]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
16017c48 PM |
4 | * The code in this source file is derived from release 2a of the SoftFloat |
5 | * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and | |
6 | * some later contributions) are provided under that license, as detailed below. | |
7 | * It has subsequently been modified by contributors to the QEMU Project, | |
8 | * so some portions are provided under: | |
9 | * the SoftFloat-2a license | |
10 | * the BSD license | |
11 | * GPL-v2-or-later | |
12 | * | |
13 | * Any future contributions to this file after December 1st 2014 will be | |
14 | * taken to be licensed under the Softfloat-2a license unless specifically | |
15 | * indicated otherwise. | |
8d725fac | 16 | */ |
158142c2 | 17 | |
a7d1ac78 PM |
18 | /* |
19 | =============================================================================== | |
20 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | |
21 | Arithmetic Package, Release 2a. | |
158142c2 FB |
22 | |
23 | Written by John R. Hauser. This work was made possible in part by the | |
24 | International Computer Science Institute, located at Suite 600, 1947 Center | |
25 | Street, Berkeley, California 94704. Funding was partially provided by the | |
26 | National Science Foundation under grant MIP-9311980. The original version | |
27 | of this code was written as part of a project to build a fixed-point vector | |
28 | processor in collaboration with the University of California at Berkeley, | |
29 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
a7d1ac78 | 30 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
158142c2 FB |
31 | arithmetic/SoftFloat.html'. |
32 | ||
a7d1ac78 PM |
33 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
34 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
35 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
36 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
37 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
158142c2 FB |
38 | |
39 | Derivative works are acceptable, even for commercial purposes, so long as | |
a7d1ac78 PM |
40 | (1) they include prominent notice that the work is derivative, and (2) they |
41 | include prominent notice akin to these four paragraphs for those parts of | |
42 | this code that are retained. | |
158142c2 | 43 | |
a7d1ac78 PM |
44 | =============================================================================== |
45 | */ | |
158142c2 | 46 | |
16017c48 PM |
47 | /* BSD licensing: |
48 | * Copyright (c) 2006, Fabrice Bellard | |
49 | * All rights reserved. | |
50 | * | |
51 | * Redistribution and use in source and binary forms, with or without | |
52 | * modification, are permitted provided that the following conditions are met: | |
53 | * | |
54 | * 1. Redistributions of source code must retain the above copyright notice, | |
55 | * this list of conditions and the following disclaimer. | |
56 | * | |
57 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
58 | * this list of conditions and the following disclaimer in the documentation | |
59 | * and/or other materials provided with the distribution. | |
60 | * | |
61 | * 3. Neither the name of the copyright holder nor the names of its contributors | |
62 | * may be used to endorse or promote products derived from this software without | |
63 | * specific prior written permission. | |
64 | * | |
65 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
66 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
67 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
68 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
69 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
70 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
71 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
72 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
73 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
74 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | |
75 | * THE POSSIBILITY OF SUCH DAMAGE. | |
76 | */ | |
77 | ||
78 | /* Portions of this work are licensed under the terms of the GNU GPL, | |
79 | * version 2 or later. See the COPYING file in the top-level directory. | |
80 | */ | |
81 | ||
2ac8bd03 PM |
82 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
83 | * target-dependent and needs the TARGET_* macros. | |
84 | */ | |
d38ea87a | 85 | #include "qemu/osdep.h" |
6fff2167 | 86 | #include "qemu/bitops.h" |
6b4c305c | 87 | #include "fpu/softfloat.h" |
158142c2 | 88 | |
dc355b76 | 89 | /* We only need stdlib for abort() */ |
dc355b76 | 90 | |
158142c2 FB |
91 | /*---------------------------------------------------------------------------- |
92 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
93 | | division and square root approximations. (Can be specialized to target if | |
94 | | desired.) | |
95 | *----------------------------------------------------------------------------*/ | |
96 | #include "softfloat-macros.h" | |
97 | ||
98 | /*---------------------------------------------------------------------------- | |
99 | | Functions and definitions to determine: (1) whether tininess for underflow | |
100 | | is detected before or after rounding by default, (2) what (if anything) | |
101 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
102 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
103 | | are propagated from function inputs to output. These details are target- | |
104 | | specific. | |
105 | *----------------------------------------------------------------------------*/ | |
106 | #include "softfloat-specialize.h" | |
107 | ||
bb4d4bb3 PM |
108 | /*---------------------------------------------------------------------------- |
109 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
110 | *----------------------------------------------------------------------------*/ | |
111 | ||
a49db98d | 112 | static inline uint32_t extractFloat16Frac(float16 a) |
bb4d4bb3 PM |
113 | { |
114 | return float16_val(a) & 0x3ff; | |
115 | } | |
116 | ||
117 | /*---------------------------------------------------------------------------- | |
118 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
119 | *----------------------------------------------------------------------------*/ | |
120 | ||
0c48262d | 121 | static inline int extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
122 | { |
123 | return (float16_val(a) >> 10) & 0x1f; | |
124 | } | |
125 | ||
126 | /*---------------------------------------------------------------------------- | |
127 | | Returns the sign bit of the single-precision floating-point value `a'. | |
128 | *----------------------------------------------------------------------------*/ | |
129 | ||
a49db98d | 130 | static inline flag extractFloat16Sign(float16 a) |
bb4d4bb3 PM |
131 | { |
132 | return float16_val(a)>>15; | |
133 | } | |
134 | ||
d97544c9 AB |
135 | /*---------------------------------------------------------------------------- |
136 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
137 | *----------------------------------------------------------------------------*/ | |
138 | ||
139 | static inline uint32_t extractFloat32Frac(float32 a) | |
140 | { | |
141 | return float32_val(a) & 0x007FFFFF; | |
142 | } | |
143 | ||
144 | /*---------------------------------------------------------------------------- | |
145 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
146 | *----------------------------------------------------------------------------*/ | |
147 | ||
148 | static inline int extractFloat32Exp(float32 a) | |
149 | { | |
150 | return (float32_val(a) >> 23) & 0xFF; | |
151 | } | |
152 | ||
153 | /*---------------------------------------------------------------------------- | |
154 | | Returns the sign bit of the single-precision floating-point value `a'. | |
155 | *----------------------------------------------------------------------------*/ | |
156 | ||
157 | static inline flag extractFloat32Sign(float32 a) | |
158 | { | |
159 | return float32_val(a) >> 31; | |
160 | } | |
161 | ||
162 | /*---------------------------------------------------------------------------- | |
163 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
164 | *----------------------------------------------------------------------------*/ | |
165 | ||
166 | static inline uint64_t extractFloat64Frac(float64 a) | |
167 | { | |
168 | return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF); | |
169 | } | |
170 | ||
171 | /*---------------------------------------------------------------------------- | |
172 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
173 | *----------------------------------------------------------------------------*/ | |
174 | ||
175 | static inline int extractFloat64Exp(float64 a) | |
176 | { | |
177 | return (float64_val(a) >> 52) & 0x7FF; | |
178 | } | |
179 | ||
180 | /*---------------------------------------------------------------------------- | |
181 | | Returns the sign bit of the double-precision floating-point value `a'. | |
182 | *----------------------------------------------------------------------------*/ | |
183 | ||
184 | static inline flag extractFloat64Sign(float64 a) | |
185 | { | |
186 | return float64_val(a) >> 63; | |
187 | } | |
188 | ||
a90119b5 AB |
189 | /* |
190 | * Classify a floating point number. Everything above float_class_qnan | |
191 | * is a NaN so cls >= float_class_qnan is any NaN. | |
192 | */ | |
193 | ||
194 | typedef enum __attribute__ ((__packed__)) { | |
195 | float_class_unclassified, | |
196 | float_class_zero, | |
197 | float_class_normal, | |
198 | float_class_inf, | |
199 | float_class_qnan, /* all NaNs from here */ | |
200 | float_class_snan, | |
201 | float_class_dnan, | |
202 | float_class_msnan, /* maybe silenced */ | |
203 | } FloatClass; | |
204 | ||
205 | /* | |
206 | * Structure holding all of the decomposed parts of a float. The | |
207 | * exponent is unbiased and the fraction is normalized. All | |
208 | * calculations are done with a 64 bit fraction and then rounded as | |
209 | * appropriate for the final format. | |
210 | * | |
211 | * Thanks to the packed FloatClass a decent compiler should be able to | |
212 | * fit the whole structure into registers and avoid using the stack | |
213 | * for parameter passing. | |
214 | */ | |
215 | ||
216 | typedef struct { | |
217 | uint64_t frac; | |
218 | int32_t exp; | |
219 | FloatClass cls; | |
220 | bool sign; | |
221 | } FloatParts; | |
222 | ||
223 | #define DECOMPOSED_BINARY_POINT (64 - 2) | |
224 | #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) | |
225 | #define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1) | |
226 | ||
227 | /* Structure holding all of the relevant parameters for a format. | |
228 | * exp_size: the size of the exponent field | |
229 | * exp_bias: the offset applied to the exponent field | |
230 | * exp_max: the maximum normalised exponent | |
231 | * frac_size: the size of the fraction field | |
232 | * frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT | |
233 | * The following are computed based the size of fraction | |
234 | * frac_lsb: least significant bit of fraction | |
235 | * fram_lsbm1: the bit bellow the least significant bit (for rounding) | |
236 | * round_mask/roundeven_mask: masks used for rounding | |
237 | */ | |
238 | typedef struct { | |
239 | int exp_size; | |
240 | int exp_bias; | |
241 | int exp_max; | |
242 | int frac_size; | |
243 | int frac_shift; | |
244 | uint64_t frac_lsb; | |
245 | uint64_t frac_lsbm1; | |
246 | uint64_t round_mask; | |
247 | uint64_t roundeven_mask; | |
248 | } FloatFmt; | |
249 | ||
250 | /* Expand fields based on the size of exponent and fraction */ | |
251 | #define FLOAT_PARAMS(E, F) \ | |
252 | .exp_size = E, \ | |
253 | .exp_bias = ((1 << E) - 1) >> 1, \ | |
254 | .exp_max = (1 << E) - 1, \ | |
255 | .frac_size = F, \ | |
256 | .frac_shift = DECOMPOSED_BINARY_POINT - F, \ | |
257 | .frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \ | |
258 | .frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \ | |
259 | .round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \ | |
260 | .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1 | |
261 | ||
262 | static const FloatFmt float16_params = { | |
263 | FLOAT_PARAMS(5, 10) | |
264 | }; | |
265 | ||
266 | static const FloatFmt float32_params = { | |
267 | FLOAT_PARAMS(8, 23) | |
268 | }; | |
269 | ||
270 | static const FloatFmt float64_params = { | |
271 | FLOAT_PARAMS(11, 52) | |
272 | }; | |
273 | ||
6fff2167 AB |
274 | /* Unpack a float to parts, but do not canonicalize. */ |
275 | static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw) | |
276 | { | |
277 | const int sign_pos = fmt.frac_size + fmt.exp_size; | |
278 | ||
279 | return (FloatParts) { | |
280 | .cls = float_class_unclassified, | |
281 | .sign = extract64(raw, sign_pos, 1), | |
282 | .exp = extract64(raw, fmt.frac_size, fmt.exp_size), | |
283 | .frac = extract64(raw, 0, fmt.frac_size), | |
284 | }; | |
285 | } | |
286 | ||
287 | static inline FloatParts float16_unpack_raw(float16 f) | |
288 | { | |
289 | return unpack_raw(float16_params, f); | |
290 | } | |
291 | ||
292 | static inline FloatParts float32_unpack_raw(float32 f) | |
293 | { | |
294 | return unpack_raw(float32_params, f); | |
295 | } | |
296 | ||
297 | static inline FloatParts float64_unpack_raw(float64 f) | |
298 | { | |
299 | return unpack_raw(float64_params, f); | |
300 | } | |
301 | ||
302 | /* Pack a float from parts, but do not canonicalize. */ | |
303 | static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p) | |
304 | { | |
305 | const int sign_pos = fmt.frac_size + fmt.exp_size; | |
306 | uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp); | |
307 | return deposit64(ret, sign_pos, 1, p.sign); | |
308 | } | |
309 | ||
310 | static inline float16 float16_pack_raw(FloatParts p) | |
311 | { | |
312 | return make_float16(pack_raw(float16_params, p)); | |
313 | } | |
314 | ||
315 | static inline float32 float32_pack_raw(FloatParts p) | |
316 | { | |
317 | return make_float32(pack_raw(float32_params, p)); | |
318 | } | |
319 | ||
320 | static inline float64 float64_pack_raw(FloatParts p) | |
321 | { | |
322 | return make_float64(pack_raw(float64_params, p)); | |
323 | } | |
324 | ||
325 | /* Canonicalize EXP and FRAC, setting CLS. */ | |
326 | static FloatParts canonicalize(FloatParts part, const FloatFmt *parm, | |
327 | float_status *status) | |
328 | { | |
329 | if (part.exp == parm->exp_max) { | |
330 | if (part.frac == 0) { | |
331 | part.cls = float_class_inf; | |
332 | } else { | |
333 | #ifdef NO_SIGNALING_NANS | |
334 | part.cls = float_class_qnan; | |
335 | #else | |
336 | int64_t msb = part.frac << (parm->frac_shift + 2); | |
337 | if ((msb < 0) == status->snan_bit_is_one) { | |
338 | part.cls = float_class_snan; | |
339 | } else { | |
340 | part.cls = float_class_qnan; | |
341 | } | |
342 | #endif | |
343 | } | |
344 | } else if (part.exp == 0) { | |
345 | if (likely(part.frac == 0)) { | |
346 | part.cls = float_class_zero; | |
347 | } else if (status->flush_inputs_to_zero) { | |
348 | float_raise(float_flag_input_denormal, status); | |
349 | part.cls = float_class_zero; | |
350 | part.frac = 0; | |
351 | } else { | |
352 | int shift = clz64(part.frac) - 1; | |
353 | part.cls = float_class_normal; | |
354 | part.exp = parm->frac_shift - parm->exp_bias - shift + 1; | |
355 | part.frac <<= shift; | |
356 | } | |
357 | } else { | |
358 | part.cls = float_class_normal; | |
359 | part.exp -= parm->exp_bias; | |
360 | part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift); | |
361 | } | |
362 | return part; | |
363 | } | |
364 | ||
365 | /* Round and uncanonicalize a floating-point number by parts. There | |
366 | * are FRAC_SHIFT bits that may require rounding at the bottom of the | |
367 | * fraction; these bits will be removed. The exponent will be biased | |
368 | * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. | |
369 | */ | |
370 | ||
371 | static FloatParts round_canonical(FloatParts p, float_status *s, | |
372 | const FloatFmt *parm) | |
373 | { | |
374 | const uint64_t frac_lsbm1 = parm->frac_lsbm1; | |
375 | const uint64_t round_mask = parm->round_mask; | |
376 | const uint64_t roundeven_mask = parm->roundeven_mask; | |
377 | const int exp_max = parm->exp_max; | |
378 | const int frac_shift = parm->frac_shift; | |
379 | uint64_t frac, inc; | |
380 | int exp, flags = 0; | |
381 | bool overflow_norm; | |
382 | ||
383 | frac = p.frac; | |
384 | exp = p.exp; | |
385 | ||
386 | switch (p.cls) { | |
387 | case float_class_normal: | |
388 | switch (s->float_rounding_mode) { | |
389 | case float_round_nearest_even: | |
390 | overflow_norm = false; | |
391 | inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); | |
392 | break; | |
393 | case float_round_ties_away: | |
394 | overflow_norm = false; | |
395 | inc = frac_lsbm1; | |
396 | break; | |
397 | case float_round_to_zero: | |
398 | overflow_norm = true; | |
399 | inc = 0; | |
400 | break; | |
401 | case float_round_up: | |
402 | inc = p.sign ? 0 : round_mask; | |
403 | overflow_norm = p.sign; | |
404 | break; | |
405 | case float_round_down: | |
406 | inc = p.sign ? round_mask : 0; | |
407 | overflow_norm = !p.sign; | |
408 | break; | |
409 | default: | |
410 | g_assert_not_reached(); | |
411 | } | |
412 | ||
413 | exp += parm->exp_bias; | |
414 | if (likely(exp > 0)) { | |
415 | if (frac & round_mask) { | |
416 | flags |= float_flag_inexact; | |
417 | frac += inc; | |
418 | if (frac & DECOMPOSED_OVERFLOW_BIT) { | |
419 | frac >>= 1; | |
420 | exp++; | |
421 | } | |
422 | } | |
423 | frac >>= frac_shift; | |
424 | ||
425 | if (unlikely(exp >= exp_max)) { | |
426 | flags |= float_flag_overflow | float_flag_inexact; | |
427 | if (overflow_norm) { | |
428 | exp = exp_max - 1; | |
429 | frac = -1; | |
430 | } else { | |
431 | p.cls = float_class_inf; | |
432 | goto do_inf; | |
433 | } | |
434 | } | |
435 | } else if (s->flush_to_zero) { | |
436 | flags |= float_flag_output_denormal; | |
437 | p.cls = float_class_zero; | |
438 | goto do_zero; | |
439 | } else { | |
440 | bool is_tiny = (s->float_detect_tininess | |
441 | == float_tininess_before_rounding) | |
442 | || (exp < 0) | |
443 | || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT); | |
444 | ||
445 | shift64RightJamming(frac, 1 - exp, &frac); | |
446 | if (frac & round_mask) { | |
447 | /* Need to recompute round-to-even. */ | |
448 | if (s->float_rounding_mode == float_round_nearest_even) { | |
449 | inc = ((frac & roundeven_mask) != frac_lsbm1 | |
450 | ? frac_lsbm1 : 0); | |
451 | } | |
452 | flags |= float_flag_inexact; | |
453 | frac += inc; | |
454 | } | |
455 | ||
456 | exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0); | |
457 | frac >>= frac_shift; | |
458 | ||
459 | if (is_tiny && (flags & float_flag_inexact)) { | |
460 | flags |= float_flag_underflow; | |
461 | } | |
462 | if (exp == 0 && frac == 0) { | |
463 | p.cls = float_class_zero; | |
464 | } | |
465 | } | |
466 | break; | |
467 | ||
468 | case float_class_zero: | |
469 | do_zero: | |
470 | exp = 0; | |
471 | frac = 0; | |
472 | break; | |
473 | ||
474 | case float_class_inf: | |
475 | do_inf: | |
476 | exp = exp_max; | |
477 | frac = 0; | |
478 | break; | |
479 | ||
480 | case float_class_qnan: | |
481 | case float_class_snan: | |
482 | exp = exp_max; | |
483 | break; | |
484 | ||
485 | default: | |
486 | g_assert_not_reached(); | |
487 | } | |
488 | ||
489 | float_raise(flags, s); | |
490 | p.exp = exp; | |
491 | p.frac = frac; | |
492 | return p; | |
493 | } | |
494 | ||
495 | static FloatParts float16_unpack_canonical(float16 f, float_status *s) | |
496 | { | |
497 | return canonicalize(float16_unpack_raw(f), &float16_params, s); | |
498 | } | |
499 | ||
500 | static float16 float16_round_pack_canonical(FloatParts p, float_status *s) | |
501 | { | |
502 | switch (p.cls) { | |
503 | case float_class_dnan: | |
504 | return float16_default_nan(s); | |
505 | case float_class_msnan: | |
506 | return float16_maybe_silence_nan(float16_pack_raw(p), s); | |
507 | default: | |
508 | p = round_canonical(p, s, &float16_params); | |
509 | return float16_pack_raw(p); | |
510 | } | |
511 | } | |
512 | ||
513 | static FloatParts float32_unpack_canonical(float32 f, float_status *s) | |
514 | { | |
515 | return canonicalize(float32_unpack_raw(f), &float32_params, s); | |
516 | } | |
517 | ||
518 | static float32 float32_round_pack_canonical(FloatParts p, float_status *s) | |
519 | { | |
520 | switch (p.cls) { | |
521 | case float_class_dnan: | |
522 | return float32_default_nan(s); | |
523 | case float_class_msnan: | |
524 | return float32_maybe_silence_nan(float32_pack_raw(p), s); | |
525 | default: | |
526 | p = round_canonical(p, s, &float32_params); | |
527 | return float32_pack_raw(p); | |
528 | } | |
529 | } | |
530 | ||
531 | static FloatParts float64_unpack_canonical(float64 f, float_status *s) | |
532 | { | |
533 | return canonicalize(float64_unpack_raw(f), &float64_params, s); | |
534 | } | |
535 | ||
536 | static float64 float64_round_pack_canonical(FloatParts p, float_status *s) | |
537 | { | |
538 | switch (p.cls) { | |
539 | case float_class_dnan: | |
540 | return float64_default_nan(s); | |
541 | case float_class_msnan: | |
542 | return float64_maybe_silence_nan(float64_pack_raw(p), s); | |
543 | default: | |
544 | p = round_canonical(p, s, &float64_params); | |
545 | return float64_pack_raw(p); | |
546 | } | |
547 | } | |
548 | ||
549 | /* Simple helpers for checking if what NaN we have */ | |
550 | static bool is_nan(FloatClass c) | |
551 | { | |
552 | return unlikely(c >= float_class_qnan); | |
553 | } | |
554 | static bool is_snan(FloatClass c) | |
555 | { | |
556 | return c == float_class_snan; | |
557 | } | |
558 | static bool is_qnan(FloatClass c) | |
559 | { | |
560 | return c == float_class_qnan; | |
561 | } | |
562 | ||
563 | static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) | |
564 | { | |
565 | if (is_snan(a.cls) || is_snan(b.cls)) { | |
566 | s->float_exception_flags |= float_flag_invalid; | |
567 | } | |
568 | ||
569 | if (s->default_nan_mode) { | |
570 | a.cls = float_class_dnan; | |
571 | } else { | |
572 | if (pickNaN(is_qnan(a.cls), is_snan(a.cls), | |
573 | is_qnan(b.cls), is_snan(b.cls), | |
574 | a.frac > b.frac || | |
575 | (a.frac == b.frac && a.sign < b.sign))) { | |
576 | a = b; | |
577 | } | |
578 | a.cls = float_class_msnan; | |
579 | } | |
580 | return a; | |
581 | } | |
582 | ||
583 | /* | |
584 | * Returns the result of adding or subtracting the values of the | |
585 | * floating-point values `a' and `b'. The operation is performed | |
586 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
587 | * Arithmetic. | |
588 | */ | |
589 | ||
590 | static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract, | |
591 | float_status *s) | |
592 | { | |
593 | bool a_sign = a.sign; | |
594 | bool b_sign = b.sign ^ subtract; | |
595 | ||
596 | if (a_sign != b_sign) { | |
597 | /* Subtraction */ | |
598 | ||
599 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
600 | if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) { | |
601 | shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); | |
602 | a.frac = a.frac - b.frac; | |
603 | } else { | |
604 | shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); | |
605 | a.frac = b.frac - a.frac; | |
606 | a.exp = b.exp; | |
607 | a_sign ^= 1; | |
608 | } | |
609 | ||
610 | if (a.frac == 0) { | |
611 | a.cls = float_class_zero; | |
612 | a.sign = s->float_rounding_mode == float_round_down; | |
613 | } else { | |
614 | int shift = clz64(a.frac) - 1; | |
615 | a.frac = a.frac << shift; | |
616 | a.exp = a.exp - shift; | |
617 | a.sign = a_sign; | |
618 | } | |
619 | return a; | |
620 | } | |
621 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
622 | return pick_nan(a, b, s); | |
623 | } | |
624 | if (a.cls == float_class_inf) { | |
625 | if (b.cls == float_class_inf) { | |
626 | float_raise(float_flag_invalid, s); | |
627 | a.cls = float_class_dnan; | |
628 | } | |
629 | return a; | |
630 | } | |
631 | if (a.cls == float_class_zero && b.cls == float_class_zero) { | |
632 | a.sign = s->float_rounding_mode == float_round_down; | |
633 | return a; | |
634 | } | |
635 | if (a.cls == float_class_zero || b.cls == float_class_inf) { | |
636 | b.sign = a_sign ^ 1; | |
637 | return b; | |
638 | } | |
639 | if (b.cls == float_class_zero) { | |
640 | return a; | |
641 | } | |
642 | } else { | |
643 | /* Addition */ | |
644 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
645 | if (a.exp > b.exp) { | |
646 | shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); | |
647 | } else if (a.exp < b.exp) { | |
648 | shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); | |
649 | a.exp = b.exp; | |
650 | } | |
651 | a.frac += b.frac; | |
652 | if (a.frac & DECOMPOSED_OVERFLOW_BIT) { | |
653 | a.frac >>= 1; | |
654 | a.exp += 1; | |
655 | } | |
656 | return a; | |
657 | } | |
658 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
659 | return pick_nan(a, b, s); | |
660 | } | |
661 | if (a.cls == float_class_inf || b.cls == float_class_zero) { | |
662 | return a; | |
663 | } | |
664 | if (b.cls == float_class_inf || a.cls == float_class_zero) { | |
665 | b.sign = b_sign; | |
666 | return b; | |
667 | } | |
668 | } | |
669 | g_assert_not_reached(); | |
670 | } | |
671 | ||
672 | /* | |
673 | * Returns the result of adding or subtracting the floating-point | |
674 | * values `a' and `b'. The operation is performed according to the | |
675 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
676 | */ | |
677 | ||
678 | float16 __attribute__((flatten)) float16_add(float16 a, float16 b, | |
679 | float_status *status) | |
680 | { | |
681 | FloatParts pa = float16_unpack_canonical(a, status); | |
682 | FloatParts pb = float16_unpack_canonical(b, status); | |
683 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
684 | ||
685 | return float16_round_pack_canonical(pr, status); | |
686 | } | |
687 | ||
688 | float32 __attribute__((flatten)) float32_add(float32 a, float32 b, | |
689 | float_status *status) | |
690 | { | |
691 | FloatParts pa = float32_unpack_canonical(a, status); | |
692 | FloatParts pb = float32_unpack_canonical(b, status); | |
693 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
694 | ||
695 | return float32_round_pack_canonical(pr, status); | |
696 | } | |
697 | ||
698 | float64 __attribute__((flatten)) float64_add(float64 a, float64 b, | |
699 | float_status *status) | |
700 | { | |
701 | FloatParts pa = float64_unpack_canonical(a, status); | |
702 | FloatParts pb = float64_unpack_canonical(b, status); | |
703 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
704 | ||
705 | return float64_round_pack_canonical(pr, status); | |
706 | } | |
707 | ||
708 | float16 __attribute__((flatten)) float16_sub(float16 a, float16 b, | |
709 | float_status *status) | |
710 | { | |
711 | FloatParts pa = float16_unpack_canonical(a, status); | |
712 | FloatParts pb = float16_unpack_canonical(b, status); | |
713 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
714 | ||
715 | return float16_round_pack_canonical(pr, status); | |
716 | } | |
717 | ||
718 | float32 __attribute__((flatten)) float32_sub(float32 a, float32 b, | |
719 | float_status *status) | |
720 | { | |
721 | FloatParts pa = float32_unpack_canonical(a, status); | |
722 | FloatParts pb = float32_unpack_canonical(b, status); | |
723 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
724 | ||
725 | return float32_round_pack_canonical(pr, status); | |
726 | } | |
727 | ||
728 | float64 __attribute__((flatten)) float64_sub(float64 a, float64 b, | |
729 | float_status *status) | |
730 | { | |
731 | FloatParts pa = float64_unpack_canonical(a, status); | |
732 | FloatParts pb = float64_unpack_canonical(b, status); | |
733 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
734 | ||
735 | return float64_round_pack_canonical(pr, status); | |
736 | } | |
737 | ||
74d707e2 AB |
738 | /* |
739 | * Returns the result of multiplying the floating-point values `a' and | |
740 | * `b'. The operation is performed according to the IEC/IEEE Standard | |
741 | * for Binary Floating-Point Arithmetic. | |
742 | */ | |
743 | ||
744 | static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s) | |
745 | { | |
746 | bool sign = a.sign ^ b.sign; | |
747 | ||
748 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
749 | uint64_t hi, lo; | |
750 | int exp = a.exp + b.exp; | |
751 | ||
752 | mul64To128(a.frac, b.frac, &hi, &lo); | |
753 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
754 | if (lo & DECOMPOSED_OVERFLOW_BIT) { | |
755 | shift64RightJamming(lo, 1, &lo); | |
756 | exp += 1; | |
757 | } | |
758 | ||
759 | /* Re-use a */ | |
760 | a.exp = exp; | |
761 | a.sign = sign; | |
762 | a.frac = lo; | |
763 | return a; | |
764 | } | |
765 | /* handle all the NaN cases */ | |
766 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
767 | return pick_nan(a, b, s); | |
768 | } | |
769 | /* Inf * Zero == NaN */ | |
770 | if ((a.cls == float_class_inf && b.cls == float_class_zero) || | |
771 | (a.cls == float_class_zero && b.cls == float_class_inf)) { | |
772 | s->float_exception_flags |= float_flag_invalid; | |
773 | a.cls = float_class_dnan; | |
774 | a.sign = sign; | |
775 | return a; | |
776 | } | |
777 | /* Multiply by 0 or Inf */ | |
778 | if (a.cls == float_class_inf || a.cls == float_class_zero) { | |
779 | a.sign = sign; | |
780 | return a; | |
781 | } | |
782 | if (b.cls == float_class_inf || b.cls == float_class_zero) { | |
783 | b.sign = sign; | |
784 | return b; | |
785 | } | |
786 | g_assert_not_reached(); | |
787 | } | |
788 | ||
789 | float16 __attribute__((flatten)) float16_mul(float16 a, float16 b, | |
790 | float_status *status) | |
791 | { | |
792 | FloatParts pa = float16_unpack_canonical(a, status); | |
793 | FloatParts pb = float16_unpack_canonical(b, status); | |
794 | FloatParts pr = mul_floats(pa, pb, status); | |
795 | ||
796 | return float16_round_pack_canonical(pr, status); | |
797 | } | |
798 | ||
799 | float32 __attribute__((flatten)) float32_mul(float32 a, float32 b, | |
800 | float_status *status) | |
801 | { | |
802 | FloatParts pa = float32_unpack_canonical(a, status); | |
803 | FloatParts pb = float32_unpack_canonical(b, status); | |
804 | FloatParts pr = mul_floats(pa, pb, status); | |
805 | ||
806 | return float32_round_pack_canonical(pr, status); | |
807 | } | |
808 | ||
809 | float64 __attribute__((flatten)) float64_mul(float64 a, float64 b, | |
810 | float_status *status) | |
811 | { | |
812 | FloatParts pa = float64_unpack_canonical(a, status); | |
813 | FloatParts pb = float64_unpack_canonical(b, status); | |
814 | FloatParts pr = mul_floats(pa, pb, status); | |
815 | ||
816 | return float64_round_pack_canonical(pr, status); | |
817 | } | |
818 | ||
cf07323d AB |
819 | /* |
820 | * Returns the result of dividing the floating-point value `a' by the | |
821 | * corresponding value `b'. The operation is performed according to | |
822 | * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
823 | */ | |
824 | ||
825 | static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s) | |
826 | { | |
827 | bool sign = a.sign ^ b.sign; | |
828 | ||
829 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
830 | uint64_t temp_lo, temp_hi; | |
831 | int exp = a.exp - b.exp; | |
832 | if (a.frac < b.frac) { | |
833 | exp -= 1; | |
834 | shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, | |
835 | &temp_hi, &temp_lo); | |
836 | } else { | |
837 | shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT, | |
838 | &temp_hi, &temp_lo); | |
839 | } | |
840 | /* LSB of quot is set if inexact which roundandpack will use | |
841 | * to set flags. Yet again we re-use a for the result */ | |
842 | a.frac = div128To64(temp_lo, temp_hi, b.frac); | |
843 | a.sign = sign; | |
844 | a.exp = exp; | |
845 | return a; | |
846 | } | |
847 | /* handle all the NaN cases */ | |
848 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
849 | return pick_nan(a, b, s); | |
850 | } | |
851 | /* 0/0 or Inf/Inf */ | |
852 | if (a.cls == b.cls | |
853 | && | |
854 | (a.cls == float_class_inf || a.cls == float_class_zero)) { | |
855 | s->float_exception_flags |= float_flag_invalid; | |
856 | a.cls = float_class_dnan; | |
857 | return a; | |
858 | } | |
859 | /* Div 0 => Inf */ | |
860 | if (b.cls == float_class_zero) { | |
861 | s->float_exception_flags |= float_flag_divbyzero; | |
862 | a.cls = float_class_inf; | |
863 | a.sign = sign; | |
864 | return a; | |
865 | } | |
866 | /* Inf / x or 0 / x */ | |
867 | if (a.cls == float_class_inf || a.cls == float_class_zero) { | |
868 | a.sign = sign; | |
869 | return a; | |
870 | } | |
871 | /* Div by Inf */ | |
872 | if (b.cls == float_class_inf) { | |
873 | a.cls = float_class_zero; | |
874 | a.sign = sign; | |
875 | return a; | |
876 | } | |
877 | g_assert_not_reached(); | |
878 | } | |
879 | ||
880 | float16 float16_div(float16 a, float16 b, float_status *status) | |
881 | { | |
882 | FloatParts pa = float16_unpack_canonical(a, status); | |
883 | FloatParts pb = float16_unpack_canonical(b, status); | |
884 | FloatParts pr = div_floats(pa, pb, status); | |
885 | ||
886 | return float16_round_pack_canonical(pr, status); | |
887 | } | |
888 | ||
889 | float32 float32_div(float32 a, float32 b, float_status *status) | |
890 | { | |
891 | FloatParts pa = float32_unpack_canonical(a, status); | |
892 | FloatParts pb = float32_unpack_canonical(b, status); | |
893 | FloatParts pr = div_floats(pa, pb, status); | |
894 | ||
895 | return float32_round_pack_canonical(pr, status); | |
896 | } | |
897 | ||
898 | float64 float64_div(float64 a, float64 b, float_status *status) | |
899 | { | |
900 | FloatParts pa = float64_unpack_canonical(a, status); | |
901 | FloatParts pb = float64_unpack_canonical(b, status); | |
902 | FloatParts pr = div_floats(pa, pb, status); | |
903 | ||
904 | return float64_round_pack_canonical(pr, status); | |
905 | } | |
906 | ||
158142c2 FB |
907 | /*---------------------------------------------------------------------------- |
908 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
909 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
910 | | input. If `zSign' is 1, the input is negated before being converted to an | |
911 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
912 | | is simply rounded to an integer, with the inexact exception raised if the | |
913 | | input cannot be represented exactly as an integer. However, if the fixed- | |
914 | | point input is too large, the invalid exception is raised and the largest | |
915 | | positive or negative integer is returned. | |
916 | *----------------------------------------------------------------------------*/ | |
917 | ||
f4014512 | 918 | static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) |
158142c2 | 919 | { |
8f506c70 | 920 | int8_t roundingMode; |
158142c2 | 921 | flag roundNearestEven; |
8f506c70 | 922 | int8_t roundIncrement, roundBits; |
760e1416 | 923 | int32_t z; |
158142c2 | 924 | |
a2f2d288 | 925 | roundingMode = status->float_rounding_mode; |
158142c2 | 926 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
927 | switch (roundingMode) { |
928 | case float_round_nearest_even: | |
f9288a76 | 929 | case float_round_ties_away: |
dc355b76 PM |
930 | roundIncrement = 0x40; |
931 | break; | |
932 | case float_round_to_zero: | |
933 | roundIncrement = 0; | |
934 | break; | |
935 | case float_round_up: | |
936 | roundIncrement = zSign ? 0 : 0x7f; | |
937 | break; | |
938 | case float_round_down: | |
939 | roundIncrement = zSign ? 0x7f : 0; | |
940 | break; | |
941 | default: | |
942 | abort(); | |
158142c2 FB |
943 | } |
944 | roundBits = absZ & 0x7F; | |
945 | absZ = ( absZ + roundIncrement )>>7; | |
946 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
947 | z = absZ; | |
948 | if ( zSign ) z = - z; | |
949 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
ff32e16e | 950 | float_raise(float_flag_invalid, status); |
bb98fe42 | 951 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 | 952 | } |
a2f2d288 PM |
953 | if (roundBits) { |
954 | status->float_exception_flags |= float_flag_inexact; | |
955 | } | |
158142c2 FB |
956 | return z; |
957 | ||
958 | } | |
959 | ||
960 | /*---------------------------------------------------------------------------- | |
961 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
962 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
963 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
964 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
965 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
966 | | the inexact exception raised if the input cannot be represented exactly as | |
967 | | an integer. However, if the fixed-point input is too large, the invalid | |
968 | | exception is raised and the largest positive or negative integer is | |
969 | | returned. | |
970 | *----------------------------------------------------------------------------*/ | |
971 | ||
f42c2224 | 972 | static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, |
e5a41ffa | 973 | float_status *status) |
158142c2 | 974 | { |
8f506c70 | 975 | int8_t roundingMode; |
158142c2 | 976 | flag roundNearestEven, increment; |
760e1416 | 977 | int64_t z; |
158142c2 | 978 | |
a2f2d288 | 979 | roundingMode = status->float_rounding_mode; |
158142c2 | 980 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
981 | switch (roundingMode) { |
982 | case float_round_nearest_even: | |
f9288a76 | 983 | case float_round_ties_away: |
dc355b76 PM |
984 | increment = ((int64_t) absZ1 < 0); |
985 | break; | |
986 | case float_round_to_zero: | |
987 | increment = 0; | |
988 | break; | |
989 | case float_round_up: | |
990 | increment = !zSign && absZ1; | |
991 | break; | |
992 | case float_round_down: | |
993 | increment = zSign && absZ1; | |
994 | break; | |
995 | default: | |
996 | abort(); | |
158142c2 FB |
997 | } |
998 | if ( increment ) { | |
999 | ++absZ0; | |
1000 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 1001 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
1002 | } |
1003 | z = absZ0; | |
1004 | if ( zSign ) z = - z; | |
1005 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
1006 | overflow: | |
ff32e16e | 1007 | float_raise(float_flag_invalid, status); |
158142c2 | 1008 | return |
bb98fe42 | 1009 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
1010 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
1011 | } | |
a2f2d288 PM |
1012 | if (absZ1) { |
1013 | status->float_exception_flags |= float_flag_inexact; | |
1014 | } | |
158142c2 FB |
1015 | return z; |
1016 | ||
1017 | } | |
1018 | ||
fb3ea83a TM |
1019 | /*---------------------------------------------------------------------------- |
1020 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
1021 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
1022 | | and returns the properly rounded 64-bit unsigned integer corresponding to the | |
1023 | | input. Ordinarily, the fixed-point input is simply rounded to an integer, | |
1024 | | with the inexact exception raised if the input cannot be represented exactly | |
1025 | | as an integer. However, if the fixed-point input is too large, the invalid | |
1026 | | exception is raised and the largest unsigned integer is returned. | |
1027 | *----------------------------------------------------------------------------*/ | |
1028 | ||
f42c2224 | 1029 | static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, |
e5a41ffa | 1030 | uint64_t absZ1, float_status *status) |
fb3ea83a | 1031 | { |
8f506c70 | 1032 | int8_t roundingMode; |
fb3ea83a TM |
1033 | flag roundNearestEven, increment; |
1034 | ||
a2f2d288 | 1035 | roundingMode = status->float_rounding_mode; |
fb3ea83a | 1036 | roundNearestEven = (roundingMode == float_round_nearest_even); |
dc355b76 PM |
1037 | switch (roundingMode) { |
1038 | case float_round_nearest_even: | |
f9288a76 | 1039 | case float_round_ties_away: |
dc355b76 PM |
1040 | increment = ((int64_t)absZ1 < 0); |
1041 | break; | |
1042 | case float_round_to_zero: | |
1043 | increment = 0; | |
1044 | break; | |
1045 | case float_round_up: | |
1046 | increment = !zSign && absZ1; | |
1047 | break; | |
1048 | case float_round_down: | |
1049 | increment = zSign && absZ1; | |
1050 | break; | |
1051 | default: | |
1052 | abort(); | |
fb3ea83a TM |
1053 | } |
1054 | if (increment) { | |
1055 | ++absZ0; | |
1056 | if (absZ0 == 0) { | |
ff32e16e | 1057 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
1058 | return LIT64(0xFFFFFFFFFFFFFFFF); |
1059 | } | |
1060 | absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); | |
1061 | } | |
1062 | ||
1063 | if (zSign && absZ0) { | |
ff32e16e | 1064 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
1065 | return 0; |
1066 | } | |
1067 | ||
1068 | if (absZ1) { | |
a2f2d288 | 1069 | status->float_exception_flags |= float_flag_inexact; |
fb3ea83a TM |
1070 | } |
1071 | return absZ0; | |
1072 | } | |
1073 | ||
37d18660 PM |
1074 | /*---------------------------------------------------------------------------- |
1075 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
1076 | | input-denormal exception and return zero. Otherwise just return the value. | |
1077 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 1078 | float32 float32_squash_input_denormal(float32 a, float_status *status) |
37d18660 | 1079 | { |
a2f2d288 | 1080 | if (status->flush_inputs_to_zero) { |
37d18660 | 1081 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { |
ff32e16e | 1082 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
1083 | return make_float32(float32_val(a) & 0x80000000); |
1084 | } | |
1085 | } | |
1086 | return a; | |
1087 | } | |
1088 | ||
158142c2 FB |
1089 | /*---------------------------------------------------------------------------- |
1090 | | Normalizes the subnormal single-precision floating-point value represented | |
1091 | | by the denormalized significand `aSig'. The normalized exponent and | |
1092 | | significand are stored at the locations pointed to by `zExpPtr' and | |
1093 | | `zSigPtr', respectively. | |
1094 | *----------------------------------------------------------------------------*/ | |
1095 | ||
1096 | static void | |
0c48262d | 1097 | normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) |
158142c2 | 1098 | { |
8f506c70 | 1099 | int8_t shiftCount; |
158142c2 FB |
1100 | |
1101 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
1102 | *zSigPtr = aSig<<shiftCount; | |
1103 | *zExpPtr = 1 - shiftCount; | |
1104 | ||
1105 | } | |
1106 | ||
1107 | /*---------------------------------------------------------------------------- | |
1108 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
1109 | | single-precision floating-point value, returning the result. After being | |
1110 | | shifted into the proper positions, the three fields are simply added | |
1111 | | together to form the result. This means that any integer portion of `zSig' | |
1112 | | will be added into the exponent. Since a properly normalized significand | |
1113 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
1114 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
1115 | | significand. | |
1116 | *----------------------------------------------------------------------------*/ | |
1117 | ||
0c48262d | 1118 | static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig) |
158142c2 FB |
1119 | { |
1120 | ||
f090c9d4 | 1121 | return make_float32( |
bb98fe42 | 1122 | ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); |
158142c2 FB |
1123 | |
1124 | } | |
1125 | ||
1126 | /*---------------------------------------------------------------------------- | |
1127 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1128 | | and significand `zSig', and returns the proper single-precision floating- | |
1129 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
1130 | | value is simply rounded and packed into the single-precision format, with | |
1131 | | the inexact exception raised if the abstract input cannot be represented | |
1132 | | exactly. However, if the abstract value is too large, the overflow and | |
1133 | | inexact exceptions are raised and an infinity or maximal finite value is | |
1134 | | returned. If the abstract value is too small, the input value is rounded to | |
1135 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1136 | | the abstract input cannot be represented exactly as a subnormal single- | |
1137 | | precision floating-point number. | |
1138 | | The input significand `zSig' has its binary point between bits 30 | |
1139 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
1140 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
1141 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
1142 | | and it must not require rounding. In the usual case that `zSig' is | |
1143 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
1144 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
1145 | | Binary Floating-Point Arithmetic. | |
1146 | *----------------------------------------------------------------------------*/ | |
1147 | ||
0c48262d | 1148 | static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 1149 | float_status *status) |
158142c2 | 1150 | { |
8f506c70 | 1151 | int8_t roundingMode; |
158142c2 | 1152 | flag roundNearestEven; |
8f506c70 | 1153 | int8_t roundIncrement, roundBits; |
158142c2 FB |
1154 | flag isTiny; |
1155 | ||
a2f2d288 | 1156 | roundingMode = status->float_rounding_mode; |
158142c2 | 1157 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
1158 | switch (roundingMode) { |
1159 | case float_round_nearest_even: | |
f9288a76 | 1160 | case float_round_ties_away: |
dc355b76 PM |
1161 | roundIncrement = 0x40; |
1162 | break; | |
1163 | case float_round_to_zero: | |
1164 | roundIncrement = 0; | |
1165 | break; | |
1166 | case float_round_up: | |
1167 | roundIncrement = zSign ? 0 : 0x7f; | |
1168 | break; | |
1169 | case float_round_down: | |
1170 | roundIncrement = zSign ? 0x7f : 0; | |
1171 | break; | |
1172 | default: | |
1173 | abort(); | |
1174 | break; | |
158142c2 FB |
1175 | } |
1176 | roundBits = zSig & 0x7F; | |
bb98fe42 | 1177 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
1178 | if ( ( 0xFD < zExp ) |
1179 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 1180 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 1181 | ) { |
ff32e16e | 1182 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 1183 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
1184 | } |
1185 | if ( zExp < 0 ) { | |
a2f2d288 | 1186 | if (status->flush_to_zero) { |
ff32e16e | 1187 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
1188 | return packFloat32(zSign, 0, 0); |
1189 | } | |
158142c2 | 1190 | isTiny = |
a2f2d288 PM |
1191 | (status->float_detect_tininess |
1192 | == float_tininess_before_rounding) | |
158142c2 FB |
1193 | || ( zExp < -1 ) |
1194 | || ( zSig + roundIncrement < 0x80000000 ); | |
1195 | shift32RightJamming( zSig, - zExp, &zSig ); | |
1196 | zExp = 0; | |
1197 | roundBits = zSig & 0x7F; | |
ff32e16e PM |
1198 | if (isTiny && roundBits) { |
1199 | float_raise(float_flag_underflow, status); | |
1200 | } | |
158142c2 FB |
1201 | } |
1202 | } | |
a2f2d288 PM |
1203 | if (roundBits) { |
1204 | status->float_exception_flags |= float_flag_inexact; | |
1205 | } | |
158142c2 FB |
1206 | zSig = ( zSig + roundIncrement )>>7; |
1207 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
1208 | if ( zSig == 0 ) zExp = 0; | |
1209 | return packFloat32( zSign, zExp, zSig ); | |
1210 | ||
1211 | } | |
1212 | ||
1213 | /*---------------------------------------------------------------------------- | |
1214 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1215 | | and significand `zSig', and returns the proper single-precision floating- | |
1216 | | point value corresponding to the abstract input. This routine is just like | |
1217 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
1218 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
1219 | | floating-point exponent. | |
1220 | *----------------------------------------------------------------------------*/ | |
1221 | ||
1222 | static float32 | |
0c48262d | 1223 | normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 1224 | float_status *status) |
158142c2 | 1225 | { |
8f506c70 | 1226 | int8_t shiftCount; |
158142c2 FB |
1227 | |
1228 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
ff32e16e PM |
1229 | return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, |
1230 | status); | |
158142c2 FB |
1231 | |
1232 | } | |
1233 | ||
37d18660 PM |
1234 | /*---------------------------------------------------------------------------- |
1235 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
1236 | | input-denormal exception and return zero. Otherwise just return the value. | |
1237 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 1238 | float64 float64_squash_input_denormal(float64 a, float_status *status) |
37d18660 | 1239 | { |
a2f2d288 | 1240 | if (status->flush_inputs_to_zero) { |
37d18660 | 1241 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { |
ff32e16e | 1242 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
1243 | return make_float64(float64_val(a) & (1ULL << 63)); |
1244 | } | |
1245 | } | |
1246 | return a; | |
1247 | } | |
1248 | ||
158142c2 FB |
1249 | /*---------------------------------------------------------------------------- |
1250 | | Normalizes the subnormal double-precision floating-point value represented | |
1251 | | by the denormalized significand `aSig'. The normalized exponent and | |
1252 | | significand are stored at the locations pointed to by `zExpPtr' and | |
1253 | | `zSigPtr', respectively. | |
1254 | *----------------------------------------------------------------------------*/ | |
1255 | ||
1256 | static void | |
0c48262d | 1257 | normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) |
158142c2 | 1258 | { |
8f506c70 | 1259 | int8_t shiftCount; |
158142c2 FB |
1260 | |
1261 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
1262 | *zSigPtr = aSig<<shiftCount; | |
1263 | *zExpPtr = 1 - shiftCount; | |
1264 | ||
1265 | } | |
1266 | ||
1267 | /*---------------------------------------------------------------------------- | |
1268 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
1269 | | double-precision floating-point value, returning the result. After being | |
1270 | | shifted into the proper positions, the three fields are simply added | |
1271 | | together to form the result. This means that any integer portion of `zSig' | |
1272 | | will be added into the exponent. Since a properly normalized significand | |
1273 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
1274 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
1275 | | significand. | |
1276 | *----------------------------------------------------------------------------*/ | |
1277 | ||
0c48262d | 1278 | static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) |
158142c2 FB |
1279 | { |
1280 | ||
f090c9d4 | 1281 | return make_float64( |
bb98fe42 | 1282 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
1283 | |
1284 | } | |
1285 | ||
1286 | /*---------------------------------------------------------------------------- | |
1287 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1288 | | and significand `zSig', and returns the proper double-precision floating- | |
1289 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
1290 | | value is simply rounded and packed into the double-precision format, with | |
1291 | | the inexact exception raised if the abstract input cannot be represented | |
1292 | | exactly. However, if the abstract value is too large, the overflow and | |
1293 | | inexact exceptions are raised and an infinity or maximal finite value is | |
a7d1ac78 PM |
1294 | | returned. If the abstract value is too small, the input value is rounded to |
1295 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1296 | | the abstract input cannot be represented exactly as a subnormal double- | |
158142c2 FB |
1297 | | precision floating-point number. |
1298 | | The input significand `zSig' has its binary point between bits 62 | |
1299 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
1300 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
1301 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
1302 | | and it must not require rounding. In the usual case that `zSig' is | |
1303 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
1304 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
1305 | | Binary Floating-Point Arithmetic. | |
1306 | *----------------------------------------------------------------------------*/ | |
1307 | ||
0c48262d | 1308 | static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 1309 | float_status *status) |
158142c2 | 1310 | { |
8f506c70 | 1311 | int8_t roundingMode; |
158142c2 | 1312 | flag roundNearestEven; |
0c48262d | 1313 | int roundIncrement, roundBits; |
158142c2 FB |
1314 | flag isTiny; |
1315 | ||
a2f2d288 | 1316 | roundingMode = status->float_rounding_mode; |
158142c2 | 1317 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
1318 | switch (roundingMode) { |
1319 | case float_round_nearest_even: | |
f9288a76 | 1320 | case float_round_ties_away: |
dc355b76 PM |
1321 | roundIncrement = 0x200; |
1322 | break; | |
1323 | case float_round_to_zero: | |
1324 | roundIncrement = 0; | |
1325 | break; | |
1326 | case float_round_up: | |
1327 | roundIncrement = zSign ? 0 : 0x3ff; | |
1328 | break; | |
1329 | case float_round_down: | |
1330 | roundIncrement = zSign ? 0x3ff : 0; | |
1331 | break; | |
9ee6f678 BR |
1332 | case float_round_to_odd: |
1333 | roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; | |
1334 | break; | |
dc355b76 PM |
1335 | default: |
1336 | abort(); | |
158142c2 FB |
1337 | } |
1338 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 1339 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
1340 | if ( ( 0x7FD < zExp ) |
1341 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 1342 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 1343 | ) { |
9ee6f678 BR |
1344 | bool overflow_to_inf = roundingMode != float_round_to_odd && |
1345 | roundIncrement != 0; | |
ff32e16e | 1346 | float_raise(float_flag_overflow | float_flag_inexact, status); |
9ee6f678 | 1347 | return packFloat64(zSign, 0x7FF, -(!overflow_to_inf)); |
158142c2 FB |
1348 | } |
1349 | if ( zExp < 0 ) { | |
a2f2d288 | 1350 | if (status->flush_to_zero) { |
ff32e16e | 1351 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
1352 | return packFloat64(zSign, 0, 0); |
1353 | } | |
158142c2 | 1354 | isTiny = |
a2f2d288 PM |
1355 | (status->float_detect_tininess |
1356 | == float_tininess_before_rounding) | |
158142c2 FB |
1357 | || ( zExp < -1 ) |
1358 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
1359 | shift64RightJamming( zSig, - zExp, &zSig ); | |
1360 | zExp = 0; | |
1361 | roundBits = zSig & 0x3FF; | |
ff32e16e PM |
1362 | if (isTiny && roundBits) { |
1363 | float_raise(float_flag_underflow, status); | |
1364 | } | |
9ee6f678 BR |
1365 | if (roundingMode == float_round_to_odd) { |
1366 | /* | |
1367 | * For round-to-odd case, the roundIncrement depends on | |
1368 | * zSig which just changed. | |
1369 | */ | |
1370 | roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; | |
1371 | } | |
158142c2 FB |
1372 | } |
1373 | } | |
a2f2d288 PM |
1374 | if (roundBits) { |
1375 | status->float_exception_flags |= float_flag_inexact; | |
1376 | } | |
158142c2 FB |
1377 | zSig = ( zSig + roundIncrement )>>10; |
1378 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
1379 | if ( zSig == 0 ) zExp = 0; | |
1380 | return packFloat64( zSign, zExp, zSig ); | |
1381 | ||
1382 | } | |
1383 | ||
1384 | /*---------------------------------------------------------------------------- | |
1385 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1386 | | and significand `zSig', and returns the proper double-precision floating- | |
1387 | | point value corresponding to the abstract input. This routine is just like | |
1388 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
1389 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
1390 | | floating-point exponent. | |
1391 | *----------------------------------------------------------------------------*/ | |
1392 | ||
1393 | static float64 | |
0c48262d | 1394 | normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 1395 | float_status *status) |
158142c2 | 1396 | { |
8f506c70 | 1397 | int8_t shiftCount; |
158142c2 FB |
1398 | |
1399 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
ff32e16e PM |
1400 | return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, |
1401 | status); | |
158142c2 FB |
1402 | |
1403 | } | |
1404 | ||
158142c2 FB |
1405 | /*---------------------------------------------------------------------------- |
1406 | | Returns the fraction bits of the extended double-precision floating-point | |
1407 | | value `a'. | |
1408 | *----------------------------------------------------------------------------*/ | |
1409 | ||
a49db98d | 1410 | static inline uint64_t extractFloatx80Frac( floatx80 a ) |
158142c2 FB |
1411 | { |
1412 | ||
1413 | return a.low; | |
1414 | ||
1415 | } | |
1416 | ||
1417 | /*---------------------------------------------------------------------------- | |
1418 | | Returns the exponent bits of the extended double-precision floating-point | |
1419 | | value `a'. | |
1420 | *----------------------------------------------------------------------------*/ | |
1421 | ||
f4014512 | 1422 | static inline int32_t extractFloatx80Exp( floatx80 a ) |
158142c2 FB |
1423 | { |
1424 | ||
1425 | return a.high & 0x7FFF; | |
1426 | ||
1427 | } | |
1428 | ||
1429 | /*---------------------------------------------------------------------------- | |
1430 | | Returns the sign bit of the extended double-precision floating-point value | |
1431 | | `a'. | |
1432 | *----------------------------------------------------------------------------*/ | |
1433 | ||
a49db98d | 1434 | static inline flag extractFloatx80Sign( floatx80 a ) |
158142c2 FB |
1435 | { |
1436 | ||
1437 | return a.high>>15; | |
1438 | ||
1439 | } | |
1440 | ||
1441 | /*---------------------------------------------------------------------------- | |
1442 | | Normalizes the subnormal extended double-precision floating-point value | |
1443 | | represented by the denormalized significand `aSig'. The normalized exponent | |
1444 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
1445 | | `zSigPtr', respectively. | |
1446 | *----------------------------------------------------------------------------*/ | |
1447 | ||
1448 | static void | |
f4014512 | 1449 | normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr ) |
158142c2 | 1450 | { |
8f506c70 | 1451 | int8_t shiftCount; |
158142c2 FB |
1452 | |
1453 | shiftCount = countLeadingZeros64( aSig ); | |
1454 | *zSigPtr = aSig<<shiftCount; | |
1455 | *zExpPtr = 1 - shiftCount; | |
1456 | ||
1457 | } | |
1458 | ||
1459 | /*---------------------------------------------------------------------------- | |
1460 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
1461 | | extended double-precision floating-point value, returning the result. | |
1462 | *----------------------------------------------------------------------------*/ | |
1463 | ||
f4014512 | 1464 | static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig ) |
158142c2 FB |
1465 | { |
1466 | floatx80 z; | |
1467 | ||
1468 | z.low = zSig; | |
bb98fe42 | 1469 | z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; |
158142c2 FB |
1470 | return z; |
1471 | ||
1472 | } | |
1473 | ||
1474 | /*---------------------------------------------------------------------------- | |
1475 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1476 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
1477 | | and returns the proper extended double-precision floating-point value | |
1478 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
1479 | | rounded and packed into the extended double-precision format, with the | |
1480 | | inexact exception raised if the abstract input cannot be represented | |
1481 | | exactly. However, if the abstract value is too large, the overflow and | |
1482 | | inexact exceptions are raised and an infinity or maximal finite value is | |
1483 | | returned. If the abstract value is too small, the input value is rounded to | |
1484 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1485 | | the abstract input cannot be represented exactly as a subnormal extended | |
1486 | | double-precision floating-point number. | |
1487 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
1488 | | number of bits as single or double precision, respectively. Otherwise, the | |
1489 | | result is rounded to the full precision of the extended double-precision | |
1490 | | format. | |
1491 | | The input significand must be normalized or smaller. If the input | |
1492 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
1493 | | returned is a subnormal number, and it must not require rounding. The | |
1494 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
1495 | | Floating-Point Arithmetic. | |
1496 | *----------------------------------------------------------------------------*/ | |
1497 | ||
8f506c70 | 1498 | static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, |
f4014512 | 1499 | int32_t zExp, uint64_t zSig0, uint64_t zSig1, |
e5a41ffa | 1500 | float_status *status) |
158142c2 | 1501 | { |
8f506c70 | 1502 | int8_t roundingMode; |
158142c2 | 1503 | flag roundNearestEven, increment, isTiny; |
f42c2224 | 1504 | int64_t roundIncrement, roundMask, roundBits; |
158142c2 | 1505 | |
a2f2d288 | 1506 | roundingMode = status->float_rounding_mode; |
158142c2 FB |
1507 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
1508 | if ( roundingPrecision == 80 ) goto precision80; | |
1509 | if ( roundingPrecision == 64 ) { | |
1510 | roundIncrement = LIT64( 0x0000000000000400 ); | |
1511 | roundMask = LIT64( 0x00000000000007FF ); | |
1512 | } | |
1513 | else if ( roundingPrecision == 32 ) { | |
1514 | roundIncrement = LIT64( 0x0000008000000000 ); | |
1515 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
1516 | } | |
1517 | else { | |
1518 | goto precision80; | |
1519 | } | |
1520 | zSig0 |= ( zSig1 != 0 ); | |
dc355b76 PM |
1521 | switch (roundingMode) { |
1522 | case float_round_nearest_even: | |
f9288a76 | 1523 | case float_round_ties_away: |
dc355b76 PM |
1524 | break; |
1525 | case float_round_to_zero: | |
1526 | roundIncrement = 0; | |
1527 | break; | |
1528 | case float_round_up: | |
1529 | roundIncrement = zSign ? 0 : roundMask; | |
1530 | break; | |
1531 | case float_round_down: | |
1532 | roundIncrement = zSign ? roundMask : 0; | |
1533 | break; | |
1534 | default: | |
1535 | abort(); | |
158142c2 FB |
1536 | } |
1537 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 1538 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
1539 | if ( ( 0x7FFE < zExp ) |
1540 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
1541 | ) { | |
1542 | goto overflow; | |
1543 | } | |
1544 | if ( zExp <= 0 ) { | |
a2f2d288 | 1545 | if (status->flush_to_zero) { |
ff32e16e | 1546 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
1547 | return packFloatx80(zSign, 0, 0); |
1548 | } | |
158142c2 | 1549 | isTiny = |
a2f2d288 PM |
1550 | (status->float_detect_tininess |
1551 | == float_tininess_before_rounding) | |
158142c2 FB |
1552 | || ( zExp < 0 ) |
1553 | || ( zSig0 <= zSig0 + roundIncrement ); | |
1554 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
1555 | zExp = 0; | |
1556 | roundBits = zSig0 & roundMask; | |
ff32e16e PM |
1557 | if (isTiny && roundBits) { |
1558 | float_raise(float_flag_underflow, status); | |
1559 | } | |
a2f2d288 PM |
1560 | if (roundBits) { |
1561 | status->float_exception_flags |= float_flag_inexact; | |
1562 | } | |
158142c2 | 1563 | zSig0 += roundIncrement; |
bb98fe42 | 1564 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
1565 | roundIncrement = roundMask + 1; |
1566 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
1567 | roundMask |= roundIncrement; | |
1568 | } | |
1569 | zSig0 &= ~ roundMask; | |
1570 | return packFloatx80( zSign, zExp, zSig0 ); | |
1571 | } | |
1572 | } | |
a2f2d288 PM |
1573 | if (roundBits) { |
1574 | status->float_exception_flags |= float_flag_inexact; | |
1575 | } | |
158142c2 FB |
1576 | zSig0 += roundIncrement; |
1577 | if ( zSig0 < roundIncrement ) { | |
1578 | ++zExp; | |
1579 | zSig0 = LIT64( 0x8000000000000000 ); | |
1580 | } | |
1581 | roundIncrement = roundMask + 1; | |
1582 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
1583 | roundMask |= roundIncrement; | |
1584 | } | |
1585 | zSig0 &= ~ roundMask; | |
1586 | if ( zSig0 == 0 ) zExp = 0; | |
1587 | return packFloatx80( zSign, zExp, zSig0 ); | |
1588 | precision80: | |
dc355b76 PM |
1589 | switch (roundingMode) { |
1590 | case float_round_nearest_even: | |
f9288a76 | 1591 | case float_round_ties_away: |
dc355b76 PM |
1592 | increment = ((int64_t)zSig1 < 0); |
1593 | break; | |
1594 | case float_round_to_zero: | |
1595 | increment = 0; | |
1596 | break; | |
1597 | case float_round_up: | |
1598 | increment = !zSign && zSig1; | |
1599 | break; | |
1600 | case float_round_down: | |
1601 | increment = zSign && zSig1; | |
1602 | break; | |
1603 | default: | |
1604 | abort(); | |
158142c2 | 1605 | } |
bb98fe42 | 1606 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
1607 | if ( ( 0x7FFE < zExp ) |
1608 | || ( ( zExp == 0x7FFE ) | |
1609 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
1610 | && increment | |
1611 | ) | |
1612 | ) { | |
1613 | roundMask = 0; | |
1614 | overflow: | |
ff32e16e | 1615 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
1616 | if ( ( roundingMode == float_round_to_zero ) |
1617 | || ( zSign && ( roundingMode == float_round_up ) ) | |
1618 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
1619 | ) { | |
1620 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
1621 | } | |
1622 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
1623 | } | |
1624 | if ( zExp <= 0 ) { | |
1625 | isTiny = | |
a2f2d288 PM |
1626 | (status->float_detect_tininess |
1627 | == float_tininess_before_rounding) | |
158142c2 FB |
1628 | || ( zExp < 0 ) |
1629 | || ! increment | |
1630 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
1631 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
1632 | zExp = 0; | |
ff32e16e PM |
1633 | if (isTiny && zSig1) { |
1634 | float_raise(float_flag_underflow, status); | |
1635 | } | |
a2f2d288 PM |
1636 | if (zSig1) { |
1637 | status->float_exception_flags |= float_flag_inexact; | |
1638 | } | |
dc355b76 PM |
1639 | switch (roundingMode) { |
1640 | case float_round_nearest_even: | |
f9288a76 | 1641 | case float_round_ties_away: |
dc355b76 PM |
1642 | increment = ((int64_t)zSig1 < 0); |
1643 | break; | |
1644 | case float_round_to_zero: | |
1645 | increment = 0; | |
1646 | break; | |
1647 | case float_round_up: | |
1648 | increment = !zSign && zSig1; | |
1649 | break; | |
1650 | case float_round_down: | |
1651 | increment = zSign && zSig1; | |
1652 | break; | |
1653 | default: | |
1654 | abort(); | |
158142c2 FB |
1655 | } |
1656 | if ( increment ) { | |
1657 | ++zSig0; | |
1658 | zSig0 &= | |
bb98fe42 AF |
1659 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
1660 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
1661 | } |
1662 | return packFloatx80( zSign, zExp, zSig0 ); | |
1663 | } | |
1664 | } | |
a2f2d288 PM |
1665 | if (zSig1) { |
1666 | status->float_exception_flags |= float_flag_inexact; | |
1667 | } | |
158142c2 FB |
1668 | if ( increment ) { |
1669 | ++zSig0; | |
1670 | if ( zSig0 == 0 ) { | |
1671 | ++zExp; | |
1672 | zSig0 = LIT64( 0x8000000000000000 ); | |
1673 | } | |
1674 | else { | |
bb98fe42 | 1675 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
1676 | } |
1677 | } | |
1678 | else { | |
1679 | if ( zSig0 == 0 ) zExp = 0; | |
1680 | } | |
1681 | return packFloatx80( zSign, zExp, zSig0 ); | |
1682 | ||
1683 | } | |
1684 | ||
1685 | /*---------------------------------------------------------------------------- | |
1686 | | Takes an abstract floating-point value having sign `zSign', exponent | |
1687 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
1688 | | and returns the proper extended double-precision floating-point value | |
1689 | | corresponding to the abstract input. This routine is just like | |
1690 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
1691 | | normalized. | |
1692 | *----------------------------------------------------------------------------*/ | |
1693 | ||
8f506c70 | 1694 | static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, |
f4014512 | 1695 | flag zSign, int32_t zExp, |
e5a41ffa PM |
1696 | uint64_t zSig0, uint64_t zSig1, |
1697 | float_status *status) | |
158142c2 | 1698 | { |
8f506c70 | 1699 | int8_t shiftCount; |
158142c2 FB |
1700 | |
1701 | if ( zSig0 == 0 ) { | |
1702 | zSig0 = zSig1; | |
1703 | zSig1 = 0; | |
1704 | zExp -= 64; | |
1705 | } | |
1706 | shiftCount = countLeadingZeros64( zSig0 ); | |
1707 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1708 | zExp -= shiftCount; | |
ff32e16e PM |
1709 | return roundAndPackFloatx80(roundingPrecision, zSign, zExp, |
1710 | zSig0, zSig1, status); | |
158142c2 FB |
1711 | |
1712 | } | |
1713 | ||
158142c2 FB |
1714 | /*---------------------------------------------------------------------------- |
1715 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
1716 | | floating-point value `a'. | |
1717 | *----------------------------------------------------------------------------*/ | |
1718 | ||
a49db98d | 1719 | static inline uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
1720 | { |
1721 | ||
1722 | return a.low; | |
1723 | ||
1724 | } | |
1725 | ||
1726 | /*---------------------------------------------------------------------------- | |
1727 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
1728 | | floating-point value `a'. | |
1729 | *----------------------------------------------------------------------------*/ | |
1730 | ||
a49db98d | 1731 | static inline uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
1732 | { |
1733 | ||
1734 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
1735 | ||
1736 | } | |
1737 | ||
1738 | /*---------------------------------------------------------------------------- | |
1739 | | Returns the exponent bits of the quadruple-precision floating-point value | |
1740 | | `a'. | |
1741 | *----------------------------------------------------------------------------*/ | |
1742 | ||
f4014512 | 1743 | static inline int32_t extractFloat128Exp( float128 a ) |
158142c2 FB |
1744 | { |
1745 | ||
1746 | return ( a.high>>48 ) & 0x7FFF; | |
1747 | ||
1748 | } | |
1749 | ||
1750 | /*---------------------------------------------------------------------------- | |
1751 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
1752 | *----------------------------------------------------------------------------*/ | |
1753 | ||
a49db98d | 1754 | static inline flag extractFloat128Sign( float128 a ) |
158142c2 FB |
1755 | { |
1756 | ||
1757 | return a.high>>63; | |
1758 | ||
1759 | } | |
1760 | ||
1761 | /*---------------------------------------------------------------------------- | |
1762 | | Normalizes the subnormal quadruple-precision floating-point value | |
1763 | | represented by the denormalized significand formed by the concatenation of | |
1764 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
1765 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
1766 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
1767 | | least significant 64 bits of the normalized significand are stored at the | |
1768 | | location pointed to by `zSig1Ptr'. | |
1769 | *----------------------------------------------------------------------------*/ | |
1770 | ||
1771 | static void | |
1772 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
1773 | uint64_t aSig0, |
1774 | uint64_t aSig1, | |
f4014512 | 1775 | int32_t *zExpPtr, |
bb98fe42 AF |
1776 | uint64_t *zSig0Ptr, |
1777 | uint64_t *zSig1Ptr | |
158142c2 FB |
1778 | ) |
1779 | { | |
8f506c70 | 1780 | int8_t shiftCount; |
158142c2 FB |
1781 | |
1782 | if ( aSig0 == 0 ) { | |
1783 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
1784 | if ( shiftCount < 0 ) { | |
1785 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
1786 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
1787 | } | |
1788 | else { | |
1789 | *zSig0Ptr = aSig1<<shiftCount; | |
1790 | *zSig1Ptr = 0; | |
1791 | } | |
1792 | *zExpPtr = - shiftCount - 63; | |
1793 | } | |
1794 | else { | |
1795 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
1796 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
1797 | *zExpPtr = 1 - shiftCount; | |
1798 | } | |
1799 | ||
1800 | } | |
1801 | ||
1802 | /*---------------------------------------------------------------------------- | |
1803 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
1804 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
1805 | | floating-point value, returning the result. After being shifted into the | |
1806 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
1807 | | added together to form the most significant 32 bits of the result. This | |
1808 | | means that any integer portion of `zSig0' will be added into the exponent. | |
1809 | | Since a properly normalized significand will have an integer portion equal | |
1810 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
1811 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
1812 | | significand. | |
1813 | *----------------------------------------------------------------------------*/ | |
1814 | ||
a49db98d | 1815 | static inline float128 |
f4014512 | 1816 | packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
1817 | { |
1818 | float128 z; | |
1819 | ||
1820 | z.low = zSig1; | |
bb98fe42 | 1821 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
1822 | return z; |
1823 | ||
1824 | } | |
1825 | ||
1826 | /*---------------------------------------------------------------------------- | |
1827 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1828 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
1829 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
1830 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
1831 | | simply rounded and packed into the quadruple-precision format, with the | |
1832 | | inexact exception raised if the abstract input cannot be represented | |
1833 | | exactly. However, if the abstract value is too large, the overflow and | |
1834 | | inexact exceptions are raised and an infinity or maximal finite value is | |
1835 | | returned. If the abstract value is too small, the input value is rounded to | |
1836 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
1837 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
1838 | | precision floating-point number. | |
1839 | | The input significand must be normalized or smaller. If the input | |
1840 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
1841 | | returned is a subnormal number, and it must not require rounding. In the | |
1842 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
1843 | | than the ``true'' floating-point exponent. The handling of underflow and | |
1844 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1845 | *----------------------------------------------------------------------------*/ | |
1846 | ||
f4014512 | 1847 | static float128 roundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
1848 | uint64_t zSig0, uint64_t zSig1, |
1849 | uint64_t zSig2, float_status *status) | |
158142c2 | 1850 | { |
8f506c70 | 1851 | int8_t roundingMode; |
158142c2 FB |
1852 | flag roundNearestEven, increment, isTiny; |
1853 | ||
a2f2d288 | 1854 | roundingMode = status->float_rounding_mode; |
158142c2 | 1855 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
1856 | switch (roundingMode) { |
1857 | case float_round_nearest_even: | |
f9288a76 | 1858 | case float_round_ties_away: |
dc355b76 PM |
1859 | increment = ((int64_t)zSig2 < 0); |
1860 | break; | |
1861 | case float_round_to_zero: | |
1862 | increment = 0; | |
1863 | break; | |
1864 | case float_round_up: | |
1865 | increment = !zSign && zSig2; | |
1866 | break; | |
1867 | case float_round_down: | |
1868 | increment = zSign && zSig2; | |
1869 | break; | |
9ee6f678 BR |
1870 | case float_round_to_odd: |
1871 | increment = !(zSig1 & 0x1) && zSig2; | |
1872 | break; | |
dc355b76 PM |
1873 | default: |
1874 | abort(); | |
158142c2 | 1875 | } |
bb98fe42 | 1876 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
1877 | if ( ( 0x7FFD < zExp ) |
1878 | || ( ( zExp == 0x7FFD ) | |
1879 | && eq128( | |
1880 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1881 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
1882 | zSig0, | |
1883 | zSig1 | |
1884 | ) | |
1885 | && increment | |
1886 | ) | |
1887 | ) { | |
ff32e16e | 1888 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
1889 | if ( ( roundingMode == float_round_to_zero ) |
1890 | || ( zSign && ( roundingMode == float_round_up ) ) | |
1891 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
9ee6f678 | 1892 | || (roundingMode == float_round_to_odd) |
158142c2 FB |
1893 | ) { |
1894 | return | |
1895 | packFloat128( | |
1896 | zSign, | |
1897 | 0x7FFE, | |
1898 | LIT64( 0x0000FFFFFFFFFFFF ), | |
1899 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1900 | ); | |
1901 | } | |
1902 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
1903 | } | |
1904 | if ( zExp < 0 ) { | |
a2f2d288 | 1905 | if (status->flush_to_zero) { |
ff32e16e | 1906 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
1907 | return packFloat128(zSign, 0, 0, 0); |
1908 | } | |
158142c2 | 1909 | isTiny = |
a2f2d288 PM |
1910 | (status->float_detect_tininess |
1911 | == float_tininess_before_rounding) | |
158142c2 FB |
1912 | || ( zExp < -1 ) |
1913 | || ! increment | |
1914 | || lt128( | |
1915 | zSig0, | |
1916 | zSig1, | |
1917 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1918 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1919 | ); | |
1920 | shift128ExtraRightJamming( | |
1921 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
1922 | zExp = 0; | |
ff32e16e PM |
1923 | if (isTiny && zSig2) { |
1924 | float_raise(float_flag_underflow, status); | |
1925 | } | |
dc355b76 PM |
1926 | switch (roundingMode) { |
1927 | case float_round_nearest_even: | |
f9288a76 | 1928 | case float_round_ties_away: |
dc355b76 PM |
1929 | increment = ((int64_t)zSig2 < 0); |
1930 | break; | |
1931 | case float_round_to_zero: | |
1932 | increment = 0; | |
1933 | break; | |
1934 | case float_round_up: | |
1935 | increment = !zSign && zSig2; | |
1936 | break; | |
1937 | case float_round_down: | |
1938 | increment = zSign && zSig2; | |
1939 | break; | |
9ee6f678 BR |
1940 | case float_round_to_odd: |
1941 | increment = !(zSig1 & 0x1) && zSig2; | |
1942 | break; | |
dc355b76 PM |
1943 | default: |
1944 | abort(); | |
158142c2 FB |
1945 | } |
1946 | } | |
1947 | } | |
a2f2d288 PM |
1948 | if (zSig2) { |
1949 | status->float_exception_flags |= float_flag_inexact; | |
1950 | } | |
158142c2 FB |
1951 | if ( increment ) { |
1952 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
1953 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
1954 | } | |
1955 | else { | |
1956 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
1957 | } | |
1958 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1959 | ||
1960 | } | |
1961 | ||
1962 | /*---------------------------------------------------------------------------- | |
1963 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1964 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
1965 | | returns the proper quadruple-precision floating-point value corresponding | |
1966 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
1967 | | except that the input significand has fewer bits and does not have to be | |
1968 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
1969 | | point exponent. | |
1970 | *----------------------------------------------------------------------------*/ | |
1971 | ||
f4014512 | 1972 | static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
1973 | uint64_t zSig0, uint64_t zSig1, |
1974 | float_status *status) | |
158142c2 | 1975 | { |
8f506c70 | 1976 | int8_t shiftCount; |
bb98fe42 | 1977 | uint64_t zSig2; |
158142c2 FB |
1978 | |
1979 | if ( zSig0 == 0 ) { | |
1980 | zSig0 = zSig1; | |
1981 | zSig1 = 0; | |
1982 | zExp -= 64; | |
1983 | } | |
1984 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
1985 | if ( 0 <= shiftCount ) { | |
1986 | zSig2 = 0; | |
1987 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1988 | } | |
1989 | else { | |
1990 | shift128ExtraRightJamming( | |
1991 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
1992 | } | |
1993 | zExp -= shiftCount; | |
ff32e16e | 1994 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
1995 | |
1996 | } | |
1997 | ||
158142c2 FB |
1998 | /*---------------------------------------------------------------------------- |
1999 | | Returns the result of converting the 32-bit two's complement integer `a' | |
2000 | | to the single-precision floating-point format. The conversion is performed | |
2001 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2002 | *----------------------------------------------------------------------------*/ | |
2003 | ||
e5a41ffa | 2004 | float32 int32_to_float32(int32_t a, float_status *status) |
158142c2 FB |
2005 | { |
2006 | flag zSign; | |
2007 | ||
f090c9d4 | 2008 | if ( a == 0 ) return float32_zero; |
bb98fe42 | 2009 | if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
158142c2 | 2010 | zSign = ( a < 0 ); |
ff32e16e | 2011 | return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status); |
158142c2 FB |
2012 | } |
2013 | ||
2014 | /*---------------------------------------------------------------------------- | |
2015 | | Returns the result of converting the 32-bit two's complement integer `a' | |
2016 | | to the double-precision floating-point format. The conversion is performed | |
2017 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2018 | *----------------------------------------------------------------------------*/ | |
2019 | ||
e5a41ffa | 2020 | float64 int32_to_float64(int32_t a, float_status *status) |
158142c2 FB |
2021 | { |
2022 | flag zSign; | |
3a87d009 | 2023 | uint32_t absA; |
8f506c70 | 2024 | int8_t shiftCount; |
bb98fe42 | 2025 | uint64_t zSig; |
158142c2 | 2026 | |
f090c9d4 | 2027 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
2028 | zSign = ( a < 0 ); |
2029 | absA = zSign ? - a : a; | |
2030 | shiftCount = countLeadingZeros32( absA ) + 21; | |
2031 | zSig = absA; | |
2032 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
2033 | ||
2034 | } | |
2035 | ||
158142c2 FB |
2036 | /*---------------------------------------------------------------------------- |
2037 | | Returns the result of converting the 32-bit two's complement integer `a' | |
2038 | | to the extended double-precision floating-point format. The conversion | |
2039 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2040 | | Arithmetic. | |
2041 | *----------------------------------------------------------------------------*/ | |
2042 | ||
e5a41ffa | 2043 | floatx80 int32_to_floatx80(int32_t a, float_status *status) |
158142c2 FB |
2044 | { |
2045 | flag zSign; | |
3a87d009 | 2046 | uint32_t absA; |
8f506c70 | 2047 | int8_t shiftCount; |
bb98fe42 | 2048 | uint64_t zSig; |
158142c2 FB |
2049 | |
2050 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
2051 | zSign = ( a < 0 ); | |
2052 | absA = zSign ? - a : a; | |
2053 | shiftCount = countLeadingZeros32( absA ) + 32; | |
2054 | zSig = absA; | |
2055 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
2056 | ||
2057 | } | |
2058 | ||
158142c2 FB |
2059 | /*---------------------------------------------------------------------------- |
2060 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
2061 | | the quadruple-precision floating-point format. The conversion is performed | |
2062 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2063 | *----------------------------------------------------------------------------*/ | |
2064 | ||
e5a41ffa | 2065 | float128 int32_to_float128(int32_t a, float_status *status) |
158142c2 FB |
2066 | { |
2067 | flag zSign; | |
3a87d009 | 2068 | uint32_t absA; |
8f506c70 | 2069 | int8_t shiftCount; |
bb98fe42 | 2070 | uint64_t zSig0; |
158142c2 FB |
2071 | |
2072 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
2073 | zSign = ( a < 0 ); | |
2074 | absA = zSign ? - a : a; | |
2075 | shiftCount = countLeadingZeros32( absA ) + 17; | |
2076 | zSig0 = absA; | |
2077 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
2078 | ||
2079 | } | |
2080 | ||
158142c2 FB |
2081 | /*---------------------------------------------------------------------------- |
2082 | | Returns the result of converting the 64-bit two's complement integer `a' | |
2083 | | to the single-precision floating-point format. The conversion is performed | |
2084 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2085 | *----------------------------------------------------------------------------*/ | |
2086 | ||
e5a41ffa | 2087 | float32 int64_to_float32(int64_t a, float_status *status) |
158142c2 FB |
2088 | { |
2089 | flag zSign; | |
182f42fd | 2090 | uint64_t absA; |
8f506c70 | 2091 | int8_t shiftCount; |
158142c2 | 2092 | |
f090c9d4 | 2093 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
2094 | zSign = ( a < 0 ); |
2095 | absA = zSign ? - a : a; | |
2096 | shiftCount = countLeadingZeros64( absA ) - 40; | |
2097 | if ( 0 <= shiftCount ) { | |
2098 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
2099 | } | |
2100 | else { | |
2101 | shiftCount += 7; | |
2102 | if ( shiftCount < 0 ) { | |
2103 | shift64RightJamming( absA, - shiftCount, &absA ); | |
2104 | } | |
2105 | else { | |
2106 | absA <<= shiftCount; | |
2107 | } | |
ff32e16e | 2108 | return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status); |
158142c2 FB |
2109 | } |
2110 | ||
2111 | } | |
2112 | ||
2113 | /*---------------------------------------------------------------------------- | |
2114 | | Returns the result of converting the 64-bit two's complement integer `a' | |
2115 | | to the double-precision floating-point format. The conversion is performed | |
2116 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2117 | *----------------------------------------------------------------------------*/ | |
2118 | ||
e5a41ffa | 2119 | float64 int64_to_float64(int64_t a, float_status *status) |
158142c2 FB |
2120 | { |
2121 | flag zSign; | |
2122 | ||
f090c9d4 | 2123 | if ( a == 0 ) return float64_zero; |
bb98fe42 | 2124 | if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { |
158142c2 FB |
2125 | return packFloat64( 1, 0x43E, 0 ); |
2126 | } | |
2127 | zSign = ( a < 0 ); | |
ff32e16e | 2128 | return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status); |
158142c2 FB |
2129 | } |
2130 | ||
158142c2 FB |
2131 | /*---------------------------------------------------------------------------- |
2132 | | Returns the result of converting the 64-bit two's complement integer `a' | |
2133 | | to the extended double-precision floating-point format. The conversion | |
2134 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2135 | | Arithmetic. | |
2136 | *----------------------------------------------------------------------------*/ | |
2137 | ||
e5a41ffa | 2138 | floatx80 int64_to_floatx80(int64_t a, float_status *status) |
158142c2 FB |
2139 | { |
2140 | flag zSign; | |
182f42fd | 2141 | uint64_t absA; |
8f506c70 | 2142 | int8_t shiftCount; |
158142c2 FB |
2143 | |
2144 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
2145 | zSign = ( a < 0 ); | |
2146 | absA = zSign ? - a : a; | |
2147 | shiftCount = countLeadingZeros64( absA ); | |
2148 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
2149 | ||
2150 | } | |
2151 | ||
158142c2 FB |
2152 | /*---------------------------------------------------------------------------- |
2153 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
2154 | | the quadruple-precision floating-point format. The conversion is performed | |
2155 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2156 | *----------------------------------------------------------------------------*/ | |
2157 | ||
e5a41ffa | 2158 | float128 int64_to_float128(int64_t a, float_status *status) |
158142c2 FB |
2159 | { |
2160 | flag zSign; | |
182f42fd | 2161 | uint64_t absA; |
8f506c70 | 2162 | int8_t shiftCount; |
f4014512 | 2163 | int32_t zExp; |
bb98fe42 | 2164 | uint64_t zSig0, zSig1; |
158142c2 FB |
2165 | |
2166 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
2167 | zSign = ( a < 0 ); | |
2168 | absA = zSign ? - a : a; | |
2169 | shiftCount = countLeadingZeros64( absA ) + 49; | |
2170 | zExp = 0x406E - shiftCount; | |
2171 | if ( 64 <= shiftCount ) { | |
2172 | zSig1 = 0; | |
2173 | zSig0 = absA; | |
2174 | shiftCount -= 64; | |
2175 | } | |
2176 | else { | |
2177 | zSig1 = absA; | |
2178 | zSig0 = 0; | |
2179 | } | |
2180 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
2181 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
2182 | ||
2183 | } | |
2184 | ||
6bb8e0f1 PM |
2185 | /*---------------------------------------------------------------------------- |
2186 | | Returns the result of converting the 64-bit unsigned integer `a' | |
2187 | | to the single-precision floating-point format. The conversion is performed | |
2188 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2189 | *----------------------------------------------------------------------------*/ | |
2190 | ||
e5a41ffa | 2191 | float32 uint64_to_float32(uint64_t a, float_status *status) |
6bb8e0f1 PM |
2192 | { |
2193 | int shiftcount; | |
2194 | ||
2195 | if (a == 0) { | |
2196 | return float32_zero; | |
2197 | } | |
2198 | ||
2199 | /* Determine (left) shift needed to put first set bit into bit posn 23 | |
2200 | * (since packFloat32() expects the binary point between bits 23 and 22); | |
2201 | * this is the fast case for smallish numbers. | |
2202 | */ | |
2203 | shiftcount = countLeadingZeros64(a) - 40; | |
2204 | if (shiftcount >= 0) { | |
2205 | return packFloat32(0, 0x95 - shiftcount, a << shiftcount); | |
2206 | } | |
2207 | /* Otherwise we need to do a round-and-pack. roundAndPackFloat32() | |
2208 | * expects the binary point between bits 30 and 29, hence the + 7. | |
2209 | */ | |
2210 | shiftcount += 7; | |
2211 | if (shiftcount < 0) { | |
2212 | shift64RightJamming(a, -shiftcount, &a); | |
2213 | } else { | |
2214 | a <<= shiftcount; | |
2215 | } | |
2216 | ||
ff32e16e | 2217 | return roundAndPackFloat32(0, 0x9c - shiftcount, a, status); |
6bb8e0f1 PM |
2218 | } |
2219 | ||
2220 | /*---------------------------------------------------------------------------- | |
2221 | | Returns the result of converting the 64-bit unsigned integer `a' | |
2222 | | to the double-precision floating-point format. The conversion is performed | |
2223 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2224 | *----------------------------------------------------------------------------*/ | |
2225 | ||
e5a41ffa | 2226 | float64 uint64_to_float64(uint64_t a, float_status *status) |
6bb8e0f1 PM |
2227 | { |
2228 | int exp = 0x43C; | |
2229 | int shiftcount; | |
2230 | ||
2231 | if (a == 0) { | |
2232 | return float64_zero; | |
2233 | } | |
2234 | ||
2235 | shiftcount = countLeadingZeros64(a) - 1; | |
2236 | if (shiftcount < 0) { | |
2237 | shift64RightJamming(a, -shiftcount, &a); | |
2238 | } else { | |
2239 | a <<= shiftcount; | |
2240 | } | |
ff32e16e | 2241 | return roundAndPackFloat64(0, exp - shiftcount, a, status); |
6bb8e0f1 PM |
2242 | } |
2243 | ||
2244 | /*---------------------------------------------------------------------------- | |
2245 | | Returns the result of converting the 64-bit unsigned integer `a' | |
2246 | | to the quadruple-precision floating-point format. The conversion is performed | |
2247 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2248 | *----------------------------------------------------------------------------*/ | |
2249 | ||
e5a41ffa | 2250 | float128 uint64_to_float128(uint64_t a, float_status *status) |
1e397ead RH |
2251 | { |
2252 | if (a == 0) { | |
2253 | return float128_zero; | |
2254 | } | |
ff32e16e | 2255 | return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status); |
1e397ead RH |
2256 | } |
2257 | ||
158142c2 FB |
2258 | /*---------------------------------------------------------------------------- |
2259 | | Returns the result of converting the single-precision floating-point value | |
2260 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2261 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2262 | | Arithmetic---which means in particular that the conversion is rounded | |
2263 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2264 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2265 | | largest integer with the same sign as `a' is returned. | |
2266 | *----------------------------------------------------------------------------*/ | |
2267 | ||
f4014512 | 2268 | int32_t float32_to_int32(float32 a, float_status *status) |
158142c2 FB |
2269 | { |
2270 | flag aSign; | |
0c48262d | 2271 | int aExp; |
07d792d2 | 2272 | int shiftCount; |
bb98fe42 AF |
2273 | uint32_t aSig; |
2274 | uint64_t aSig64; | |
158142c2 | 2275 | |
ff32e16e | 2276 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2277 | aSig = extractFloat32Frac( a ); |
2278 | aExp = extractFloat32Exp( a ); | |
2279 | aSign = extractFloat32Sign( a ); | |
2280 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
2281 | if ( aExp ) aSig |= 0x00800000; | |
2282 | shiftCount = 0xAF - aExp; | |
2283 | aSig64 = aSig; | |
2284 | aSig64 <<= 32; | |
2285 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
ff32e16e | 2286 | return roundAndPackInt32(aSign, aSig64, status); |
158142c2 FB |
2287 | |
2288 | } | |
2289 | ||
2290 | /*---------------------------------------------------------------------------- | |
2291 | | Returns the result of converting the single-precision floating-point value | |
2292 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2293 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2294 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2295 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2296 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2297 | | returned. | |
2298 | *----------------------------------------------------------------------------*/ | |
2299 | ||
f4014512 | 2300 | int32_t float32_to_int32_round_to_zero(float32 a, float_status *status) |
158142c2 FB |
2301 | { |
2302 | flag aSign; | |
0c48262d | 2303 | int aExp; |
07d792d2 | 2304 | int shiftCount; |
bb98fe42 | 2305 | uint32_t aSig; |
b3a6a2e0 | 2306 | int32_t z; |
ff32e16e | 2307 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2308 | |
2309 | aSig = extractFloat32Frac( a ); | |
2310 | aExp = extractFloat32Exp( a ); | |
2311 | aSign = extractFloat32Sign( a ); | |
2312 | shiftCount = aExp - 0x9E; | |
2313 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 2314 | if ( float32_val(a) != 0xCF000000 ) { |
ff32e16e | 2315 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2316 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; |
2317 | } | |
bb98fe42 | 2318 | return (int32_t) 0x80000000; |
158142c2 FB |
2319 | } |
2320 | else if ( aExp <= 0x7E ) { | |
a2f2d288 PM |
2321 | if (aExp | aSig) { |
2322 | status->float_exception_flags |= float_flag_inexact; | |
2323 | } | |
158142c2 FB |
2324 | return 0; |
2325 | } | |
2326 | aSig = ( aSig | 0x00800000 )<<8; | |
2327 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 2328 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
a2f2d288 | 2329 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
2330 | } |
2331 | if ( aSign ) z = - z; | |
2332 | return z; | |
2333 | ||
2334 | } | |
2335 | ||
cbcef455 PM |
2336 | /*---------------------------------------------------------------------------- |
2337 | | Returns the result of converting the single-precision floating-point value | |
2338 | | `a' to the 16-bit two's complement integer format. The conversion is | |
2339 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2340 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2341 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2342 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2343 | | returned. | |
2344 | *----------------------------------------------------------------------------*/ | |
2345 | ||
0bb721d7 | 2346 | int16_t float32_to_int16_round_to_zero(float32 a, float_status *status) |
cbcef455 PM |
2347 | { |
2348 | flag aSign; | |
0c48262d | 2349 | int aExp; |
07d792d2 | 2350 | int shiftCount; |
bb98fe42 | 2351 | uint32_t aSig; |
f4014512 | 2352 | int32_t z; |
cbcef455 PM |
2353 | |
2354 | aSig = extractFloat32Frac( a ); | |
2355 | aExp = extractFloat32Exp( a ); | |
2356 | aSign = extractFloat32Sign( a ); | |
2357 | shiftCount = aExp - 0x8E; | |
2358 | if ( 0 <= shiftCount ) { | |
2359 | if ( float32_val(a) != 0xC7000000 ) { | |
ff32e16e | 2360 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
2361 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
2362 | return 0x7FFF; | |
2363 | } | |
2364 | } | |
bb98fe42 | 2365 | return (int32_t) 0xffff8000; |
cbcef455 PM |
2366 | } |
2367 | else if ( aExp <= 0x7E ) { | |
2368 | if ( aExp | aSig ) { | |
a2f2d288 | 2369 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
2370 | } |
2371 | return 0; | |
2372 | } | |
2373 | shiftCount -= 0x10; | |
2374 | aSig = ( aSig | 0x00800000 )<<8; | |
2375 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 2376 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
a2f2d288 | 2377 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
2378 | } |
2379 | if ( aSign ) { | |
2380 | z = - z; | |
2381 | } | |
2382 | return z; | |
2383 | ||
2384 | } | |
2385 | ||
158142c2 FB |
2386 | /*---------------------------------------------------------------------------- |
2387 | | Returns the result of converting the single-precision floating-point value | |
2388 | | `a' to the 64-bit two's complement integer format. The conversion is | |
2389 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2390 | | Arithmetic---which means in particular that the conversion is rounded | |
2391 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2392 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2393 | | largest integer with the same sign as `a' is returned. | |
2394 | *----------------------------------------------------------------------------*/ | |
2395 | ||
f42c2224 | 2396 | int64_t float32_to_int64(float32 a, float_status *status) |
158142c2 FB |
2397 | { |
2398 | flag aSign; | |
0c48262d | 2399 | int aExp; |
07d792d2 | 2400 | int shiftCount; |
bb98fe42 AF |
2401 | uint32_t aSig; |
2402 | uint64_t aSig64, aSigExtra; | |
ff32e16e | 2403 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2404 | |
2405 | aSig = extractFloat32Frac( a ); | |
2406 | aExp = extractFloat32Exp( a ); | |
2407 | aSign = extractFloat32Sign( a ); | |
2408 | shiftCount = 0xBE - aExp; | |
2409 | if ( shiftCount < 0 ) { | |
ff32e16e | 2410 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2411 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
2412 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
2413 | } | |
bb98fe42 | 2414 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
2415 | } |
2416 | if ( aExp ) aSig |= 0x00800000; | |
2417 | aSig64 = aSig; | |
2418 | aSig64 <<= 40; | |
2419 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
ff32e16e | 2420 | return roundAndPackInt64(aSign, aSig64, aSigExtra, status); |
158142c2 FB |
2421 | |
2422 | } | |
2423 | ||
2f18bbf9 TM |
2424 | /*---------------------------------------------------------------------------- |
2425 | | Returns the result of converting the single-precision floating-point value | |
2426 | | `a' to the 64-bit unsigned integer format. The conversion is | |
2427 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2428 | | Arithmetic---which means in particular that the conversion is rounded | |
2429 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2430 | | unsigned integer is returned. Otherwise, if the conversion overflows, the | |
2431 | | largest unsigned integer is returned. If the 'a' is negative, the result | |
2432 | | is rounded and zero is returned; values that do not round to zero will | |
2433 | | raise the inexact exception flag. | |
2434 | *----------------------------------------------------------------------------*/ | |
2435 | ||
182f42fd | 2436 | uint64_t float32_to_uint64(float32 a, float_status *status) |
2f18bbf9 TM |
2437 | { |
2438 | flag aSign; | |
0c48262d | 2439 | int aExp; |
07d792d2 | 2440 | int shiftCount; |
2f18bbf9 TM |
2441 | uint32_t aSig; |
2442 | uint64_t aSig64, aSigExtra; | |
ff32e16e | 2443 | a = float32_squash_input_denormal(a, status); |
2f18bbf9 TM |
2444 | |
2445 | aSig = extractFloat32Frac(a); | |
2446 | aExp = extractFloat32Exp(a); | |
2447 | aSign = extractFloat32Sign(a); | |
2448 | if ((aSign) && (aExp > 126)) { | |
ff32e16e | 2449 | float_raise(float_flag_invalid, status); |
2f18bbf9 TM |
2450 | if (float32_is_any_nan(a)) { |
2451 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
2452 | } else { | |
2453 | return 0; | |
2454 | } | |
2455 | } | |
2456 | shiftCount = 0xBE - aExp; | |
2457 | if (aExp) { | |
2458 | aSig |= 0x00800000; | |
2459 | } | |
2460 | if (shiftCount < 0) { | |
ff32e16e | 2461 | float_raise(float_flag_invalid, status); |
2f18bbf9 TM |
2462 | return LIT64(0xFFFFFFFFFFFFFFFF); |
2463 | } | |
2464 | ||
2465 | aSig64 = aSig; | |
2466 | aSig64 <<= 40; | |
2467 | shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra); | |
ff32e16e | 2468 | return roundAndPackUint64(aSign, aSig64, aSigExtra, status); |
2f18bbf9 TM |
2469 | } |
2470 | ||
a13d4489 TM |
2471 | /*---------------------------------------------------------------------------- |
2472 | | Returns the result of converting the single-precision floating-point value | |
2473 | | `a' to the 64-bit unsigned integer format. The conversion is | |
2474 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2475 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
2476 | | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the | |
2477 | | conversion overflows, the largest unsigned integer is returned. If the | |
2478 | | 'a' is negative, the result is rounded and zero is returned; values that do | |
2479 | | not round to zero will raise the inexact flag. | |
2480 | *----------------------------------------------------------------------------*/ | |
2481 | ||
182f42fd | 2482 | uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status) |
a13d4489 | 2483 | { |
a2f2d288 | 2484 | signed char current_rounding_mode = status->float_rounding_mode; |
ff32e16e PM |
2485 | set_float_rounding_mode(float_round_to_zero, status); |
2486 | int64_t v = float32_to_uint64(a, status); | |
2487 | set_float_rounding_mode(current_rounding_mode, status); | |
a13d4489 TM |
2488 | return v; |
2489 | } | |
2490 | ||
158142c2 FB |
2491 | /*---------------------------------------------------------------------------- |
2492 | | Returns the result of converting the single-precision floating-point value | |
2493 | | `a' to the 64-bit two's complement integer format. The conversion is | |
2494 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2495 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
2496 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
2497 | | conversion overflows, the largest integer with the same sign as `a' is | |
2498 | | returned. | |
2499 | *----------------------------------------------------------------------------*/ | |
2500 | ||
f42c2224 | 2501 | int64_t float32_to_int64_round_to_zero(float32 a, float_status *status) |
158142c2 FB |
2502 | { |
2503 | flag aSign; | |
0c48262d | 2504 | int aExp; |
07d792d2 | 2505 | int shiftCount; |
bb98fe42 AF |
2506 | uint32_t aSig; |
2507 | uint64_t aSig64; | |
f42c2224 | 2508 | int64_t z; |
ff32e16e | 2509 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2510 | |
2511 | aSig = extractFloat32Frac( a ); | |
2512 | aExp = extractFloat32Exp( a ); | |
2513 | aSign = extractFloat32Sign( a ); | |
2514 | shiftCount = aExp - 0xBE; | |
2515 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 2516 | if ( float32_val(a) != 0xDF000000 ) { |
ff32e16e | 2517 | float_raise(float_flag_invalid, status); |
158142c2 FB |
2518 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { |
2519 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
2520 | } | |
2521 | } | |
bb98fe42 | 2522 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
2523 | } |
2524 | else if ( aExp <= 0x7E ) { | |
a2f2d288 PM |
2525 | if (aExp | aSig) { |
2526 | status->float_exception_flags |= float_flag_inexact; | |
2527 | } | |
158142c2 FB |
2528 | return 0; |
2529 | } | |
2530 | aSig64 = aSig | 0x00800000; | |
2531 | aSig64 <<= 40; | |
2532 | z = aSig64>>( - shiftCount ); | |
bb98fe42 | 2533 | if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 2534 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
2535 | } |
2536 | if ( aSign ) z = - z; | |
2537 | return z; | |
2538 | ||
2539 | } | |
2540 | ||
2541 | /*---------------------------------------------------------------------------- | |
2542 | | Returns the result of converting the single-precision floating-point value | |
2543 | | `a' to the double-precision floating-point format. The conversion is | |
2544 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2545 | | Arithmetic. | |
2546 | *----------------------------------------------------------------------------*/ | |
2547 | ||
e5a41ffa | 2548 | float64 float32_to_float64(float32 a, float_status *status) |
158142c2 FB |
2549 | { |
2550 | flag aSign; | |
0c48262d | 2551 | int aExp; |
bb98fe42 | 2552 | uint32_t aSig; |
ff32e16e | 2553 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2554 | |
2555 | aSig = extractFloat32Frac( a ); | |
2556 | aExp = extractFloat32Exp( a ); | |
2557 | aSign = extractFloat32Sign( a ); | |
2558 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2559 | if (aSig) { |
2560 | return commonNaNToFloat64(float32ToCommonNaN(a, status), status); | |
2561 | } | |
158142c2 FB |
2562 | return packFloat64( aSign, 0x7FF, 0 ); |
2563 | } | |
2564 | if ( aExp == 0 ) { | |
2565 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
2566 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2567 | --aExp; | |
2568 | } | |
bb98fe42 | 2569 | return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); |
158142c2 FB |
2570 | |
2571 | } | |
2572 | ||
158142c2 FB |
2573 | /*---------------------------------------------------------------------------- |
2574 | | Returns the result of converting the single-precision floating-point value | |
2575 | | `a' to the extended double-precision floating-point format. The conversion | |
2576 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2577 | | Arithmetic. | |
2578 | *----------------------------------------------------------------------------*/ | |
2579 | ||
e5a41ffa | 2580 | floatx80 float32_to_floatx80(float32 a, float_status *status) |
158142c2 FB |
2581 | { |
2582 | flag aSign; | |
0c48262d | 2583 | int aExp; |
bb98fe42 | 2584 | uint32_t aSig; |
158142c2 | 2585 | |
ff32e16e | 2586 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2587 | aSig = extractFloat32Frac( a ); |
2588 | aExp = extractFloat32Exp( a ); | |
2589 | aSign = extractFloat32Sign( a ); | |
2590 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2591 | if (aSig) { |
2592 | return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); | |
2593 | } | |
158142c2 FB |
2594 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
2595 | } | |
2596 | if ( aExp == 0 ) { | |
2597 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
2598 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2599 | } | |
2600 | aSig |= 0x00800000; | |
bb98fe42 | 2601 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
2602 | |
2603 | } | |
2604 | ||
158142c2 FB |
2605 | /*---------------------------------------------------------------------------- |
2606 | | Returns the result of converting the single-precision floating-point value | |
2607 | | `a' to the double-precision floating-point format. The conversion is | |
2608 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2609 | | Arithmetic. | |
2610 | *----------------------------------------------------------------------------*/ | |
2611 | ||
e5a41ffa | 2612 | float128 float32_to_float128(float32 a, float_status *status) |
158142c2 FB |
2613 | { |
2614 | flag aSign; | |
0c48262d | 2615 | int aExp; |
bb98fe42 | 2616 | uint32_t aSig; |
158142c2 | 2617 | |
ff32e16e | 2618 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2619 | aSig = extractFloat32Frac( a ); |
2620 | aExp = extractFloat32Exp( a ); | |
2621 | aSign = extractFloat32Sign( a ); | |
2622 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
2623 | if (aSig) { |
2624 | return commonNaNToFloat128(float32ToCommonNaN(a, status), status); | |
2625 | } | |
158142c2 FB |
2626 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
2627 | } | |
2628 | if ( aExp == 0 ) { | |
2629 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
2630 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2631 | --aExp; | |
2632 | } | |
bb98fe42 | 2633 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
2634 | |
2635 | } | |
2636 | ||
158142c2 FB |
2637 | /*---------------------------------------------------------------------------- |
2638 | | Rounds the single-precision floating-point value `a' to an integer, and | |
2639 | | returns the result as a single-precision floating-point value. The | |
2640 | | operation is performed according to the IEC/IEEE Standard for Binary | |
2641 | | Floating-Point Arithmetic. | |
2642 | *----------------------------------------------------------------------------*/ | |
2643 | ||
e5a41ffa | 2644 | float32 float32_round_to_int(float32 a, float_status *status) |
158142c2 FB |
2645 | { |
2646 | flag aSign; | |
0c48262d | 2647 | int aExp; |
bb98fe42 | 2648 | uint32_t lastBitMask, roundBitsMask; |
bb98fe42 | 2649 | uint32_t z; |
ff32e16e | 2650 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
2651 | |
2652 | aExp = extractFloat32Exp( a ); | |
2653 | if ( 0x96 <= aExp ) { | |
2654 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
ff32e16e | 2655 | return propagateFloat32NaN(a, a, status); |
158142c2 FB |
2656 | } |
2657 | return a; | |
2658 | } | |
2659 | if ( aExp <= 0x7E ) { | |
bb98fe42 | 2660 | if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; |
a2f2d288 | 2661 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 2662 | aSign = extractFloat32Sign( a ); |
a2f2d288 | 2663 | switch (status->float_rounding_mode) { |
158142c2 FB |
2664 | case float_round_nearest_even: |
2665 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
2666 | return packFloat32( aSign, 0x7F, 0 ); | |
2667 | } | |
2668 | break; | |
f9288a76 PM |
2669 | case float_round_ties_away: |
2670 | if (aExp == 0x7E) { | |
2671 | return packFloat32(aSign, 0x7F, 0); | |
2672 | } | |
2673 | break; | |
158142c2 | 2674 | case float_round_down: |
f090c9d4 | 2675 | return make_float32(aSign ? 0xBF800000 : 0); |
158142c2 | 2676 | case float_round_up: |
f090c9d4 | 2677 | return make_float32(aSign ? 0x80000000 : 0x3F800000); |
158142c2 FB |
2678 | } |
2679 | return packFloat32( aSign, 0, 0 ); | |
2680 | } | |
2681 | lastBitMask = 1; | |
2682 | lastBitMask <<= 0x96 - aExp; | |
2683 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 2684 | z = float32_val(a); |
a2f2d288 | 2685 | switch (status->float_rounding_mode) { |
dc355b76 | 2686 | case float_round_nearest_even: |
158142c2 | 2687 | z += lastBitMask>>1; |
dc355b76 PM |
2688 | if ((z & roundBitsMask) == 0) { |
2689 | z &= ~lastBitMask; | |
2690 | } | |
2691 | break; | |
f9288a76 PM |
2692 | case float_round_ties_away: |
2693 | z += lastBitMask >> 1; | |
2694 | break; | |
dc355b76 PM |
2695 | case float_round_to_zero: |
2696 | break; | |
2697 | case float_round_up: | |
2698 | if (!extractFloat32Sign(make_float32(z))) { | |
2699 | z += roundBitsMask; | |
2700 | } | |
2701 | break; | |
2702 | case float_round_down: | |
2703 | if (extractFloat32Sign(make_float32(z))) { | |
158142c2 FB |
2704 | z += roundBitsMask; |
2705 | } | |
dc355b76 PM |
2706 | break; |
2707 | default: | |
2708 | abort(); | |
158142c2 FB |
2709 | } |
2710 | z &= ~ roundBitsMask; | |
a2f2d288 PM |
2711 | if (z != float32_val(a)) { |
2712 | status->float_exception_flags |= float_flag_inexact; | |
2713 | } | |
f090c9d4 | 2714 | return make_float32(z); |
158142c2 FB |
2715 | |
2716 | } | |
2717 | ||
158142c2 FB |
2718 | /*---------------------------------------------------------------------------- |
2719 | | Returns the remainder of the single-precision floating-point value `a' | |
2720 | | with respect to the corresponding value `b'. The operation is performed | |
2721 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2722 | *----------------------------------------------------------------------------*/ | |
2723 | ||
e5a41ffa | 2724 | float32 float32_rem(float32 a, float32 b, float_status *status) |
158142c2 | 2725 | { |
ed086f3d | 2726 | flag aSign, zSign; |
0c48262d | 2727 | int aExp, bExp, expDiff; |
bb98fe42 AF |
2728 | uint32_t aSig, bSig; |
2729 | uint32_t q; | |
2730 | uint64_t aSig64, bSig64, q64; | |
2731 | uint32_t alternateASig; | |
2732 | int32_t sigMean; | |
ff32e16e PM |
2733 | a = float32_squash_input_denormal(a, status); |
2734 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
2735 | |
2736 | aSig = extractFloat32Frac( a ); | |
2737 | aExp = extractFloat32Exp( a ); | |
2738 | aSign = extractFloat32Sign( a ); | |
2739 | bSig = extractFloat32Frac( b ); | |
2740 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
2741 | if ( aExp == 0xFF ) { |
2742 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 2743 | return propagateFloat32NaN(a, b, status); |
158142c2 | 2744 | } |
ff32e16e | 2745 | float_raise(float_flag_invalid, status); |
af39bc8c | 2746 | return float32_default_nan(status); |
158142c2 FB |
2747 | } |
2748 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
2749 | if (bSig) { |
2750 | return propagateFloat32NaN(a, b, status); | |
2751 | } | |
158142c2 FB |
2752 | return a; |
2753 | } | |
2754 | if ( bExp == 0 ) { | |
2755 | if ( bSig == 0 ) { | |
ff32e16e | 2756 | float_raise(float_flag_invalid, status); |
af39bc8c | 2757 | return float32_default_nan(status); |
158142c2 FB |
2758 | } |
2759 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2760 | } | |
2761 | if ( aExp == 0 ) { | |
2762 | if ( aSig == 0 ) return a; | |
2763 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2764 | } | |
2765 | expDiff = aExp - bExp; | |
2766 | aSig |= 0x00800000; | |
2767 | bSig |= 0x00800000; | |
2768 | if ( expDiff < 32 ) { | |
2769 | aSig <<= 8; | |
2770 | bSig <<= 8; | |
2771 | if ( expDiff < 0 ) { | |
2772 | if ( expDiff < -1 ) return a; | |
2773 | aSig >>= 1; | |
2774 | } | |
2775 | q = ( bSig <= aSig ); | |
2776 | if ( q ) aSig -= bSig; | |
2777 | if ( 0 < expDiff ) { | |
bb98fe42 | 2778 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
2779 | q >>= 32 - expDiff; |
2780 | bSig >>= 2; | |
2781 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
2782 | } | |
2783 | else { | |
2784 | aSig >>= 2; | |
2785 | bSig >>= 2; | |
2786 | } | |
2787 | } | |
2788 | else { | |
2789 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
2790 | aSig64 = ( (uint64_t) aSig )<<40; |
2791 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
2792 | expDiff -= 64; |
2793 | while ( 0 < expDiff ) { | |
2794 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2795 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2796 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
2797 | expDiff -= 62; | |
2798 | } | |
2799 | expDiff += 64; | |
2800 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2801 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2802 | q = q64>>( 64 - expDiff ); | |
2803 | bSig <<= 6; | |
2804 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
2805 | } | |
2806 | do { | |
2807 | alternateASig = aSig; | |
2808 | ++q; | |
2809 | aSig -= bSig; | |
bb98fe42 | 2810 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
2811 | sigMean = aSig + alternateASig; |
2812 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
2813 | aSig = alternateASig; | |
2814 | } | |
bb98fe42 | 2815 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 | 2816 | if ( zSign ) aSig = - aSig; |
ff32e16e | 2817 | return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
2818 | } |
2819 | ||
369be8f6 PM |
2820 | /*---------------------------------------------------------------------------- |
2821 | | Returns the result of multiplying the single-precision floating-point values | |
2822 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
2823 | | multiplication. The operation is performed according to the IEC/IEEE | |
2824 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
2825 | | The flags argument allows the caller to select negation of the | |
2826 | | addend, the intermediate product, or the final result. (The difference | |
2827 | | between this and having the caller do a separate negation is that negating | |
2828 | | externally will flip the sign bit on NaNs.) | |
2829 | *----------------------------------------------------------------------------*/ | |
2830 | ||
e5a41ffa PM |
2831 | float32 float32_muladd(float32 a, float32 b, float32 c, int flags, |
2832 | float_status *status) | |
369be8f6 PM |
2833 | { |
2834 | flag aSign, bSign, cSign, zSign; | |
0c48262d | 2835 | int aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
2836 | uint32_t aSig, bSig, cSig; |
2837 | flag pInf, pZero, pSign; | |
2838 | uint64_t pSig64, cSig64, zSig64; | |
2839 | uint32_t pSig; | |
2840 | int shiftcount; | |
2841 | flag signflip, infzero; | |
2842 | ||
ff32e16e PM |
2843 | a = float32_squash_input_denormal(a, status); |
2844 | b = float32_squash_input_denormal(b, status); | |
2845 | c = float32_squash_input_denormal(c, status); | |
369be8f6 PM |
2846 | aSig = extractFloat32Frac(a); |
2847 | aExp = extractFloat32Exp(a); | |
2848 | aSign = extractFloat32Sign(a); | |
2849 | bSig = extractFloat32Frac(b); | |
2850 | bExp = extractFloat32Exp(b); | |
2851 | bSign = extractFloat32Sign(b); | |
2852 | cSig = extractFloat32Frac(c); | |
2853 | cExp = extractFloat32Exp(c); | |
2854 | cSign = extractFloat32Sign(c); | |
2855 | ||
2856 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || | |
2857 | (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); | |
2858 | ||
2859 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
2860 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
2861 | * they return if they do), so we have to hand this information | |
2862 | * off to the target-specific pick-a-NaN routine. | |
2863 | */ | |
2864 | if (((aExp == 0xff) && aSig) || | |
2865 | ((bExp == 0xff) && bSig) || | |
2866 | ((cExp == 0xff) && cSig)) { | |
ff32e16e | 2867 | return propagateFloat32MulAddNaN(a, b, c, infzero, status); |
369be8f6 PM |
2868 | } |
2869 | ||
2870 | if (infzero) { | |
ff32e16e | 2871 | float_raise(float_flag_invalid, status); |
af39bc8c | 2872 | return float32_default_nan(status); |
369be8f6 PM |
2873 | } |
2874 | ||
2875 | if (flags & float_muladd_negate_c) { | |
2876 | cSign ^= 1; | |
2877 | } | |
2878 | ||
2879 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
2880 | ||
2881 | /* Work out the sign and type of the product */ | |
2882 | pSign = aSign ^ bSign; | |
2883 | if (flags & float_muladd_negate_product) { | |
2884 | pSign ^= 1; | |
2885 | } | |
2886 | pInf = (aExp == 0xff) || (bExp == 0xff); | |
2887 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
2888 | ||
2889 | if (cExp == 0xff) { | |
2890 | if (pInf && (pSign ^ cSign)) { | |
2891 | /* addition of opposite-signed infinities => InvalidOperation */ | |
ff32e16e | 2892 | float_raise(float_flag_invalid, status); |
af39bc8c | 2893 | return float32_default_nan(status); |
369be8f6 PM |
2894 | } |
2895 | /* Otherwise generate an infinity of the same sign */ | |
2896 | return packFloat32(cSign ^ signflip, 0xff, 0); | |
2897 | } | |
2898 | ||
2899 | if (pInf) { | |
2900 | return packFloat32(pSign ^ signflip, 0xff, 0); | |
2901 | } | |
2902 | ||
2903 | if (pZero) { | |
2904 | if (cExp == 0) { | |
2905 | if (cSig == 0) { | |
2906 | /* Adding two exact zeroes */ | |
2907 | if (pSign == cSign) { | |
2908 | zSign = pSign; | |
a2f2d288 | 2909 | } else if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
2910 | zSign = 1; |
2911 | } else { | |
2912 | zSign = 0; | |
2913 | } | |
2914 | return packFloat32(zSign ^ signflip, 0, 0); | |
2915 | } | |
2916 | /* Exact zero plus a denorm */ | |
a2f2d288 | 2917 | if (status->flush_to_zero) { |
ff32e16e | 2918 | float_raise(float_flag_output_denormal, status); |
369be8f6 PM |
2919 | return packFloat32(cSign ^ signflip, 0, 0); |
2920 | } | |
2921 | } | |
2922 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
2923 | if (flags & float_muladd_halve_result) { |
2924 | if (cExp == 0) { | |
2925 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2926 | } | |
2927 | /* Subtract one to halve, and one again because roundAndPackFloat32 | |
2928 | * wants one less than the true exponent. | |
2929 | */ | |
2930 | cExp -= 2; | |
2931 | cSig = (cSig | 0x00800000) << 7; | |
ff32e16e | 2932 | return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status); |
67d43538 | 2933 | } |
a6e7c184 | 2934 | return packFloat32(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
2935 | } |
2936 | ||
2937 | if (aExp == 0) { | |
2938 | normalizeFloat32Subnormal(aSig, &aExp, &aSig); | |
2939 | } | |
2940 | if (bExp == 0) { | |
2941 | normalizeFloat32Subnormal(bSig, &bExp, &bSig); | |
2942 | } | |
2943 | ||
2944 | /* Calculate the actual result a * b + c */ | |
2945 | ||
2946 | /* Multiply first; this is easy. */ | |
2947 | /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f | |
2948 | * because we want the true exponent, not the "one-less-than" | |
2949 | * flavour that roundAndPackFloat32() takes. | |
2950 | */ | |
2951 | pExp = aExp + bExp - 0x7e; | |
2952 | aSig = (aSig | 0x00800000) << 7; | |
2953 | bSig = (bSig | 0x00800000) << 8; | |
2954 | pSig64 = (uint64_t)aSig * bSig; | |
2955 | if ((int64_t)(pSig64 << 1) >= 0) { | |
2956 | pSig64 <<= 1; | |
2957 | pExp--; | |
2958 | } | |
2959 | ||
2960 | zSign = pSign ^ signflip; | |
2961 | ||
2962 | /* Now pSig64 is the significand of the multiply, with the explicit bit in | |
2963 | * position 62. | |
2964 | */ | |
2965 | if (cExp == 0) { | |
2966 | if (!cSig) { | |
2967 | /* Throw out the special case of c being an exact zero now */ | |
2968 | shift64RightJamming(pSig64, 32, &pSig64); | |
2969 | pSig = pSig64; | |
67d43538 PM |
2970 | if (flags & float_muladd_halve_result) { |
2971 | pExp--; | |
2972 | } | |
369be8f6 | 2973 | return roundAndPackFloat32(zSign, pExp - 1, |
ff32e16e | 2974 | pSig, status); |
369be8f6 PM |
2975 | } |
2976 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2977 | } | |
2978 | ||
2979 | cSig64 = (uint64_t)cSig << (62 - 23); | |
2980 | cSig64 |= LIT64(0x4000000000000000); | |
2981 | expDiff = pExp - cExp; | |
2982 | ||
2983 | if (pSign == cSign) { | |
2984 | /* Addition */ | |
2985 | if (expDiff > 0) { | |
2986 | /* scale c to match p */ | |
2987 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2988 | zExp = pExp; | |
2989 | } else if (expDiff < 0) { | |
2990 | /* scale p to match c */ | |
2991 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2992 | zExp = cExp; | |
2993 | } else { | |
2994 | /* no scaling needed */ | |
2995 | zExp = cExp; | |
2996 | } | |
2997 | /* Add significands and make sure explicit bit ends up in posn 62 */ | |
2998 | zSig64 = pSig64 + cSig64; | |
2999 | if ((int64_t)zSig64 < 0) { | |
3000 | shift64RightJamming(zSig64, 1, &zSig64); | |
3001 | } else { | |
3002 | zExp--; | |
3003 | } | |
3004 | } else { | |
3005 | /* Subtraction */ | |
3006 | if (expDiff > 0) { | |
3007 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
3008 | zSig64 = pSig64 - cSig64; | |
3009 | zExp = pExp; | |
3010 | } else if (expDiff < 0) { | |
3011 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
3012 | zSig64 = cSig64 - pSig64; | |
3013 | zExp = cExp; | |
3014 | zSign ^= 1; | |
3015 | } else { | |
3016 | zExp = pExp; | |
3017 | if (cSig64 < pSig64) { | |
3018 | zSig64 = pSig64 - cSig64; | |
3019 | } else if (pSig64 < cSig64) { | |
3020 | zSig64 = cSig64 - pSig64; | |
3021 | zSign ^= 1; | |
3022 | } else { | |
3023 | /* Exact zero */ | |
3024 | zSign = signflip; | |
a2f2d288 | 3025 | if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
3026 | zSign ^= 1; |
3027 | } | |
3028 | return packFloat32(zSign, 0, 0); | |
3029 | } | |
3030 | } | |
3031 | --zExp; | |
3032 | /* Normalize to put the explicit bit back into bit 62. */ | |
3033 | shiftcount = countLeadingZeros64(zSig64) - 1; | |
3034 | zSig64 <<= shiftcount; | |
3035 | zExp -= shiftcount; | |
3036 | } | |
67d43538 PM |
3037 | if (flags & float_muladd_halve_result) { |
3038 | zExp--; | |
3039 | } | |
3040 | ||
369be8f6 | 3041 | shift64RightJamming(zSig64, 32, &zSig64); |
ff32e16e | 3042 | return roundAndPackFloat32(zSign, zExp, zSig64, status); |
369be8f6 PM |
3043 | } |
3044 | ||
3045 | ||
158142c2 FB |
3046 | /*---------------------------------------------------------------------------- |
3047 | | Returns the square root of the single-precision floating-point value `a'. | |
3048 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3049 | | Floating-Point Arithmetic. | |
3050 | *----------------------------------------------------------------------------*/ | |
3051 | ||
e5a41ffa | 3052 | float32 float32_sqrt(float32 a, float_status *status) |
158142c2 FB |
3053 | { |
3054 | flag aSign; | |
0c48262d | 3055 | int aExp, zExp; |
bb98fe42 AF |
3056 | uint32_t aSig, zSig; |
3057 | uint64_t rem, term; | |
ff32e16e | 3058 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
3059 | |
3060 | aSig = extractFloat32Frac( a ); | |
3061 | aExp = extractFloat32Exp( a ); | |
3062 | aSign = extractFloat32Sign( a ); | |
3063 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
3064 | if (aSig) { |
3065 | return propagateFloat32NaN(a, float32_zero, status); | |
3066 | } | |
158142c2 | 3067 | if ( ! aSign ) return a; |
ff32e16e | 3068 | float_raise(float_flag_invalid, status); |
af39bc8c | 3069 | return float32_default_nan(status); |
158142c2 FB |
3070 | } |
3071 | if ( aSign ) { | |
3072 | if ( ( aExp | aSig ) == 0 ) return a; | |
ff32e16e | 3073 | float_raise(float_flag_invalid, status); |
af39bc8c | 3074 | return float32_default_nan(status); |
158142c2 FB |
3075 | } |
3076 | if ( aExp == 0 ) { | |
f090c9d4 | 3077 | if ( aSig == 0 ) return float32_zero; |
158142c2 FB |
3078 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
3079 | } | |
3080 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
3081 | aSig = ( aSig | 0x00800000 )<<8; | |
3082 | zSig = estimateSqrt32( aExp, aSig ) + 2; | |
3083 | if ( ( zSig & 0x7F ) <= 5 ) { | |
3084 | if ( zSig < 2 ) { | |
3085 | zSig = 0x7FFFFFFF; | |
3086 | goto roundAndPack; | |
3087 | } | |
3088 | aSig >>= aExp & 1; | |
bb98fe42 AF |
3089 | term = ( (uint64_t) zSig ) * zSig; |
3090 | rem = ( ( (uint64_t) aSig )<<32 ) - term; | |
3091 | while ( (int64_t) rem < 0 ) { | |
158142c2 | 3092 | --zSig; |
bb98fe42 | 3093 | rem += ( ( (uint64_t) zSig )<<1 ) | 1; |
158142c2 FB |
3094 | } |
3095 | zSig |= ( rem != 0 ); | |
3096 | } | |
3097 | shift32RightJamming( zSig, 1, &zSig ); | |
3098 | roundAndPack: | |
ff32e16e | 3099 | return roundAndPackFloat32(0, zExp, zSig, status); |
158142c2 FB |
3100 | |
3101 | } | |
3102 | ||
8229c991 AJ |
3103 | /*---------------------------------------------------------------------------- |
3104 | | Returns the binary exponential of the single-precision floating-point value | |
3105 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
3106 | | Binary Floating-Point Arithmetic. | |
3107 | | | |
3108 | | Uses the following identities: | |
3109 | | | |
3110 | | 1. ------------------------------------------------------------------------- | |
3111 | | x x*ln(2) | |
3112 | | 2 = e | |
3113 | | | |
3114 | | 2. ------------------------------------------------------------------------- | |
3115 | | 2 3 4 5 n | |
3116 | | x x x x x x x | |
3117 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
3118 | | 1! 2! 3! 4! 5! n! | |
3119 | *----------------------------------------------------------------------------*/ | |
3120 | ||
3121 | static const float64 float32_exp2_coefficients[15] = | |
3122 | { | |
d5138cf4 PM |
3123 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
3124 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
3125 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
3126 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
3127 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
3128 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
3129 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
3130 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
3131 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
3132 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
3133 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
3134 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
3135 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
3136 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
3137 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
3138 | }; |
3139 | ||
e5a41ffa | 3140 | float32 float32_exp2(float32 a, float_status *status) |
8229c991 AJ |
3141 | { |
3142 | flag aSign; | |
0c48262d | 3143 | int aExp; |
bb98fe42 | 3144 | uint32_t aSig; |
8229c991 AJ |
3145 | float64 r, x, xn; |
3146 | int i; | |
ff32e16e | 3147 | a = float32_squash_input_denormal(a, status); |
8229c991 AJ |
3148 | |
3149 | aSig = extractFloat32Frac( a ); | |
3150 | aExp = extractFloat32Exp( a ); | |
3151 | aSign = extractFloat32Sign( a ); | |
3152 | ||
3153 | if ( aExp == 0xFF) { | |
ff32e16e PM |
3154 | if (aSig) { |
3155 | return propagateFloat32NaN(a, float32_zero, status); | |
3156 | } | |
8229c991 AJ |
3157 | return (aSign) ? float32_zero : a; |
3158 | } | |
3159 | if (aExp == 0) { | |
3160 | if (aSig == 0) return float32_one; | |
3161 | } | |
3162 | ||
ff32e16e | 3163 | float_raise(float_flag_inexact, status); |
8229c991 AJ |
3164 | |
3165 | /* ******************************* */ | |
3166 | /* using float64 for approximation */ | |
3167 | /* ******************************* */ | |
ff32e16e PM |
3168 | x = float32_to_float64(a, status); |
3169 | x = float64_mul(x, float64_ln2, status); | |
8229c991 AJ |
3170 | |
3171 | xn = x; | |
3172 | r = float64_one; | |
3173 | for (i = 0 ; i < 15 ; i++) { | |
3174 | float64 f; | |
3175 | ||
ff32e16e PM |
3176 | f = float64_mul(xn, float32_exp2_coefficients[i], status); |
3177 | r = float64_add(r, f, status); | |
8229c991 | 3178 | |
ff32e16e | 3179 | xn = float64_mul(xn, x, status); |
8229c991 AJ |
3180 | } |
3181 | ||
3182 | return float64_to_float32(r, status); | |
3183 | } | |
3184 | ||
374dfc33 AJ |
3185 | /*---------------------------------------------------------------------------- |
3186 | | Returns the binary log of the single-precision floating-point value `a'. | |
3187 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3188 | | Floating-Point Arithmetic. | |
3189 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 3190 | float32 float32_log2(float32 a, float_status *status) |
374dfc33 AJ |
3191 | { |
3192 | flag aSign, zSign; | |
0c48262d | 3193 | int aExp; |
bb98fe42 | 3194 | uint32_t aSig, zSig, i; |
374dfc33 | 3195 | |
ff32e16e | 3196 | a = float32_squash_input_denormal(a, status); |
374dfc33 AJ |
3197 | aSig = extractFloat32Frac( a ); |
3198 | aExp = extractFloat32Exp( a ); | |
3199 | aSign = extractFloat32Sign( a ); | |
3200 | ||
3201 | if ( aExp == 0 ) { | |
3202 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
3203 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
3204 | } | |
3205 | if ( aSign ) { | |
ff32e16e | 3206 | float_raise(float_flag_invalid, status); |
af39bc8c | 3207 | return float32_default_nan(status); |
374dfc33 AJ |
3208 | } |
3209 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
3210 | if (aSig) { |
3211 | return propagateFloat32NaN(a, float32_zero, status); | |
3212 | } | |
374dfc33 AJ |
3213 | return a; |
3214 | } | |
3215 | ||
3216 | aExp -= 0x7F; | |
3217 | aSig |= 0x00800000; | |
3218 | zSign = aExp < 0; | |
3219 | zSig = aExp << 23; | |
3220 | ||
3221 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 3222 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
3223 | if ( aSig & 0x01000000 ) { |
3224 | aSig >>= 1; | |
3225 | zSig |= i; | |
3226 | } | |
3227 | } | |
3228 | ||
3229 | if ( zSign ) | |
3230 | zSig = -zSig; | |
3231 | ||
ff32e16e | 3232 | return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); |
374dfc33 AJ |
3233 | } |
3234 | ||
158142c2 FB |
3235 | /*---------------------------------------------------------------------------- |
3236 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
3237 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
3238 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
3239 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
3240 | *----------------------------------------------------------------------------*/ | |
3241 | ||
e5a41ffa | 3242 | int float32_eq(float32 a, float32 b, float_status *status) |
158142c2 | 3243 | { |
b689362d | 3244 | uint32_t av, bv; |
ff32e16e PM |
3245 | a = float32_squash_input_denormal(a, status); |
3246 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3247 | |
3248 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3249 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3250 | ) { | |
ff32e16e | 3251 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3252 | return 0; |
3253 | } | |
b689362d AJ |
3254 | av = float32_val(a); |
3255 | bv = float32_val(b); | |
3256 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
3257 | } |
3258 | ||
3259 | /*---------------------------------------------------------------------------- | |
3260 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
3261 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
3262 | | exception is raised if either operand is a NaN. The comparison is performed | |
3263 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
3264 | *----------------------------------------------------------------------------*/ |
3265 | ||
e5a41ffa | 3266 | int float32_le(float32 a, float32 b, float_status *status) |
158142c2 FB |
3267 | { |
3268 | flag aSign, bSign; | |
bb98fe42 | 3269 | uint32_t av, bv; |
ff32e16e PM |
3270 | a = float32_squash_input_denormal(a, status); |
3271 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3272 | |
3273 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3274 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3275 | ) { | |
ff32e16e | 3276 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3277 | return 0; |
3278 | } | |
3279 | aSign = extractFloat32Sign( a ); | |
3280 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3281 | av = float32_val(a); |
3282 | bv = float32_val(b); | |
bb98fe42 | 3283 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 3284 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3285 | |
3286 | } | |
3287 | ||
3288 | /*---------------------------------------------------------------------------- | |
3289 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
3290 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
3291 | | raised if either operand is a NaN. The comparison is performed according | |
3292 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
3293 | *----------------------------------------------------------------------------*/ |
3294 | ||
e5a41ffa | 3295 | int float32_lt(float32 a, float32 b, float_status *status) |
158142c2 FB |
3296 | { |
3297 | flag aSign, bSign; | |
bb98fe42 | 3298 | uint32_t av, bv; |
ff32e16e PM |
3299 | a = float32_squash_input_denormal(a, status); |
3300 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3301 | |
3302 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3303 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3304 | ) { | |
ff32e16e | 3305 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3306 | return 0; |
3307 | } | |
3308 | aSign = extractFloat32Sign( a ); | |
3309 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3310 | av = float32_val(a); |
3311 | bv = float32_val(b); | |
bb98fe42 | 3312 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 3313 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3314 | |
3315 | } | |
3316 | ||
67b7861d AJ |
3317 | /*---------------------------------------------------------------------------- |
3318 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
3319 | | be compared, and 0 otherwise. The invalid exception is raised if either |
3320 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
3321 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
3322 | *----------------------------------------------------------------------------*/ |
3323 | ||
e5a41ffa | 3324 | int float32_unordered(float32 a, float32 b, float_status *status) |
67b7861d | 3325 | { |
ff32e16e PM |
3326 | a = float32_squash_input_denormal(a, status); |
3327 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
3328 | |
3329 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3330 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3331 | ) { | |
ff32e16e | 3332 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
3333 | return 1; |
3334 | } | |
3335 | return 0; | |
3336 | } | |
b689362d | 3337 | |
158142c2 FB |
3338 | /*---------------------------------------------------------------------------- |
3339 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
3340 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
3341 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
3342 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
3343 | *----------------------------------------------------------------------------*/ |
3344 | ||
e5a41ffa | 3345 | int float32_eq_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 3346 | { |
ff32e16e PM |
3347 | a = float32_squash_input_denormal(a, status); |
3348 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3349 | |
3350 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3351 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3352 | ) { | |
af39bc8c AM |
3353 | if (float32_is_signaling_nan(a, status) |
3354 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3355 | float_raise(float_flag_invalid, status); |
b689362d | 3356 | } |
158142c2 FB |
3357 | return 0; |
3358 | } | |
b689362d AJ |
3359 | return ( float32_val(a) == float32_val(b) ) || |
3360 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
3361 | } |
3362 | ||
3363 | /*---------------------------------------------------------------------------- | |
3364 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
3365 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
3366 | | cause an exception. Otherwise, the comparison is performed according to the | |
3367 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3368 | *----------------------------------------------------------------------------*/ | |
3369 | ||
e5a41ffa | 3370 | int float32_le_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
3371 | { |
3372 | flag aSign, bSign; | |
bb98fe42 | 3373 | uint32_t av, bv; |
ff32e16e PM |
3374 | a = float32_squash_input_denormal(a, status); |
3375 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3376 | |
3377 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3378 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3379 | ) { | |
af39bc8c AM |
3380 | if (float32_is_signaling_nan(a, status) |
3381 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3382 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3383 | } |
3384 | return 0; | |
3385 | } | |
3386 | aSign = extractFloat32Sign( a ); | |
3387 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3388 | av = float32_val(a); |
3389 | bv = float32_val(b); | |
bb98fe42 | 3390 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 3391 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3392 | |
3393 | } | |
3394 | ||
3395 | /*---------------------------------------------------------------------------- | |
3396 | | Returns 1 if the single-precision floating-point value `a' is less than | |
3397 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
3398 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
3399 | | Standard for Binary Floating-Point Arithmetic. | |
3400 | *----------------------------------------------------------------------------*/ | |
3401 | ||
e5a41ffa | 3402 | int float32_lt_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
3403 | { |
3404 | flag aSign, bSign; | |
bb98fe42 | 3405 | uint32_t av, bv; |
ff32e16e PM |
3406 | a = float32_squash_input_denormal(a, status); |
3407 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3408 | |
3409 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3410 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3411 | ) { | |
af39bc8c AM |
3412 | if (float32_is_signaling_nan(a, status) |
3413 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3414 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3415 | } |
3416 | return 0; | |
3417 | } | |
3418 | aSign = extractFloat32Sign( a ); | |
3419 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3420 | av = float32_val(a); |
3421 | bv = float32_val(b); | |
bb98fe42 | 3422 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 3423 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3424 | |
3425 | } | |
3426 | ||
67b7861d AJ |
3427 | /*---------------------------------------------------------------------------- |
3428 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
3429 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
3430 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
3431 | | Floating-Point Arithmetic. | |
3432 | *----------------------------------------------------------------------------*/ | |
3433 | ||
e5a41ffa | 3434 | int float32_unordered_quiet(float32 a, float32 b, float_status *status) |
67b7861d | 3435 | { |
ff32e16e PM |
3436 | a = float32_squash_input_denormal(a, status); |
3437 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
3438 | |
3439 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3440 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3441 | ) { | |
af39bc8c AM |
3442 | if (float32_is_signaling_nan(a, status) |
3443 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3444 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
3445 | } |
3446 | return 1; | |
3447 | } | |
3448 | return 0; | |
3449 | } | |
3450 | ||
158142c2 FB |
3451 | /*---------------------------------------------------------------------------- |
3452 | | Returns the result of converting the double-precision floating-point value | |
3453 | | `a' to the 32-bit two's complement integer format. The conversion is | |
3454 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3455 | | Arithmetic---which means in particular that the conversion is rounded | |
3456 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3457 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3458 | | largest integer with the same sign as `a' is returned. | |
3459 | *----------------------------------------------------------------------------*/ | |
3460 | ||
f4014512 | 3461 | int32_t float64_to_int32(float64 a, float_status *status) |
158142c2 FB |
3462 | { |
3463 | flag aSign; | |
0c48262d | 3464 | int aExp; |
07d792d2 | 3465 | int shiftCount; |
bb98fe42 | 3466 | uint64_t aSig; |
ff32e16e | 3467 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3468 | |
3469 | aSig = extractFloat64Frac( a ); | |
3470 | aExp = extractFloat64Exp( a ); | |
3471 | aSign = extractFloat64Sign( a ); | |
3472 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
3473 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3474 | shiftCount = 0x42C - aExp; | |
3475 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 3476 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
3477 | |
3478 | } | |
3479 | ||
3480 | /*---------------------------------------------------------------------------- | |
3481 | | Returns the result of converting the double-precision floating-point value | |
3482 | | `a' to the 32-bit two's complement integer format. The conversion is | |
3483 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3484 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3485 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3486 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3487 | | returned. | |
3488 | *----------------------------------------------------------------------------*/ | |
3489 | ||
f4014512 | 3490 | int32_t float64_to_int32_round_to_zero(float64 a, float_status *status) |
158142c2 FB |
3491 | { |
3492 | flag aSign; | |
0c48262d | 3493 | int aExp; |
07d792d2 | 3494 | int shiftCount; |
bb98fe42 | 3495 | uint64_t aSig, savedASig; |
b3a6a2e0 | 3496 | int32_t z; |
ff32e16e | 3497 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3498 | |
3499 | aSig = extractFloat64Frac( a ); | |
3500 | aExp = extractFloat64Exp( a ); | |
3501 | aSign = extractFloat64Sign( a ); | |
3502 | if ( 0x41E < aExp ) { | |
3503 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
3504 | goto invalid; | |
3505 | } | |
3506 | else if ( aExp < 0x3FF ) { | |
a2f2d288 PM |
3507 | if (aExp || aSig) { |
3508 | status->float_exception_flags |= float_flag_inexact; | |
3509 | } | |
158142c2 FB |
3510 | return 0; |
3511 | } | |
3512 | aSig |= LIT64( 0x0010000000000000 ); | |
3513 | shiftCount = 0x433 - aExp; | |
3514 | savedASig = aSig; | |
3515 | aSig >>= shiftCount; | |
3516 | z = aSig; | |
3517 | if ( aSign ) z = - z; | |
3518 | if ( ( z < 0 ) ^ aSign ) { | |
3519 | invalid: | |
ff32e16e | 3520 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3521 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
3522 | } |
3523 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 3524 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
3525 | } |
3526 | return z; | |
3527 | ||
3528 | } | |
3529 | ||
cbcef455 PM |
3530 | /*---------------------------------------------------------------------------- |
3531 | | Returns the result of converting the double-precision floating-point value | |
3532 | | `a' to the 16-bit two's complement integer format. The conversion is | |
3533 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3534 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3535 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3536 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3537 | | returned. | |
3538 | *----------------------------------------------------------------------------*/ | |
3539 | ||
0bb721d7 | 3540 | int16_t float64_to_int16_round_to_zero(float64 a, float_status *status) |
cbcef455 PM |
3541 | { |
3542 | flag aSign; | |
0c48262d | 3543 | int aExp; |
07d792d2 | 3544 | int shiftCount; |
bb98fe42 | 3545 | uint64_t aSig, savedASig; |
f4014512 | 3546 | int32_t z; |
cbcef455 PM |
3547 | |
3548 | aSig = extractFloat64Frac( a ); | |
3549 | aExp = extractFloat64Exp( a ); | |
3550 | aSign = extractFloat64Sign( a ); | |
3551 | if ( 0x40E < aExp ) { | |
3552 | if ( ( aExp == 0x7FF ) && aSig ) { | |
3553 | aSign = 0; | |
3554 | } | |
3555 | goto invalid; | |
3556 | } | |
3557 | else if ( aExp < 0x3FF ) { | |
3558 | if ( aExp || aSig ) { | |
a2f2d288 | 3559 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
3560 | } |
3561 | return 0; | |
3562 | } | |
3563 | aSig |= LIT64( 0x0010000000000000 ); | |
3564 | shiftCount = 0x433 - aExp; | |
3565 | savedASig = aSig; | |
3566 | aSig >>= shiftCount; | |
3567 | z = aSig; | |
3568 | if ( aSign ) { | |
3569 | z = - z; | |
3570 | } | |
3571 | if ( ( (int16_t)z < 0 ) ^ aSign ) { | |
3572 | invalid: | |
ff32e16e | 3573 | float_raise(float_flag_invalid, status); |
bb98fe42 | 3574 | return aSign ? (int32_t) 0xffff8000 : 0x7FFF; |
cbcef455 PM |
3575 | } |
3576 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 3577 | status->float_exception_flags |= float_flag_inexact; |
cbcef455 PM |
3578 | } |
3579 | return z; | |
3580 | } | |
3581 | ||
158142c2 FB |
3582 | /*---------------------------------------------------------------------------- |
3583 | | Returns the result of converting the double-precision floating-point value | |
3584 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3585 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3586 | | Arithmetic---which means in particular that the conversion is rounded | |
3587 | | according to the current rounding mode. If `a' is a NaN, the largest | |
3588 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
3589 | | largest integer with the same sign as `a' is returned. | |
3590 | *----------------------------------------------------------------------------*/ | |
3591 | ||
f42c2224 | 3592 | int64_t float64_to_int64(float64 a, float_status *status) |
158142c2 FB |
3593 | { |
3594 | flag aSign; | |
0c48262d | 3595 | int aExp; |
07d792d2 | 3596 | int shiftCount; |
bb98fe42 | 3597 | uint64_t aSig, aSigExtra; |
ff32e16e | 3598 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3599 | |
3600 | aSig = extractFloat64Frac( a ); | |
3601 | aExp = extractFloat64Exp( a ); | |
3602 | aSign = extractFloat64Sign( a ); | |
3603 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3604 | shiftCount = 0x433 - aExp; | |
3605 | if ( shiftCount <= 0 ) { | |
3606 | if ( 0x43E < aExp ) { | |
ff32e16e | 3607 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3608 | if ( ! aSign |
3609 | || ( ( aExp == 0x7FF ) | |
3610 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3611 | ) { | |
3612 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3613 | } | |
bb98fe42 | 3614 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3615 | } |
3616 | aSigExtra = 0; | |
3617 | aSig <<= - shiftCount; | |
3618 | } | |
3619 | else { | |
3620 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
3621 | } | |
ff32e16e | 3622 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
3623 | |
3624 | } | |
3625 | ||
3626 | /*---------------------------------------------------------------------------- | |
3627 | | Returns the result of converting the double-precision floating-point value | |
3628 | | `a' to the 64-bit two's complement integer format. The conversion is | |
3629 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3630 | | Arithmetic, except that the conversion is always rounded toward zero. | |
3631 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
3632 | | the conversion overflows, the largest integer with the same sign as `a' is | |
3633 | | returned. | |
3634 | *----------------------------------------------------------------------------*/ | |
3635 | ||
f42c2224 | 3636 | int64_t float64_to_int64_round_to_zero(float64 a, float_status *status) |
158142c2 FB |
3637 | { |
3638 | flag aSign; | |
0c48262d | 3639 | int aExp; |
07d792d2 | 3640 | int shiftCount; |
bb98fe42 | 3641 | uint64_t aSig; |
f42c2224 | 3642 | int64_t z; |
ff32e16e | 3643 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3644 | |
3645 | aSig = extractFloat64Frac( a ); | |
3646 | aExp = extractFloat64Exp( a ); | |
3647 | aSign = extractFloat64Sign( a ); | |
3648 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
3649 | shiftCount = aExp - 0x433; | |
3650 | if ( 0 <= shiftCount ) { | |
3651 | if ( 0x43E <= aExp ) { | |
f090c9d4 | 3652 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { |
ff32e16e | 3653 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3654 | if ( ! aSign |
3655 | || ( ( aExp == 0x7FF ) | |
3656 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
3657 | ) { | |
3658 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3659 | } | |
3660 | } | |
bb98fe42 | 3661 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
3662 | } |
3663 | z = aSig<<shiftCount; | |
3664 | } | |
3665 | else { | |
3666 | if ( aExp < 0x3FE ) { | |
a2f2d288 PM |
3667 | if (aExp | aSig) { |
3668 | status->float_exception_flags |= float_flag_inexact; | |
3669 | } | |
158142c2 FB |
3670 | return 0; |
3671 | } | |
3672 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 3673 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 3674 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
3675 | } |
3676 | } | |
3677 | if ( aSign ) z = - z; | |
3678 | return z; | |
3679 | ||
3680 | } | |
3681 | ||
3682 | /*---------------------------------------------------------------------------- | |
3683 | | Returns the result of converting the double-precision floating-point value | |
3684 | | `a' to the single-precision floating-point format. The conversion is | |
3685 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3686 | | Arithmetic. | |
3687 | *----------------------------------------------------------------------------*/ | |
3688 | ||
e5a41ffa | 3689 | float32 float64_to_float32(float64 a, float_status *status) |
158142c2 FB |
3690 | { |
3691 | flag aSign; | |
0c48262d | 3692 | int aExp; |
bb98fe42 AF |
3693 | uint64_t aSig; |
3694 | uint32_t zSig; | |
ff32e16e | 3695 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3696 | |
3697 | aSig = extractFloat64Frac( a ); | |
3698 | aExp = extractFloat64Exp( a ); | |
3699 | aSign = extractFloat64Sign( a ); | |
3700 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3701 | if (aSig) { |
3702 | return commonNaNToFloat32(float64ToCommonNaN(a, status), status); | |
3703 | } | |
158142c2 FB |
3704 | return packFloat32( aSign, 0xFF, 0 ); |
3705 | } | |
3706 | shift64RightJamming( aSig, 22, &aSig ); | |
3707 | zSig = aSig; | |
3708 | if ( aExp || zSig ) { | |
3709 | zSig |= 0x40000000; | |
3710 | aExp -= 0x381; | |
3711 | } | |
ff32e16e | 3712 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
3713 | |
3714 | } | |
3715 | ||
60011498 PB |
3716 | |
3717 | /*---------------------------------------------------------------------------- | |
3718 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
3719 | | half-precision floating-point value, returning the result. After being | |
3720 | | shifted into the proper positions, the three fields are simply added | |
3721 | | together to form the result. This means that any integer portion of `zSig' | |
3722 | | will be added into the exponent. Since a properly normalized significand | |
3723 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
3724 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
3725 | | significand. | |
3726 | *----------------------------------------------------------------------------*/ | |
0c48262d | 3727 | static float16 packFloat16(flag zSign, int zExp, uint16_t zSig) |
60011498 | 3728 | { |
bb4d4bb3 | 3729 | return make_float16( |
bb98fe42 | 3730 | (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); |
60011498 PB |
3731 | } |
3732 | ||
c4a1c5e7 PM |
3733 | /*---------------------------------------------------------------------------- |
3734 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3735 | | and significand `zSig', and returns the proper half-precision floating- | |
3736 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
3737 | | value is simply rounded and packed into the half-precision format, with | |
3738 | | the inexact exception raised if the abstract input cannot be represented | |
3739 | | exactly. However, if the abstract value is too large, the overflow and | |
3740 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3741 | | returned. If the abstract value is too small, the input value is rounded to | |
3742 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3743 | | the abstract input cannot be represented exactly as a subnormal half- | |
3744 | | precision floating-point number. | |
3745 | | The `ieee' flag indicates whether to use IEEE standard half precision, or | |
3746 | | ARM-style "alternative representation", which omits the NaN and Inf | |
3747 | | encodings in order to raise the maximum representable exponent by one. | |
3748 | | The input significand `zSig' has its binary point between bits 22 | |
3749 | | and 23, which is 13 bits to the left of the usual location. This shifted | |
3750 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
3751 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
3752 | | and it must not require rounding. In the usual case that `zSig' is | |
3753 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
3754 | | Note the slightly odd position of the binary point in zSig compared with the | |
3755 | | other roundAndPackFloat functions. This should probably be fixed if we | |
3756 | | need to implement more float16 routines than just conversion. | |
3757 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
3758 | | Binary Floating-Point Arithmetic. | |
3759 | *----------------------------------------------------------------------------*/ | |
3760 | ||
0c48262d | 3761 | static float16 roundAndPackFloat16(flag zSign, int zExp, |
e5a41ffa PM |
3762 | uint32_t zSig, flag ieee, |
3763 | float_status *status) | |
c4a1c5e7 PM |
3764 | { |
3765 | int maxexp = ieee ? 29 : 30; | |
3766 | uint32_t mask; | |
3767 | uint32_t increment; | |
c4a1c5e7 PM |
3768 | bool rounding_bumps_exp; |
3769 | bool is_tiny = false; | |
3770 | ||
3771 | /* Calculate the mask of bits of the mantissa which are not | |
3772 | * representable in half-precision and will be lost. | |
3773 | */ | |
3774 | if (zExp < 1) { | |
3775 | /* Will be denormal in halfprec */ | |
3776 | mask = 0x00ffffff; | |
3777 | if (zExp >= -11) { | |
3778 | mask >>= 11 + zExp; | |
3779 | } | |
3780 | } else { | |
3781 | /* Normal number in halfprec */ | |
3782 | mask = 0x00001fff; | |
3783 | } | |
3784 | ||
a2f2d288 | 3785 | switch (status->float_rounding_mode) { |
c4a1c5e7 PM |
3786 | case float_round_nearest_even: |
3787 | increment = (mask + 1) >> 1; | |
3788 | if ((zSig & mask) == increment) { | |
3789 | increment = zSig & (increment << 1); | |
3790 | } | |
3791 | break; | |
f9288a76 PM |
3792 | case float_round_ties_away: |
3793 | increment = (mask + 1) >> 1; | |
3794 | break; | |
c4a1c5e7 PM |
3795 | case float_round_up: |
3796 | increment = zSign ? 0 : mask; | |
3797 | break; | |
3798 | case float_round_down: | |
3799 | increment = zSign ? mask : 0; | |
3800 | break; | |
3801 | default: /* round_to_zero */ | |
3802 | increment = 0; | |
3803 | break; | |
3804 | } | |
3805 | ||
3806 | rounding_bumps_exp = (zSig + increment >= 0x01000000); | |
3807 | ||
3808 | if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) { | |
3809 | if (ieee) { | |
ff32e16e | 3810 | float_raise(float_flag_overflow | float_flag_inexact, status); |
c4a1c5e7 PM |
3811 | return packFloat16(zSign, 0x1f, 0); |
3812 | } else { | |
ff32e16e | 3813 | float_raise(float_flag_invalid, status); |
c4a1c5e7 PM |
3814 | return packFloat16(zSign, 0x1f, 0x3ff); |
3815 | } | |
3816 | } | |
3817 | ||
3818 | if (zExp < 0) { | |
3819 | /* Note that flush-to-zero does not affect half-precision results */ | |
3820 | is_tiny = | |
a2f2d288 | 3821 | (status->float_detect_tininess == float_tininess_before_rounding) |
c4a1c5e7 PM |
3822 | || (zExp < -1) |
3823 | || (!rounding_bumps_exp); | |
3824 | } | |
3825 | if (zSig & mask) { | |
ff32e16e | 3826 | float_raise(float_flag_inexact, status); |
c4a1c5e7 | 3827 | if (is_tiny) { |
ff32e16e | 3828 | float_raise(float_flag_underflow, status); |
c4a1c5e7 PM |
3829 | } |
3830 | } | |
3831 | ||
3832 | zSig += increment; | |
3833 | if (rounding_bumps_exp) { | |
3834 | zSig >>= 1; | |
3835 | zExp++; | |
3836 | } | |
3837 | ||
3838 | if (zExp < -10) { | |
3839 | return packFloat16(zSign, 0, 0); | |
3840 | } | |
3841 | if (zExp < 0) { | |
3842 | zSig >>= -zExp; | |
3843 | zExp = 0; | |
3844 | } | |
3845 | return packFloat16(zSign, zExp, zSig >> 13); | |
3846 | } | |
3847 | ||
210cbd49 AB |
3848 | /*---------------------------------------------------------------------------- |
3849 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
3850 | | input-denormal exception and return zero. Otherwise just return the value. | |
3851 | *----------------------------------------------------------------------------*/ | |
3852 | float16 float16_squash_input_denormal(float16 a, float_status *status) | |
3853 | { | |
3854 | if (status->flush_inputs_to_zero) { | |
3855 | if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) { | |
3856 | float_raise(float_flag_input_denormal, status); | |
3857 | return make_float16(float16_val(a) & 0x8000); | |
3858 | } | |
3859 | } | |
3860 | return a; | |
3861 | } | |
3862 | ||
0c48262d | 3863 | static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr, |
c4a1c5e7 PM |
3864 | uint32_t *zSigPtr) |
3865 | { | |
3866 | int8_t shiftCount = countLeadingZeros32(aSig) - 21; | |
3867 | *zSigPtr = aSig << shiftCount; | |
3868 | *zExpPtr = 1 - shiftCount; | |
3869 | } | |
3870 | ||
60011498 PB |
3871 | /* Half precision floats come in two formats: standard IEEE and "ARM" format. |
3872 | The latter gains extra exponent range by omitting the NaN/Inf encodings. */ | |
bb4d4bb3 | 3873 | |
e5a41ffa | 3874 | float32 float16_to_float32(float16 a, flag ieee, float_status *status) |
60011498 PB |
3875 | { |
3876 | flag aSign; | |
0c48262d | 3877 | int aExp; |
bb98fe42 | 3878 | uint32_t aSig; |
60011498 | 3879 | |
bb4d4bb3 PM |
3880 | aSign = extractFloat16Sign(a); |
3881 | aExp = extractFloat16Exp(a); | |
3882 | aSig = extractFloat16Frac(a); | |
60011498 PB |
3883 | |
3884 | if (aExp == 0x1f && ieee) { | |
3885 | if (aSig) { | |
ff32e16e | 3886 | return commonNaNToFloat32(float16ToCommonNaN(a, status), status); |
60011498 | 3887 | } |
4be8eeac | 3888 | return packFloat32(aSign, 0xff, 0); |
60011498 PB |
3889 | } |
3890 | if (aExp == 0) { | |
60011498 PB |
3891 | if (aSig == 0) { |
3892 | return packFloat32(aSign, 0, 0); | |
3893 | } | |
3894 | ||
c4a1c5e7 PM |
3895 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); |
3896 | aExp--; | |
60011498 PB |
3897 | } |
3898 | return packFloat32( aSign, aExp + 0x70, aSig << 13); | |
3899 | } | |
3900 | ||
e5a41ffa | 3901 | float16 float32_to_float16(float32 a, flag ieee, float_status *status) |
60011498 PB |
3902 | { |
3903 | flag aSign; | |
0c48262d | 3904 | int aExp; |
bb98fe42 | 3905 | uint32_t aSig; |
38970efa | 3906 | |
ff32e16e | 3907 | a = float32_squash_input_denormal(a, status); |
60011498 PB |
3908 | |
3909 | aSig = extractFloat32Frac( a ); | |
3910 | aExp = extractFloat32Exp( a ); | |
3911 | aSign = extractFloat32Sign( a ); | |
3912 | if ( aExp == 0xFF ) { | |
3913 | if (aSig) { | |
600e30d2 | 3914 | /* Input is a NaN */ |
600e30d2 | 3915 | if (!ieee) { |
ff32e16e | 3916 | float_raise(float_flag_invalid, status); |
600e30d2 PM |
3917 | return packFloat16(aSign, 0, 0); |
3918 | } | |
38970efa | 3919 | return commonNaNToFloat16( |
ff32e16e | 3920 | float32ToCommonNaN(a, status), status); |
60011498 | 3921 | } |
600e30d2 PM |
3922 | /* Infinity */ |
3923 | if (!ieee) { | |
ff32e16e | 3924 | float_raise(float_flag_invalid, status); |
600e30d2 PM |
3925 | return packFloat16(aSign, 0x1f, 0x3ff); |
3926 | } | |
3927 | return packFloat16(aSign, 0x1f, 0); | |
60011498 | 3928 | } |
600e30d2 | 3929 | if (aExp == 0 && aSig == 0) { |
60011498 PB |
3930 | return packFloat16(aSign, 0, 0); |
3931 | } | |
38970efa PM |
3932 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit |
3933 | * even if the input is denormal; however this is harmless because | |
3934 | * the largest possible single-precision denormal is still smaller | |
3935 | * than the smallest representable half-precision denormal, and so we | |
3936 | * will end up ignoring aSig and returning via the "always return zero" | |
3937 | * codepath. | |
3938 | */ | |
60011498 | 3939 | aSig |= 0x00800000; |
c4a1c5e7 | 3940 | aExp -= 0x71; |
60011498 | 3941 | |
ff32e16e | 3942 | return roundAndPackFloat16(aSign, aExp, aSig, ieee, status); |
60011498 PB |
3943 | } |
3944 | ||
e5a41ffa | 3945 | float64 float16_to_float64(float16 a, flag ieee, float_status *status) |
14c9a07e PM |
3946 | { |
3947 | flag aSign; | |
0c48262d | 3948 | int aExp; |
14c9a07e PM |
3949 | uint32_t aSig; |
3950 | ||
3951 | aSign = extractFloat16Sign(a); | |
3952 | aExp = extractFloat16Exp(a); | |
3953 | aSig = extractFloat16Frac(a); | |
3954 | ||
3955 | if (aExp == 0x1f && ieee) { | |
3956 | if (aSig) { | |
3957 | return commonNaNToFloat64( | |
ff32e16e | 3958 | float16ToCommonNaN(a, status), status); |
14c9a07e PM |
3959 | } |
3960 | return packFloat64(aSign, 0x7ff, 0); | |
3961 | } | |
3962 | if (aExp == 0) { | |
3963 | if (aSig == 0) { | |
3964 | return packFloat64(aSign, 0, 0); | |
3965 | } | |
3966 | ||
3967 | normalizeFloat16Subnormal(aSig, &aExp, &aSig); | |
3968 | aExp--; | |
3969 | } | |
3970 | return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42); | |
3971 | } | |
3972 | ||
e5a41ffa | 3973 | float16 float64_to_float16(float64 a, flag ieee, float_status *status) |
14c9a07e PM |
3974 | { |
3975 | flag aSign; | |
0c48262d | 3976 | int aExp; |
14c9a07e PM |
3977 | uint64_t aSig; |
3978 | uint32_t zSig; | |
3979 | ||
ff32e16e | 3980 | a = float64_squash_input_denormal(a, status); |
14c9a07e PM |
3981 | |
3982 | aSig = extractFloat64Frac(a); | |
3983 | aExp = extractFloat64Exp(a); | |
3984 | aSign = extractFloat64Sign(a); | |
3985 | if (aExp == 0x7FF) { | |
3986 | if (aSig) { | |
3987 | /* Input is a NaN */ | |
3988 | if (!ieee) { | |
ff32e16e | 3989 | float_raise(float_flag_invalid, status); |
14c9a07e PM |
3990 | return packFloat16(aSign, 0, 0); |
3991 | } | |
3992 | return commonNaNToFloat16( | |
ff32e16e | 3993 | float64ToCommonNaN(a, status), status); |
14c9a07e PM |
3994 | } |
3995 | /* Infinity */ | |
3996 | if (!ieee) { | |
ff32e16e | 3997 | float_raise(float_flag_invalid, status); |
14c9a07e PM |
3998 | return packFloat16(aSign, 0x1f, 0x3ff); |
3999 | } | |
4000 | return packFloat16(aSign, 0x1f, 0); | |
4001 | } | |
4002 | shift64RightJamming(aSig, 29, &aSig); | |
4003 | zSig = aSig; | |
4004 | if (aExp == 0 && zSig == 0) { | |
4005 | return packFloat16(aSign, 0, 0); | |
4006 | } | |
4007 | /* Decimal point between bits 22 and 23. Note that we add the 1 bit | |
4008 | * even if the input is denormal; however this is harmless because | |
4009 | * the largest possible single-precision denormal is still smaller | |
4010 | * than the smallest representable half-precision denormal, and so we | |
4011 | * will end up ignoring aSig and returning via the "always return zero" | |
4012 | * codepath. | |
4013 | */ | |
4014 | zSig |= 0x00800000; | |
4015 | aExp -= 0x3F1; | |
4016 | ||
ff32e16e | 4017 | return roundAndPackFloat16(aSign, aExp, zSig, ieee, status); |
14c9a07e PM |
4018 | } |
4019 | ||
158142c2 FB |
4020 | /*---------------------------------------------------------------------------- |
4021 | | Returns the result of converting the double-precision floating-point value | |
4022 | | `a' to the extended double-precision floating-point format. The conversion | |
4023 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4024 | | Arithmetic. | |
4025 | *----------------------------------------------------------------------------*/ | |
4026 | ||
e5a41ffa | 4027 | floatx80 float64_to_floatx80(float64 a, float_status *status) |
158142c2 FB |
4028 | { |
4029 | flag aSign; | |
0c48262d | 4030 | int aExp; |
bb98fe42 | 4031 | uint64_t aSig; |
158142c2 | 4032 | |
ff32e16e | 4033 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4034 | aSig = extractFloat64Frac( a ); |
4035 | aExp = extractFloat64Exp( a ); | |
4036 | aSign = extractFloat64Sign( a ); | |
4037 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4038 | if (aSig) { |
4039 | return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); | |
4040 | } | |
158142c2 FB |
4041 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
4042 | } | |
4043 | if ( aExp == 0 ) { | |
4044 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
4045 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4046 | } | |
4047 | return | |
4048 | packFloatx80( | |
4049 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
4050 | ||
4051 | } | |
4052 | ||
158142c2 FB |
4053 | /*---------------------------------------------------------------------------- |
4054 | | Returns the result of converting the double-precision floating-point value | |
4055 | | `a' to the quadruple-precision floating-point format. The conversion is | |
4056 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4057 | | Arithmetic. | |
4058 | *----------------------------------------------------------------------------*/ | |
4059 | ||
e5a41ffa | 4060 | float128 float64_to_float128(float64 a, float_status *status) |
158142c2 FB |
4061 | { |
4062 | flag aSign; | |
0c48262d | 4063 | int aExp; |
bb98fe42 | 4064 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 4065 | |
ff32e16e | 4066 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4067 | aSig = extractFloat64Frac( a ); |
4068 | aExp = extractFloat64Exp( a ); | |
4069 | aSign = extractFloat64Sign( a ); | |
4070 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4071 | if (aSig) { |
4072 | return commonNaNToFloat128(float64ToCommonNaN(a, status), status); | |
4073 | } | |
158142c2 FB |
4074 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
4075 | } | |
4076 | if ( aExp == 0 ) { | |
4077 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
4078 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4079 | --aExp; | |
4080 | } | |
4081 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
4082 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
4083 | ||
4084 | } | |
4085 | ||
158142c2 FB |
4086 | /*---------------------------------------------------------------------------- |
4087 | | Rounds the double-precision floating-point value `a' to an integer, and | |
4088 | | returns the result as a double-precision floating-point value. The | |
4089 | | operation is performed according to the IEC/IEEE Standard for Binary | |
4090 | | Floating-Point Arithmetic. | |
4091 | *----------------------------------------------------------------------------*/ | |
4092 | ||
e5a41ffa | 4093 | float64 float64_round_to_int(float64 a, float_status *status) |
158142c2 FB |
4094 | { |
4095 | flag aSign; | |
0c48262d | 4096 | int aExp; |
bb98fe42 | 4097 | uint64_t lastBitMask, roundBitsMask; |
bb98fe42 | 4098 | uint64_t z; |
ff32e16e | 4099 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4100 | |
4101 | aExp = extractFloat64Exp( a ); | |
4102 | if ( 0x433 <= aExp ) { | |
4103 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
ff32e16e | 4104 | return propagateFloat64NaN(a, a, status); |
158142c2 FB |
4105 | } |
4106 | return a; | |
4107 | } | |
4108 | if ( aExp < 0x3FF ) { | |
bb98fe42 | 4109 | if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; |
a2f2d288 | 4110 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 4111 | aSign = extractFloat64Sign( a ); |
a2f2d288 | 4112 | switch (status->float_rounding_mode) { |
158142c2 FB |
4113 | case float_round_nearest_even: |
4114 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
4115 | return packFloat64( aSign, 0x3FF, 0 ); | |
4116 | } | |
4117 | break; | |
f9288a76 PM |
4118 | case float_round_ties_away: |
4119 | if (aExp == 0x3FE) { | |
4120 | return packFloat64(aSign, 0x3ff, 0); | |
4121 | } | |
4122 | break; | |
158142c2 | 4123 | case float_round_down: |
f090c9d4 | 4124 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); |
158142c2 | 4125 | case float_round_up: |
f090c9d4 PB |
4126 | return make_float64( |
4127 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | |
158142c2 FB |
4128 | } |
4129 | return packFloat64( aSign, 0, 0 ); | |
4130 | } | |
4131 | lastBitMask = 1; | |
4132 | lastBitMask <<= 0x433 - aExp; | |
4133 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 4134 | z = float64_val(a); |
a2f2d288 | 4135 | switch (status->float_rounding_mode) { |
dc355b76 PM |
4136 | case float_round_nearest_even: |
4137 | z += lastBitMask >> 1; | |
4138 | if ((z & roundBitsMask) == 0) { | |
4139 | z &= ~lastBitMask; | |
4140 | } | |
4141 | break; | |
f9288a76 PM |
4142 | case float_round_ties_away: |
4143 | z += lastBitMask >> 1; | |
4144 | break; | |
dc355b76 PM |
4145 | case float_round_to_zero: |
4146 | break; | |
4147 | case float_round_up: | |
4148 | if (!extractFloat64Sign(make_float64(z))) { | |
4149 | z += roundBitsMask; | |
4150 | } | |
4151 | break; | |
4152 | case float_round_down: | |
4153 | if (extractFloat64Sign(make_float64(z))) { | |
158142c2 FB |
4154 | z += roundBitsMask; |
4155 | } | |
dc355b76 PM |
4156 | break; |
4157 | default: | |
4158 | abort(); | |
158142c2 FB |
4159 | } |
4160 | z &= ~ roundBitsMask; | |
a2f2d288 PM |
4161 | if (z != float64_val(a)) { |
4162 | status->float_exception_flags |= float_flag_inexact; | |
4163 | } | |
f090c9d4 | 4164 | return make_float64(z); |
158142c2 FB |
4165 | |
4166 | } | |
4167 | ||
e5a41ffa | 4168 | float64 float64_trunc_to_int(float64 a, float_status *status) |
e6e5906b PB |
4169 | { |
4170 | int oldmode; | |
4171 | float64 res; | |
a2f2d288 PM |
4172 | oldmode = status->float_rounding_mode; |
4173 | status->float_rounding_mode = float_round_to_zero; | |
ff32e16e | 4174 | res = float64_round_to_int(a, status); |
a2f2d288 | 4175 | status->float_rounding_mode = oldmode; |
e6e5906b PB |
4176 | return res; |
4177 | } | |
4178 | ||
158142c2 FB |
4179 | |
4180 | /*---------------------------------------------------------------------------- | |
4181 | | Returns the remainder of the double-precision floating-point value `a' | |
4182 | | with respect to the corresponding value `b'. The operation is performed | |
4183 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4184 | *----------------------------------------------------------------------------*/ | |
4185 | ||
e5a41ffa | 4186 | float64 float64_rem(float64 a, float64 b, float_status *status) |
158142c2 | 4187 | { |
ed086f3d | 4188 | flag aSign, zSign; |
0c48262d | 4189 | int aExp, bExp, expDiff; |
bb98fe42 AF |
4190 | uint64_t aSig, bSig; |
4191 | uint64_t q, alternateASig; | |
4192 | int64_t sigMean; | |
158142c2 | 4193 | |
ff32e16e PM |
4194 | a = float64_squash_input_denormal(a, status); |
4195 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4196 | aSig = extractFloat64Frac( a ); |
4197 | aExp = extractFloat64Exp( a ); | |
4198 | aSign = extractFloat64Sign( a ); | |
4199 | bSig = extractFloat64Frac( b ); | |
4200 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
4201 | if ( aExp == 0x7FF ) { |
4202 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 4203 | return propagateFloat64NaN(a, b, status); |
158142c2 | 4204 | } |
ff32e16e | 4205 | float_raise(float_flag_invalid, status); |
af39bc8c | 4206 | return float64_default_nan(status); |
158142c2 FB |
4207 | } |
4208 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
4209 | if (bSig) { |
4210 | return propagateFloat64NaN(a, b, status); | |
4211 | } | |
158142c2 FB |
4212 | return a; |
4213 | } | |
4214 | if ( bExp == 0 ) { | |
4215 | if ( bSig == 0 ) { | |
ff32e16e | 4216 | float_raise(float_flag_invalid, status); |
af39bc8c | 4217 | return float64_default_nan(status); |
158142c2 FB |
4218 | } |
4219 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
4220 | } | |
4221 | if ( aExp == 0 ) { | |
4222 | if ( aSig == 0 ) return a; | |
4223 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4224 | } | |
4225 | expDiff = aExp - bExp; | |
4226 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
4227 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
4228 | if ( expDiff < 0 ) { | |
4229 | if ( expDiff < -1 ) return a; | |
4230 | aSig >>= 1; | |
4231 | } | |
4232 | q = ( bSig <= aSig ); | |
4233 | if ( q ) aSig -= bSig; | |
4234 | expDiff -= 64; | |
4235 | while ( 0 < expDiff ) { | |
4236 | q = estimateDiv128To64( aSig, 0, bSig ); | |
4237 | q = ( 2 < q ) ? q - 2 : 0; | |
4238 | aSig = - ( ( bSig>>2 ) * q ); | |
4239 | expDiff -= 62; | |
4240 | } | |
4241 | expDiff += 64; | |
4242 | if ( 0 < expDiff ) { | |
4243 | q = estimateDiv128To64( aSig, 0, bSig ); | |
4244 | q = ( 2 < q ) ? q - 2 : 0; | |
4245 | q >>= 64 - expDiff; | |
4246 | bSig >>= 2; | |
4247 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
4248 | } | |
4249 | else { | |
4250 | aSig >>= 2; | |
4251 | bSig >>= 2; | |
4252 | } | |
4253 | do { | |
4254 | alternateASig = aSig; | |
4255 | ++q; | |
4256 | aSig -= bSig; | |
bb98fe42 | 4257 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
4258 | sigMean = aSig + alternateASig; |
4259 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
4260 | aSig = alternateASig; | |
4261 | } | |
bb98fe42 | 4262 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 | 4263 | if ( zSign ) aSig = - aSig; |
ff32e16e | 4264 | return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
4265 | |
4266 | } | |
4267 | ||
369be8f6 PM |
4268 | /*---------------------------------------------------------------------------- |
4269 | | Returns the result of multiplying the double-precision floating-point values | |
4270 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
4271 | | multiplication. The operation is performed according to the IEC/IEEE | |
4272 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
4273 | | The flags argument allows the caller to select negation of the | |
4274 | | addend, the intermediate product, or the final result. (The difference | |
4275 | | between this and having the caller do a separate negation is that negating | |
4276 | | externally will flip the sign bit on NaNs.) | |
4277 | *----------------------------------------------------------------------------*/ | |
4278 | ||
e5a41ffa PM |
4279 | float64 float64_muladd(float64 a, float64 b, float64 c, int flags, |
4280 | float_status *status) | |
369be8f6 PM |
4281 | { |
4282 | flag aSign, bSign, cSign, zSign; | |
0c48262d | 4283 | int aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
4284 | uint64_t aSig, bSig, cSig; |
4285 | flag pInf, pZero, pSign; | |
4286 | uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; | |
4287 | int shiftcount; | |
4288 | flag signflip, infzero; | |
4289 | ||
ff32e16e PM |
4290 | a = float64_squash_input_denormal(a, status); |
4291 | b = float64_squash_input_denormal(b, status); | |
4292 | c = float64_squash_input_denormal(c, status); | |
369be8f6 PM |
4293 | aSig = extractFloat64Frac(a); |
4294 | aExp = extractFloat64Exp(a); | |
4295 | aSign = extractFloat64Sign(a); | |
4296 | bSig = extractFloat64Frac(b); | |
4297 | bExp = extractFloat64Exp(b); | |
4298 | bSign = extractFloat64Sign(b); | |
4299 | cSig = extractFloat64Frac(c); | |
4300 | cExp = extractFloat64Exp(c); | |
4301 | cSign = extractFloat64Sign(c); | |
4302 | ||
4303 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || | |
4304 | (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); | |
4305 | ||
4306 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
4307 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
4308 | * they return if they do), so we have to hand this information | |
4309 | * off to the target-specific pick-a-NaN routine. | |
4310 | */ | |
4311 | if (((aExp == 0x7ff) && aSig) || | |
4312 | ((bExp == 0x7ff) && bSig) || | |
4313 | ((cExp == 0x7ff) && cSig)) { | |
ff32e16e | 4314 | return propagateFloat64MulAddNaN(a, b, c, infzero, status); |
369be8f6 PM |
4315 | } |
4316 | ||
4317 | if (infzero) { | |
ff32e16e | 4318 | float_raise(float_flag_invalid, status); |
af39bc8c | 4319 | return float64_default_nan(status); |
369be8f6 PM |
4320 | } |
4321 | ||
4322 | if (flags & float_muladd_negate_c) { | |
4323 | cSign ^= 1; | |
4324 | } | |
4325 | ||
4326 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
4327 | ||
4328 | /* Work out the sign and type of the product */ | |
4329 | pSign = aSign ^ bSign; | |
4330 | if (flags & float_muladd_negate_product) { | |
4331 | pSign ^= 1; | |
4332 | } | |
4333 | pInf = (aExp == 0x7ff) || (bExp == 0x7ff); | |
4334 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
4335 | ||
4336 | if (cExp == 0x7ff) { | |
4337 | if (pInf && (pSign ^ cSign)) { | |
4338 | /* addition of opposite-signed infinities => InvalidOperation */ | |
ff32e16e | 4339 | float_raise(float_flag_invalid, status); |
af39bc8c | 4340 | return float64_default_nan(status); |
369be8f6 PM |
4341 | } |
4342 | /* Otherwise generate an infinity of the same sign */ | |
4343 | return packFloat64(cSign ^ signflip, 0x7ff, 0); | |
4344 | } | |
4345 | ||
4346 | if (pInf) { | |
4347 | return packFloat64(pSign ^ signflip, 0x7ff, 0); | |
4348 | } | |
4349 | ||
4350 | if (pZero) { | |
4351 | if (cExp == 0) { | |
4352 | if (cSig == 0) { | |
4353 | /* Adding two exact zeroes */ | |
4354 | if (pSign == cSign) { | |
4355 | zSign = pSign; | |
a2f2d288 | 4356 | } else if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
4357 | zSign = 1; |
4358 | } else { | |
4359 | zSign = 0; | |
4360 | } | |
4361 | return packFloat64(zSign ^ signflip, 0, 0); | |
4362 | } | |
4363 | /* Exact zero plus a denorm */ | |
a2f2d288 | 4364 | if (status->flush_to_zero) { |
ff32e16e | 4365 | float_raise(float_flag_output_denormal, status); |
369be8f6 PM |
4366 | return packFloat64(cSign ^ signflip, 0, 0); |
4367 | } | |
4368 | } | |
4369 | /* Zero plus something non-zero : just return the something */ | |
67d43538 PM |
4370 | if (flags & float_muladd_halve_result) { |
4371 | if (cExp == 0) { | |
4372 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4373 | } | |
4374 | /* Subtract one to halve, and one again because roundAndPackFloat64 | |
4375 | * wants one less than the true exponent. | |
4376 | */ | |
4377 | cExp -= 2; | |
4378 | cSig = (cSig | 0x0010000000000000ULL) << 10; | |
ff32e16e | 4379 | return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status); |
67d43538 | 4380 | } |
a6e7c184 | 4381 | return packFloat64(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
4382 | } |
4383 | ||
4384 | if (aExp == 0) { | |
4385 | normalizeFloat64Subnormal(aSig, &aExp, &aSig); | |
4386 | } | |
4387 | if (bExp == 0) { | |
4388 | normalizeFloat64Subnormal(bSig, &bExp, &bSig); | |
4389 | } | |
4390 | ||
4391 | /* Calculate the actual result a * b + c */ | |
4392 | ||
4393 | /* Multiply first; this is easy. */ | |
4394 | /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff | |
4395 | * because we want the true exponent, not the "one-less-than" | |
4396 | * flavour that roundAndPackFloat64() takes. | |
4397 | */ | |
4398 | pExp = aExp + bExp - 0x3fe; | |
4399 | aSig = (aSig | LIT64(0x0010000000000000))<<10; | |
4400 | bSig = (bSig | LIT64(0x0010000000000000))<<11; | |
4401 | mul64To128(aSig, bSig, &pSig0, &pSig1); | |
4402 | if ((int64_t)(pSig0 << 1) >= 0) { | |
4403 | shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); | |
4404 | pExp--; | |
4405 | } | |
4406 | ||
4407 | zSign = pSign ^ signflip; | |
4408 | ||
4409 | /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit | |
4410 | * bit in position 126. | |
4411 | */ | |
4412 | if (cExp == 0) { | |
4413 | if (!cSig) { | |
4414 | /* Throw out the special case of c being an exact zero now */ | |
4415 | shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); | |
67d43538 PM |
4416 | if (flags & float_muladd_halve_result) { |
4417 | pExp--; | |
4418 | } | |
369be8f6 | 4419 | return roundAndPackFloat64(zSign, pExp - 1, |
ff32e16e | 4420 | pSig1, status); |
369be8f6 PM |
4421 | } |
4422 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
4423 | } | |
4424 | ||
4425 | /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the | |
4426 | * significand of the addend, with the explicit bit in position 126. | |
4427 | */ | |
4428 | cSig0 = cSig << (126 - 64 - 52); | |
4429 | cSig1 = 0; | |
4430 | cSig0 |= LIT64(0x4000000000000000); | |
4431 | expDiff = pExp - cExp; | |
4432 | ||
4433 | if (pSign == cSign) { | |
4434 | /* Addition */ | |
4435 | if (expDiff > 0) { | |
4436 | /* scale c to match p */ | |
4437 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4438 | zExp = pExp; | |
4439 | } else if (expDiff < 0) { | |
4440 | /* scale p to match c */ | |
4441 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4442 | zExp = cExp; | |
4443 | } else { | |
4444 | /* no scaling needed */ | |
4445 | zExp = cExp; | |
4446 | } | |
4447 | /* Add significands and make sure explicit bit ends up in posn 126 */ | |
4448 | add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4449 | if ((int64_t)zSig0 < 0) { | |
4450 | shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); | |
4451 | } else { | |
4452 | zExp--; | |
4453 | } | |
4454 | shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); | |
67d43538 PM |
4455 | if (flags & float_muladd_halve_result) { |
4456 | zExp--; | |
4457 | } | |
ff32e16e | 4458 | return roundAndPackFloat64(zSign, zExp, zSig1, status); |
369be8f6 PM |
4459 | } else { |
4460 | /* Subtraction */ | |
4461 | if (expDiff > 0) { | |
4462 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
4463 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4464 | zExp = pExp; | |
4465 | } else if (expDiff < 0) { | |
4466 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
4467 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4468 | zExp = cExp; | |
4469 | zSign ^= 1; | |
4470 | } else { | |
4471 | zExp = pExp; | |
4472 | if (lt128(cSig0, cSig1, pSig0, pSig1)) { | |
4473 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
4474 | } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { | |
4475 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
4476 | zSign ^= 1; | |
4477 | } else { | |
4478 | /* Exact zero */ | |
4479 | zSign = signflip; | |
a2f2d288 | 4480 | if (status->float_rounding_mode == float_round_down) { |
369be8f6 PM |
4481 | zSign ^= 1; |
4482 | } | |
4483 | return packFloat64(zSign, 0, 0); | |
4484 | } | |
4485 | } | |
4486 | --zExp; | |
4487 | /* Do the equivalent of normalizeRoundAndPackFloat64() but | |
4488 | * starting with the significand in a pair of uint64_t. | |
4489 | */ | |
4490 | if (zSig0) { | |
4491 | shiftcount = countLeadingZeros64(zSig0) - 1; | |
4492 | shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); | |
4493 | if (zSig1) { | |
4494 | zSig0 |= 1; | |
4495 | } | |
4496 | zExp -= shiftcount; | |
4497 | } else { | |
e3d142d0 PM |
4498 | shiftcount = countLeadingZeros64(zSig1); |
4499 | if (shiftcount == 0) { | |
4500 | zSig0 = (zSig1 >> 1) | (zSig1 & 1); | |
4501 | zExp -= 63; | |
4502 | } else { | |
4503 | shiftcount--; | |
4504 | zSig0 = zSig1 << shiftcount; | |
4505 | zExp -= (shiftcount + 64); | |
4506 | } | |
369be8f6 | 4507 | } |
67d43538 PM |
4508 | if (flags & float_muladd_halve_result) { |
4509 | zExp--; | |
4510 | } | |
ff32e16e | 4511 | return roundAndPackFloat64(zSign, zExp, zSig0, status); |
369be8f6 PM |
4512 | } |
4513 | } | |
4514 | ||
158142c2 FB |
4515 | /*---------------------------------------------------------------------------- |
4516 | | Returns the square root of the double-precision floating-point value `a'. | |
4517 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4518 | | Floating-Point Arithmetic. | |
4519 | *----------------------------------------------------------------------------*/ | |
4520 | ||
e5a41ffa | 4521 | float64 float64_sqrt(float64 a, float_status *status) |
158142c2 FB |
4522 | { |
4523 | flag aSign; | |
0c48262d | 4524 | int aExp, zExp; |
bb98fe42 AF |
4525 | uint64_t aSig, zSig, doubleZSig; |
4526 | uint64_t rem0, rem1, term0, term1; | |
ff32e16e | 4527 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
4528 | |
4529 | aSig = extractFloat64Frac( a ); | |
4530 | aExp = extractFloat64Exp( a ); | |
4531 | aSign = extractFloat64Sign( a ); | |
4532 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4533 | if (aSig) { |
4534 | return propagateFloat64NaN(a, a, status); | |
4535 | } | |
158142c2 | 4536 | if ( ! aSign ) return a; |
ff32e16e | 4537 | float_raise(float_flag_invalid, status); |
af39bc8c | 4538 | return float64_default_nan(status); |
158142c2 FB |
4539 | } |
4540 | if ( aSign ) { | |
4541 | if ( ( aExp | aSig ) == 0 ) return a; | |
ff32e16e | 4542 | float_raise(float_flag_invalid, status); |
af39bc8c | 4543 | return float64_default_nan(status); |
158142c2 FB |
4544 | } |
4545 | if ( aExp == 0 ) { | |
f090c9d4 | 4546 | if ( aSig == 0 ) return float64_zero; |
158142c2 FB |
4547 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
4548 | } | |
4549 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
4550 | aSig |= LIT64( 0x0010000000000000 ); | |
4551 | zSig = estimateSqrt32( aExp, aSig>>21 ); | |
4552 | aSig <<= 9 - ( aExp & 1 ); | |
4553 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
4554 | if ( ( zSig & 0x1FF ) <= 5 ) { | |
4555 | doubleZSig = zSig<<1; | |
4556 | mul64To128( zSig, zSig, &term0, &term1 ); | |
4557 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4558 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4559 | --zSig; |
4560 | doubleZSig -= 2; | |
4561 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
4562 | } | |
4563 | zSig |= ( ( rem0 | rem1 ) != 0 ); | |
4564 | } | |
ff32e16e | 4565 | return roundAndPackFloat64(0, zExp, zSig, status); |
158142c2 FB |
4566 | |
4567 | } | |
4568 | ||
374dfc33 AJ |
4569 | /*---------------------------------------------------------------------------- |
4570 | | Returns the binary log of the double-precision floating-point value `a'. | |
4571 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4572 | | Floating-Point Arithmetic. | |
4573 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 4574 | float64 float64_log2(float64 a, float_status *status) |
374dfc33 AJ |
4575 | { |
4576 | flag aSign, zSign; | |
0c48262d | 4577 | int aExp; |
bb98fe42 | 4578 | uint64_t aSig, aSig0, aSig1, zSig, i; |
ff32e16e | 4579 | a = float64_squash_input_denormal(a, status); |
374dfc33 AJ |
4580 | |
4581 | aSig = extractFloat64Frac( a ); | |
4582 | aExp = extractFloat64Exp( a ); | |
4583 | aSign = extractFloat64Sign( a ); | |
4584 | ||
4585 | if ( aExp == 0 ) { | |
4586 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
4587 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4588 | } | |
4589 | if ( aSign ) { | |
ff32e16e | 4590 | float_raise(float_flag_invalid, status); |
af39bc8c | 4591 | return float64_default_nan(status); |
374dfc33 AJ |
4592 | } |
4593 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4594 | if (aSig) { |
4595 | return propagateFloat64NaN(a, float64_zero, status); | |
4596 | } | |
374dfc33 AJ |
4597 | return a; |
4598 | } | |
4599 | ||
4600 | aExp -= 0x3FF; | |
4601 | aSig |= LIT64( 0x0010000000000000 ); | |
4602 | zSign = aExp < 0; | |
bb98fe42 | 4603 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
4604 | for (i = 1LL << 51; i > 0; i >>= 1) { |
4605 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
4606 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
4607 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
4608 | aSig >>= 1; | |
4609 | zSig |= i; | |
4610 | } | |
4611 | } | |
4612 | ||
4613 | if ( zSign ) | |
4614 | zSig = -zSig; | |
ff32e16e | 4615 | return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); |
374dfc33 AJ |
4616 | } |
4617 | ||
158142c2 FB |
4618 | /*---------------------------------------------------------------------------- |
4619 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
4620 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
4621 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4622 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4623 | *----------------------------------------------------------------------------*/ | |
4624 | ||
e5a41ffa | 4625 | int float64_eq(float64 a, float64 b, float_status *status) |
158142c2 | 4626 | { |
bb98fe42 | 4627 | uint64_t av, bv; |
ff32e16e PM |
4628 | a = float64_squash_input_denormal(a, status); |
4629 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4630 | |
4631 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4632 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4633 | ) { | |
ff32e16e | 4634 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4635 | return 0; |
4636 | } | |
f090c9d4 | 4637 | av = float64_val(a); |
a1b91bb4 | 4638 | bv = float64_val(b); |
bb98fe42 | 4639 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4640 | |
4641 | } | |
4642 | ||
4643 | /*---------------------------------------------------------------------------- | |
4644 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
4645 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
4646 | | exception is raised if either operand is a NaN. The comparison is performed | |
4647 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4648 | *----------------------------------------------------------------------------*/ |
4649 | ||
e5a41ffa | 4650 | int float64_le(float64 a, float64 b, float_status *status) |
158142c2 FB |
4651 | { |
4652 | flag aSign, bSign; | |
bb98fe42 | 4653 | uint64_t av, bv; |
ff32e16e PM |
4654 | a = float64_squash_input_denormal(a, status); |
4655 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4656 | |
4657 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4658 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4659 | ) { | |
ff32e16e | 4660 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4661 | return 0; |
4662 | } | |
4663 | aSign = extractFloat64Sign( a ); | |
4664 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4665 | av = float64_val(a); |
a1b91bb4 | 4666 | bv = float64_val(b); |
bb98fe42 | 4667 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4668 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4669 | |
4670 | } | |
4671 | ||
4672 | /*---------------------------------------------------------------------------- | |
4673 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
4674 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4675 | | raised if either operand is a NaN. The comparison is performed according | |
4676 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4677 | *----------------------------------------------------------------------------*/ |
4678 | ||
e5a41ffa | 4679 | int float64_lt(float64 a, float64 b, float_status *status) |
158142c2 FB |
4680 | { |
4681 | flag aSign, bSign; | |
bb98fe42 | 4682 | uint64_t av, bv; |
158142c2 | 4683 | |
ff32e16e PM |
4684 | a = float64_squash_input_denormal(a, status); |
4685 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4686 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
4687 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4688 | ) { | |
ff32e16e | 4689 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4690 | return 0; |
4691 | } | |
4692 | aSign = extractFloat64Sign( a ); | |
4693 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4694 | av = float64_val(a); |
a1b91bb4 | 4695 | bv = float64_val(b); |
bb98fe42 | 4696 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4697 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4698 | |
4699 | } | |
4700 | ||
67b7861d AJ |
4701 | /*---------------------------------------------------------------------------- |
4702 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4703 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4704 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4705 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4706 | *----------------------------------------------------------------------------*/ |
4707 | ||
e5a41ffa | 4708 | int float64_unordered(float64 a, float64 b, float_status *status) |
67b7861d | 4709 | { |
ff32e16e PM |
4710 | a = float64_squash_input_denormal(a, status); |
4711 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4712 | |
4713 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4714 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4715 | ) { | |
ff32e16e | 4716 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4717 | return 1; |
4718 | } | |
4719 | return 0; | |
4720 | } | |
4721 | ||
158142c2 FB |
4722 | /*---------------------------------------------------------------------------- |
4723 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
4724 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4725 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
4726 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4727 | *----------------------------------------------------------------------------*/ |
4728 | ||
e5a41ffa | 4729 | int float64_eq_quiet(float64 a, float64 b, float_status *status) |
158142c2 | 4730 | { |
bb98fe42 | 4731 | uint64_t av, bv; |
ff32e16e PM |
4732 | a = float64_squash_input_denormal(a, status); |
4733 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4734 | |
4735 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4736 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4737 | ) { | |
af39bc8c AM |
4738 | if (float64_is_signaling_nan(a, status) |
4739 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4740 | float_raise(float_flag_invalid, status); |
b689362d | 4741 | } |
158142c2 FB |
4742 | return 0; |
4743 | } | |
f090c9d4 | 4744 | av = float64_val(a); |
a1b91bb4 | 4745 | bv = float64_val(b); |
bb98fe42 | 4746 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4747 | |
4748 | } | |
4749 | ||
4750 | /*---------------------------------------------------------------------------- | |
4751 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
4752 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4753 | | cause an exception. Otherwise, the comparison is performed according to the | |
4754 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4755 | *----------------------------------------------------------------------------*/ | |
4756 | ||
e5a41ffa | 4757 | int float64_le_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4758 | { |
4759 | flag aSign, bSign; | |
bb98fe42 | 4760 | uint64_t av, bv; |
ff32e16e PM |
4761 | a = float64_squash_input_denormal(a, status); |
4762 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4763 | |
4764 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4765 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4766 | ) { | |
af39bc8c AM |
4767 | if (float64_is_signaling_nan(a, status) |
4768 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4769 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4770 | } |
4771 | return 0; | |
4772 | } | |
4773 | aSign = extractFloat64Sign( a ); | |
4774 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4775 | av = float64_val(a); |
a1b91bb4 | 4776 | bv = float64_val(b); |
bb98fe42 | 4777 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4778 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4779 | |
4780 | } | |
4781 | ||
4782 | /*---------------------------------------------------------------------------- | |
4783 | | Returns 1 if the double-precision floating-point value `a' is less than | |
4784 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4785 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
4786 | | Standard for Binary Floating-Point Arithmetic. | |
4787 | *----------------------------------------------------------------------------*/ | |
4788 | ||
e5a41ffa | 4789 | int float64_lt_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4790 | { |
4791 | flag aSign, bSign; | |
bb98fe42 | 4792 | uint64_t av, bv; |
ff32e16e PM |
4793 | a = float64_squash_input_denormal(a, status); |
4794 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4795 | |
4796 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4797 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4798 | ) { | |
af39bc8c AM |
4799 | if (float64_is_signaling_nan(a, status) |
4800 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4801 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4802 | } |
4803 | return 0; | |
4804 | } | |
4805 | aSign = extractFloat64Sign( a ); | |
4806 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4807 | av = float64_val(a); |
a1b91bb4 | 4808 | bv = float64_val(b); |
bb98fe42 | 4809 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4810 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4811 | |
4812 | } | |
4813 | ||
67b7861d AJ |
4814 | /*---------------------------------------------------------------------------- |
4815 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
4816 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4817 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4818 | | Floating-Point Arithmetic. | |
4819 | *----------------------------------------------------------------------------*/ | |
4820 | ||
e5a41ffa | 4821 | int float64_unordered_quiet(float64 a, float64 b, float_status *status) |
67b7861d | 4822 | { |
ff32e16e PM |
4823 | a = float64_squash_input_denormal(a, status); |
4824 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4825 | |
4826 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4827 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4828 | ) { | |
af39bc8c AM |
4829 | if (float64_is_signaling_nan(a, status) |
4830 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4831 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4832 | } |
4833 | return 1; | |
4834 | } | |
4835 | return 0; | |
4836 | } | |
4837 | ||
158142c2 FB |
4838 | /*---------------------------------------------------------------------------- |
4839 | | Returns the result of converting the extended double-precision floating- | |
4840 | | point value `a' to the 32-bit two's complement integer format. The | |
4841 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4842 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4843 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
4844 | | largest positive integer is returned. Otherwise, if the conversion | |
4845 | | overflows, the largest integer with the same sign as `a' is returned. | |
4846 | *----------------------------------------------------------------------------*/ | |
4847 | ||
f4014512 | 4848 | int32_t floatx80_to_int32(floatx80 a, float_status *status) |
158142c2 FB |
4849 | { |
4850 | flag aSign; | |
f4014512 | 4851 | int32_t aExp, shiftCount; |
bb98fe42 | 4852 | uint64_t aSig; |
158142c2 | 4853 | |
d1eb8f2a AD |
4854 | if (floatx80_invalid_encoding(a)) { |
4855 | float_raise(float_flag_invalid, status); | |
4856 | return 1 << 31; | |
4857 | } | |
158142c2 FB |
4858 | aSig = extractFloatx80Frac( a ); |
4859 | aExp = extractFloatx80Exp( a ); | |
4860 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4861 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4862 | shiftCount = 0x4037 - aExp; |
4863 | if ( shiftCount <= 0 ) shiftCount = 1; | |
4864 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 4865 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
4866 | |
4867 | } | |
4868 | ||
4869 | /*---------------------------------------------------------------------------- | |
4870 | | Returns the result of converting the extended double-precision floating- | |
4871 | | point value `a' to the 32-bit two's complement integer format. The | |
4872 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4873 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4874 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4875 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4876 | | sign as `a' is returned. | |
4877 | *----------------------------------------------------------------------------*/ | |
4878 | ||
f4014512 | 4879 | int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4880 | { |
4881 | flag aSign; | |
f4014512 | 4882 | int32_t aExp, shiftCount; |
bb98fe42 | 4883 | uint64_t aSig, savedASig; |
b3a6a2e0 | 4884 | int32_t z; |
158142c2 | 4885 | |
d1eb8f2a AD |
4886 | if (floatx80_invalid_encoding(a)) { |
4887 | float_raise(float_flag_invalid, status); | |
4888 | return 1 << 31; | |
4889 | } | |
158142c2 FB |
4890 | aSig = extractFloatx80Frac( a ); |
4891 | aExp = extractFloatx80Exp( a ); | |
4892 | aSign = extractFloatx80Sign( a ); | |
4893 | if ( 0x401E < aExp ) { | |
bb98fe42 | 4894 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4895 | goto invalid; |
4896 | } | |
4897 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4898 | if (aExp || aSig) { |
4899 | status->float_exception_flags |= float_flag_inexact; | |
4900 | } | |
158142c2 FB |
4901 | return 0; |
4902 | } | |
4903 | shiftCount = 0x403E - aExp; | |
4904 | savedASig = aSig; | |
4905 | aSig >>= shiftCount; | |
4906 | z = aSig; | |
4907 | if ( aSign ) z = - z; | |
4908 | if ( ( z < 0 ) ^ aSign ) { | |
4909 | invalid: | |
ff32e16e | 4910 | float_raise(float_flag_invalid, status); |
bb98fe42 | 4911 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
4912 | } |
4913 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 4914 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4915 | } |
4916 | return z; | |
4917 | ||
4918 | } | |
4919 | ||
4920 | /*---------------------------------------------------------------------------- | |
4921 | | Returns the result of converting the extended double-precision floating- | |
4922 | | point value `a' to the 64-bit two's complement integer format. The | |
4923 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4924 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4925 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
4926 | | the largest positive integer is returned. Otherwise, if the conversion | |
4927 | | overflows, the largest integer with the same sign as `a' is returned. | |
4928 | *----------------------------------------------------------------------------*/ | |
4929 | ||
f42c2224 | 4930 | int64_t floatx80_to_int64(floatx80 a, float_status *status) |
158142c2 FB |
4931 | { |
4932 | flag aSign; | |
f4014512 | 4933 | int32_t aExp, shiftCount; |
bb98fe42 | 4934 | uint64_t aSig, aSigExtra; |
158142c2 | 4935 | |
d1eb8f2a AD |
4936 | if (floatx80_invalid_encoding(a)) { |
4937 | float_raise(float_flag_invalid, status); | |
4938 | return 1ULL << 63; | |
4939 | } | |
158142c2 FB |
4940 | aSig = extractFloatx80Frac( a ); |
4941 | aExp = extractFloatx80Exp( a ); | |
4942 | aSign = extractFloatx80Sign( a ); | |
4943 | shiftCount = 0x403E - aExp; | |
4944 | if ( shiftCount <= 0 ) { | |
4945 | if ( shiftCount ) { | |
ff32e16e | 4946 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4947 | if ( ! aSign |
4948 | || ( ( aExp == 0x7FFF ) | |
4949 | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
4950 | ) { | |
4951 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4952 | } | |
bb98fe42 | 4953 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4954 | } |
4955 | aSigExtra = 0; | |
4956 | } | |
4957 | else { | |
4958 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
4959 | } | |
ff32e16e | 4960 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
4961 | |
4962 | } | |
4963 | ||
4964 | /*---------------------------------------------------------------------------- | |
4965 | | Returns the result of converting the extended double-precision floating- | |
4966 | | point value `a' to the 64-bit two's complement integer format. The | |
4967 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4968 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4969 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4970 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4971 | | sign as `a' is returned. | |
4972 | *----------------------------------------------------------------------------*/ | |
4973 | ||
f42c2224 | 4974 | int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4975 | { |
4976 | flag aSign; | |
f4014512 | 4977 | int32_t aExp, shiftCount; |
bb98fe42 | 4978 | uint64_t aSig; |
f42c2224 | 4979 | int64_t z; |
158142c2 | 4980 | |
d1eb8f2a AD |
4981 | if (floatx80_invalid_encoding(a)) { |
4982 | float_raise(float_flag_invalid, status); | |
4983 | return 1ULL << 63; | |
4984 | } | |
158142c2 FB |
4985 | aSig = extractFloatx80Frac( a ); |
4986 | aExp = extractFloatx80Exp( a ); | |
4987 | aSign = extractFloatx80Sign( a ); | |
4988 | shiftCount = aExp - 0x403E; | |
4989 | if ( 0 <= shiftCount ) { | |
4990 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4991 | if ( ( a.high != 0xC03E ) || aSig ) { | |
ff32e16e | 4992 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4993 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { |
4994 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4995 | } | |
4996 | } | |
bb98fe42 | 4997 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4998 | } |
4999 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
5000 | if (aExp | aSig) { |
5001 | status->float_exception_flags |= float_flag_inexact; | |
5002 | } | |
158142c2 FB |
5003 | return 0; |
5004 | } | |
5005 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 5006 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 5007 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5008 | } |
5009 | if ( aSign ) z = - z; | |
5010 | return z; | |
5011 | ||
5012 | } | |
5013 | ||
5014 | /*---------------------------------------------------------------------------- | |
5015 | | Returns the result of converting the extended double-precision floating- | |
5016 | | point value `a' to the single-precision floating-point format. The | |
5017 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5018 | | Floating-Point Arithmetic. | |
5019 | *----------------------------------------------------------------------------*/ | |
5020 | ||
e5a41ffa | 5021 | float32 floatx80_to_float32(floatx80 a, float_status *status) |
158142c2 FB |
5022 | { |
5023 | flag aSign; | |
f4014512 | 5024 | int32_t aExp; |
bb98fe42 | 5025 | uint64_t aSig; |
158142c2 | 5026 | |
d1eb8f2a AD |
5027 | if (floatx80_invalid_encoding(a)) { |
5028 | float_raise(float_flag_invalid, status); | |
5029 | return float32_default_nan(status); | |
5030 | } | |
158142c2 FB |
5031 | aSig = extractFloatx80Frac( a ); |
5032 | aExp = extractFloatx80Exp( a ); | |
5033 | aSign = extractFloatx80Sign( a ); | |
5034 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5035 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5036 | return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5037 | } |
5038 | return packFloat32( aSign, 0xFF, 0 ); | |
5039 | } | |
5040 | shift64RightJamming( aSig, 33, &aSig ); | |
5041 | if ( aExp || aSig ) aExp -= 0x3F81; | |
ff32e16e | 5042 | return roundAndPackFloat32(aSign, aExp, aSig, status); |
158142c2 FB |
5043 | |
5044 | } | |
5045 | ||
5046 | /*---------------------------------------------------------------------------- | |
5047 | | Returns the result of converting the extended double-precision floating- | |
5048 | | point value `a' to the double-precision floating-point format. The | |
5049 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5050 | | Floating-Point Arithmetic. | |
5051 | *----------------------------------------------------------------------------*/ | |
5052 | ||
e5a41ffa | 5053 | float64 floatx80_to_float64(floatx80 a, float_status *status) |
158142c2 FB |
5054 | { |
5055 | flag aSign; | |
f4014512 | 5056 | int32_t aExp; |
bb98fe42 | 5057 | uint64_t aSig, zSig; |
158142c2 | 5058 | |
d1eb8f2a AD |
5059 | if (floatx80_invalid_encoding(a)) { |
5060 | float_raise(float_flag_invalid, status); | |
5061 | return float64_default_nan(status); | |
5062 | } | |
158142c2 FB |
5063 | aSig = extractFloatx80Frac( a ); |
5064 | aExp = extractFloatx80Exp( a ); | |
5065 | aSign = extractFloatx80Sign( a ); | |
5066 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5067 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5068 | return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5069 | } |
5070 | return packFloat64( aSign, 0x7FF, 0 ); | |
5071 | } | |
5072 | shift64RightJamming( aSig, 1, &zSig ); | |
5073 | if ( aExp || aSig ) aExp -= 0x3C01; | |
ff32e16e | 5074 | return roundAndPackFloat64(aSign, aExp, zSig, status); |
158142c2 FB |
5075 | |
5076 | } | |
5077 | ||
158142c2 FB |
5078 | /*---------------------------------------------------------------------------- |
5079 | | Returns the result of converting the extended double-precision floating- | |
5080 | | point value `a' to the quadruple-precision floating-point format. The | |
5081 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5082 | | Floating-Point Arithmetic. | |
5083 | *----------------------------------------------------------------------------*/ | |
5084 | ||
e5a41ffa | 5085 | float128 floatx80_to_float128(floatx80 a, float_status *status) |
158142c2 FB |
5086 | { |
5087 | flag aSign; | |
0c48262d | 5088 | int aExp; |
bb98fe42 | 5089 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 5090 | |
d1eb8f2a AD |
5091 | if (floatx80_invalid_encoding(a)) { |
5092 | float_raise(float_flag_invalid, status); | |
5093 | return float128_default_nan(status); | |
5094 | } | |
158142c2 FB |
5095 | aSig = extractFloatx80Frac( a ); |
5096 | aExp = extractFloatx80Exp( a ); | |
5097 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 5098 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 5099 | return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
5100 | } |
5101 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
5102 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
5103 | ||
5104 | } | |
5105 | ||
0f721292 LV |
5106 | /*---------------------------------------------------------------------------- |
5107 | | Rounds the extended double-precision floating-point value `a' | |
5108 | | to the precision provided by floatx80_rounding_precision and returns the | |
5109 | | result as an extended double-precision floating-point value. | |
5110 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
5111 | | Floating-Point Arithmetic. | |
5112 | *----------------------------------------------------------------------------*/ | |
5113 | ||
5114 | floatx80 floatx80_round(floatx80 a, float_status *status) | |
5115 | { | |
5116 | return roundAndPackFloatx80(status->floatx80_rounding_precision, | |
5117 | extractFloatx80Sign(a), | |
5118 | extractFloatx80Exp(a), | |
5119 | extractFloatx80Frac(a), 0, status); | |
5120 | } | |
5121 | ||
158142c2 FB |
5122 | /*---------------------------------------------------------------------------- |
5123 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
5124 | | and returns the result as an extended quadruple-precision floating-point | |
5125 | | value. The operation is performed according to the IEC/IEEE Standard for | |
5126 | | Binary Floating-Point Arithmetic. | |
5127 | *----------------------------------------------------------------------------*/ | |
5128 | ||
e5a41ffa | 5129 | floatx80 floatx80_round_to_int(floatx80 a, float_status *status) |
158142c2 FB |
5130 | { |
5131 | flag aSign; | |
f4014512 | 5132 | int32_t aExp; |
bb98fe42 | 5133 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5134 | floatx80 z; |
5135 | ||
d1eb8f2a AD |
5136 | if (floatx80_invalid_encoding(a)) { |
5137 | float_raise(float_flag_invalid, status); | |
5138 | return floatx80_default_nan(status); | |
5139 | } | |
158142c2 FB |
5140 | aExp = extractFloatx80Exp( a ); |
5141 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 5142 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
ff32e16e | 5143 | return propagateFloatx80NaN(a, a, status); |
158142c2 FB |
5144 | } |
5145 | return a; | |
5146 | } | |
5147 | if ( aExp < 0x3FFF ) { | |
5148 | if ( ( aExp == 0 ) | |
bb98fe42 | 5149 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
5150 | return a; |
5151 | } | |
a2f2d288 | 5152 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 5153 | aSign = extractFloatx80Sign( a ); |
a2f2d288 | 5154 | switch (status->float_rounding_mode) { |
158142c2 | 5155 | case float_round_nearest_even: |
bb98fe42 | 5156 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
5157 | ) { |
5158 | return | |
5159 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5160 | } | |
5161 | break; | |
f9288a76 PM |
5162 | case float_round_ties_away: |
5163 | if (aExp == 0x3FFE) { | |
5164 | return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); | |
5165 | } | |
5166 | break; | |
158142c2 FB |
5167 | case float_round_down: |
5168 | return | |
5169 | aSign ? | |
5170 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
5171 | : packFloatx80( 0, 0, 0 ); | |
5172 | case float_round_up: | |
5173 | return | |
5174 | aSign ? packFloatx80( 1, 0, 0 ) | |
5175 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
5176 | } | |
5177 | return packFloatx80( aSign, 0, 0 ); | |
5178 | } | |
5179 | lastBitMask = 1; | |
5180 | lastBitMask <<= 0x403E - aExp; | |
5181 | roundBitsMask = lastBitMask - 1; | |
5182 | z = a; | |
a2f2d288 | 5183 | switch (status->float_rounding_mode) { |
dc355b76 | 5184 | case float_round_nearest_even: |
158142c2 | 5185 | z.low += lastBitMask>>1; |
dc355b76 PM |
5186 | if ((z.low & roundBitsMask) == 0) { |
5187 | z.low &= ~lastBitMask; | |
5188 | } | |
5189 | break; | |
f9288a76 PM |
5190 | case float_round_ties_away: |
5191 | z.low += lastBitMask >> 1; | |
5192 | break; | |
dc355b76 PM |
5193 | case float_round_to_zero: |
5194 | break; | |
5195 | case float_round_up: | |
5196 | if (!extractFloatx80Sign(z)) { | |
5197 | z.low += roundBitsMask; | |
5198 | } | |
5199 | break; | |
5200 | case float_round_down: | |
5201 | if (extractFloatx80Sign(z)) { | |
158142c2 FB |
5202 | z.low += roundBitsMask; |
5203 | } | |
dc355b76 PM |
5204 | break; |
5205 | default: | |
5206 | abort(); | |
158142c2 FB |
5207 | } |
5208 | z.low &= ~ roundBitsMask; | |
5209 | if ( z.low == 0 ) { | |
5210 | ++z.high; | |
5211 | z.low = LIT64( 0x8000000000000000 ); | |
5212 | } | |
a2f2d288 PM |
5213 | if (z.low != a.low) { |
5214 | status->float_exception_flags |= float_flag_inexact; | |
5215 | } | |
158142c2 FB |
5216 | return z; |
5217 | ||
5218 | } | |
5219 | ||
5220 | /*---------------------------------------------------------------------------- | |
5221 | | Returns the result of adding the absolute values of the extended double- | |
5222 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
5223 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
5224 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
5225 | | Floating-Point Arithmetic. | |
5226 | *----------------------------------------------------------------------------*/ | |
5227 | ||
e5a41ffa PM |
5228 | static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5229 | float_status *status) | |
158142c2 | 5230 | { |
f4014512 | 5231 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5232 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 5233 | int32_t expDiff; |
158142c2 FB |
5234 | |
5235 | aSig = extractFloatx80Frac( a ); | |
5236 | aExp = extractFloatx80Exp( a ); | |
5237 | bSig = extractFloatx80Frac( b ); | |
5238 | bExp = extractFloatx80Exp( b ); | |
5239 | expDiff = aExp - bExp; | |
5240 | if ( 0 < expDiff ) { | |
5241 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5242 | if ((uint64_t)(aSig << 1)) { |
5243 | return propagateFloatx80NaN(a, b, status); | |
5244 | } | |
158142c2 FB |
5245 | return a; |
5246 | } | |
5247 | if ( bExp == 0 ) --expDiff; | |
5248 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5249 | zExp = aExp; | |
5250 | } | |
5251 | else if ( expDiff < 0 ) { | |
5252 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5253 | if ((uint64_t)(bSig << 1)) { |
5254 | return propagateFloatx80NaN(a, b, status); | |
5255 | } | |
158142c2 FB |
5256 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5257 | } | |
5258 | if ( aExp == 0 ) ++expDiff; | |
5259 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5260 | zExp = bExp; | |
5261 | } | |
5262 | else { | |
5263 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5264 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5265 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5266 | } |
5267 | return a; | |
5268 | } | |
5269 | zSig1 = 0; | |
5270 | zSig0 = aSig + bSig; | |
5271 | if ( aExp == 0 ) { | |
5272 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
5273 | goto roundAndPack; | |
5274 | } | |
5275 | zExp = aExp; | |
5276 | goto shiftRight1; | |
5277 | } | |
5278 | zSig0 = aSig + bSig; | |
bb98fe42 | 5279 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
5280 | shiftRight1: |
5281 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
5282 | zSig0 |= LIT64( 0x8000000000000000 ); | |
5283 | ++zExp; | |
5284 | roundAndPack: | |
a2f2d288 | 5285 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5286 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5287 | } |
5288 | ||
5289 | /*---------------------------------------------------------------------------- | |
5290 | | Returns the result of subtracting the absolute values of the extended | |
5291 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
5292 | | difference is negated before being returned. `zSign' is ignored if the | |
5293 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
5294 | | Standard for Binary Floating-Point Arithmetic. | |
5295 | *----------------------------------------------------------------------------*/ | |
5296 | ||
e5a41ffa PM |
5297 | static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
5298 | float_status *status) | |
158142c2 | 5299 | { |
f4014512 | 5300 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5301 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 5302 | int32_t expDiff; |
158142c2 FB |
5303 | |
5304 | aSig = extractFloatx80Frac( a ); | |
5305 | aExp = extractFloatx80Exp( a ); | |
5306 | bSig = extractFloatx80Frac( b ); | |
5307 | bExp = extractFloatx80Exp( b ); | |
5308 | expDiff = aExp - bExp; | |
5309 | if ( 0 < expDiff ) goto aExpBigger; | |
5310 | if ( expDiff < 0 ) goto bExpBigger; | |
5311 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 5312 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 5313 | return propagateFloatx80NaN(a, b, status); |
158142c2 | 5314 | } |
ff32e16e | 5315 | float_raise(float_flag_invalid, status); |
af39bc8c | 5316 | return floatx80_default_nan(status); |
158142c2 FB |
5317 | } |
5318 | if ( aExp == 0 ) { | |
5319 | aExp = 1; | |
5320 | bExp = 1; | |
5321 | } | |
5322 | zSig1 = 0; | |
5323 | if ( bSig < aSig ) goto aBigger; | |
5324 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 5325 | return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
5326 | bExpBigger: |
5327 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5328 | if ((uint64_t)(bSig << 1)) { |
5329 | return propagateFloatx80NaN(a, b, status); | |
5330 | } | |
158142c2 FB |
5331 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5332 | } | |
5333 | if ( aExp == 0 ) ++expDiff; | |
5334 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
5335 | bBigger: | |
5336 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
5337 | zExp = bExp; | |
5338 | zSign ^= 1; | |
5339 | goto normalizeRoundAndPack; | |
5340 | aExpBigger: | |
5341 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5342 | if ((uint64_t)(aSig << 1)) { |
5343 | return propagateFloatx80NaN(a, b, status); | |
5344 | } | |
158142c2 FB |
5345 | return a; |
5346 | } | |
5347 | if ( bExp == 0 ) --expDiff; | |
5348 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
5349 | aBigger: | |
5350 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
5351 | zExp = aExp; | |
5352 | normalizeRoundAndPack: | |
a2f2d288 | 5353 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5354 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5355 | } |
5356 | ||
5357 | /*---------------------------------------------------------------------------- | |
5358 | | Returns the result of adding the extended double-precision floating-point | |
5359 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5360 | | Standard for Binary Floating-Point Arithmetic. | |
5361 | *----------------------------------------------------------------------------*/ | |
5362 | ||
e5a41ffa | 5363 | floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5364 | { |
5365 | flag aSign, bSign; | |
5366 | ||
d1eb8f2a AD |
5367 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5368 | float_raise(float_flag_invalid, status); | |
5369 | return floatx80_default_nan(status); | |
5370 | } | |
158142c2 FB |
5371 | aSign = extractFloatx80Sign( a ); |
5372 | bSign = extractFloatx80Sign( b ); | |
5373 | if ( aSign == bSign ) { | |
ff32e16e | 5374 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5375 | } |
5376 | else { | |
ff32e16e | 5377 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5378 | } |
5379 | ||
5380 | } | |
5381 | ||
5382 | /*---------------------------------------------------------------------------- | |
5383 | | Returns the result of subtracting the extended double-precision floating- | |
5384 | | point values `a' and `b'. The operation is performed according to the | |
5385 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5386 | *----------------------------------------------------------------------------*/ | |
5387 | ||
e5a41ffa | 5388 | floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5389 | { |
5390 | flag aSign, bSign; | |
5391 | ||
d1eb8f2a AD |
5392 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5393 | float_raise(float_flag_invalid, status); | |
5394 | return floatx80_default_nan(status); | |
5395 | } | |
158142c2 FB |
5396 | aSign = extractFloatx80Sign( a ); |
5397 | bSign = extractFloatx80Sign( b ); | |
5398 | if ( aSign == bSign ) { | |
ff32e16e | 5399 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5400 | } |
5401 | else { | |
ff32e16e | 5402 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
5403 | } |
5404 | ||
5405 | } | |
5406 | ||
5407 | /*---------------------------------------------------------------------------- | |
5408 | | Returns the result of multiplying the extended double-precision floating- | |
5409 | | point values `a' and `b'. The operation is performed according to the | |
5410 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5411 | *----------------------------------------------------------------------------*/ | |
5412 | ||
e5a41ffa | 5413 | floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5414 | { |
5415 | flag aSign, bSign, zSign; | |
f4014512 | 5416 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5417 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 5418 | |
d1eb8f2a AD |
5419 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5420 | float_raise(float_flag_invalid, status); | |
5421 | return floatx80_default_nan(status); | |
5422 | } | |
158142c2 FB |
5423 | aSig = extractFloatx80Frac( a ); |
5424 | aExp = extractFloatx80Exp( a ); | |
5425 | aSign = extractFloatx80Sign( a ); | |
5426 | bSig = extractFloatx80Frac( b ); | |
5427 | bExp = extractFloatx80Exp( b ); | |
5428 | bSign = extractFloatx80Sign( b ); | |
5429 | zSign = aSign ^ bSign; | |
5430 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
5431 | if ( (uint64_t) ( aSig<<1 ) |
5432 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5433 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5434 | } |
5435 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
5436 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5437 | } | |
5438 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5439 | if ((uint64_t)(bSig << 1)) { |
5440 | return propagateFloatx80NaN(a, b, status); | |
5441 | } | |
158142c2 FB |
5442 | if ( ( aExp | aSig ) == 0 ) { |
5443 | invalid: | |
ff32e16e | 5444 | float_raise(float_flag_invalid, status); |
af39bc8c | 5445 | return floatx80_default_nan(status); |
158142c2 FB |
5446 | } |
5447 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5448 | } | |
5449 | if ( aExp == 0 ) { | |
5450 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5451 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5452 | } | |
5453 | if ( bExp == 0 ) { | |
5454 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5455 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5456 | } | |
5457 | zExp = aExp + bExp - 0x3FFE; | |
5458 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 5459 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
5460 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
5461 | --zExp; | |
5462 | } | |
a2f2d288 | 5463 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5464 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5465 | } |
5466 | ||
5467 | /*---------------------------------------------------------------------------- | |
5468 | | Returns the result of dividing the extended double-precision floating-point | |
5469 | | value `a' by the corresponding value `b'. The operation is performed | |
5470 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5471 | *----------------------------------------------------------------------------*/ | |
5472 | ||
e5a41ffa | 5473 | floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5474 | { |
5475 | flag aSign, bSign, zSign; | |
f4014512 | 5476 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
5477 | uint64_t aSig, bSig, zSig0, zSig1; |
5478 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 | 5479 | |
d1eb8f2a AD |
5480 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5481 | float_raise(float_flag_invalid, status); | |
5482 | return floatx80_default_nan(status); | |
5483 | } | |
158142c2 FB |
5484 | aSig = extractFloatx80Frac( a ); |
5485 | aExp = extractFloatx80Exp( a ); | |
5486 | aSign = extractFloatx80Sign( a ); | |
5487 | bSig = extractFloatx80Frac( b ); | |
5488 | bExp = extractFloatx80Exp( b ); | |
5489 | bSign = extractFloatx80Sign( b ); | |
5490 | zSign = aSign ^ bSign; | |
5491 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5492 | if ((uint64_t)(aSig << 1)) { |
5493 | return propagateFloatx80NaN(a, b, status); | |
5494 | } | |
158142c2 | 5495 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
5496 | if ((uint64_t)(bSig << 1)) { |
5497 | return propagateFloatx80NaN(a, b, status); | |
5498 | } | |
158142c2 FB |
5499 | goto invalid; |
5500 | } | |
5501 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5502 | } | |
5503 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5504 | if ((uint64_t)(bSig << 1)) { |
5505 | return propagateFloatx80NaN(a, b, status); | |
5506 | } | |
158142c2 FB |
5507 | return packFloatx80( zSign, 0, 0 ); |
5508 | } | |
5509 | if ( bExp == 0 ) { | |
5510 | if ( bSig == 0 ) { | |
5511 | if ( ( aExp | aSig ) == 0 ) { | |
5512 | invalid: | |
ff32e16e | 5513 | float_raise(float_flag_invalid, status); |
af39bc8c | 5514 | return floatx80_default_nan(status); |
158142c2 | 5515 | } |
ff32e16e | 5516 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
5517 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
5518 | } | |
5519 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5520 | } | |
5521 | if ( aExp == 0 ) { | |
5522 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
5523 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
5524 | } | |
5525 | zExp = aExp - bExp + 0x3FFE; | |
5526 | rem1 = 0; | |
5527 | if ( bSig <= aSig ) { | |
5528 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
5529 | ++zExp; | |
5530 | } | |
5531 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
5532 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
5533 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5534 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5535 | --zSig0; |
5536 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
5537 | } | |
5538 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 5539 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
5540 | mul64To128( bSig, zSig1, &term1, &term2 ); |
5541 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 5542 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5543 | --zSig1; |
5544 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
5545 | } | |
5546 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
5547 | } | |
a2f2d288 | 5548 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 5549 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
5550 | } |
5551 | ||
5552 | /*---------------------------------------------------------------------------- | |
5553 | | Returns the remainder of the extended double-precision floating-point value | |
5554 | | `a' with respect to the corresponding value `b'. The operation is performed | |
5555 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5556 | *----------------------------------------------------------------------------*/ | |
5557 | ||
e5a41ffa | 5558 | floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) |
158142c2 | 5559 | { |
ed086f3d | 5560 | flag aSign, zSign; |
f4014512 | 5561 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
5562 | uint64_t aSig0, aSig1, bSig; |
5563 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 | 5564 | |
d1eb8f2a AD |
5565 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5566 | float_raise(float_flag_invalid, status); | |
5567 | return floatx80_default_nan(status); | |
5568 | } | |
158142c2 FB |
5569 | aSig0 = extractFloatx80Frac( a ); |
5570 | aExp = extractFloatx80Exp( a ); | |
5571 | aSign = extractFloatx80Sign( a ); | |
5572 | bSig = extractFloatx80Frac( b ); | |
5573 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 5574 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
5575 | if ( (uint64_t) ( aSig0<<1 ) |
5576 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5577 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5578 | } |
5579 | goto invalid; | |
5580 | } | |
5581 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5582 | if ((uint64_t)(bSig << 1)) { |
5583 | return propagateFloatx80NaN(a, b, status); | |
5584 | } | |
158142c2 FB |
5585 | return a; |
5586 | } | |
5587 | if ( bExp == 0 ) { | |
5588 | if ( bSig == 0 ) { | |
5589 | invalid: | |
ff32e16e | 5590 | float_raise(float_flag_invalid, status); |
af39bc8c | 5591 | return floatx80_default_nan(status); |
158142c2 FB |
5592 | } |
5593 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5594 | } | |
5595 | if ( aExp == 0 ) { | |
bb98fe42 | 5596 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
5597 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
5598 | } | |
5599 | bSig |= LIT64( 0x8000000000000000 ); | |
5600 | zSign = aSign; | |
5601 | expDiff = aExp - bExp; | |
5602 | aSig1 = 0; | |
5603 | if ( expDiff < 0 ) { | |
5604 | if ( expDiff < -1 ) return a; | |
5605 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
5606 | expDiff = 0; | |
5607 | } | |
5608 | q = ( bSig <= aSig0 ); | |
5609 | if ( q ) aSig0 -= bSig; | |
5610 | expDiff -= 64; | |
5611 | while ( 0 < expDiff ) { | |
5612 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5613 | q = ( 2 < q ) ? q - 2 : 0; | |
5614 | mul64To128( bSig, q, &term0, &term1 ); | |
5615 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5616 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
5617 | expDiff -= 62; | |
5618 | } | |
5619 | expDiff += 64; | |
5620 | if ( 0 < expDiff ) { | |
5621 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5622 | q = ( 2 < q ) ? q - 2 : 0; | |
5623 | q >>= 64 - expDiff; | |
5624 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
5625 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5626 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
5627 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
5628 | ++q; | |
5629 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5630 | } | |
5631 | } | |
5632 | else { | |
5633 | term1 = 0; | |
5634 | term0 = bSig; | |
5635 | } | |
5636 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
5637 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5638 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5639 | && ( q & 1 ) ) | |
5640 | ) { | |
5641 | aSig0 = alternateASig0; | |
5642 | aSig1 = alternateASig1; | |
5643 | zSign = ! zSign; | |
5644 | } | |
5645 | return | |
5646 | normalizeRoundAndPackFloatx80( | |
ff32e16e | 5647 | 80, zSign, bExp + expDiff, aSig0, aSig1, status); |
158142c2 FB |
5648 | |
5649 | } | |
5650 | ||
5651 | /*---------------------------------------------------------------------------- | |
5652 | | Returns the square root of the extended double-precision floating-point | |
5653 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
5654 | | for Binary Floating-Point Arithmetic. | |
5655 | *----------------------------------------------------------------------------*/ | |
5656 | ||
e5a41ffa | 5657 | floatx80 floatx80_sqrt(floatx80 a, float_status *status) |
158142c2 FB |
5658 | { |
5659 | flag aSign; | |
f4014512 | 5660 | int32_t aExp, zExp; |
bb98fe42 AF |
5661 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
5662 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 | 5663 | |
d1eb8f2a AD |
5664 | if (floatx80_invalid_encoding(a)) { |
5665 | float_raise(float_flag_invalid, status); | |
5666 | return floatx80_default_nan(status); | |
5667 | } | |
158142c2 FB |
5668 | aSig0 = extractFloatx80Frac( a ); |
5669 | aExp = extractFloatx80Exp( a ); | |
5670 | aSign = extractFloatx80Sign( a ); | |
5671 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5672 | if ((uint64_t)(aSig0 << 1)) { |
5673 | return propagateFloatx80NaN(a, a, status); | |
5674 | } | |
158142c2 FB |
5675 | if ( ! aSign ) return a; |
5676 | goto invalid; | |
5677 | } | |
5678 | if ( aSign ) { | |
5679 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
5680 | invalid: | |
ff32e16e | 5681 | float_raise(float_flag_invalid, status); |
af39bc8c | 5682 | return floatx80_default_nan(status); |
158142c2 FB |
5683 | } |
5684 | if ( aExp == 0 ) { | |
5685 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
5686 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
5687 | } | |
5688 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
5689 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
5690 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
5691 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
5692 | doubleZSig0 = zSig0<<1; | |
5693 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
5694 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5695 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5696 | --zSig0; |
5697 | doubleZSig0 -= 2; | |
5698 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
5699 | } | |
5700 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
5701 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
5702 | if ( zSig1 == 0 ) zSig1 = 1; | |
5703 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5704 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5705 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5706 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5707 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5708 | --zSig1; |
5709 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5710 | term3 |= 1; | |
5711 | term2 |= doubleZSig0; | |
5712 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5713 | } | |
5714 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5715 | } | |
5716 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
5717 | zSig0 |= doubleZSig0; | |
a2f2d288 PM |
5718 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
5719 | 0, zExp, zSig0, zSig1, status); | |
158142c2 FB |
5720 | } |
5721 | ||
5722 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
5723 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
5724 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
5725 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5726 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5727 | *----------------------------------------------------------------------------*/ |
5728 | ||
e5a41ffa | 5729 | int floatx80_eq(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5730 | { |
5731 | ||
d1eb8f2a AD |
5732 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5733 | || (extractFloatx80Exp(a) == 0x7FFF | |
5734 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5735 | || (extractFloatx80Exp(b) == 0x7FFF | |
5736 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5737 | ) { |
ff32e16e | 5738 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5739 | return 0; |
5740 | } | |
5741 | return | |
5742 | ( a.low == b.low ) | |
5743 | && ( ( a.high == b.high ) | |
5744 | || ( ( a.low == 0 ) | |
bb98fe42 | 5745 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5746 | ); |
5747 | ||
5748 | } | |
5749 | ||
5750 | /*---------------------------------------------------------------------------- | |
5751 | | Returns 1 if the extended double-precision floating-point value `a' is | |
5752 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
5753 | | invalid exception is raised if either operand is a NaN. The comparison is |
5754 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5755 | | Arithmetic. | |
158142c2 FB |
5756 | *----------------------------------------------------------------------------*/ |
5757 | ||
e5a41ffa | 5758 | int floatx80_le(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5759 | { |
5760 | flag aSign, bSign; | |
5761 | ||
d1eb8f2a AD |
5762 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5763 | || (extractFloatx80Exp(a) == 0x7FFF | |
5764 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5765 | || (extractFloatx80Exp(b) == 0x7FFF | |
5766 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5767 | ) { |
ff32e16e | 5768 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5769 | return 0; |
5770 | } | |
5771 | aSign = extractFloatx80Sign( a ); | |
5772 | bSign = extractFloatx80Sign( b ); | |
5773 | if ( aSign != bSign ) { | |
5774 | return | |
5775 | aSign | |
bb98fe42 | 5776 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5777 | == 0 ); |
5778 | } | |
5779 | return | |
5780 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5781 | : le128( a.high, a.low, b.high, b.low ); | |
5782 | ||
5783 | } | |
5784 | ||
5785 | /*---------------------------------------------------------------------------- | |
5786 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
5787 | | less than the corresponding value `b', and 0 otherwise. The invalid |
5788 | | exception is raised if either operand is a NaN. The comparison is performed | |
5789 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5790 | *----------------------------------------------------------------------------*/ |
5791 | ||
e5a41ffa | 5792 | int floatx80_lt(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5793 | { |
5794 | flag aSign, bSign; | |
5795 | ||
d1eb8f2a AD |
5796 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5797 | || (extractFloatx80Exp(a) == 0x7FFF | |
5798 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5799 | || (extractFloatx80Exp(b) == 0x7FFF | |
5800 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5801 | ) { |
ff32e16e | 5802 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5803 | return 0; |
5804 | } | |
5805 | aSign = extractFloatx80Sign( a ); | |
5806 | bSign = extractFloatx80Sign( b ); | |
5807 | if ( aSign != bSign ) { | |
5808 | return | |
5809 | aSign | |
bb98fe42 | 5810 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5811 | != 0 ); |
5812 | } | |
5813 | return | |
5814 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5815 | : lt128( a.high, a.low, b.high, b.low ); | |
5816 | ||
5817 | } | |
5818 | ||
67b7861d AJ |
5819 | /*---------------------------------------------------------------------------- |
5820 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
5821 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
5822 | | either operand is a NaN. The comparison is performed according to the | |
5823 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d | 5824 | *----------------------------------------------------------------------------*/ |
e5a41ffa | 5825 | int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 5826 | { |
d1eb8f2a AD |
5827 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5828 | || (extractFloatx80Exp(a) == 0x7FFF | |
5829 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5830 | || (extractFloatx80Exp(b) == 0x7FFF | |
5831 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
67b7861d | 5832 | ) { |
ff32e16e | 5833 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5834 | return 1; |
5835 | } | |
5836 | return 0; | |
5837 | } | |
5838 | ||
158142c2 | 5839 | /*---------------------------------------------------------------------------- |
b689362d | 5840 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
5841 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
5842 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
5843 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5844 | *----------------------------------------------------------------------------*/ |
5845 | ||
e5a41ffa | 5846 | int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5847 | { |
5848 | ||
d1eb8f2a AD |
5849 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5850 | float_raise(float_flag_invalid, status); | |
5851 | return 0; | |
5852 | } | |
158142c2 | 5853 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5854 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5855 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5856 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5857 | ) { |
af39bc8c AM |
5858 | if (floatx80_is_signaling_nan(a, status) |
5859 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5860 | float_raise(float_flag_invalid, status); |
b689362d | 5861 | } |
158142c2 FB |
5862 | return 0; |
5863 | } | |
5864 | return | |
5865 | ( a.low == b.low ) | |
5866 | && ( ( a.high == b.high ) | |
5867 | || ( ( a.low == 0 ) | |
bb98fe42 | 5868 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5869 | ); |
5870 | ||
5871 | } | |
5872 | ||
5873 | /*---------------------------------------------------------------------------- | |
5874 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5875 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
5876 | | do not cause an exception. Otherwise, the comparison is performed according | |
5877 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5878 | *----------------------------------------------------------------------------*/ | |
5879 | ||
e5a41ffa | 5880 | int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5881 | { |
5882 | flag aSign, bSign; | |
5883 | ||
d1eb8f2a AD |
5884 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5885 | float_raise(float_flag_invalid, status); | |
5886 | return 0; | |
5887 | } | |
158142c2 | 5888 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5889 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5890 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5891 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5892 | ) { |
af39bc8c AM |
5893 | if (floatx80_is_signaling_nan(a, status) |
5894 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5895 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5896 | } |
5897 | return 0; | |
5898 | } | |
5899 | aSign = extractFloatx80Sign( a ); | |
5900 | bSign = extractFloatx80Sign( b ); | |
5901 | if ( aSign != bSign ) { | |
5902 | return | |
5903 | aSign | |
bb98fe42 | 5904 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5905 | == 0 ); |
5906 | } | |
5907 | return | |
5908 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5909 | : le128( a.high, a.low, b.high, b.low ); | |
5910 | ||
5911 | } | |
5912 | ||
5913 | /*---------------------------------------------------------------------------- | |
5914 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5915 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
5916 | | an exception. Otherwise, the comparison is performed according to the | |
5917 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5918 | *----------------------------------------------------------------------------*/ | |
5919 | ||
e5a41ffa | 5920 | int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5921 | { |
5922 | flag aSign, bSign; | |
5923 | ||
d1eb8f2a AD |
5924 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5925 | float_raise(float_flag_invalid, status); | |
5926 | return 0; | |
5927 | } | |
158142c2 | 5928 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5929 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5930 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5931 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5932 | ) { |
af39bc8c AM |
5933 | if (floatx80_is_signaling_nan(a, status) |
5934 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5935 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5936 | } |
5937 | return 0; | |
5938 | } | |
5939 | aSign = extractFloatx80Sign( a ); | |
5940 | bSign = extractFloatx80Sign( b ); | |
5941 | if ( aSign != bSign ) { | |
5942 | return | |
5943 | aSign | |
bb98fe42 | 5944 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5945 | != 0 ); |
5946 | } | |
5947 | return | |
5948 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5949 | : lt128( a.high, a.low, b.high, b.low ); | |
5950 | ||
5951 | } | |
5952 | ||
67b7861d AJ |
5953 | /*---------------------------------------------------------------------------- |
5954 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
5955 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
5956 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
5957 | | Floating-Point Arithmetic. | |
5958 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 5959 | int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 5960 | { |
d1eb8f2a AD |
5961 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5962 | float_raise(float_flag_invalid, status); | |
5963 | return 1; | |
5964 | } | |
67b7861d AJ |
5965 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
5966 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5967 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5968 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5969 | ) { | |
af39bc8c AM |
5970 | if (floatx80_is_signaling_nan(a, status) |
5971 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5972 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5973 | } |
5974 | return 1; | |
5975 | } | |
5976 | return 0; | |
5977 | } | |
5978 | ||
158142c2 FB |
5979 | /*---------------------------------------------------------------------------- |
5980 | | Returns the result of converting the quadruple-precision floating-point | |
5981 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5982 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5983 | | Arithmetic---which means in particular that the conversion is rounded | |
5984 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5985 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5986 | | largest integer with the same sign as `a' is returned. | |
5987 | *----------------------------------------------------------------------------*/ | |
5988 | ||
f4014512 | 5989 | int32_t float128_to_int32(float128 a, float_status *status) |
158142c2 FB |
5990 | { |
5991 | flag aSign; | |
f4014512 | 5992 | int32_t aExp, shiftCount; |
bb98fe42 | 5993 | uint64_t aSig0, aSig1; |
158142c2 FB |
5994 | |
5995 | aSig1 = extractFloat128Frac1( a ); | |
5996 | aSig0 = extractFloat128Frac0( a ); | |
5997 | aExp = extractFloat128Exp( a ); | |
5998 | aSign = extractFloat128Sign( a ); | |
5999 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
6000 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6001 | aSig0 |= ( aSig1 != 0 ); | |
6002 | shiftCount = 0x4028 - aExp; | |
6003 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
ff32e16e | 6004 | return roundAndPackInt32(aSign, aSig0, status); |
158142c2 FB |
6005 | |
6006 | } | |
6007 | ||
6008 | /*---------------------------------------------------------------------------- | |
6009 | | Returns the result of converting the quadruple-precision floating-point | |
6010 | | value `a' to the 32-bit two's complement integer format. The conversion | |
6011 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6012 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
6013 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
6014 | | conversion overflows, the largest integer with the same sign as `a' is | |
6015 | | returned. | |
6016 | *----------------------------------------------------------------------------*/ | |
6017 | ||
f4014512 | 6018 | int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
6019 | { |
6020 | flag aSign; | |
f4014512 | 6021 | int32_t aExp, shiftCount; |
bb98fe42 | 6022 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 6023 | int32_t z; |
158142c2 FB |
6024 | |
6025 | aSig1 = extractFloat128Frac1( a ); | |
6026 | aSig0 = extractFloat128Frac0( a ); | |
6027 | aExp = extractFloat128Exp( a ); | |
6028 | aSign = extractFloat128Sign( a ); | |
6029 | aSig0 |= ( aSig1 != 0 ); | |
6030 | if ( 0x401E < aExp ) { | |
6031 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
6032 | goto invalid; | |
6033 | } | |
6034 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
6035 | if (aExp || aSig0) { |
6036 | status->float_exception_flags |= float_flag_inexact; | |
6037 | } | |
158142c2 FB |
6038 | return 0; |
6039 | } | |
6040 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6041 | shiftCount = 0x402F - aExp; | |
6042 | savedASig = aSig0; | |
6043 | aSig0 >>= shiftCount; | |
6044 | z = aSig0; | |
6045 | if ( aSign ) z = - z; | |
6046 | if ( ( z < 0 ) ^ aSign ) { | |
6047 | invalid: | |
ff32e16e | 6048 | float_raise(float_flag_invalid, status); |
bb98fe42 | 6049 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
6050 | } |
6051 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
a2f2d288 | 6052 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6053 | } |
6054 | return z; | |
6055 | ||
6056 | } | |
6057 | ||
6058 | /*---------------------------------------------------------------------------- | |
6059 | | Returns the result of converting the quadruple-precision floating-point | |
6060 | | value `a' to the 64-bit two's complement integer format. The conversion | |
6061 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6062 | | Arithmetic---which means in particular that the conversion is rounded | |
6063 | | according to the current rounding mode. If `a' is a NaN, the largest | |
6064 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
6065 | | largest integer with the same sign as `a' is returned. | |
6066 | *----------------------------------------------------------------------------*/ | |
6067 | ||
f42c2224 | 6068 | int64_t float128_to_int64(float128 a, float_status *status) |
158142c2 FB |
6069 | { |
6070 | flag aSign; | |
f4014512 | 6071 | int32_t aExp, shiftCount; |
bb98fe42 | 6072 | uint64_t aSig0, aSig1; |
158142c2 FB |
6073 | |
6074 | aSig1 = extractFloat128Frac1( a ); | |
6075 | aSig0 = extractFloat128Frac0( a ); | |
6076 | aExp = extractFloat128Exp( a ); | |
6077 | aSign = extractFloat128Sign( a ); | |
6078 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6079 | shiftCount = 0x402F - aExp; | |
6080 | if ( shiftCount <= 0 ) { | |
6081 | if ( 0x403E < aExp ) { | |
ff32e16e | 6082 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6083 | if ( ! aSign |
6084 | || ( ( aExp == 0x7FFF ) | |
6085 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
6086 | ) | |
6087 | ) { | |
6088 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6089 | } | |
bb98fe42 | 6090 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6091 | } |
6092 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
6093 | } | |
6094 | else { | |
6095 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
6096 | } | |
ff32e16e | 6097 | return roundAndPackInt64(aSign, aSig0, aSig1, status); |
158142c2 FB |
6098 | |
6099 | } | |
6100 | ||
6101 | /*---------------------------------------------------------------------------- | |
6102 | | Returns the result of converting the quadruple-precision floating-point | |
6103 | | value `a' to the 64-bit two's complement integer format. The conversion | |
6104 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6105 | | Arithmetic, except that the conversion is always rounded toward zero. | |
6106 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
6107 | | the conversion overflows, the largest integer with the same sign as `a' is | |
6108 | | returned. | |
6109 | *----------------------------------------------------------------------------*/ | |
6110 | ||
f42c2224 | 6111 | int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
6112 | { |
6113 | flag aSign; | |
f4014512 | 6114 | int32_t aExp, shiftCount; |
bb98fe42 | 6115 | uint64_t aSig0, aSig1; |
f42c2224 | 6116 | int64_t z; |
158142c2 FB |
6117 | |
6118 | aSig1 = extractFloat128Frac1( a ); | |
6119 | aSig0 = extractFloat128Frac0( a ); | |
6120 | aExp = extractFloat128Exp( a ); | |
6121 | aSign = extractFloat128Sign( a ); | |
6122 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
6123 | shiftCount = aExp - 0x402F; | |
6124 | if ( 0 < shiftCount ) { | |
6125 | if ( 0x403E <= aExp ) { | |
6126 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
6127 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
6128 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
a2f2d288 PM |
6129 | if (aSig1) { |
6130 | status->float_exception_flags |= float_flag_inexact; | |
6131 | } | |
158142c2 FB |
6132 | } |
6133 | else { | |
ff32e16e | 6134 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6135 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { |
6136 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
6137 | } | |
6138 | } | |
bb98fe42 | 6139 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
6140 | } |
6141 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 6142 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
a2f2d288 | 6143 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6144 | } |
6145 | } | |
6146 | else { | |
6147 | if ( aExp < 0x3FFF ) { | |
6148 | if ( aExp | aSig0 | aSig1 ) { | |
a2f2d288 | 6149 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6150 | } |
6151 | return 0; | |
6152 | } | |
6153 | z = aSig0>>( - shiftCount ); | |
6154 | if ( aSig1 | |
bb98fe42 | 6155 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
a2f2d288 | 6156 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6157 | } |
6158 | } | |
6159 | if ( aSign ) z = - z; | |
6160 | return z; | |
6161 | ||
6162 | } | |
6163 | ||
2e6d8568 BR |
6164 | /*---------------------------------------------------------------------------- |
6165 | | Returns the result of converting the quadruple-precision floating-point value | |
6166 | | `a' to the 64-bit unsigned integer format. The conversion is | |
6167 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6168 | | Arithmetic---which means in particular that the conversion is rounded | |
6169 | | according to the current rounding mode. If `a' is a NaN, the largest | |
6170 | | positive integer is returned. If the conversion overflows, the | |
6171 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
6172 | | rounded and zero is returned; negative values that do not round to zero | |
6173 | | will raise the inexact exception. | |
6174 | *----------------------------------------------------------------------------*/ | |
6175 | ||
6176 | uint64_t float128_to_uint64(float128 a, float_status *status) | |
6177 | { | |
6178 | flag aSign; | |
6179 | int aExp; | |
6180 | int shiftCount; | |
6181 | uint64_t aSig0, aSig1; | |
6182 | ||
6183 | aSig0 = extractFloat128Frac0(a); | |
6184 | aSig1 = extractFloat128Frac1(a); | |
6185 | aExp = extractFloat128Exp(a); | |
6186 | aSign = extractFloat128Sign(a); | |
6187 | if (aSign && (aExp > 0x3FFE)) { | |
6188 | float_raise(float_flag_invalid, status); | |
6189 | if (float128_is_any_nan(a)) { | |
6190 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
6191 | } else { | |
6192 | return 0; | |
6193 | } | |
6194 | } | |
6195 | if (aExp) { | |
6196 | aSig0 |= LIT64(0x0001000000000000); | |
6197 | } | |
6198 | shiftCount = 0x402F - aExp; | |
6199 | if (shiftCount <= 0) { | |
6200 | if (0x403E < aExp) { | |
6201 | float_raise(float_flag_invalid, status); | |
6202 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
6203 | } | |
6204 | shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1); | |
6205 | } else { | |
6206 | shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1); | |
6207 | } | |
6208 | return roundAndPackUint64(aSign, aSig0, aSig1, status); | |
6209 | } | |
6210 | ||
6211 | uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status) | |
6212 | { | |
6213 | uint64_t v; | |
6214 | signed char current_rounding_mode = status->float_rounding_mode; | |
6215 | ||
6216 | set_float_rounding_mode(float_round_to_zero, status); | |
6217 | v = float128_to_uint64(a, status); | |
6218 | set_float_rounding_mode(current_rounding_mode, status); | |
6219 | ||
6220 | return v; | |
6221 | } | |
6222 | ||
158142c2 FB |
6223 | /*---------------------------------------------------------------------------- |
6224 | | Returns the result of converting the quadruple-precision floating-point | |
fd425037 BR |
6225 | | value `a' to the 32-bit unsigned integer format. The conversion |
6226 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6227 | | Arithmetic except that the conversion is always rounded toward zero. | |
6228 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, | |
6229 | | if the conversion overflows, the largest unsigned integer is returned. | |
6230 | | If 'a' is negative, the value is rounded and zero is returned; negative | |
6231 | | values that do not round to zero will raise the inexact exception. | |
6232 | *----------------------------------------------------------------------------*/ | |
6233 | ||
6234 | uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status) | |
6235 | { | |
6236 | uint64_t v; | |
6237 | uint32_t res; | |
6238 | int old_exc_flags = get_float_exception_flags(status); | |
6239 | ||
6240 | v = float128_to_uint64_round_to_zero(a, status); | |
6241 | if (v > 0xffffffff) { | |
6242 | res = 0xffffffff; | |
6243 | } else { | |
6244 | return v; | |
6245 | } | |
6246 | set_float_exception_flags(old_exc_flags, status); | |
6247 | float_raise(float_flag_invalid, status); | |
6248 | return res; | |
6249 | } | |
6250 | ||
6251 | /*---------------------------------------------------------------------------- | |
6252 | | Returns the result of converting the quadruple-precision floating-point | |
158142c2 FB |
6253 | | value `a' to the single-precision floating-point format. The conversion |
6254 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6255 | | Arithmetic. | |
6256 | *----------------------------------------------------------------------------*/ | |
6257 | ||
e5a41ffa | 6258 | float32 float128_to_float32(float128 a, float_status *status) |
158142c2 FB |
6259 | { |
6260 | flag aSign; | |
f4014512 | 6261 | int32_t aExp; |
bb98fe42 AF |
6262 | uint64_t aSig0, aSig1; |
6263 | uint32_t zSig; | |
158142c2 FB |
6264 | |
6265 | aSig1 = extractFloat128Frac1( a ); | |
6266 | aSig0 = extractFloat128Frac0( a ); | |
6267 | aExp = extractFloat128Exp( a ); | |
6268 | aSign = extractFloat128Sign( a ); | |
6269 | if ( aExp == 0x7FFF ) { | |
6270 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6271 | return commonNaNToFloat32(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6272 | } |
6273 | return packFloat32( aSign, 0xFF, 0 ); | |
6274 | } | |
6275 | aSig0 |= ( aSig1 != 0 ); | |
6276 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
6277 | zSig = aSig0; | |
6278 | if ( aExp || zSig ) { | |
6279 | zSig |= 0x40000000; | |
6280 | aExp -= 0x3F81; | |
6281 | } | |
ff32e16e | 6282 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
6283 | |
6284 | } | |
6285 | ||
6286 | /*---------------------------------------------------------------------------- | |
6287 | | Returns the result of converting the quadruple-precision floating-point | |
6288 | | value `a' to the double-precision floating-point format. The conversion | |
6289 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
6290 | | Arithmetic. | |
6291 | *----------------------------------------------------------------------------*/ | |
6292 | ||
e5a41ffa | 6293 | float64 float128_to_float64(float128 a, float_status *status) |
158142c2 FB |
6294 | { |
6295 | flag aSign; | |
f4014512 | 6296 | int32_t aExp; |
bb98fe42 | 6297 | uint64_t aSig0, aSig1; |
158142c2 FB |
6298 | |
6299 | aSig1 = extractFloat128Frac1( a ); | |
6300 | aSig0 = extractFloat128Frac0( a ); | |
6301 | aExp = extractFloat128Exp( a ); | |
6302 | aSign = extractFloat128Sign( a ); | |
6303 | if ( aExp == 0x7FFF ) { | |
6304 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6305 | return commonNaNToFloat64(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6306 | } |
6307 | return packFloat64( aSign, 0x7FF, 0 ); | |
6308 | } | |
6309 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6310 | aSig0 |= ( aSig1 != 0 ); | |
6311 | if ( aExp || aSig0 ) { | |
6312 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6313 | aExp -= 0x3C01; | |
6314 | } | |
ff32e16e | 6315 | return roundAndPackFloat64(aSign, aExp, aSig0, status); |
158142c2 FB |
6316 | |
6317 | } | |
6318 | ||
158142c2 FB |
6319 | /*---------------------------------------------------------------------------- |
6320 | | Returns the result of converting the quadruple-precision floating-point | |
6321 | | value `a' to the extended double-precision floating-point format. The | |
6322 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
6323 | | Floating-Point Arithmetic. | |
6324 | *----------------------------------------------------------------------------*/ | |
6325 | ||
e5a41ffa | 6326 | floatx80 float128_to_floatx80(float128 a, float_status *status) |
158142c2 FB |
6327 | { |
6328 | flag aSign; | |
f4014512 | 6329 | int32_t aExp; |
bb98fe42 | 6330 | uint64_t aSig0, aSig1; |
158142c2 FB |
6331 | |
6332 | aSig1 = extractFloat128Frac1( a ); | |
6333 | aSig0 = extractFloat128Frac0( a ); | |
6334 | aExp = extractFloat128Exp( a ); | |
6335 | aSign = extractFloat128Sign( a ); | |
6336 | if ( aExp == 0x7FFF ) { | |
6337 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 6338 | return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); |
158142c2 FB |
6339 | } |
6340 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
6341 | } | |
6342 | if ( aExp == 0 ) { | |
6343 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
6344 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6345 | } | |
6346 | else { | |
6347 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6348 | } | |
6349 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
ff32e16e | 6350 | return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); |
158142c2 FB |
6351 | |
6352 | } | |
6353 | ||
158142c2 FB |
6354 | /*---------------------------------------------------------------------------- |
6355 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
6356 | | returns the result as a quadruple-precision floating-point value. The | |
6357 | | operation is performed according to the IEC/IEEE Standard for Binary | |
6358 | | Floating-Point Arithmetic. | |
6359 | *----------------------------------------------------------------------------*/ | |
6360 | ||
e5a41ffa | 6361 | float128 float128_round_to_int(float128 a, float_status *status) |
158142c2 FB |
6362 | { |
6363 | flag aSign; | |
f4014512 | 6364 | int32_t aExp; |
bb98fe42 | 6365 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
6366 | float128 z; |
6367 | ||
6368 | aExp = extractFloat128Exp( a ); | |
6369 | if ( 0x402F <= aExp ) { | |
6370 | if ( 0x406F <= aExp ) { | |
6371 | if ( ( aExp == 0x7FFF ) | |
6372 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
6373 | ) { | |
ff32e16e | 6374 | return propagateFloat128NaN(a, a, status); |
158142c2 FB |
6375 | } |
6376 | return a; | |
6377 | } | |
6378 | lastBitMask = 1; | |
6379 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
6380 | roundBitsMask = lastBitMask - 1; | |
6381 | z = a; | |
a2f2d288 | 6382 | switch (status->float_rounding_mode) { |
dc355b76 | 6383 | case float_round_nearest_even: |
158142c2 FB |
6384 | if ( lastBitMask ) { |
6385 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
6386 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
6387 | } | |
6388 | else { | |
bb98fe42 | 6389 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 6390 | ++z.high; |
bb98fe42 | 6391 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
6392 | } |
6393 | } | |
dc355b76 | 6394 | break; |
f9288a76 PM |
6395 | case float_round_ties_away: |
6396 | if (lastBitMask) { | |
6397 | add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); | |
6398 | } else { | |
6399 | if ((int64_t) z.low < 0) { | |
6400 | ++z.high; | |
6401 | } | |
6402 | } | |
6403 | break; | |
dc355b76 PM |
6404 | case float_round_to_zero: |
6405 | break; | |
6406 | case float_round_up: | |
6407 | if (!extractFloat128Sign(z)) { | |
6408 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
6409 | } | |
6410 | break; | |
6411 | case float_round_down: | |
6412 | if (extractFloat128Sign(z)) { | |
6413 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
158142c2 | 6414 | } |
dc355b76 PM |
6415 | break; |
6416 | default: | |
6417 | abort(); | |
158142c2 FB |
6418 | } |
6419 | z.low &= ~ roundBitsMask; | |
6420 | } | |
6421 | else { | |
6422 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 6423 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
a2f2d288 | 6424 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 6425 | aSign = extractFloat128Sign( a ); |
a2f2d288 | 6426 | switch (status->float_rounding_mode) { |
158142c2 FB |
6427 | case float_round_nearest_even: |
6428 | if ( ( aExp == 0x3FFE ) | |
6429 | && ( extractFloat128Frac0( a ) | |
6430 | | extractFloat128Frac1( a ) ) | |
6431 | ) { | |
6432 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
6433 | } | |
6434 | break; | |
f9288a76 PM |
6435 | case float_round_ties_away: |
6436 | if (aExp == 0x3FFE) { | |
6437 | return packFloat128(aSign, 0x3FFF, 0, 0); | |
6438 | } | |
6439 | break; | |
158142c2 FB |
6440 | case float_round_down: |
6441 | return | |
6442 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
6443 | : packFloat128( 0, 0, 0, 0 ); | |
6444 | case float_round_up: | |
6445 | return | |
6446 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
6447 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
6448 | } | |
6449 | return packFloat128( aSign, 0, 0, 0 ); | |
6450 | } | |
6451 | lastBitMask = 1; | |
6452 | lastBitMask <<= 0x402F - aExp; | |
6453 | roundBitsMask = lastBitMask - 1; | |
6454 | z.low = 0; | |
6455 | z.high = a.high; | |
a2f2d288 | 6456 | switch (status->float_rounding_mode) { |
dc355b76 | 6457 | case float_round_nearest_even: |
158142c2 FB |
6458 | z.high += lastBitMask>>1; |
6459 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
6460 | z.high &= ~ lastBitMask; | |
6461 | } | |
dc355b76 | 6462 | break; |
f9288a76 PM |
6463 | case float_round_ties_away: |
6464 | z.high += lastBitMask>>1; | |
6465 | break; | |
dc355b76 PM |
6466 | case float_round_to_zero: |
6467 | break; | |
6468 | case float_round_up: | |
6469 | if (!extractFloat128Sign(z)) { | |
158142c2 FB |
6470 | z.high |= ( a.low != 0 ); |
6471 | z.high += roundBitsMask; | |
6472 | } | |
dc355b76 PM |
6473 | break; |
6474 | case float_round_down: | |
6475 | if (extractFloat128Sign(z)) { | |
6476 | z.high |= (a.low != 0); | |
6477 | z.high += roundBitsMask; | |
6478 | } | |
6479 | break; | |
6480 | default: | |
6481 | abort(); | |
158142c2 FB |
6482 | } |
6483 | z.high &= ~ roundBitsMask; | |
6484 | } | |
6485 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
a2f2d288 | 6486 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
6487 | } |
6488 | return z; | |
6489 | ||
6490 | } | |
6491 | ||
6492 | /*---------------------------------------------------------------------------- | |
6493 | | Returns the result of adding the absolute values of the quadruple-precision | |
6494 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
6495 | | before being returned. `zSign' is ignored if the result is a NaN. | |
6496 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
6497 | | Floating-Point Arithmetic. | |
6498 | *----------------------------------------------------------------------------*/ | |
6499 | ||
e5a41ffa PM |
6500 | static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, |
6501 | float_status *status) | |
158142c2 | 6502 | { |
f4014512 | 6503 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6504 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
f4014512 | 6505 | int32_t expDiff; |
158142c2 FB |
6506 | |
6507 | aSig1 = extractFloat128Frac1( a ); | |
6508 | aSig0 = extractFloat128Frac0( a ); | |
6509 | aExp = extractFloat128Exp( a ); | |
6510 | bSig1 = extractFloat128Frac1( b ); | |
6511 | bSig0 = extractFloat128Frac0( b ); | |
6512 | bExp = extractFloat128Exp( b ); | |
6513 | expDiff = aExp - bExp; | |
6514 | if ( 0 < expDiff ) { | |
6515 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6516 | if (aSig0 | aSig1) { |
6517 | return propagateFloat128NaN(a, b, status); | |
6518 | } | |
158142c2 FB |
6519 | return a; |
6520 | } | |
6521 | if ( bExp == 0 ) { | |
6522 | --expDiff; | |
6523 | } | |
6524 | else { | |
6525 | bSig0 |= LIT64( 0x0001000000000000 ); | |
6526 | } | |
6527 | shift128ExtraRightJamming( | |
6528 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
6529 | zExp = aExp; | |
6530 | } | |
6531 | else if ( expDiff < 0 ) { | |
6532 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6533 | if (bSig0 | bSig1) { |
6534 | return propagateFloat128NaN(a, b, status); | |
6535 | } | |
158142c2 FB |
6536 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6537 | } | |
6538 | if ( aExp == 0 ) { | |
6539 | ++expDiff; | |
6540 | } | |
6541 | else { | |
6542 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6543 | } | |
6544 | shift128ExtraRightJamming( | |
6545 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
6546 | zExp = bExp; | |
6547 | } | |
6548 | else { | |
6549 | if ( aExp == 0x7FFF ) { | |
6550 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6551 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6552 | } |
6553 | return a; | |
6554 | } | |
6555 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 6556 | if ( aExp == 0 ) { |
a2f2d288 | 6557 | if (status->flush_to_zero) { |
e6afc87f | 6558 | if (zSig0 | zSig1) { |
ff32e16e | 6559 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
6560 | } |
6561 | return packFloat128(zSign, 0, 0, 0); | |
6562 | } | |
fe76d976 PB |
6563 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
6564 | } | |
158142c2 FB |
6565 | zSig2 = 0; |
6566 | zSig0 |= LIT64( 0x0002000000000000 ); | |
6567 | zExp = aExp; | |
6568 | goto shiftRight1; | |
6569 | } | |
6570 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6571 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6572 | --zExp; | |
6573 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
6574 | ++zExp; | |
6575 | shiftRight1: | |
6576 | shift128ExtraRightJamming( | |
6577 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6578 | roundAndPack: | |
ff32e16e | 6579 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6580 | |
6581 | } | |
6582 | ||
6583 | /*---------------------------------------------------------------------------- | |
6584 | | Returns the result of subtracting the absolute values of the quadruple- | |
6585 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
6586 | | difference is negated before being returned. `zSign' is ignored if the | |
6587 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
6588 | | Standard for Binary Floating-Point Arithmetic. | |
6589 | *----------------------------------------------------------------------------*/ | |
6590 | ||
e5a41ffa PM |
6591 | static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, |
6592 | float_status *status) | |
158142c2 | 6593 | { |
f4014512 | 6594 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6595 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
f4014512 | 6596 | int32_t expDiff; |
158142c2 FB |
6597 | |
6598 | aSig1 = extractFloat128Frac1( a ); | |
6599 | aSig0 = extractFloat128Frac0( a ); | |
6600 | aExp = extractFloat128Exp( a ); | |
6601 | bSig1 = extractFloat128Frac1( b ); | |
6602 | bSig0 = extractFloat128Frac0( b ); | |
6603 | bExp = extractFloat128Exp( b ); | |
6604 | expDiff = aExp - bExp; | |
6605 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6606 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
6607 | if ( 0 < expDiff ) goto aExpBigger; | |
6608 | if ( expDiff < 0 ) goto bExpBigger; | |
6609 | if ( aExp == 0x7FFF ) { | |
6610 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6611 | return propagateFloat128NaN(a, b, status); |
158142c2 | 6612 | } |
ff32e16e | 6613 | float_raise(float_flag_invalid, status); |
af39bc8c | 6614 | return float128_default_nan(status); |
158142c2 FB |
6615 | } |
6616 | if ( aExp == 0 ) { | |
6617 | aExp = 1; | |
6618 | bExp = 1; | |
6619 | } | |
6620 | if ( bSig0 < aSig0 ) goto aBigger; | |
6621 | if ( aSig0 < bSig0 ) goto bBigger; | |
6622 | if ( bSig1 < aSig1 ) goto aBigger; | |
6623 | if ( aSig1 < bSig1 ) goto bBigger; | |
a2f2d288 PM |
6624 | return packFloat128(status->float_rounding_mode == float_round_down, |
6625 | 0, 0, 0); | |
158142c2 FB |
6626 | bExpBigger: |
6627 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6628 | if (bSig0 | bSig1) { |
6629 | return propagateFloat128NaN(a, b, status); | |
6630 | } | |
158142c2 FB |
6631 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); |
6632 | } | |
6633 | if ( aExp == 0 ) { | |
6634 | ++expDiff; | |
6635 | } | |
6636 | else { | |
6637 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6638 | } | |
6639 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6640 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6641 | bBigger: | |
6642 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6643 | zExp = bExp; | |
6644 | zSign ^= 1; | |
6645 | goto normalizeRoundAndPack; | |
6646 | aExpBigger: | |
6647 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6648 | if (aSig0 | aSig1) { |
6649 | return propagateFloat128NaN(a, b, status); | |
6650 | } | |
158142c2 FB |
6651 | return a; |
6652 | } | |
6653 | if ( bExp == 0 ) { | |
6654 | --expDiff; | |
6655 | } | |
6656 | else { | |
6657 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6658 | } | |
6659 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
6660 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6661 | aBigger: | |
6662 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6663 | zExp = aExp; | |
6664 | normalizeRoundAndPack: | |
6665 | --zExp; | |
ff32e16e PM |
6666 | return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, |
6667 | status); | |
158142c2 FB |
6668 | |
6669 | } | |
6670 | ||
6671 | /*---------------------------------------------------------------------------- | |
6672 | | Returns the result of adding the quadruple-precision floating-point values | |
6673 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
6674 | | for Binary Floating-Point Arithmetic. | |
6675 | *----------------------------------------------------------------------------*/ | |
6676 | ||
e5a41ffa | 6677 | float128 float128_add(float128 a, float128 b, float_status *status) |
158142c2 FB |
6678 | { |
6679 | flag aSign, bSign; | |
6680 | ||
6681 | aSign = extractFloat128Sign( a ); | |
6682 | bSign = extractFloat128Sign( b ); | |
6683 | if ( aSign == bSign ) { | |
ff32e16e | 6684 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6685 | } |
6686 | else { | |
ff32e16e | 6687 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6688 | } |
6689 | ||
6690 | } | |
6691 | ||
6692 | /*---------------------------------------------------------------------------- | |
6693 | | Returns the result of subtracting the quadruple-precision floating-point | |
6694 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6695 | | Standard for Binary Floating-Point Arithmetic. | |
6696 | *----------------------------------------------------------------------------*/ | |
6697 | ||
e5a41ffa | 6698 | float128 float128_sub(float128 a, float128 b, float_status *status) |
158142c2 FB |
6699 | { |
6700 | flag aSign, bSign; | |
6701 | ||
6702 | aSign = extractFloat128Sign( a ); | |
6703 | bSign = extractFloat128Sign( b ); | |
6704 | if ( aSign == bSign ) { | |
ff32e16e | 6705 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6706 | } |
6707 | else { | |
ff32e16e | 6708 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6709 | } |
6710 | ||
6711 | } | |
6712 | ||
6713 | /*---------------------------------------------------------------------------- | |
6714 | | Returns the result of multiplying the quadruple-precision floating-point | |
6715 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6716 | | Standard for Binary Floating-Point Arithmetic. | |
6717 | *----------------------------------------------------------------------------*/ | |
6718 | ||
e5a41ffa | 6719 | float128 float128_mul(float128 a, float128 b, float_status *status) |
158142c2 FB |
6720 | { |
6721 | flag aSign, bSign, zSign; | |
f4014512 | 6722 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6723 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
6724 | |
6725 | aSig1 = extractFloat128Frac1( a ); | |
6726 | aSig0 = extractFloat128Frac0( a ); | |
6727 | aExp = extractFloat128Exp( a ); | |
6728 | aSign = extractFloat128Sign( a ); | |
6729 | bSig1 = extractFloat128Frac1( b ); | |
6730 | bSig0 = extractFloat128Frac0( b ); | |
6731 | bExp = extractFloat128Exp( b ); | |
6732 | bSign = extractFloat128Sign( b ); | |
6733 | zSign = aSign ^ bSign; | |
6734 | if ( aExp == 0x7FFF ) { | |
6735 | if ( ( aSig0 | aSig1 ) | |
6736 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6737 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6738 | } |
6739 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
6740 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6741 | } | |
6742 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6743 | if (bSig0 | bSig1) { |
6744 | return propagateFloat128NaN(a, b, status); | |
6745 | } | |
158142c2 FB |
6746 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
6747 | invalid: | |
ff32e16e | 6748 | float_raise(float_flag_invalid, status); |
af39bc8c | 6749 | return float128_default_nan(status); |
158142c2 FB |
6750 | } |
6751 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6752 | } | |
6753 | if ( aExp == 0 ) { | |
6754 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6755 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6756 | } | |
6757 | if ( bExp == 0 ) { | |
6758 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6759 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6760 | } | |
6761 | zExp = aExp + bExp - 0x4000; | |
6762 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6763 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
6764 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
6765 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6766 | zSig2 |= ( zSig3 != 0 ); | |
6767 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
6768 | shift128ExtraRightJamming( | |
6769 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6770 | ++zExp; | |
6771 | } | |
ff32e16e | 6772 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6773 | |
6774 | } | |
6775 | ||
6776 | /*---------------------------------------------------------------------------- | |
6777 | | Returns the result of dividing the quadruple-precision floating-point value | |
6778 | | `a' by the corresponding value `b'. The operation is performed according to | |
6779 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6780 | *----------------------------------------------------------------------------*/ | |
6781 | ||
e5a41ffa | 6782 | float128 float128_div(float128 a, float128 b, float_status *status) |
158142c2 FB |
6783 | { |
6784 | flag aSign, bSign, zSign; | |
f4014512 | 6785 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
6786 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
6787 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6788 | |
6789 | aSig1 = extractFloat128Frac1( a ); | |
6790 | aSig0 = extractFloat128Frac0( a ); | |
6791 | aExp = extractFloat128Exp( a ); | |
6792 | aSign = extractFloat128Sign( a ); | |
6793 | bSig1 = extractFloat128Frac1( b ); | |
6794 | bSig0 = extractFloat128Frac0( b ); | |
6795 | bExp = extractFloat128Exp( b ); | |
6796 | bSign = extractFloat128Sign( b ); | |
6797 | zSign = aSign ^ bSign; | |
6798 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6799 | if (aSig0 | aSig1) { |
6800 | return propagateFloat128NaN(a, b, status); | |
6801 | } | |
158142c2 | 6802 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
6803 | if (bSig0 | bSig1) { |
6804 | return propagateFloat128NaN(a, b, status); | |
6805 | } | |
158142c2 FB |
6806 | goto invalid; |
6807 | } | |
6808 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6809 | } | |
6810 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6811 | if (bSig0 | bSig1) { |
6812 | return propagateFloat128NaN(a, b, status); | |
6813 | } | |
158142c2 FB |
6814 | return packFloat128( zSign, 0, 0, 0 ); |
6815 | } | |
6816 | if ( bExp == 0 ) { | |
6817 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6818 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
6819 | invalid: | |
ff32e16e | 6820 | float_raise(float_flag_invalid, status); |
af39bc8c | 6821 | return float128_default_nan(status); |
158142c2 | 6822 | } |
ff32e16e | 6823 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
6824 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6825 | } | |
6826 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6827 | } | |
6828 | if ( aExp == 0 ) { | |
6829 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6830 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6831 | } | |
6832 | zExp = aExp - bExp + 0x3FFD; | |
6833 | shortShift128Left( | |
6834 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
6835 | shortShift128Left( | |
6836 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6837 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
6838 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
6839 | ++zExp; | |
6840 | } | |
6841 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6842 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
6843 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 6844 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6845 | --zSig0; |
6846 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
6847 | } | |
6848 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
6849 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
6850 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
6851 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6852 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6853 | --zSig1; |
6854 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
6855 | } | |
6856 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6857 | } | |
6858 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6859 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6860 | |
6861 | } | |
6862 | ||
6863 | /*---------------------------------------------------------------------------- | |
6864 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
6865 | | with respect to the corresponding value `b'. The operation is performed | |
6866 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6867 | *----------------------------------------------------------------------------*/ | |
6868 | ||
e5a41ffa | 6869 | float128 float128_rem(float128 a, float128 b, float_status *status) |
158142c2 | 6870 | { |
ed086f3d | 6871 | flag aSign, zSign; |
f4014512 | 6872 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
6873 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
6874 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
6875 | int64_t sigMean0; | |
158142c2 FB |
6876 | |
6877 | aSig1 = extractFloat128Frac1( a ); | |
6878 | aSig0 = extractFloat128Frac0( a ); | |
6879 | aExp = extractFloat128Exp( a ); | |
6880 | aSign = extractFloat128Sign( a ); | |
6881 | bSig1 = extractFloat128Frac1( b ); | |
6882 | bSig0 = extractFloat128Frac0( b ); | |
6883 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
6884 | if ( aExp == 0x7FFF ) { |
6885 | if ( ( aSig0 | aSig1 ) | |
6886 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6887 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6888 | } |
6889 | goto invalid; | |
6890 | } | |
6891 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6892 | if (bSig0 | bSig1) { |
6893 | return propagateFloat128NaN(a, b, status); | |
6894 | } | |
158142c2 FB |
6895 | return a; |
6896 | } | |
6897 | if ( bExp == 0 ) { | |
6898 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6899 | invalid: | |
ff32e16e | 6900 | float_raise(float_flag_invalid, status); |
af39bc8c | 6901 | return float128_default_nan(status); |
158142c2 FB |
6902 | } |
6903 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6904 | } | |
6905 | if ( aExp == 0 ) { | |
6906 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
6907 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6908 | } | |
6909 | expDiff = aExp - bExp; | |
6910 | if ( expDiff < -1 ) return a; | |
6911 | shortShift128Left( | |
6912 | aSig0 | LIT64( 0x0001000000000000 ), | |
6913 | aSig1, | |
6914 | 15 - ( expDiff < 0 ), | |
6915 | &aSig0, | |
6916 | &aSig1 | |
6917 | ); | |
6918 | shortShift128Left( | |
6919 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6920 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
6921 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
6922 | expDiff -= 64; | |
6923 | while ( 0 < expDiff ) { | |
6924 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6925 | q = ( 4 < q ) ? q - 4 : 0; | |
6926 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6927 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
6928 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
6929 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
6930 | expDiff -= 61; | |
6931 | } | |
6932 | if ( -64 < expDiff ) { | |
6933 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6934 | q = ( 4 < q ) ? q - 4 : 0; | |
6935 | q >>= - expDiff; | |
6936 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6937 | expDiff += 52; | |
6938 | if ( expDiff < 0 ) { | |
6939 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6940 | } | |
6941 | else { | |
6942 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
6943 | } | |
6944 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6945 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
6946 | } | |
6947 | else { | |
6948 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
6949 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6950 | } | |
6951 | do { | |
6952 | alternateASig0 = aSig0; | |
6953 | alternateASig1 = aSig1; | |
6954 | ++q; | |
6955 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 6956 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 6957 | add128( |
bb98fe42 | 6958 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
6959 | if ( ( sigMean0 < 0 ) |
6960 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
6961 | aSig0 = alternateASig0; | |
6962 | aSig1 = alternateASig1; | |
6963 | } | |
bb98fe42 | 6964 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 | 6965 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
ff32e16e PM |
6966 | return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, |
6967 | status); | |
158142c2 FB |
6968 | } |
6969 | ||
6970 | /*---------------------------------------------------------------------------- | |
6971 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
6972 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
6973 | | Floating-Point Arithmetic. | |
6974 | *----------------------------------------------------------------------------*/ | |
6975 | ||
e5a41ffa | 6976 | float128 float128_sqrt(float128 a, float_status *status) |
158142c2 FB |
6977 | { |
6978 | flag aSign; | |
f4014512 | 6979 | int32_t aExp, zExp; |
bb98fe42 AF |
6980 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
6981 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6982 | |
6983 | aSig1 = extractFloat128Frac1( a ); | |
6984 | aSig0 = extractFloat128Frac0( a ); | |
6985 | aExp = extractFloat128Exp( a ); | |
6986 | aSign = extractFloat128Sign( a ); | |
6987 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6988 | if (aSig0 | aSig1) { |
6989 | return propagateFloat128NaN(a, a, status); | |
6990 | } | |
158142c2 FB |
6991 | if ( ! aSign ) return a; |
6992 | goto invalid; | |
6993 | } | |
6994 | if ( aSign ) { | |
6995 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
6996 | invalid: | |
ff32e16e | 6997 | float_raise(float_flag_invalid, status); |
af39bc8c | 6998 | return float128_default_nan(status); |
158142c2 FB |
6999 | } |
7000 | if ( aExp == 0 ) { | |
7001 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
7002 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
7003 | } | |
7004 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
7005 | aSig0 |= LIT64( 0x0001000000000000 ); | |
7006 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
7007 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
7008 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
7009 | doubleZSig0 = zSig0<<1; | |
7010 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
7011 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 7012 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
7013 | --zSig0; |
7014 | doubleZSig0 -= 2; | |
7015 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
7016 | } | |
7017 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
7018 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
7019 | if ( zSig1 == 0 ) zSig1 = 1; | |
7020 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
7021 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
7022 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
7023 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 7024 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
7025 | --zSig1; |
7026 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
7027 | term3 |= 1; | |
7028 | term2 |= doubleZSig0; | |
7029 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
7030 | } | |
7031 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
7032 | } | |
7033 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 7034 | return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
7035 | |
7036 | } | |
7037 | ||
7038 | /*---------------------------------------------------------------------------- | |
7039 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
7040 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
7041 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
7042 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
7043 | *----------------------------------------------------------------------------*/ | |
7044 | ||
e5a41ffa | 7045 | int float128_eq(float128 a, float128 b, float_status *status) |
158142c2 FB |
7046 | { |
7047 | ||
7048 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7049 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7050 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7051 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7052 | ) { | |
ff32e16e | 7053 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7054 | return 0; |
7055 | } | |
7056 | return | |
7057 | ( a.low == b.low ) | |
7058 | && ( ( a.high == b.high ) | |
7059 | || ( ( a.low == 0 ) | |
bb98fe42 | 7060 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
7061 | ); |
7062 | ||
7063 | } | |
7064 | ||
7065 | /*---------------------------------------------------------------------------- | |
7066 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
7067 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
7068 | | exception is raised if either operand is a NaN. The comparison is performed | |
7069 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7070 | *----------------------------------------------------------------------------*/ |
7071 | ||
e5a41ffa | 7072 | int float128_le(float128 a, float128 b, float_status *status) |
158142c2 FB |
7073 | { |
7074 | flag aSign, bSign; | |
7075 | ||
7076 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7077 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7078 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7079 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7080 | ) { | |
ff32e16e | 7081 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7082 | return 0; |
7083 | } | |
7084 | aSign = extractFloat128Sign( a ); | |
7085 | bSign = extractFloat128Sign( b ); | |
7086 | if ( aSign != bSign ) { | |
7087 | return | |
7088 | aSign | |
bb98fe42 | 7089 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7090 | == 0 ); |
7091 | } | |
7092 | return | |
7093 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
7094 | : le128( a.high, a.low, b.high, b.low ); | |
7095 | ||
7096 | } | |
7097 | ||
7098 | /*---------------------------------------------------------------------------- | |
7099 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
7100 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
7101 | | raised if either operand is a NaN. The comparison is performed according | |
7102 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7103 | *----------------------------------------------------------------------------*/ |
7104 | ||
e5a41ffa | 7105 | int float128_lt(float128 a, float128 b, float_status *status) |
158142c2 FB |
7106 | { |
7107 | flag aSign, bSign; | |
7108 | ||
7109 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7110 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7111 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7112 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7113 | ) { | |
ff32e16e | 7114 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7115 | return 0; |
7116 | } | |
7117 | aSign = extractFloat128Sign( a ); | |
7118 | bSign = extractFloat128Sign( b ); | |
7119 | if ( aSign != bSign ) { | |
7120 | return | |
7121 | aSign | |
bb98fe42 | 7122 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7123 | != 0 ); |
7124 | } | |
7125 | return | |
7126 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
7127 | : lt128( a.high, a.low, b.high, b.low ); | |
7128 | ||
7129 | } | |
7130 | ||
67b7861d AJ |
7131 | /*---------------------------------------------------------------------------- |
7132 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
7133 | | be compared, and 0 otherwise. The invalid exception is raised if either |
7134 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
7135 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
7136 | *----------------------------------------------------------------------------*/ |
7137 | ||
e5a41ffa | 7138 | int float128_unordered(float128 a, float128 b, float_status *status) |
67b7861d AJ |
7139 | { |
7140 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7141 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7142 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7143 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7144 | ) { | |
ff32e16e | 7145 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7146 | return 1; |
7147 | } | |
7148 | return 0; | |
7149 | } | |
7150 | ||
158142c2 FB |
7151 | /*---------------------------------------------------------------------------- |
7152 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
7153 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
7154 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
7155 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
7156 | *----------------------------------------------------------------------------*/ |
7157 | ||
e5a41ffa | 7158 | int float128_eq_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7159 | { |
7160 | ||
7161 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7162 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7163 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7164 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7165 | ) { | |
af39bc8c AM |
7166 | if (float128_is_signaling_nan(a, status) |
7167 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7168 | float_raise(float_flag_invalid, status); |
b689362d | 7169 | } |
158142c2 FB |
7170 | return 0; |
7171 | } | |
7172 | return | |
7173 | ( a.low == b.low ) | |
7174 | && ( ( a.high == b.high ) | |
7175 | || ( ( a.low == 0 ) | |
bb98fe42 | 7176 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
7177 | ); |
7178 | ||
7179 | } | |
7180 | ||
7181 | /*---------------------------------------------------------------------------- | |
7182 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7183 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
7184 | | cause an exception. Otherwise, the comparison is performed according to the | |
7185 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
7186 | *----------------------------------------------------------------------------*/ | |
7187 | ||
e5a41ffa | 7188 | int float128_le_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7189 | { |
7190 | flag aSign, bSign; | |
7191 | ||
7192 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7193 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7194 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7195 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7196 | ) { | |
af39bc8c AM |
7197 | if (float128_is_signaling_nan(a, status) |
7198 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7199 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7200 | } |
7201 | return 0; | |
7202 | } | |
7203 | aSign = extractFloat128Sign( a ); | |
7204 | bSign = extractFloat128Sign( b ); | |
7205 | if ( aSign != bSign ) { | |
7206 | return | |
7207 | aSign | |
bb98fe42 | 7208 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7209 | == 0 ); |
7210 | } | |
7211 | return | |
7212 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
7213 | : le128( a.high, a.low, b.high, b.low ); | |
7214 | ||
7215 | } | |
7216 | ||
7217 | /*---------------------------------------------------------------------------- | |
7218 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
7219 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
7220 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
7221 | | Standard for Binary Floating-Point Arithmetic. | |
7222 | *----------------------------------------------------------------------------*/ | |
7223 | ||
e5a41ffa | 7224 | int float128_lt_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
7225 | { |
7226 | flag aSign, bSign; | |
7227 | ||
7228 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7229 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7230 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7231 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7232 | ) { | |
af39bc8c AM |
7233 | if (float128_is_signaling_nan(a, status) |
7234 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7235 | float_raise(float_flag_invalid, status); |
158142c2 FB |
7236 | } |
7237 | return 0; | |
7238 | } | |
7239 | aSign = extractFloat128Sign( a ); | |
7240 | bSign = extractFloat128Sign( b ); | |
7241 | if ( aSign != bSign ) { | |
7242 | return | |
7243 | aSign | |
bb98fe42 | 7244 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
7245 | != 0 ); |
7246 | } | |
7247 | return | |
7248 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
7249 | : lt128( a.high, a.low, b.high, b.low ); | |
7250 | ||
7251 | } | |
7252 | ||
67b7861d AJ |
7253 | /*---------------------------------------------------------------------------- |
7254 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
7255 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
7256 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
7257 | | Floating-Point Arithmetic. | |
7258 | *----------------------------------------------------------------------------*/ | |
7259 | ||
e5a41ffa | 7260 | int float128_unordered_quiet(float128 a, float128 b, float_status *status) |
67b7861d AJ |
7261 | { |
7262 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
7263 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
7264 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
7265 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
7266 | ) { | |
af39bc8c AM |
7267 | if (float128_is_signaling_nan(a, status) |
7268 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7269 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
7270 | } |
7271 | return 1; | |
7272 | } | |
7273 | return 0; | |
7274 | } | |
7275 | ||
1d6bda35 | 7276 | /* misc functions */ |
e5a41ffa | 7277 | float32 uint32_to_float32(uint32_t a, float_status *status) |
1d6bda35 | 7278 | { |
ff32e16e | 7279 | return int64_to_float32(a, status); |
1d6bda35 FB |
7280 | } |
7281 | ||
e5a41ffa | 7282 | float64 uint32_to_float64(uint32_t a, float_status *status) |
1d6bda35 | 7283 | { |
ff32e16e | 7284 | return int64_to_float64(a, status); |
1d6bda35 FB |
7285 | } |
7286 | ||
3a87d009 | 7287 | uint32_t float32_to_uint32(float32 a, float_status *status) |
1d6bda35 FB |
7288 | { |
7289 | int64_t v; | |
3a87d009 | 7290 | uint32_t res; |
34e1c27b | 7291 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7292 | |
ff32e16e | 7293 | v = float32_to_int64(a, status); |
1d6bda35 FB |
7294 | if (v < 0) { |
7295 | res = 0; | |
1d6bda35 FB |
7296 | } else if (v > 0xffffffff) { |
7297 | res = 0xffffffff; | |
1d6bda35 | 7298 | } else { |
34e1c27b | 7299 | return v; |
1d6bda35 | 7300 | } |
34e1c27b | 7301 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7302 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7303 | return res; |
7304 | } | |
7305 | ||
3a87d009 | 7306 | uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status) |
1d6bda35 FB |
7307 | { |
7308 | int64_t v; | |
3a87d009 | 7309 | uint32_t res; |
34e1c27b | 7310 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7311 | |
ff32e16e | 7312 | v = float32_to_int64_round_to_zero(a, status); |
1d6bda35 FB |
7313 | if (v < 0) { |
7314 | res = 0; | |
1d6bda35 FB |
7315 | } else if (v > 0xffffffff) { |
7316 | res = 0xffffffff; | |
1d6bda35 | 7317 | } else { |
34e1c27b | 7318 | return v; |
1d6bda35 | 7319 | } |
34e1c27b | 7320 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7321 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7322 | return res; |
7323 | } | |
7324 | ||
0bb721d7 | 7325 | int16_t float32_to_int16(float32 a, float_status *status) |
f581bf54 WN |
7326 | { |
7327 | int32_t v; | |
0bb721d7 | 7328 | int16_t res; |
f581bf54 WN |
7329 | int old_exc_flags = get_float_exception_flags(status); |
7330 | ||
ff32e16e | 7331 | v = float32_to_int32(a, status); |
f581bf54 WN |
7332 | if (v < -0x8000) { |
7333 | res = -0x8000; | |
7334 | } else if (v > 0x7fff) { | |
7335 | res = 0x7fff; | |
7336 | } else { | |
7337 | return v; | |
7338 | } | |
7339 | ||
7340 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7341 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7342 | return res; |
7343 | } | |
7344 | ||
0bb721d7 | 7345 | uint16_t float32_to_uint16(float32 a, float_status *status) |
f581bf54 WN |
7346 | { |
7347 | int32_t v; | |
0bb721d7 | 7348 | uint16_t res; |
f581bf54 WN |
7349 | int old_exc_flags = get_float_exception_flags(status); |
7350 | ||
ff32e16e | 7351 | v = float32_to_int32(a, status); |
f581bf54 WN |
7352 | if (v < 0) { |
7353 | res = 0; | |
7354 | } else if (v > 0xffff) { | |
7355 | res = 0xffff; | |
7356 | } else { | |
7357 | return v; | |
7358 | } | |
7359 | ||
7360 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7361 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7362 | return res; |
7363 | } | |
7364 | ||
0bb721d7 | 7365 | uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status) |
cbcef455 PM |
7366 | { |
7367 | int64_t v; | |
0bb721d7 | 7368 | uint16_t res; |
34e1c27b | 7369 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 | 7370 | |
ff32e16e | 7371 | v = float32_to_int64_round_to_zero(a, status); |
cbcef455 PM |
7372 | if (v < 0) { |
7373 | res = 0; | |
cbcef455 PM |
7374 | } else if (v > 0xffff) { |
7375 | res = 0xffff; | |
cbcef455 | 7376 | } else { |
34e1c27b | 7377 | return v; |
cbcef455 | 7378 | } |
34e1c27b | 7379 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7380 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
7381 | return res; |
7382 | } | |
7383 | ||
3a87d009 | 7384 | uint32_t float64_to_uint32(float64 a, float_status *status) |
1d6bda35 | 7385 | { |
5e7f654f | 7386 | uint64_t v; |
3a87d009 | 7387 | uint32_t res; |
5e7f654f | 7388 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7389 | |
ff32e16e | 7390 | v = float64_to_uint64(a, status); |
5e7f654f | 7391 | if (v > 0xffffffff) { |
1d6bda35 | 7392 | res = 0xffffffff; |
1d6bda35 | 7393 | } else { |
5e7f654f | 7394 | return v; |
1d6bda35 | 7395 | } |
5e7f654f | 7396 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7397 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7398 | return res; |
7399 | } | |
7400 | ||
3a87d009 | 7401 | uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status) |
1d6bda35 | 7402 | { |
fd728f2f | 7403 | uint64_t v; |
3a87d009 | 7404 | uint32_t res; |
fd728f2f | 7405 | int old_exc_flags = get_float_exception_flags(status); |
1d6bda35 | 7406 | |
ff32e16e | 7407 | v = float64_to_uint64_round_to_zero(a, status); |
fd728f2f | 7408 | if (v > 0xffffffff) { |
1d6bda35 | 7409 | res = 0xffffffff; |
1d6bda35 | 7410 | } else { |
fd728f2f | 7411 | return v; |
1d6bda35 | 7412 | } |
fd728f2f | 7413 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7414 | float_raise(float_flag_invalid, status); |
1d6bda35 FB |
7415 | return res; |
7416 | } | |
7417 | ||
0bb721d7 | 7418 | int16_t float64_to_int16(float64 a, float_status *status) |
f581bf54 WN |
7419 | { |
7420 | int64_t v; | |
0bb721d7 | 7421 | int16_t res; |
f581bf54 WN |
7422 | int old_exc_flags = get_float_exception_flags(status); |
7423 | ||
ff32e16e | 7424 | v = float64_to_int32(a, status); |
f581bf54 WN |
7425 | if (v < -0x8000) { |
7426 | res = -0x8000; | |
7427 | } else if (v > 0x7fff) { | |
7428 | res = 0x7fff; | |
7429 | } else { | |
7430 | return v; | |
7431 | } | |
7432 | ||
7433 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7434 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7435 | return res; |
7436 | } | |
7437 | ||
0bb721d7 | 7438 | uint16_t float64_to_uint16(float64 a, float_status *status) |
f581bf54 WN |
7439 | { |
7440 | int64_t v; | |
0bb721d7 | 7441 | uint16_t res; |
f581bf54 WN |
7442 | int old_exc_flags = get_float_exception_flags(status); |
7443 | ||
ff32e16e | 7444 | v = float64_to_int32(a, status); |
f581bf54 WN |
7445 | if (v < 0) { |
7446 | res = 0; | |
7447 | } else if (v > 0xffff) { | |
7448 | res = 0xffff; | |
7449 | } else { | |
7450 | return v; | |
7451 | } | |
7452 | ||
7453 | set_float_exception_flags(old_exc_flags, status); | |
ff32e16e | 7454 | float_raise(float_flag_invalid, status); |
f581bf54 WN |
7455 | return res; |
7456 | } | |
7457 | ||
0bb721d7 | 7458 | uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status) |
cbcef455 PM |
7459 | { |
7460 | int64_t v; | |
0bb721d7 | 7461 | uint16_t res; |
34e1c27b | 7462 | int old_exc_flags = get_float_exception_flags(status); |
cbcef455 | 7463 | |
ff32e16e | 7464 | v = float64_to_int64_round_to_zero(a, status); |
cbcef455 PM |
7465 | if (v < 0) { |
7466 | res = 0; | |
cbcef455 PM |
7467 | } else if (v > 0xffff) { |
7468 | res = 0xffff; | |
cbcef455 | 7469 | } else { |
34e1c27b | 7470 | return v; |
cbcef455 | 7471 | } |
34e1c27b | 7472 | set_float_exception_flags(old_exc_flags, status); |
ff32e16e | 7473 | float_raise(float_flag_invalid, status); |
cbcef455 PM |
7474 | return res; |
7475 | } | |
7476 | ||
fb3ea83a TM |
7477 | /*---------------------------------------------------------------------------- |
7478 | | Returns the result of converting the double-precision floating-point value | |
7479 | | `a' to the 64-bit unsigned integer format. The conversion is | |
7480 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
7481 | | Arithmetic---which means in particular that the conversion is rounded | |
7482 | | according to the current rounding mode. If `a' is a NaN, the largest | |
7483 | | positive integer is returned. If the conversion overflows, the | |
7484 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
7485 | | rounded and zero is returned; negative values that do not round to zero | |
7486 | | will raise the inexact exception. | |
7487 | *----------------------------------------------------------------------------*/ | |
75d62a58 | 7488 | |
e5a41ffa | 7489 | uint64_t float64_to_uint64(float64 a, float_status *status) |
fb3ea83a TM |
7490 | { |
7491 | flag aSign; | |
0c48262d | 7492 | int aExp; |
07d792d2 | 7493 | int shiftCount; |
fb3ea83a | 7494 | uint64_t aSig, aSigExtra; |
ff32e16e | 7495 | a = float64_squash_input_denormal(a, status); |
75d62a58 | 7496 | |
fb3ea83a TM |
7497 | aSig = extractFloat64Frac(a); |
7498 | aExp = extractFloat64Exp(a); | |
7499 | aSign = extractFloat64Sign(a); | |
7500 | if (aSign && (aExp > 1022)) { | |
ff32e16e | 7501 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
7502 | if (float64_is_any_nan(a)) { |
7503 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
7504 | } else { | |
7505 | return 0; | |
7506 | } | |
7507 | } | |
7508 | if (aExp) { | |
7509 | aSig |= LIT64(0x0010000000000000); | |
7510 | } | |
7511 | shiftCount = 0x433 - aExp; | |
7512 | if (shiftCount <= 0) { | |
7513 | if (0x43E < aExp) { | |
ff32e16e | 7514 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
7515 | return LIT64(0xFFFFFFFFFFFFFFFF); |
7516 | } | |
7517 | aSigExtra = 0; | |
7518 | aSig <<= -shiftCount; | |
7519 | } else { | |
7520 | shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra); | |
7521 | } | |
ff32e16e | 7522 | return roundAndPackUint64(aSign, aSig, aSigExtra, status); |
75d62a58 JM |
7523 | } |
7524 | ||
e5a41ffa | 7525 | uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status) |
75d62a58 | 7526 | { |
a2f2d288 | 7527 | signed char current_rounding_mode = status->float_rounding_mode; |
ff32e16e | 7528 | set_float_rounding_mode(float_round_to_zero, status); |
d000b477 | 7529 | uint64_t v = float64_to_uint64(a, status); |
ff32e16e | 7530 | set_float_rounding_mode(current_rounding_mode, status); |
0a87a310 | 7531 | return v; |
75d62a58 JM |
7532 | } |
7533 | ||
1d6bda35 | 7534 | #define COMPARE(s, nan_exp) \ |
e5a41ffa PM |
7535 | static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\ |
7536 | int is_quiet, float_status *status) \ | |
1d6bda35 FB |
7537 | { \ |
7538 | flag aSign, bSign; \ | |
bb98fe42 | 7539 | uint ## s ## _t av, bv; \ |
ff32e16e PM |
7540 | a = float ## s ## _squash_input_denormal(a, status); \ |
7541 | b = float ## s ## _squash_input_denormal(b, status); \ | |
1d6bda35 FB |
7542 | \ |
7543 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ | |
7544 | extractFloat ## s ## Frac( a ) ) || \ | |
7545 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ | |
7546 | extractFloat ## s ## Frac( b ) )) { \ | |
7547 | if (!is_quiet || \ | |
af39bc8c AM |
7548 | float ## s ## _is_signaling_nan(a, status) || \ |
7549 | float ## s ## _is_signaling_nan(b, status)) { \ | |
ff32e16e | 7550 | float_raise(float_flag_invalid, status); \ |
1d6bda35 FB |
7551 | } \ |
7552 | return float_relation_unordered; \ | |
7553 | } \ | |
7554 | aSign = extractFloat ## s ## Sign( a ); \ | |
7555 | bSign = extractFloat ## s ## Sign( b ); \ | |
f090c9d4 | 7556 | av = float ## s ## _val(a); \ |
cd8a2533 | 7557 | bv = float ## s ## _val(b); \ |
1d6bda35 | 7558 | if ( aSign != bSign ) { \ |
bb98fe42 | 7559 | if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ |
1d6bda35 FB |
7560 | /* zero case */ \ |
7561 | return float_relation_equal; \ | |
7562 | } else { \ | |
7563 | return 1 - (2 * aSign); \ | |
7564 | } \ | |
7565 | } else { \ | |
f090c9d4 | 7566 | if (av == bv) { \ |
1d6bda35 FB |
7567 | return float_relation_equal; \ |
7568 | } else { \ | |
f090c9d4 | 7569 | return 1 - 2 * (aSign ^ ( av < bv )); \ |
1d6bda35 FB |
7570 | } \ |
7571 | } \ | |
7572 | } \ | |
7573 | \ | |
e5a41ffa | 7574 | int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \ |
1d6bda35 | 7575 | { \ |
ff32e16e | 7576 | return float ## s ## _compare_internal(a, b, 0, status); \ |
1d6bda35 FB |
7577 | } \ |
7578 | \ | |
e5a41ffa PM |
7579 | int float ## s ## _compare_quiet(float ## s a, float ## s b, \ |
7580 | float_status *status) \ | |
1d6bda35 | 7581 | { \ |
ff32e16e | 7582 | return float ## s ## _compare_internal(a, b, 1, status); \ |
1d6bda35 FB |
7583 | } |
7584 | ||
7585 | COMPARE(32, 0xff) | |
7586 | COMPARE(64, 0x7ff) | |
9ee6e8bb | 7587 | |
e5a41ffa PM |
7588 | static inline int floatx80_compare_internal(floatx80 a, floatx80 b, |
7589 | int is_quiet, float_status *status) | |
f6714d36 AJ |
7590 | { |
7591 | flag aSign, bSign; | |
7592 | ||
d1eb8f2a AD |
7593 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
7594 | float_raise(float_flag_invalid, status); | |
7595 | return float_relation_unordered; | |
7596 | } | |
f6714d36 AJ |
7597 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && |
7598 | ( extractFloatx80Frac( a )<<1 ) ) || | |
7599 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
7600 | ( extractFloatx80Frac( b )<<1 ) )) { | |
7601 | if (!is_quiet || | |
af39bc8c AM |
7602 | floatx80_is_signaling_nan(a, status) || |
7603 | floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 7604 | float_raise(float_flag_invalid, status); |
f6714d36 AJ |
7605 | } |
7606 | return float_relation_unordered; | |
7607 | } | |
7608 | aSign = extractFloatx80Sign( a ); | |
7609 | bSign = extractFloatx80Sign( b ); | |
7610 | if ( aSign != bSign ) { | |
7611 | ||
7612 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
7613 | ( ( a.low | b.low ) == 0 ) ) { | |
7614 | /* zero case */ | |
7615 | return float_relation_equal; | |
7616 | } else { | |
7617 | return 1 - (2 * aSign); | |
7618 | } | |
7619 | } else { | |
7620 | if (a.low == b.low && a.high == b.high) { | |
7621 | return float_relation_equal; | |
7622 | } else { | |
7623 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7624 | } | |
7625 | } | |
7626 | } | |
7627 | ||
e5a41ffa | 7628 | int floatx80_compare(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7629 | { |
ff32e16e | 7630 | return floatx80_compare_internal(a, b, 0, status); |
f6714d36 AJ |
7631 | } |
7632 | ||
e5a41ffa | 7633 | int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 7634 | { |
ff32e16e | 7635 | return floatx80_compare_internal(a, b, 1, status); |
f6714d36 AJ |
7636 | } |
7637 | ||
e5a41ffa PM |
7638 | static inline int float128_compare_internal(float128 a, float128 b, |
7639 | int is_quiet, float_status *status) | |
1f587329 BS |
7640 | { |
7641 | flag aSign, bSign; | |
7642 | ||
7643 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
7644 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
7645 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
7646 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
7647 | if (!is_quiet || | |
af39bc8c AM |
7648 | float128_is_signaling_nan(a, status) || |
7649 | float128_is_signaling_nan(b, status)) { | |
ff32e16e | 7650 | float_raise(float_flag_invalid, status); |
1f587329 BS |
7651 | } |
7652 | return float_relation_unordered; | |
7653 | } | |
7654 | aSign = extractFloat128Sign( a ); | |
7655 | bSign = extractFloat128Sign( b ); | |
7656 | if ( aSign != bSign ) { | |
7657 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
7658 | /* zero case */ | |
7659 | return float_relation_equal; | |
7660 | } else { | |
7661 | return 1 - (2 * aSign); | |
7662 | } | |
7663 | } else { | |
7664 | if (a.low == b.low && a.high == b.high) { | |
7665 | return float_relation_equal; | |
7666 | } else { | |
7667 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
7668 | } | |
7669 | } | |
7670 | } | |
7671 | ||
e5a41ffa | 7672 | int float128_compare(float128 a, float128 b, float_status *status) |
1f587329 | 7673 | { |
ff32e16e | 7674 | return float128_compare_internal(a, b, 0, status); |
1f587329 BS |
7675 | } |
7676 | ||
e5a41ffa | 7677 | int float128_compare_quiet(float128 a, float128 b, float_status *status) |
1f587329 | 7678 | { |
ff32e16e | 7679 | return float128_compare_internal(a, b, 1, status); |
1f587329 BS |
7680 | } |
7681 | ||
274f1b04 PM |
7682 | /* min() and max() functions. These can't be implemented as |
7683 | * 'compare and pick one input' because that would mishandle | |
7684 | * NaNs and +0 vs -0. | |
e17ab310 WN |
7685 | * |
7686 | * minnum() and maxnum() functions. These are similar to the min() | |
7687 | * and max() functions but if one of the arguments is a QNaN and | |
7688 | * the other is numerical then the numerical argument is returned. | |
7689 | * minnum() and maxnum correspond to the IEEE 754-2008 minNum() | |
7690 | * and maxNum() operations. min() and max() are the typical min/max | |
7691 | * semantics provided by many CPUs which predate that specification. | |
2d31e060 LA |
7692 | * |
7693 | * minnummag() and maxnummag() functions correspond to minNumMag() | |
7694 | * and minNumMag() from the IEEE-754 2008. | |
274f1b04 | 7695 | */ |
e70614ea | 7696 | #define MINMAX(s) \ |
a49db98d | 7697 | static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \ |
2d31e060 | 7698 | int ismin, int isieee, \ |
e5a41ffa PM |
7699 | int ismag, \ |
7700 | float_status *status) \ | |
274f1b04 PM |
7701 | { \ |
7702 | flag aSign, bSign; \ | |
2d31e060 | 7703 | uint ## s ## _t av, bv, aav, abv; \ |
ff32e16e PM |
7704 | a = float ## s ## _squash_input_denormal(a, status); \ |
7705 | b = float ## s ## _squash_input_denormal(b, status); \ | |
274f1b04 PM |
7706 | if (float ## s ## _is_any_nan(a) || \ |
7707 | float ## s ## _is_any_nan(b)) { \ | |
e17ab310 | 7708 | if (isieee) { \ |
af39bc8c | 7709 | if (float ## s ## _is_quiet_nan(a, status) && \ |
e17ab310 WN |
7710 | !float ## s ##_is_any_nan(b)) { \ |
7711 | return b; \ | |
af39bc8c AM |
7712 | } else if (float ## s ## _is_quiet_nan(b, status) && \ |
7713 | !float ## s ## _is_any_nan(a)) { \ | |
e17ab310 WN |
7714 | return a; \ |
7715 | } \ | |
7716 | } \ | |
ff32e16e | 7717 | return propagateFloat ## s ## NaN(a, b, status); \ |
274f1b04 PM |
7718 | } \ |
7719 | aSign = extractFloat ## s ## Sign(a); \ | |
7720 | bSign = extractFloat ## s ## Sign(b); \ | |
7721 | av = float ## s ## _val(a); \ | |
7722 | bv = float ## s ## _val(b); \ | |
2d31e060 LA |
7723 | if (ismag) { \ |
7724 | aav = float ## s ## _abs(av); \ | |
7725 | abv = float ## s ## _abs(bv); \ | |
7726 | if (aav != abv) { \ | |
7727 | if (ismin) { \ | |
7728 | return (aav < abv) ? a : b; \ | |
7729 | } else { \ | |
7730 | return (aav < abv) ? b : a; \ | |
7731 | } \ | |
7732 | } \ | |
7733 | } \ | |
274f1b04 PM |
7734 | if (aSign != bSign) { \ |
7735 | if (ismin) { \ | |
7736 | return aSign ? a : b; \ | |
7737 | } else { \ | |
7738 | return aSign ? b : a; \ | |
7739 | } \ | |
7740 | } else { \ | |
7741 | if (ismin) { \ | |
7742 | return (aSign ^ (av < bv)) ? a : b; \ | |
7743 | } else { \ | |
7744 | return (aSign ^ (av < bv)) ? b : a; \ | |
7745 | } \ | |
7746 | } \ | |
7747 | } \ | |
7748 | \ | |
e5a41ffa PM |
7749 | float ## s float ## s ## _min(float ## s a, float ## s b, \ |
7750 | float_status *status) \ | |
274f1b04 | 7751 | { \ |
ff32e16e | 7752 | return float ## s ## _minmax(a, b, 1, 0, 0, status); \ |
274f1b04 PM |
7753 | } \ |
7754 | \ | |
e5a41ffa PM |
7755 | float ## s float ## s ## _max(float ## s a, float ## s b, \ |
7756 | float_status *status) \ | |
274f1b04 | 7757 | { \ |
ff32e16e | 7758 | return float ## s ## _minmax(a, b, 0, 0, 0, status); \ |
e17ab310 WN |
7759 | } \ |
7760 | \ | |
e5a41ffa PM |
7761 | float ## s float ## s ## _minnum(float ## s a, float ## s b, \ |
7762 | float_status *status) \ | |
e17ab310 | 7763 | { \ |
ff32e16e | 7764 | return float ## s ## _minmax(a, b, 1, 1, 0, status); \ |
e17ab310 WN |
7765 | } \ |
7766 | \ | |
e5a41ffa PM |
7767 | float ## s float ## s ## _maxnum(float ## s a, float ## s b, \ |
7768 | float_status *status) \ | |
e17ab310 | 7769 | { \ |
ff32e16e | 7770 | return float ## s ## _minmax(a, b, 0, 1, 0, status); \ |
2d31e060 LA |
7771 | } \ |
7772 | \ | |
e5a41ffa PM |
7773 | float ## s float ## s ## _minnummag(float ## s a, float ## s b, \ |
7774 | float_status *status) \ | |
2d31e060 | 7775 | { \ |
ff32e16e | 7776 | return float ## s ## _minmax(a, b, 1, 1, 1, status); \ |
2d31e060 LA |
7777 | } \ |
7778 | \ | |
e5a41ffa PM |
7779 | float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \ |
7780 | float_status *status) \ | |
2d31e060 | 7781 | { \ |
ff32e16e | 7782 | return float ## s ## _minmax(a, b, 0, 1, 1, status); \ |
274f1b04 PM |
7783 | } |
7784 | ||
e70614ea WN |
7785 | MINMAX(32) |
7786 | MINMAX(64) | |
274f1b04 PM |
7787 | |
7788 | ||
9ee6e8bb | 7789 | /* Multiply A by 2 raised to the power N. */ |
e5a41ffa | 7790 | float32 float32_scalbn(float32 a, int n, float_status *status) |
9ee6e8bb PB |
7791 | { |
7792 | flag aSign; | |
326b9e98 | 7793 | int16_t aExp; |
bb98fe42 | 7794 | uint32_t aSig; |
9ee6e8bb | 7795 | |
ff32e16e | 7796 | a = float32_squash_input_denormal(a, status); |
9ee6e8bb PB |
7797 | aSig = extractFloat32Frac( a ); |
7798 | aExp = extractFloat32Exp( a ); | |
7799 | aSign = extractFloat32Sign( a ); | |
7800 | ||
7801 | if ( aExp == 0xFF ) { | |
326b9e98 | 7802 | if ( aSig ) { |
ff32e16e | 7803 | return propagateFloat32NaN(a, a, status); |
326b9e98 | 7804 | } |
9ee6e8bb PB |
7805 | return a; |
7806 | } | |
3c85c37f | 7807 | if (aExp != 0) { |
69397542 | 7808 | aSig |= 0x00800000; |
3c85c37f | 7809 | } else if (aSig == 0) { |
69397542 | 7810 | return a; |
3c85c37f PM |
7811 | } else { |
7812 | aExp++; | |
7813 | } | |
69397542 | 7814 | |
326b9e98 AJ |
7815 | if (n > 0x200) { |
7816 | n = 0x200; | |
7817 | } else if (n < -0x200) { | |
7818 | n = -0x200; | |
7819 | } | |
7820 | ||
69397542 PB |
7821 | aExp += n - 1; |
7822 | aSig <<= 7; | |
ff32e16e | 7823 | return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status); |
9ee6e8bb PB |
7824 | } |
7825 | ||
e5a41ffa | 7826 | float64 float64_scalbn(float64 a, int n, float_status *status) |
9ee6e8bb PB |
7827 | { |
7828 | flag aSign; | |
326b9e98 | 7829 | int16_t aExp; |
bb98fe42 | 7830 | uint64_t aSig; |
9ee6e8bb | 7831 | |
ff32e16e | 7832 | a = float64_squash_input_denormal(a, status); |
9ee6e8bb PB |
7833 | aSig = extractFloat64Frac( a ); |
7834 | aExp = extractFloat64Exp( a ); | |
7835 | aSign = extractFloat64Sign( a ); | |
7836 | ||
7837 | if ( aExp == 0x7FF ) { | |
326b9e98 | 7838 | if ( aSig ) { |
ff32e16e | 7839 | return propagateFloat64NaN(a, a, status); |
326b9e98 | 7840 | } |
9ee6e8bb PB |
7841 | return a; |
7842 | } | |
3c85c37f | 7843 | if (aExp != 0) { |
69397542 | 7844 | aSig |= LIT64( 0x0010000000000000 ); |
3c85c37f | 7845 | } else if (aSig == 0) { |
69397542 | 7846 | return a; |
3c85c37f PM |
7847 | } else { |
7848 | aExp++; | |
7849 | } | |
69397542 | 7850 | |
326b9e98 AJ |
7851 | if (n > 0x1000) { |
7852 | n = 0x1000; | |
7853 | } else if (n < -0x1000) { | |
7854 | n = -0x1000; | |
7855 | } | |
7856 | ||
69397542 PB |
7857 | aExp += n - 1; |
7858 | aSig <<= 10; | |
ff32e16e | 7859 | return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status); |
9ee6e8bb PB |
7860 | } |
7861 | ||
e5a41ffa | 7862 | floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) |
9ee6e8bb PB |
7863 | { |
7864 | flag aSign; | |
326b9e98 | 7865 | int32_t aExp; |
bb98fe42 | 7866 | uint64_t aSig; |
9ee6e8bb | 7867 | |
d1eb8f2a AD |
7868 | if (floatx80_invalid_encoding(a)) { |
7869 | float_raise(float_flag_invalid, status); | |
7870 | return floatx80_default_nan(status); | |
7871 | } | |
9ee6e8bb PB |
7872 | aSig = extractFloatx80Frac( a ); |
7873 | aExp = extractFloatx80Exp( a ); | |
7874 | aSign = extractFloatx80Sign( a ); | |
7875 | ||
326b9e98 AJ |
7876 | if ( aExp == 0x7FFF ) { |
7877 | if ( aSig<<1 ) { | |
ff32e16e | 7878 | return propagateFloatx80NaN(a, a, status); |
326b9e98 | 7879 | } |
9ee6e8bb PB |
7880 | return a; |
7881 | } | |
326b9e98 | 7882 | |
3c85c37f PM |
7883 | if (aExp == 0) { |
7884 | if (aSig == 0) { | |
7885 | return a; | |
7886 | } | |
7887 | aExp++; | |
7888 | } | |
69397542 | 7889 | |
326b9e98 AJ |
7890 | if (n > 0x10000) { |
7891 | n = 0x10000; | |
7892 | } else if (n < -0x10000) { | |
7893 | n = -0x10000; | |
7894 | } | |
7895 | ||
9ee6e8bb | 7896 | aExp += n; |
a2f2d288 PM |
7897 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
7898 | aSign, aExp, aSig, 0, status); | |
9ee6e8bb | 7899 | } |
9ee6e8bb | 7900 | |
e5a41ffa | 7901 | float128 float128_scalbn(float128 a, int n, float_status *status) |
9ee6e8bb PB |
7902 | { |
7903 | flag aSign; | |
326b9e98 | 7904 | int32_t aExp; |
bb98fe42 | 7905 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
7906 | |
7907 | aSig1 = extractFloat128Frac1( a ); | |
7908 | aSig0 = extractFloat128Frac0( a ); | |
7909 | aExp = extractFloat128Exp( a ); | |
7910 | aSign = extractFloat128Sign( a ); | |
7911 | if ( aExp == 0x7FFF ) { | |
326b9e98 | 7912 | if ( aSig0 | aSig1 ) { |
ff32e16e | 7913 | return propagateFloat128NaN(a, a, status); |
326b9e98 | 7914 | } |
9ee6e8bb PB |
7915 | return a; |
7916 | } | |
3c85c37f | 7917 | if (aExp != 0) { |
69397542 | 7918 | aSig0 |= LIT64( 0x0001000000000000 ); |
3c85c37f | 7919 | } else if (aSig0 == 0 && aSig1 == 0) { |
69397542 | 7920 | return a; |
3c85c37f PM |
7921 | } else { |
7922 | aExp++; | |
7923 | } | |
69397542 | 7924 | |
326b9e98 AJ |
7925 | if (n > 0x10000) { |
7926 | n = 0x10000; | |
7927 | } else if (n < -0x10000) { | |
7928 | n = -0x10000; | |
7929 | } | |
7930 | ||
69397542 PB |
7931 | aExp += n - 1; |
7932 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
ff32e16e | 7933 | , status); |
9ee6e8bb PB |
7934 | |
7935 | } |