | |
375 | ||
376 | soft: | |
377 | return soft(ua.s, ub.s, s); | |
378 | } | |
379 | ||
380 | static inline float64 | |
381 | float64_gen2(float64 xa, float64 xb, float_status *s, | |
382 | hard_f64_op2_fn hard, soft_f64_op2_fn soft, | |
383 | f64_check_fn pre, f64_check_fn post, | |
384 | f64_check_fn fast_test, soft_f64_op2_fn fast_op) | |
385 | { | |
386 | union_float64 ua, ub, ur; | |
387 | ||
388 | ua.s = xa; | |
389 | ub.s = xb; | |
390 | ||
391 | if (unlikely(!can_use_fpu(s))) { | |
392 | goto soft; | |
393 | } | |
394 | ||
395 | float64_input_flush2(&ua.s, &ub.s, s); | |
396 | if (unlikely(!pre(ua, ub))) { | |
397 | goto soft; | |
398 | } | |
399 | if (fast_test && fast_test(ua, ub)) { | |
400 | return fast_op(ua.s, ub.s, s); | |
401 | } | |
402 | ||
403 | ur.h = hard(ua.h, ub.h); | |
404 | if (unlikely(f64_is_inf(ur))) { | |
405 | s->float_exception_flags |= float_flag_overflow; | |
406 | } else if (unlikely(fabs(ur.h) <= DBL_MIN)) { | |
407 | if (post == NULL || post(ua, ub)) { | |
408 | goto soft; | |
409 | } | |
410 | } | |
411 | return ur.s; | |
412 | ||
413 | soft: | |
414 | return soft(ua.s, ub.s, s); | |
415 | } | |
416 | ||
bb4d4bb3 PM |
417 | /*---------------------------------------------------------------------------- |
418 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
419 | *----------------------------------------------------------------------------*/ | |
420 | ||
a49db98d | 421 | static inline uint32_t extractFloat16Frac(float16 a) |
bb4d4bb3 PM |
422 | { |
423 | return float16_val(a) & 0x3ff; | |
424 | } | |
425 | ||
426 | /*---------------------------------------------------------------------------- | |
427 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
428 | *----------------------------------------------------------------------------*/ | |
429 | ||
0c48262d | 430 | static inline int extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
431 | { |
432 | return (float16_val(a) >> 10) & 0x1f; | |
433 | } | |
434 | ||
d97544c9 AB |
435 | /*---------------------------------------------------------------------------- |
436 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
437 | *----------------------------------------------------------------------------*/ | |
438 | ||
439 | static inline uint32_t extractFloat32Frac(float32 a) | |
440 | { | |
441 | return float32_val(a) & 0x007FFFFF; | |
442 | } | |
443 | ||
444 | /*---------------------------------------------------------------------------- | |
445 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
446 | *----------------------------------------------------------------------------*/ | |
447 | ||
448 | static inline int extractFloat32Exp(float32 a) | |
449 | { | |
450 | return (float32_val(a) >> 23) & 0xFF; | |
451 | } | |
452 | ||
453 | /*---------------------------------------------------------------------------- | |
454 | | Returns the sign bit of the single-precision floating-point value `a'. | |
455 | *----------------------------------------------------------------------------*/ | |
456 | ||
457 | static inline flag extractFloat32Sign(float32 a) | |
458 | { | |
459 | return float32_val(a) >> 31; | |
460 | } | |
461 | ||
462 | /*---------------------------------------------------------------------------- | |
463 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
464 | *----------------------------------------------------------------------------*/ | |
465 | ||
466 | static inline uint64_t extractFloat64Frac(float64 a) | |
467 | { | |
468 | return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF); | |
469 | } | |
470 | ||
471 | /*---------------------------------------------------------------------------- | |
472 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
473 | *----------------------------------------------------------------------------*/ | |
474 | ||
475 | static inline int extractFloat64Exp(float64 a) | |
476 | { | |
477 | return (float64_val(a) >> 52) & 0x7FF; | |
478 | } | |
479 | ||
480 | /*---------------------------------------------------------------------------- | |
481 | | Returns the sign bit of the double-precision floating-point value `a'. | |
482 | *----------------------------------------------------------------------------*/ | |
483 | ||
484 | static inline flag extractFloat64Sign(float64 a) | |
485 | { | |
486 | return float64_val(a) >> 63; | |
487 | } | |
488 | ||
a90119b5 AB |
489 | /* |
490 | * Classify a floating point number. Everything above float_class_qnan | |
491 | * is a NaN so cls >= float_class_qnan is any NaN. | |
492 | */ | |
493 | ||
494 | typedef enum __attribute__ ((__packed__)) { | |
495 | float_class_unclassified, | |
496 | float_class_zero, | |
497 | float_class_normal, | |
498 | float_class_inf, | |
499 | float_class_qnan, /* all NaNs from here */ | |
500 | float_class_snan, | |
a90119b5 AB |
501 | } FloatClass; |
502 | ||
247d1f21 RH |
503 | /* Simple helpers for checking if, or what kind of, NaN we have */ |
504 | static inline __attribute__((unused)) bool is_nan(FloatClass c) | |
505 | { | |
506 | return unlikely(c >= float_class_qnan); | |
507 | } | |
508 | ||
509 | static inline __attribute__((unused)) bool is_snan(FloatClass c) | |
510 | { | |
511 | return c == float_class_snan; | |
512 | } | |
513 | ||
514 | static inline __attribute__((unused)) bool is_qnan(FloatClass c) | |
515 | { | |
516 | return c == float_class_qnan; | |
517 | } | |
518 | ||
a90119b5 AB |
519 | /* |
520 | * Structure holding all of the decomposed parts of a float. The | |
521 | * exponent is unbiased and the fraction is normalized. All | |
522 | * calculations are done with a 64 bit fraction and then rounded as | |
523 | * appropriate for the final format. | |
524 | * | |
525 | * Thanks to the packed FloatClass a decent compiler should be able to | |
526 | * fit the whole structure into registers and avoid using the stack | |
527 | * for parameter passing. | |
528 | */ | |
529 | ||
530 | typedef struct { | |
531 | uint64_t frac; | |
532 | int32_t exp; | |
533 | FloatClass cls; | |
534 | bool sign; | |
535 | } FloatParts; | |
536 | ||
537 | #define DECOMPOSED_BINARY_POINT (64 - 2) | |
538 | #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) | |
539 | #define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1) | |
540 | ||
541 | /* Structure holding all of the relevant parameters for a format. | |
542 | * exp_size: the size of the exponent field | |
543 | * exp_bias: the offset applied to the exponent field | |
544 | * exp_max: the maximum normalised exponent | |
545 | * frac_size: the size of the fraction field | |
546 | * frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT | |
547 | * The following are computed based the size of fraction | |
548 | * frac_lsb: least significant bit of fraction | |
ca3a3d5a | 549 | * frac_lsbm1: the bit below the least significant bit (for rounding) |
a90119b5 | 550 | * round_mask/roundeven_mask: masks used for rounding |
ca3a3d5a AB |
551 | * The following optional modifiers are available: |
552 | * arm_althp: handle ARM Alternative Half Precision | |
a90119b5 AB |
553 | */ |
554 | typedef struct { | |
555 | int exp_size; | |
556 | int exp_bias; | |
557 | int exp_max; | |
558 | int frac_size; | |
559 | int frac_shift; | |
560 | uint64_t frac_lsb; | |
561 | uint64_t frac_lsbm1; | |
562 | uint64_t round_mask; | |
563 | uint64_t roundeven_mask; | |
ca3a3d5a | 564 | bool arm_althp; |
a90119b5 AB |
565 | } FloatFmt; |
566 | ||
567 | /* Expand fields based on the size of exponent and fraction */ | |
568 | #define FLOAT_PARAMS(E, F) \ | |
569 | .exp_size = E, \ | |
570 | .exp_bias = ((1 << E) - 1) >> 1, \ | |
571 | .exp_max = (1 << E) - 1, \ | |
572 | .frac_size = F, \ | |
573 | .frac_shift = DECOMPOSED_BINARY_POINT - F, \ | |
574 | .frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \ | |
575 | .frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \ | |
576 | .round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \ | |
577 | .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1 | |
578 | ||
579 | static const FloatFmt float16_params = { | |
580 | FLOAT_PARAMS(5, 10) | |
581 | }; | |
582 | ||
6fed16b2 AB |
583 | static const FloatFmt float16_params_ahp = { |
584 | FLOAT_PARAMS(5, 10), | |
585 | .arm_althp = true | |
586 | }; | |
587 | ||
a90119b5 AB |
588 | static const FloatFmt float32_params = { |
589 | FLOAT_PARAMS(8, 23) | |
590 | }; | |
591 | ||
592 | static const FloatFmt float64_params = { | |
593 | FLOAT_PARAMS(11, 52) | |
594 | }; | |
595 | ||
6fff2167 AB |
596 | /* Unpack a float to parts, but do not canonicalize. */ |
597 | static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw) | |
598 | { | |
599 | const int sign_pos = fmt.frac_size + fmt.exp_size; | |
600 | ||
601 | return (FloatParts) { | |
602 | .cls = float_class_unclassified, | |
603 | .sign = extract64(raw, sign_pos, 1), | |
604 | .exp = extract64(raw, fmt.frac_size, fmt.exp_size), | |
605 | .frac = extract64(raw, 0, fmt.frac_size), | |
606 | }; | |
607 | } | |
608 | ||
609 | static inline FloatParts float16_unpack_raw(float16 f) | |
610 | { | |
611 | return unpack_raw(float16_params, f); | |
612 | } | |
613 | ||
614 | static inline FloatParts float32_unpack_raw(float32 f) | |
615 | { | |
616 | return unpack_raw(float32_params, f); | |
617 | } | |
618 | ||
619 | static inline FloatParts float64_unpack_raw(float64 f) | |
620 | { | |
621 | return unpack_raw(float64_params, f); | |
622 | } | |
623 | ||
624 | /* Pack a float from parts, but do not canonicalize. */ | |
625 | static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p) | |
626 | { | |
627 | const int sign_pos = fmt.frac_size + fmt.exp_size; | |
628 | uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp); | |
629 | return deposit64(ret, sign_pos, 1, p.sign); | |
630 | } | |
631 | ||
632 | static inline float16 float16_pack_raw(FloatParts p) | |
633 | { | |
634 | return make_float16(pack_raw(float16_params, p)); | |
635 | } | |
636 | ||
637 | static inline float32 float32_pack_raw(FloatParts p) | |
638 | { | |
639 | return make_float32(pack_raw(float32_params, p)); | |
640 | } | |
641 | ||
642 | static inline float64 float64_pack_raw(FloatParts p) | |
643 | { | |
644 | return make_float64(pack_raw(float64_params, p)); | |
645 | } | |
646 | ||
0664335a RH |
647 | /*---------------------------------------------------------------------------- |
648 | | Functions and definitions to determine: (1) whether tininess for underflow | |
649 | | is detected before or after rounding by default, (2) what (if anything) | |
650 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
651 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
652 | | are propagated from function inputs to output. These details are target- | |
653 | | specific. | |
654 | *----------------------------------------------------------------------------*/ | |
655 | #include "softfloat-specialize.h" | |
656 | ||
6fff2167 | 657 | /* Canonicalize EXP and FRAC, setting CLS. */ |
f9943c7f EC |
658 | static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm, |
659 | float_status *status) | |
6fff2167 | 660 | { |
ca3a3d5a | 661 | if (part.exp == parm->exp_max && !parm->arm_althp) { |
6fff2167 AB |
662 | if (part.frac == 0) { |
663 | part.cls = float_class_inf; | |
664 | } else { | |
94933df0 | 665 | part.frac <<= parm->frac_shift; |
298b468e RH |
666 | part.cls = (parts_is_snan_frac(part.frac, status) |
667 | ? float_class_snan : float_class_qnan); | |
6fff2167 AB |
668 | } |
669 | } else if (part.exp == 0) { | |
670 | if (likely(part.frac == 0)) { | |
671 | part.cls = float_class_zero; | |
672 | } else if (status->flush_inputs_to_zero) { | |
673 | float_raise(float_flag_input_denormal, status); | |
674 | part.cls = float_class_zero; | |
675 | part.frac = 0; | |
676 | } else { | |
677 | int shift = clz64(part.frac) - 1; | |
678 | part.cls = float_class_normal; | |
679 | part.exp = parm->frac_shift - parm->exp_bias - shift + 1; | |
680 | part.frac <<= shift; | |
681 | } | |
682 | } else { | |
683 | part.cls = float_class_normal; | |
684 | part.exp -= parm->exp_bias; | |
685 | part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift); | |
686 | } | |
687 | return part; | |
688 | } | |
689 | ||
690 | /* Round and uncanonicalize a floating-point number by parts. There | |
691 | * are FRAC_SHIFT bits that may require rounding at the bottom of the | |
692 | * fraction; these bits will be removed. The exponent will be biased | |
693 | * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. | |
694 | */ | |
695 | ||
696 | static FloatParts round_canonical(FloatParts p, float_status *s, | |
697 | const FloatFmt *parm) | |
698 | { | |
699 | const uint64_t frac_lsbm1 = parm->frac_lsbm1; | |
700 | const uint64_t round_mask = parm->round_mask; | |
701 | const uint64_t roundeven_mask = parm->roundeven_mask; | |
702 | const int exp_max = parm->exp_max; | |
703 | const int frac_shift = parm->frac_shift; | |
704 | uint64_t frac, inc; | |
705 | int exp, flags = 0; | |
706 | bool overflow_norm; | |
707 | ||
708 | frac = p.frac; | |
709 | exp = p.exp; | |
710 | ||
711 | switch (p.cls) { | |
712 | case float_class_normal: | |
713 | switch (s->float_rounding_mode) { | |
714 | case float_round_nearest_even: | |
715 | overflow_norm = false; | |
716 | inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); | |
717 | break; | |
718 | case float_round_ties_away: | |
719 | overflow_norm = false; | |
720 | inc = frac_lsbm1; | |
721 | break; | |
722 | case float_round_to_zero: | |
723 | overflow_norm = true; | |
724 | inc = 0; | |
725 | break; | |
726 | case float_round_up: | |
727 | inc = p.sign ? 0 : round_mask; | |
728 | overflow_norm = p.sign; | |
729 | break; | |
730 | case float_round_down: | |
731 | inc = p.sign ? round_mask : 0; | |
732 | overflow_norm = !p.sign; | |
733 | break; | |
734 | default: | |
735 | g_assert_not_reached(); | |
736 | } | |
737 | ||
738 | exp += parm->exp_bias; | |
739 | if (likely(exp > 0)) { | |
740 | if (frac & round_mask) { | |
741 | flags |= float_flag_inexact; | |
742 | frac += inc; | |
743 | if (frac & DECOMPOSED_OVERFLOW_BIT) { | |
744 | frac >>= 1; | |
745 | exp++; | |
746 | } | |
747 | } | |
748 | frac >>= frac_shift; | |
749 | ||
ca3a3d5a AB |
750 | if (parm->arm_althp) { |
751 | /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ | |
752 | if (unlikely(exp > exp_max)) { | |
753 | /* Overflow. Return the maximum normal. */ | |
754 | flags = float_flag_invalid; | |
755 | exp = exp_max; | |
756 | frac = -1; | |
757 | } | |
758 | } else if (unlikely(exp >= exp_max)) { | |
6fff2167 AB |
759 | flags |= float_flag_overflow | float_flag_inexact; |
760 | if (overflow_norm) { | |
761 | exp = exp_max - 1; | |
762 | frac = -1; | |
763 | } else { | |
764 | p.cls = float_class_inf; | |
765 | goto do_inf; | |
766 | } | |
767 | } | |
768 | } else if (s->flush_to_zero) { | |
769 | flags |= float_flag_output_denormal; | |
770 | p.cls = float_class_zero; | |
771 | goto do_zero; | |
772 | } else { | |
773 | bool is_tiny = (s->float_detect_tininess | |
774 | == float_tininess_before_rounding) | |
775 | || (exp < 0) | |
776 | || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT); | |
777 | ||
778 | shift64RightJamming(frac, 1 - exp, &frac); | |
779 | if (frac & round_mask) { | |
780 | /* Need to recompute round-to-even. */ | |
781 | if (s->float_rounding_mode == float_round_nearest_even) { | |
782 | inc = ((frac & roundeven_mask) != frac_lsbm1 | |
783 | ? frac_lsbm1 : 0); | |
784 | } | |
785 | flags |= float_flag_inexact; | |
786 | frac += inc; | |
787 | } | |
788 | ||
789 | exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0); | |
790 | frac >>= frac_shift; | |
791 | ||
792 | if (is_tiny && (flags & float_flag_inexact)) { | |
793 | flags |= float_flag_underflow; | |
794 | } | |
795 | if (exp == 0 && frac == 0) { | |
796 | p.cls = float_class_zero; | |
797 | } | |
798 | } | |
799 | break; | |
800 | ||
801 | case float_class_zero: | |
802 | do_zero: | |
803 | exp = 0; | |
804 | frac = 0; | |
805 | break; | |
806 | ||
807 | case float_class_inf: | |
808 | do_inf: | |
ca3a3d5a | 809 | assert(!parm->arm_althp); |
6fff2167 AB |
810 | exp = exp_max; |
811 | frac = 0; | |
812 | break; | |
813 | ||
814 | case float_class_qnan: | |
815 | case float_class_snan: | |
ca3a3d5a | 816 | assert(!parm->arm_althp); |
6fff2167 | 817 | exp = exp_max; |
94933df0 | 818 | frac >>= parm->frac_shift; |
6fff2167 AB |
819 | break; |
820 | ||
821 | default: | |
822 | g_assert_not_reached(); | |
823 | } | |
824 | ||
825 | float_raise(flags, s); | |
826 | p.exp = exp; | |
827 | p.frac = frac; | |
828 | return p; | |
829 | } | |
830 | ||
6fed16b2 AB |
831 | /* Explicit FloatFmt version */ |
832 | static FloatParts float16a_unpack_canonical(float16 f, float_status *s, | |
833 | const FloatFmt *params) | |
834 | { | |
f9943c7f | 835 | return sf_canonicalize(float16_unpack_raw(f), params, s); |
6fed16b2 AB |
836 | } |
837 | ||
6fff2167 AB |
838 | static FloatParts float16_unpack_canonical(float16 f, float_status *s) |
839 | { | |
6fed16b2 AB |
840 | return float16a_unpack_canonical(f, s, &float16_params); |
841 | } | |
842 | ||
843 | static float16 float16a_round_pack_canonical(FloatParts p, float_status *s, | |
844 | const FloatFmt *params) | |
845 | { | |
846 | return float16_pack_raw(round_canonical(p, s, params)); | |
6fff2167 AB |
847 | } |
848 | ||
849 | static float16 float16_round_pack_canonical(FloatParts p, float_status *s) | |
850 | { | |
6fed16b2 | 851 | return float16a_round_pack_canonical(p, s, &float16_params); |
6fff2167 AB |
852 | } |
853 | ||
854 | static FloatParts float32_unpack_canonical(float32 f, float_status *s) | |
855 | { | |
f9943c7f | 856 | return sf_canonicalize(float32_unpack_raw(f), &float32_params, s); |
6fff2167 AB |
857 | } |
858 | ||
859 | static float32 float32_round_pack_canonical(FloatParts p, float_status *s) | |
860 | { | |
0bcfbcbe | 861 | return float32_pack_raw(round_canonical(p, s, &float32_params)); |
6fff2167 AB |
862 | } |
863 | ||
864 | static FloatParts float64_unpack_canonical(float64 f, float_status *s) | |
865 | { | |
f9943c7f | 866 | return sf_canonicalize(float64_unpack_raw(f), &float64_params, s); |
6fff2167 AB |
867 | } |
868 | ||
869 | static float64 float64_round_pack_canonical(FloatParts p, float_status *s) | |
870 | { | |
0bcfbcbe | 871 | return float64_pack_raw(round_canonical(p, s, &float64_params)); |
6fff2167 AB |
872 | } |
873 | ||
dbe4d53a AB |
874 | static FloatParts return_nan(FloatParts a, float_status *s) |
875 | { | |
876 | switch (a.cls) { | |
877 | case float_class_snan: | |
878 | s->float_exception_flags |= float_flag_invalid; | |
0bcfbcbe | 879 | a = parts_silence_nan(a, s); |
dbe4d53a AB |
880 | /* fall through */ |
881 | case float_class_qnan: | |
882 | if (s->default_nan_mode) { | |
f7e598e2 | 883 | return parts_default_nan(s); |
dbe4d53a AB |
884 | } |
885 | break; | |
886 | ||
887 | default: | |
888 | g_assert_not_reached(); | |
889 | } | |
890 | return a; | |
891 | } | |
892 | ||
6fff2167 AB |
893 | static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) |
894 | { | |
895 | if (is_snan(a.cls) || is_snan(b.cls)) { | |
896 | s->float_exception_flags |= float_flag_invalid; | |
897 | } | |
898 | ||
899 | if (s->default_nan_mode) { | |
f7e598e2 | 900 | return parts_default_nan(s); |
6fff2167 | 901 | } else { |
4f251cfd | 902 | if (pickNaN(a.cls, b.cls, |
6fff2167 AB |
903 | a.frac > b.frac || |
904 | (a.frac == b.frac && a.sign < b.sign))) { | |
905 | a = b; | |
906 | } | |
0bcfbcbe RH |
907 | if (is_snan(a.cls)) { |
908 | return parts_silence_nan(a, s); | |
909 | } | |
6fff2167 AB |
910 | } |
911 | return a; | |
912 | } | |
913 | ||
d446830a AB |
914 | static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c, |
915 | bool inf_zero, float_status *s) | |
916 | { | |
1839189b PM |
917 | int which; |
918 | ||
d446830a AB |
919 | if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) { |
920 | s->float_exception_flags |= float_flag_invalid; | |
921 | } | |
922 | ||
3bd2dec1 | 923 | which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s); |
1839189b | 924 | |
d446830a | 925 | if (s->default_nan_mode) { |
1839189b PM |
926 | /* Note that this check is after pickNaNMulAdd so that function |
927 | * has an opportunity to set the Invalid flag. | |
928 | */ | |
f7e598e2 | 929 | which = 3; |
1839189b | 930 | } |
d446830a | 931 | |
1839189b PM |
932 | switch (which) { |
933 | case 0: | |
934 | break; | |
935 | case 1: | |
936 | a = b; | |
937 | break; | |
938 | case 2: | |
939 | a = c; | |
940 | break; | |
941 | case 3: | |
f7e598e2 | 942 | return parts_default_nan(s); |
1839189b PM |
943 | default: |
944 | g_assert_not_reached(); | |
d446830a | 945 | } |
1839189b | 946 | |
0bcfbcbe RH |
947 | if (is_snan(a.cls)) { |
948 | return parts_silence_nan(a, s); | |
949 | } | |
d446830a AB |
950 | return a; |
951 | } | |
952 | ||
6fff2167 AB |
953 | /* |
954 | * Returns the result of adding or subtracting the values of the | |
955 | * floating-point values `a' and `b'. The operation is performed | |
956 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
957 | * Arithmetic. | |
958 | */ | |
959 | ||
960 | static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract, | |
961 | float_status *s) | |
962 | { | |
963 | bool a_sign = a.sign; | |
964 | bool b_sign = b.sign ^ subtract; | |
965 | ||
966 | if (a_sign != b_sign) { | |
967 | /* Subtraction */ | |
968 | ||
969 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
970 | if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) { | |
971 | shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); | |
972 | a.frac = a.frac - b.frac; | |
973 | } else { | |
974 | shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); | |
975 | a.frac = b.frac - a.frac; | |
976 | a.exp = b.exp; | |
977 | a_sign ^= 1; | |
978 | } | |
979 | ||
980 | if (a.frac == 0) { | |
981 | a.cls = float_class_zero; | |
982 | a.sign = s->float_rounding_mode == float_round_down; | |
983 | } else { | |
984 | int shift = clz64(a.frac) - 1; | |
985 | a.frac = a.frac << shift; | |
986 | a.exp = a.exp - shift; | |
987 | a.sign = a_sign; | |
988 | } | |
989 | return a; | |
990 | } | |
991 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
992 | return pick_nan(a, b, s); | |
993 | } | |
994 | if (a.cls == float_class_inf) { | |
995 | if (b.cls == float_class_inf) { | |
996 | float_raise(float_flag_invalid, s); | |
f7e598e2 | 997 | return parts_default_nan(s); |
6fff2167 AB |
998 | } |
999 | return a; | |
1000 | } | |
1001 | if (a.cls == float_class_zero && b.cls == float_class_zero) { | |
1002 | a.sign = s->float_rounding_mode == float_round_down; | |
1003 | return a; | |
1004 | } | |
1005 | if (a.cls == float_class_zero || b.cls == float_class_inf) { | |
1006 | b.sign = a_sign ^ 1; | |
1007 | return b; | |
1008 | } | |
1009 | if (b.cls == float_class_zero) { | |
1010 | return a; | |
1011 | } | |
1012 | } else { | |
1013 | /* Addition */ | |
1014 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
1015 | if (a.exp > b.exp) { | |
1016 | shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); | |
1017 | } else if (a.exp < b.exp) { | |
1018 | shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); | |
1019 | a.exp = b.exp; | |
1020 | } | |
1021 | a.frac += b.frac; | |
1022 | if (a.frac & DECOMPOSED_OVERFLOW_BIT) { | |
64d450a0 | 1023 | shift64RightJamming(a.frac, 1, &a.frac); |
6fff2167 AB |
1024 | a.exp += 1; |
1025 | } | |
1026 | return a; | |
1027 | } | |
1028 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
1029 | return pick_nan(a, b, s); | |
1030 | } | |
1031 | if (a.cls == float_class_inf || b.cls == float_class_zero) { | |
1032 | return a; | |
1033 | } | |
1034 | if (b.cls == float_class_inf || a.cls == float_class_zero) { | |
1035 | b.sign = b_sign; | |
1036 | return b; | |
1037 | } | |
1038 | } | |
1039 | g_assert_not_reached(); | |
1040 | } | |
1041 | ||
1042 | /* | |
1043 | * Returns the result of adding or subtracting the floating-point | |
1044 | * values `a' and `b'. The operation is performed according to the | |
1045 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1046 | */ | |
1047 | ||
97ff87c0 | 1048 | float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status) |
6fff2167 AB |
1049 | { |
1050 | FloatParts pa = float16_unpack_canonical(a, status); | |
1051 | FloatParts pb = float16_unpack_canonical(b, status); | |
1052 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
1053 | ||
1054 | return float16_round_pack_canonical(pr, status); | |
1055 | } | |
1056 | ||
1b615d48 EC |
1057 | float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status) |
1058 | { | |
1059 | FloatParts pa = float16_unpack_canonical(a, status); | |
1060 | FloatParts pb = float16_unpack_canonical(b, status); | |
1061 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
1062 | ||
1063 | return float16_round_pack_canonical(pr, status); | |
1064 | } | |
1065 | ||
1066 | static float32 QEMU_SOFTFLOAT_ATTR | |
1067 | soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status) | |
6fff2167 AB |
1068 | { |
1069 | FloatParts pa = float32_unpack_canonical(a, status); | |
1070 | FloatParts pb = float32_unpack_canonical(b, status); | |
1b615d48 | 1071 | FloatParts pr = addsub_floats(pa, pb, subtract, status); |
6fff2167 AB |
1072 | |
1073 | return float32_round_pack_canonical(pr, status); | |
1074 | } | |
1075 | ||
1b615d48 EC |
1076 | static inline float32 soft_f32_add(float32 a, float32 b, float_status *status) |
1077 | { | |
1078 | return soft_f32_addsub(a, b, false, status); | |
1079 | } | |
1080 | ||
1081 | static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status) | |
1082 | { | |
1083 | return soft_f32_addsub(a, b, true, status); | |
1084 | } | |
1085 | ||
1086 | static float64 QEMU_SOFTFLOAT_ATTR | |
1087 | soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status) | |
6fff2167 AB |
1088 | { |
1089 | FloatParts pa = float64_unpack_canonical(a, status); | |
1090 | FloatParts pb = float64_unpack_canonical(b, status); | |
1b615d48 | 1091 | FloatParts pr = addsub_floats(pa, pb, subtract, status); |
6fff2167 AB |
1092 | |
1093 | return float64_round_pack_canonical(pr, status); | |
1094 | } | |
1095 | ||
1b615d48 | 1096 | static inline float64 soft_f64_add(float64 a, float64 b, float_status *status) |
6fff2167 | 1097 | { |
1b615d48 EC |
1098 | return soft_f64_addsub(a, b, false, status); |
1099 | } | |
6fff2167 | 1100 | |
1b615d48 EC |
1101 | static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status) |
1102 | { | |
1103 | return soft_f64_addsub(a, b, true, status); | |
6fff2167 AB |
1104 | } |
1105 | ||
1b615d48 | 1106 | static float hard_f32_add(float a, float b) |
6fff2167 | 1107 | { |
1b615d48 EC |
1108 | return a + b; |
1109 | } | |
6fff2167 | 1110 | |
1b615d48 EC |
1111 | static float hard_f32_sub(float a, float b) |
1112 | { | |
1113 | return a - b; | |
6fff2167 AB |
1114 | } |
1115 | ||
1b615d48 | 1116 | static double hard_f64_add(double a, double b) |
6fff2167 | 1117 | { |
1b615d48 EC |
1118 | return a + b; |
1119 | } | |
6fff2167 | 1120 | |
1b615d48 EC |
1121 | static double hard_f64_sub(double a, double b) |
1122 | { | |
1123 | return a - b; | |
1124 | } | |
1125 | ||
1126 | static bool f32_addsub_post(union_float32 a, union_float32 b) | |
1127 | { | |
1128 | if (QEMU_HARDFLOAT_2F32_USE_FP) { | |
1129 | return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO); | |
1130 | } | |
1131 | return !(float32_is_zero(a.s) && float32_is_zero(b.s)); | |
1132 | } | |
1133 | ||
1134 | static bool f64_addsub_post(union_float64 a, union_float64 b) | |
1135 | { | |
1136 | if (QEMU_HARDFLOAT_2F64_USE_FP) { | |
1137 | return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO); | |
1138 | } else { | |
1139 | return !(float64_is_zero(a.s) && float64_is_zero(b.s)); | |
1140 | } | |
1141 | } | |
1142 | ||
1143 | static float32 float32_addsub(float32 a, float32 b, float_status *s, | |
1144 | hard_f32_op2_fn hard, soft_f32_op2_fn soft) | |
1145 | { | |
1146 | return float32_gen2(a, b, s, hard, soft, | |
1147 | f32_is_zon2, f32_addsub_post, NULL, NULL); | |
1148 | } | |
1149 | ||
1150 | static float64 float64_addsub(float64 a, float64 b, float_status *s, | |
1151 | hard_f64_op2_fn hard, soft_f64_op2_fn soft) | |
1152 | { | |
1153 | return float64_gen2(a, b, s, hard, soft, | |
1154 | f64_is_zon2, f64_addsub_post, NULL, NULL); | |
1155 | } | |
1156 | ||
1157 | float32 QEMU_FLATTEN | |
1158 | float32_add(float32 a, float32 b, float_status *s) | |
1159 | { | |
1160 | return float32_addsub(a, b, s, hard_f32_add, soft_f32_add); | |
1161 | } | |
1162 | ||
1163 | float32 QEMU_FLATTEN | |
1164 | float32_sub(float32 a, float32 b, float_status *s) | |
1165 | { | |
1166 | return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub); | |
1167 | } | |
1168 | ||
1169 | float64 QEMU_FLATTEN | |
1170 | float64_add(float64 a, float64 b, float_status *s) | |
1171 | { | |
1172 | return float64_addsub(a, b, s, hard_f64_add, soft_f64_add); | |
1173 | } | |
1174 | ||
1175 | float64 QEMU_FLATTEN | |
1176 | float64_sub(float64 a, float64 b, float_status *s) | |
1177 | { | |
1178 | return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub); | |
6fff2167 AB |
1179 | } |
1180 | ||
74d707e2 AB |
1181 | /* |
1182 | * Returns the result of multiplying the floating-point values `a' and | |
1183 | * `b'. The operation is performed according to the IEC/IEEE Standard | |
1184 | * for Binary Floating-Point Arithmetic. | |
1185 | */ | |
1186 | ||
1187 | static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s) | |
1188 | { | |
1189 | bool sign = a.sign ^ b.sign; | |
1190 | ||
1191 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
1192 | uint64_t hi, lo; | |
1193 | int exp = a.exp + b.exp; | |
1194 | ||
1195 | mul64To128(a.frac, b.frac, &hi, &lo); | |
1196 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
1197 | if (lo & DECOMPOSED_OVERFLOW_BIT) { | |
1198 | shift64RightJamming(lo, 1, &lo); | |
1199 | exp += 1; | |
1200 | } | |
1201 | ||
1202 | /* Re-use a */ | |
1203 | a.exp = exp; | |
1204 | a.sign = sign; | |
1205 | a.frac = lo; | |
1206 | return a; | |
1207 | } | |
1208 | /* handle all the NaN cases */ | |
1209 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
1210 | return pick_nan(a, b, s); | |
1211 | } | |
1212 | /* Inf * Zero == NaN */ | |
1213 | if ((a.cls == float_class_inf && b.cls == float_class_zero) || | |
1214 | (a.cls == float_class_zero && b.cls == float_class_inf)) { | |
1215 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 1216 | return parts_default_nan(s); |
74d707e2 AB |
1217 | } |
1218 | /* Multiply by 0 or Inf */ | |
1219 | if (a.cls == float_class_inf || a.cls == float_class_zero) { | |
1220 | a.sign = sign; | |
1221 | return a; | |
1222 | } | |
1223 | if (b.cls == float_class_inf || b.cls == float_class_zero) { | |
1224 | b.sign = sign; | |
1225 | return b; | |
1226 | } | |
1227 | g_assert_not_reached(); | |
1228 | } | |
1229 | ||
97ff87c0 | 1230 | float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status) |
74d707e2 AB |
1231 | { |
1232 | FloatParts pa = float16_unpack_canonical(a, status); | |
1233 | FloatParts pb = float16_unpack_canonical(b, status); | |
1234 | FloatParts pr = mul_floats(pa, pb, status); | |
1235 | ||
1236 | return float16_round_pack_canonical(pr, status); | |
1237 | } | |
1238 | ||
2dfabc86 EC |
1239 | static float32 QEMU_SOFTFLOAT_ATTR |
1240 | soft_f32_mul(float32 a, float32 b, float_status *status) | |
74d707e2 AB |
1241 | { |
1242 | FloatParts pa = float32_unpack_canonical(a, status); | |
1243 | FloatParts pb = float32_unpack_canonical(b, status); | |
1244 | FloatParts pr = mul_floats(pa, pb, status); | |
1245 | ||
1246 | return float32_round_pack_canonical(pr, status); | |
1247 | } | |
1248 | ||
2dfabc86 EC |
1249 | static float64 QEMU_SOFTFLOAT_ATTR |
1250 | soft_f64_mul(float64 a, float64 b, float_status *status) | |
74d707e2 AB |
1251 | { |
1252 | FloatParts pa = float64_unpack_canonical(a, status); | |
1253 | FloatParts pb = float64_unpack_canonical(b, status); | |
1254 | FloatParts pr = mul_floats(pa, pb, status); | |
1255 | ||
1256 | return float64_round_pack_canonical(pr, status); | |
1257 | } | |
1258 | ||
2dfabc86 EC |
1259 | static float hard_f32_mul(float a, float b) |
1260 | { | |
1261 | return a * b; | |
1262 | } | |
1263 | ||
1264 | static double hard_f64_mul(double a, double b) | |
1265 | { | |
1266 | return a * b; | |
1267 | } | |
1268 | ||
1269 | static bool f32_mul_fast_test(union_float32 a, union_float32 b) | |
1270 | { | |
1271 | return float32_is_zero(a.s) || float32_is_zero(b.s); | |
1272 | } | |
1273 | ||
1274 | static bool f64_mul_fast_test(union_float64 a, union_float64 b) | |
1275 | { | |
1276 | return float64_is_zero(a.s) || float64_is_zero(b.s); | |
1277 | } | |
1278 | ||
1279 | static float32 f32_mul_fast_op(float32 a, float32 b, float_status *s) | |
1280 | { | |
1281 | bool signbit = float32_is_neg(a) ^ float32_is_neg(b); | |
1282 | ||
1283 | return float32_set_sign(float32_zero, signbit); | |
1284 | } | |
1285 | ||
1286 | static float64 f64_mul_fast_op(float64 a, float64 b, float_status *s) | |
1287 | { | |
1288 | bool signbit = float64_is_neg(a) ^ float64_is_neg(b); | |
1289 | ||
1290 | return float64_set_sign(float64_zero, signbit); | |
1291 | } | |
1292 | ||
1293 | float32 QEMU_FLATTEN | |
1294 | float32_mul(float32 a, float32 b, float_status *s) | |
1295 | { | |
1296 | return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul, | |
1297 | f32_is_zon2, NULL, f32_mul_fast_test, f32_mul_fast_op); | |
1298 | } | |
1299 | ||
1300 | float64 QEMU_FLATTEN | |
1301 | float64_mul(float64 a, float64 b, float_status *s) | |
1302 | { | |
1303 | return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul, | |
1304 | f64_is_zon2, NULL, f64_mul_fast_test, f64_mul_fast_op); | |
1305 | } | |
1306 | ||
d446830a AB |
1307 | /* |
1308 | * Returns the result of multiplying the floating-point values `a' and | |
1309 | * `b' then adding 'c', with no intermediate rounding step after the | |
1310 | * multiplication. The operation is performed according to the | |
1311 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. | |
1312 | * The flags argument allows the caller to select negation of the | |
1313 | * addend, the intermediate product, or the final result. (The | |
1314 | * difference between this and having the caller do a separate | |
1315 | * negation is that negating externally will flip the sign bit on | |
1316 | * NaNs.) | |
1317 | */ | |
1318 | ||
1319 | static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c, | |
1320 | int flags, float_status *s) | |
1321 | { | |
1322 | bool inf_zero = ((1 << a.cls) | (1 << b.cls)) == | |
1323 | ((1 << float_class_inf) | (1 << float_class_zero)); | |
1324 | bool p_sign; | |
1325 | bool sign_flip = flags & float_muladd_negate_result; | |
1326 | FloatClass p_class; | |
1327 | uint64_t hi, lo; | |
1328 | int p_exp; | |
1329 | ||
1330 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
1331 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
1332 | * they return if they do), so we have to hand this information | |
1333 | * off to the target-specific pick-a-NaN routine. | |
1334 | */ | |
1335 | if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) { | |
1336 | return pick_nan_muladd(a, b, c, inf_zero, s); | |
1337 | } | |
1338 | ||
1339 | if (inf_zero) { | |
1340 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 1341 | return parts_default_nan(s); |
d446830a AB |
1342 | } |
1343 | ||
1344 | if (flags & float_muladd_negate_c) { | |
1345 | c.sign ^= 1; | |
1346 | } | |
1347 | ||
1348 | p_sign = a.sign ^ b.sign; | |
1349 | ||
1350 | if (flags & float_muladd_negate_product) { | |
1351 | p_sign ^= 1; | |
1352 | } | |
1353 | ||
1354 | if (a.cls == float_class_inf || b.cls == float_class_inf) { | |
1355 | p_class = float_class_inf; | |
1356 | } else if (a.cls == float_class_zero || b.cls == float_class_zero) { | |
1357 | p_class = float_class_zero; | |
1358 | } else { | |
1359 | p_class = float_class_normal; | |
1360 | } | |
1361 | ||
1362 | if (c.cls == float_class_inf) { | |
1363 | if (p_class == float_class_inf && p_sign != c.sign) { | |
1364 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 1365 | return parts_default_nan(s); |
d446830a AB |
1366 | } else { |
1367 | a.cls = float_class_inf; | |
1368 | a.sign = c.sign ^ sign_flip; | |
f7e598e2 | 1369 | return a; |
d446830a | 1370 | } |
d446830a AB |
1371 | } |
1372 | ||
1373 | if (p_class == float_class_inf) { | |
1374 | a.cls = float_class_inf; | |
1375 | a.sign = p_sign ^ sign_flip; | |
1376 | return a; | |
1377 | } | |
1378 | ||
1379 | if (p_class == float_class_zero) { | |
1380 | if (c.cls == float_class_zero) { | |
1381 | if (p_sign != c.sign) { | |
1382 | p_sign = s->float_rounding_mode == float_round_down; | |
1383 | } | |
1384 | c.sign = p_sign; | |
1385 | } else if (flags & float_muladd_halve_result) { | |
1386 | c.exp -= 1; | |
1387 | } | |
1388 | c.sign ^= sign_flip; | |
1389 | return c; | |
1390 | } | |
1391 | ||
1392 | /* a & b should be normals now... */ | |
1393 | assert(a.cls == float_class_normal && | |
1394 | b.cls == float_class_normal); | |
1395 | ||
1396 | p_exp = a.exp + b.exp; | |
1397 | ||
1398 | /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit | |
1399 | * result. | |
1400 | */ | |
1401 | mul64To128(a.frac, b.frac, &hi, &lo); | |
1402 | /* binary point now at bit 124 */ | |
1403 | ||
1404 | /* check for overflow */ | |
1405 | if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) { | |
1406 | shift128RightJamming(hi, lo, 1, &hi, &lo); | |
1407 | p_exp += 1; | |
1408 | } | |
1409 | ||
1410 | /* + add/sub */ | |
1411 | if (c.cls == float_class_zero) { | |
1412 | /* move binary point back to 62 */ | |
1413 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
1414 | } else { | |
1415 | int exp_diff = p_exp - c.exp; | |
1416 | if (p_sign == c.sign) { | |
1417 | /* Addition */ | |
1418 | if (exp_diff <= 0) { | |
1419 | shift128RightJamming(hi, lo, | |
1420 | DECOMPOSED_BINARY_POINT - exp_diff, | |
1421 | &hi, &lo); | |
1422 | lo += c.frac; | |
1423 | p_exp = c.exp; | |
1424 | } else { | |
1425 | uint64_t c_hi, c_lo; | |
1426 | /* shift c to the same binary point as the product (124) */ | |
1427 | c_hi = c.frac >> 2; | |
1428 | c_lo = 0; | |
1429 | shift128RightJamming(c_hi, c_lo, | |
1430 | exp_diff, | |
1431 | &c_hi, &c_lo); | |
1432 | add128(hi, lo, c_hi, c_lo, &hi, &lo); | |
1433 | /* move binary point back to 62 */ | |
1434 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
1435 | } | |
1436 | ||
1437 | if (lo & DECOMPOSED_OVERFLOW_BIT) { | |
1438 | shift64RightJamming(lo, 1, &lo); | |
1439 | p_exp += 1; | |
1440 | } | |
1441 | ||
1442 | } else { | |
1443 | /* Subtraction */ | |
1444 | uint64_t c_hi, c_lo; | |
1445 | /* make C binary point match product at bit 124 */ | |
1446 | c_hi = c.frac >> 2; | |
1447 | c_lo = 0; | |
1448 | ||
1449 | if (exp_diff <= 0) { | |
1450 | shift128RightJamming(hi, lo, -exp_diff, &hi, &lo); | |
1451 | if (exp_diff == 0 | |
1452 | && | |
1453 | (hi > c_hi || (hi == c_hi && lo >= c_lo))) { | |
1454 | sub128(hi, lo, c_hi, c_lo, &hi, &lo); | |
1455 | } else { | |
1456 | sub128(c_hi, c_lo, hi, lo, &hi, &lo); | |
1457 | p_sign ^= 1; | |
1458 | p_exp = c.exp; | |
1459 | } | |
1460 | } else { | |
1461 | shift128RightJamming(c_hi, c_lo, | |
1462 | exp_diff, | |
1463 | &c_hi, &c_lo); | |
1464 | sub128(hi, lo, c_hi, c_lo, &hi, &lo); | |
1465 | } | |
1466 | ||
1467 | if (hi == 0 && lo == 0) { | |
1468 | a.cls = float_class_zero; | |
1469 | a.sign = s->float_rounding_mode == float_round_down; | |
1470 | a.sign ^= sign_flip; | |
1471 | return a; | |
1472 | } else { | |
1473 | int shift; | |
1474 | if (hi != 0) { | |
1475 | shift = clz64(hi); | |
1476 | } else { | |
1477 | shift = clz64(lo) + 64; | |
1478 | } | |
1479 | /* Normalizing to a binary point of 124 is the | |
1480 | correct adjust for the exponent. However since we're | |
1481 | shifting, we might as well put the binary point back | |
1482 | at 62 where we really want it. Therefore shift as | |
1483 | if we're leaving 1 bit at the top of the word, but | |
1484 | adjust the exponent as if we're leaving 3 bits. */ | |
1485 | shift -= 1; | |
1486 | if (shift >= 64) { | |
1487 | lo = lo << (shift - 64); | |
1488 | } else { | |
1489 | hi = (hi << shift) | (lo >> (64 - shift)); | |
1490 | lo = hi | ((lo << shift) != 0); | |
1491 | } | |
1492 | p_exp -= shift - 2; | |
1493 | } | |
1494 | } | |
1495 | } | |
1496 | ||
1497 | if (flags & float_muladd_halve_result) { | |
1498 | p_exp -= 1; | |
1499 | } | |
1500 | ||
1501 | /* finally prepare our result */ | |
1502 | a.cls = float_class_normal; | |
1503 | a.sign = p_sign ^ sign_flip; | |
1504 | a.exp = p_exp; | |
1505 | a.frac = lo; | |
1506 | ||
1507 | return a; | |
1508 | } | |
1509 | ||
97ff87c0 | 1510 | float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c, |
d446830a AB |
1511 | int flags, float_status *status) |
1512 | { | |
1513 | FloatParts pa = float16_unpack_canonical(a, status); | |
1514 | FloatParts pb = float16_unpack_canonical(b, status); | |
1515 | FloatParts pc = float16_unpack_canonical(c, status); | |
1516 | FloatParts pr = muladd_floats(pa, pb, pc, flags, status); | |
1517 | ||
1518 | return float16_round_pack_canonical(pr, status); | |
1519 | } | |
1520 | ||
ccf770ba EC |
1521 | static float32 QEMU_SOFTFLOAT_ATTR |
1522 | soft_f32_muladd(float32 a, float32 b, float32 c, int flags, | |
1523 | float_status *status) | |
d446830a AB |
1524 | { |
1525 | FloatParts pa = float32_unpack_canonical(a, status); | |
1526 | FloatParts pb = float32_unpack_canonical(b, status); | |
1527 | FloatParts pc = float32_unpack_canonical(c, status); | |
1528 | FloatParts pr = muladd_floats(pa, pb, pc, flags, status); | |
1529 | ||
1530 | return float32_round_pack_canonical(pr, status); | |
1531 | } | |
1532 | ||
ccf770ba EC |
1533 | static float64 QEMU_SOFTFLOAT_ATTR |
1534 | soft_f64_muladd(float64 a, float64 b, float64 c, int flags, | |
1535 | float_status *status) | |
d446830a AB |
1536 | { |
1537 | FloatParts pa = float64_unpack_canonical(a, status); | |
1538 | FloatParts pb = float64_unpack_canonical(b, status); | |
1539 | FloatParts pc = float64_unpack_canonical(c, status); | |
1540 | FloatParts pr = muladd_floats(pa, pb, pc, flags, status); | |
1541 | ||
1542 | return float64_round_pack_canonical(pr, status); | |
1543 | } | |
1544 | ||
f6b3b108 EC |
1545 | static bool force_soft_fma; |
1546 | ||
ccf770ba EC |
1547 | float32 QEMU_FLATTEN |
1548 | float32_muladd(float32 xa, float32 xb, float32 xc, int flags, float_status *s) | |
1549 | { | |
1550 | union_float32 ua, ub, uc, ur; | |
1551 | ||
1552 | ua.s = xa; | |
1553 | ub.s = xb; | |
1554 | uc.s = xc; | |
1555 | ||
1556 | if (unlikely(!can_use_fpu(s))) { | |
1557 | goto soft; | |
1558 | } | |
1559 | if (unlikely(flags & float_muladd_halve_result)) { | |
1560 | goto soft; | |
1561 | } | |
1562 | ||
1563 | float32_input_flush3(&ua.s, &ub.s, &uc.s, s); | |
1564 | if (unlikely(!f32_is_zon3(ua, ub, uc))) { | |
1565 | goto soft; | |
1566 | } | |
f6b3b108 EC |
1567 | |
1568 | if (unlikely(force_soft_fma)) { | |
1569 | goto soft; | |
1570 | } | |
1571 | ||
ccf770ba EC |
1572 | /* |
1573 | * When (a || b) == 0, there's no need to check for under/over flow, | |
1574 | * since we know the addend is (normal || 0) and the product is 0. | |
1575 | */ | |
1576 | if (float32_is_zero(ua.s) || float32_is_zero(ub.s)) { | |
1577 | union_float32 up; | |
1578 | bool prod_sign; | |
1579 | ||
1580 | prod_sign = float32_is_neg(ua.s) ^ float32_is_neg(ub.s); | |
1581 | prod_sign ^= !!(flags & float_muladd_negate_product); | |
1582 | up.s = float32_set_sign(float32_zero, prod_sign); | |
1583 | ||
1584 | if (flags & float_muladd_negate_c) { | |
1585 | uc.h = -uc.h; | |
1586 | } | |
1587 | ur.h = up.h + uc.h; | |
1588 | } else { | |
1589 | if (flags & float_muladd_negate_product) { | |
1590 | ua.h = -ua.h; | |
1591 | } | |
1592 | if (flags & float_muladd_negate_c) { | |
1593 | uc.h = -uc.h; | |
1594 | } | |
1595 | ||
1596 | ur.h = fmaf(ua.h, ub.h, uc.h); | |
1597 | ||
1598 | if (unlikely(f32_is_inf(ur))) { | |
1599 | s->float_exception_flags |= float_flag_overflow; | |
1600 | } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) { | |
1601 | goto soft; | |
1602 | } | |
1603 | } | |
1604 | if (flags & float_muladd_negate_result) { | |
1605 | return float32_chs(ur.s); | |
1606 | } | |
1607 | return ur.s; | |
1608 | ||
1609 | soft: | |
1610 | return soft_f32_muladd(ua.s, ub.s, uc.s, flags, s); | |
1611 | } | |
1612 | ||
1613 | float64 QEMU_FLATTEN | |
1614 | float64_muladd(float64 xa, float64 xb, float64 xc, int flags, float_status *s) | |
1615 | { | |
1616 | union_float64 ua, ub, uc, ur; | |
1617 | ||
1618 | ua.s = xa; | |
1619 | ub.s = xb; | |
1620 | uc.s = xc; | |
1621 | ||
1622 | if (unlikely(!can_use_fpu(s))) { | |
1623 | goto soft; | |
1624 | } | |
1625 | if (unlikely(flags & float_muladd_halve_result)) { | |
1626 | goto soft; | |
1627 | } | |
1628 | ||
1629 | float64_input_flush3(&ua.s, &ub.s, &uc.s, s); | |
1630 | if (unlikely(!f64_is_zon3(ua, ub, uc))) { | |
1631 | goto soft; | |
1632 | } | |
f6b3b108 EC |
1633 | |
1634 | if (unlikely(force_soft_fma)) { | |
1635 | goto soft; | |
1636 | } | |
1637 | ||
ccf770ba EC |
1638 | /* |
1639 | * When (a || b) == 0, there's no need to check for under/over flow, | |
1640 | * since we know the addend is (normal || 0) and the product is 0. | |
1641 | */ | |
1642 | if (float64_is_zero(ua.s) || float64_is_zero(ub.s)) { | |
1643 | union_float64 up; | |
1644 | bool prod_sign; | |
1645 | ||
1646 | prod_sign = float64_is_neg(ua.s) ^ float64_is_neg(ub.s); | |
1647 | prod_sign ^= !!(flags & float_muladd_negate_product); | |
1648 | up.s = float64_set_sign(float64_zero, prod_sign); | |
1649 | ||
1650 | if (flags & float_muladd_negate_c) { | |
1651 | uc.h = -uc.h; | |
1652 | } | |
1653 | ur.h = up.h + uc.h; | |
1654 | } else { | |
1655 | if (flags & float_muladd_negate_product) { | |
1656 | ua.h = -ua.h; | |
1657 | } | |
1658 | if (flags & float_muladd_negate_c) { | |
1659 | uc.h = -uc.h; | |
1660 | } | |
1661 | ||
1662 | ur.h = fma(ua.h, ub.h, uc.h); | |
1663 | ||
1664 | if (unlikely(f64_is_inf(ur))) { | |
1665 | s->float_exception_flags |= float_flag_overflow; | |
1666 | } else if (unlikely(fabs(ur.h) <= FLT_MIN)) { | |
1667 | goto soft; | |
1668 | } | |
1669 | } | |
1670 | if (flags & float_muladd_negate_result) { | |
1671 | return float64_chs(ur.s); | |
1672 | } | |
1673 | return ur.s; | |
1674 | ||
1675 | soft: | |
1676 | return soft_f64_muladd(ua.s, ub.s, uc.s, flags, s); | |
1677 | } | |
1678 | ||
cf07323d AB |
1679 | /* |
1680 | * Returns the result of dividing the floating-point value `a' by the | |
1681 | * corresponding value `b'. The operation is performed according to | |
1682 | * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1683 | */ | |
1684 | ||
1685 | static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s) | |
1686 | { | |
1687 | bool sign = a.sign ^ b.sign; | |
1688 | ||
1689 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
5dfbc9e4 | 1690 | uint64_t n0, n1, q, r; |
cf07323d | 1691 | int exp = a.exp - b.exp; |
5dfbc9e4 RH |
1692 | |
1693 | /* | |
1694 | * We want a 2*N / N-bit division to produce exactly an N-bit | |
1695 | * result, so that we do not lose any precision and so that we | |
1696 | * do not have to renormalize afterward. If A.frac < B.frac, | |
1697 | * then division would produce an (N-1)-bit result; shift A left | |
1698 | * by one to produce the an N-bit result, and decrement the | |
1699 | * exponent to match. | |
1700 | * | |
1701 | * The udiv_qrnnd algorithm that we're using requires normalization, | |
1702 | * i.e. the msb of the denominator must be set. Since we know that | |
1703 | * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left | |
1704 | * by one (more), and the remainder must be shifted right by one. | |
1705 | */ | |
cf07323d AB |
1706 | if (a.frac < b.frac) { |
1707 | exp -= 1; | |
5dfbc9e4 | 1708 | shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0); |
cf07323d | 1709 | } else { |
5dfbc9e4 | 1710 | shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0); |
cf07323d | 1711 | } |
5dfbc9e4 RH |
1712 | q = udiv_qrnnd(&r, n1, n0, b.frac << 1); |
1713 | ||
1714 | /* | |
1715 | * Set lsb if there is a remainder, to set inexact. | |
1716 | * As mentioned above, to find the actual value of the remainder we | |
1717 | * would need to shift right, but (1) we are only concerned about | |
1718 | * non-zero-ness, and (2) the remainder will always be even because | |
1719 | * both inputs to the division primitive are even. | |
1720 | */ | |
1721 | a.frac = q | (r != 0); | |
cf07323d AB |
1722 | a.sign = sign; |
1723 | a.exp = exp; | |
1724 | return a; | |
1725 | } | |
1726 | /* handle all the NaN cases */ | |
1727 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
1728 | return pick_nan(a, b, s); | |
1729 | } | |
1730 | /* 0/0 or Inf/Inf */ | |
1731 | if (a.cls == b.cls | |
1732 | && | |
1733 | (a.cls == float_class_inf || a.cls == float_class_zero)) { | |
1734 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 1735 | return parts_default_nan(s); |
cf07323d | 1736 | } |
9cb4e398 AB |
1737 | /* Inf / x or 0 / x */ |
1738 | if (a.cls == float_class_inf || a.cls == float_class_zero) { | |
1739 | a.sign = sign; | |
1740 | return a; | |
1741 | } | |
cf07323d AB |
1742 | /* Div 0 => Inf */ |
1743 | if (b.cls == float_class_zero) { | |
1744 | s->float_exception_flags |= float_flag_divbyzero; | |
1745 | a.cls = float_class_inf; | |
1746 | a.sign = sign; | |
1747 | return a; | |
1748 | } | |
cf07323d AB |
1749 | /* Div by Inf */ |
1750 | if (b.cls == float_class_inf) { | |
1751 | a.cls = float_class_zero; | |
1752 | a.sign = sign; | |
1753 | return a; | |
1754 | } | |
1755 | g_assert_not_reached(); | |
1756 | } | |
1757 | ||
1758 | float16 float16_div(float16 a, float16 b, float_status *status) | |
1759 | { | |
1760 | FloatParts pa = float16_unpack_canonical(a, status); | |
1761 | FloatParts pb = float16_unpack_canonical(b, status); | |
1762 | FloatParts pr = div_floats(pa, pb, status); | |
1763 | ||
1764 | return float16_round_pack_canonical(pr, status); | |
1765 | } | |
1766 | ||
4a629561 EC |
1767 | static float32 QEMU_SOFTFLOAT_ATTR |
1768 | soft_f32_div(float32 a, float32 b, float_status *status) | |
cf07323d AB |
1769 | { |
1770 | FloatParts pa = float32_unpack_canonical(a, status); | |
1771 | FloatParts pb = float32_unpack_canonical(b, status); | |
1772 | FloatParts pr = div_floats(pa, pb, status); | |
1773 | ||
1774 | return float32_round_pack_canonical(pr, status); | |
1775 | } | |
1776 | ||
4a629561 EC |
1777 | static float64 QEMU_SOFTFLOAT_ATTR |
1778 | soft_f64_div(float64 a, float64 b, float_status *status) | |
cf07323d AB |
1779 | { |
1780 | FloatParts pa = float64_unpack_canonical(a, status); | |
1781 | FloatParts pb = float64_unpack_canonical(b, status); | |
1782 | FloatParts pr = div_floats(pa, pb, status); | |
1783 | ||
1784 | return float64_round_pack_canonical(pr, status); | |
1785 | } | |
1786 | ||
4a629561 EC |
1787 | static float hard_f32_div(float a, float b) |
1788 | { | |
1789 | return a / b; | |
1790 | } | |
1791 | ||
1792 | static double hard_f64_div(double a, double b) | |
1793 | { | |
1794 | return a / b; | |
1795 | } | |
1796 | ||
1797 | static bool f32_div_pre(union_float32 a, union_float32 b) | |
1798 | { | |
1799 | if (QEMU_HARDFLOAT_2F32_USE_FP) { | |
1800 | return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && | |
1801 | fpclassify(b.h) == FP_NORMAL; | |
1802 | } | |
1803 | return float32_is_zero_or_normal(a.s) && float32_is_normal(b.s); | |
1804 | } | |
1805 | ||
1806 | static bool f64_div_pre(union_float64 a, union_float64 b) | |
1807 | { | |
1808 | if (QEMU_HARDFLOAT_2F64_USE_FP) { | |
1809 | return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && | |
1810 | fpclassify(b.h) == FP_NORMAL; | |
1811 | } | |
1812 | return float64_is_zero_or_normal(a.s) && float64_is_normal(b.s); | |
1813 | } | |
1814 | ||
1815 | static bool f32_div_post(union_float32 a, union_float32 b) | |
1816 | { | |
1817 | if (QEMU_HARDFLOAT_2F32_USE_FP) { | |
1818 | return fpclassify(a.h) != FP_ZERO; | |
1819 | } | |
1820 | return !float32_is_zero(a.s); | |
1821 | } | |
1822 | ||
1823 | static bool f64_div_post(union_float64 a, union_float64 b) | |
1824 | { | |
1825 | if (QEMU_HARDFLOAT_2F64_USE_FP) { | |
1826 | return fpclassify(a.h) != FP_ZERO; | |
1827 | } | |
1828 | return !float64_is_zero(a.s); | |
1829 | } | |
1830 | ||
1831 | float32 QEMU_FLATTEN | |
1832 | float32_div(float32 a, float32 b, float_status *s) | |
1833 | { | |
1834 | return float32_gen2(a, b, s, hard_f32_div, soft_f32_div, | |
1835 | f32_div_pre, f32_div_post, NULL, NULL); | |
1836 | } | |
1837 | ||
1838 | float64 QEMU_FLATTEN | |
1839 | float64_div(float64 a, float64 b, float_status *s) | |
1840 | { | |
1841 | return float64_gen2(a, b, s, hard_f64_div, soft_f64_div, | |
1842 | f64_div_pre, f64_div_post, NULL, NULL); | |
1843 | } | |
1844 | ||
6fed16b2 AB |
1845 | /* |
1846 | * Float to Float conversions | |
1847 | * | |
1848 | * Returns the result of converting one float format to another. The | |
1849 | * conversion is performed according to the IEC/IEEE Standard for | |
1850 | * Binary Floating-Point Arithmetic. | |
1851 | * | |
1852 | * The float_to_float helper only needs to take care of raising | |
1853 | * invalid exceptions and handling the conversion on NaNs. | |
1854 | */ | |
1855 | ||
1856 | static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf, | |
1857 | float_status *s) | |
1858 | { | |
1859 | if (dstf->arm_althp) { | |
1860 | switch (a.cls) { | |
1861 | case float_class_qnan: | |
1862 | case float_class_snan: | |
1863 | /* There is no NaN in the destination format. Raise Invalid | |
1864 | * and return a zero with the sign of the input NaN. | |
1865 | */ | |
1866 | s->float_exception_flags |= float_flag_invalid; | |
1867 | a.cls = float_class_zero; | |
1868 | a.frac = 0; | |
1869 | a.exp = 0; | |
1870 | break; | |
1871 | ||
1872 | case float_class_inf: | |
1873 | /* There is no Inf in the destination format. Raise Invalid | |
1874 | * and return the maximum normal with the correct sign. | |
1875 | */ | |
1876 | s->float_exception_flags |= float_flag_invalid; | |
1877 | a.cls = float_class_normal; | |
1878 | a.exp = dstf->exp_max; | |
1879 | a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift; | |
1880 | break; | |
1881 | ||
1882 | default: | |
1883 | break; | |
1884 | } | |
1885 | } else if (is_nan(a.cls)) { | |
1886 | if (is_snan(a.cls)) { | |
1887 | s->float_exception_flags |= float_flag_invalid; | |
1888 | a = parts_silence_nan(a, s); | |
1889 | } | |
1890 | if (s->default_nan_mode) { | |
1891 | return parts_default_nan(s); | |
1892 | } | |
1893 | } | |
1894 | return a; | |
1895 | } | |
1896 | ||
1897 | float32 float16_to_float32(float16 a, bool ieee, float_status *s) | |
1898 | { | |
1899 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1900 | FloatParts p = float16a_unpack_canonical(a, s, fmt16); | |
1901 | FloatParts pr = float_to_float(p, &float32_params, s); | |
1902 | return float32_round_pack_canonical(pr, s); | |
1903 | } | |
1904 | ||
1905 | float64 float16_to_float64(float16 a, bool ieee, float_status *s) | |
1906 | { | |
1907 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1908 | FloatParts p = float16a_unpack_canonical(a, s, fmt16); | |
1909 | FloatParts pr = float_to_float(p, &float64_params, s); | |
1910 | return float64_round_pack_canonical(pr, s); | |
1911 | } | |
1912 | ||
1913 | float16 float32_to_float16(float32 a, bool ieee, float_status *s) | |
1914 | { | |
1915 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1916 | FloatParts p = float32_unpack_canonical(a, s); | |
1917 | FloatParts pr = float_to_float(p, fmt16, s); | |
1918 | return float16a_round_pack_canonical(pr, s, fmt16); | |
1919 | } | |
1920 | ||
1921 | float64 float32_to_float64(float32 a, float_status *s) | |
1922 | { | |
1923 | FloatParts p = float32_unpack_canonical(a, s); | |
1924 | FloatParts pr = float_to_float(p, &float64_params, s); | |
1925 | return float64_round_pack_canonical(pr, s); | |
1926 | } | |
1927 | ||
1928 | float16 float64_to_float16(float64 a, bool ieee, float_status *s) | |
1929 | { | |
1930 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1931 | FloatParts p = float64_unpack_canonical(a, s); | |
1932 | FloatParts pr = float_to_float(p, fmt16, s); | |
1933 | return float16a_round_pack_canonical(pr, s, fmt16); | |
1934 | } | |
1935 | ||
1936 | float32 float64_to_float32(float64 a, float_status *s) | |
1937 | { | |
1938 | FloatParts p = float64_unpack_canonical(a, s); | |
1939 | FloatParts pr = float_to_float(p, &float32_params, s); | |
1940 | return float32_round_pack_canonical(pr, s); | |
1941 | } | |
1942 | ||
dbe4d53a AB |
1943 | /* |
1944 | * Rounds the floating-point value `a' to an integer, and returns the | |
1945 | * result as a floating-point value. The operation is performed | |
1946 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
1947 | * Arithmetic. | |
1948 | */ | |
1949 | ||
2f6c74be RH |
1950 | static FloatParts round_to_int(FloatParts a, int rmode, |
1951 | int scale, float_status *s) | |
dbe4d53a | 1952 | { |
2f6c74be RH |
1953 | switch (a.cls) { |
1954 | case float_class_qnan: | |
1955 | case float_class_snan: | |
dbe4d53a | 1956 | return return_nan(a, s); |
dbe4d53a | 1957 | |
dbe4d53a AB |
1958 | case float_class_zero: |
1959 | case float_class_inf: | |
dbe4d53a AB |
1960 | /* already "integral" */ |
1961 | break; | |
2f6c74be | 1962 | |
dbe4d53a | 1963 | case float_class_normal: |
2f6c74be RH |
1964 | scale = MIN(MAX(scale, -0x10000), 0x10000); |
1965 | a.exp += scale; | |
1966 | ||
dbe4d53a AB |
1967 | if (a.exp >= DECOMPOSED_BINARY_POINT) { |
1968 | /* already integral */ | |
1969 | break; | |
1970 | } | |
1971 | if (a.exp < 0) { | |
1972 | bool one; | |
1973 | /* all fractional */ | |
1974 | s->float_exception_flags |= float_flag_inexact; | |
2f6c74be | 1975 | switch (rmode) { |
dbe4d53a AB |
1976 | case float_round_nearest_even: |
1977 | one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT; | |
1978 | break; | |
1979 | case float_round_ties_away: | |
1980 | one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT; | |
1981 | break; | |
1982 | case float_round_to_zero: | |
1983 | one = false; | |
1984 | break; | |
1985 | case float_round_up: | |
1986 | one = !a.sign; | |
1987 | break; | |
1988 | case float_round_down: | |
1989 | one = a.sign; | |
1990 | break; | |
1991 | default: | |
1992 | g_assert_not_reached(); | |
1993 | } | |
1994 | ||
1995 | if (one) { | |
1996 | a.frac = DECOMPOSED_IMPLICIT_BIT; | |
1997 | a.exp = 0; | |
1998 | } else { | |
1999 | a.cls = float_class_zero; | |
2000 | } | |
2001 | } else { | |
2002 | uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp; | |
2003 | uint64_t frac_lsbm1 = frac_lsb >> 1; | |
2004 | uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb; | |
2005 | uint64_t rnd_mask = rnd_even_mask >> 1; | |
2006 | uint64_t inc; | |
2007 | ||
2f6c74be | 2008 | switch (rmode) { |
dbe4d53a AB |
2009 | case float_round_nearest_even: |
2010 | inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); | |
2011 | break; | |
2012 | case float_round_ties_away: | |
2013 | inc = frac_lsbm1; | |
2014 | break; | |
2015 | case float_round_to_zero: | |
2016 | inc = 0; | |
2017 | break; | |
2018 | case float_round_up: | |
2019 | inc = a.sign ? 0 : rnd_mask; | |
2020 | break; | |
2021 | case float_round_down: | |
2022 | inc = a.sign ? rnd_mask : 0; | |
2023 | break; | |
2024 | default: | |
2025 | g_assert_not_reached(); | |
2026 | } | |
2027 | ||
2028 | if (a.frac & rnd_mask) { | |
2029 | s->float_exception_flags |= float_flag_inexact; | |
2030 | a.frac += inc; | |
2031 | a.frac &= ~rnd_mask; | |
2032 | if (a.frac & DECOMPOSED_OVERFLOW_BIT) { | |
2033 | a.frac >>= 1; | |
2034 | a.exp++; | |
2035 | } | |
2036 | } | |
2037 | } | |
2038 | break; | |
2039 | default: | |
2040 | g_assert_not_reached(); | |
2041 | } | |
2042 | return a; | |
2043 | } | |
2044 | ||
2045 | float16 float16_round_to_int(float16 a, float_status *s) | |
2046 | { | |
2047 | FloatParts pa = float16_unpack_canonical(a, s); | |
2f6c74be | 2048 | FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s); |
dbe4d53a AB |
2049 | return float16_round_pack_canonical(pr, s); |
2050 | } | |
2051 | ||
2052 | float32 float32_round_to_int(float32 a, float_status *s) | |
2053 | { | |
2054 | FloatParts pa = float32_unpack_canonical(a, s); | |
2f6c74be | 2055 | FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s); |
dbe4d53a AB |
2056 | return float32_round_pack_canonical(pr, s); |
2057 | } | |
2058 | ||
2059 | float64 float64_round_to_int(float64 a, float_status *s) | |
2060 | { | |
2061 | FloatParts pa = float64_unpack_canonical(a, s); | |
2f6c74be | 2062 | FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s); |
dbe4d53a AB |
2063 | return float64_round_pack_canonical(pr, s); |
2064 | } | |
2065 | ||
ab52f973 AB |
2066 | /* |
2067 | * Returns the result of converting the floating-point value `a' to | |
2068 | * the two's complement integer format. The conversion is performed | |
2069 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
2070 | * Arithmetic---which means in particular that the conversion is | |
2071 | * rounded according to the current rounding mode. If `a' is a NaN, | |
2072 | * the largest positive integer is returned. Otherwise, if the | |
2073 | * conversion overflows, the largest integer with the same sign as `a' | |
2074 | * is returned. | |
2075 | */ | |
2076 | ||
2f6c74be | 2077 | static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale, |
ab52f973 AB |
2078 | int64_t min, int64_t max, |
2079 | float_status *s) | |
2080 | { | |
2081 | uint64_t r; | |
2082 | int orig_flags = get_float_exception_flags(s); | |
2f6c74be | 2083 | FloatParts p = round_to_int(in, rmode, scale, s); |
ab52f973 AB |
2084 | |
2085 | switch (p.cls) { | |
2086 | case float_class_snan: | |
2087 | case float_class_qnan: | |
801bc563 | 2088 | s->float_exception_flags = orig_flags | float_flag_invalid; |
ab52f973 AB |
2089 | return max; |
2090 | case float_class_inf: | |
801bc563 | 2091 | s->float_exception_flags = orig_flags | float_flag_invalid; |
ab52f973 AB |
2092 | return p.sign ? min : max; |
2093 | case float_class_zero: | |
2094 | return 0; | |
2095 | case float_class_normal: | |
2096 | if (p.exp < DECOMPOSED_BINARY_POINT) { | |
2097 | r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); | |
2098 | } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { | |
2099 | r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); | |
2100 | } else { | |
2101 | r = UINT64_MAX; | |
2102 | } | |
2103 | if (p.sign) { | |
33358375 | 2104 | if (r <= -(uint64_t) min) { |
ab52f973 AB |
2105 | return -r; |
2106 | } else { | |
2107 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
2108 | return min; | |
2109 | } | |
2110 | } else { | |
33358375 | 2111 | if (r <= max) { |
ab52f973 AB |
2112 | return r; |
2113 | } else { | |
2114 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
2115 | return max; | |
2116 | } | |
2117 | } | |
2118 | default: | |
2119 | g_assert_not_reached(); | |
2120 | } | |
2121 | } | |
2122 | ||
2f6c74be RH |
2123 | int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale, |
2124 | float_status *s) | |
2125 | { | |
2126 | return round_to_int_and_pack(float16_unpack_canonical(a, s), | |
2127 | rmode, scale, INT16_MIN, INT16_MAX, s); | |
2128 | } | |
2129 | ||
2130 | int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale, | |
2131 | float_status *s) | |
2132 | { | |
2133 | return round_to_int_and_pack(float16_unpack_canonical(a, s), | |
2134 | rmode, scale, INT32_MIN, INT32_MAX, s); | |
2135 | } | |
2136 | ||
2137 | int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale, | |
2138 | float_status *s) | |
2139 | { | |
2140 | return round_to_int_and_pack(float16_unpack_canonical(a, s), | |
2141 | rmode, scale, INT64_MIN, INT64_MAX, s); | |
2142 | } | |
2143 | ||
2144 | int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale, | |
2145 | float_status *s) | |
2146 | { | |
2147 | return round_to_int_and_pack(float32_unpack_canonical(a, s), | |
2148 | rmode, scale, INT16_MIN, INT16_MAX, s); | |
2149 | } | |
2150 | ||
2151 | int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale, | |
2152 | float_status *s) | |
2153 | { | |
2154 | return round_to_int_and_pack(float32_unpack_canonical(a, s), | |
2155 | rmode, scale, INT32_MIN, INT32_MAX, s); | |
2156 | } | |
2157 | ||
2158 | int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale, | |
2159 | float_status *s) | |
2160 | { | |
2161 | return round_to_int_and_pack(float32_unpack_canonical(a, s), | |
2162 | rmode, scale, INT64_MIN, INT64_MAX, s); | |
2163 | } | |
2164 | ||
2165 | int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale, | |
2166 | float_status *s) | |
2167 | { | |
2168 | return round_to_int_and_pack(float64_unpack_canonical(a, s), | |
2169 | rmode, scale, INT16_MIN, INT16_MAX, s); | |
2170 | } | |
2171 | ||
2172 | int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale, | |
2173 | float_status *s) | |
2174 | { | |
2175 | return round_to_int_and_pack(float64_unpack_canonical(a, s), | |
2176 | rmode, scale, INT32_MIN, INT32_MAX, s); | |
2177 | } | |
2178 | ||
2179 | int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale, | |
2180 | float_status *s) | |
2181 | { | |
2182 | return round_to_int_and_pack(float64_unpack_canonical(a, s), | |
2183 | rmode, scale, INT64_MIN, INT64_MAX, s); | |
2184 | } | |
2185 | ||
2186 | int16_t float16_to_int16(float16 a, float_status *s) | |
2187 | { | |
2188 | return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s); | |
2189 | } | |
2190 | ||
2191 | int32_t float16_to_int32(float16 a, float_status *s) | |
2192 | { | |
2193 | return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s); | |
2194 | } | |
2195 | ||
2196 | int64_t float16_to_int64(float16 a, float_status *s) | |
2197 | { | |
2198 | return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s); | |
2199 | } | |
2200 | ||
2201 | int16_t float32_to_int16(float32 a, float_status *s) | |
2202 | { | |
2203 | return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s); | |
2204 | } | |
2205 | ||
2206 | int32_t float32_to_int32(float32 a, float_status *s) | |
2207 | { | |
2208 | return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s); | |
2209 | } | |
2210 | ||
2211 | int64_t float32_to_int64(float32 a, float_status *s) | |
2212 | { | |
2213 | return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s); | |
2214 | } | |
2215 | ||
2216 | int16_t float64_to_int16(float64 a, float_status *s) | |
2217 | { | |
2218 | return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s); | |
2219 | } | |
2220 | ||
2221 | int32_t float64_to_int32(float64 a, float_status *s) | |
2222 | { | |
2223 | return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s); | |
2224 | } | |
2225 | ||
2226 | int64_t float64_to_int64(float64 a, float_status *s) | |
2227 | { | |
2228 | return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s); | |
2229 | } | |
2230 | ||
2231 | int16_t float16_to_int16_round_to_zero(float16 a, float_status *s) | |
2232 | { | |
2233 | return float16_to_int16_scalbn(a, float_round_to_zero, 0, s); | |
2234 | } | |
2235 | ||
2236 | int32_t float16_to_int32_round_to_zero(float16 a, float_status *s) | |
2237 | { | |
2238 | return float16_to_int32_scalbn(a, float_round_to_zero, 0, s); | |
2239 | } | |
2240 | ||
2241 | int64_t float16_to_int64_round_to_zero(float16 a, float_status *s) | |
2242 | { | |
2243 | return float16_to_int64_scalbn(a, float_round_to_zero, 0, s); | |
ab52f973 AB |
2244 | } |
2245 | ||
2f6c74be RH |
2246 | int16_t float32_to_int16_round_to_zero(float32 a, float_status *s) |
2247 | { | |
2248 | return float32_to_int16_scalbn(a, float_round_to_zero, 0, s); | |
2249 | } | |
ab52f973 | 2250 | |
2f6c74be RH |
2251 | int32_t float32_to_int32_round_to_zero(float32 a, float_status *s) |
2252 | { | |
2253 | return float32_to_int32_scalbn(a, float_round_to_zero, 0, s); | |
2254 | } | |
2255 | ||
2256 | int64_t float32_to_int64_round_to_zero(float32 a, float_status *s) | |
2257 | { | |
2258 | return float32_to_int64_scalbn(a, float_round_to_zero, 0, s); | |
2259 | } | |
2260 | ||
2261 | int16_t float64_to_int16_round_to_zero(float64 a, float_status *s) | |
2262 | { | |
2263 | return float64_to_int16_scalbn(a, float_round_to_zero, 0, s); | |
2264 | } | |
ab52f973 | 2265 | |
2f6c74be RH |
2266 | int32_t float64_to_int32_round_to_zero(float64 a, float_status *s) |
2267 | { | |
2268 | return float64_to_int32_scalbn(a, float_round_to_zero, 0, s); | |
2269 | } | |
ab52f973 | 2270 | |
2f6c74be RH |
2271 | int64_t float64_to_int64_round_to_zero(float64 a, float_status *s) |
2272 | { | |
2273 | return float64_to_int64_scalbn(a, float_round_to_zero, 0, s); | |
2274 | } | |
ab52f973 AB |
2275 | |
2276 | /* | |
2277 | * Returns the result of converting the floating-point value `a' to | |
2278 | * the unsigned integer format. The conversion is performed according | |
2279 | * to the IEC/IEEE Standard for Binary Floating-Point | |
2280 | * Arithmetic---which means in particular that the conversion is | |
2281 | * rounded according to the current rounding mode. If `a' is a NaN, | |
2282 | * the largest unsigned integer is returned. Otherwise, if the | |
2283 | * conversion overflows, the largest unsigned integer is returned. If | |
2284 | * the 'a' is negative, the result is rounded and zero is returned; | |
2285 | * values that do not round to zero will raise the inexact exception | |
2286 | * flag. | |
2287 | */ | |
2288 | ||
2f6c74be RH |
2289 | static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale, |
2290 | uint64_t max, float_status *s) | |
ab52f973 AB |
2291 | { |
2292 | int orig_flags = get_float_exception_flags(s); | |
2f6c74be RH |
2293 | FloatParts p = round_to_int(in, rmode, scale, s); |
2294 | uint64_t r; | |
ab52f973 AB |
2295 | |
2296 | switch (p.cls) { | |
2297 | case float_class_snan: | |
2298 | case float_class_qnan: | |
2299 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
2300 | return max; | |
2301 | case float_class_inf: | |
801bc563 | 2302 | s->float_exception_flags = orig_flags | float_flag_invalid; |
ab52f973 AB |
2303 | return p.sign ? 0 : max; |
2304 | case float_class_zero: | |
2305 | return 0; | |
2306 | case float_class_normal: | |
ab52f973 AB |
2307 | if (p.sign) { |
2308 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
2309 | return 0; | |
2310 | } | |
2311 | ||
2312 | if (p.exp < DECOMPOSED_BINARY_POINT) { | |
2313 | r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); | |
2314 | } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { | |
2315 | r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); | |
2316 | } else { | |
2317 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
2318 | return max; | |
2319 | } | |
2320 | ||
2321 | /* For uint64 this will never trip, but if p.exp is too large | |
2322 | * to shift a decomposed fraction we shall have exited via the | |
2323 | * 3rd leg above. | |
2324 | */ | |
2325 | if (r > max) { | |
2326 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
2327 | return max; | |
ab52f973 | 2328 | } |
2f6c74be | 2329 | return r; |
ab52f973 AB |
2330 | default: |
2331 | g_assert_not_reached(); | |
2332 | } | |
2333 | } | |
2334 | ||
2f6c74be RH |
2335 | uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale, |
2336 | float_status *s) | |
2337 | { | |
2338 | return round_to_uint_and_pack(float16_unpack_canonical(a, s), | |
2339 | rmode, scale, UINT16_MAX, s); | |
2340 | } | |
2341 | ||
2342 | uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale, | |
2343 | float_status *s) | |
2344 | { | |
2345 | return round_to_uint_and_pack(float16_unpack_canonical(a, s), | |
2346 | rmode, scale, UINT32_MAX, s); | |
2347 | } | |
2348 | ||
2349 | uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale, | |
2350 | float_status *s) | |
2351 | { | |
2352 | return round_to_uint_and_pack(float16_unpack_canonical(a, s), | |
2353 | rmode, scale, UINT64_MAX, s); | |
2354 | } | |
2355 | ||
2356 | uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale, | |
2357 | float_status *s) | |
2358 | { | |
2359 | return round_to_uint_and_pack(float32_unpack_canonical(a, s), | |
2360 | rmode, scale, UINT16_MAX, s); | |
2361 | } | |
2362 | ||
2363 | uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale, | |
2364 | float_status *s) | |
2365 | { | |
2366 | return round_to_uint_and_pack(float32_unpack_canonical(a, s), | |
2367 | rmode, scale, UINT32_MAX, s); | |
2368 | } | |
2369 | ||
2370 | uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale, | |
2371 | float_status *s) | |
2372 | { | |
2373 | return round_to_uint_and_pack(float32_unpack_canonical(a, s), | |
2374 | rmode, scale, UINT64_MAX, s); | |
2375 | } | |
2376 | ||
2377 | uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale, | |
2378 | float_status *s) | |
2379 | { | |
2380 | return round_to_uint_and_pack(float64_unpack_canonical(a, s), | |
2381 | rmode, scale, UINT16_MAX, s); | |
2382 | } | |
2383 | ||
2384 | uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale, | |
2385 | float_status *s) | |
2386 | { | |
2387 | return round_to_uint_and_pack(float64_unpack_canonical(a, s), | |
2388 | rmode, scale, UINT32_MAX, s); | |
2389 | } | |
2390 | ||
2391 | uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale, | |
2392 | float_status *s) | |
2393 | { | |
2394 | return round_to_uint_and_pack(float64_unpack_canonical(a, s), | |
2395 | rmode, scale, UINT64_MAX, s); | |
2396 | } | |
2397 | ||
2398 | uint16_t float16_to_uint16(float16 a, float_status *s) | |
2399 | { | |
2400 | return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s); | |
2401 | } | |
2402 | ||
2403 | uint32_t float16_to_uint32(float16 a, float_status *s) | |
2404 | { | |
2405 | return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); | |
2406 | } | |
2407 | ||
2408 | uint64_t float16_to_uint64(float16 a, float_status *s) | |
2409 | { | |
2410 | return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); | |
2411 | } | |
2412 | ||
2413 | uint16_t float32_to_uint16(float32 a, float_status *s) | |
2414 | { | |
2415 | return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s); | |
2416 | } | |
2417 | ||
2418 | uint32_t float32_to_uint32(float32 a, float_status *s) | |
2419 | { | |
2420 | return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); | |
2421 | } | |
2422 | ||
2423 | uint64_t float32_to_uint64(float32 a, float_status *s) | |
2424 | { | |
2425 | return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); | |
2426 | } | |
2427 | ||
2428 | uint16_t float64_to_uint16(float64 a, float_status *s) | |
2429 | { | |
2430 | return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s); | |
2431 | } | |
2432 | ||
2433 | uint32_t float64_to_uint32(float64 a, float_status *s) | |
2434 | { | |
2435 | return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); | |
2436 | } | |
2437 | ||
2438 | uint64_t float64_to_uint64(float64 a, float_status *s) | |
2439 | { | |
2440 | return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); | |
2441 | } | |
2442 | ||
2443 | uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s) | |
2444 | { | |
2445 | return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s); | |
2446 | } | |
2447 | ||
2448 | uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s) | |
2449 | { | |
2450 | return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s); | |
2451 | } | |
2452 | ||
2453 | uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s) | |
2454 | { | |
2455 | return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s); | |
2456 | } | |
2457 | ||
2458 | uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s) | |
2459 | { | |
2460 | return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s); | |
2461 | } | |
2462 | ||
2463 | uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s) | |
2464 | { | |
2465 | return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s); | |
2466 | } | |
2467 | ||
2468 | uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s) | |
2469 | { | |
2470 | return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s); | |
2471 | } | |
2472 | ||
2473 | uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s) | |
2474 | { | |
2475 | return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s); | |
2476 | } | |
2477 | ||
2478 | uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s) | |
2479 | { | |
2480 | return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s); | |
2481 | } | |
2482 | ||
2483 | uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s) | |
2484 | { | |
2485 | return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s); | |
2486 | } | |
ab52f973 | 2487 | |
c02e1fb8 AB |
2488 | /* |
2489 | * Integer to float conversions | |
2490 | * | |
2491 | * Returns the result of converting the two's complement integer `a' | |
2492 | * to the floating-point format. The conversion is performed according | |
2493 | * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2494 | */ | |
2495 | ||
2abdfe24 | 2496 | static FloatParts int_to_float(int64_t a, int scale, float_status *status) |
c02e1fb8 | 2497 | { |
2abdfe24 RH |
2498 | FloatParts r = { .sign = false }; |
2499 | ||
c02e1fb8 AB |
2500 | if (a == 0) { |
2501 | r.cls = float_class_zero; | |
c02e1fb8 | 2502 | } else { |
2abdfe24 RH |
2503 | uint64_t f = a; |
2504 | int shift; | |
2505 | ||
2506 | r.cls = float_class_normal; | |
c02e1fb8 | 2507 | if (a < 0) { |
2abdfe24 | 2508 | f = -f; |
c02e1fb8 | 2509 | r.sign = true; |
c02e1fb8 | 2510 | } |
2abdfe24 RH |
2511 | shift = clz64(f) - 1; |
2512 | scale = MIN(MAX(scale, -0x10000), 0x10000); | |
2513 | ||
2514 | r.exp = DECOMPOSED_BINARY_POINT - shift + scale; | |
2515 | r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift); | |
c02e1fb8 AB |
2516 | } |
2517 | ||
2518 | return r; | |
2519 | } | |
2520 | ||
2abdfe24 | 2521 | float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status) |
c02e1fb8 | 2522 | { |
2abdfe24 | 2523 | FloatParts pa = int_to_float(a, scale, status); |
c02e1fb8 AB |
2524 | return float16_round_pack_canonical(pa, status); |
2525 | } | |
2526 | ||
2abdfe24 RH |
2527 | float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status) |
2528 | { | |
2529 | return int64_to_float16_scalbn(a, scale, status); | |
2530 | } | |
2531 | ||
2532 | float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status) | |
2533 | { | |
2534 | return int64_to_float16_scalbn(a, scale, status); | |
2535 | } | |
2536 | ||
2537 | float16 int64_to_float16(int64_t a, float_status *status) | |
2538 | { | |
2539 | return int64_to_float16_scalbn(a, 0, status); | |
2540 | } | |
2541 | ||
c02e1fb8 AB |
2542 | float16 int32_to_float16(int32_t a, float_status *status) |
2543 | { | |
2abdfe24 | 2544 | return int64_to_float16_scalbn(a, 0, status); |
c02e1fb8 AB |
2545 | } |
2546 | ||
2547 | float16 int16_to_float16(int16_t a, float_status *status) | |
2548 | { | |
2abdfe24 | 2549 | return int64_to_float16_scalbn(a, 0, status); |
c02e1fb8 AB |
2550 | } |
2551 | ||
2abdfe24 | 2552 | float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status) |
c02e1fb8 | 2553 | { |
2abdfe24 | 2554 | FloatParts pa = int_to_float(a, scale, status); |
c02e1fb8 AB |
2555 | return float32_round_pack_canonical(pa, status); |
2556 | } | |
2557 | ||
2abdfe24 RH |
2558 | float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status) |
2559 | { | |
2560 | return int64_to_float32_scalbn(a, scale, status); | |
2561 | } | |
2562 | ||
2563 | float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status) | |
2564 | { | |
2565 | return int64_to_float32_scalbn(a, scale, status); | |
2566 | } | |
2567 | ||
2568 | float32 int64_to_float32(int64_t a, float_status *status) | |
2569 | { | |
2570 | return int64_to_float32_scalbn(a, 0, status); | |
2571 | } | |
2572 | ||
c02e1fb8 AB |
2573 | float32 int32_to_float32(int32_t a, float_status *status) |
2574 | { | |
2abdfe24 | 2575 | return int64_to_float32_scalbn(a, 0, status); |
c02e1fb8 AB |
2576 | } |
2577 | ||
2578 | float32 int16_to_float32(int16_t a, float_status *status) | |
2579 | { | |
2abdfe24 | 2580 | return int64_to_float32_scalbn(a, 0, status); |
c02e1fb8 AB |
2581 | } |
2582 | ||
2abdfe24 | 2583 | float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status) |
c02e1fb8 | 2584 | { |
2abdfe24 | 2585 | FloatParts pa = int_to_float(a, scale, status); |
c02e1fb8 AB |
2586 | return float64_round_pack_canonical(pa, status); |
2587 | } | |
2588 | ||
2abdfe24 RH |
2589 | float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status) |
2590 | { | |
2591 | return int64_to_float64_scalbn(a, scale, status); | |
2592 | } | |
2593 | ||
2594 | float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status) | |
2595 | { | |
2596 | return int64_to_float64_scalbn(a, scale, status); | |
2597 | } | |
2598 | ||
2599 | float64 int64_to_float64(int64_t a, float_status *status) | |
2600 | { | |
2601 | return int64_to_float64_scalbn(a, 0, status); | |
2602 | } | |
2603 | ||
c02e1fb8 AB |
2604 | float64 int32_to_float64(int32_t a, float_status *status) |
2605 | { | |
2abdfe24 | 2606 | return int64_to_float64_scalbn(a, 0, status); |
c02e1fb8 AB |
2607 | } |
2608 | ||
2609 | float64 int16_to_float64(int16_t a, float_status *status) | |
2610 | { | |
2abdfe24 | 2611 | return int64_to_float64_scalbn(a, 0, status); |
c02e1fb8 AB |
2612 | } |
2613 | ||
2614 | ||
2615 | /* | |
2616 | * Unsigned Integer to float conversions | |
2617 | * | |
2618 | * Returns the result of converting the unsigned integer `a' to the | |
2619 | * floating-point format. The conversion is performed according to the | |
2620 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2621 | */ | |
2622 | ||
2abdfe24 | 2623 | static FloatParts uint_to_float(uint64_t a, int scale, float_status *status) |
c02e1fb8 | 2624 | { |
2abdfe24 | 2625 | FloatParts r = { .sign = false }; |
c02e1fb8 AB |
2626 | |
2627 | if (a == 0) { | |
2628 | r.cls = float_class_zero; | |
2629 | } else { | |
2abdfe24 | 2630 | scale = MIN(MAX(scale, -0x10000), 0x10000); |
c02e1fb8 | 2631 | r.cls = float_class_normal; |
2abdfe24 RH |
2632 | if ((int64_t)a < 0) { |
2633 | r.exp = DECOMPOSED_BINARY_POINT + 1 + scale; | |
2634 | shift64RightJamming(a, 1, &a); | |
c02e1fb8 AB |
2635 | r.frac = a; |
2636 | } else { | |
2abdfe24 RH |
2637 | int shift = clz64(a) - 1; |
2638 | r.exp = DECOMPOSED_BINARY_POINT - shift + scale; | |
2639 | r.frac = a << shift; | |
c02e1fb8 AB |
2640 | } |
2641 | } | |
2642 | ||
2643 | return r; | |
2644 | } | |
2645 | ||
2abdfe24 | 2646 | float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status) |
c02e1fb8 | 2647 | { |
2abdfe24 | 2648 | FloatParts pa = uint_to_float(a, scale, status); |
c02e1fb8 AB |
2649 | return float16_round_pack_canonical(pa, status); |
2650 | } | |
2651 | ||
2abdfe24 RH |
2652 | float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status) |
2653 | { | |
2654 | return uint64_to_float16_scalbn(a, scale, status); | |
2655 | } | |
2656 | ||
2657 | float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status) | |
2658 | { | |
2659 | return uint64_to_float16_scalbn(a, scale, status); | |
2660 | } | |
2661 | ||
2662 | float16 uint64_to_float16(uint64_t a, float_status *status) | |
2663 | { | |
2664 | return uint64_to_float16_scalbn(a, 0, status); | |
2665 | } | |
2666 | ||
c02e1fb8 AB |
2667 | float16 uint32_to_float16(uint32_t a, float_status *status) |
2668 | { | |
2abdfe24 | 2669 | return uint64_to_float16_scalbn(a, 0, status); |
c02e1fb8 AB |
2670 | } |
2671 | ||
2672 | float16 uint16_to_float16(uint16_t a, float_status *status) | |
2673 | { | |
2abdfe24 | 2674 | return uint64_to_float16_scalbn(a, 0, status); |
c02e1fb8 AB |
2675 | } |
2676 | ||
2abdfe24 | 2677 | float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status) |
c02e1fb8 | 2678 | { |
2abdfe24 | 2679 | FloatParts pa = uint_to_float(a, scale, status); |
c02e1fb8 AB |
2680 | return float32_round_pack_canonical(pa, status); |
2681 | } | |
2682 | ||
2abdfe24 RH |
2683 | float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status) |
2684 | { | |
2685 | return uint64_to_float32_scalbn(a, scale, status); | |
2686 | } | |
2687 | ||
2688 | float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status) | |
2689 | { | |
2690 | return uint64_to_float32_scalbn(a, scale, status); | |
2691 | } | |
2692 | ||
2693 | float32 uint64_to_float32(uint64_t a, float_status *status) | |
2694 | { | |
2695 | return uint64_to_float32_scalbn(a, 0, status); | |
2696 | } | |
2697 | ||
c02e1fb8 AB |
2698 | float32 uint32_to_float32(uint32_t a, float_status *status) |
2699 | { | |
2abdfe24 | 2700 | return uint64_to_float32_scalbn(a, 0, status); |
c02e1fb8 AB |
2701 | } |
2702 | ||
2703 | float32 uint16_to_float32(uint16_t a, float_status *status) | |
2704 | { | |
2abdfe24 | 2705 | return uint64_to_float32_scalbn(a, 0, status); |
c02e1fb8 AB |
2706 | } |
2707 | ||
2abdfe24 | 2708 | float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status) |
c02e1fb8 | 2709 | { |
2abdfe24 | 2710 | FloatParts pa = uint_to_float(a, scale, status); |
c02e1fb8 AB |
2711 | return float64_round_pack_canonical(pa, status); |
2712 | } | |
2713 | ||
2abdfe24 RH |
2714 | float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status) |
2715 | { | |
2716 | return uint64_to_float64_scalbn(a, scale, status); | |
2717 | } | |
2718 | ||
2719 | float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status) | |
2720 | { | |
2721 | return uint64_to_float64_scalbn(a, scale, status); | |
2722 | } | |
2723 | ||
2724 | float64 uint64_to_float64(uint64_t a, float_status *status) | |
2725 | { | |
2726 | return uint64_to_float64_scalbn(a, 0, status); | |
2727 | } | |
2728 | ||
c02e1fb8 AB |
2729 | float64 uint32_to_float64(uint32_t a, float_status *status) |
2730 | { | |
2abdfe24 | 2731 | return uint64_to_float64_scalbn(a, 0, status); |
c02e1fb8 AB |
2732 | } |
2733 | ||
2734 | float64 uint16_to_float64(uint16_t a, float_status *status) | |
2735 | { | |
2abdfe24 | 2736 | return uint64_to_float64_scalbn(a, 0, status); |
c02e1fb8 AB |
2737 | } |
2738 | ||
89360067 AB |
2739 | /* Float Min/Max */ |
2740 | /* min() and max() functions. These can't be implemented as | |
2741 | * 'compare and pick one input' because that would mishandle | |
2742 | * NaNs and +0 vs -0. | |
2743 | * | |
2744 | * minnum() and maxnum() functions. These are similar to the min() | |
2745 | * and max() functions but if one of the arguments is a QNaN and | |
2746 | * the other is numerical then the numerical argument is returned. | |
2747 | * SNaNs will get quietened before being returned. | |
2748 | * minnum() and maxnum correspond to the IEEE 754-2008 minNum() | |
2749 | * and maxNum() operations. min() and max() are the typical min/max | |
2750 | * semantics provided by many CPUs which predate that specification. | |
2751 | * | |
2752 | * minnummag() and maxnummag() functions correspond to minNumMag() | |
2753 | * and minNumMag() from the IEEE-754 2008. | |
2754 | */ | |
2755 | static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin, | |
2756 | bool ieee, bool ismag, float_status *s) | |
2757 | { | |
2758 | if (unlikely(is_nan(a.cls) || is_nan(b.cls))) { | |
2759 | if (ieee) { | |
2760 | /* Takes two floating-point values `a' and `b', one of | |
2761 | * which is a NaN, and returns the appropriate NaN | |
2762 | * result. If either `a' or `b' is a signaling NaN, | |
2763 | * the invalid exception is raised. | |
2764 | */ | |
2765 | if (is_snan(a.cls) || is_snan(b.cls)) { | |
2766 | return pick_nan(a, b, s); | |
2767 | } else if (is_nan(a.cls) && !is_nan(b.cls)) { | |
2768 | return b; | |
2769 | } else if (is_nan(b.cls) && !is_nan(a.cls)) { | |
2770 | return a; | |
2771 | } | |
2772 | } | |
2773 | return pick_nan(a, b, s); | |
2774 | } else { | |
2775 | int a_exp, b_exp; | |
89360067 AB |
2776 | |
2777 | switch (a.cls) { | |
2778 | case float_class_normal: | |
2779 | a_exp = a.exp; | |
2780 | break; | |
2781 | case float_class_inf: | |
2782 | a_exp = INT_MAX; | |
2783 | break; | |
2784 | case float_class_zero: | |
2785 | a_exp = INT_MIN; | |
2786 | break; | |
2787 | default: | |
2788 | g_assert_not_reached(); | |
2789 | break; | |
2790 | } | |
2791 | switch (b.cls) { | |
2792 | case float_class_normal: | |
2793 | b_exp = b.exp; | |
2794 | break; | |
2795 | case float_class_inf: | |
2796 | b_exp = INT_MAX; | |
2797 | break; | |
2798 | case float_class_zero: | |
2799 | b_exp = INT_MIN; | |
2800 | break; | |
2801 | default: | |
2802 | g_assert_not_reached(); | |
2803 | break; | |
2804 | } | |
2805 | ||
6245327a EC |
2806 | if (ismag && (a_exp != b_exp || a.frac != b.frac)) { |
2807 | bool a_less = a_exp < b_exp; | |
2808 | if (a_exp == b_exp) { | |
2809 | a_less = a.frac < b.frac; | |
2810 | } | |
2811 | return a_less ^ ismin ? b : a; | |
89360067 AB |
2812 | } |
2813 | ||
6245327a | 2814 | if (a.sign == b.sign) { |
89360067 AB |
2815 | bool a_less = a_exp < b_exp; |
2816 | if (a_exp == b_exp) { | |
2817 | a_less = a.frac < b.frac; | |
2818 | } | |
6245327a | 2819 | return a.sign ^ a_less ^ ismin ? b : a; |
89360067 | 2820 | } else { |
6245327a | 2821 | return a.sign ^ ismin ? b : a; |
89360067 AB |
2822 | } |
2823 | } | |
2824 | } | |
2825 | ||
2826 | #define MINMAX(sz, name, ismin, isiee, ismag) \ | |
2827 | float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \ | |
2828 | float_status *s) \ | |
2829 | { \ | |
2830 | FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ | |
2831 | FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ | |
2832 | FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \ | |
2833 | \ | |
2834 | return float ## sz ## _round_pack_canonical(pr, s); \ | |
2835 | } | |
2836 | ||
2837 | MINMAX(16, min, true, false, false) | |
2838 | MINMAX(16, minnum, true, true, false) | |
2839 | MINMAX(16, minnummag, true, true, true) | |
2840 | MINMAX(16, max, false, false, false) | |
2841 | MINMAX(16, maxnum, false, true, false) | |
2842 | MINMAX(16, maxnummag, false, true, true) | |
2843 | ||
2844 | MINMAX(32, min, true, false, false) | |
2845 | MINMAX(32, minnum, true, true, false) | |
2846 | MINMAX(32, minnummag, true, true, true) | |
2847 | MINMAX(32, max, false, false, false) | |
2848 | MINMAX(32, maxnum, false, true, false) | |
2849 | MINMAX(32, maxnummag, false, true, true) | |
2850 | ||
2851 | MINMAX(64, min, true, false, false) | |
2852 | MINMAX(64, minnum, true, true, false) | |
2853 | MINMAX(64, minnummag, true, true, true) | |
2854 | MINMAX(64, max, false, false, false) | |
2855 | MINMAX(64, maxnum, false, true, false) | |
2856 | MINMAX(64, maxnummag, false, true, true) | |
2857 | ||
2858 | #undef MINMAX | |
2859 | ||
0c4c9092 AB |
2860 | /* Floating point compare */ |
2861 | static int compare_floats(FloatParts a, FloatParts b, bool is_quiet, | |
2862 | float_status *s) | |
2863 | { | |
2864 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
2865 | if (!is_quiet || | |
2866 | a.cls == float_class_snan || | |
2867 | b.cls == float_class_snan) { | |
2868 | s->float_exception_flags |= float_flag_invalid; | |
2869 | } | |
2870 | return float_relation_unordered; | |
2871 | } | |
2872 | ||
2873 | if (a.cls == float_class_zero) { | |
2874 | if (b.cls == float_class_zero) { | |
2875 | return float_relation_equal; | |
2876 | } | |
2877 | return b.sign ? float_relation_greater : float_relation_less; | |
2878 | } else if (b.cls == float_class_zero) { | |
2879 | return a.sign ? float_relation_less : float_relation_greater; | |
2880 | } | |
2881 | ||
2882 | /* The only really important thing about infinity is its sign. If | |
2883 | * both are infinities the sign marks the smallest of the two. | |
2884 | */ | |
2885 | if (a.cls == float_class_inf) { | |
2886 | if ((b.cls == float_class_inf) && (a.sign == b.sign)) { | |
2887 | return float_relation_equal; | |
2888 | } | |
2889 | return a.sign ? float_relation_less : float_relation_greater; | |
2890 | } else if (b.cls == float_class_inf) { | |
2891 | return b.sign ? float_relation_greater : float_relation_less; | |
2892 | } | |
2893 | ||
2894 | if (a.sign != b.sign) { | |
2895 | return a.sign ? float_relation_less : float_relation_greater; | |
2896 | } | |
2897 | ||
2898 | if (a.exp == b.exp) { | |
2899 | if (a.frac == b.frac) { | |
2900 | return float_relation_equal; | |
2901 | } | |
2902 | if (a.sign) { | |
2903 | return a.frac > b.frac ? | |
2904 | float_relation_less : float_relation_greater; | |
2905 | } else { | |
2906 | return a.frac > b.frac ? | |
2907 | float_relation_greater : float_relation_less; | |
2908 | } | |
2909 | } else { | |
2910 | if (a.sign) { | |
2911 | return a.exp > b.exp ? float_relation_less : float_relation_greater; | |
2912 | } else { | |
2913 | return a.exp > b.exp ? float_relation_greater : float_relation_less; | |
2914 | } | |
2915 | } | |
2916 | } | |
2917 | ||
d9fe9db9 EC |
2918 | #define COMPARE(name, attr, sz) \ |
2919 | static int attr \ | |
2920 | name(float ## sz a, float ## sz b, bool is_quiet, float_status *s) \ | |
0c4c9092 AB |
2921 | { \ |
2922 | FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ | |
2923 | FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ | |
d9fe9db9 | 2924 | return compare_floats(pa, pb, is_quiet, s); \ |
0c4c9092 AB |
2925 | } |
2926 | ||
d9fe9db9 EC |
2927 | COMPARE(soft_f16_compare, QEMU_FLATTEN, 16) |
2928 | COMPARE(soft_f32_compare, QEMU_SOFTFLOAT_ATTR, 32) | |
2929 | COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64) | |
0c4c9092 AB |
2930 | |
2931 | #undef COMPARE | |
2932 | ||
d9fe9db9 EC |
2933 | int float16_compare(float16 a, float16 b, float_status *s) |
2934 | { | |
2935 | return soft_f16_compare(a, b, false, s); | |
2936 | } | |
2937 | ||
2938 | int float16_compare_quiet(float16 a, float16 b, float_status *s) | |
2939 | { | |
2940 | return soft_f16_compare(a, b, true, s); | |
2941 | } | |
2942 | ||
2943 | static int QEMU_FLATTEN | |
2944 | f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s) | |
2945 | { | |
2946 | union_float32 ua, ub; | |
2947 | ||
2948 | ua.s = xa; | |
2949 | ub.s = xb; | |
2950 | ||
2951 | if (QEMU_NO_HARDFLOAT) { | |
2952 | goto soft; | |
2953 | } | |
2954 | ||
2955 | float32_input_flush2(&ua.s, &ub.s, s); | |
2956 | if (isgreaterequal(ua.h, ub.h)) { | |
2957 | if (isgreater(ua.h, ub.h)) { | |
2958 | return float_relation_greater; | |
2959 | } | |
2960 | return float_relation_equal; | |
2961 | } | |
2962 | if (likely(isless(ua.h, ub.h))) { | |
2963 | return float_relation_less; | |
2964 | } | |
2965 | /* The only condition remaining is unordered. | |
2966 | * Fall through to set flags. | |
2967 | */ | |
2968 | soft: | |
2969 | return soft_f32_compare(ua.s, ub.s, is_quiet, s); | |
2970 | } | |
2971 | ||
2972 | int float32_compare(float32 a, float32 b, float_status *s) | |
2973 | { | |
2974 | return f32_compare(a, b, false, s); | |
2975 | } | |
2976 | ||
2977 | int float32_compare_quiet(float32 a, float32 b, float_status *s) | |
2978 | { | |
2979 | return f32_compare(a, b, true, s); | |
2980 | } | |
2981 | ||
2982 | static int QEMU_FLATTEN | |
2983 | f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s) | |
2984 | { | |
2985 | union_float64 ua, ub; | |
2986 | ||
2987 | ua.s = xa; | |
2988 | ub.s = xb; | |
2989 | ||
2990 | if (QEMU_NO_HARDFLOAT) { | |
2991 | goto soft; | |
2992 | } | |
2993 | ||
2994 | float64_input_flush2(&ua.s, &ub.s, s); | |
2995 | if (isgreaterequal(ua.h, ub.h)) { | |
2996 | if (isgreater(ua.h, ub.h)) { | |
2997 | return float_relation_greater; | |
2998 | } | |
2999 | return float_relation_equal; | |
3000 | } | |
3001 | if (likely(isless(ua.h, ub.h))) { | |
3002 | return float_relation_less; | |
3003 | } | |
3004 | /* The only condition remaining is unordered. | |
3005 | * Fall through to set flags. | |
3006 | */ | |
3007 | soft: | |
3008 | return soft_f64_compare(ua.s, ub.s, is_quiet, s); | |
3009 | } | |
3010 | ||
3011 | int float64_compare(float64 a, float64 b, float_status *s) | |
3012 | { | |
3013 | return f64_compare(a, b, false, s); | |
3014 | } | |
3015 | ||
3016 | int float64_compare_quiet(float64 a, float64 b, float_status *s) | |
3017 | { | |
3018 | return f64_compare(a, b, true, s); | |
3019 | } | |
3020 | ||
0bfc9f19 AB |
3021 | /* Multiply A by 2 raised to the power N. */ |
3022 | static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s) | |
3023 | { | |
3024 | if (unlikely(is_nan(a.cls))) { | |
3025 | return return_nan(a, s); | |
3026 | } | |
3027 | if (a.cls == float_class_normal) { | |
ce8d4082 RH |
3028 | /* The largest float type (even though not supported by FloatParts) |
3029 | * is float128, which has a 15 bit exponent. Bounding N to 16 bits | |
3030 | * still allows rounding to infinity, without allowing overflow | |
3031 | * within the int32_t that backs FloatParts.exp. | |
3032 | */ | |
3033 | n = MIN(MAX(n, -0x10000), 0x10000); | |
0bfc9f19 AB |
3034 | a.exp += n; |
3035 | } | |
3036 | return a; | |
3037 | } | |
3038 | ||
3039 | float16 float16_scalbn(float16 a, int n, float_status *status) | |
3040 | { | |
3041 | FloatParts pa = float16_unpack_canonical(a, status); | |
3042 | FloatParts pr = scalbn_decomposed(pa, n, status); | |
3043 | return float16_round_pack_canonical(pr, status); | |
3044 | } | |
3045 | ||
3046 | float32 float32_scalbn(float32 a, int n, float_status *status) | |
3047 | { | |
3048 | FloatParts pa = float32_unpack_canonical(a, status); | |
3049 | FloatParts pr = scalbn_decomposed(pa, n, status); | |
3050 | return float32_round_pack_canonical(pr, status); | |
3051 | } | |
3052 | ||
3053 | float64 float64_scalbn(float64 a, int n, float_status *status) | |
3054 | { | |
3055 | FloatParts pa = float64_unpack_canonical(a, status); | |
3056 | FloatParts pr = scalbn_decomposed(pa, n, status); | |
3057 | return float64_round_pack_canonical(pr, status); | |
3058 | } | |
3059 | ||
c13bb2da AB |
3060 | /* |
3061 | * Square Root | |
3062 | * | |
3063 | * The old softfloat code did an approximation step before zeroing in | |
3064 | * on the final result. However for simpleness we just compute the | |
3065 | * square root by iterating down from the implicit bit to enough extra | |
3066 | * bits to ensure we get a correctly rounded result. | |
3067 | * | |
3068 | * This does mean however the calculation is slower than before, | |
3069 | * especially for 64 bit floats. | |
3070 | */ | |
3071 | ||
3072 | static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p) | |
3073 | { | |
3074 | uint64_t a_frac, r_frac, s_frac; | |
3075 | int bit, last_bit; | |
3076 | ||
3077 | if (is_nan(a.cls)) { | |
3078 | return return_nan(a, s); | |
3079 | } | |
3080 | if (a.cls == float_class_zero) { | |
3081 | return a; /* sqrt(+-0) = +-0 */ | |
3082 | } | |
3083 | if (a.sign) { | |
3084 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 3085 | return parts_default_nan(s); |
c13bb2da AB |
3086 | } |
3087 | if (a.cls == float_class_inf) { | |
3088 | return a; /* sqrt(+inf) = +inf */ | |
3089 | } | |
3090 | ||
3091 | assert(a.cls == float_class_normal); | |
3092 | ||
3093 | /* We need two overflow bits at the top. Adding room for that is a | |
3094 | * right shift. If the exponent is odd, we can discard the low bit | |
3095 | * by multiplying the fraction by 2; that's a left shift. Combine | |
3096 | * those and we shift right if the exponent is even. | |
3097 | */ | |
3098 | a_frac = a.frac; | |
3099 | if (!(a.exp & 1)) { | |
3100 | a_frac >>= 1; | |
3101 | } | |
3102 | a.exp >>= 1; | |
3103 | ||
3104 | /* Bit-by-bit computation of sqrt. */ | |
3105 | r_frac = 0; | |
3106 | s_frac = 0; | |
3107 | ||
3108 | /* Iterate from implicit bit down to the 3 extra bits to compute a | |
3109 | * properly rounded result. Remember we've inserted one more bit | |
3110 | * at the top, so these positions are one less. | |
3111 | */ | |
3112 | bit = DECOMPOSED_BINARY_POINT - 1; | |
3113 | last_bit = MAX(p->frac_shift - 4, 0); | |
3114 | do { | |
3115 | uint64_t q = 1ULL << bit; | |
3116 | uint64_t t_frac = s_frac + q; | |
3117 | if (t_frac <= a_frac) { | |
3118 | s_frac = t_frac + q; | |
3119 | a_frac -= t_frac; | |
3120 | r_frac += q; | |
3121 | } | |
3122 | a_frac <<= 1; | |
3123 | } while (--bit >= last_bit); | |
3124 | ||
3125 | /* Undo the right shift done above. If there is any remaining | |
3126 | * fraction, the result is inexact. Set the sticky bit. | |
3127 | */ | |
3128 | a.frac = (r_frac << 1) + (a_frac != 0); | |
3129 | ||
3130 | return a; | |
3131 | } | |
3132 | ||
97ff87c0 | 3133 | float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status) |
c13bb2da AB |
3134 | { |
3135 | FloatParts pa = float16_unpack_canonical(a, status); | |
3136 | FloatParts pr = sqrt_float(pa, status, &float16_params); | |
3137 | return float16_round_pack_canonical(pr, status); | |
3138 | } | |
3139 | ||
f131bae8 EC |
3140 | static float32 QEMU_SOFTFLOAT_ATTR |
3141 | soft_f32_sqrt(float32 a, float_status *status) | |
c13bb2da AB |
3142 | { |
3143 | FloatParts pa = float32_unpack_canonical(a, status); | |
3144 | FloatParts pr = sqrt_float(pa, status, &float32_params); | |
3145 | return float32_round_pack_canonical(pr, status); | |
3146 | } | |
3147 | ||
f131bae8 EC |
3148 | static float64 QEMU_SOFTFLOAT_ATTR |
3149 | soft_f64_sqrt(float64 a, float_status *status) | |
c13bb2da AB |
3150 | { |
3151 | FloatParts pa = float64_unpack_canonical(a, status); | |
3152 | FloatParts pr = sqrt_float(pa, status, &float64_params); | |
3153 | return float64_round_pack_canonical(pr, status); | |
3154 | } | |
3155 | ||
f131bae8 EC |
3156 | float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s) |
3157 | { | |
3158 | union_float32 ua, ur; | |
3159 | ||
3160 | ua.s = xa; | |
3161 | if (unlikely(!can_use_fpu(s))) { | |
3162 | goto soft; | |
3163 | } | |
3164 | ||
3165 | float32_input_flush1(&ua.s, s); | |
3166 | if (QEMU_HARDFLOAT_1F32_USE_FP) { | |
3167 | if (unlikely(!(fpclassify(ua.h) == FP_NORMAL || | |
3168 | fpclassify(ua.h) == FP_ZERO) || | |
3169 | signbit(ua.h))) { | |
3170 | goto soft; | |
3171 | } | |
3172 | } else if (unlikely(!float32_is_zero_or_normal(ua.s) || | |
3173 | float32_is_neg(ua.s))) { | |
3174 | goto soft; | |
3175 | } | |
3176 | ur.h = sqrtf(ua.h); | |
3177 | return ur.s; | |
3178 | ||
3179 | soft: | |
3180 | return soft_f32_sqrt(ua.s, s); | |
3181 | } | |
3182 | ||
3183 | float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s) | |
3184 | { | |
3185 | union_float64 ua, ur; | |
3186 | ||
3187 | ua.s = xa; | |
3188 | if (unlikely(!can_use_fpu(s))) { | |
3189 | goto soft; | |
3190 | } | |
3191 | ||
3192 | float64_input_flush1(&ua.s, s); | |
3193 | if (QEMU_HARDFLOAT_1F64_USE_FP) { | |
3194 | if (unlikely(!(fpclassify(ua.h) == FP_NORMAL || | |
3195 | fpclassify(ua.h) == FP_ZERO) || | |
3196 | signbit(ua.h))) { | |
3197 | goto soft; | |
3198 | } | |
3199 | } else if (unlikely(!float64_is_zero_or_normal(ua.s) || | |
3200 | float64_is_neg(ua.s))) { | |
3201 | goto soft; | |
3202 | } | |
3203 | ur.h = sqrt(ua.h); | |
3204 | return ur.s; | |
3205 | ||
3206 | soft: | |
3207 | return soft_f64_sqrt(ua.s, s); | |
3208 | } | |
3209 | ||
0218a16e RH |
3210 | /*---------------------------------------------------------------------------- |
3211 | | The pattern for a default generated NaN. | |
3212 | *----------------------------------------------------------------------------*/ | |
3213 | ||
3214 | float16 float16_default_nan(float_status *status) | |
3215 | { | |
3216 | FloatParts p = parts_default_nan(status); | |
3217 | p.frac >>= float16_params.frac_shift; | |
3218 | return float16_pack_raw(p); | |
3219 | } | |
3220 | ||
3221 | float32 float32_default_nan(float_status *status) | |
3222 | { | |
3223 | FloatParts p = parts_default_nan(status); | |
3224 | p.frac >>= float32_params.frac_shift; | |
3225 | return float32_pack_raw(p); | |
3226 | } | |
3227 | ||
3228 | float64 float64_default_nan(float_status *status) | |
3229 | { | |
3230 | FloatParts p = parts_default_nan(status); | |
3231 | p.frac >>= float64_params.frac_shift; | |
3232 | return float64_pack_raw(p); | |
3233 | } | |
3234 | ||
3235 | float128 float128_default_nan(float_status *status) | |
3236 | { | |
3237 | FloatParts p = parts_default_nan(status); | |
3238 | float128 r; | |
3239 | ||
3240 | /* Extrapolate from the choices made by parts_default_nan to fill | |
3241 | * in the quad-floating format. If the low bit is set, assume we | |
3242 | * want to set all non-snan bits. | |
3243 | */ | |
3244 | r.low = -(p.frac & 1); | |
3245 | r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48); | |
3246 | r.high |= LIT64(0x7FFF000000000000); | |
3247 | r.high |= (uint64_t)p.sign << 63; | |
3248 | ||
3249 | return r; | |
3250 | } | |
c13bb2da | 3251 | |
158142c2 | 3252 | /*---------------------------------------------------------------------------- |
377ed926 RH |
3253 | | Returns a quiet NaN from a signalling NaN for the floating point value `a'. |
3254 | *----------------------------------------------------------------------------*/ | |
3255 | ||
3256 | float16 float16_silence_nan(float16 a, float_status *status) | |
3257 | { | |
3258 | FloatParts p = float16_unpack_raw(a); | |
3259 | p.frac <<= float16_params.frac_shift; | |
3260 | p = parts_silence_nan(p, status); | |
3261 | p.frac >>= float16_params.frac_shift; | |
3262 | return float16_pack_raw(p); | |
3263 | } | |
3264 | ||
3265 | float32 float32_silence_nan(float32 a, float_status *status) | |
3266 | { | |
3267 | FloatParts p = float32_unpack_raw(a); | |
3268 | p.frac <<= float32_params.frac_shift; | |
3269 | p = parts_silence_nan(p, status); | |
3270 | p.frac >>= float32_params.frac_shift; | |
3271 | return float32_pack_raw(p); | |
3272 | } | |
3273 | ||
3274 | float64 float64_silence_nan(float64 a, float_status *status) | |
3275 | { | |
3276 | FloatParts p = float64_unpack_raw(a); | |
3277 | p.frac <<= float64_params.frac_shift; | |
3278 | p = parts_silence_nan(p, status); | |
3279 | p.frac >>= float64_params.frac_shift; | |
3280 | return float64_pack_raw(p); | |
3281 | } | |
3282 | ||
3283 | /*---------------------------------------------------------------------------- | |
158142c2 FB |
3284 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 |
3285 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
3286 | | input. If `zSign' is 1, the input is negated before being converted to an | |
3287 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
3288 | | is simply rounded to an integer, with the inexact exception raised if the | |
3289 | | input cannot be represented exactly as an integer. However, if the fixed- | |
3290 | | point input is too large, the invalid exception is raised and the largest | |
3291 | | positive or negative integer is returned. | |
3292 | *----------------------------------------------------------------------------*/ | |
3293 | ||
f4014512 | 3294 | static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) |
158142c2 | 3295 | { |
8f506c70 | 3296 | int8_t roundingMode; |
158142c2 | 3297 | flag roundNearestEven; |
8f506c70 | 3298 | int8_t roundIncrement, roundBits; |
760e1416 | 3299 | int32_t z; |
158142c2 | 3300 | |
a2f2d288 | 3301 | roundingMode = status->float_rounding_mode; |
158142c2 | 3302 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
3303 | switch (roundingMode) { |
3304 | case float_round_nearest_even: | |
f9288a76 | 3305 | case float_round_ties_away: |
dc355b76 PM |
3306 | roundIncrement = 0x40; |
3307 | break; | |
3308 | case float_round_to_zero: | |
3309 | roundIncrement = 0; | |
3310 | break; | |
3311 | case float_round_up: | |
3312 | roundIncrement = zSign ? 0 : 0x7f; | |
3313 | break; | |
3314 | case float_round_down: | |
3315 | roundIncrement = zSign ? 0x7f : 0; | |
3316 | break; | |
3317 | default: | |
3318 | abort(); | |
158142c2 FB |
3319 | } |
3320 | roundBits = absZ & 0x7F; | |
3321 | absZ = ( absZ + roundIncrement )>>7; | |
3322 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
3323 | z = absZ; | |
3324 | if ( zSign ) z = - z; | |
3325 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
ff32e16e | 3326 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3327 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 | 3328 | } |
a2f2d288 PM |
3329 | if (roundBits) { |
3330 | status->float_exception_flags |= float_flag_inexact; | |
3331 | } | |
158142c2 FB |
3332 | return z; |
3333 | ||
3334 | } | |
3335 | ||
3336 | /*---------------------------------------------------------------------------- | |
3337 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
3338 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
3339 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
3340 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
3341 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
3342 | | the inexact exception raised if the input cannot be represented exactly as | |
3343 | | an integer. However, if the fixed-point input is too large, the invalid | |
3344 | | exception is raised and the largest positive or negative integer is | |
3345 | | returned. | |
3346 | *----------------------------------------------------------------------------*/ | |
3347 | ||
f42c2224 | 3348 | static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, |
e5a41ffa | 3349 | float_status *status) |
158142c2 | 3350 | { |
8f506c70 | 3351 | int8_t roundingMode; |
158142c2 | 3352 | flag roundNearestEven, increment; |
760e1416 | 3353 | int64_t z; |
158142c2 | 3354 | |
a2f2d288 | 3355 | roundingMode = status->float_rounding_mode; |
158142c2 | 3356 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
3357 | switch (roundingMode) { |
3358 | case float_round_nearest_even: | |
f9288a76 | 3359 | case float_round_ties_away: |
dc355b76 PM |
3360 | increment = ((int64_t) absZ1 < 0); |
3361 | break; | |
3362 | case float_round_to_zero: | |
3363 | increment = 0; | |
3364 | break; | |
3365 | case float_round_up: | |
3366 | increment = !zSign && absZ1; | |
3367 | break; | |
3368 | case float_round_down: | |
3369 | increment = zSign && absZ1; | |
3370 | break; | |
3371 | default: | |
3372 | abort(); | |
158142c2 FB |
3373 | } |
3374 | if ( increment ) { | |
3375 | ++absZ0; | |
3376 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 3377 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
3378 | } |
3379 | z = absZ0; | |
3380 | if ( zSign ) z = - z; | |
3381 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
3382 | overflow: | |
ff32e16e | 3383 | float_raise(float_flag_invalid, status); |
158142c2 | 3384 | return |
bb98fe42 | 3385 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
3386 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
3387 | } | |
a2f2d288 PM |
3388 | if (absZ1) { |
3389 | status->float_exception_flags |= float_flag_inexact; | |
3390 | } | |
158142c2 FB |
3391 | return z; |
3392 | ||
3393 | } | |
3394 | ||
fb3ea83a TM |
3395 | /*---------------------------------------------------------------------------- |
3396 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
3397 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
3398 | | and returns the properly rounded 64-bit unsigned integer corresponding to the | |
3399 | | input. Ordinarily, the fixed-point input is simply rounded to an integer, | |
3400 | | with the inexact exception raised if the input cannot be represented exactly | |
3401 | | as an integer. However, if the fixed-point input is too large, the invalid | |
3402 | | exception is raised and the largest unsigned integer is returned. | |
3403 | *----------------------------------------------------------------------------*/ | |
3404 | ||
f42c2224 | 3405 | static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, |
e5a41ffa | 3406 | uint64_t absZ1, float_status *status) |
fb3ea83a | 3407 | { |
8f506c70 | 3408 | int8_t roundingMode; |
fb3ea83a TM |
3409 | flag roundNearestEven, increment; |
3410 | ||
a2f2d288 | 3411 | roundingMode = status->float_rounding_mode; |
fb3ea83a | 3412 | roundNearestEven = (roundingMode == float_round_nearest_even); |
dc355b76 PM |
3413 | switch (roundingMode) { |
3414 | case float_round_nearest_even: | |
f9288a76 | 3415 | case float_round_ties_away: |
dc355b76 PM |
3416 | increment = ((int64_t)absZ1 < 0); |
3417 | break; | |
3418 | case float_round_to_zero: | |
3419 | increment = 0; | |
3420 | break; | |
3421 | case float_round_up: | |
3422 | increment = !zSign && absZ1; | |
3423 | break; | |
3424 | case float_round_down: | |
3425 | increment = zSign && absZ1; | |
3426 | break; | |
3427 | default: | |
3428 | abort(); | |
fb3ea83a TM |
3429 | } |
3430 | if (increment) { | |
3431 | ++absZ0; | |
3432 | if (absZ0 == 0) { | |
ff32e16e | 3433 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
3434 | return LIT64(0xFFFFFFFFFFFFFFFF); |
3435 | } | |
3436 | absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); | |
3437 | } | |
3438 | ||
3439 | if (zSign && absZ0) { | |
ff32e16e | 3440 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
3441 | return 0; |
3442 | } | |
3443 | ||
3444 | if (absZ1) { | |
a2f2d288 | 3445 | status->float_exception_flags |= float_flag_inexact; |
fb3ea83a TM |
3446 | } |
3447 | return absZ0; | |
3448 | } | |
3449 | ||
37d18660 PM |
3450 | /*---------------------------------------------------------------------------- |
3451 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
3452 | | input-denormal exception and return zero. Otherwise just return the value. | |
3453 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 3454 | float32 float32_squash_input_denormal(float32 a, float_status *status) |
37d18660 | 3455 | { |
a2f2d288 | 3456 | if (status->flush_inputs_to_zero) { |
37d18660 | 3457 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { |
ff32e16e | 3458 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
3459 | return make_float32(float32_val(a) & 0x80000000); |
3460 | } | |
3461 | } | |
3462 | return a; | |
3463 | } | |
3464 | ||
158142c2 FB |
3465 | /*---------------------------------------------------------------------------- |
3466 | | Normalizes the subnormal single-precision floating-point value represented | |
3467 | | by the denormalized significand `aSig'. The normalized exponent and | |
3468 | | significand are stored at the locations pointed to by `zExpPtr' and | |
3469 | | `zSigPtr', respectively. | |
3470 | *----------------------------------------------------------------------------*/ | |
3471 | ||
3472 | static void | |
0c48262d | 3473 | normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) |
158142c2 | 3474 | { |
8f506c70 | 3475 | int8_t shiftCount; |
158142c2 | 3476 | |
0019d5c3 | 3477 | shiftCount = clz32(aSig) - 8; |
158142c2 FB |
3478 | *zSigPtr = aSig<<shiftCount; |
3479 | *zExpPtr = 1 - shiftCount; | |
3480 | ||
3481 | } | |
3482 | ||
158142c2 FB |
3483 | /*---------------------------------------------------------------------------- |
3484 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3485 | | and significand `zSig', and returns the proper single-precision floating- | |
3486 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
3487 | | value is simply rounded and packed into the single-precision format, with | |
3488 | | the inexact exception raised if the abstract input cannot be represented | |
3489 | | exactly. However, if the abstract value is too large, the overflow and | |
3490 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3491 | | returned. If the abstract value is too small, the input value is rounded to | |
3492 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3493 | | the abstract input cannot be represented exactly as a subnormal single- | |
3494 | | precision floating-point number. | |
3495 | | The input significand `zSig' has its binary point between bits 30 | |
3496 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
3497 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
3498 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
3499 | | and it must not require rounding. In the usual case that `zSig' is | |
3500 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
3501 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
3502 | | Binary Floating-Point Arithmetic. | |
3503 | *----------------------------------------------------------------------------*/ | |
3504 | ||
0c48262d | 3505 | static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 3506 | float_status *status) |
158142c2 | 3507 | { |
8f506c70 | 3508 | int8_t roundingMode; |
158142c2 | 3509 | flag roundNearestEven; |
8f506c70 | 3510 | int8_t roundIncrement, roundBits; |
158142c2 FB |
3511 | flag isTiny; |
3512 | ||
a2f2d288 | 3513 | roundingMode = status->float_rounding_mode; |
158142c2 | 3514 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
3515 | switch (roundingMode) { |
3516 | case float_round_nearest_even: | |
f9288a76 | 3517 | case float_round_ties_away: |
dc355b76 PM |
3518 | roundIncrement = 0x40; |
3519 | break; | |
3520 | case float_round_to_zero: | |
3521 | roundIncrement = 0; | |
3522 | break; | |
3523 | case float_round_up: | |
3524 | roundIncrement = zSign ? 0 : 0x7f; | |
3525 | break; | |
3526 | case float_round_down: | |
3527 | roundIncrement = zSign ? 0x7f : 0; | |
3528 | break; | |
3529 | default: | |
3530 | abort(); | |
3531 | break; | |
158142c2 FB |
3532 | } |
3533 | roundBits = zSig & 0x7F; | |
bb98fe42 | 3534 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
3535 | if ( ( 0xFD < zExp ) |
3536 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 3537 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 3538 | ) { |
ff32e16e | 3539 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 3540 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
3541 | } |
3542 | if ( zExp < 0 ) { | |
a2f2d288 | 3543 | if (status->flush_to_zero) { |
ff32e16e | 3544 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
3545 | return packFloat32(zSign, 0, 0); |
3546 | } | |
158142c2 | 3547 | isTiny = |
a2f2d288 PM |
3548 | (status->float_detect_tininess |
3549 | == float_tininess_before_rounding) | |
158142c2 FB |
3550 | || ( zExp < -1 ) |
3551 | || ( zSig + roundIncrement < 0x80000000 ); | |
3552 | shift32RightJamming( zSig, - zExp, &zSig ); | |
3553 | zExp = 0; | |
3554 | roundBits = zSig & 0x7F; | |
ff32e16e PM |
3555 | if (isTiny && roundBits) { |
3556 | float_raise(float_flag_underflow, status); | |
3557 | } | |
158142c2 FB |
3558 | } |
3559 | } | |
a2f2d288 PM |
3560 | if (roundBits) { |
3561 | status->float_exception_flags |= float_flag_inexact; | |
3562 | } | |
158142c2 FB |
3563 | zSig = ( zSig + roundIncrement )>>7; |
3564 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
3565 | if ( zSig == 0 ) zExp = 0; | |
3566 | return packFloat32( zSign, zExp, zSig ); | |
3567 | ||
3568 | } | |
3569 | ||
3570 | /*---------------------------------------------------------------------------- | |
3571 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3572 | | and significand `zSig', and returns the proper single-precision floating- | |
3573 | | point value corresponding to the abstract input. This routine is just like | |
3574 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
3575 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
3576 | | floating-point exponent. | |
3577 | *----------------------------------------------------------------------------*/ | |
3578 | ||
3579 | static float32 | |
0c48262d | 3580 | normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 3581 | float_status *status) |
158142c2 | 3582 | { |
8f506c70 | 3583 | int8_t shiftCount; |
158142c2 | 3584 | |
0019d5c3 | 3585 | shiftCount = clz32(zSig) - 1; |
ff32e16e PM |
3586 | return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, |
3587 | status); | |
158142c2 FB |
3588 | |
3589 | } | |
3590 | ||
37d18660 PM |
3591 | /*---------------------------------------------------------------------------- |
3592 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
3593 | | input-denormal exception and return zero. Otherwise just return the value. | |
3594 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 3595 | float64 float64_squash_input_denormal(float64 a, float_status *status) |
37d18660 | 3596 | { |
a2f2d288 | 3597 | if (status->flush_inputs_to_zero) { |
37d18660 | 3598 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { |
ff32e16e | 3599 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
3600 | return make_float64(float64_val(a) & (1ULL << 63)); |
3601 | } | |
3602 | } | |
3603 | return a; | |
3604 | } | |
3605 | ||
158142c2 FB |
3606 | /*---------------------------------------------------------------------------- |
3607 | | Normalizes the subnormal double-precision floating-point value represented | |
3608 | | by the denormalized significand `aSig'. The normalized exponent and | |
3609 | | significand are stored at the locations pointed to by `zExpPtr' and | |
3610 | | `zSigPtr', respectively. | |
3611 | *----------------------------------------------------------------------------*/ | |
3612 | ||
3613 | static void | |
0c48262d | 3614 | normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) |
158142c2 | 3615 | { |
8f506c70 | 3616 | int8_t shiftCount; |
158142c2 | 3617 | |
0019d5c3 | 3618 | shiftCount = clz64(aSig) - 11; |
158142c2 FB |
3619 | *zSigPtr = aSig<<shiftCount; |
3620 | *zExpPtr = 1 - shiftCount; | |
3621 | ||
3622 | } | |
3623 | ||
3624 | /*---------------------------------------------------------------------------- | |
3625 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
3626 | | double-precision floating-point value, returning the result. After being | |
3627 | | shifted into the proper positions, the three fields are simply added | |
3628 | | together to form the result. This means that any integer portion of `zSig' | |
3629 | | will be added into the exponent. Since a properly normalized significand | |
3630 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
3631 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
3632 | | significand. | |
3633 | *----------------------------------------------------------------------------*/ | |
3634 | ||
0c48262d | 3635 | static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) |
158142c2 FB |
3636 | { |
3637 | ||
f090c9d4 | 3638 | return make_float64( |
bb98fe42 | 3639 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
3640 | |
3641 | } | |
3642 | ||
3643 | /*---------------------------------------------------------------------------- | |
3644 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3645 | | and significand `zSig', and returns the proper double-precision floating- | |
3646 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
3647 | | value is simply rounded and packed into the double-precision format, with | |
3648 | | the inexact exception raised if the abstract input cannot be represented | |
3649 | | exactly. However, if the abstract value is too large, the overflow and | |
3650 | | inexact exceptions are raised and an infinity or maximal finite value is | |
a7d1ac78 PM |
3651 | | returned. If the abstract value is too small, the input value is rounded to |
3652 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3653 | | the abstract input cannot be represented exactly as a subnormal double- | |
158142c2 FB |
3654 | | precision floating-point number. |
3655 | | The input significand `zSig' has its binary point between bits 62 | |
3656 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
3657 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
3658 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
3659 | | and it must not require rounding. In the usual case that `zSig' is | |
3660 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
3661 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
3662 | | Binary Floating-Point Arithmetic. | |
3663 | *----------------------------------------------------------------------------*/ | |
3664 | ||
0c48262d | 3665 | static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 3666 | float_status *status) |
158142c2 | 3667 | { |
8f506c70 | 3668 | int8_t roundingMode; |
158142c2 | 3669 | flag roundNearestEven; |
0c48262d | 3670 | int roundIncrement, roundBits; |
158142c2 FB |
3671 | flag isTiny; |
3672 | ||
a2f2d288 | 3673 | roundingMode = status->float_rounding_mode; |
158142c2 | 3674 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
3675 | switch (roundingMode) { |
3676 | case float_round_nearest_even: | |
f9288a76 | 3677 | case float_round_ties_away: |
dc355b76 PM |
3678 | roundIncrement = 0x200; |
3679 | break; | |
3680 | case float_round_to_zero: | |
3681 | roundIncrement = 0; | |
3682 | break; | |
3683 | case float_round_up: | |
3684 | roundIncrement = zSign ? 0 : 0x3ff; | |
3685 | break; | |
3686 | case float_round_down: | |
3687 | roundIncrement = zSign ? 0x3ff : 0; | |
3688 | break; | |
9ee6f678 BR |
3689 | case float_round_to_odd: |
3690 | roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; | |
3691 | break; | |
dc355b76 PM |
3692 | default: |
3693 | abort(); | |
158142c2 FB |
3694 | } |
3695 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 3696 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
3697 | if ( ( 0x7FD < zExp ) |
3698 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 3699 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 3700 | ) { |
9ee6f678 BR |
3701 | bool overflow_to_inf = roundingMode != float_round_to_odd && |
3702 | roundIncrement != 0; | |
ff32e16e | 3703 | float_raise(float_flag_overflow | float_flag_inexact, status); |
9ee6f678 | 3704 | return packFloat64(zSign, 0x7FF, -(!overflow_to_inf)); |
158142c2 FB |
3705 | } |
3706 | if ( zExp < 0 ) { | |
a2f2d288 | 3707 | if (status->flush_to_zero) { |
ff32e16e | 3708 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
3709 | return packFloat64(zSign, 0, 0); |
3710 | } | |
158142c2 | 3711 | isTiny = |
a2f2d288 PM |
3712 | (status->float_detect_tininess |
3713 | == float_tininess_before_rounding) | |
158142c2 FB |
3714 | || ( zExp < -1 ) |
3715 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
3716 | shift64RightJamming( zSig, - zExp, &zSig ); | |
3717 | zExp = 0; | |
3718 | roundBits = zSig & 0x3FF; | |
ff32e16e PM |
3719 | if (isTiny && roundBits) { |
3720 | float_raise(float_flag_underflow, status); | |
3721 | } | |
9ee6f678 BR |
3722 | if (roundingMode == float_round_to_odd) { |
3723 | /* | |
3724 | * For round-to-odd case, the roundIncrement depends on | |
3725 | * zSig which just changed. | |
3726 | */ | |
3727 | roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; | |
3728 | } | |
158142c2 FB |
3729 | } |
3730 | } | |
a2f2d288 PM |
3731 | if (roundBits) { |
3732 | status->float_exception_flags |= float_flag_inexact; | |
3733 | } | |
158142c2 FB |
3734 | zSig = ( zSig + roundIncrement )>>10; |
3735 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
3736 | if ( zSig == 0 ) zExp = 0; | |
3737 | return packFloat64( zSign, zExp, zSig ); | |
3738 | ||
3739 | } | |
3740 | ||
3741 | /*---------------------------------------------------------------------------- | |
3742 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3743 | | and significand `zSig', and returns the proper double-precision floating- | |
3744 | | point value corresponding to the abstract input. This routine is just like | |
3745 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
3746 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
3747 | | floating-point exponent. | |
3748 | *----------------------------------------------------------------------------*/ | |
3749 | ||
3750 | static float64 | |
0c48262d | 3751 | normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 3752 | float_status *status) |
158142c2 | 3753 | { |
8f506c70 | 3754 | int8_t shiftCount; |
158142c2 | 3755 | |
0019d5c3 | 3756 | shiftCount = clz64(zSig) - 1; |
ff32e16e PM |
3757 | return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, |
3758 | status); | |
158142c2 FB |
3759 | |
3760 | } | |
3761 | ||
158142c2 FB |
3762 | /*---------------------------------------------------------------------------- |
3763 | | Normalizes the subnormal extended double-precision floating-point value | |
3764 | | represented by the denormalized significand `aSig'. The normalized exponent | |
3765 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
3766 | | `zSigPtr', respectively. | |
3767 | *----------------------------------------------------------------------------*/ | |
3768 | ||
88857aca LV |
3769 | void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, |
3770 | uint64_t *zSigPtr) | |
158142c2 | 3771 | { |
8f506c70 | 3772 | int8_t shiftCount; |
158142c2 | 3773 | |
0019d5c3 | 3774 | shiftCount = clz64(aSig); |
158142c2 FB |
3775 | *zSigPtr = aSig<<shiftCount; |
3776 | *zExpPtr = 1 - shiftCount; | |
158142c2 FB |
3777 | } |
3778 | ||
3779 | /*---------------------------------------------------------------------------- | |
3780 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3781 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
3782 | | and returns the proper extended double-precision floating-point value | |
3783 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
3784 | | rounded and packed into the extended double-precision format, with the | |
3785 | | inexact exception raised if the abstract input cannot be represented | |
3786 | | exactly. However, if the abstract value is too large, the overflow and | |
3787 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3788 | | returned. If the abstract value is too small, the input value is rounded to | |
3789 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3790 | | the abstract input cannot be represented exactly as a subnormal extended | |
3791 | | double-precision floating-point number. | |
3792 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
3793 | | number of bits as single or double precision, respectively. Otherwise, the | |
3794 | | result is rounded to the full precision of the extended double-precision | |
3795 | | format. | |
3796 | | The input significand must be normalized or smaller. If the input | |
3797 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
3798 | | returned is a subnormal number, and it must not require rounding. The | |
3799 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
3800 | | Floating-Point Arithmetic. | |
3801 | *----------------------------------------------------------------------------*/ | |
3802 | ||
88857aca LV |
3803 | floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, |
3804 | int32_t zExp, uint64_t zSig0, uint64_t zSig1, | |
3805 | float_status *status) | |
158142c2 | 3806 | { |
8f506c70 | 3807 | int8_t roundingMode; |
158142c2 | 3808 | flag roundNearestEven, increment, isTiny; |
f42c2224 | 3809 | int64_t roundIncrement, roundMask, roundBits; |
158142c2 | 3810 | |
a2f2d288 | 3811 | roundingMode = status->float_rounding_mode; |
158142c2 FB |
3812 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
3813 | if ( roundingPrecision == 80 ) goto precision80; | |
3814 | if ( roundingPrecision == 64 ) { | |
3815 | roundIncrement = LIT64( 0x0000000000000400 ); | |
3816 | roundMask = LIT64( 0x00000000000007FF ); | |
3817 | } | |
3818 | else if ( roundingPrecision == 32 ) { | |
3819 | roundIncrement = LIT64( 0x0000008000000000 ); | |
3820 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
3821 | } | |
3822 | else { | |
3823 | goto precision80; | |
3824 | } | |
3825 | zSig0 |= ( zSig1 != 0 ); | |
dc355b76 PM |
3826 | switch (roundingMode) { |
3827 | case float_round_nearest_even: | |
f9288a76 | 3828 | case float_round_ties_away: |
dc355b76 PM |
3829 | break; |
3830 | case float_round_to_zero: | |
3831 | roundIncrement = 0; | |
3832 | break; | |
3833 | case float_round_up: | |
3834 | roundIncrement = zSign ? 0 : roundMask; | |
3835 | break; | |
3836 | case float_round_down: | |
3837 | roundIncrement = zSign ? roundMask : 0; | |
3838 | break; | |
3839 | default: | |
3840 | abort(); | |
158142c2 FB |
3841 | } |
3842 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 3843 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
3844 | if ( ( 0x7FFE < zExp ) |
3845 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
3846 | ) { | |
3847 | goto overflow; | |
3848 | } | |
3849 | if ( zExp <= 0 ) { | |
a2f2d288 | 3850 | if (status->flush_to_zero) { |
ff32e16e | 3851 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
3852 | return packFloatx80(zSign, 0, 0); |
3853 | } | |
158142c2 | 3854 | isTiny = |
a2f2d288 PM |
3855 | (status->float_detect_tininess |
3856 | == float_tininess_before_rounding) | |
158142c2 FB |
3857 | || ( zExp < 0 ) |
3858 | || ( zSig0 <= zSig0 + roundIncrement ); | |
3859 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
3860 | zExp = 0; | |
3861 | roundBits = zSig0 & roundMask; | |
ff32e16e PM |
3862 | if (isTiny && roundBits) { |
3863 | float_raise(float_flag_underflow, status); | |
3864 | } | |
a2f2d288 PM |
3865 | if (roundBits) { |
3866 | status->float_exception_flags |= float_flag_inexact; | |
3867 | } | |
158142c2 | 3868 | zSig0 += roundIncrement; |
bb98fe42 | 3869 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
3870 | roundIncrement = roundMask + 1; |
3871 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
3872 | roundMask |= roundIncrement; | |
3873 | } | |
3874 | zSig0 &= ~ roundMask; | |
3875 | return packFloatx80( zSign, zExp, zSig0 ); | |
3876 | } | |
3877 | } | |
a2f2d288 PM |
3878 | if (roundBits) { |
3879 | status->float_exception_flags |= float_flag_inexact; | |
3880 | } | |
158142c2 FB |
3881 | zSig0 += roundIncrement; |
3882 | if ( zSig0 < roundIncrement ) { | |
3883 | ++zExp; | |
3884 | zSig0 = LIT64( 0x8000000000000000 ); | |
3885 | } | |
3886 | roundIncrement = roundMask + 1; | |
3887 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
3888 | roundMask |= roundIncrement; | |
3889 | } | |
3890 | zSig0 &= ~ roundMask; | |
3891 | if ( zSig0 == 0 ) zExp = 0; | |
3892 | return packFloatx80( zSign, zExp, zSig0 ); | |
3893 | precision80: | |
dc355b76 PM |
3894 | switch (roundingMode) { |
3895 | case float_round_nearest_even: | |
f9288a76 | 3896 | case float_round_ties_away: |
dc355b76 PM |
3897 | increment = ((int64_t)zSig1 < 0); |
3898 | break; | |
3899 | case float_round_to_zero: | |
3900 | increment = 0; | |
3901 | break; | |
3902 | case float_round_up: | |
3903 | increment = !zSign && zSig1; | |
3904 | break; | |
3905 | case float_round_down: | |
3906 | increment = zSign && zSig1; | |
3907 | break; | |
3908 | default: | |
3909 | abort(); | |
158142c2 | 3910 | } |
bb98fe42 | 3911 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
3912 | if ( ( 0x7FFE < zExp ) |
3913 | || ( ( zExp == 0x7FFE ) | |
3914 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
3915 | && increment | |
3916 | ) | |
3917 | ) { | |
3918 | roundMask = 0; | |
3919 | overflow: | |
ff32e16e | 3920 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
3921 | if ( ( roundingMode == float_round_to_zero ) |
3922 | || ( zSign && ( roundingMode == float_round_up ) ) | |
3923 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
3924 | ) { | |
3925 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
3926 | } | |
0f605c88 LV |
3927 | return packFloatx80(zSign, |
3928 | floatx80_infinity_high, | |
3929 | floatx80_infinity_low); | |
158142c2 FB |
3930 | } |
3931 | if ( zExp <= 0 ) { | |
3932 | isTiny = | |
a2f2d288 PM |
3933 | (status->float_detect_tininess |
3934 | == float_tininess_before_rounding) | |
158142c2 FB |
3935 | || ( zExp < 0 ) |
3936 | || ! increment | |
3937 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
3938 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
3939 | zExp = 0; | |
ff32e16e PM |
3940 | if (isTiny && zSig1) { |
3941 | float_raise(float_flag_underflow, status); | |
3942 | } | |
a2f2d288 PM |
3943 | if (zSig1) { |
3944 | status->float_exception_flags |= float_flag_inexact; | |
3945 | } | |
dc355b76 PM |
3946 | switch (roundingMode) { |
3947 | case float_round_nearest_even: | |
f9288a76 | 3948 | case float_round_ties_away: |
dc355b76 PM |
3949 | increment = ((int64_t)zSig1 < 0); |
3950 | break; | |
3951 | case float_round_to_zero: | |
3952 | increment = 0; | |
3953 | break; | |
3954 | case float_round_up: | |
3955 | increment = !zSign && zSig1; | |
3956 | break; | |
3957 | case float_round_down: | |
3958 | increment = zSign && zSig1; | |
3959 | break; | |
3960 | default: | |
3961 | abort(); | |
158142c2 FB |
3962 | } |
3963 | if ( increment ) { | |
3964 | ++zSig0; | |
3965 | zSig0 &= | |
bb98fe42 AF |
3966 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
3967 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
3968 | } |
3969 | return packFloatx80( zSign, zExp, zSig0 ); | |
3970 | } | |
3971 | } | |
a2f2d288 PM |
3972 | if (zSig1) { |
3973 | status->float_exception_flags |= float_flag_inexact; | |
3974 | } | |
158142c2 FB |
3975 | if ( increment ) { |
3976 | ++zSig0; | |
3977 | if ( zSig0 == 0 ) { | |
3978 | ++zExp; | |
3979 | zSig0 = LIT64( 0x8000000000000000 ); | |
3980 | } | |
3981 | else { | |
bb98fe42 | 3982 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
3983 | } |
3984 | } | |
3985 | else { | |
3986 | if ( zSig0 == 0 ) zExp = 0; | |
3987 | } | |
3988 | return packFloatx80( zSign, zExp, zSig0 ); | |
3989 | ||
3990 | } | |
3991 | ||
3992 | /*---------------------------------------------------------------------------- | |
3993 | | Takes an abstract floating-point value having sign `zSign', exponent | |
3994 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
3995 | | and returns the proper extended double-precision floating-point value | |
3996 | | corresponding to the abstract input. This routine is just like | |
3997 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
3998 | | normalized. | |
3999 | *----------------------------------------------------------------------------*/ | |
4000 | ||
88857aca LV |
4001 | floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, |
4002 | flag zSign, int32_t zExp, | |
4003 | uint64_t zSig0, uint64_t zSig1, | |
4004 | float_status *status) | |
158142c2 | 4005 | { |
8f506c70 | 4006 | int8_t shiftCount; |
158142c2 FB |
4007 | |
4008 | if ( zSig0 == 0 ) { | |
4009 | zSig0 = zSig1; | |
4010 | zSig1 = 0; | |
4011 | zExp -= 64; | |
4012 | } | |
0019d5c3 | 4013 | shiftCount = clz64(zSig0); |
158142c2 FB |
4014 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); |
4015 | zExp -= shiftCount; | |
ff32e16e PM |
4016 | return roundAndPackFloatx80(roundingPrecision, zSign, zExp, |
4017 | zSig0, zSig1, status); | |
158142c2 FB |
4018 | |
4019 | } | |
4020 | ||
158142c2 FB |
4021 | /*---------------------------------------------------------------------------- |
4022 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
4023 | | floating-point value `a'. | |
4024 | *----------------------------------------------------------------------------*/ | |
4025 | ||
a49db98d | 4026 | static inline uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
4027 | { |
4028 | ||
4029 | return a.low; | |
4030 | ||
4031 | } | |
4032 | ||
4033 | /*---------------------------------------------------------------------------- | |
4034 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
4035 | | floating-point value `a'. | |
4036 | *----------------------------------------------------------------------------*/ | |
4037 | ||
a49db98d | 4038 | static inline uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
4039 | { |
4040 | ||
4041 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
4042 | ||
4043 | } | |
4044 | ||
4045 | /*---------------------------------------------------------------------------- | |
4046 | | Returns the exponent bits of the quadruple-precision floating-point value | |
4047 | | `a'. | |
4048 | *----------------------------------------------------------------------------*/ | |
4049 | ||
f4014512 | 4050 | static inline int32_t extractFloat128Exp( float128 a ) |
158142c2 FB |
4051 | { |
4052 | ||
4053 | return ( a.high>>48 ) & 0x7FFF; | |
4054 | ||
4055 | } | |
4056 | ||
4057 | /*---------------------------------------------------------------------------- | |
4058 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
4059 | *----------------------------------------------------------------------------*/ | |
4060 | ||
a49db98d | 4061 | static inline flag extractFloat128Sign( float128 a ) |
158142c2 FB |
4062 | { |
4063 | ||
4064 | return a.high>>63; | |
4065 | ||
4066 | } | |
4067 | ||
4068 | /*---------------------------------------------------------------------------- | |
4069 | | Normalizes the subnormal quadruple-precision floating-point value | |
4070 | | represented by the denormalized significand formed by the concatenation of | |
4071 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
4072 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
4073 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
4074 | | least significant 64 bits of the normalized significand are stored at the | |
4075 | | location pointed to by `zSig1Ptr'. | |
4076 | *----------------------------------------------------------------------------*/ | |
4077 | ||
4078 | static void | |
4079 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
4080 | uint64_t aSig0, |
4081 | uint64_t aSig1, | |
f4014512 | 4082 | int32_t *zExpPtr, |
bb98fe42 AF |
4083 | uint64_t *zSig0Ptr, |
4084 | uint64_t *zSig1Ptr | |
158142c2 FB |
4085 | ) |
4086 | { | |
8f506c70 | 4087 | int8_t shiftCount; |
158142c2 FB |
4088 | |
4089 | if ( aSig0 == 0 ) { | |
0019d5c3 | 4090 | shiftCount = clz64(aSig1) - 15; |
158142c2 FB |
4091 | if ( shiftCount < 0 ) { |
4092 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
4093 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
4094 | } | |
4095 | else { | |
4096 | *zSig0Ptr = aSig1<<shiftCount; | |
4097 | *zSig1Ptr = 0; | |
4098 | } | |
4099 | *zExpPtr = - shiftCount - 63; | |
4100 | } | |
4101 | else { | |
0019d5c3 | 4102 | shiftCount = clz64(aSig0) - 15; |
158142c2 FB |
4103 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); |
4104 | *zExpPtr = 1 - shiftCount; | |
4105 | } | |
4106 | ||
4107 | } | |
4108 | ||
4109 | /*---------------------------------------------------------------------------- | |
4110 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
4111 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
4112 | | floating-point value, returning the result. After being shifted into the | |
4113 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
4114 | | added together to form the most significant 32 bits of the result. This | |
4115 | | means that any integer portion of `zSig0' will be added into the exponent. | |
4116 | | Since a properly normalized significand will have an integer portion equal | |
4117 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
4118 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
4119 | | significand. | |
4120 | *----------------------------------------------------------------------------*/ | |
4121 | ||
a49db98d | 4122 | static inline float128 |
f4014512 | 4123 | packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
4124 | { |
4125 | float128 z; | |
4126 | ||
4127 | z.low = zSig1; | |
bb98fe42 | 4128 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
4129 | return z; |
4130 | ||
4131 | } | |
4132 | ||
4133 | /*---------------------------------------------------------------------------- | |
4134 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
4135 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
4136 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
4137 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
4138 | | simply rounded and packed into the quadruple-precision format, with the | |
4139 | | inexact exception raised if the abstract input cannot be represented | |
4140 | | exactly. However, if the abstract value is too large, the overflow and | |
4141 | | inexact exceptions are raised and an infinity or maximal finite value is | |
4142 | | returned. If the abstract value is too small, the input value is rounded to | |
4143 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
4144 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
4145 | | precision floating-point number. | |
4146 | | The input significand must be normalized or smaller. If the input | |
4147 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
4148 | | returned is a subnormal number, and it must not require rounding. In the | |
4149 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
4150 | | than the ``true'' floating-point exponent. The handling of underflow and | |
4151 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4152 | *----------------------------------------------------------------------------*/ | |
4153 | ||
f4014512 | 4154 | static float128 roundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
4155 | uint64_t zSig0, uint64_t zSig1, |
4156 | uint64_t zSig2, float_status *status) | |
158142c2 | 4157 | { |
8f506c70 | 4158 | int8_t roundingMode; |
158142c2 FB |
4159 | flag roundNearestEven, increment, isTiny; |
4160 | ||
a2f2d288 | 4161 | roundingMode = status->float_rounding_mode; |
158142c2 | 4162 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
4163 | switch (roundingMode) { |
4164 | case float_round_nearest_even: | |
f9288a76 | 4165 | case float_round_ties_away: |
dc355b76 PM |
4166 | increment = ((int64_t)zSig2 < 0); |
4167 | break; | |
4168 | case float_round_to_zero: | |
4169 | increment = 0; | |
4170 | break; | |
4171 | case float_round_up: | |
4172 | increment = !zSign && zSig2; | |
4173 | break; | |
4174 | case float_round_down: | |
4175 | increment = zSign && zSig2; | |
4176 | break; | |
9ee6f678 BR |
4177 | case float_round_to_odd: |
4178 | increment = !(zSig1 & 0x1) && zSig2; | |
4179 | break; | |
dc355b76 PM |
4180 | default: |
4181 | abort(); | |
158142c2 | 4182 | } |
bb98fe42 | 4183 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
4184 | if ( ( 0x7FFD < zExp ) |
4185 | || ( ( zExp == 0x7FFD ) | |
4186 | && eq128( | |
4187 | LIT64( 0x0001FFFFFFFFFFFF ), | |
4188 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
4189 | zSig0, | |
4190 | zSig1 | |
4191 | ) | |
4192 | && increment | |
4193 | ) | |
4194 | ) { | |
ff32e16e | 4195 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
4196 | if ( ( roundingMode == float_round_to_zero ) |
4197 | || ( zSign && ( roundingMode == float_round_up ) ) | |
4198 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
9ee6f678 | 4199 | || (roundingMode == float_round_to_odd) |
158142c2 FB |
4200 | ) { |
4201 | return | |
4202 | packFloat128( | |
4203 | zSign, | |
4204 | 0x7FFE, | |
4205 | LIT64( 0x0000FFFFFFFFFFFF ), | |
4206 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
4207 | ); | |
4208 | } | |
4209 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
4210 | } | |
4211 | if ( zExp < 0 ) { | |
a2f2d288 | 4212 | if (status->flush_to_zero) { |
ff32e16e | 4213 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
4214 | return packFloat128(zSign, 0, 0, 0); |
4215 | } | |
158142c2 | 4216 | isTiny = |
a2f2d288 PM |
4217 | (status->float_detect_tininess |
4218 | == float_tininess_before_rounding) | |
158142c2 FB |
4219 | || ( zExp < -1 ) |
4220 | || ! increment | |
4221 | || lt128( | |
4222 | zSig0, | |
4223 | zSig1, | |
4224 | LIT64( 0x0001FFFFFFFFFFFF ), | |
4225 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
4226 | ); | |
4227 | shift128ExtraRightJamming( | |
4228 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
4229 | zExp = 0; | |
ff32e16e PM |
4230 | if (isTiny && zSig2) { |
4231 | float_raise(float_flag_underflow, status); | |
4232 | } | |
dc355b76 PM |
4233 | switch (roundingMode) { |
4234 | case float_round_nearest_even: | |
f9288a76 | 4235 | case float_round_ties_away: |
dc355b76 PM |
4236 | increment = ((int64_t)zSig2 < 0); |
4237 | break; | |
4238 | case float_round_to_zero: | |
4239 | increment = 0; | |
4240 | break; | |
4241 | case float_round_up: | |
4242 | increment = !zSign && zSig2; | |
4243 | break; | |
4244 | case float_round_down: | |
4245 | increment = zSign && zSig2; | |
4246 | break; | |
9ee6f678 BR |
4247 | case float_round_to_odd: |
4248 | increment = !(zSig1 & 0x1) && zSig2; | |
4249 | break; | |
dc355b76 PM |
4250 | default: |
4251 | abort(); | |
158142c2 FB |
4252 | } |
4253 | } | |
4254 | } | |
a2f2d288 PM |
4255 | if (zSig2) { |
4256 | status->float_exception_flags |= float_flag_inexact; | |
4257 | } | |
158142c2 FB |
4258 | if ( increment ) { |
4259 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
4260 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
4261 | } | |
4262 | else { | |
4263 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
4264 | } | |
4265 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
4266 | ||
4267 | } | |
4268 | ||
4269 | /*---------------------------------------------------------------------------- | |
4270 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
4271 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
4272 | | returns the proper quadruple-precision floating-point value corresponding | |
4273 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
4274 | | except that the input significand has fewer bits and does not have to be | |
4275 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
4276 | | point exponent. | |
4277 | *----------------------------------------------------------------------------*/ | |
4278 | ||
f4014512 | 4279 | static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
4280 | uint64_t zSig0, uint64_t zSig1, |
4281 | float_status *status) | |
158142c2 | 4282 | { |
8f506c70 | 4283 | int8_t shiftCount; |
bb98fe42 | 4284 | uint64_t zSig2; |
158142c2 FB |
4285 | |
4286 | if ( zSig0 == 0 ) { | |
4287 | zSig0 = zSig1; | |
4288 | zSig1 = 0; | |
4289 | zExp -= 64; | |
4290 | } | |
0019d5c3 | 4291 | shiftCount = clz64(zSig0) - 15; |
158142c2 FB |
4292 | if ( 0 <= shiftCount ) { |
4293 | zSig2 = 0; | |
4294 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
4295 | } | |
4296 | else { | |
4297 | shift128ExtraRightJamming( | |
4298 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
4299 | } | |
4300 | zExp -= shiftCount; | |
ff32e16e | 4301 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
4302 | |
4303 | } | |
4304 | ||
158142c2 | 4305 | |
158142c2 FB |
4306 | /*---------------------------------------------------------------------------- |
4307 | | Returns the result of converting the 32-bit two's complement integer `a' | |
4308 | | to the extended double-precision floating-point format. The conversion | |
4309 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4310 | | Arithmetic. | |
4311 | *----------------------------------------------------------------------------*/ | |
4312 | ||
e5a41ffa | 4313 | floatx80 int32_to_floatx80(int32_t a, float_status *status) |
158142c2 FB |
4314 | { |
4315 | flag zSign; | |
3a87d009 | 4316 | uint32_t absA; |
8f506c70 | 4317 | int8_t shiftCount; |
bb98fe42 | 4318 | uint64_t zSig; |
158142c2 FB |
4319 | |
4320 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
4321 | zSign = ( a < 0 ); | |
4322 | absA = zSign ? - a : a; | |
0019d5c3 | 4323 | shiftCount = clz32(absA) + 32; |
158142c2 FB |
4324 | zSig = absA; |
4325 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
4326 | ||
4327 | } | |
4328 | ||
158142c2 FB |
4329 | /*---------------------------------------------------------------------------- |
4330 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
4331 | | the quadruple-precision floating-point format. The conversion is performed | |
4332 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4333 | *----------------------------------------------------------------------------*/ | |
4334 | ||
e5a41ffa | 4335 | float128 int32_to_float128(int32_t a, float_status *status) |
158142c2 FB |
4336 | { |
4337 | flag zSign; | |
3a87d009 | 4338 | uint32_t absA; |
8f506c70 | 4339 | int8_t shiftCount; |
bb98fe42 | 4340 | uint64_t zSig0; |
158142c2 FB |
4341 | |
4342 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
4343 | zSign = ( a < 0 ); | |
4344 | absA = zSign ? - a : a; | |
0019d5c3 | 4345 | shiftCount = clz32(absA) + 17; |
158142c2 FB |
4346 | zSig0 = absA; |
4347 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
4348 | ||
4349 | } | |
4350 | ||
158142c2 FB |
4351 | /*---------------------------------------------------------------------------- |
4352 | | Returns the result of converting the 64-bit two's complement integer `a' | |
4353 | | to the extended double-precision floating-point format. The conversion | |
4354 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4355 | | Arithmetic. | |
4356 | *----------------------------------------------------------------------------*/ | |
4357 | ||
e5a41ffa | 4358 | floatx80 int64_to_floatx80(int64_t a, float_status *status) |
158142c2 FB |
4359 | { |
4360 | flag zSign; | |
182f42fd | 4361 | uint64_t absA; |
8f506c70 | 4362 | int8_t shiftCount; |
158142c2 FB |
4363 | |
4364 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
4365 | zSign = ( a < 0 ); | |
4366 | absA = zSign ? - a : a; | |
0019d5c3 | 4367 | shiftCount = clz64(absA); |
158142c2 FB |
4368 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); |
4369 | ||
4370 | } | |
4371 | ||
158142c2 FB |
4372 | /*---------------------------------------------------------------------------- |
4373 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
4374 | | the quadruple-precision floating-point format. The conversion is performed | |
4375 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4376 | *----------------------------------------------------------------------------*/ | |
4377 | ||
e5a41ffa | 4378 | float128 int64_to_float128(int64_t a, float_status *status) |
158142c2 FB |
4379 | { |
4380 | flag zSign; | |
182f42fd | 4381 | uint64_t absA; |
8f506c70 | 4382 | int8_t shiftCount; |
f4014512 | 4383 | int32_t zExp; |
bb98fe42 | 4384 | uint64_t zSig0, zSig1; |
158142c2 FB |
4385 | |
4386 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
4387 | zSign = ( a < 0 ); | |
4388 | absA = zSign ? - a : a; | |
0019d5c3 | 4389 | shiftCount = clz64(absA) + 49; |
158142c2 FB |
4390 | zExp = 0x406E - shiftCount; |
4391 | if ( 64 <= shiftCount ) { | |
4392 | zSig1 = 0; | |
4393 | zSig0 = absA; | |
4394 | shiftCount -= 64; | |
4395 | } | |
4396 | else { | |
4397 | zSig1 = absA; | |
4398 | zSig0 = 0; | |
4399 | } | |
4400 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
4401 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
4402 | ||
4403 | } | |
4404 | ||
6bb8e0f1 PM |
4405 | /*---------------------------------------------------------------------------- |
4406 | | Returns the result of converting the 64-bit unsigned integer `a' | |
4407 | | to the quadruple-precision floating-point format. The conversion is performed | |
4408 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4409 | *----------------------------------------------------------------------------*/ | |
4410 | ||
e5a41ffa | 4411 | float128 uint64_to_float128(uint64_t a, float_status *status) |
1e397ead RH |
4412 | { |
4413 | if (a == 0) { | |
4414 | return float128_zero; | |
4415 | } | |
6603d506 | 4416 | return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status); |
1e397ead RH |
4417 | } |
4418 | ||
158142c2 FB |
4419 | /*---------------------------------------------------------------------------- |
4420 | | Returns the result of converting the single-precision floating-point value | |
4421 | | `a' to the extended double-precision floating-point format. The conversion | |
4422 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4423 | | Arithmetic. | |
4424 | *----------------------------------------------------------------------------*/ | |
4425 | ||
e5a41ffa | 4426 | floatx80 float32_to_floatx80(float32 a, float_status *status) |
158142c2 FB |
4427 | { |
4428 | flag aSign; | |
0c48262d | 4429 | int aExp; |
bb98fe42 | 4430 | uint32_t aSig; |
158142c2 | 4431 | |
ff32e16e | 4432 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
4433 | aSig = extractFloat32Frac( a ); |
4434 | aExp = extractFloat32Exp( a ); | |
4435 | aSign = extractFloat32Sign( a ); | |
4436 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
4437 | if (aSig) { |
4438 | return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); | |
4439 | } | |
0f605c88 LV |
4440 | return packFloatx80(aSign, |
4441 | floatx80_infinity_high, | |
4442 | floatx80_infinity_low); | |
158142c2 FB |
4443 | } |
4444 | if ( aExp == 0 ) { | |
4445 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
4446 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
4447 | } | |
4448 | aSig |= 0x00800000; | |
bb98fe42 | 4449 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
4450 | |
4451 | } | |
4452 | ||
158142c2 FB |
4453 | /*---------------------------------------------------------------------------- |
4454 | | Returns the result of converting the single-precision floating-point value | |
4455 | | `a' to the double-precision floating-point format. The conversion is | |
4456 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4457 | | Arithmetic. | |
4458 | *----------------------------------------------------------------------------*/ | |
4459 | ||
e5a41ffa | 4460 | float128 float32_to_float128(float32 a, float_status *status) |
158142c2 FB |
4461 | { |
4462 | flag aSign; | |
0c48262d | 4463 | int aExp; |
bb98fe42 | 4464 | uint32_t aSig; |
158142c2 | 4465 | |
ff32e16e | 4466 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
4467 | aSig = extractFloat32Frac( a ); |
4468 | aExp = extractFloat32Exp( a ); | |
4469 | aSign = extractFloat32Sign( a ); | |
4470 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
4471 | if (aSig) { |
4472 | return commonNaNToFloat128(float32ToCommonNaN(a, status), status); | |
4473 | } | |
158142c2 FB |
4474 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
4475 | } | |
4476 | if ( aExp == 0 ) { | |
4477 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
4478 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
4479 | --aExp; | |
4480 | } | |
bb98fe42 | 4481 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
4482 | |
4483 | } | |
4484 | ||
158142c2 FB |
4485 | /*---------------------------------------------------------------------------- |
4486 | | Returns the remainder of the single-precision floating-point value `a' | |
4487 | | with respect to the corresponding value `b'. The operation is performed | |
4488 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4489 | *----------------------------------------------------------------------------*/ | |
4490 | ||
e5a41ffa | 4491 | float32 float32_rem(float32 a, float32 b, float_status *status) |
158142c2 | 4492 | { |
ed086f3d | 4493 | flag aSign, zSign; |
0c48262d | 4494 | int aExp, bExp, expDiff; |
bb98fe42 AF |
4495 | uint32_t aSig, bSig; |
4496 | uint32_t q; | |
4497 | uint64_t aSig64, bSig64, q64; | |
4498 | uint32_t alternateASig; | |
4499 | int32_t sigMean; | |
ff32e16e PM |
4500 | a = float32_squash_input_denormal(a, status); |
4501 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
4502 | |
4503 | aSig = extractFloat32Frac( a ); | |
4504 | aExp = extractFloat32Exp( a ); | |
4505 | aSign = extractFloat32Sign( a ); | |
4506 | bSig = extractFloat32Frac( b ); | |
4507 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
4508 | if ( aExp == 0xFF ) { |
4509 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 4510 | return propagateFloat32NaN(a, b, status); |
158142c2 | 4511 | } |
ff32e16e | 4512 | float_raise(float_flag_invalid, status); |
af39bc8c | 4513 | return float32_default_nan(status); |
158142c2 FB |
4514 | } |
4515 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
4516 | if (bSig) { |
4517 | return propagateFloat32NaN(a, b, status); | |
4518 | } | |
158142c2 FB |
4519 | return a; |
4520 | } | |
4521 | if ( bExp == 0 ) { | |
4522 | if ( bSig == 0 ) { | |
ff32e16e | 4523 | float_raise(float_flag_invalid, status); |
af39bc8c | 4524 | return float32_default_nan(status); |
158142c2 FB |
4525 | } |
4526 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
4527 | } | |
4528 | if ( aExp == 0 ) { | |
4529 | if ( aSig == 0 ) return a; | |
4530 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
4531 | } | |
4532 | expDiff = aExp - bExp; | |
4533 | aSig |= 0x00800000; | |
4534 | bSig |= 0x00800000; | |
4535 | if ( expDiff < 32 ) { | |
4536 | aSig <<= 8; | |
4537 | bSig <<= 8; | |
4538 | if ( expDiff < 0 ) { | |
4539 | if ( expDiff < -1 ) return a; | |
4540 | aSig >>= 1; | |
4541 | } | |
4542 | q = ( bSig <= aSig ); | |
4543 | if ( q ) aSig -= bSig; | |
4544 | if ( 0 < expDiff ) { | |
bb98fe42 | 4545 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
4546 | q >>= 32 - expDiff; |
4547 | bSig >>= 2; | |
4548 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
4549 | } | |
4550 | else { | |
4551 | aSig >>= 2; | |
4552 | bSig >>= 2; | |
4553 | } | |
4554 | } | |
4555 | else { | |
4556 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
4557 | aSig64 = ( (uint64_t) aSig )<<40; |
4558 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
4559 | expDiff -= 64; |
4560 | while ( 0 < expDiff ) { | |
4561 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
4562 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
4563 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
4564 | expDiff -= 62; | |
4565 | } | |
4566 | expDiff += 64; | |
4567 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
4568 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
4569 | q = q64>>( 64 - expDiff ); | |
4570 | bSig <<= 6; | |
4571 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
4572 | } | |
4573 | do { | |
4574 | alternateASig = aSig; | |
4575 | ++q; | |
4576 | aSig -= bSig; | |
bb98fe42 | 4577 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
4578 | sigMean = aSig + alternateASig; |
4579 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
4580 | aSig = alternateASig; | |
4581 | } | |
bb98fe42 | 4582 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 | 4583 | if ( zSign ) aSig = - aSig; |
ff32e16e | 4584 | return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
4585 | } |
4586 | ||
369be8f6 | 4587 | |
158142c2 | 4588 | |
8229c991 AJ |
4589 | /*---------------------------------------------------------------------------- |
4590 | | Returns the binary exponential of the single-precision floating-point value | |
4591 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
4592 | | Binary Floating-Point Arithmetic. | |
4593 | | | |
4594 | | Uses the following identities: | |
4595 | | | |
4596 | | 1. ------------------------------------------------------------------------- | |
4597 | | x x*ln(2) | |
4598 | | 2 = e | |
4599 | | | |
4600 | | 2. ------------------------------------------------------------------------- | |
4601 | | 2 3 4 5 n | |
4602 | | x x x x x x x | |
4603 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
4604 | | 1! 2! 3! 4! 5! n! | |
4605 | *----------------------------------------------------------------------------*/ | |
4606 | ||
4607 | static const float64 float32_exp2_coefficients[15] = | |
4608 | { | |
d5138cf4 PM |
4609 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
4610 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
4611 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
4612 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
4613 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
4614 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
4615 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
4616 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
4617 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
4618 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
4619 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
4620 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
4621 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
4622 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
4623 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
4624 | }; |
4625 | ||
e5a41ffa | 4626 | float32 float32_exp2(float32 a, float_status *status) |
8229c991 AJ |
4627 | { |
4628 | flag aSign; | |
0c48262d | 4629 | int aExp; |
bb98fe42 | 4630 | uint32_t aSig; |
8229c991 AJ |
4631 | float64 r, x, xn; |
4632 | int i; | |
ff32e16e | 4633 | a = float32_squash_input_denormal(a, status); |
8229c991 AJ |
4634 | |
4635 | aSig = extractFloat32Frac( a ); | |
4636 | aExp = extractFloat32Exp( a ); | |
4637 | aSign = extractFloat32Sign( a ); | |
4638 | ||
4639 | if ( aExp == 0xFF) { | |
ff32e16e PM |
4640 | if (aSig) { |
4641 | return propagateFloat32NaN(a, float32_zero, status); | |
4642 | } | |
8229c991 AJ |
4643 | return (aSign) ? float32_zero : a; |
4644 | } | |
4645 | if (aExp == 0) { | |
4646 | if (aSig == 0) return float32_one; | |
4647 | } | |
4648 | ||
ff32e16e | 4649 | float_raise(float_flag_inexact, status); |
8229c991 AJ |
4650 | |
4651 | /* ******************************* */ | |
4652 | /* using float64 for approximation */ | |
4653 | /* ******************************* */ | |
ff32e16e PM |
4654 | x = float32_to_float64(a, status); |
4655 | x = float64_mul(x, float64_ln2, status); | |
8229c991 AJ |
4656 | |
4657 | xn = x; | |
4658 | r = float64_one; | |
4659 | for (i = 0 ; i < 15 ; i++) { | |
4660 | float64 f; | |
4661 | ||
ff32e16e PM |
4662 | f = float64_mul(xn, float32_exp2_coefficients[i], status); |
4663 | r = float64_add(r, f, status); | |
8229c991 | 4664 | |
ff32e16e | 4665 | xn = float64_mul(xn, x, status); |
8229c991 AJ |
4666 | } |
4667 | ||
4668 | return float64_to_float32(r, status); | |
4669 | } | |
4670 | ||
374dfc33 AJ |
4671 | /*---------------------------------------------------------------------------- |
4672 | | Returns the binary log of the single-precision floating-point value `a'. | |
4673 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4674 | | Floating-Point Arithmetic. | |
4675 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 4676 | float32 float32_log2(float32 a, float_status *status) |
374dfc33 AJ |
4677 | { |
4678 | flag aSign, zSign; | |
0c48262d | 4679 | int aExp; |
bb98fe42 | 4680 | uint32_t aSig, zSig, i; |
374dfc33 | 4681 | |
ff32e16e | 4682 | a = float32_squash_input_denormal(a, status); |
374dfc33 AJ |
4683 | aSig = extractFloat32Frac( a ); |
4684 | aExp = extractFloat32Exp( a ); | |
4685 | aSign = extractFloat32Sign( a ); | |
4686 | ||
4687 | if ( aExp == 0 ) { | |
4688 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
4689 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
4690 | } | |
4691 | if ( aSign ) { | |
ff32e16e | 4692 | float_raise(float_flag_invalid, status); |
af39bc8c | 4693 | return float32_default_nan(status); |
374dfc33 AJ |
4694 | } |
4695 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
4696 | if (aSig) { |
4697 | return propagateFloat32NaN(a, float32_zero, status); | |
4698 | } | |
374dfc33 AJ |
4699 | return a; |
4700 | } | |
4701 | ||
4702 | aExp -= 0x7F; | |
4703 | aSig |= 0x00800000; | |
4704 | zSign = aExp < 0; | |
4705 | zSig = aExp << 23; | |
4706 | ||
4707 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 4708 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
4709 | if ( aSig & 0x01000000 ) { |
4710 | aSig >>= 1; | |
4711 | zSig |= i; | |
4712 | } | |
4713 | } | |
4714 | ||
4715 | if ( zSign ) | |
4716 | zSig = -zSig; | |
4717 | ||
ff32e16e | 4718 | return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); |
374dfc33 AJ |
4719 | } |
4720 | ||
158142c2 FB |
4721 | /*---------------------------------------------------------------------------- |
4722 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
4723 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4724 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4725 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4726 | *----------------------------------------------------------------------------*/ | |
4727 | ||
e5a41ffa | 4728 | int float32_eq(float32 a, float32 b, float_status *status) |
158142c2 | 4729 | { |
b689362d | 4730 | uint32_t av, bv; |
ff32e16e PM |
4731 | a = float32_squash_input_denormal(a, status); |
4732 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
4733 | |
4734 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
4735 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4736 | ) { | |
ff32e16e | 4737 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4738 | return 0; |
4739 | } | |
b689362d AJ |
4740 | av = float32_val(a); |
4741 | bv = float32_val(b); | |
4742 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
4743 | } |
4744 | ||
4745 | /*---------------------------------------------------------------------------- | |
4746 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
4747 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
4748 | | exception is raised if either operand is a NaN. The comparison is performed | |
4749 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4750 | *----------------------------------------------------------------------------*/ |
4751 | ||
e5a41ffa | 4752 | int float32_le(float32 a, float32 b, float_status *status) |
158142c2 FB |
4753 | { |
4754 | flag aSign, bSign; | |
bb98fe42 | 4755 | uint32_t av, bv; |
ff32e16e PM |
4756 | a = float32_squash_input_denormal(a, status); |
4757 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
4758 | |
4759 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
4760 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4761 | ) { | |
ff32e16e | 4762 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4763 | return 0; |
4764 | } | |
4765 | aSign = extractFloat32Sign( a ); | |
4766 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
4767 | av = float32_val(a); |
4768 | bv = float32_val(b); | |
bb98fe42 | 4769 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4770 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4771 | |
4772 | } | |
4773 | ||
4774 | /*---------------------------------------------------------------------------- | |
4775 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
4776 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4777 | | raised if either operand is a NaN. The comparison is performed according | |
4778 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4779 | *----------------------------------------------------------------------------*/ |
4780 | ||
e5a41ffa | 4781 | int float32_lt(float32 a, float32 b, float_status *status) |
158142c2 FB |
4782 | { |
4783 | flag aSign, bSign; | |
bb98fe42 | 4784 | uint32_t av, bv; |
ff32e16e PM |
4785 | a = float32_squash_input_denormal(a, status); |
4786 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
4787 | |
4788 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
4789 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4790 | ) { | |
ff32e16e | 4791 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4792 | return 0; |
4793 | } | |
4794 | aSign = extractFloat32Sign( a ); | |
4795 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
4796 | av = float32_val(a); |
4797 | bv = float32_val(b); | |
bb98fe42 | 4798 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4799 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4800 | |
4801 | } | |
4802 | ||
67b7861d AJ |
4803 | /*---------------------------------------------------------------------------- |
4804 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4805 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4806 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4807 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4808 | *----------------------------------------------------------------------------*/ |
4809 | ||
e5a41ffa | 4810 | int float32_unordered(float32 a, float32 b, float_status *status) |
67b7861d | 4811 | { |
ff32e16e PM |
4812 | a = float32_squash_input_denormal(a, status); |
4813 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
4814 | |
4815 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
4816 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4817 | ) { | |
ff32e16e | 4818 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4819 | return 1; |
4820 | } | |
4821 | return 0; | |
4822 | } | |
b689362d | 4823 | |
158142c2 FB |
4824 | /*---------------------------------------------------------------------------- |
4825 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
4826 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4827 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
4828 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4829 | *----------------------------------------------------------------------------*/ |
4830 | ||
e5a41ffa | 4831 | int float32_eq_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 4832 | { |
ff32e16e PM |
4833 | a = float32_squash_input_denormal(a, status); |
4834 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
4835 | |
4836 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
4837 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4838 | ) { | |
af39bc8c AM |
4839 | if (float32_is_signaling_nan(a, status) |
4840 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 4841 | float_raise(float_flag_invalid, status); |
b689362d | 4842 | } |
158142c2 FB |
4843 | return 0; |
4844 | } | |
b689362d AJ |
4845 | return ( float32_val(a) == float32_val(b) ) || |
4846 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
4847 | } |
4848 | ||
4849 | /*---------------------------------------------------------------------------- | |
4850 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
4851 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4852 | | cause an exception. Otherwise, the comparison is performed according to the | |
4853 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4854 | *----------------------------------------------------------------------------*/ | |
4855 | ||
e5a41ffa | 4856 | int float32_le_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
4857 | { |
4858 | flag aSign, bSign; | |
bb98fe42 | 4859 | uint32_t av, bv; |
ff32e16e PM |
4860 | a = float32_squash_input_denormal(a, status); |
4861 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
4862 | |
4863 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
4864 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4865 | ) { | |
af39bc8c AM |
4866 | if (float32_is_signaling_nan(a, status) |
4867 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 4868 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4869 | } |
4870 | return 0; | |
4871 | } | |
4872 | aSign = extractFloat32Sign( a ); | |
4873 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
4874 | av = float32_val(a); |
4875 | bv = float32_val(b); | |
bb98fe42 | 4876 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4877 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4878 | |
4879 | } | |
4880 | ||
4881 | /*---------------------------------------------------------------------------- | |
4882 | | Returns 1 if the single-precision floating-point value `a' is less than | |
4883 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4884 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
ab52f973 | 4885 | | Standard for Binary Floating-Point Arithmetic. |
158142c2 FB |
4886 | *----------------------------------------------------------------------------*/ |
4887 | ||
ab52f973 | 4888 | int float32_lt_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 4889 | { |
ab52f973 AB |
4890 | flag aSign, bSign; |
4891 | uint32_t av, bv; | |
4892 | a = float32_squash_input_denormal(a, status); | |
4893 | b = float32_squash_input_denormal(b, status); | |
158142c2 | 4894 | |
ab52f973 AB |
4895 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
4896 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4897 | ) { | |
4898 | if (float32_is_signaling_nan(a, status) | |
4899 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 4900 | float_raise(float_flag_invalid, status); |
158142c2 | 4901 | } |
ab52f973 | 4902 | return 0; |
158142c2 | 4903 | } |
ab52f973 AB |
4904 | aSign = extractFloat32Sign( a ); |
4905 | bSign = extractFloat32Sign( b ); | |
4906 | av = float32_val(a); | |
4907 | bv = float32_val(b); | |
4908 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); | |
4909 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
4910 | |
4911 | } | |
4912 | ||
4913 | /*---------------------------------------------------------------------------- | |
ab52f973 AB |
4914 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot |
4915 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4916 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4917 | | Floating-Point Arithmetic. | |
158142c2 FB |
4918 | *----------------------------------------------------------------------------*/ |
4919 | ||
ab52f973 | 4920 | int float32_unordered_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 4921 | { |
ab52f973 AB |
4922 | a = float32_squash_input_denormal(a, status); |
4923 | b = float32_squash_input_denormal(b, status); | |
158142c2 | 4924 | |
ab52f973 AB |
4925 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
4926 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
4927 | ) { | |
4928 | if (float32_is_signaling_nan(a, status) | |
4929 | || float32_is_signaling_nan(b, status)) { | |
4930 | float_raise(float_flag_invalid, status); | |
158142c2 | 4931 | } |
ab52f973 | 4932 | return 1; |
158142c2 | 4933 | } |
ab52f973 | 4934 | return 0; |
158142c2 FB |
4935 | } |
4936 | ||
210cbd49 AB |
4937 | /*---------------------------------------------------------------------------- |
4938 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
4939 | | input-denormal exception and return zero. Otherwise just return the value. | |
4940 | *----------------------------------------------------------------------------*/ | |
4941 | float16 float16_squash_input_denormal(float16 a, float_status *status) | |
4942 | { | |
4943 | if (status->flush_inputs_to_zero) { | |
4944 | if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) { | |
4945 | float_raise(float_flag_input_denormal, status); | |
4946 | return make_float16(float16_val(a) & 0x8000); | |
4947 | } | |
4948 | } | |
4949 | return a; | |
4950 | } | |
4951 | ||
158142c2 FB |
4952 | /*---------------------------------------------------------------------------- |
4953 | | Returns the result of converting the double-precision floating-point value | |
4954 | | `a' to the extended double-precision floating-point format. The conversion | |
4955 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4956 | | Arithmetic. | |
4957 | *----------------------------------------------------------------------------*/ | |
4958 | ||
e5a41ffa | 4959 | floatx80 float64_to_floatx80(float64 a, float_status *status) |
158142c2 FB |
4960 | { |
4961 | flag aSign; | |
0c48262d | 4962 | int aExp; |
bb98fe42 | 4963 | uint64_t aSig; |
158142c2 | 4964 | |
ff32e16e | 4965 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4966 | aSig = extractFloat64Frac( a ); |
4967 | aExp = extractFloat64Exp( a ); | |
4968 | aSign = extractFloat64Sign( a ); | |
4969 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4970 | if (aSig) { |
4971 | return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); | |
4972 | } | |
0f605c88 LV |
4973 | return packFloatx80(aSign, |
4974 | floatx80_infinity_high, | |
4975 | floatx80_infinity_low); | |
158142c2 FB |
4976 | } |
4977 | if ( aExp == 0 ) { | |
4978 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
4979 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4980 | } | |
4981 | return | |
4982 | packFloatx80( | |
4983 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
4984 | ||
4985 | } | |
4986 | ||
158142c2 FB |
4987 | /*---------------------------------------------------------------------------- |
4988 | | Returns the result of converting the double-precision floating-point value | |
4989 | | `a' to the quadruple-precision floating-point format. The conversion is | |
4990 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4991 | | Arithmetic. | |
4992 | *----------------------------------------------------------------------------*/ | |
4993 | ||
e5a41ffa | 4994 | float128 float64_to_float128(float64 a, float_status *status) |
158142c2 FB |
4995 | { |
4996 | flag aSign; | |
0c48262d | 4997 | int aExp; |
bb98fe42 | 4998 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 4999 | |
ff32e16e | 5000 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
5001 | aSig = extractFloat64Frac( a ); |
5002 | aExp = extractFloat64Exp( a ); | |
5003 | aSign = extractFloat64Sign( a ); | |
5004 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
5005 | if (aSig) { |
5006 | return commonNaNToFloat128(float64ToCommonNaN(a, status), status); | |
5007 | } | |
158142c2 FB |
5008 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
5009 | } | |
5010 | if ( aExp == 0 ) { | |
5011 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
5012 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
5013 | --aExp; | |
5014 | } | |
5015 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
5016 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
5017 | ||
5018 | } | |
5019 | ||
158142c2 FB |
5020 | |
5021 | /*---------------------------------------------------------------------------- | |
5022 | | Returns the remainder of the double-precision floating-point value `a' | |
5023 | | with respect to the corresponding value `b'. The operation is performed | |
5024 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5025 | *----------------------------------------------------------------------------*/ | |
5026 | ||
e5a41ffa | 5027 | float64 float64_rem(float64 a, float64 b, float_status *status) |
158142c2 | 5028 | { |
ed086f3d | 5029 | flag aSign, zSign; |
0c48262d | 5030 | int aExp, bExp, expDiff; |
bb98fe42 AF |
5031 | uint64_t aSig, bSig; |
5032 | uint64_t q, alternateASig; | |
5033 | int64_t sigMean; | |
158142c2 | 5034 | |
ff32e16e PM |
5035 | a = float64_squash_input_denormal(a, status); |
5036 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5037 | aSig = extractFloat64Frac( a ); |
5038 | aExp = extractFloat64Exp( a ); | |
5039 | aSign = extractFloat64Sign( a ); | |
5040 | bSig = extractFloat64Frac( b ); | |
5041 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
5042 | if ( aExp == 0x7FF ) { |
5043 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 5044 | return propagateFloat64NaN(a, b, status); |
158142c2 | 5045 | } |
ff32e16e | 5046 | float_raise(float_flag_invalid, status); |
af39bc8c | 5047 | return float64_default_nan(status); |
158142c2 FB |
5048 | } |
5049 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
5050 | if (bSig) { |
5051 | return propagateFloat64NaN(a, b, status); | |
5052 | } | |
158142c2 FB |
5053 | return a; |
5054 | } | |
5055 | if ( bExp == 0 ) { | |
5056 | if ( bSig == 0 ) { | |
ff32e16e | 5057 | float_raise(float_flag_invalid, status); |
af39bc8c | 5058 | return float64_default_nan(status); |
158142c2 FB |
5059 | } |
5060 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
5061 | } | |
5062 | if ( aExp == 0 ) { | |
5063 | if ( aSig == 0 ) return a; | |
5064 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
5065 | } | |
5066 | expDiff = aExp - bExp; | |
5067 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
5068 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
5069 | if ( expDiff < 0 ) { | |
5070 | if ( expDiff < -1 ) return a; | |
5071 | aSig >>= 1; | |
5072 | } | |
5073 | q = ( bSig <= aSig ); | |
5074 | if ( q ) aSig -= bSig; | |
5075 | expDiff -= 64; | |
5076 | while ( 0 < expDiff ) { | |
5077 | q = estimateDiv128To64( aSig, 0, bSig ); | |
5078 | q = ( 2 < q ) ? q - 2 : 0; | |
5079 | aSig = - ( ( bSig>>2 ) * q ); | |
5080 | expDiff -= 62; | |
5081 | } | |
5082 | expDiff += 64; | |
5083 | if ( 0 < expDiff ) { | |
5084 | q = estimateDiv128To64( aSig, 0, bSig ); | |
5085 | q = ( 2 < q ) ? q - 2 : 0; | |
5086 | q >>= 64 - expDiff; | |
5087 | bSig >>= 2; | |
5088 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
5089 | } | |
5090 | else { | |
5091 | aSig >>= 2; | |
5092 | bSig >>= 2; | |
5093 | } | |
5094 | do { | |
5095 | alternateASig = aSig; | |
5096 | ++q; | |
5097 | aSig -= bSig; | |
bb98fe42 | 5098 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
5099 | sigMean = aSig + alternateASig; |
5100 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
5101 | aSig = alternateASig; | |
5102 | } | |
bb98fe42 | 5103 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 | 5104 | if ( zSign ) aSig = - aSig; |
ff32e16e | 5105 | return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
5106 | |
5107 | } | |
5108 | ||
374dfc33 AJ |
5109 | /*---------------------------------------------------------------------------- |
5110 | | Returns the binary log of the double-precision floating-point value `a'. | |
5111 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
5112 | | Floating-Point Arithmetic. | |
5113 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 5114 | float64 float64_log2(float64 a, float_status *status) |
374dfc33 AJ |
5115 | { |
5116 | flag aSign, zSign; | |
0c48262d | 5117 | int aExp; |
bb98fe42 | 5118 | uint64_t aSig, aSig0, aSig1, zSig, i; |
ff32e16e | 5119 | a = float64_squash_input_denormal(a, status); |
374dfc33 AJ |
5120 | |
5121 | aSig = extractFloat64Frac( a ); | |
5122 | aExp = extractFloat64Exp( a ); | |
5123 | aSign = extractFloat64Sign( a ); | |
5124 | ||
5125 | if ( aExp == 0 ) { | |
5126 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
5127 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
5128 | } | |
5129 | if ( aSign ) { | |
ff32e16e | 5130 | float_raise(float_flag_invalid, status); |
af39bc8c | 5131 | return float64_default_nan(status); |
374dfc33 AJ |
5132 | } |
5133 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
5134 | if (aSig) { |
5135 | return propagateFloat64NaN(a, float64_zero, status); | |
5136 | } | |
374dfc33 AJ |
5137 | return a; |
5138 | } | |
5139 | ||
5140 | aExp -= 0x3FF; | |
5141 | aSig |= LIT64( 0x0010000000000000 ); | |
5142 | zSign = aExp < 0; | |
bb98fe42 | 5143 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
5144 | for (i = 1LL << 51; i > 0; i >>= 1) { |
5145 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
5146 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
5147 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
5148 | aSig >>= 1; | |
5149 | zSig |= i; | |
5150 | } | |
5151 | } | |
5152 | ||
5153 | if ( zSign ) | |
5154 | zSig = -zSig; | |
ff32e16e | 5155 | return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); |
374dfc33 AJ |
5156 | } |
5157 | ||
158142c2 FB |
5158 | /*---------------------------------------------------------------------------- |
5159 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
5160 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
5161 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
5162 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
5163 | *----------------------------------------------------------------------------*/ | |
5164 | ||
e5a41ffa | 5165 | int float64_eq(float64 a, float64 b, float_status *status) |
158142c2 | 5166 | { |
bb98fe42 | 5167 | uint64_t av, bv; |
ff32e16e PM |
5168 | a = float64_squash_input_denormal(a, status); |
5169 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5170 | |
5171 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5172 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5173 | ) { | |
ff32e16e | 5174 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5175 | return 0; |
5176 | } | |
f090c9d4 | 5177 | av = float64_val(a); |
a1b91bb4 | 5178 | bv = float64_val(b); |
bb98fe42 | 5179 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
5180 | |
5181 | } | |
5182 | ||
5183 | /*---------------------------------------------------------------------------- | |
5184 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
5185 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
5186 | | exception is raised if either operand is a NaN. The comparison is performed | |
5187 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5188 | *----------------------------------------------------------------------------*/ |
5189 | ||
e5a41ffa | 5190 | int float64_le(float64 a, float64 b, float_status *status) |
158142c2 FB |
5191 | { |
5192 | flag aSign, bSign; | |
bb98fe42 | 5193 | uint64_t av, bv; |
ff32e16e PM |
5194 | a = float64_squash_input_denormal(a, status); |
5195 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5196 | |
5197 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5198 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5199 | ) { | |
ff32e16e | 5200 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5201 | return 0; |
5202 | } | |
5203 | aSign = extractFloat64Sign( a ); | |
5204 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 5205 | av = float64_val(a); |
a1b91bb4 | 5206 | bv = float64_val(b); |
bb98fe42 | 5207 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 5208 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
5209 | |
5210 | } | |
5211 | ||
5212 | /*---------------------------------------------------------------------------- | |
5213 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
5214 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
5215 | | raised if either operand is a NaN. The comparison is performed according | |
5216 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5217 | *----------------------------------------------------------------------------*/ |
5218 | ||
e5a41ffa | 5219 | int float64_lt(float64 a, float64 b, float_status *status) |
158142c2 FB |
5220 | { |
5221 | flag aSign, bSign; | |
bb98fe42 | 5222 | uint64_t av, bv; |
158142c2 | 5223 | |
ff32e16e PM |
5224 | a = float64_squash_input_denormal(a, status); |
5225 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5226 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
5227 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5228 | ) { | |
ff32e16e | 5229 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5230 | return 0; |
5231 | } | |
5232 | aSign = extractFloat64Sign( a ); | |
5233 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 5234 | av = float64_val(a); |
a1b91bb4 | 5235 | bv = float64_val(b); |
bb98fe42 | 5236 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 5237 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
5238 | |
5239 | } | |
5240 | ||
67b7861d AJ |
5241 | /*---------------------------------------------------------------------------- |
5242 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
5243 | | be compared, and 0 otherwise. The invalid exception is raised if either |
5244 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
5245 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
5246 | *----------------------------------------------------------------------------*/ |
5247 | ||
e5a41ffa | 5248 | int float64_unordered(float64 a, float64 b, float_status *status) |
67b7861d | 5249 | { |
ff32e16e PM |
5250 | a = float64_squash_input_denormal(a, status); |
5251 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
5252 | |
5253 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5254 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5255 | ) { | |
ff32e16e | 5256 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5257 | return 1; |
5258 | } | |
5259 | return 0; | |
5260 | } | |
5261 | ||
158142c2 FB |
5262 | /*---------------------------------------------------------------------------- |
5263 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
5264 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
5265 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
5266 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5267 | *----------------------------------------------------------------------------*/ |
5268 | ||
e5a41ffa | 5269 | int float64_eq_quiet(float64 a, float64 b, float_status *status) |
158142c2 | 5270 | { |
bb98fe42 | 5271 | uint64_t av, bv; |
ff32e16e PM |
5272 | a = float64_squash_input_denormal(a, status); |
5273 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5274 | |
5275 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5276 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5277 | ) { | |
af39bc8c AM |
5278 | if (float64_is_signaling_nan(a, status) |
5279 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 5280 | float_raise(float_flag_invalid, status); |
b689362d | 5281 | } |
158142c2 FB |
5282 | return 0; |
5283 | } | |
f090c9d4 | 5284 | av = float64_val(a); |
a1b91bb4 | 5285 | bv = float64_val(b); |
bb98fe42 | 5286 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
5287 | |
5288 | } | |
5289 | ||
5290 | /*---------------------------------------------------------------------------- | |
5291 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
5292 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
5293 | | cause an exception. Otherwise, the comparison is performed according to the | |
5294 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5295 | *----------------------------------------------------------------------------*/ | |
5296 | ||
e5a41ffa | 5297 | int float64_le_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
5298 | { |
5299 | flag aSign, bSign; | |
bb98fe42 | 5300 | uint64_t av, bv; |
ff32e16e PM |
5301 | a = float64_squash_input_denormal(a, status); |
5302 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5303 | |
5304 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5305 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5306 | ) { | |
af39bc8c AM |
5307 | if (float64_is_signaling_nan(a, status) |
5308 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 5309 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5310 | } |
5311 | return 0; | |
5312 | } | |
5313 | aSign = extractFloat64Sign( a ); | |
5314 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 5315 | av = float64_val(a); |
a1b91bb4 | 5316 | bv = float64_val(b); |
bb98fe42 | 5317 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 5318 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
5319 | |
5320 | } | |
5321 | ||
5322 | /*---------------------------------------------------------------------------- | |
5323 | | Returns 1 if the double-precision floating-point value `a' is less than | |
5324 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
5325 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
5326 | | Standard for Binary Floating-Point Arithmetic. | |
5327 | *----------------------------------------------------------------------------*/ | |
5328 | ||
e5a41ffa | 5329 | int float64_lt_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
5330 | { |
5331 | flag aSign, bSign; | |
bb98fe42 | 5332 | uint64_t av, bv; |
ff32e16e PM |
5333 | a = float64_squash_input_denormal(a, status); |
5334 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
5335 | |
5336 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5337 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5338 | ) { | |
af39bc8c AM |
5339 | if (float64_is_signaling_nan(a, status) |
5340 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 5341 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5342 | } |
5343 | return 0; | |
5344 | } | |
5345 | aSign = extractFloat64Sign( a ); | |
5346 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 5347 | av = float64_val(a); |
a1b91bb4 | 5348 | bv = float64_val(b); |
bb98fe42 | 5349 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 5350 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
5351 | |
5352 | } | |
5353 | ||
67b7861d AJ |
5354 | /*---------------------------------------------------------------------------- |
5355 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
5356 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
5357 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
5358 | | Floating-Point Arithmetic. | |
5359 | *----------------------------------------------------------------------------*/ | |
5360 | ||
e5a41ffa | 5361 | int float64_unordered_quiet(float64 a, float64 b, float_status *status) |
67b7861d | 5362 | { |
ff32e16e PM |
5363 | a = float64_squash_input_denormal(a, status); |
5364 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
5365 | |
5366 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
5367 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
5368 | ) { | |
af39bc8c AM |
5369 | if (float64_is_signaling_nan(a, status) |
5370 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 5371 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5372 | } |
5373 | return 1; | |
5374 | } | |
5375 | return 0; | |
5376 | } | |
5377 | ||
158142c2 FB |
5378 | /*---------------------------------------------------------------------------- |
5379 | | Returns the result of converting the extended double-precision floating- | |
5380 | | point value `a' to the 32-bit two's complement integer format. The | |
5381 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5382 | | Floating-Point Arithmetic---which means in particular that the conversion | |
5383 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
5384 | | largest positive integer is returned. Otherwise, if the conversion | |
5385 | | overflows, the largest integer with the same sign as `a' is returned. | |
5386 | *----------------------------------------------------------------------------*/ | |
5387 | ||
f4014512 | 5388 | int32_t floatx80_to_int32(floatx80 a, float_status *status) |
158142c2 FB |
5389 | { |
5390 | flag aSign; | |
f4014512 | 5391 | int32_t aExp, shiftCount; |
bb98fe42 | 5392 | uint64_t aSig; |
158142c2 | 5393 | |
d1eb8f2a AD |
5394 | if (floatx80_invalid_encoding(a)) { |
5395 | float_raise(float_flag_invalid, status); | |
5396 | return 1 << 31; | |
5397 | } | |
158142c2 FB |
5398 | aSig = extractFloatx80Frac( a ); |
5399 | aExp = extractFloatx80Exp( a ); | |
5400 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 5401 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
5402 | shiftCount = 0x4037 - aExp; |
5403 | if ( shiftCount <= 0 ) shiftCount = 1; | |
5404 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 5405 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
5406 | |
5407 | } | |
5408 | ||
5409 | /*---------------------------------------------------------------------------- | |
5410 | | Returns the result of converting the extended double-precision floating- | |
5411 | | point value `a' to the 32-bit two's complement integer format. The | |
5412 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5413 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
5414 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
5415 | | Otherwise, if the conversion overflows, the largest integer with the same | |
5416 | | sign as `a' is returned. | |
5417 | *----------------------------------------------------------------------------*/ | |
5418 | ||
f4014512 | 5419 | int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
5420 | { |
5421 | flag aSign; | |
f4014512 | 5422 | int32_t aExp, shiftCount; |
bb98fe42 | 5423 | uint64_t aSig, savedASig; |
b3a6a2e0 | 5424 | int32_t z; |
158142c2 | 5425 | |
d1eb8f2a AD |
5426 | if (floatx80_invalid_encoding(a)) { |
5427 | float_raise(float_flag_invalid, status); | |
5428 | return 1 << 31; | |
5429 | } | |
158142c2 FB |
5430 | aSig = extractFloatx80Frac( a ); |
5431 | aExp = extractFloatx80Exp( a ); | |
5432 | aSign = extractFloatx80Sign( a ); | |
5433 | if ( 0x401E < aExp ) { | |
bb98fe42 | 5434 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
5435 | goto invalid; |
5436 | } | |
5437 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
5438 | if (aExp || aSig) { |
5439 | status->float_exception_flags |= float_flag_inexact; | |
5440 | } | |
158142c2 FB |
5441 | return 0; |
5442 | } | |
5443 | shiftCount = 0x403E - aExp; | |
5444 | savedASig = aSig; | |
5445 | aSig >>= shiftCount; | |
5446 | z = aSig; | |
5447 | if ( aSign ) z = - z; | |
5448 | if ( ( z < 0 ) ^ aSign ) { | |
5449 | invalid: | |
ff32e16e | 5450 | float_raise(float_flag_invalid, status); |
bb98fe42 | 5451 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
5452 | } |
5453 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 5454 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5455 | } |
5456 | return z; | |
5457 | ||
5458 | } | |
5459 | ||
5460 | /*---------------------------------------------------------------------------- | |
5461 | | Returns the result of converting the extended double-precision floating- | |
5462 | | point value `a' to the 64-bit two's complement integer format. The | |
5463 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5464 | | Floating-Point Arithmetic---which means in particular that the conversion | |
5465 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
5466 | | the largest positive integer is returned. Otherwise, if the conversion | |
5467 | | overflows, the largest integer with the same sign as `a' is returned. | |
5468 | *----------------------------------------------------------------------------*/ | |
5469 | ||
f42c2224 | 5470 | int64_t floatx80_to_int64(floatx80 a, float_status *status) |
158142c2 FB |
5471 | { |
5472 | flag aSign; | |
f4014512 | 5473 | int32_t aExp, shiftCount; |
bb98fe42 | 5474 | uint64_t aSig, aSigExtra; |
158142c2 | 5475 | |
d1eb8f2a AD |
5476 | if (floatx80_invalid_encoding(a)) { |
5477 | float_raise(float_flag_invalid, status); | |
5478 | return 1ULL << 63; | |
5479 | } | |
158142c2 FB |
5480 | aSig = extractFloatx80Frac( a ); |
5481 | aExp = extractFloatx80Exp( a ); | |
5482 | aSign = extractFloatx80Sign( a ); | |
5483 | shiftCount = 0x403E - aExp; | |
5484 | if ( shiftCount <= 0 ) { | |
5485 | if ( shiftCount ) { | |
ff32e16e | 5486 | float_raise(float_flag_invalid, status); |
0f605c88 | 5487 | if (!aSign || floatx80_is_any_nan(a)) { |
158142c2 FB |
5488 | return LIT64( 0x7FFFFFFFFFFFFFFF ); |
5489 | } | |
bb98fe42 | 5490 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5491 | } |
5492 | aSigExtra = 0; | |
5493 | } | |
5494 | else { | |
5495 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
5496 | } | |
ff32e16e | 5497 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
5498 | |
5499 | } | |
5500 | ||
5501 | /*---------------------------------------------------------------------------- | |
5502 | | Returns the result of converting the extended double-precision floating- | |
5503 | | point value `a' to the 64-bit two's complement integer format. The | |
5504 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5505 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
5506 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
5507 | | Otherwise, if the conversion overflows, the largest integer with the same | |
5508 | | sign as `a' is returned. | |
5509 | *----------------------------------------------------------------------------*/ | |
5510 | ||
f42c2224 | 5511 | int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
5512 | { |
5513 | flag aSign; | |
f4014512 | 5514 | int32_t aExp, shiftCount; |
bb98fe42 | 5515 | uint64_t aSig; |
f42c2224 | 5516 | int64_t z; |
158142c2 | 5517 | |
d1eb8f2a AD |
5518 | if (floatx80_invalid_encoding(a)) { |
5519 | float_raise(float_flag_invalid, status); | |
5520 | return 1ULL << 63; | |
5521 | } | |
158142c2 FB |
5522 | aSig = extractFloatx80Frac( a ); |
5523 | aExp = extractFloatx80Exp( a ); | |
5524 | aSign = extractFloatx80Sign( a ); | |
5525 | shiftCount = aExp - 0x403E; | |
5526 | if ( 0 <= shiftCount ) { | |
5527 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5528 | if ( ( a.high != 0xC03E ) || aSig ) { | |
ff32e16e | 5529 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5530 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { |
5531 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5532 | } | |
5533 | } | |
bb98fe42 | 5534 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5535 | } |
5536 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
5537 | if (aExp | aSig) { |
5538 | status->float_exception_flags |= float_flag_inexact; | |
5539 | } | |
158142c2 FB |
5540 | return 0; |
5541 | } | |
5542 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 5543 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 5544 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5545 | } |
5546 | if ( aSign ) z = - z; | |
5547 | return z; | |
5548 | ||
5549 | } | |
5550 | ||
5551 | /*---------------------------------------------------------------------------- | |
5552 | | Returns the result of converting the extended double-precision floating- | |
5553 | | point value `a' to the single-precision floating-point format. The | |
5554 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5555 | | Floating-Point Arithmetic. | |
5556 | *----------------------------------------------------------------------------*/ | |
5557 | ||
e5a41ffa | 5558 | float32 floatx80_to_float32(floatx80 a, float_status *status) |
158142c2 FB |
5559 | { |
5560 | flag aSign; | |
f4014512 | 5561 | int32_t aExp; |
bb98fe42 | 5562 | uint64_t aSig; |
158142c2 | 5563 | |
d1eb8f2a AD |
5564 | if (floatx80_invalid_encoding(a)) { |
5565 | float_raise(float_flag_invalid, status); | |
5566 | return float32_default_nan(status); | |
5567 | } | |
158142c2 FB |
5568 | aSig = extractFloatx80Frac( a ); |
5569 | aExp = extractFloatx80Exp( a ); | |
5570 | aSign = extractFloatx80Sign( a ); | |
5571 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5572 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5573 | return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5574 | } |
5575 | return packFloat32( aSign, 0xFF, 0 ); | |
5576 | } | |
5577 | shift64RightJamming( aSig, 33, &aSig ); | |
5578 | if ( aExp || aSig ) aExp -= 0x3F81; | |
ff32e16e | 5579 | return roundAndPackFloat32(aSign, aExp, aSig, status); |
158142c2 FB |
5580 | |
5581 | } | |
5582 | ||
5583 | /*---------------------------------------------------------------------------- | |
5584 | | Returns the result of converting the extended double-precision floating- | |
5585 | | point value `a' to the double-precision floating-point format. The | |
5586 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5587 | | Floating-Point Arithmetic. | |
5588 | *----------------------------------------------------------------------------*/ | |
5589 | ||
e5a41ffa | 5590 | float64 floatx80_to_float64(floatx80 a, float_status *status) |
158142c2 FB |
5591 | { |
5592 | flag aSign; | |
f4014512 | 5593 | int32_t aExp; |
bb98fe42 | 5594 | uint64_t aSig, zSig; |
158142c2 | 5595 | |
d1eb8f2a AD |
5596 | if (floatx80_invalid_encoding(a)) { |
5597 | float_raise(float_flag_invalid, status); | |
5598 | return float64_default_nan(status); | |
5599 | } | |
158142c2 FB |
5600 | aSig = extractFloatx80Frac( a ); |
5601 | aExp = extractFloatx80Exp( a ); | |
5602 | aSign = extractFloatx80Sign( a ); | |
5603 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5604 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5605 | return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5606 | } |
5607 | return packFloat64( aSign, 0x7FF, 0 ); | |
5608 | } | |
5609 | shift64RightJamming( aSig, 1, &zSig ); | |
5610 | if ( aExp || aSig ) aExp -= 0x3C01; | |
ff32e16e | 5611 | return roundAndPackFloat64(aSign, aExp, zSig, status); |
158142c2 FB |
5612 | |
5613 | } | |
5614 | ||
158142c2 FB |
5615 | /*---------------------------------------------------------------------------- |
5616 | | Returns the result of converting the extended double-precision floating- | |
5617 | | point value `a' to the quadruple-precision floating-point format. The | |
5618 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5619 | | Floating-Point Arithmetic. | |
5620 | *----------------------------------------------------------------------------*/ | |
5621 | ||
e5a41ffa | 5622 | float128 floatx80_to_float128(floatx80 a, float_status *status) |
158142c2 FB |
5623 | { |
5624 | flag aSign; | |
0c48262d | 5625 | int aExp; |
bb98fe42 | 5626 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 5627 | |
d1eb8f2a AD |
5628 | if (floatx80_invalid_encoding(a)) { |
5629 | float_raise(float_flag_invalid, status); | |
5630 | return float128_default_nan(status); | |
5631 | } | |
158142c2 FB |
5632 | aSig = extractFloatx80Frac( a ); |
5633 | aExp = extractFloatx80Exp( a ); | |
5634 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 5635 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5636 | return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5637 | } |
5638 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
5639 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
5640 | ||
5641 | } | |
5642 | ||
0f721292 LV |
5643 | /*---------------------------------------------------------------------------- |
5644 | | Rounds the extended double-precision floating-point value `a' | |
5645 | | to the precision provided by floatx80_rounding_precision and returns the | |
5646 | | result as an extended double-precision floating-point value. | |
5647 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
5648 | | Floating-Point Arithmetic. | |
5649 | *----------------------------------------------------------------------------*/ | |
5650 | ||
5651 | floatx80 floatx80_round(floatx80 a, float_status *status) | |
5652 | { | |
5653 | return roundAndPackFloatx80(status->floatx80_rounding_precision, | |
5654 | extractFloatx80Sign(a), | |
5655 | extractFloatx80Exp(a), | |
5656 | extractFloatx80Frac(a), 0, status); | |
5657 | } | |
5658 | ||
158142c2 FB |
5659 | /*---------------------------------------------------------------------------- |
5660 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
5661 | | and returns the result as an extended quadruple-precision floating-point | |
5662 | | value. The operation is performed according to the IEC/IEEE Standard for | |
5663 | | Binary Floating-Point Arithmetic. | |
5664 | *----------------------------------------------------------------------------*/ | |
5665 | ||
e5a41ffa | 5666 | floatx80 floatx80_round_to_int(floatx80 a, float_status *status) |
158142c2 FB |
5667 | { |
5668 | flag aSign; | |
f4014512 | 5669 | int32_t aExp; |
bb98fe42 | 5670 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5671 | floatx80 z; |
5672 | ||
d1eb8f2a AD |
5673 | if (floatx80_invalid_encoding(a)) { |
5674 | float_raise(float_flag_invalid, status); | |
5675 | return floatx80_default_nan(status); | |
5676 | } | |
158142c2 FB |
5677 | aExp = extractFloatx80Exp( a ); |
5678 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 5679 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
ff32e16e | 5680 | return propagateFloatx80NaN(a, a, status); |
158142c2 FB |
5681 | } |
5682 | return a; | |
5683 | } | |
5684 | if ( aExp < 0x3FFF ) { | |
5685 | if ( ( aExp == 0 ) | |
bb98fe42 | 5686 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
5687 | return a; |
5688 | } | |
a2f2d288 | 5689 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 5690 | aSign = extractFloatx80Sign( a ); |
a2f2d288 | 5691 | switch (status->float_rounding_mode) { |
158142c2 | 5692 | case float_round_nearest_even: |
bb98fe42 | 5693 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
5694 | ) { |
5695 | return | |
5696 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5697 | } | |
5698 | break; | |
f9288a76 PM |
5699 | case float_round_ties_away: |
5700 | if (aExp == 0x3FFE) { | |
5701 | return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); | |
5702 | } | |
5703 | break; | |
158142c2 FB |
5704 | case float_round_down: |
5705 | return | |
5706 | aSign ? | |
5707 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
5708 | : packFloatx80( 0, 0, 0 ); | |
5709 | case float_round_up: | |
5710 | return | |
5711 | aSign ? packFloatx80( 1, 0, 0 ) | |
5712 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5713 | } | |
5714 | return packFloatx80( aSign, 0, 0 ); | |
5715 | } | |
5716 | lastBitMask = 1; | |
5717 | lastBitMask <<= 0x403E - aExp; | |
5718 | roundBitsMask = lastBitMask - 1; | |
5719 | z = a; | |
a2f2d288 | 5720 | switch (status->float_rounding_mode) { |
dc355b76 | 5721 | case float_round_nearest_even: |
158142c2 | 5722 | z.low += lastBitMask>>1; |
dc355b76 PM |
5723 | if ((z.low & roundBitsMask) == 0) { |
5724 | z.low &= ~lastBitMask; | |
5725 | } | |
5726 | break; | |
f9288a76 PM |
5727 | case float_round_ties_away: |
5728 | z.low += lastBitMask >> 1; | |
5729 | break; | |
dc355b76 PM |
5730 | case float_round_to_zero: |
5731 | break; | |
5732 | case float_round_up: | |
5733 | if (!extractFloatx80Sign(z)) { | |
5734 | z.low += roundBitsMask; | |
5735 | } | |
5736 | break; | |
5737 | case float_round_down: | |
5738 | if (extractFloatx80Sign(z)) { | |
158142c2 FB |
5739 | z.low += roundBitsMask; |
5740 | } | |
dc355b76 PM |
5741 | break; |
5742 | default: | |
5743 | abort(); | |
158142c2 FB |
5744 | } |
5745 | z.low &= ~ roundBitsMask; | |
5746 | if ( z.low == 0 ) { | |
5747 | ++z.high; | |
5748 | z.low = LIT64( 0x8000000000000000 ); | |
5749 | } | |
a2f2d288 PM |
5750 | if (z.low != a.low) { |
5751 | status->float_exception_flags |= float_flag_inexact; | |
5752 | } | |
158142c2 FB |
5753 | return z; |
5754 | ||
5755 | } | |
5756 | ||
5757 | /*---------------------------------------------------------------------------- | |
5758 | | Returns the result of adding the absolute values of the extended double- | |
5759 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
5760 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
5761 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
5762 | | Floating-Point Arithmetic. | |
5763 | *----------------------------------------------------------------------------*/ | |
5764 | ||
e5a41ffa PM |
5765 | static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5766 | float_status *status) | |
158142c2 | 5767 | { |
f4014512 | 5768 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5769 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 5770 | int32_t expDiff; |
158142c2 FB |
5771 | |
5772 | aSig = extractFloatx80Frac( a ); | |
5773 | aExp = extractFloatx80Exp( a ); | |
5774 | bSig = extractFloatx80Frac( b ); | |
5775 | bExp = extractFloatx80Exp( b ); | |
5776 | expDiff = aExp - bExp; | |
5777 | if ( 0 < expDiff ) { | |
5778 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5779 | if ((uint64_t)(aSig << 1)) { |
5780 | return propagateFloatx80NaN(a, b, status); | |
5781 | } | |
158142c2 FB |
5782 | return a; |
5783 | } | |
5784 | if ( bExp == 0 ) --expDiff; | |
5785 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5786 | zExp = aExp; | |
5787 | } | |
5788 | else if ( expDiff < 0 ) { | |
5789 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5790 | if ((uint64_t)(bSig << 1)) { |
5791 | return propagateFloatx80NaN(a, b, status); | |
5792 | } | |
0f605c88 LV |
5793 | return packFloatx80(zSign, |
5794 | floatx80_infinity_high, | |
5795 | floatx80_infinity_low); | |
158142c2 FB |
5796 | } |
5797 | if ( aExp == 0 ) ++expDiff; | |
5798 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5799 | zExp = bExp; | |
5800 | } | |
5801 | else { | |
5802 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5803 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5804 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5805 | } |
5806 | return a; | |
5807 | } | |
5808 | zSig1 = 0; | |
5809 | zSig0 = aSig + bSig; | |
5810 | if ( aExp == 0 ) { | |
5811 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
5812 | goto roundAndPack; | |
5813 | } | |
5814 | zExp = aExp; | |
5815 | goto shiftRight1; | |
5816 | } | |
5817 | zSig0 = aSig + bSig; | |
bb98fe42 | 5818 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
5819 | shiftRight1: |
5820 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
5821 | zSig0 |= LIT64( 0x8000000000000000 ); | |
5822 | ++zExp; | |
5823 | roundAndPack: | |
a2f2d288 | 5824 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5825 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5826 | } |
5827 | ||
5828 | /*---------------------------------------------------------------------------- | |
5829 | | Returns the result of subtracting the absolute values of the extended | |
5830 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
5831 | | difference is negated before being returned. `zSign' is ignored if the | |
5832 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
5833 | | Standard for Binary Floating-Point Arithmetic. | |
5834 | *----------------------------------------------------------------------------*/ | |
5835 | ||
e5a41ffa PM |
5836 | static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5837 | float_status *status) | |
158142c2 | 5838 | { |
f4014512 | 5839 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5840 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 5841 | int32_t expDiff; |
158142c2 FB |
5842 | |
5843 | aSig = extractFloatx80Frac( a ); | |
5844 | aExp = extractFloatx80Exp( a ); | |
5845 | bSig = extractFloatx80Frac( b ); | |
5846 | bExp = extractFloatx80Exp( b ); | |
5847 | expDiff = aExp - bExp; | |
5848 | if ( 0 < expDiff ) goto aExpBigger; | |
5849 | if ( expDiff < 0 ) goto bExpBigger; | |
5850 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5851 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5852 | return propagateFloatx80NaN(a, b, status); |
158142c2 | 5853 | } |
ff32e16e | 5854 | float_raise(float_flag_invalid, status); |
af39bc8c | 5855 | return floatx80_default_nan(status); |
158142c2 FB |
5856 | } |
5857 | if ( aExp == 0 ) { | |
5858 | aExp = 1; | |
5859 | bExp = 1; | |
5860 | } | |
5861 | zSig1 = 0; | |
5862 | if ( bSig < aSig ) goto aBigger; | |
5863 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 5864 | return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
5865 | bExpBigger: |
5866 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5867 | if ((uint64_t)(bSig << 1)) { |
5868 | return propagateFloatx80NaN(a, b, status); | |
5869 | } | |
0f605c88 LV |
5870 | return packFloatx80(zSign ^ 1, floatx80_infinity_high, |
5871 | floatx80_infinity_low); | |
158142c2 FB |
5872 | } |
5873 | if ( aExp == 0 ) ++expDiff; | |
5874 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5875 | bBigger: | |
5876 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
5877 | zExp = bExp; | |
5878 | zSign ^= 1; | |
5879 | goto normalizeRoundAndPack; | |
5880 | aExpBigger: | |
5881 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5882 | if ((uint64_t)(aSig << 1)) { |
5883 | return propagateFloatx80NaN(a, b, status); | |
5884 | } | |
158142c2 FB |
5885 | return a; |
5886 | } | |
5887 | if ( bExp == 0 ) --expDiff; | |
5888 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5889 | aBigger: | |
5890 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
5891 | zExp = aExp; | |
5892 | normalizeRoundAndPack: | |
a2f2d288 | 5893 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5894 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5895 | } |
5896 | ||
5897 | /*---------------------------------------------------------------------------- | |
5898 | | Returns the result of adding the extended double-precision floating-point | |
5899 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5900 | | Standard for Binary Floating-Point Arithmetic. | |
5901 | *----------------------------------------------------------------------------*/ | |
5902 | ||
e5a41ffa | 5903 | floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5904 | { |
5905 | flag aSign, bSign; | |
5906 | ||
d1eb8f2a AD |
5907 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5908 | float_raise(float_flag_invalid, status); | |
5909 | return floatx80_default_nan(status); | |
5910 | } | |
158142c2 FB |
5911 | aSign = extractFloatx80Sign( a ); |
5912 | bSign = extractFloatx80Sign( b ); | |
5913 | if ( aSign == bSign ) { | |
ff32e16e | 5914 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5915 | } |
5916 | else { | |
ff32e16e | 5917 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5918 | } |
5919 | ||
5920 | } | |
5921 | ||
5922 | /*---------------------------------------------------------------------------- | |
5923 | | Returns the result of subtracting the extended double-precision floating- | |
5924 | | point values `a' and `b'. The operation is performed according to the | |
5925 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5926 | *----------------------------------------------------------------------------*/ | |
5927 | ||
e5a41ffa | 5928 | floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5929 | { |
5930 | flag aSign, bSign; | |
5931 | ||
d1eb8f2a AD |
5932 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5933 | float_raise(float_flag_invalid, status); | |
5934 | return floatx80_default_nan(status); | |
5935 | } | |
158142c2 FB |
5936 | aSign = extractFloatx80Sign( a ); |
5937 | bSign = extractFloatx80Sign( b ); | |
5938 | if ( aSign == bSign ) { | |
ff32e16e | 5939 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5940 | } |
5941 | else { | |
ff32e16e | 5942 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5943 | } |
5944 | ||
5945 | } | |
5946 | ||
5947 | /*---------------------------------------------------------------------------- | |
5948 | | Returns the result of multiplying the extended double-precision floating- | |
5949 | | point values `a' and `b'. The operation is performed according to the | |
5950 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5951 | *----------------------------------------------------------------------------*/ | |
5952 | ||
e5a41ffa | 5953 | floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5954 | { |
5955 | flag aSign, bSign, zSign; | |
f4014512 | 5956 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5957 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 5958 | |
d1eb8f2a AD |
5959 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5960 | float_raise(float_flag_invalid, status); | |
5961 | return floatx80_default_nan(status); | |
5962 | } | |
158142c2 FB |
5963 | aSig = extractFloatx80Frac( a ); |
5964 | aExp = extractFloatx80Exp( a ); | |
5965 | aSign = extractFloatx80Sign( a ); | |
5966 | bSig = extractFloatx80Frac( b ); | |
5967 | bExp = extractFloatx80Exp( b ); | |
5968 | bSign = extractFloatx80Sign( b ); | |
5969 | zSign = aSign ^ bSign; | |
5970 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
5971 | if ( (uint64_t) ( aSig<<1 ) |
5972 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5973 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5974 | } |
5975 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
0f605c88 LV |
5976 | return packFloatx80(zSign, floatx80_infinity_high, |
5977 | floatx80_infinity_low); | |
158142c2 FB |
5978 | } |
5979 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5980 | if ((uint64_t)(bSig << 1)) { |
5981 | return propagateFloatx80NaN(a, b, status); | |
5982 | } | |
158142c2 FB |
5983 | if ( ( aExp | aSig ) == 0 ) { |
5984 | invalid: | |
ff32e16e | 5985 | float_raise(float_flag_invalid, status); |
af39bc8c | 5986 | return floatx80_default_nan(status); |
158142c2 | 5987 | } |
0f605c88 LV |
5988 | return packFloatx80(zSign, floatx80_infinity_high, |
5989 | floatx80_infinity_low); | |
158142c2 FB |
5990 | } |
5991 | if ( aExp == 0 ) { | |
5992 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5993 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5994 | } | |
5995 | if ( bExp == 0 ) { | |
5996 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5997 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5998 | } | |
5999 | zExp = aExp + bExp - 0x3FFE; | |
6000 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 6001 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
6002 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
6003 | --zExp; | |
6004 | } | |
a2f2d288 | 6005 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 6006 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
6007 | } |
6008 | ||
6009 | /*---------------------------------------------------------------------------- | |
6010 | | Returns the result of dividing the extended double-precision floating-point | |
6011 | | value `a' by the corresponding value `b'. The operation is performed | |
6012 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6013 | *----------------------------------------------------------------------------*/ | |
6014 | ||
e5a41ffa | 6015 | floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6016 | { |
6017 | flag aSign, bSign, zSign; | |
f4014512 | 6018 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
6019 | uint64_t aSig, bSig, zSig0, zSig1; |
6020 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 | 6021 | |
d1eb8f2a AD |
6022 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6023 | float_raise(float_flag_invalid, status); | |
6024 | return floatx80_default_nan(status); | |
6025 | } | |
158142c2 FB |
6026 | aSig = extractFloatx80Frac( a ); |
6027 | aExp = extractFloatx80Exp( a ); | |
6028 | aSign = extractFloatx80Sign( a ); | |
6029 | bSig = extractFloatx80Frac( b ); | |
6030 | bExp = extractFloatx80Exp( b ); | |
6031 | bSign = extractFloatx80Sign( b ); | |
6032 | zSign = aSign ^ bSign; | |
6033 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6034 | if ((uint64_t)(aSig << 1)) { |
6035 | return propagateFloatx80NaN(a, b, status); | |
6036 | } | |
158142c2 | 6037 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
6038 | if ((uint64_t)(bSig << 1)) { |
6039 | return propagateFloatx80NaN(a, b, status); | |
6040 | } | |
158142c2 FB |
6041 | goto invalid; |
6042 | } | |
0f605c88 LV |
6043 | return packFloatx80(zSign, floatx80_infinity_high, |
6044 | floatx80_infinity_low); | |
158142c2 FB |
6045 | } |
6046 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6047 | if ((uint64_t)(bSig << 1)) { |
6048 | return propagateFloatx80NaN(a, b, status); | |
6049 | } | |
158142c2 FB |
6050 | return packFloatx80( zSign, 0, 0 ); |
6051 | } | |
6052 | if ( bExp == 0 ) { | |
6053 | if ( bSig == 0 ) { | |
6054 | if ( ( aExp | aSig ) == 0 ) { | |
6055 | invalid: | |
ff32e16e | 6056 | float_raise(float_flag_invalid, status); |
af39bc8c | 6057 | return floatx80_default_nan(status); |
158142c2 | 6058 | } |
ff32e16e | 6059 | float_raise(float_flag_divbyzero, status); |
0f605c88 LV |
6060 | return packFloatx80(zSign, floatx80_infinity_high, |
6061 | floatx80_infinity_low); | |
158142c2 FB |
6062 | } |
6063 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
6064 | } | |
6065 | if ( aExp == 0 ) { | |
6066 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
6067 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
6068 | } | |
6069 | zExp = aExp - bExp + 0x3FFE; | |
6070 | rem1 = 0; | |
6071 | if ( bSig <= aSig ) { | |
6072 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
6073 | ++zExp; | |
6074 | } | |
6075 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
6076 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
6077 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6078 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6079 | --zSig0; |
6080 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
6081 | } | |
6082 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 6083 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
6084 | mul64To128( bSig, zSig1, &term1, &term2 ); |
6085 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 6086 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6087 | --zSig1; |
6088 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
6089 | } | |
6090 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
6091 | } | |
a2f2d288 | 6092 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 6093 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
6094 | } |
6095 | ||
6096 | /*---------------------------------------------------------------------------- | |
6097 | | Returns the remainder of the extended double-precision floating-point value | |
6098 | | `a' with respect to the corresponding value `b'. The operation is performed | |
6099 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6100 | *----------------------------------------------------------------------------*/ | |
6101 | ||
e5a41ffa | 6102 | floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) |
158142c2 | 6103 | { |
ed086f3d | 6104 | flag aSign, zSign; |
f4014512 | 6105 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
6106 | uint64_t aSig0, aSig1, bSig; |
6107 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 | 6108 | |
d1eb8f2a AD |
6109 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6110 | float_raise(float_flag_invalid, status); | |
6111 | return floatx80_default_nan(status); | |
6112 | } | |
158142c2 FB |
6113 | aSig0 = extractFloatx80Frac( a ); |
6114 | aExp = extractFloatx80Exp( a ); | |
6115 | aSign = extractFloatx80Sign( a ); | |
6116 | bSig = extractFloatx80Frac( b ); | |
6117 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 6118 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
6119 | if ( (uint64_t) ( aSig0<<1 ) |
6120 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 6121 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
6122 | } |
6123 | goto invalid; | |
6124 | } | |
6125 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6126 | if ((uint64_t)(bSig << 1)) { |
6127 | return propagateFloatx80NaN(a, b, status); | |
6128 | } | |
158142c2 FB |
6129 | return a; |
6130 | } | |
6131 | if ( bExp == 0 ) { | |
6132 | if ( bSig == 0 ) { | |
6133 | invalid: | |
ff32e16e | 6134 | float_raise(float_flag_invalid, status); |
af39bc8c | 6135 | return floatx80_default_nan(status); |
158142c2 FB |
6136 | } |
6137 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
6138 | } | |
6139 | if ( aExp == 0 ) { | |
bb98fe42 | 6140 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
6141 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
6142 | } | |
6143 | bSig |= LIT64( 0x8000000000000000 ); | |
6144 | zSign = aSign; | |
6145 | expDiff = aExp - bExp; | |
6146 | aSig1 = 0; | |
6147 | if ( expDiff < 0 ) { | |
6148 | if ( expDiff < -1 ) return a; | |
6149 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
6150 | expDiff = 0; | |
6151 | } | |
6152 | q = ( bSig <= aSig0 ); | |
6153 | if ( q ) aSig0 -= bSig; | |
6154 | expDiff -= 64; | |
6155 | while ( 0 < expDiff ) { | |
6156 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
6157 | q = ( 2 < q ) ? q - 2 : 0; | |
6158 | mul64To128( bSig, q, &term0, &term1 ); | |
6159 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
6160 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
6161 | expDiff -= 62; | |
6162 | } | |
6163 | expDiff += 64; | |
6164 | if ( 0 < expDiff ) { | |
6165 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
6166 | q = ( 2 < q ) ? q - 2 : 0; | |
6167 | q >>= 64 - expDiff; | |
6168 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
6169 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
6170 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
6171 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
6172 | ++q; | |
6173 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
6174 | } | |
6175 | } | |
6176 | else { | |
6177 | term1 = 0; | |
6178 | term0 = bSig; | |
6179 | } | |
6180 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
6181 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
6182 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
6183 | && ( q & 1 ) ) | |
6184 | ) { | |
6185 | aSig0 = alternateASig0; | |
6186 | aSig1 = alternateASig1; | |
6187 | zSign = ! zSign; | |
6188 | } | |
6189 | return | |
6190 | normalizeRoundAndPackFloatx80( | |
ff32e16e | 6191 | 80, zSign, bExp + expDiff, aSig0, aSig1, status); |
158142c2 FB |
6192 | |
6193 | } | |
6194 | ||
6195 | /*---------------------------------------------------------------------------- | |
6196 | | Returns the square root of the extended double-precision floating-point | |
6197 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
6198 | | for Binary Floating-Point Arithmetic. | |
6199 | *----------------------------------------------------------------------------*/ | |
6200 | ||
e5a41ffa | 6201 | floatx80 floatx80_sqrt(floatx80 a, float_status *status) |
158142c2 FB |
6202 | { |
6203 | flag aSign; | |
f4014512 | 6204 | int32_t aExp, zExp; |
bb98fe42 AF |
6205 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
6206 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 | 6207 | |
d1eb8f2a AD |
6208 | if (floatx80_invalid_encoding(a)) { |
6209 | float_raise(float_flag_invalid, status); | |
6210 | return floatx80_default_nan(status); | |
6211 | } | |
158142c2 FB |
6212 | aSig0 = extractFloatx80Frac( a ); |
6213 | aExp = extractFloatx80Exp( a ); | |
6214 | aSign = extractFloatx80Sign( a ); | |
6215 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6216 | if ((uint64_t)(aSig0 << 1)) { |
6217 | return propagateFloatx80NaN(a, a, status); | |
6218 | } | |
158142c2 FB |
6219 | if ( ! aSign ) return a; |
6220 | goto invalid; | |
6221 | } | |
6222 | if ( aSign ) { | |
6223 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
6224 | invalid: | |
ff32e16e | 6225 | float_raise(float_flag_invalid, status); |
af39bc8c | 6226 | return floatx80_default_nan(status); |
158142c2 FB |
6227 | } |
6228 | if ( aExp == 0 ) { | |
6229 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
6230 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
6231 | } | |
6232 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
6233 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
6234 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
6235 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
6236 | doubleZSig0 = zSig0<<1; | |
6237 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
6238 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6239 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6240 | --zSig0; |
6241 | doubleZSig0 -= 2; | |
6242 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
6243 | } | |
6244 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
6245 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
6246 | if ( zSig1 == 0 ) zSig1 = 1; | |
6247 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
6248 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
6249 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
6250 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6251 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6252 | --zSig1; |
6253 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
6254 | term3 |= 1; | |
6255 | term2 |= doubleZSig0; | |
6256 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
6257 | } | |
6258 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6259 | } | |
6260 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
6261 | zSig0 |= doubleZSig0; | |
a2f2d288 PM |
6262 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
6263 | 0, zExp, zSig0, zSig1, status); | |
158142c2 FB |
6264 | } |
6265 | ||
6266 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
6267 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
6268 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
6269 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
6270 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6271 | *----------------------------------------------------------------------------*/ |
6272 | ||
e5a41ffa | 6273 | int floatx80_eq(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6274 | { |
6275 | ||
d1eb8f2a AD |
6276 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
6277 | || (extractFloatx80Exp(a) == 0x7FFF | |
6278 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
6279 | || (extractFloatx80Exp(b) == 0x7FFF | |
6280 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 6281 | ) { |
ff32e16e | 6282 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6283 | return 0; |
6284 | } | |
6285 | return | |
6286 | ( a.low == b.low ) | |
6287 | && ( ( a.high == b.high ) | |
6288 | || ( ( a.low == 0 ) | |
bb98fe42 | 6289 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6290 | ); |
6291 | ||
6292 | } | |
6293 | ||
6294 | /*---------------------------------------------------------------------------- | |
6295 | | Returns 1 if the extended double-precision floating-point value `a' is | |
6296 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
6297 | | invalid exception is raised if either operand is a NaN. The comparison is |
6298 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6299 | | Arithmetic. | |
158142c2 FB |
6300 | *----------------------------------------------------------------------------*/ |
6301 | ||
e5a41ffa | 6302 | int floatx80_le(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6303 | { |
6304 | flag aSign, bSign; | |
6305 | ||
d1eb8f2a AD |
6306 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
6307 | || (extractFloatx80Exp(a) == 0x7FFF | |
6308 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
6309 | || (extractFloatx80Exp(b) == 0x7FFF | |
6310 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 6311 | ) { |
ff32e16e | 6312 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6313 | return 0; |
6314 | } | |
6315 | aSign = extractFloatx80Sign( a ); | |
6316 | bSign = extractFloatx80Sign( b ); | |
6317 | if ( aSign != bSign ) { | |
6318 | return | |
6319 | aSign | |
bb98fe42 | 6320 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6321 | == 0 ); |
6322 | } | |
6323 | return | |
6324 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6325 | : le128( a.high, a.low, b.high, b.low ); | |
6326 | ||
6327 | } | |
6328 | ||
6329 | /*---------------------------------------------------------------------------- | |
6330 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
6331 | | less than the corresponding value `b', and 0 otherwise. The invalid |
6332 | | exception is raised if either operand is a NaN. The comparison is performed | |
6333 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6334 | *----------------------------------------------------------------------------*/ |
6335 | ||
e5a41ffa | 6336 | int floatx80_lt(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6337 | { |
6338 | flag aSign, bSign; | |
6339 | ||
d1eb8f2a AD |
6340 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
6341 | || (extractFloatx80Exp(a) == 0x7FFF | |
6342 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
6343 | || (extractFloatx80Exp(b) == 0x7FFF | |
6344 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 6345 | ) { |
ff32e16e | 6346 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6347 | return 0; |
6348 | } | |
6349 | aSign = extractFloatx80Sign( a ); | |
6350 | bSign = extractFloatx80Sign( b ); | |
6351 | if ( aSign != bSign ) { | |
6352 | return | |
6353 | aSign | |
bb98fe42 | 6354 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6355 | != 0 ); |
6356 | } | |
6357 | return | |
6358 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6359 | : lt128( a.high, a.low, b.high, b.low ); | |
6360 | ||
6361 | } | |
6362 | ||
67b7861d AJ |
6363 | /*---------------------------------------------------------------------------- |
6364 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
6365 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
6366 | | either operand is a NaN. The comparison is performed according to the | |
6367 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d | 6368 | *----------------------------------------------------------------------------*/ |
e5a41ffa | 6369 | int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 6370 | { |
d1eb8f2a AD |
6371 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
6372 | || (extractFloatx80Exp(a) == 0x7FFF | |
6373 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
6374 | || (extractFloatx80Exp(b) == 0x7FFF | |
6375 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
67b7861d | 6376 | ) { |
ff32e16e | 6377 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
6378 | return 1; |
6379 | } | |
6380 | return 0; | |
6381 | } | |
6382 | ||
158142c2 | 6383 | /*---------------------------------------------------------------------------- |
b689362d | 6384 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
6385 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
6386 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
6387 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6388 | *----------------------------------------------------------------------------*/ |
6389 | ||
e5a41ffa | 6390 | int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6391 | { |
6392 | ||
d1eb8f2a AD |
6393 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6394 | float_raise(float_flag_invalid, status); | |
6395 | return 0; | |
6396 | } | |
158142c2 | 6397 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 6398 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 6399 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 6400 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 6401 | ) { |
af39bc8c AM |
6402 | if (floatx80_is_signaling_nan(a, status) |
6403 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 6404 | float_raise(float_flag_invalid, status); |
b689362d | 6405 | } |
158142c2 FB |
6406 | return 0; |
6407 | } | |
6408 | return | |
6409 | ( a.low == b.low ) | |
6410 | && ( ( a.high == b.high ) | |
6411 | || ( ( a.low == 0 ) | |
bb98fe42 | 6412 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6413 | ); |
6414 | ||
6415 | } | |
6416 | ||
6417 | /*---------------------------------------------------------------------------- | |
6418 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
6419 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
6420 | | do not cause an exception. Otherwise, the comparison is performed according | |
6421 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6422 | *----------------------------------------------------------------------------*/ | |
6423 | ||
e5a41ffa | 6424 | int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6425 | { |
6426 | flag aSign, bSign; | |
6427 | ||
d1eb8f2a AD |
6428 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6429 | float_raise(float_flag_invalid, status); | |
6430 | return 0; | |
6431 | } | |
158142c2 | 6432 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 6433 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 6434 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 6435 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 6436 | ) { |
af39bc8c AM |
6437 | if (floatx80_is_signaling_nan(a, status) |
6438 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 6439 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6440 | } |
6441 | return 0; | |
6442 | } | |
6443 | aSign = extractFloatx80Sign( a ); | |
6444 | bSign = extractFloatx80Sign( b ); | |
6445 | if ( aSign != bSign ) { | |
6446 | return | |
6447 | aSign | |
bb98fe42 | 6448 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6449 | == 0 ); |
6450 | } | |
6451 | return | |
6452 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6453 | : le128( a.high, a.low, b.high, b.low ); | |
6454 | ||
6455 | } | |
6456 | ||
6457 | /*---------------------------------------------------------------------------- | |
6458 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
6459 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
6460 | | an exception. Otherwise, the comparison is performed according to the | |
6461 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6462 | *----------------------------------------------------------------------------*/ | |
6463 | ||
e5a41ffa | 6464 | int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
6465 | { |
6466 | flag aSign, bSign; | |
6467 | ||
d1eb8f2a AD |
6468 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6469 | float_raise(float_flag_invalid, status); | |
6470 | return 0; | |
6471 | } | |
158142c2 | 6472 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 6473 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 6474 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 6475 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 6476 | ) { |
af39bc8c AM |
6477 | if (floatx80_is_signaling_nan(a, status) |
6478 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 6479 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6480 | } |
6481 | return 0; | |
6482 | } | |
6483 | aSign = extractFloatx80Sign( a ); | |
6484 | bSign = extractFloatx80Sign( b ); | |
6485 | if ( aSign != bSign ) { | |
6486 | return | |
6487 | aSign | |
bb98fe42 | 6488 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6489 | != 0 ); |
6490 | } | |
6491 | return | |
6492 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6493 | : lt128( a.high, a.low, b.high, b.low ); | |
6494 | ||
6495 | } | |
6496 | ||
67b7861d AJ |
6497 | /*---------------------------------------------------------------------------- |
6498 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
6499 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
6500 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
6501 | | Floating-Point Arithmetic. | |
6502 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 6503 | int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 6504 | { |
d1eb8f2a AD |
6505 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6506 | float_raise(float_flag_invalid, status); | |
6507 | return 1; | |
6508 | } | |
67b7861d AJ |
6509 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
6510 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
6511 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
6512 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
6513 | ) { | |
af39bc8c AM |
6514 | if (floatx80_is_signaling_nan(a, status) |
6515 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 6516 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
6517 | } |
6518 | return 1; | |
6519 | } | |
6520 | return 0; | |
6521 | } | |
6522 | ||
158142c2 FB |
6523 | /*---------------------------------------------------------------------------- |
6524 | | Returns the result of converting the quadruple-precision floating-point | |
6525 | | value `a' to the 32-bit two's complement integer format. The conversion | |
6526 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6527 | | Arithmetic---which means in particular that the conversion is rounded | |
6528 | | according to the current rounding mode. If `a' is a NaN, the largest | |
6529 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
6530 | | largest integer with the same sign as `a' is returned. | |
6531 | *----------------------------------------------------------------------------*/ | |
6532 | ||
f4014512 | 6533 | int32_t float128_to_int32(float128 a, float_status *status) |
158142c2 FB |
6534 | { |
6535 | flag aSign; | |
f4014512 | 6536 | int32_t aExp, shiftCount; |
bb98fe42 | 6537 | uint64_t aSig0, aSig1; |
158142c2 FB |
6538 | |
6539 | aSig1 = extractFloat128Frac1( a ); | |
6540 | aSig0 = extractFloat128Frac0( a ); | |
6541 | aExp = extractFloat128Exp( a ); | |
6542 | aSign = extractFloat128Sign( a ); | |
6543 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
6544 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6545 | aSig0 |= ( aSig1 != 0 ); | |
6546 | shiftCount = 0x4028 - aExp; | |
6547 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
ff32e16e | 6548 | return roundAndPackInt32(aSign, aSig0, status); |
158142c2 FB |
6549 | |
6550 | } | |
6551 | ||
6552 | /*---------------------------------------------------------------------------- | |
6553 | | Returns the result of converting the quadruple-precision floating-point | |
6554 | | value `a' to the 32-bit two's complement integer format. The conversion | |
6555 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6556 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
6557 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
6558 | | conversion overflows, the largest integer with the same sign as `a' is | |
6559 | | returned. | |
6560 | *----------------------------------------------------------------------------*/ | |
6561 | ||
f4014512 | 6562 | int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
6563 | { |
6564 | flag aSign; | |
f4014512 | 6565 | int32_t aExp, shiftCount; |
bb98fe42 | 6566 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 6567 | int32_t z; |
158142c2 FB |
6568 | |
6569 | aSig1 = extractFloat128Frac1( a ); | |
6570 | aSig0 = extractFloat128Frac0( a ); | |
6571 | aExp = extractFloat128Exp( a ); | |
6572 | aSign = extractFloat128Sign( a ); | |
6573 | aSig0 |= ( aSig1 != 0 ); | |
6574 | if ( 0x401E < aExp ) { | |
6575 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
6576 | goto invalid; | |
6577 | } | |
6578 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
6579 | if (aExp || aSig0) { |
6580 | status->float_exception_flags |= float_flag_inexact; | |
6581 | } | |
158142c2 FB |
6582 | return 0; |
6583 | } | |
6584 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6585 | shiftCount = 0x402F - aExp; | |
6586 | savedASig = aSig0; | |
6587 | aSig0 >>= shiftCount; | |
6588 | z = aSig0; | |
6589 | if ( aSign ) z = - z; | |
6590 | if ( ( z < 0 ) ^ aSign ) { | |
6591 | invalid: | |
ff32e16e | 6592 | float_raise(float_flag_invalid, status); |
bb98fe42 | 6593 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
6594 | } |
6595 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
a2f2d288 | 6596 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6597 | } |
6598 | return z; | |
6599 | ||
6600 | } | |
6601 | ||
6602 | /*---------------------------------------------------------------------------- | |
6603 | | Returns the result of converting the quadruple-precision floating-point | |
6604 | | value `a' to the 64-bit two's complement integer format. The conversion | |
6605 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6606 | | Arithmetic---which means in particular that the conversion is rounded | |
6607 | | according to the current rounding mode. If `a' is a NaN, the largest | |
6608 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
6609 | | largest integer with the same sign as `a' is returned. | |
6610 | *----------------------------------------------------------------------------*/ | |
6611 | ||
f42c2224 | 6612 | int64_t float128_to_int64(float128 a, float_status *status) |
158142c2 FB |
6613 | { |
6614 | flag aSign; | |
f4014512 | 6615 | int32_t aExp, shiftCount; |
bb98fe42 | 6616 | uint64_t aSig0, aSig1; |
158142c2 FB |
6617 | |
6618 | aSig1 = extractFloat128Frac1( a ); | |
6619 | aSig0 = extractFloat128Frac0( a ); | |
6620 | aExp = extractFloat128Exp( a ); | |
6621 | aSign = extractFloat128Sign( a ); | |
6622 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6623 | shiftCount = 0x402F - aExp; | |
6624 | if ( shiftCount <= 0 ) { | |
6625 | if ( 0x403E < aExp ) { | |
ff32e16e | 6626 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6627 | if ( ! aSign |
6628 | || ( ( aExp == 0x7FFF ) | |
6629 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
6630 | ) | |
6631 | ) { | |
6632 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6633 | } | |
bb98fe42 | 6634 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6635 | } |
6636 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
6637 | } | |
6638 | else { | |
6639 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
6640 | } | |
ff32e16e | 6641 | return roundAndPackInt64(aSign, aSig0, aSig1, status); |
158142c2 FB |
6642 | |
6643 | } | |
6644 | ||
6645 | /*---------------------------------------------------------------------------- | |
6646 | | Returns the result of converting the quadruple-precision floating-point | |
6647 | | value `a' to the 64-bit two's complement integer format. The conversion | |
6648 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6649 | | Arithmetic, except that the conversion is always rounded toward zero. | |
6650 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
6651 | | the conversion overflows, the largest integer with the same sign as `a' is | |
6652 | | returned. | |
6653 | *----------------------------------------------------------------------------*/ | |
6654 | ||
f42c2224 | 6655 | int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
6656 | { |
6657 | flag aSign; | |
f4014512 | 6658 | int32_t aExp, shiftCount; |
bb98fe42 | 6659 | uint64_t aSig0, aSig1; |
f42c2224 | 6660 | int64_t z; |
158142c2 FB |
6661 | |
6662 | aSig1 = extractFloat128Frac1( a ); | |
6663 | aSig0 = extractFloat128Frac0( a ); | |
6664 | aExp = extractFloat128Exp( a ); | |
6665 | aSign = extractFloat128Sign( a ); | |
6666 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6667 | shiftCount = aExp - 0x402F; | |
6668 | if ( 0 < shiftCount ) { | |
6669 | if ( 0x403E <= aExp ) { | |
6670 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
6671 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
6672 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
a2f2d288 PM |
6673 | if (aSig1) { |
6674 | status->float_exception_flags |= float_flag_inexact; | |
6675 | } | |
158142c2 FB |
6676 | } |
6677 | else { | |
ff32e16e | 6678 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6679 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { |
6680 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6681 | } | |
6682 | } | |
bb98fe42 | 6683 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6684 | } |
6685 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 6686 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
a2f2d288 | 6687 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6688 | } |
6689 | } | |
6690 | else { | |
6691 | if ( aExp < 0x3FFF ) { | |
6692 | if ( aExp | aSig0 | aSig1 ) { | |
a2f2d288 | 6693 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6694 | } |
6695 | return 0; | |
6696 | } | |
6697 | z = aSig0>>( - shiftCount ); | |
6698 | if ( aSig1 | |
bb98fe42 | 6699 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
a2f2d288 | 6700 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6701 | } |
6702 | } | |
6703 | if ( aSign ) z = - z; | |
6704 | return z; | |
6705 | ||
6706 | } | |
6707 | ||
2e6d8568 BR |
6708 | /*---------------------------------------------------------------------------- |
6709 | | Returns the result of converting the quadruple-precision floating-point value | |
6710 | | `a' to the 64-bit unsigned integer format. The conversion is | |
6711 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6712 | | Arithmetic---which means in particular that the conversion is rounded | |
6713 | | according to the current rounding mode. If `a' is a NaN, the largest | |
6714 | | positive integer is returned. If the conversion overflows, the | |
6715 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
6716 | | rounded and zero is returned; negative values that do not round to zero | |
6717 | | will raise the inexact exception. | |
6718 | *----------------------------------------------------------------------------*/ | |
6719 | ||
6720 | uint64_t float128_to_uint64(float128 a, float_status *status) | |
6721 | { | |
6722 | flag aSign; | |
6723 | int aExp; | |
6724 | int shiftCount; | |
6725 | uint64_t aSig0, aSig1; | |
6726 | ||
6727 | aSig0 = extractFloat128Frac0(a); | |
6728 | aSig1 = extractFloat128Frac1(a); | |
6729 | aExp = extractFloat128Exp(a); | |
6730 | aSign = extractFloat128Sign(a); | |
6731 | if (aSign && (aExp > 0x3FFE)) { | |
6732 | float_raise(float_flag_invalid, status); | |
6733 | if (float128_is_any_nan(a)) { | |
6734 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
6735 | } else { | |
6736 | return 0; | |
6737 | } | |
6738 | } | |
6739 | if (aExp) { | |
6740 | aSig0 |= LIT64(0x0001000000000000); | |
6741 | } | |
6742 | shiftCount = 0x402F - aExp; | |
6743 | if (shiftCount <= 0) { | |
6744 | if (0x403E < aExp) { | |
6745 | float_raise(float_flag_invalid, status); | |
6746 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
6747 | } | |
6748 | shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1); | |
6749 | } else { | |
6750 | shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1); | |
6751 | } | |
6752 | return roundAndPackUint64(aSign, aSig0, aSig1, status); | |
6753 | } | |
6754 | ||
6755 | uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status) | |
6756 | { | |
6757 | uint64_t v; | |
6758 | signed char current_rounding_mode = status->float_rounding_mode; | |
6759 | ||
6760 | set_float_rounding_mode(float_round_to_zero, status); | |
6761 | v = float128_to_uint64(a, status); | |
6762 | set_float_rounding_mode(current_rounding_mode, status); | |
6763 | ||
6764 | return v; | |
6765 | } | |
6766 | ||
158142c2 FB |
6767 | /*---------------------------------------------------------------------------- |
6768 | | Returns the result of converting the quadruple-precision floating-point | |
fd425037 BR |
6769 | | value `a' to the 32-bit unsigned integer format. The conversion |
6770 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6771 | | Arithmetic except that the conversion is always rounded toward zero. | |
6772 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, | |
6773 | | if the conversion overflows, the largest unsigned integer is returned. | |
6774 | | If 'a' is negative, the value is rounded and zero is returned; negative | |
6775 | | values that do not round to zero will raise the inexact exception. | |
6776 | *----------------------------------------------------------------------------*/ | |
6777 | ||
6778 | uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status) | |
6779 | { | |
6780 | uint64_t v; | |
6781 | uint32_t res; | |
6782 | int old_exc_flags = get_float_exception_flags(status); | |
6783 | ||
6784 | v = float128_to_uint64_round_to_zero(a, status); | |
6785 | if (v > 0xffffffff) { | |
6786 | res = 0xffffffff; | |
6787 | } else { | |
6788 | return v; | |
6789 | } | |
6790 | set_float_exception_flags(old_exc_flags, status); | |
6791 | float_raise(float_flag_invalid, status); | |
6792 | return res; | |
6793 | } | |
6794 | ||
6795 | /*---------------------------------------------------------------------------- | |
6796 | | Returns the result of converting the quadruple-precision floating-point | |
158142c2 FB |
6797 | | value `a' to the single-precision floating-point format. The conversion |
6798 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6799 | | Arithmetic. | |
6800 | *----------------------------------------------------------------------------*/ | |
6801 | ||
e5a41ffa | 6802 | float32 float128_to_float32(float128 a, float_status *status) |
158142c2 FB |
6803 | { |
6804 | flag aSign; | |
f4014512 | 6805 | int32_t aExp; |
bb98fe42 AF |
6806 | uint64_t aSig0, aSig1; |
6807 | uint32_t zSig; | |
158142c2 FB |
6808 | |
6809 | aSig1 = extractFloat128Frac1( a ); | |
6810 | aSig0 = extractFloat128Frac0( a ); | |
6811 | aExp = extractFloat128Exp( a ); | |
6812 | aSign = extractFloat128Sign( a ); | |
6813 | if ( aExp == 0x7FFF ) { | |
6814 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6815 | return commonNaNToFloat32(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6816 | } |
6817 | return packFloat32( aSign, 0xFF, 0 ); | |
6818 | } | |
6819 | aSig0 |= ( aSig1 != 0 ); | |
6820 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
6821 | zSig = aSig0; | |
6822 | if ( aExp || zSig ) { | |
6823 | zSig |= 0x40000000; | |
6824 | aExp -= 0x3F81; | |
6825 | } | |
ff32e16e | 6826 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
6827 | |
6828 | } | |
6829 | ||
6830 | /*---------------------------------------------------------------------------- | |
6831 | | Returns the result of converting the quadruple-precision floating-point | |
6832 | | value `a' to the double-precision floating-point format. The conversion | |
6833 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6834 | | Arithmetic. | |
6835 | *----------------------------------------------------------------------------*/ | |
6836 | ||
e5a41ffa | 6837 | float64 float128_to_float64(float128 a, float_status *status) |
158142c2 FB |
6838 | { |
6839 | flag aSign; | |
f4014512 | 6840 | int32_t aExp; |
bb98fe42 | 6841 | uint64_t aSig0, aSig1; |
158142c2 FB |
6842 | |
6843 | aSig1 = extractFloat128Frac1( a ); | |
6844 | aSig0 = extractFloat128Frac0( a ); | |
6845 | aExp = extractFloat128Exp( a ); | |
6846 | aSign = extractFloat128Sign( a ); | |
6847 | if ( aExp == 0x7FFF ) { | |
6848 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6849 | return commonNaNToFloat64(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6850 | } |
6851 | return packFloat64( aSign, 0x7FF, 0 ); | |
6852 | } | |
6853 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6854 | aSig0 |= ( aSig1 != 0 ); | |
6855 | if ( aExp || aSig0 ) { | |
6856 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6857 | aExp -= 0x3C01; | |
6858 | } | |
ff32e16e | 6859 | return roundAndPackFloat64(aSign, aExp, aSig0, status); |
158142c2 FB |
6860 | |
6861 | } | |
6862 | ||
158142c2 FB |
6863 | /*---------------------------------------------------------------------------- |
6864 | | Returns the result of converting the quadruple-precision floating-point | |
6865 | | value `a' to the extended double-precision floating-point format. The | |
6866 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
6867 | | Floating-Point Arithmetic. | |
6868 | *----------------------------------------------------------------------------*/ | |
6869 | ||
e5a41ffa | 6870 | floatx80 float128_to_floatx80(float128 a, float_status *status) |
158142c2 FB |
6871 | { |
6872 | flag aSign; | |
f4014512 | 6873 | int32_t aExp; |
bb98fe42 | 6874 | uint64_t aSig0, aSig1; |
158142c2 FB |
6875 | |
6876 | aSig1 = extractFloat128Frac1( a ); | |
6877 | aSig0 = extractFloat128Frac0( a ); | |
6878 | aExp = extractFloat128Exp( a ); | |
6879 | aSign = extractFloat128Sign( a ); | |
6880 | if ( aExp == 0x7FFF ) { | |
6881 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6882 | return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); |
158142c2 | 6883 | } |
0f605c88 LV |
6884 | return packFloatx80(aSign, floatx80_infinity_high, |
6885 | floatx80_infinity_low); | |
158142c2 FB |
6886 | } |
6887 | if ( aExp == 0 ) { | |
6888 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
6889 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6890 | } | |
6891 | else { | |
6892 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6893 | } | |
6894 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
ff32e16e | 6895 | return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); |
158142c2 FB |
6896 | |
6897 | } | |
6898 | ||
158142c2 FB |
6899 | /*---------------------------------------------------------------------------- |
6900 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
6901 | | returns the result as a quadruple-precision floating-point value. The | |
6902 | | operation is performed according to the IEC/IEEE Standard for Binary | |
6903 | | Floating-Point Arithmetic. | |
6904 | *----------------------------------------------------------------------------*/ | |
6905 | ||
e5a41ffa | 6906 | float128 float128_round_to_int(float128 a, float_status *status) |
158142c2 FB |
6907 | { |
6908 | flag aSign; | |
f4014512 | 6909 | int32_t aExp; |
bb98fe42 | 6910 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
6911 | float128 z; |
6912 | ||
6913 | aExp = extractFloat128Exp( a ); | |
6914 | if ( 0x402F <= aExp ) { | |
6915 | if ( 0x406F <= aExp ) { | |
6916 | if ( ( aExp == 0x7FFF ) | |
6917 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
6918 | ) { | |
ff32e16e | 6919 | return propagateFloat128NaN(a, a, status); |
158142c2 FB |
6920 | } |
6921 | return a; | |
6922 | } | |
6923 | lastBitMask = 1; | |
6924 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
6925 | roundBitsMask = lastBitMask - 1; | |
6926 | z = a; | |
a2f2d288 | 6927 | switch (status->float_rounding_mode) { |
dc355b76 | 6928 | case float_round_nearest_even: |
158142c2 FB |
6929 | if ( lastBitMask ) { |
6930 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
6931 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
6932 | } | |
6933 | else { | |
bb98fe42 | 6934 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 6935 | ++z.high; |
bb98fe42 | 6936 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
6937 | } |
6938 | } | |
dc355b76 | 6939 | break; |
f9288a76 PM |
6940 | case float_round_ties_away: |
6941 | if (lastBitMask) { | |
6942 | add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); | |
6943 | } else { | |
6944 | if ((int64_t) z.low < 0) { | |
6945 | ++z.high; | |
6946 | } | |
6947 | } | |
6948 | break; | |
dc355b76 PM |
6949 | case float_round_to_zero: |
6950 | break; | |
6951 | case float_round_up: | |
6952 | if (!extractFloat128Sign(z)) { | |
6953 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
6954 | } | |
6955 | break; | |
6956 | case float_round_down: | |
6957 | if (extractFloat128Sign(z)) { | |
6958 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
158142c2 | 6959 | } |
dc355b76 PM |
6960 | break; |
6961 | default: | |
6962 | abort(); | |
158142c2 FB |
6963 | } |
6964 | z.low &= ~ roundBitsMask; | |
6965 | } | |
6966 | else { | |
6967 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 6968 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
a2f2d288 | 6969 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 6970 | aSign = extractFloat128Sign( a ); |
a2f2d288 | 6971 | switch (status->float_rounding_mode) { |
158142c2 FB |
6972 | case float_round_nearest_even: |
6973 | if ( ( aExp == 0x3FFE ) | |
6974 | && ( extractFloat128Frac0( a ) | |
6975 | | extractFloat128Frac1( a ) ) | |
6976 | ) { | |
6977 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
6978 | } | |
6979 | break; | |
f9288a76 PM |
6980 | case float_round_ties_away: |
6981 | if (aExp == 0x3FFE) { | |
6982 | return packFloat128(aSign, 0x3FFF, 0, 0); | |
6983 | } | |
6984 | break; | |
158142c2 FB |
6985 | case float_round_down: |
6986 | return | |
6987 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
6988 | : packFloat128( 0, 0, 0, 0 ); | |
6989 | case float_round_up: | |
6990 | return | |
6991 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
6992 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
6993 | } | |
6994 | return packFloat128( aSign, 0, 0, 0 ); | |
6995 | } | |
6996 | lastBitMask = 1; | |
6997 | lastBitMask <<= 0x402F - aExp; | |
6998 | roundBitsMask = lastBitMask - 1; | |
6999 | z.low = 0; | |
7000 | z.high = a.high; | |
a2f2d288 | 7001 | switch (status->float_rounding_mode) { |
dc355b76 | 7002 | case float_round_nearest_even: |
158142c2 FB |
7003 | z.high += lastBitMask>>1; |
7004 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
7005 | z.high &= ~ lastBitMask; | |
7006 | } | |
dc355b76 | 7007 | break; |
f9288a76 PM |
7008 | case float_round_ties_away: |
7009 | z.high += lastBitMask>>1; | |
7010 | break; | |
dc355b76 PM |
7011 | case float_round_to_zero: |
7012 | break; | |
7013 | case float_round_up: | |
7014 | if (!extractFloat128Sign(z)) { | |
158142c2 FB |
7015 | z.high |= ( a.low != 0 ); |
7016 | z.high += roundBitsMask; | |
7017 | } | |
dc355b76 PM |
7018 | break; |
7019 | case float_round_down: | |
7020 | if (extractFloat128Sign(z)) { | |
7021 | z.high |= (a.low != 0); | |
7022 | z.high += roundBitsMask; | |
7023 | } | |
7024 | break; | |
7025 | default: | |
7026 | abort(); | |
158142c2 FB |
7027 | } |
7028 | z.high &= ~ roundBitsMask; | |
7029 | } | |
7030 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
a2f2d288 | 7031 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
7032 | } |
7033 | return z; | |
7034 | ||
7035 | } | |
7036 | ||
7037 | /*---------------------------------------------------------------------------- | |
7038 | | Returns the result of adding the absolute values of the quadruple-precision | |
7039 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
7040 | | before being returned. `zSign' is ignored if the result is a NaN. | |
7041 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
7042 | | Floating-Point Arithmetic. | |
7043 | *----------------------------------------------------------------------------*/ | |
7044 | ||
e5a41ffa PM |
7045 | static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, |
7046 | float_status *status) | |
158142c2 | 7047 | { |
f4014512 | 7048 | int32_t aExp, bExp, zExp; |
bb98fe42 | 7049 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
f4014512 | 7050 | int32_t expDiff; |
158142c2 FB |
7051 | |
7052 | aSig1 = extractFloat128Frac1( a ); | |
7053 | aSig0 = extractFloat128Frac0( a ); | |
7054 | aExp = extractFloat128Exp( a ); | |
7055 | bSig1 = extractFloat128Frac1( b ); | |
7056 | bSig0 = extractFloat128Frac0( b ); | |
7057 | bExp = extractFloat128Exp( b ); | |
7058 | expDiff = aExp - bExp; | |
7059 | if ( 0 < expDiff ) { | |
7060 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
7061 | if (aSig0 | aSig1) { |
7062 | return propagateFloat128NaN(a, b, status); | |
7063 | } | |
158142c2 FB |
7064 | return a; |
7065 | } | |
7066 | if ( bExp == 0 ) { | |
7067 | --expDiff; | |
7068 | } | |
7069 | else { | |
7070 | bSig0 |= LIT64( 0x0001000000000000 ); | |
7071 | } | |
7072 | shift128ExtraRightJamming( | |
7073 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
7074 | zExp = aExp; | |
7075 | } | |
7076 | else if ( expDiff < 0 ) { | |
7077 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
7078 | if (bSig0 | bSig1) { |
7079 | return propagateFloat128NaN(a, b, status); | |
7080 | } | |
158142c2 FB |
7081 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
7082 | } | |
7083 | if ( aExp == 0 ) { | |
7084 | ++expDiff; | |
7085 | } | |
7086 | else { | |
7087 | aSig0 |= LIT64( 0x0001000000000000 ); | |
7088 | } | |
7089 | shift128ExtraRightJamming( | |
7090 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
7091 | zExp = bExp; | |
7092 | } | |
7093 | else { | |
7094 | if ( aExp == 0x7FFF ) { | |
7095 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 7096 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
7097 | } |
7098 | return a; | |
7099 | } | |
7100 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 7101 | if ( aExp == 0 ) { |
a2f2d288 | 7102 | if (status->flush_to_zero) { |
e6afc87f | 7103 | if (zSig0 | zSig1) { |
ff32e16e | 7104 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
7105 | } |
7106 | return packFloat128(zSign, 0, 0, 0); | |
7107 | } | |
fe76d976 PB |
7108 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
7109 | } | |
158142c2 FB |
7110 | zSig2 = 0; |
7111 | zSig0 |= LIT64( 0x0002000000000000 ); | |
7112 | zExp = aExp; | |
7113 | goto shiftRight1; | |
7114 | } | |
7115 | aSig0 |= LIT64( 0x0001000000000000 ); | |
7116 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
7117 | --zExp; | |
7118 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
7119 | ++zExp; | |
7120 | shiftRight1: | |
7121 | shift128ExtraRightJamming( | |
7122 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
7123 | roundAndPack: | |
ff32e16e | 7124 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
7125 | |
7126 | } | |
7127 | ||
7128 | /*---------------------------------------------------------------------------- | |
7129 | | Returns the result of subtracting the absolute values of the quadruple- | |
7130 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
7131 | | difference is negated before being returned. `zSign' is ignored if the | |
7132 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
7133 | | Standard for Binary Floating-Point Arithmetic. | |
7134 | *----------------------------------------------------------------------------*/ | |
7135 | ||
e5a41ffa PM |
7136 | static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, |
7137 | float_status *status) | |
158142c2 | 7138 | { |
f4014512 | 7139 | int32_t aExp, bExp, zExp; |
bb98fe42 | 7140 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
f4014512 | 7141 | int32_t expDiff; |
158142c2 FB |
7142 | |
7143 | aSig1 = extractFloat128Frac1( a ); | |
7144 | aSig0 = extractFloat128Frac0( a ); | |
7145 | aExp = extractFloat128Exp( a ); | |
7146 | bSig1 = extractFloat128Frac1( b ); | |
7147 | bSig0 = extractFloat128Frac0( b ); | |
7148 | bExp = extractFloat128Exp( b ); | |
7149 | expDiff = aExp - bExp; | |
7150 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
7151 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
7152 | if ( 0 < expDiff ) goto aExpBigger; | |
7153 | if ( expDiff < 0 ) goto bExpBigger; | |
7154 | if ( aExp == 0x7FFF ) { | |
7155 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 7156 | return propagateFloat128NaN(a, b, status); |
158142c2 | 7157 | } |
ff32e16e | 7158 | float_raise(float_flag_invalid, status); |
af39bc8c | 7159 | return float128_default_nan(status); |
158142c2 FB |
7160 | } |
7161 | if ( aExp == 0 ) { | |
7162 | aExp = 1; | |
7163 | bExp = 1; | |
7164 | } | |
7165 | if ( bSig0 < aSig0 ) goto aBigger; | |
7166 | if ( aSig0 < bSig0 ) goto bBigger; | |
7167 | if ( bSig1 < aSig1 ) goto aBigger; | |
7168 | if ( aSig1 < bSig1 ) goto bBigger; | |
a2f2d288 PM |
7169 | return packFloat128(status->float_rounding_mode == float_round_down, |
7170 | 0, 0, 0); | |
158142c2 FB |
7171 | bExpBigger: |
7172 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
7173 | if (bSig0 | bSig1) { |
7174 | return propagateFloat128NaN(a, b, status); | |
7175 | } | |
158142c2 FB |
7176 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); |
7177 | } | |
7178 | if ( aExp == 0 ) { | |
7179 | ++expDiff; | |
7180 | } | |
7181 | else { | |
7182 | aSig0 |= LIT64( 0x4000000000000000 ); | |
7183 | } | |
7184 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
7185 | bSig0 |= LIT64( 0x4000000000000000 ); | |
7186 | bBigger: | |
7187 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
7188 | zExp = bExp; | |
7189 | zSign ^= 1; | |
7190 | goto normalizeRoundAndPack; | |
7191 | aExpBigger: | |
7192 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
7193 | if (aSig0 | aSig1) { |
7194 | return propagateFloat128NaN(a, b, status); | |
7195 | } | |
158142c2 FB |
7196 | return a; |
7197 | } | |
7198 | if ( bExp == 0 ) { | |
7199 | --expDiff; | |
7200 | } | |
7201 | else { | |
7202 | bSig0 |= LIT64( 0x4000000000000000 ); | |
7203 | } | |
7204 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
7205 | aSig0 |= LIT64( 0x4000000000000000 ); | |
7206 | aBigger: | |
7207 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
7208 | zExp = aExp; | |
7209 | normalizeRoundAndPack: | |
7210 | --zExp; | |
ff32e16e PM |
7211 | return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, |
7212 | status); | |
158142c2 FB |
7213 | |
7214 | } | |
7215 | ||
7216 | /*---------------------------------------------------------------------------- | |
7217 | | Returns the result of adding the quadruple-precision floating-point values | |
7218 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
7219 | | for Binary Floating-Point Arithmetic. | |
7220 | *----------------------------------------------------------------------------*/ | |
7221 | ||
e5a41ffa | 7222 | float128 float128_add(float128 a, float128 b, float_status *status) |
158142c2 FB |
7223 | { |
7224 | flag aSign, bSign; | |
7225 | ||
7226 | aSign = extractFloat128Sign( a ); | |
7227 | bSign = extractFloat128Sign( b ); | |
7228 | if ( aSign == bSign ) { | |
ff32e16e | 7229 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
7230 | } |
7231 | else { | |
ff32e16e | 7232 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
7233 | } |
7234 | ||
7235 | } | |
7236 | ||
7237 | /*---------------------------------------------------------------------------- | |
7238 | | Returns the result of subtracting the quadruple-precision floating-point | |
7239 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
7240 | | Standard for Binary Floating-Point Arithmetic. | |
7241 | *----------------------------------------------------------------------------*/ | |
7242 | ||
e5a41ffa | 7243 | float128 float128_sub(float128 a, float128 b, float_status *status) |
158142c2 FB |
7244 | { |
7245 | flag aSign, bSign; | |
7246 | ||
7247 | aSign = extractFloat128Sign( a ); | |
7248 | bSign = extractFloat128Sign( b ); | |
7249 | if ( aSign == bSign ) { | |
ff32e16e | 7250 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
7251 | } |
7252 | else { | |
ff32e16e | 7253 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
7254 | } |
7255 | ||
7256 | } | |
7257 | ||
7258 | /*---------------------------------------------------------------------------- | |
7259 | | Returns the result of multiplying the quadruple-precision floating-point | |
7260 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
7261 | | Standard for Binary Floating-Point Arithmetic. | |
7262 | *----------------------------------------------------------------------------*/ | |
7263 | ||
e5a41ffa | 7264 | float128 float128_mul(float128 a, float128 b, float_status *status) |
158142c2 FB |
7265 | { |
7266 | flag aSign, bSign, zSign; | |
f4014512 | 7267 | int32_t aExp, bExp, zExp; |
bb98fe42 | 7268 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
7269 | |
7270 | aSig1 = extractFloat128Frac1( a ); | |
7271 | aSig0 = extractFloat128Frac0( a ); | |
7272 | aExp = extractFloat128Exp( a ); | |
7273 | aSign = extractFloat128Sign( a ); | |
7274 | bSig1 = extractFloat128Frac1( b ); | |
7275 | bSig0 = extractFloat128Frac0( b ); | |
7276 | bExp = extractFloat128Exp( b ); | |
7277 | bSign = extractFloat128Sign( b ); | |
7278 | zSign = aSign ^ bSign; | |
7279 | if ( aExp == 0x7FFF ) { | |
7280 | if ( ( aSig0 | aSig1 ) | |
7281 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 7282 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
7283 | } |
7284 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
7285 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
7286 | } | |
7287 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
7288 | if (bSig0 | bSig1) { |
7289 | return propagateFloat128NaN(a, b, status); | |
7290 | } | |
158142c2 FB |
7291 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
7292 | invalid: | |
ff32e16e | 7293 | float_raise(float_flag_invalid, status); |
af39bc8c | 7294 | return float128_default_nan(status); |
158142c2 FB |
7295 | } |
7296 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
7297 | } | |
7298 | if ( aExp == 0 ) { | |
7299 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
7300 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
7301 | } | |
7302 | if ( bExp == 0 ) { | |
7303 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
7304 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
7305 | } | |
7306 | zExp = aExp + bExp - 0x4000; | |
7307 | aSig0 |= LIT64( 0x0001000000000000 ); | |
7308 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
7309 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
7310 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
7311 | zSig2 |= ( zSig3 != 0 ); | |
7312 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
7313 | shift128ExtraRightJamming( | |
7314 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
7315 | ++zExp; | |
7316 | } | |
ff32e16e | 7317 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
7318 | |
7319 | } | |
7320 | ||
7321 | /*---------------------------------------------------------------------------- | |
7322 | | Returns the result of dividing the quadruple-precision floating-point value | |
7323 | | `a' by the corresponding value `b'. The operation is performed according to | |
7324 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
7325 | *----------------------------------------------------------------------------*/ | |
7326 | ||
e5a41ffa | 7327 | float128 float128_div(float128 a, float128 b, float_status *status) |
158142c2 FB |
7328 | { |
7329 | flag aSign, bSign, zSign; | |
f4014512 | 7330 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
7331 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
7332 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
7333 | |
7334 | aSig1 = extractFloat128Frac1( a ); | |
7335 | aSig0 = extractFloat128Frac0( a ); | |
7336 | aExp = extractFloat128Exp( a ); | |
7337 | aSign = extractFloat128Sign( a ); | |
7338 | bSig1 = extractFloat128Frac1( b ); | |
7339 | bSig0 = extractFloat128Frac0( b ); | |
7340 | bExp = extractFloat128Exp( b ); | |
7341 | bSign = extractFloat128Sign( b ); | |
7342 | zSign = aSign ^ bSign; | |
7343 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
7344 | if (aSig0 | aSig1) { |
7345 | return propagateFloat128NaN(a, b, status); | |
7346 | } | |
158142c2 | 7347 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
7348 | if (bSig0 | bSig1) { |
7349 | return propagateFloat128NaN(a, b, status); | |
7350 | } | |
158142c2 FB |
7351 | goto invalid; |
7352 | } | |
7353 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
7354 | } | |
7355 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
7356 | if (bSig0 | bSig1) { |
7357 | return propagateFloat128NaN(a, b, status); | |
7358 | } | |
158142c2 FB |
7359 | return packFloat128( zSign, 0, 0, 0 ); |
7360 | } | |
7361 | if ( bExp == 0 ) { | |
7362 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
7363 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
7364 | invalid: | |
ff32e16e | 7365 | float_raise(float_flag_invalid, status); |
af39bc8c | 7366 | return float128_default_nan(status); |
158142c2 | 7367 | } |
ff32e16e | 7368 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
7369 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
7370 | } | |
7371 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
7372 | } | |
7373 | if ( aExp == 0 ) { | |
7374 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
7375 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
7376 | } | |
7377 | zExp = aExp - bExp + 0x3FFD; | |
7378 | shortShift128Left( | |
7379 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
7380 | shortShift128Left( | |
7381 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
7382 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
7383 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
7384 | ++zExp; | |
7385 | } | |
7386 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
7387 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
7388 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 7389 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
7390 | --zSig0; |
7391 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
7392 | } | |
7393 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
7394 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
7395 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
7396 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 7397 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
7398 | --zSig1; |
7399 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
7400 | } | |
7401 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
7402 | } | |
7403 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 7404 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
7405 | |
7406 | } | |
7407 | ||
7408 | /*---------------------------------------------------------------------------- | |
7409 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
7410 | | with respect to the corresponding value `b'. The operation is performed | |
7411 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
7412 | *----------------------------------------------------------------------------*/ | |
7413 | ||
e5a41ffa | 7414 | float128 float128_rem(float128 a, float128 b, float_status *status) |
158142c2 | 7415 | { |
ed086f3d | 7416 | flag aSign, zSign; |
f4014512 | 7417 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
7418 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
7419 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
7420 | int64_t sigMean0; | |
158142c2 FB |
7421 | |
7422 | aSig1 = extractFloat128Frac1( a ); | |
7423 | aSig0 = extractFloat128Frac0( a ); | |
7424 | aExp = extractFloat128Exp( a ); | |
7425 | aSign = extractFloat128Sign( a ); | |
7426 | bSig1 = extractFloat128Frac1( b ); | |
7427 | bSig0 = extractFloat128Frac0( b ); | |
7428 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
7429 | if ( aExp == 0x7FFF ) { |
7430 | if ( ( aSig0 | aSig1 ) | |
7431 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 7432 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
7433 | } |
7434 | goto invalid; | |
7435 | } | |
7436 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
7437 | if (bSig0 | bSig1) { |
7438 | return propagateFloat128NaN(a, b, status); | |
7439 | } | |
158142c2 FB |
7440 | return a; |
7441 | } | |
7442 | if ( bExp == 0 ) { | |
7443 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
7444 | invalid: | |
ff32e16e | 7445 | float_raise(float_flag_invalid, status); |
af39bc8c | 7446 | return float128_default_nan(status); |
158142c2 FB |
7447 | } |
7448 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
7449 | } | |
7450 | if ( aExp == 0 ) { | |
7451 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
7452 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
7453 | } | |
7454 | expDiff = aExp - bExp; | |
7455 | if ( expDiff < -1 ) return a; | |
7456 | shortShift128Left( | |
7457 | aSig0 | LIT64( 0x0001000000000000 ), | |
7458 | aSig1, | |
7459 | 15 - ( expDiff < 0 ), | |
7460 | &aSig0, | |
7461 | &aSig1 | |
7462 | ); | |
7463 | shortShift128Left( | |
7464 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
7465 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
7466 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
7467 | expDiff -= 64; | |
7468 | while ( 0 < expDiff ) { | |
7469 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
7470 | q = ( 4 < q ) ? q - 4 : 0; | |
7471 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
7472 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
7473 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
7474 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
7475 | expDiff -= 61; | |
7476 | } | |
7477 | if ( -64 < expDiff ) { | |
7478 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
7479 | q = ( 4 < q ) ? q - 4 : 0; | |
7480 | q >>= - expDiff; | |
7481 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
7482 | expDiff += 52; | |
7483 | if ( expDiff < 0 ) { | |
7484 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
7485 | } | |
7486 | else { | |
7487 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
7488 | } | |
7489 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
7490 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
7491 | } | |
7492 | else { | |
7493 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
7494 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
7495 | } | |
7496 | do { | |
7497 | alternateASig0 = aSig0; | |
7498 | alternateASig1 = aSig1; | |
7499 | ++q; | |
7500 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 7501 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 7502 | add128( |
bb98fe42 | 7503 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
7504 | if ( ( sigMean0 < 0 ) |
7505 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
7506 | aSig0 = alternateASig0; | |
7507 | aSig1 = alternateASig1; | |
7508 | } | |
bb98fe42 | 7509 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 | 7510 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
ff32e16e PM |
7511 | return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, |
7512 | status); | |
158142c2 FB |
7513 | } |
7514 | ||
7515 | /*---------------------------------------------------------------------------- | |
7516 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
7517 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
7518 | | Floating-Point Arithmetic. | |
7519 | *----------------------------------------------------------------------------*/ | |
7520 | ||
e5a41ffa | 7521 | float128 float128_sqrt(float128 a, float_status *status) |
158142c2 FB |
7522 | { |
7523 | flag aSign; | |
f4014512 | 7524 | int32_t aExp, zExp; |
bb98fe42 AF |
7525 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
7526 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
7527 | |
7528 | aSig1 = extractFloat128Frac1( a ); | |
7529 | aSig0 = extractFloat128Frac0( a ); | |
7530 | aExp = extractFloat128Exp( a ); | |
7531 | aSign = extractFloat128Sign( a ); | |
7532 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
7533 | if (aSig0 | aSig1) { |
7534 | return propagateFloat128NaN(a, a, status); | |
7535 | } | |
158142c2 FB |
7536 | if ( ! aSign ) return a; |
7537 | goto invalid; | |
7538 | } | |
7539 | if ( aSign ) { | |
7540 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
7541 | invalid: | |
ff32e16e | 7542 | float_raise(float_flag_invalid, status); |
af39bc8c | 7543 | return float128_default_nan(status); |
158142c2 FB |
7544 | } |
7545 | if ( aExp == 0 ) { | |
7546 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
7547 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
7548 | } | |
7549 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
7550 | aSig0 |= LIT64( 0x0001000000000000 ); | |
7551 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
7552 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
7553 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
7554 | doubleZSig0 = zSig0<<1; | |
7555 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
7556 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 7557 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
7558 | --zSig0; |
7559 | doubleZSig0 -= 2; | |
7560 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
7561 | } | |
7562 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
7563 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
7564 | if ( zSig1 == 0 ) zSig1 = 1; | |
7565 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
7566 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
7567 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
7568 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 7569 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
7570 | --zSig1; |
7571 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
7572 | term3 |= 1; | |
7573 | term2 |= doubleZSig0; | |
7574 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
7575 | } | |
7576 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
7577 | } | |
7578 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 7579 | return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
7580 | |
7581 | } | |
7582 | ||
7583 | /*---------------------------------------------------------------------------- | |
7584 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
7585 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
7586 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
7587 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
7588 | *----------------------------------------------------------------------------*/ | |
7589 | ||
e5a41ffa | 7590 | int float128_eq(float128 a, float128 b, float_status *status) |
158142c2 FB |
7591 | { |
7592 | ||
7593 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7594 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7595 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7596 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7597 | ) { | |
ff32e16e | 7598 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7599 | return 0; |
7600 | } | |
7601 | return | |
7602 | ( a.low == b.low ) | |
7603 | && ( ( a.high == b.high ) | |
7604 | || ( ( a.low == 0 ) | |
bb98fe42 | 7605 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
7606 | ); |
7607 | ||
7608 | } | |
7609 | ||
7610 | /*---------------------------------------------------------------------------- | |
7611 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
7612 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
7613 | | exception is raised if either operand is a NaN. The comparison is performed | |
7614 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7615 | *----------------------------------------------------------------------------*/ |
7616 | ||
e5a41ffa | 7617 | int float128_le(float128 a, float128 b, float_status *status) |
158142c2 FB |
7618 | { |
7619 | flag aSign, bSign; | |
7620 | ||
7621 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7622 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7623 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7624 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7625 | ) { | |
ff32e16e | 7626 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7627 | return 0; |
7628 | } | |
7629 | aSign = extractFloat128Sign( a ); | |
7630 | bSign = extractFloat128Sign( b ); | |
7631 | if ( aSign != bSign ) { | |
7632 | return | |
7633 | aSign | |
bb98fe42 | 7634 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7635 | == 0 ); |
7636 | } | |
7637 | return | |
7638 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
7639 | : le128( a.high, a.low, b.high, b.low ); | |
7640 | ||
7641 | } | |
7642 | ||
7643 | /*---------------------------------------------------------------------------- | |
7644 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
7645 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
7646 | | raised if either operand is a NaN. The comparison is performed according | |
7647 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7648 | *----------------------------------------------------------------------------*/ |
7649 | ||
e5a41ffa | 7650 | int float128_lt(float128 a, float128 b, float_status *status) |
158142c2 FB |
7651 | { |
7652 | flag aSign, bSign; | |
7653 | ||
7654 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7655 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7656 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7657 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7658 | ) { | |
ff32e16e | 7659 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7660 | return 0; |
7661 | } | |
7662 | aSign = extractFloat128Sign( a ); | |
7663 | bSign = extractFloat128Sign( b ); | |
7664 | if ( aSign != bSign ) { | |
7665 | return | |
7666 | aSign | |
bb98fe42 | 7667 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7668 | != 0 ); |
7669 | } | |
7670 | return | |
7671 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
7672 | : lt128( a.high, a.low, b.high, b.low ); | |
7673 | ||
7674 | } | |
7675 | ||
67b7861d AJ |
7676 | /*---------------------------------------------------------------------------- |
7677 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
7678 | | be compared, and 0 otherwise. The invalid exception is raised if either |
7679 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
7680 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
7681 | *----------------------------------------------------------------------------*/ |
7682 | ||
e5a41ffa | 7683 | int float128_unordered(float128 a, float128 b, float_status *status) |
67b7861d AJ |
7684 | { |
7685 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7686 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7687 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7688 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7689 | ) { | |
ff32e16e | 7690 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7691 | return 1; |
7692 | } | |
7693 | return 0; | |
7694 | } | |
7695 | ||
158142c2 FB |
7696 | /*---------------------------------------------------------------------------- |
7697 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
7698 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
7699 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
7700 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7701 | *----------------------------------------------------------------------------*/ |
7702 | ||
e5a41ffa | 7703 | int float128_eq_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7704 | { |
7705 | ||
7706 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7707 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7708 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7709 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7710 | ) { | |
af39bc8c AM |
7711 | if (float128_is_signaling_nan(a, status) |
7712 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7713 | float_raise(float_flag_invalid, status); |
b689362d | 7714 | } |
158142c2 FB |
7715 | return 0; |
7716 | } | |
7717 | return | |
7718 | ( a.low == b.low ) | |
7719 | && ( ( a.high == b.high ) | |
7720 | || ( ( a.low == 0 ) | |
bb98fe42 | 7721 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
7722 | ); |
7723 | ||
7724 | } | |
7725 | ||
7726 | /*---------------------------------------------------------------------------- | |
7727 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7728 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
7729 | | cause an exception. Otherwise, the comparison is performed according to the | |
7730 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
7731 | *----------------------------------------------------------------------------*/ | |
7732 | ||
e5a41ffa | 7733 | int float128_le_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7734 | { |
7735 | flag aSign, bSign; | |
7736 | ||
7737 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7738 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7739 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7740 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7741 | ) { | |
af39bc8c AM |
7742 | if (float128_is_signaling_nan(a, status) |
7743 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7744 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7745 | } |
7746 | return 0; | |
7747 | } | |
7748 | aSign = extractFloat128Sign( a ); | |
7749 | bSign = extractFloat128Sign( b ); | |
7750 | if ( aSign != bSign ) { | |
7751 | return | |
7752 | aSign | |
bb98fe42 | 7753 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7754 | == 0 ); |
7755 | } | |
7756 | return | |
7757 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
7758 | : le128( a.high, a.low, b.high, b.low ); | |
7759 | ||
7760 | } | |
7761 | ||
7762 | /*---------------------------------------------------------------------------- | |
7763 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7764 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
7765 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
7766 | | Standard for Binary Floating-Point Arithmetic. | |
7767 | *----------------------------------------------------------------------------*/ | |
7768 | ||
e5a41ffa | 7769 | int float128_lt_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7770 | { |
7771 | flag aSign, bSign; | |
7772 | ||
7773 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7774 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7775 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7776 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7777 | ) { | |
af39bc8c AM |
7778 | if (float128_is_signaling_nan(a, status) |
7779 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7780 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7781 | } |
7782 | return 0; | |
7783 | } | |
7784 | aSign = extractFloat128Sign( a ); | |
7785 | bSign = extractFloat128Sign( b ); | |
7786 | if ( aSign != bSign ) { | |
7787 | return | |
7788 | aSign | |
bb98fe42 | 7789 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7790 | != 0 ); |
7791 | } | |
7792 | return | |
7793 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
7794 | : lt128( a.high, a.low, b.high, b.low ); | |
7795 | ||
7796 | } | |
7797 | ||
67b7861d AJ |
7798 | /*---------------------------------------------------------------------------- |
7799 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
7800 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
7801 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
7802 | | Floating-Point Arithmetic. | |
7803 | *----------------------------------------------------------------------------*/ | |
7804 | ||
e5a41ffa | 7805 | int float128_unordered_quiet(float128 a, float128 b, float_status *status) |
67b7861d AJ |
7806 | { |
7807 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7808 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7809 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7810 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7811 | ) { | |
af39bc8c AM |
7812 | if (float128_is_signaling_nan(a, status) |
7813 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7814 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7815 | } |
7816 | return 1; | |
7817 | } | |
7818 | return 0; | |
7819 | } | |
7820 | ||
e5a41ffa PM |
7821 | static inline int floatx80_compare_internal(floatx80 a, floatx80 b, |
7822 | int is_quiet, float_status *status) | |
f6714d36 AJ |
7823 | { |
7824 | flag aSign, bSign; | |
7825 | ||
d1eb8f2a AD |
7826 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
7827 | float_raise(float_flag_invalid, status); | |
7828 | return float_relation_unordered; | |
7829 | } | |
f6714d36 AJ |
7830 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && |
7831 | ( extractFloatx80Frac( a )<<1 ) ) || | |
7832 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
7833 | ( extractFloatx80Frac( b )<<1 ) )) { | |
7834 | if (!is_quiet || | |
af39bc8c AM |
7835 | floatx80_is_signaling_nan(a, status) || |
7836 | floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 7837 | float_raise(float_flag_invalid, status); |
f6714d36 AJ |
7838 | } |
7839 | return float_relation_unordered; | |
7840 | } | |
7841 | aSign = extractFloatx80Sign( a ); | |
7842 | bSign = extractFloatx80Sign( b ); | |
7843 | if ( aSign != bSign ) { | |
7844 | ||
7845 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
7846 | ( ( a.low | b.low ) == 0 ) ) { | |
7847 | /* zero case */ | |
7848 | return float_relation_equal; | |
7849 | } else { | |
7850 | return 1 - (2 * aSign); | |
7851 | } | |
7852 | } else { | |
7853 | if (a.low == b.low && a.high == b.high) { | |
7854 | return float_relation_equal; | |
7855 | } else { | |
7856 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7857 | } | |
7858 | } | |
7859 | } | |
7860 | ||
e5a41ffa | 7861 | int floatx80_compare(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7862 | { |
ff32e16e | 7863 | return floatx80_compare_internal(a, b, 0, status); |
f6714d36 AJ |
7864 | } |
7865 | ||
e5a41ffa | 7866 | int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7867 | { |
ff32e16e | 7868 | return floatx80_compare_internal(a, b, 1, status); |
f6714d36 AJ |
7869 | } |
7870 | ||
e5a41ffa PM |
7871 | static inline int float128_compare_internal(float128 a, float128 b, |
7872 | int is_quiet, float_status *status) | |
1f587329 BS |
7873 | { |
7874 | flag aSign, bSign; | |
7875 | ||
7876 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
7877 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
7878 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
7879 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
7880 | if (!is_quiet || | |
af39bc8c AM |
7881 | float128_is_signaling_nan(a, status) || |
7882 | float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7883 | float_raise(float_flag_invalid, status); |
1f587329 BS |
7884 | } |
7885 | return float_relation_unordered; | |
7886 | } | |
7887 | aSign = extractFloat128Sign( a ); | |
7888 | bSign = extractFloat128Sign( b ); | |
7889 | if ( aSign != bSign ) { | |
7890 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
7891 | /* zero case */ | |
7892 | return float_relation_equal; | |
7893 | } else { | |
7894 | return 1 - (2 * aSign); | |
7895 | } | |
7896 | } else { | |
7897 | if (a.low == b.low && a.high == b.high) { | |
7898 | return float_relation_equal; | |
7899 | } else { | |
7900 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7901 | } | |
7902 | } | |
7903 | } | |
7904 | ||
e5a41ffa | 7905 | int float128_compare(float128 a, float128 b, float_status *status) |
1f587329 | 7906 | { |
ff32e16e | 7907 | return float128_compare_internal(a, b, 0, status); |
1f587329 BS |
7908 | } |
7909 | ||
e5a41ffa | 7910 | int float128_compare_quiet(float128 a, float128 b, float_status *status) |
1f587329 | 7911 | { |
ff32e16e | 7912 | return float128_compare_internal(a, b, 1, status); |
1f587329 BS |
7913 | } |
7914 | ||
e5a41ffa | 7915 | floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) |
9ee6e8bb PB |
7916 | { |
7917 | flag aSign; | |
326b9e98 | 7918 | int32_t aExp; |
bb98fe42 | 7919 | uint64_t aSig; |
9ee6e8bb | 7920 | |
d1eb8f2a AD |
7921 | if (floatx80_invalid_encoding(a)) { |
7922 | float_raise(float_flag_invalid, status); | |
7923 | return floatx80_default_nan(status); | |
7924 | } | |
9ee6e8bb PB |
7925 | aSig = extractFloatx80Frac( a ); |
7926 | aExp = extractFloatx80Exp( a ); | |
7927 | aSign = extractFloatx80Sign( a ); | |
7928 | ||
326b9e98 AJ |
7929 | if ( aExp == 0x7FFF ) { |
7930 | if ( aSig<<1 ) { | |
ff32e16e | 7931 | return propagateFloatx80NaN(a, a, status); |
326b9e98 | 7932 | } |
9ee6e8bb PB |
7933 | return a; |
7934 | } | |
326b9e98 | 7935 | |
3c85c37f PM |
7936 | if (aExp == 0) { |
7937 | if (aSig == 0) { | |
7938 | return a; | |
7939 | } | |
7940 | aExp++; | |
7941 | } | |
69397542 | 7942 | |
326b9e98 AJ |
7943 | if (n > 0x10000) { |
7944 | n = 0x10000; | |
7945 | } else if (n < -0x10000) { | |
7946 | n = -0x10000; | |
7947 | } | |
7948 | ||
9ee6e8bb | 7949 | aExp += n; |
a2f2d288 PM |
7950 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
7951 | aSign, aExp, aSig, 0, status); | |
9ee6e8bb | 7952 | } |
9ee6e8bb | 7953 | |
e5a41ffa | 7954 | float128 float128_scalbn(float128 a, int n, float_status *status) |
9ee6e8bb PB |
7955 | { |
7956 | flag aSign; | |
326b9e98 | 7957 | int32_t aExp; |
bb98fe42 | 7958 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
7959 | |
7960 | aSig1 = extractFloat128Frac1( a ); | |
7961 | aSig0 = extractFloat128Frac0( a ); | |
7962 | aExp = extractFloat128Exp( a ); | |
7963 | aSign = extractFloat128Sign( a ); | |
7964 | if ( aExp == 0x7FFF ) { | |
326b9e98 | 7965 | if ( aSig0 | aSig1 ) { |
ff32e16e | 7966 | return propagateFloat128NaN(a, a, status); |
326b9e98 | 7967 | } |
9ee6e8bb PB |
7968 | return a; |
7969 | } | |
3c85c37f | 7970 | if (aExp != 0) { |
69397542 | 7971 | aSig0 |= LIT64( 0x0001000000000000 ); |
3c85c37f | 7972 | } else if (aSig0 == 0 && aSig1 == 0) { |
69397542 | 7973 | return a; |
3c85c37f PM |
7974 | } else { |
7975 | aExp++; | |
7976 | } | |
69397542 | 7977 | |
326b9e98 AJ |
7978 | if (n > 0x10000) { |
7979 | n = 0x10000; | |
7980 | } else if (n < -0x10000) { | |
7981 | n = -0x10000; | |
7982 | } | |
7983 | ||
69397542 PB |
7984 | aExp += n - 1; |
7985 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
ff32e16e | 7986 | , status); |
9ee6e8bb PB |
7987 | |
7988 | } | |
f6b3b108 EC |
7989 | |
7990 | static void __attribute__((constructor)) softfloat_init(void) | |
7991 | { | |
7992 | union_float64 ua, ub, uc, ur; | |
7993 | ||
7994 | if (QEMU_NO_HARDFLOAT) { | |
7995 | return; | |
7996 | } | |
7997 | /* | |
7998 | * Test that the host's FMA is not obviously broken. For example, | |
7999 | * glibc < 2.23 can perform an incorrect FMA on certain hosts; see | |
8000 | * https://sourceware.org/bugzilla/show_bug.cgi?id=13304 | |
8001 | */ | |
8002 | ua.s = 0x0020000000000001ULL; | |
8003 | ub.s = 0x3ca0000000000000ULL; | |
8004 | uc.s = 0x0020000000000000ULL; | |
8005 | ur.h = fma(ua.h, ub.h, uc.h); | |
8006 | if (ur.s != 0x0020000000000001ULL) { | |
8007 | force_soft_fma = true; | |
8008 | } | |
8009 | } |