]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
16017c48 PM |
4 | * The code in this source file is derived from release 2a of the SoftFloat |
5 | * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and | |
6 | * some later contributions) are provided under that license, as detailed below. | |
7 | * It has subsequently been modified by contributors to the QEMU Project, | |
8 | * so some portions are provided under: | |
9 | * the SoftFloat-2a license | |
10 | * the BSD license | |
11 | * GPL-v2-or-later | |
12 | * | |
13 | * Any future contributions to this file after December 1st 2014 will be | |
14 | * taken to be licensed under the Softfloat-2a license unless specifically | |
15 | * indicated otherwise. | |
8d725fac | 16 | */ |
158142c2 | 17 | |
a7d1ac78 PM |
18 | /* |
19 | =============================================================================== | |
20 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | |
21 | Arithmetic Package, Release 2a. | |
158142c2 FB |
22 | |
23 | Written by John R. Hauser. This work was made possible in part by the | |
24 | International Computer Science Institute, located at Suite 600, 1947 Center | |
25 | Street, Berkeley, California 94704. Funding was partially provided by the | |
26 | National Science Foundation under grant MIP-9311980. The original version | |
27 | of this code was written as part of a project to build a fixed-point vector | |
28 | processor in collaboration with the University of California at Berkeley, | |
29 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
a7d1ac78 | 30 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
158142c2 FB |
31 | arithmetic/SoftFloat.html'. |
32 | ||
a7d1ac78 PM |
33 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
34 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
35 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
36 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
37 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
158142c2 FB |
38 | |
39 | Derivative works are acceptable, even for commercial purposes, so long as | |
a7d1ac78 PM |
40 | (1) they include prominent notice that the work is derivative, and (2) they |
41 | include prominent notice akin to these four paragraphs for those parts of | |
42 | this code that are retained. | |
158142c2 | 43 | |
a7d1ac78 PM |
44 | =============================================================================== |
45 | */ | |
158142c2 | 46 | |
16017c48 PM |
47 | /* BSD licensing: |
48 | * Copyright (c) 2006, Fabrice Bellard | |
49 | * All rights reserved. | |
50 | * | |
51 | * Redistribution and use in source and binary forms, with or without | |
52 | * modification, are permitted provided that the following conditions are met: | |
53 | * | |
54 | * 1. Redistributions of source code must retain the above copyright notice, | |
55 | * this list of conditions and the following disclaimer. | |
56 | * | |
57 | * 2. Redistributions in binary form must reproduce the above copyright notice, | |
58 | * this list of conditions and the following disclaimer in the documentation | |
59 | * and/or other materials provided with the distribution. | |
60 | * | |
61 | * 3. Neither the name of the copyright holder nor the names of its contributors | |
62 | * may be used to endorse or promote products derived from this software without | |
63 | * specific prior written permission. | |
64 | * | |
65 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
66 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
67 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
68 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
69 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
70 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
71 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
72 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
73 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
74 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | |
75 | * THE POSSIBILITY OF SUCH DAMAGE. | |
76 | */ | |
77 | ||
78 | /* Portions of this work are licensed under the terms of the GNU GPL, | |
79 | * version 2 or later. See the COPYING file in the top-level directory. | |
80 | */ | |
81 | ||
2ac8bd03 PM |
82 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
83 | * target-dependent and needs the TARGET_* macros. | |
84 | */ | |
d38ea87a | 85 | #include "qemu/osdep.h" |
6fff2167 | 86 | #include "qemu/bitops.h" |
6b4c305c | 87 | #include "fpu/softfloat.h" |
158142c2 | 88 | |
dc355b76 | 89 | /* We only need stdlib for abort() */ |
dc355b76 | 90 | |
158142c2 FB |
91 | /*---------------------------------------------------------------------------- |
92 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
93 | | division and square root approximations. (Can be specialized to target if | |
94 | | desired.) | |
95 | *----------------------------------------------------------------------------*/ | |
88857aca | 96 | #include "fpu/softfloat-macros.h" |
158142c2 | 97 | |
bb4d4bb3 PM |
98 | /*---------------------------------------------------------------------------- |
99 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
100 | *----------------------------------------------------------------------------*/ | |
101 | ||
a49db98d | 102 | static inline uint32_t extractFloat16Frac(float16 a) |
bb4d4bb3 PM |
103 | { |
104 | return float16_val(a) & 0x3ff; | |
105 | } | |
106 | ||
107 | /*---------------------------------------------------------------------------- | |
108 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
109 | *----------------------------------------------------------------------------*/ | |
110 | ||
0c48262d | 111 | static inline int extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
112 | { |
113 | return (float16_val(a) >> 10) & 0x1f; | |
114 | } | |
115 | ||
d97544c9 AB |
116 | /*---------------------------------------------------------------------------- |
117 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
118 | *----------------------------------------------------------------------------*/ | |
119 | ||
120 | static inline uint32_t extractFloat32Frac(float32 a) | |
121 | { | |
122 | return float32_val(a) & 0x007FFFFF; | |
123 | } | |
124 | ||
125 | /*---------------------------------------------------------------------------- | |
126 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
127 | *----------------------------------------------------------------------------*/ | |
128 | ||
129 | static inline int extractFloat32Exp(float32 a) | |
130 | { | |
131 | return (float32_val(a) >> 23) & 0xFF; | |
132 | } | |
133 | ||
134 | /*---------------------------------------------------------------------------- | |
135 | | Returns the sign bit of the single-precision floating-point value `a'. | |
136 | *----------------------------------------------------------------------------*/ | |
137 | ||
138 | static inline flag extractFloat32Sign(float32 a) | |
139 | { | |
140 | return float32_val(a) >> 31; | |
141 | } | |
142 | ||
143 | /*---------------------------------------------------------------------------- | |
144 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
145 | *----------------------------------------------------------------------------*/ | |
146 | ||
147 | static inline uint64_t extractFloat64Frac(float64 a) | |
148 | { | |
149 | return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF); | |
150 | } | |
151 | ||
152 | /*---------------------------------------------------------------------------- | |
153 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
154 | *----------------------------------------------------------------------------*/ | |
155 | ||
156 | static inline int extractFloat64Exp(float64 a) | |
157 | { | |
158 | return (float64_val(a) >> 52) & 0x7FF; | |
159 | } | |
160 | ||
161 | /*---------------------------------------------------------------------------- | |
162 | | Returns the sign bit of the double-precision floating-point value `a'. | |
163 | *----------------------------------------------------------------------------*/ | |
164 | ||
165 | static inline flag extractFloat64Sign(float64 a) | |
166 | { | |
167 | return float64_val(a) >> 63; | |
168 | } | |
169 | ||
a90119b5 AB |
170 | /* |
171 | * Classify a floating point number. Everything above float_class_qnan | |
172 | * is a NaN so cls >= float_class_qnan is any NaN. | |
173 | */ | |
174 | ||
175 | typedef enum __attribute__ ((__packed__)) { | |
176 | float_class_unclassified, | |
177 | float_class_zero, | |
178 | float_class_normal, | |
179 | float_class_inf, | |
180 | float_class_qnan, /* all NaNs from here */ | |
181 | float_class_snan, | |
a90119b5 AB |
182 | } FloatClass; |
183 | ||
247d1f21 RH |
184 | /* Simple helpers for checking if, or what kind of, NaN we have */ |
185 | static inline __attribute__((unused)) bool is_nan(FloatClass c) | |
186 | { | |
187 | return unlikely(c >= float_class_qnan); | |
188 | } | |
189 | ||
190 | static inline __attribute__((unused)) bool is_snan(FloatClass c) | |
191 | { | |
192 | return c == float_class_snan; | |
193 | } | |
194 | ||
195 | static inline __attribute__((unused)) bool is_qnan(FloatClass c) | |
196 | { | |
197 | return c == float_class_qnan; | |
198 | } | |
199 | ||
a90119b5 AB |
200 | /* |
201 | * Structure holding all of the decomposed parts of a float. The | |
202 | * exponent is unbiased and the fraction is normalized. All | |
203 | * calculations are done with a 64 bit fraction and then rounded as | |
204 | * appropriate for the final format. | |
205 | * | |
206 | * Thanks to the packed FloatClass a decent compiler should be able to | |
207 | * fit the whole structure into registers and avoid using the stack | |
208 | * for parameter passing. | |
209 | */ | |
210 | ||
211 | typedef struct { | |
212 | uint64_t frac; | |
213 | int32_t exp; | |
214 | FloatClass cls; | |
215 | bool sign; | |
216 | } FloatParts; | |
217 | ||
218 | #define DECOMPOSED_BINARY_POINT (64 - 2) | |
219 | #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) | |
220 | #define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1) | |
221 | ||
222 | /* Structure holding all of the relevant parameters for a format. | |
223 | * exp_size: the size of the exponent field | |
224 | * exp_bias: the offset applied to the exponent field | |
225 | * exp_max: the maximum normalised exponent | |
226 | * frac_size: the size of the fraction field | |
227 | * frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT | |
228 | * The following are computed based the size of fraction | |
229 | * frac_lsb: least significant bit of fraction | |
ca3a3d5a | 230 | * frac_lsbm1: the bit below the least significant bit (for rounding) |
a90119b5 | 231 | * round_mask/roundeven_mask: masks used for rounding |
ca3a3d5a AB |
232 | * The following optional modifiers are available: |
233 | * arm_althp: handle ARM Alternative Half Precision | |
a90119b5 AB |
234 | */ |
235 | typedef struct { | |
236 | int exp_size; | |
237 | int exp_bias; | |
238 | int exp_max; | |
239 | int frac_size; | |
240 | int frac_shift; | |
241 | uint64_t frac_lsb; | |
242 | uint64_t frac_lsbm1; | |
243 | uint64_t round_mask; | |
244 | uint64_t roundeven_mask; | |
ca3a3d5a | 245 | bool arm_althp; |
a90119b5 AB |
246 | } FloatFmt; |
247 | ||
248 | /* Expand fields based on the size of exponent and fraction */ | |
249 | #define FLOAT_PARAMS(E, F) \ | |
250 | .exp_size = E, \ | |
251 | .exp_bias = ((1 << E) - 1) >> 1, \ | |
252 | .exp_max = (1 << E) - 1, \ | |
253 | .frac_size = F, \ | |
254 | .frac_shift = DECOMPOSED_BINARY_POINT - F, \ | |
255 | .frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \ | |
256 | .frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \ | |
257 | .round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \ | |
258 | .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1 | |
259 | ||
260 | static const FloatFmt float16_params = { | |
261 | FLOAT_PARAMS(5, 10) | |
262 | }; | |
263 | ||
6fed16b2 AB |
264 | static const FloatFmt float16_params_ahp = { |
265 | FLOAT_PARAMS(5, 10), | |
266 | .arm_althp = true | |
267 | }; | |
268 | ||
a90119b5 AB |
269 | static const FloatFmt float32_params = { |
270 | FLOAT_PARAMS(8, 23) | |
271 | }; | |
272 | ||
273 | static const FloatFmt float64_params = { | |
274 | FLOAT_PARAMS(11, 52) | |
275 | }; | |
276 | ||
6fff2167 AB |
277 | /* Unpack a float to parts, but do not canonicalize. */ |
278 | static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw) | |
279 | { | |
280 | const int sign_pos = fmt.frac_size + fmt.exp_size; | |
281 | ||
282 | return (FloatParts) { | |
283 | .cls = float_class_unclassified, | |
284 | .sign = extract64(raw, sign_pos, 1), | |
285 | .exp = extract64(raw, fmt.frac_size, fmt.exp_size), | |
286 | .frac = extract64(raw, 0, fmt.frac_size), | |
287 | }; | |
288 | } | |
289 | ||
290 | static inline FloatParts float16_unpack_raw(float16 f) | |
291 | { | |
292 | return unpack_raw(float16_params, f); | |
293 | } | |
294 | ||
295 | static inline FloatParts float32_unpack_raw(float32 f) | |
296 | { | |
297 | return unpack_raw(float32_params, f); | |
298 | } | |
299 | ||
300 | static inline FloatParts float64_unpack_raw(float64 f) | |
301 | { | |
302 | return unpack_raw(float64_params, f); | |
303 | } | |
304 | ||
305 | /* Pack a float from parts, but do not canonicalize. */ | |
306 | static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p) | |
307 | { | |
308 | const int sign_pos = fmt.frac_size + fmt.exp_size; | |
309 | uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp); | |
310 | return deposit64(ret, sign_pos, 1, p.sign); | |
311 | } | |
312 | ||
313 | static inline float16 float16_pack_raw(FloatParts p) | |
314 | { | |
315 | return make_float16(pack_raw(float16_params, p)); | |
316 | } | |
317 | ||
318 | static inline float32 float32_pack_raw(FloatParts p) | |
319 | { | |
320 | return make_float32(pack_raw(float32_params, p)); | |
321 | } | |
322 | ||
323 | static inline float64 float64_pack_raw(FloatParts p) | |
324 | { | |
325 | return make_float64(pack_raw(float64_params, p)); | |
326 | } | |
327 | ||
0664335a RH |
328 | /*---------------------------------------------------------------------------- |
329 | | Functions and definitions to determine: (1) whether tininess for underflow | |
330 | | is detected before or after rounding by default, (2) what (if anything) | |
331 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
332 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
333 | | are propagated from function inputs to output. These details are target- | |
334 | | specific. | |
335 | *----------------------------------------------------------------------------*/ | |
336 | #include "softfloat-specialize.h" | |
337 | ||
6fff2167 AB |
338 | /* Canonicalize EXP and FRAC, setting CLS. */ |
339 | static FloatParts canonicalize(FloatParts part, const FloatFmt *parm, | |
340 | float_status *status) | |
341 | { | |
ca3a3d5a | 342 | if (part.exp == parm->exp_max && !parm->arm_althp) { |
6fff2167 AB |
343 | if (part.frac == 0) { |
344 | part.cls = float_class_inf; | |
345 | } else { | |
94933df0 | 346 | part.frac <<= parm->frac_shift; |
298b468e RH |
347 | part.cls = (parts_is_snan_frac(part.frac, status) |
348 | ? float_class_snan : float_class_qnan); | |
6fff2167 AB |
349 | } |
350 | } else if (part.exp == 0) { | |
351 | if (likely(part.frac == 0)) { | |
352 | part.cls = float_class_zero; | |
353 | } else if (status->flush_inputs_to_zero) { | |
354 | float_raise(float_flag_input_denormal, status); | |
355 | part.cls = float_class_zero; | |
356 | part.frac = 0; | |
357 | } else { | |
358 | int shift = clz64(part.frac) - 1; | |
359 | part.cls = float_class_normal; | |
360 | part.exp = parm->frac_shift - parm->exp_bias - shift + 1; | |
361 | part.frac <<= shift; | |
362 | } | |
363 | } else { | |
364 | part.cls = float_class_normal; | |
365 | part.exp -= parm->exp_bias; | |
366 | part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift); | |
367 | } | |
368 | return part; | |
369 | } | |
370 | ||
371 | /* Round and uncanonicalize a floating-point number by parts. There | |
372 | * are FRAC_SHIFT bits that may require rounding at the bottom of the | |
373 | * fraction; these bits will be removed. The exponent will be biased | |
374 | * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. | |
375 | */ | |
376 | ||
377 | static FloatParts round_canonical(FloatParts p, float_status *s, | |
378 | const FloatFmt *parm) | |
379 | { | |
380 | const uint64_t frac_lsbm1 = parm->frac_lsbm1; | |
381 | const uint64_t round_mask = parm->round_mask; | |
382 | const uint64_t roundeven_mask = parm->roundeven_mask; | |
383 | const int exp_max = parm->exp_max; | |
384 | const int frac_shift = parm->frac_shift; | |
385 | uint64_t frac, inc; | |
386 | int exp, flags = 0; | |
387 | bool overflow_norm; | |
388 | ||
389 | frac = p.frac; | |
390 | exp = p.exp; | |
391 | ||
392 | switch (p.cls) { | |
393 | case float_class_normal: | |
394 | switch (s->float_rounding_mode) { | |
395 | case float_round_nearest_even: | |
396 | overflow_norm = false; | |
397 | inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); | |
398 | break; | |
399 | case float_round_ties_away: | |
400 | overflow_norm = false; | |
401 | inc = frac_lsbm1; | |
402 | break; | |
403 | case float_round_to_zero: | |
404 | overflow_norm = true; | |
405 | inc = 0; | |
406 | break; | |
407 | case float_round_up: | |
408 | inc = p.sign ? 0 : round_mask; | |
409 | overflow_norm = p.sign; | |
410 | break; | |
411 | case float_round_down: | |
412 | inc = p.sign ? round_mask : 0; | |
413 | overflow_norm = !p.sign; | |
414 | break; | |
415 | default: | |
416 | g_assert_not_reached(); | |
417 | } | |
418 | ||
419 | exp += parm->exp_bias; | |
420 | if (likely(exp > 0)) { | |
421 | if (frac & round_mask) { | |
422 | flags |= float_flag_inexact; | |
423 | frac += inc; | |
424 | if (frac & DECOMPOSED_OVERFLOW_BIT) { | |
425 | frac >>= 1; | |
426 | exp++; | |
427 | } | |
428 | } | |
429 | frac >>= frac_shift; | |
430 | ||
ca3a3d5a AB |
431 | if (parm->arm_althp) { |
432 | /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ | |
433 | if (unlikely(exp > exp_max)) { | |
434 | /* Overflow. Return the maximum normal. */ | |
435 | flags = float_flag_invalid; | |
436 | exp = exp_max; | |
437 | frac = -1; | |
438 | } | |
439 | } else if (unlikely(exp >= exp_max)) { | |
6fff2167 AB |
440 | flags |= float_flag_overflow | float_flag_inexact; |
441 | if (overflow_norm) { | |
442 | exp = exp_max - 1; | |
443 | frac = -1; | |
444 | } else { | |
445 | p.cls = float_class_inf; | |
446 | goto do_inf; | |
447 | } | |
448 | } | |
449 | } else if (s->flush_to_zero) { | |
450 | flags |= float_flag_output_denormal; | |
451 | p.cls = float_class_zero; | |
452 | goto do_zero; | |
453 | } else { | |
454 | bool is_tiny = (s->float_detect_tininess | |
455 | == float_tininess_before_rounding) | |
456 | || (exp < 0) | |
457 | || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT); | |
458 | ||
459 | shift64RightJamming(frac, 1 - exp, &frac); | |
460 | if (frac & round_mask) { | |
461 | /* Need to recompute round-to-even. */ | |
462 | if (s->float_rounding_mode == float_round_nearest_even) { | |
463 | inc = ((frac & roundeven_mask) != frac_lsbm1 | |
464 | ? frac_lsbm1 : 0); | |
465 | } | |
466 | flags |= float_flag_inexact; | |
467 | frac += inc; | |
468 | } | |
469 | ||
470 | exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0); | |
471 | frac >>= frac_shift; | |
472 | ||
473 | if (is_tiny && (flags & float_flag_inexact)) { | |
474 | flags |= float_flag_underflow; | |
475 | } | |
476 | if (exp == 0 && frac == 0) { | |
477 | p.cls = float_class_zero; | |
478 | } | |
479 | } | |
480 | break; | |
481 | ||
482 | case float_class_zero: | |
483 | do_zero: | |
484 | exp = 0; | |
485 | frac = 0; | |
486 | break; | |
487 | ||
488 | case float_class_inf: | |
489 | do_inf: | |
ca3a3d5a | 490 | assert(!parm->arm_althp); |
6fff2167 AB |
491 | exp = exp_max; |
492 | frac = 0; | |
493 | break; | |
494 | ||
495 | case float_class_qnan: | |
496 | case float_class_snan: | |
ca3a3d5a | 497 | assert(!parm->arm_althp); |
6fff2167 | 498 | exp = exp_max; |
94933df0 | 499 | frac >>= parm->frac_shift; |
6fff2167 AB |
500 | break; |
501 | ||
502 | default: | |
503 | g_assert_not_reached(); | |
504 | } | |
505 | ||
506 | float_raise(flags, s); | |
507 | p.exp = exp; | |
508 | p.frac = frac; | |
509 | return p; | |
510 | } | |
511 | ||
6fed16b2 AB |
512 | /* Explicit FloatFmt version */ |
513 | static FloatParts float16a_unpack_canonical(float16 f, float_status *s, | |
514 | const FloatFmt *params) | |
515 | { | |
516 | return canonicalize(float16_unpack_raw(f), params, s); | |
517 | } | |
518 | ||
6fff2167 AB |
519 | static FloatParts float16_unpack_canonical(float16 f, float_status *s) |
520 | { | |
6fed16b2 AB |
521 | return float16a_unpack_canonical(f, s, &float16_params); |
522 | } | |
523 | ||
524 | static float16 float16a_round_pack_canonical(FloatParts p, float_status *s, | |
525 | const FloatFmt *params) | |
526 | { | |
527 | return float16_pack_raw(round_canonical(p, s, params)); | |
6fff2167 AB |
528 | } |
529 | ||
530 | static float16 float16_round_pack_canonical(FloatParts p, float_status *s) | |
531 | { | |
6fed16b2 | 532 | return float16a_round_pack_canonical(p, s, &float16_params); |
6fff2167 AB |
533 | } |
534 | ||
535 | static FloatParts float32_unpack_canonical(float32 f, float_status *s) | |
536 | { | |
537 | return canonicalize(float32_unpack_raw(f), &float32_params, s); | |
538 | } | |
539 | ||
540 | static float32 float32_round_pack_canonical(FloatParts p, float_status *s) | |
541 | { | |
0bcfbcbe | 542 | return float32_pack_raw(round_canonical(p, s, &float32_params)); |
6fff2167 AB |
543 | } |
544 | ||
545 | static FloatParts float64_unpack_canonical(float64 f, float_status *s) | |
546 | { | |
547 | return canonicalize(float64_unpack_raw(f), &float64_params, s); | |
548 | } | |
549 | ||
550 | static float64 float64_round_pack_canonical(FloatParts p, float_status *s) | |
551 | { | |
0bcfbcbe | 552 | return float64_pack_raw(round_canonical(p, s, &float64_params)); |
6fff2167 AB |
553 | } |
554 | ||
dbe4d53a AB |
555 | static FloatParts return_nan(FloatParts a, float_status *s) |
556 | { | |
557 | switch (a.cls) { | |
558 | case float_class_snan: | |
559 | s->float_exception_flags |= float_flag_invalid; | |
0bcfbcbe | 560 | a = parts_silence_nan(a, s); |
dbe4d53a AB |
561 | /* fall through */ |
562 | case float_class_qnan: | |
563 | if (s->default_nan_mode) { | |
f7e598e2 | 564 | return parts_default_nan(s); |
dbe4d53a AB |
565 | } |
566 | break; | |
567 | ||
568 | default: | |
569 | g_assert_not_reached(); | |
570 | } | |
571 | return a; | |
572 | } | |
573 | ||
6fff2167 AB |
574 | static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) |
575 | { | |
576 | if (is_snan(a.cls) || is_snan(b.cls)) { | |
577 | s->float_exception_flags |= float_flag_invalid; | |
578 | } | |
579 | ||
580 | if (s->default_nan_mode) { | |
f7e598e2 | 581 | return parts_default_nan(s); |
6fff2167 | 582 | } else { |
4f251cfd | 583 | if (pickNaN(a.cls, b.cls, |
6fff2167 AB |
584 | a.frac > b.frac || |
585 | (a.frac == b.frac && a.sign < b.sign))) { | |
586 | a = b; | |
587 | } | |
0bcfbcbe RH |
588 | if (is_snan(a.cls)) { |
589 | return parts_silence_nan(a, s); | |
590 | } | |
6fff2167 AB |
591 | } |
592 | return a; | |
593 | } | |
594 | ||
d446830a AB |
595 | static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c, |
596 | bool inf_zero, float_status *s) | |
597 | { | |
1839189b PM |
598 | int which; |
599 | ||
d446830a AB |
600 | if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) { |
601 | s->float_exception_flags |= float_flag_invalid; | |
602 | } | |
603 | ||
3bd2dec1 | 604 | which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s); |
1839189b | 605 | |
d446830a | 606 | if (s->default_nan_mode) { |
1839189b PM |
607 | /* Note that this check is after pickNaNMulAdd so that function |
608 | * has an opportunity to set the Invalid flag. | |
609 | */ | |
f7e598e2 | 610 | which = 3; |
1839189b | 611 | } |
d446830a | 612 | |
1839189b PM |
613 | switch (which) { |
614 | case 0: | |
615 | break; | |
616 | case 1: | |
617 | a = b; | |
618 | break; | |
619 | case 2: | |
620 | a = c; | |
621 | break; | |
622 | case 3: | |
f7e598e2 | 623 | return parts_default_nan(s); |
1839189b PM |
624 | default: |
625 | g_assert_not_reached(); | |
d446830a | 626 | } |
1839189b | 627 | |
0bcfbcbe RH |
628 | if (is_snan(a.cls)) { |
629 | return parts_silence_nan(a, s); | |
630 | } | |
d446830a AB |
631 | return a; |
632 | } | |
633 | ||
6fff2167 AB |
634 | /* |
635 | * Returns the result of adding or subtracting the values of the | |
636 | * floating-point values `a' and `b'. The operation is performed | |
637 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
638 | * Arithmetic. | |
639 | */ | |
640 | ||
641 | static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract, | |
642 | float_status *s) | |
643 | { | |
644 | bool a_sign = a.sign; | |
645 | bool b_sign = b.sign ^ subtract; | |
646 | ||
647 | if (a_sign != b_sign) { | |
648 | /* Subtraction */ | |
649 | ||
650 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
651 | if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) { | |
652 | shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); | |
653 | a.frac = a.frac - b.frac; | |
654 | } else { | |
655 | shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); | |
656 | a.frac = b.frac - a.frac; | |
657 | a.exp = b.exp; | |
658 | a_sign ^= 1; | |
659 | } | |
660 | ||
661 | if (a.frac == 0) { | |
662 | a.cls = float_class_zero; | |
663 | a.sign = s->float_rounding_mode == float_round_down; | |
664 | } else { | |
665 | int shift = clz64(a.frac) - 1; | |
666 | a.frac = a.frac << shift; | |
667 | a.exp = a.exp - shift; | |
668 | a.sign = a_sign; | |
669 | } | |
670 | return a; | |
671 | } | |
672 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
673 | return pick_nan(a, b, s); | |
674 | } | |
675 | if (a.cls == float_class_inf) { | |
676 | if (b.cls == float_class_inf) { | |
677 | float_raise(float_flag_invalid, s); | |
f7e598e2 | 678 | return parts_default_nan(s); |
6fff2167 AB |
679 | } |
680 | return a; | |
681 | } | |
682 | if (a.cls == float_class_zero && b.cls == float_class_zero) { | |
683 | a.sign = s->float_rounding_mode == float_round_down; | |
684 | return a; | |
685 | } | |
686 | if (a.cls == float_class_zero || b.cls == float_class_inf) { | |
687 | b.sign = a_sign ^ 1; | |
688 | return b; | |
689 | } | |
690 | if (b.cls == float_class_zero) { | |
691 | return a; | |
692 | } | |
693 | } else { | |
694 | /* Addition */ | |
695 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
696 | if (a.exp > b.exp) { | |
697 | shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); | |
698 | } else if (a.exp < b.exp) { | |
699 | shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); | |
700 | a.exp = b.exp; | |
701 | } | |
702 | a.frac += b.frac; | |
703 | if (a.frac & DECOMPOSED_OVERFLOW_BIT) { | |
704 | a.frac >>= 1; | |
705 | a.exp += 1; | |
706 | } | |
707 | return a; | |
708 | } | |
709 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
710 | return pick_nan(a, b, s); | |
711 | } | |
712 | if (a.cls == float_class_inf || b.cls == float_class_zero) { | |
713 | return a; | |
714 | } | |
715 | if (b.cls == float_class_inf || a.cls == float_class_zero) { | |
716 | b.sign = b_sign; | |
717 | return b; | |
718 | } | |
719 | } | |
720 | g_assert_not_reached(); | |
721 | } | |
722 | ||
723 | /* | |
724 | * Returns the result of adding or subtracting the floating-point | |
725 | * values `a' and `b'. The operation is performed according to the | |
726 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
727 | */ | |
728 | ||
729 | float16 __attribute__((flatten)) float16_add(float16 a, float16 b, | |
730 | float_status *status) | |
731 | { | |
732 | FloatParts pa = float16_unpack_canonical(a, status); | |
733 | FloatParts pb = float16_unpack_canonical(b, status); | |
734 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
735 | ||
736 | return float16_round_pack_canonical(pr, status); | |
737 | } | |
738 | ||
739 | float32 __attribute__((flatten)) float32_add(float32 a, float32 b, | |
740 | float_status *status) | |
741 | { | |
742 | FloatParts pa = float32_unpack_canonical(a, status); | |
743 | FloatParts pb = float32_unpack_canonical(b, status); | |
744 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
745 | ||
746 | return float32_round_pack_canonical(pr, status); | |
747 | } | |
748 | ||
749 | float64 __attribute__((flatten)) float64_add(float64 a, float64 b, | |
750 | float_status *status) | |
751 | { | |
752 | FloatParts pa = float64_unpack_canonical(a, status); | |
753 | FloatParts pb = float64_unpack_canonical(b, status); | |
754 | FloatParts pr = addsub_floats(pa, pb, false, status); | |
755 | ||
756 | return float64_round_pack_canonical(pr, status); | |
757 | } | |
758 | ||
759 | float16 __attribute__((flatten)) float16_sub(float16 a, float16 b, | |
760 | float_status *status) | |
761 | { | |
762 | FloatParts pa = float16_unpack_canonical(a, status); | |
763 | FloatParts pb = float16_unpack_canonical(b, status); | |
764 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
765 | ||
766 | return float16_round_pack_canonical(pr, status); | |
767 | } | |
768 | ||
769 | float32 __attribute__((flatten)) float32_sub(float32 a, float32 b, | |
770 | float_status *status) | |
771 | { | |
772 | FloatParts pa = float32_unpack_canonical(a, status); | |
773 | FloatParts pb = float32_unpack_canonical(b, status); | |
774 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
775 | ||
776 | return float32_round_pack_canonical(pr, status); | |
777 | } | |
778 | ||
779 | float64 __attribute__((flatten)) float64_sub(float64 a, float64 b, | |
780 | float_status *status) | |
781 | { | |
782 | FloatParts pa = float64_unpack_canonical(a, status); | |
783 | FloatParts pb = float64_unpack_canonical(b, status); | |
784 | FloatParts pr = addsub_floats(pa, pb, true, status); | |
785 | ||
786 | return float64_round_pack_canonical(pr, status); | |
787 | } | |
788 | ||
74d707e2 AB |
789 | /* |
790 | * Returns the result of multiplying the floating-point values `a' and | |
791 | * `b'. The operation is performed according to the IEC/IEEE Standard | |
792 | * for Binary Floating-Point Arithmetic. | |
793 | */ | |
794 | ||
795 | static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s) | |
796 | { | |
797 | bool sign = a.sign ^ b.sign; | |
798 | ||
799 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
800 | uint64_t hi, lo; | |
801 | int exp = a.exp + b.exp; | |
802 | ||
803 | mul64To128(a.frac, b.frac, &hi, &lo); | |
804 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
805 | if (lo & DECOMPOSED_OVERFLOW_BIT) { | |
806 | shift64RightJamming(lo, 1, &lo); | |
807 | exp += 1; | |
808 | } | |
809 | ||
810 | /* Re-use a */ | |
811 | a.exp = exp; | |
812 | a.sign = sign; | |
813 | a.frac = lo; | |
814 | return a; | |
815 | } | |
816 | /* handle all the NaN cases */ | |
817 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
818 | return pick_nan(a, b, s); | |
819 | } | |
820 | /* Inf * Zero == NaN */ | |
821 | if ((a.cls == float_class_inf && b.cls == float_class_zero) || | |
822 | (a.cls == float_class_zero && b.cls == float_class_inf)) { | |
823 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 824 | return parts_default_nan(s); |
74d707e2 AB |
825 | } |
826 | /* Multiply by 0 or Inf */ | |
827 | if (a.cls == float_class_inf || a.cls == float_class_zero) { | |
828 | a.sign = sign; | |
829 | return a; | |
830 | } | |
831 | if (b.cls == float_class_inf || b.cls == float_class_zero) { | |
832 | b.sign = sign; | |
833 | return b; | |
834 | } | |
835 | g_assert_not_reached(); | |
836 | } | |
837 | ||
838 | float16 __attribute__((flatten)) float16_mul(float16 a, float16 b, | |
839 | float_status *status) | |
840 | { | |
841 | FloatParts pa = float16_unpack_canonical(a, status); | |
842 | FloatParts pb = float16_unpack_canonical(b, status); | |
843 | FloatParts pr = mul_floats(pa, pb, status); | |
844 | ||
845 | return float16_round_pack_canonical(pr, status); | |
846 | } | |
847 | ||
848 | float32 __attribute__((flatten)) float32_mul(float32 a, float32 b, | |
849 | float_status *status) | |
850 | { | |
851 | FloatParts pa = float32_unpack_canonical(a, status); | |
852 | FloatParts pb = float32_unpack_canonical(b, status); | |
853 | FloatParts pr = mul_floats(pa, pb, status); | |
854 | ||
855 | return float32_round_pack_canonical(pr, status); | |
856 | } | |
857 | ||
858 | float64 __attribute__((flatten)) float64_mul(float64 a, float64 b, | |
859 | float_status *status) | |
860 | { | |
861 | FloatParts pa = float64_unpack_canonical(a, status); | |
862 | FloatParts pb = float64_unpack_canonical(b, status); | |
863 | FloatParts pr = mul_floats(pa, pb, status); | |
864 | ||
865 | return float64_round_pack_canonical(pr, status); | |
866 | } | |
867 | ||
d446830a AB |
868 | /* |
869 | * Returns the result of multiplying the floating-point values `a' and | |
870 | * `b' then adding 'c', with no intermediate rounding step after the | |
871 | * multiplication. The operation is performed according to the | |
872 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. | |
873 | * The flags argument allows the caller to select negation of the | |
874 | * addend, the intermediate product, or the final result. (The | |
875 | * difference between this and having the caller do a separate | |
876 | * negation is that negating externally will flip the sign bit on | |
877 | * NaNs.) | |
878 | */ | |
879 | ||
880 | static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c, | |
881 | int flags, float_status *s) | |
882 | { | |
883 | bool inf_zero = ((1 << a.cls) | (1 << b.cls)) == | |
884 | ((1 << float_class_inf) | (1 << float_class_zero)); | |
885 | bool p_sign; | |
886 | bool sign_flip = flags & float_muladd_negate_result; | |
887 | FloatClass p_class; | |
888 | uint64_t hi, lo; | |
889 | int p_exp; | |
890 | ||
891 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
892 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
893 | * they return if they do), so we have to hand this information | |
894 | * off to the target-specific pick-a-NaN routine. | |
895 | */ | |
896 | if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) { | |
897 | return pick_nan_muladd(a, b, c, inf_zero, s); | |
898 | } | |
899 | ||
900 | if (inf_zero) { | |
901 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 902 | return parts_default_nan(s); |
d446830a AB |
903 | } |
904 | ||
905 | if (flags & float_muladd_negate_c) { | |
906 | c.sign ^= 1; | |
907 | } | |
908 | ||
909 | p_sign = a.sign ^ b.sign; | |
910 | ||
911 | if (flags & float_muladd_negate_product) { | |
912 | p_sign ^= 1; | |
913 | } | |
914 | ||
915 | if (a.cls == float_class_inf || b.cls == float_class_inf) { | |
916 | p_class = float_class_inf; | |
917 | } else if (a.cls == float_class_zero || b.cls == float_class_zero) { | |
918 | p_class = float_class_zero; | |
919 | } else { | |
920 | p_class = float_class_normal; | |
921 | } | |
922 | ||
923 | if (c.cls == float_class_inf) { | |
924 | if (p_class == float_class_inf && p_sign != c.sign) { | |
925 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 926 | return parts_default_nan(s); |
d446830a AB |
927 | } else { |
928 | a.cls = float_class_inf; | |
929 | a.sign = c.sign ^ sign_flip; | |
f7e598e2 | 930 | return a; |
d446830a | 931 | } |
d446830a AB |
932 | } |
933 | ||
934 | if (p_class == float_class_inf) { | |
935 | a.cls = float_class_inf; | |
936 | a.sign = p_sign ^ sign_flip; | |
937 | return a; | |
938 | } | |
939 | ||
940 | if (p_class == float_class_zero) { | |
941 | if (c.cls == float_class_zero) { | |
942 | if (p_sign != c.sign) { | |
943 | p_sign = s->float_rounding_mode == float_round_down; | |
944 | } | |
945 | c.sign = p_sign; | |
946 | } else if (flags & float_muladd_halve_result) { | |
947 | c.exp -= 1; | |
948 | } | |
949 | c.sign ^= sign_flip; | |
950 | return c; | |
951 | } | |
952 | ||
953 | /* a & b should be normals now... */ | |
954 | assert(a.cls == float_class_normal && | |
955 | b.cls == float_class_normal); | |
956 | ||
957 | p_exp = a.exp + b.exp; | |
958 | ||
959 | /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit | |
960 | * result. | |
961 | */ | |
962 | mul64To128(a.frac, b.frac, &hi, &lo); | |
963 | /* binary point now at bit 124 */ | |
964 | ||
965 | /* check for overflow */ | |
966 | if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) { | |
967 | shift128RightJamming(hi, lo, 1, &hi, &lo); | |
968 | p_exp += 1; | |
969 | } | |
970 | ||
971 | /* + add/sub */ | |
972 | if (c.cls == float_class_zero) { | |
973 | /* move binary point back to 62 */ | |
974 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
975 | } else { | |
976 | int exp_diff = p_exp - c.exp; | |
977 | if (p_sign == c.sign) { | |
978 | /* Addition */ | |
979 | if (exp_diff <= 0) { | |
980 | shift128RightJamming(hi, lo, | |
981 | DECOMPOSED_BINARY_POINT - exp_diff, | |
982 | &hi, &lo); | |
983 | lo += c.frac; | |
984 | p_exp = c.exp; | |
985 | } else { | |
986 | uint64_t c_hi, c_lo; | |
987 | /* shift c to the same binary point as the product (124) */ | |
988 | c_hi = c.frac >> 2; | |
989 | c_lo = 0; | |
990 | shift128RightJamming(c_hi, c_lo, | |
991 | exp_diff, | |
992 | &c_hi, &c_lo); | |
993 | add128(hi, lo, c_hi, c_lo, &hi, &lo); | |
994 | /* move binary point back to 62 */ | |
995 | shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); | |
996 | } | |
997 | ||
998 | if (lo & DECOMPOSED_OVERFLOW_BIT) { | |
999 | shift64RightJamming(lo, 1, &lo); | |
1000 | p_exp += 1; | |
1001 | } | |
1002 | ||
1003 | } else { | |
1004 | /* Subtraction */ | |
1005 | uint64_t c_hi, c_lo; | |
1006 | /* make C binary point match product at bit 124 */ | |
1007 | c_hi = c.frac >> 2; | |
1008 | c_lo = 0; | |
1009 | ||
1010 | if (exp_diff <= 0) { | |
1011 | shift128RightJamming(hi, lo, -exp_diff, &hi, &lo); | |
1012 | if (exp_diff == 0 | |
1013 | && | |
1014 | (hi > c_hi || (hi == c_hi && lo >= c_lo))) { | |
1015 | sub128(hi, lo, c_hi, c_lo, &hi, &lo); | |
1016 | } else { | |
1017 | sub128(c_hi, c_lo, hi, lo, &hi, &lo); | |
1018 | p_sign ^= 1; | |
1019 | p_exp = c.exp; | |
1020 | } | |
1021 | } else { | |
1022 | shift128RightJamming(c_hi, c_lo, | |
1023 | exp_diff, | |
1024 | &c_hi, &c_lo); | |
1025 | sub128(hi, lo, c_hi, c_lo, &hi, &lo); | |
1026 | } | |
1027 | ||
1028 | if (hi == 0 && lo == 0) { | |
1029 | a.cls = float_class_zero; | |
1030 | a.sign = s->float_rounding_mode == float_round_down; | |
1031 | a.sign ^= sign_flip; | |
1032 | return a; | |
1033 | } else { | |
1034 | int shift; | |
1035 | if (hi != 0) { | |
1036 | shift = clz64(hi); | |
1037 | } else { | |
1038 | shift = clz64(lo) + 64; | |
1039 | } | |
1040 | /* Normalizing to a binary point of 124 is the | |
1041 | correct adjust for the exponent. However since we're | |
1042 | shifting, we might as well put the binary point back | |
1043 | at 62 where we really want it. Therefore shift as | |
1044 | if we're leaving 1 bit at the top of the word, but | |
1045 | adjust the exponent as if we're leaving 3 bits. */ | |
1046 | shift -= 1; | |
1047 | if (shift >= 64) { | |
1048 | lo = lo << (shift - 64); | |
1049 | } else { | |
1050 | hi = (hi << shift) | (lo >> (64 - shift)); | |
1051 | lo = hi | ((lo << shift) != 0); | |
1052 | } | |
1053 | p_exp -= shift - 2; | |
1054 | } | |
1055 | } | |
1056 | } | |
1057 | ||
1058 | if (flags & float_muladd_halve_result) { | |
1059 | p_exp -= 1; | |
1060 | } | |
1061 | ||
1062 | /* finally prepare our result */ | |
1063 | a.cls = float_class_normal; | |
1064 | a.sign = p_sign ^ sign_flip; | |
1065 | a.exp = p_exp; | |
1066 | a.frac = lo; | |
1067 | ||
1068 | return a; | |
1069 | } | |
1070 | ||
1071 | float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c, | |
1072 | int flags, float_status *status) | |
1073 | { | |
1074 | FloatParts pa = float16_unpack_canonical(a, status); | |
1075 | FloatParts pb = float16_unpack_canonical(b, status); | |
1076 | FloatParts pc = float16_unpack_canonical(c, status); | |
1077 | FloatParts pr = muladd_floats(pa, pb, pc, flags, status); | |
1078 | ||
1079 | return float16_round_pack_canonical(pr, status); | |
1080 | } | |
1081 | ||
1082 | float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c, | |
1083 | int flags, float_status *status) | |
1084 | { | |
1085 | FloatParts pa = float32_unpack_canonical(a, status); | |
1086 | FloatParts pb = float32_unpack_canonical(b, status); | |
1087 | FloatParts pc = float32_unpack_canonical(c, status); | |
1088 | FloatParts pr = muladd_floats(pa, pb, pc, flags, status); | |
1089 | ||
1090 | return float32_round_pack_canonical(pr, status); | |
1091 | } | |
1092 | ||
1093 | float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c, | |
1094 | int flags, float_status *status) | |
1095 | { | |
1096 | FloatParts pa = float64_unpack_canonical(a, status); | |
1097 | FloatParts pb = float64_unpack_canonical(b, status); | |
1098 | FloatParts pc = float64_unpack_canonical(c, status); | |
1099 | FloatParts pr = muladd_floats(pa, pb, pc, flags, status); | |
1100 | ||
1101 | return float64_round_pack_canonical(pr, status); | |
1102 | } | |
1103 | ||
cf07323d AB |
1104 | /* |
1105 | * Returns the result of dividing the floating-point value `a' by the | |
1106 | * corresponding value `b'. The operation is performed according to | |
1107 | * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1108 | */ | |
1109 | ||
1110 | static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s) | |
1111 | { | |
1112 | bool sign = a.sign ^ b.sign; | |
1113 | ||
1114 | if (a.cls == float_class_normal && b.cls == float_class_normal) { | |
1115 | uint64_t temp_lo, temp_hi; | |
1116 | int exp = a.exp - b.exp; | |
1117 | if (a.frac < b.frac) { | |
1118 | exp -= 1; | |
1119 | shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, | |
1120 | &temp_hi, &temp_lo); | |
1121 | } else { | |
1122 | shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT, | |
1123 | &temp_hi, &temp_lo); | |
1124 | } | |
1125 | /* LSB of quot is set if inexact which roundandpack will use | |
1126 | * to set flags. Yet again we re-use a for the result */ | |
1127 | a.frac = div128To64(temp_lo, temp_hi, b.frac); | |
1128 | a.sign = sign; | |
1129 | a.exp = exp; | |
1130 | return a; | |
1131 | } | |
1132 | /* handle all the NaN cases */ | |
1133 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
1134 | return pick_nan(a, b, s); | |
1135 | } | |
1136 | /* 0/0 or Inf/Inf */ | |
1137 | if (a.cls == b.cls | |
1138 | && | |
1139 | (a.cls == float_class_inf || a.cls == float_class_zero)) { | |
1140 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 1141 | return parts_default_nan(s); |
cf07323d | 1142 | } |
9cb4e398 AB |
1143 | /* Inf / x or 0 / x */ |
1144 | if (a.cls == float_class_inf || a.cls == float_class_zero) { | |
1145 | a.sign = sign; | |
1146 | return a; | |
1147 | } | |
cf07323d AB |
1148 | /* Div 0 => Inf */ |
1149 | if (b.cls == float_class_zero) { | |
1150 | s->float_exception_flags |= float_flag_divbyzero; | |
1151 | a.cls = float_class_inf; | |
1152 | a.sign = sign; | |
1153 | return a; | |
1154 | } | |
cf07323d AB |
1155 | /* Div by Inf */ |
1156 | if (b.cls == float_class_inf) { | |
1157 | a.cls = float_class_zero; | |
1158 | a.sign = sign; | |
1159 | return a; | |
1160 | } | |
1161 | g_assert_not_reached(); | |
1162 | } | |
1163 | ||
1164 | float16 float16_div(float16 a, float16 b, float_status *status) | |
1165 | { | |
1166 | FloatParts pa = float16_unpack_canonical(a, status); | |
1167 | FloatParts pb = float16_unpack_canonical(b, status); | |
1168 | FloatParts pr = div_floats(pa, pb, status); | |
1169 | ||
1170 | return float16_round_pack_canonical(pr, status); | |
1171 | } | |
1172 | ||
1173 | float32 float32_div(float32 a, float32 b, float_status *status) | |
1174 | { | |
1175 | FloatParts pa = float32_unpack_canonical(a, status); | |
1176 | FloatParts pb = float32_unpack_canonical(b, status); | |
1177 | FloatParts pr = div_floats(pa, pb, status); | |
1178 | ||
1179 | return float32_round_pack_canonical(pr, status); | |
1180 | } | |
1181 | ||
1182 | float64 float64_div(float64 a, float64 b, float_status *status) | |
1183 | { | |
1184 | FloatParts pa = float64_unpack_canonical(a, status); | |
1185 | FloatParts pb = float64_unpack_canonical(b, status); | |
1186 | FloatParts pr = div_floats(pa, pb, status); | |
1187 | ||
1188 | return float64_round_pack_canonical(pr, status); | |
1189 | } | |
1190 | ||
6fed16b2 AB |
1191 | /* |
1192 | * Float to Float conversions | |
1193 | * | |
1194 | * Returns the result of converting one float format to another. The | |
1195 | * conversion is performed according to the IEC/IEEE Standard for | |
1196 | * Binary Floating-Point Arithmetic. | |
1197 | * | |
1198 | * The float_to_float helper only needs to take care of raising | |
1199 | * invalid exceptions and handling the conversion on NaNs. | |
1200 | */ | |
1201 | ||
1202 | static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf, | |
1203 | float_status *s) | |
1204 | { | |
1205 | if (dstf->arm_althp) { | |
1206 | switch (a.cls) { | |
1207 | case float_class_qnan: | |
1208 | case float_class_snan: | |
1209 | /* There is no NaN in the destination format. Raise Invalid | |
1210 | * and return a zero with the sign of the input NaN. | |
1211 | */ | |
1212 | s->float_exception_flags |= float_flag_invalid; | |
1213 | a.cls = float_class_zero; | |
1214 | a.frac = 0; | |
1215 | a.exp = 0; | |
1216 | break; | |
1217 | ||
1218 | case float_class_inf: | |
1219 | /* There is no Inf in the destination format. Raise Invalid | |
1220 | * and return the maximum normal with the correct sign. | |
1221 | */ | |
1222 | s->float_exception_flags |= float_flag_invalid; | |
1223 | a.cls = float_class_normal; | |
1224 | a.exp = dstf->exp_max; | |
1225 | a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift; | |
1226 | break; | |
1227 | ||
1228 | default: | |
1229 | break; | |
1230 | } | |
1231 | } else if (is_nan(a.cls)) { | |
1232 | if (is_snan(a.cls)) { | |
1233 | s->float_exception_flags |= float_flag_invalid; | |
1234 | a = parts_silence_nan(a, s); | |
1235 | } | |
1236 | if (s->default_nan_mode) { | |
1237 | return parts_default_nan(s); | |
1238 | } | |
1239 | } | |
1240 | return a; | |
1241 | } | |
1242 | ||
1243 | float32 float16_to_float32(float16 a, bool ieee, float_status *s) | |
1244 | { | |
1245 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1246 | FloatParts p = float16a_unpack_canonical(a, s, fmt16); | |
1247 | FloatParts pr = float_to_float(p, &float32_params, s); | |
1248 | return float32_round_pack_canonical(pr, s); | |
1249 | } | |
1250 | ||
1251 | float64 float16_to_float64(float16 a, bool ieee, float_status *s) | |
1252 | { | |
1253 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1254 | FloatParts p = float16a_unpack_canonical(a, s, fmt16); | |
1255 | FloatParts pr = float_to_float(p, &float64_params, s); | |
1256 | return float64_round_pack_canonical(pr, s); | |
1257 | } | |
1258 | ||
1259 | float16 float32_to_float16(float32 a, bool ieee, float_status *s) | |
1260 | { | |
1261 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1262 | FloatParts p = float32_unpack_canonical(a, s); | |
1263 | FloatParts pr = float_to_float(p, fmt16, s); | |
1264 | return float16a_round_pack_canonical(pr, s, fmt16); | |
1265 | } | |
1266 | ||
1267 | float64 float32_to_float64(float32 a, float_status *s) | |
1268 | { | |
1269 | FloatParts p = float32_unpack_canonical(a, s); | |
1270 | FloatParts pr = float_to_float(p, &float64_params, s); | |
1271 | return float64_round_pack_canonical(pr, s); | |
1272 | } | |
1273 | ||
1274 | float16 float64_to_float16(float64 a, bool ieee, float_status *s) | |
1275 | { | |
1276 | const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; | |
1277 | FloatParts p = float64_unpack_canonical(a, s); | |
1278 | FloatParts pr = float_to_float(p, fmt16, s); | |
1279 | return float16a_round_pack_canonical(pr, s, fmt16); | |
1280 | } | |
1281 | ||
1282 | float32 float64_to_float32(float64 a, float_status *s) | |
1283 | { | |
1284 | FloatParts p = float64_unpack_canonical(a, s); | |
1285 | FloatParts pr = float_to_float(p, &float32_params, s); | |
1286 | return float32_round_pack_canonical(pr, s); | |
1287 | } | |
1288 | ||
dbe4d53a AB |
1289 | /* |
1290 | * Rounds the floating-point value `a' to an integer, and returns the | |
1291 | * result as a floating-point value. The operation is performed | |
1292 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
1293 | * Arithmetic. | |
1294 | */ | |
1295 | ||
1296 | static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s) | |
1297 | { | |
1298 | if (is_nan(a.cls)) { | |
1299 | return return_nan(a, s); | |
1300 | } | |
1301 | ||
1302 | switch (a.cls) { | |
1303 | case float_class_zero: | |
1304 | case float_class_inf: | |
1305 | case float_class_qnan: | |
1306 | /* already "integral" */ | |
1307 | break; | |
1308 | case float_class_normal: | |
1309 | if (a.exp >= DECOMPOSED_BINARY_POINT) { | |
1310 | /* already integral */ | |
1311 | break; | |
1312 | } | |
1313 | if (a.exp < 0) { | |
1314 | bool one; | |
1315 | /* all fractional */ | |
1316 | s->float_exception_flags |= float_flag_inexact; | |
1317 | switch (rounding_mode) { | |
1318 | case float_round_nearest_even: | |
1319 | one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT; | |
1320 | break; | |
1321 | case float_round_ties_away: | |
1322 | one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT; | |
1323 | break; | |
1324 | case float_round_to_zero: | |
1325 | one = false; | |
1326 | break; | |
1327 | case float_round_up: | |
1328 | one = !a.sign; | |
1329 | break; | |
1330 | case float_round_down: | |
1331 | one = a.sign; | |
1332 | break; | |
1333 | default: | |
1334 | g_assert_not_reached(); | |
1335 | } | |
1336 | ||
1337 | if (one) { | |
1338 | a.frac = DECOMPOSED_IMPLICIT_BIT; | |
1339 | a.exp = 0; | |
1340 | } else { | |
1341 | a.cls = float_class_zero; | |
1342 | } | |
1343 | } else { | |
1344 | uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp; | |
1345 | uint64_t frac_lsbm1 = frac_lsb >> 1; | |
1346 | uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb; | |
1347 | uint64_t rnd_mask = rnd_even_mask >> 1; | |
1348 | uint64_t inc; | |
1349 | ||
1350 | switch (rounding_mode) { | |
1351 | case float_round_nearest_even: | |
1352 | inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); | |
1353 | break; | |
1354 | case float_round_ties_away: | |
1355 | inc = frac_lsbm1; | |
1356 | break; | |
1357 | case float_round_to_zero: | |
1358 | inc = 0; | |
1359 | break; | |
1360 | case float_round_up: | |
1361 | inc = a.sign ? 0 : rnd_mask; | |
1362 | break; | |
1363 | case float_round_down: | |
1364 | inc = a.sign ? rnd_mask : 0; | |
1365 | break; | |
1366 | default: | |
1367 | g_assert_not_reached(); | |
1368 | } | |
1369 | ||
1370 | if (a.frac & rnd_mask) { | |
1371 | s->float_exception_flags |= float_flag_inexact; | |
1372 | a.frac += inc; | |
1373 | a.frac &= ~rnd_mask; | |
1374 | if (a.frac & DECOMPOSED_OVERFLOW_BIT) { | |
1375 | a.frac >>= 1; | |
1376 | a.exp++; | |
1377 | } | |
1378 | } | |
1379 | } | |
1380 | break; | |
1381 | default: | |
1382 | g_assert_not_reached(); | |
1383 | } | |
1384 | return a; | |
1385 | } | |
1386 | ||
1387 | float16 float16_round_to_int(float16 a, float_status *s) | |
1388 | { | |
1389 | FloatParts pa = float16_unpack_canonical(a, s); | |
1390 | FloatParts pr = round_to_int(pa, s->float_rounding_mode, s); | |
1391 | return float16_round_pack_canonical(pr, s); | |
1392 | } | |
1393 | ||
1394 | float32 float32_round_to_int(float32 a, float_status *s) | |
1395 | { | |
1396 | FloatParts pa = float32_unpack_canonical(a, s); | |
1397 | FloatParts pr = round_to_int(pa, s->float_rounding_mode, s); | |
1398 | return float32_round_pack_canonical(pr, s); | |
1399 | } | |
1400 | ||
1401 | float64 float64_round_to_int(float64 a, float_status *s) | |
1402 | { | |
1403 | FloatParts pa = float64_unpack_canonical(a, s); | |
1404 | FloatParts pr = round_to_int(pa, s->float_rounding_mode, s); | |
1405 | return float64_round_pack_canonical(pr, s); | |
1406 | } | |
1407 | ||
1408 | float64 float64_trunc_to_int(float64 a, float_status *s) | |
1409 | { | |
1410 | FloatParts pa = float64_unpack_canonical(a, s); | |
1411 | FloatParts pr = round_to_int(pa, float_round_to_zero, s); | |
1412 | return float64_round_pack_canonical(pr, s); | |
1413 | } | |
1414 | ||
ab52f973 AB |
1415 | /* |
1416 | * Returns the result of converting the floating-point value `a' to | |
1417 | * the two's complement integer format. The conversion is performed | |
1418 | * according to the IEC/IEEE Standard for Binary Floating-Point | |
1419 | * Arithmetic---which means in particular that the conversion is | |
1420 | * rounded according to the current rounding mode. If `a' is a NaN, | |
1421 | * the largest positive integer is returned. Otherwise, if the | |
1422 | * conversion overflows, the largest integer with the same sign as `a' | |
1423 | * is returned. | |
1424 | */ | |
1425 | ||
1426 | static int64_t round_to_int_and_pack(FloatParts in, int rmode, | |
1427 | int64_t min, int64_t max, | |
1428 | float_status *s) | |
1429 | { | |
1430 | uint64_t r; | |
1431 | int orig_flags = get_float_exception_flags(s); | |
1432 | FloatParts p = round_to_int(in, rmode, s); | |
1433 | ||
1434 | switch (p.cls) { | |
1435 | case float_class_snan: | |
1436 | case float_class_qnan: | |
801bc563 | 1437 | s->float_exception_flags = orig_flags | float_flag_invalid; |
ab52f973 AB |
1438 | return max; |
1439 | case float_class_inf: | |
801bc563 | 1440 | s->float_exception_flags = orig_flags | float_flag_invalid; |
ab52f973 AB |
1441 | return p.sign ? min : max; |
1442 | case float_class_zero: | |
1443 | return 0; | |
1444 | case float_class_normal: | |
1445 | if (p.exp < DECOMPOSED_BINARY_POINT) { | |
1446 | r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); | |
1447 | } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { | |
1448 | r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); | |
1449 | } else { | |
1450 | r = UINT64_MAX; | |
1451 | } | |
1452 | if (p.sign) { | |
33358375 | 1453 | if (r <= -(uint64_t) min) { |
ab52f973 AB |
1454 | return -r; |
1455 | } else { | |
1456 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
1457 | return min; | |
1458 | } | |
1459 | } else { | |
33358375 | 1460 | if (r <= max) { |
ab52f973 AB |
1461 | return r; |
1462 | } else { | |
1463 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
1464 | return max; | |
1465 | } | |
1466 | } | |
1467 | default: | |
1468 | g_assert_not_reached(); | |
1469 | } | |
1470 | } | |
1471 | ||
1472 | #define FLOAT_TO_INT(fsz, isz) \ | |
1473 | int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a, \ | |
1474 | float_status *s) \ | |
1475 | { \ | |
1476 | FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ | |
1477 | return round_to_int_and_pack(p, s->float_rounding_mode, \ | |
1478 | INT ## isz ## _MIN, INT ## isz ## _MAX,\ | |
1479 | s); \ | |
1480 | } \ | |
1481 | \ | |
1482 | int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero \ | |
1483 | (float ## fsz a, float_status *s) \ | |
1484 | { \ | |
1485 | FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ | |
1486 | return round_to_int_and_pack(p, float_round_to_zero, \ | |
1487 | INT ## isz ## _MIN, INT ## isz ## _MAX,\ | |
1488 | s); \ | |
1489 | } | |
1490 | ||
1491 | FLOAT_TO_INT(16, 16) | |
1492 | FLOAT_TO_INT(16, 32) | |
1493 | FLOAT_TO_INT(16, 64) | |
1494 | ||
1495 | FLOAT_TO_INT(32, 16) | |
1496 | FLOAT_TO_INT(32, 32) | |
1497 | FLOAT_TO_INT(32, 64) | |
1498 | ||
1499 | FLOAT_TO_INT(64, 16) | |
1500 | FLOAT_TO_INT(64, 32) | |
1501 | FLOAT_TO_INT(64, 64) | |
1502 | ||
1503 | #undef FLOAT_TO_INT | |
1504 | ||
1505 | /* | |
1506 | * Returns the result of converting the floating-point value `a' to | |
1507 | * the unsigned integer format. The conversion is performed according | |
1508 | * to the IEC/IEEE Standard for Binary Floating-Point | |
1509 | * Arithmetic---which means in particular that the conversion is | |
1510 | * rounded according to the current rounding mode. If `a' is a NaN, | |
1511 | * the largest unsigned integer is returned. Otherwise, if the | |
1512 | * conversion overflows, the largest unsigned integer is returned. If | |
1513 | * the 'a' is negative, the result is rounded and zero is returned; | |
1514 | * values that do not round to zero will raise the inexact exception | |
1515 | * flag. | |
1516 | */ | |
1517 | ||
1518 | static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max, | |
1519 | float_status *s) | |
1520 | { | |
1521 | int orig_flags = get_float_exception_flags(s); | |
1522 | FloatParts p = round_to_int(in, rmode, s); | |
1523 | ||
1524 | switch (p.cls) { | |
1525 | case float_class_snan: | |
1526 | case float_class_qnan: | |
1527 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
1528 | return max; | |
1529 | case float_class_inf: | |
801bc563 | 1530 | s->float_exception_flags = orig_flags | float_flag_invalid; |
ab52f973 AB |
1531 | return p.sign ? 0 : max; |
1532 | case float_class_zero: | |
1533 | return 0; | |
1534 | case float_class_normal: | |
1535 | { | |
1536 | uint64_t r; | |
1537 | if (p.sign) { | |
1538 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
1539 | return 0; | |
1540 | } | |
1541 | ||
1542 | if (p.exp < DECOMPOSED_BINARY_POINT) { | |
1543 | r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); | |
1544 | } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { | |
1545 | r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); | |
1546 | } else { | |
1547 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
1548 | return max; | |
1549 | } | |
1550 | ||
1551 | /* For uint64 this will never trip, but if p.exp is too large | |
1552 | * to shift a decomposed fraction we shall have exited via the | |
1553 | * 3rd leg above. | |
1554 | */ | |
1555 | if (r > max) { | |
1556 | s->float_exception_flags = orig_flags | float_flag_invalid; | |
1557 | return max; | |
1558 | } else { | |
1559 | return r; | |
1560 | } | |
1561 | } | |
1562 | default: | |
1563 | g_assert_not_reached(); | |
1564 | } | |
1565 | } | |
1566 | ||
1567 | #define FLOAT_TO_UINT(fsz, isz) \ | |
1568 | uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a, \ | |
1569 | float_status *s) \ | |
1570 | { \ | |
1571 | FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ | |
1572 | return round_to_uint_and_pack(p, s->float_rounding_mode, \ | |
1573 | UINT ## isz ## _MAX, s); \ | |
1574 | } \ | |
1575 | \ | |
1576 | uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero \ | |
1577 | (float ## fsz a, float_status *s) \ | |
1578 | { \ | |
1579 | FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ | |
bd49e602 RH |
1580 | return round_to_uint_and_pack(p, float_round_to_zero, \ |
1581 | UINT ## isz ## _MAX, s); \ | |
ab52f973 AB |
1582 | } |
1583 | ||
1584 | FLOAT_TO_UINT(16, 16) | |
1585 | FLOAT_TO_UINT(16, 32) | |
1586 | FLOAT_TO_UINT(16, 64) | |
1587 | ||
1588 | FLOAT_TO_UINT(32, 16) | |
1589 | FLOAT_TO_UINT(32, 32) | |
1590 | FLOAT_TO_UINT(32, 64) | |
1591 | ||
1592 | FLOAT_TO_UINT(64, 16) | |
1593 | FLOAT_TO_UINT(64, 32) | |
1594 | FLOAT_TO_UINT(64, 64) | |
1595 | ||
1596 | #undef FLOAT_TO_UINT | |
1597 | ||
c02e1fb8 AB |
1598 | /* |
1599 | * Integer to float conversions | |
1600 | * | |
1601 | * Returns the result of converting the two's complement integer `a' | |
1602 | * to the floating-point format. The conversion is performed according | |
1603 | * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1604 | */ | |
1605 | ||
1606 | static FloatParts int_to_float(int64_t a, float_status *status) | |
1607 | { | |
a5a5f5e2 | 1608 | FloatParts r = {}; |
c02e1fb8 AB |
1609 | if (a == 0) { |
1610 | r.cls = float_class_zero; | |
1611 | r.sign = false; | |
1612 | } else if (a == (1ULL << 63)) { | |
1613 | r.cls = float_class_normal; | |
1614 | r.sign = true; | |
1615 | r.frac = DECOMPOSED_IMPLICIT_BIT; | |
1616 | r.exp = 63; | |
1617 | } else { | |
1618 | uint64_t f; | |
1619 | if (a < 0) { | |
1620 | f = -a; | |
1621 | r.sign = true; | |
1622 | } else { | |
1623 | f = a; | |
1624 | r.sign = false; | |
1625 | } | |
1626 | int shift = clz64(f) - 1; | |
1627 | r.cls = float_class_normal; | |
1628 | r.exp = (DECOMPOSED_BINARY_POINT - shift); | |
1629 | r.frac = f << shift; | |
1630 | } | |
1631 | ||
1632 | return r; | |
1633 | } | |
1634 | ||
1635 | float16 int64_to_float16(int64_t a, float_status *status) | |
1636 | { | |
1637 | FloatParts pa = int_to_float(a, status); | |
1638 | return float16_round_pack_canonical(pa, status); | |
1639 | } | |
1640 | ||
1641 | float16 int32_to_float16(int32_t a, float_status *status) | |
1642 | { | |
1643 | return int64_to_float16(a, status); | |
1644 | } | |
1645 | ||
1646 | float16 int16_to_float16(int16_t a, float_status *status) | |
1647 | { | |
1648 | return int64_to_float16(a, status); | |
1649 | } | |
1650 | ||
1651 | float32 int64_to_float32(int64_t a, float_status *status) | |
1652 | { | |
1653 | FloatParts pa = int_to_float(a, status); | |
1654 | return float32_round_pack_canonical(pa, status); | |
1655 | } | |
1656 | ||
1657 | float32 int32_to_float32(int32_t a, float_status *status) | |
1658 | { | |
1659 | return int64_to_float32(a, status); | |
1660 | } | |
1661 | ||
1662 | float32 int16_to_float32(int16_t a, float_status *status) | |
1663 | { | |
1664 | return int64_to_float32(a, status); | |
1665 | } | |
1666 | ||
1667 | float64 int64_to_float64(int64_t a, float_status *status) | |
1668 | { | |
1669 | FloatParts pa = int_to_float(a, status); | |
1670 | return float64_round_pack_canonical(pa, status); | |
1671 | } | |
1672 | ||
1673 | float64 int32_to_float64(int32_t a, float_status *status) | |
1674 | { | |
1675 | return int64_to_float64(a, status); | |
1676 | } | |
1677 | ||
1678 | float64 int16_to_float64(int16_t a, float_status *status) | |
1679 | { | |
1680 | return int64_to_float64(a, status); | |
1681 | } | |
1682 | ||
1683 | ||
1684 | /* | |
1685 | * Unsigned Integer to float conversions | |
1686 | * | |
1687 | * Returns the result of converting the unsigned integer `a' to the | |
1688 | * floating-point format. The conversion is performed according to the | |
1689 | * IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1690 | */ | |
1691 | ||
1692 | static FloatParts uint_to_float(uint64_t a, float_status *status) | |
1693 | { | |
1694 | FloatParts r = { .sign = false}; | |
1695 | ||
1696 | if (a == 0) { | |
1697 | r.cls = float_class_zero; | |
1698 | } else { | |
1699 | int spare_bits = clz64(a) - 1; | |
1700 | r.cls = float_class_normal; | |
1701 | r.exp = DECOMPOSED_BINARY_POINT - spare_bits; | |
1702 | if (spare_bits < 0) { | |
1703 | shift64RightJamming(a, -spare_bits, &a); | |
1704 | r.frac = a; | |
1705 | } else { | |
1706 | r.frac = a << spare_bits; | |
1707 | } | |
1708 | } | |
1709 | ||
1710 | return r; | |
1711 | } | |
1712 | ||
1713 | float16 uint64_to_float16(uint64_t a, float_status *status) | |
1714 | { | |
1715 | FloatParts pa = uint_to_float(a, status); | |
1716 | return float16_round_pack_canonical(pa, status); | |
1717 | } | |
1718 | ||
1719 | float16 uint32_to_float16(uint32_t a, float_status *status) | |
1720 | { | |
1721 | return uint64_to_float16(a, status); | |
1722 | } | |
1723 | ||
1724 | float16 uint16_to_float16(uint16_t a, float_status *status) | |
1725 | { | |
1726 | return uint64_to_float16(a, status); | |
1727 | } | |
1728 | ||
1729 | float32 uint64_to_float32(uint64_t a, float_status *status) | |
1730 | { | |
1731 | FloatParts pa = uint_to_float(a, status); | |
1732 | return float32_round_pack_canonical(pa, status); | |
1733 | } | |
1734 | ||
1735 | float32 uint32_to_float32(uint32_t a, float_status *status) | |
1736 | { | |
1737 | return uint64_to_float32(a, status); | |
1738 | } | |
1739 | ||
1740 | float32 uint16_to_float32(uint16_t a, float_status *status) | |
1741 | { | |
1742 | return uint64_to_float32(a, status); | |
1743 | } | |
1744 | ||
1745 | float64 uint64_to_float64(uint64_t a, float_status *status) | |
1746 | { | |
1747 | FloatParts pa = uint_to_float(a, status); | |
1748 | return float64_round_pack_canonical(pa, status); | |
1749 | } | |
1750 | ||
1751 | float64 uint32_to_float64(uint32_t a, float_status *status) | |
1752 | { | |
1753 | return uint64_to_float64(a, status); | |
1754 | } | |
1755 | ||
1756 | float64 uint16_to_float64(uint16_t a, float_status *status) | |
1757 | { | |
1758 | return uint64_to_float64(a, status); | |
1759 | } | |
1760 | ||
89360067 AB |
1761 | /* Float Min/Max */ |
1762 | /* min() and max() functions. These can't be implemented as | |
1763 | * 'compare and pick one input' because that would mishandle | |
1764 | * NaNs and +0 vs -0. | |
1765 | * | |
1766 | * minnum() and maxnum() functions. These are similar to the min() | |
1767 | * and max() functions but if one of the arguments is a QNaN and | |
1768 | * the other is numerical then the numerical argument is returned. | |
1769 | * SNaNs will get quietened before being returned. | |
1770 | * minnum() and maxnum correspond to the IEEE 754-2008 minNum() | |
1771 | * and maxNum() operations. min() and max() are the typical min/max | |
1772 | * semantics provided by many CPUs which predate that specification. | |
1773 | * | |
1774 | * minnummag() and maxnummag() functions correspond to minNumMag() | |
1775 | * and minNumMag() from the IEEE-754 2008. | |
1776 | */ | |
1777 | static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin, | |
1778 | bool ieee, bool ismag, float_status *s) | |
1779 | { | |
1780 | if (unlikely(is_nan(a.cls) || is_nan(b.cls))) { | |
1781 | if (ieee) { | |
1782 | /* Takes two floating-point values `a' and `b', one of | |
1783 | * which is a NaN, and returns the appropriate NaN | |
1784 | * result. If either `a' or `b' is a signaling NaN, | |
1785 | * the invalid exception is raised. | |
1786 | */ | |
1787 | if (is_snan(a.cls) || is_snan(b.cls)) { | |
1788 | return pick_nan(a, b, s); | |
1789 | } else if (is_nan(a.cls) && !is_nan(b.cls)) { | |
1790 | return b; | |
1791 | } else if (is_nan(b.cls) && !is_nan(a.cls)) { | |
1792 | return a; | |
1793 | } | |
1794 | } | |
1795 | return pick_nan(a, b, s); | |
1796 | } else { | |
1797 | int a_exp, b_exp; | |
89360067 AB |
1798 | |
1799 | switch (a.cls) { | |
1800 | case float_class_normal: | |
1801 | a_exp = a.exp; | |
1802 | break; | |
1803 | case float_class_inf: | |
1804 | a_exp = INT_MAX; | |
1805 | break; | |
1806 | case float_class_zero: | |
1807 | a_exp = INT_MIN; | |
1808 | break; | |
1809 | default: | |
1810 | g_assert_not_reached(); | |
1811 | break; | |
1812 | } | |
1813 | switch (b.cls) { | |
1814 | case float_class_normal: | |
1815 | b_exp = b.exp; | |
1816 | break; | |
1817 | case float_class_inf: | |
1818 | b_exp = INT_MAX; | |
1819 | break; | |
1820 | case float_class_zero: | |
1821 | b_exp = INT_MIN; | |
1822 | break; | |
1823 | default: | |
1824 | g_assert_not_reached(); | |
1825 | break; | |
1826 | } | |
1827 | ||
6245327a EC |
1828 | if (ismag && (a_exp != b_exp || a.frac != b.frac)) { |
1829 | bool a_less = a_exp < b_exp; | |
1830 | if (a_exp == b_exp) { | |
1831 | a_less = a.frac < b.frac; | |
1832 | } | |
1833 | return a_less ^ ismin ? b : a; | |
89360067 AB |
1834 | } |
1835 | ||
6245327a | 1836 | if (a.sign == b.sign) { |
89360067 AB |
1837 | bool a_less = a_exp < b_exp; |
1838 | if (a_exp == b_exp) { | |
1839 | a_less = a.frac < b.frac; | |
1840 | } | |
6245327a | 1841 | return a.sign ^ a_less ^ ismin ? b : a; |
89360067 | 1842 | } else { |
6245327a | 1843 | return a.sign ^ ismin ? b : a; |
89360067 AB |
1844 | } |
1845 | } | |
1846 | } | |
1847 | ||
1848 | #define MINMAX(sz, name, ismin, isiee, ismag) \ | |
1849 | float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \ | |
1850 | float_status *s) \ | |
1851 | { \ | |
1852 | FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ | |
1853 | FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ | |
1854 | FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \ | |
1855 | \ | |
1856 | return float ## sz ## _round_pack_canonical(pr, s); \ | |
1857 | } | |
1858 | ||
1859 | MINMAX(16, min, true, false, false) | |
1860 | MINMAX(16, minnum, true, true, false) | |
1861 | MINMAX(16, minnummag, true, true, true) | |
1862 | MINMAX(16, max, false, false, false) | |
1863 | MINMAX(16, maxnum, false, true, false) | |
1864 | MINMAX(16, maxnummag, false, true, true) | |
1865 | ||
1866 | MINMAX(32, min, true, false, false) | |
1867 | MINMAX(32, minnum, true, true, false) | |
1868 | MINMAX(32, minnummag, true, true, true) | |
1869 | MINMAX(32, max, false, false, false) | |
1870 | MINMAX(32, maxnum, false, true, false) | |
1871 | MINMAX(32, maxnummag, false, true, true) | |
1872 | ||
1873 | MINMAX(64, min, true, false, false) | |
1874 | MINMAX(64, minnum, true, true, false) | |
1875 | MINMAX(64, minnummag, true, true, true) | |
1876 | MINMAX(64, max, false, false, false) | |
1877 | MINMAX(64, maxnum, false, true, false) | |
1878 | MINMAX(64, maxnummag, false, true, true) | |
1879 | ||
1880 | #undef MINMAX | |
1881 | ||
0c4c9092 AB |
1882 | /* Floating point compare */ |
1883 | static int compare_floats(FloatParts a, FloatParts b, bool is_quiet, | |
1884 | float_status *s) | |
1885 | { | |
1886 | if (is_nan(a.cls) || is_nan(b.cls)) { | |
1887 | if (!is_quiet || | |
1888 | a.cls == float_class_snan || | |
1889 | b.cls == float_class_snan) { | |
1890 | s->float_exception_flags |= float_flag_invalid; | |
1891 | } | |
1892 | return float_relation_unordered; | |
1893 | } | |
1894 | ||
1895 | if (a.cls == float_class_zero) { | |
1896 | if (b.cls == float_class_zero) { | |
1897 | return float_relation_equal; | |
1898 | } | |
1899 | return b.sign ? float_relation_greater : float_relation_less; | |
1900 | } else if (b.cls == float_class_zero) { | |
1901 | return a.sign ? float_relation_less : float_relation_greater; | |
1902 | } | |
1903 | ||
1904 | /* The only really important thing about infinity is its sign. If | |
1905 | * both are infinities the sign marks the smallest of the two. | |
1906 | */ | |
1907 | if (a.cls == float_class_inf) { | |
1908 | if ((b.cls == float_class_inf) && (a.sign == b.sign)) { | |
1909 | return float_relation_equal; | |
1910 | } | |
1911 | return a.sign ? float_relation_less : float_relation_greater; | |
1912 | } else if (b.cls == float_class_inf) { | |
1913 | return b.sign ? float_relation_greater : float_relation_less; | |
1914 | } | |
1915 | ||
1916 | if (a.sign != b.sign) { | |
1917 | return a.sign ? float_relation_less : float_relation_greater; | |
1918 | } | |
1919 | ||
1920 | if (a.exp == b.exp) { | |
1921 | if (a.frac == b.frac) { | |
1922 | return float_relation_equal; | |
1923 | } | |
1924 | if (a.sign) { | |
1925 | return a.frac > b.frac ? | |
1926 | float_relation_less : float_relation_greater; | |
1927 | } else { | |
1928 | return a.frac > b.frac ? | |
1929 | float_relation_greater : float_relation_less; | |
1930 | } | |
1931 | } else { | |
1932 | if (a.sign) { | |
1933 | return a.exp > b.exp ? float_relation_less : float_relation_greater; | |
1934 | } else { | |
1935 | return a.exp > b.exp ? float_relation_greater : float_relation_less; | |
1936 | } | |
1937 | } | |
1938 | } | |
1939 | ||
1940 | #define COMPARE(sz) \ | |
1941 | int float ## sz ## _compare(float ## sz a, float ## sz b, \ | |
1942 | float_status *s) \ | |
1943 | { \ | |
1944 | FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ | |
1945 | FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ | |
1946 | return compare_floats(pa, pb, false, s); \ | |
1947 | } \ | |
1948 | int float ## sz ## _compare_quiet(float ## sz a, float ## sz b, \ | |
1949 | float_status *s) \ | |
1950 | { \ | |
1951 | FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ | |
1952 | FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ | |
1953 | return compare_floats(pa, pb, true, s); \ | |
1954 | } | |
1955 | ||
1956 | COMPARE(16) | |
1957 | COMPARE(32) | |
1958 | COMPARE(64) | |
1959 | ||
1960 | #undef COMPARE | |
1961 | ||
0bfc9f19 AB |
1962 | /* Multiply A by 2 raised to the power N. */ |
1963 | static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s) | |
1964 | { | |
1965 | if (unlikely(is_nan(a.cls))) { | |
1966 | return return_nan(a, s); | |
1967 | } | |
1968 | if (a.cls == float_class_normal) { | |
ce8d4082 RH |
1969 | /* The largest float type (even though not supported by FloatParts) |
1970 | * is float128, which has a 15 bit exponent. Bounding N to 16 bits | |
1971 | * still allows rounding to infinity, without allowing overflow | |
1972 | * within the int32_t that backs FloatParts.exp. | |
1973 | */ | |
1974 | n = MIN(MAX(n, -0x10000), 0x10000); | |
0bfc9f19 AB |
1975 | a.exp += n; |
1976 | } | |
1977 | return a; | |
1978 | } | |
1979 | ||
1980 | float16 float16_scalbn(float16 a, int n, float_status *status) | |
1981 | { | |
1982 | FloatParts pa = float16_unpack_canonical(a, status); | |
1983 | FloatParts pr = scalbn_decomposed(pa, n, status); | |
1984 | return float16_round_pack_canonical(pr, status); | |
1985 | } | |
1986 | ||
1987 | float32 float32_scalbn(float32 a, int n, float_status *status) | |
1988 | { | |
1989 | FloatParts pa = float32_unpack_canonical(a, status); | |
1990 | FloatParts pr = scalbn_decomposed(pa, n, status); | |
1991 | return float32_round_pack_canonical(pr, status); | |
1992 | } | |
1993 | ||
1994 | float64 float64_scalbn(float64 a, int n, float_status *status) | |
1995 | { | |
1996 | FloatParts pa = float64_unpack_canonical(a, status); | |
1997 | FloatParts pr = scalbn_decomposed(pa, n, status); | |
1998 | return float64_round_pack_canonical(pr, status); | |
1999 | } | |
2000 | ||
c13bb2da AB |
2001 | /* |
2002 | * Square Root | |
2003 | * | |
2004 | * The old softfloat code did an approximation step before zeroing in | |
2005 | * on the final result. However for simpleness we just compute the | |
2006 | * square root by iterating down from the implicit bit to enough extra | |
2007 | * bits to ensure we get a correctly rounded result. | |
2008 | * | |
2009 | * This does mean however the calculation is slower than before, | |
2010 | * especially for 64 bit floats. | |
2011 | */ | |
2012 | ||
2013 | static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p) | |
2014 | { | |
2015 | uint64_t a_frac, r_frac, s_frac; | |
2016 | int bit, last_bit; | |
2017 | ||
2018 | if (is_nan(a.cls)) { | |
2019 | return return_nan(a, s); | |
2020 | } | |
2021 | if (a.cls == float_class_zero) { | |
2022 | return a; /* sqrt(+-0) = +-0 */ | |
2023 | } | |
2024 | if (a.sign) { | |
2025 | s->float_exception_flags |= float_flag_invalid; | |
f7e598e2 | 2026 | return parts_default_nan(s); |
c13bb2da AB |
2027 | } |
2028 | if (a.cls == float_class_inf) { | |
2029 | return a; /* sqrt(+inf) = +inf */ | |
2030 | } | |
2031 | ||
2032 | assert(a.cls == float_class_normal); | |
2033 | ||
2034 | /* We need two overflow bits at the top. Adding room for that is a | |
2035 | * right shift. If the exponent is odd, we can discard the low bit | |
2036 | * by multiplying the fraction by 2; that's a left shift. Combine | |
2037 | * those and we shift right if the exponent is even. | |
2038 | */ | |
2039 | a_frac = a.frac; | |
2040 | if (!(a.exp & 1)) { | |
2041 | a_frac >>= 1; | |
2042 | } | |
2043 | a.exp >>= 1; | |
2044 | ||
2045 | /* Bit-by-bit computation of sqrt. */ | |
2046 | r_frac = 0; | |
2047 | s_frac = 0; | |
2048 | ||
2049 | /* Iterate from implicit bit down to the 3 extra bits to compute a | |
2050 | * properly rounded result. Remember we've inserted one more bit | |
2051 | * at the top, so these positions are one less. | |
2052 | */ | |
2053 | bit = DECOMPOSED_BINARY_POINT - 1; | |
2054 | last_bit = MAX(p->frac_shift - 4, 0); | |
2055 | do { | |
2056 | uint64_t q = 1ULL << bit; | |
2057 | uint64_t t_frac = s_frac + q; | |
2058 | if (t_frac <= a_frac) { | |
2059 | s_frac = t_frac + q; | |
2060 | a_frac -= t_frac; | |
2061 | r_frac += q; | |
2062 | } | |
2063 | a_frac <<= 1; | |
2064 | } while (--bit >= last_bit); | |
2065 | ||
2066 | /* Undo the right shift done above. If there is any remaining | |
2067 | * fraction, the result is inexact. Set the sticky bit. | |
2068 | */ | |
2069 | a.frac = (r_frac << 1) + (a_frac != 0); | |
2070 | ||
2071 | return a; | |
2072 | } | |
2073 | ||
2074 | float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status) | |
2075 | { | |
2076 | FloatParts pa = float16_unpack_canonical(a, status); | |
2077 | FloatParts pr = sqrt_float(pa, status, &float16_params); | |
2078 | return float16_round_pack_canonical(pr, status); | |
2079 | } | |
2080 | ||
2081 | float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status) | |
2082 | { | |
2083 | FloatParts pa = float32_unpack_canonical(a, status); | |
2084 | FloatParts pr = sqrt_float(pa, status, &float32_params); | |
2085 | return float32_round_pack_canonical(pr, status); | |
2086 | } | |
2087 | ||
2088 | float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status) | |
2089 | { | |
2090 | FloatParts pa = float64_unpack_canonical(a, status); | |
2091 | FloatParts pr = sqrt_float(pa, status, &float64_params); | |
2092 | return float64_round_pack_canonical(pr, status); | |
2093 | } | |
2094 | ||
0218a16e RH |
2095 | /*---------------------------------------------------------------------------- |
2096 | | The pattern for a default generated NaN. | |
2097 | *----------------------------------------------------------------------------*/ | |
2098 | ||
2099 | float16 float16_default_nan(float_status *status) | |
2100 | { | |
2101 | FloatParts p = parts_default_nan(status); | |
2102 | p.frac >>= float16_params.frac_shift; | |
2103 | return float16_pack_raw(p); | |
2104 | } | |
2105 | ||
2106 | float32 float32_default_nan(float_status *status) | |
2107 | { | |
2108 | FloatParts p = parts_default_nan(status); | |
2109 | p.frac >>= float32_params.frac_shift; | |
2110 | return float32_pack_raw(p); | |
2111 | } | |
2112 | ||
2113 | float64 float64_default_nan(float_status *status) | |
2114 | { | |
2115 | FloatParts p = parts_default_nan(status); | |
2116 | p.frac >>= float64_params.frac_shift; | |
2117 | return float64_pack_raw(p); | |
2118 | } | |
2119 | ||
2120 | float128 float128_default_nan(float_status *status) | |
2121 | { | |
2122 | FloatParts p = parts_default_nan(status); | |
2123 | float128 r; | |
2124 | ||
2125 | /* Extrapolate from the choices made by parts_default_nan to fill | |
2126 | * in the quad-floating format. If the low bit is set, assume we | |
2127 | * want to set all non-snan bits. | |
2128 | */ | |
2129 | r.low = -(p.frac & 1); | |
2130 | r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48); | |
2131 | r.high |= LIT64(0x7FFF000000000000); | |
2132 | r.high |= (uint64_t)p.sign << 63; | |
2133 | ||
2134 | return r; | |
2135 | } | |
c13bb2da | 2136 | |
158142c2 | 2137 | /*---------------------------------------------------------------------------- |
377ed926 RH |
2138 | | Returns a quiet NaN from a signalling NaN for the floating point value `a'. |
2139 | *----------------------------------------------------------------------------*/ | |
2140 | ||
2141 | float16 float16_silence_nan(float16 a, float_status *status) | |
2142 | { | |
2143 | FloatParts p = float16_unpack_raw(a); | |
2144 | p.frac <<= float16_params.frac_shift; | |
2145 | p = parts_silence_nan(p, status); | |
2146 | p.frac >>= float16_params.frac_shift; | |
2147 | return float16_pack_raw(p); | |
2148 | } | |
2149 | ||
2150 | float32 float32_silence_nan(float32 a, float_status *status) | |
2151 | { | |
2152 | FloatParts p = float32_unpack_raw(a); | |
2153 | p.frac <<= float32_params.frac_shift; | |
2154 | p = parts_silence_nan(p, status); | |
2155 | p.frac >>= float32_params.frac_shift; | |
2156 | return float32_pack_raw(p); | |
2157 | } | |
2158 | ||
2159 | float64 float64_silence_nan(float64 a, float_status *status) | |
2160 | { | |
2161 | FloatParts p = float64_unpack_raw(a); | |
2162 | p.frac <<= float64_params.frac_shift; | |
2163 | p = parts_silence_nan(p, status); | |
2164 | p.frac >>= float64_params.frac_shift; | |
2165 | return float64_pack_raw(p); | |
2166 | } | |
2167 | ||
2168 | /*---------------------------------------------------------------------------- | |
158142c2 FB |
2169 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 |
2170 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
2171 | | input. If `zSign' is 1, the input is negated before being converted to an | |
2172 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
2173 | | is simply rounded to an integer, with the inexact exception raised if the | |
2174 | | input cannot be represented exactly as an integer. However, if the fixed- | |
2175 | | point input is too large, the invalid exception is raised and the largest | |
2176 | | positive or negative integer is returned. | |
2177 | *----------------------------------------------------------------------------*/ | |
2178 | ||
f4014512 | 2179 | static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) |
158142c2 | 2180 | { |
8f506c70 | 2181 | int8_t roundingMode; |
158142c2 | 2182 | flag roundNearestEven; |
8f506c70 | 2183 | int8_t roundIncrement, roundBits; |
760e1416 | 2184 | int32_t z; |
158142c2 | 2185 | |
a2f2d288 | 2186 | roundingMode = status->float_rounding_mode; |
158142c2 | 2187 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
2188 | switch (roundingMode) { |
2189 | case float_round_nearest_even: | |
f9288a76 | 2190 | case float_round_ties_away: |
dc355b76 PM |
2191 | roundIncrement = 0x40; |
2192 | break; | |
2193 | case float_round_to_zero: | |
2194 | roundIncrement = 0; | |
2195 | break; | |
2196 | case float_round_up: | |
2197 | roundIncrement = zSign ? 0 : 0x7f; | |
2198 | break; | |
2199 | case float_round_down: | |
2200 | roundIncrement = zSign ? 0x7f : 0; | |
2201 | break; | |
2202 | default: | |
2203 | abort(); | |
158142c2 FB |
2204 | } |
2205 | roundBits = absZ & 0x7F; | |
2206 | absZ = ( absZ + roundIncrement )>>7; | |
2207 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
2208 | z = absZ; | |
2209 | if ( zSign ) z = - z; | |
2210 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
ff32e16e | 2211 | float_raise(float_flag_invalid, status); |
bb98fe42 | 2212 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 | 2213 | } |
a2f2d288 PM |
2214 | if (roundBits) { |
2215 | status->float_exception_flags |= float_flag_inexact; | |
2216 | } | |
158142c2 FB |
2217 | return z; |
2218 | ||
2219 | } | |
2220 | ||
2221 | /*---------------------------------------------------------------------------- | |
2222 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
2223 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
2224 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
2225 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
2226 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
2227 | | the inexact exception raised if the input cannot be represented exactly as | |
2228 | | an integer. However, if the fixed-point input is too large, the invalid | |
2229 | | exception is raised and the largest positive or negative integer is | |
2230 | | returned. | |
2231 | *----------------------------------------------------------------------------*/ | |
2232 | ||
f42c2224 | 2233 | static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, |
e5a41ffa | 2234 | float_status *status) |
158142c2 | 2235 | { |
8f506c70 | 2236 | int8_t roundingMode; |
158142c2 | 2237 | flag roundNearestEven, increment; |
760e1416 | 2238 | int64_t z; |
158142c2 | 2239 | |
a2f2d288 | 2240 | roundingMode = status->float_rounding_mode; |
158142c2 | 2241 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
2242 | switch (roundingMode) { |
2243 | case float_round_nearest_even: | |
f9288a76 | 2244 | case float_round_ties_away: |
dc355b76 PM |
2245 | increment = ((int64_t) absZ1 < 0); |
2246 | break; | |
2247 | case float_round_to_zero: | |
2248 | increment = 0; | |
2249 | break; | |
2250 | case float_round_up: | |
2251 | increment = !zSign && absZ1; | |
2252 | break; | |
2253 | case float_round_down: | |
2254 | increment = zSign && absZ1; | |
2255 | break; | |
2256 | default: | |
2257 | abort(); | |
158142c2 FB |
2258 | } |
2259 | if ( increment ) { | |
2260 | ++absZ0; | |
2261 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 2262 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
2263 | } |
2264 | z = absZ0; | |
2265 | if ( zSign ) z = - z; | |
2266 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
2267 | overflow: | |
ff32e16e | 2268 | float_raise(float_flag_invalid, status); |
158142c2 | 2269 | return |
bb98fe42 | 2270 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
2271 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
2272 | } | |
a2f2d288 PM |
2273 | if (absZ1) { |
2274 | status->float_exception_flags |= float_flag_inexact; | |
2275 | } | |
158142c2 FB |
2276 | return z; |
2277 | ||
2278 | } | |
2279 | ||
fb3ea83a TM |
2280 | /*---------------------------------------------------------------------------- |
2281 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
2282 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
2283 | | and returns the properly rounded 64-bit unsigned integer corresponding to the | |
2284 | | input. Ordinarily, the fixed-point input is simply rounded to an integer, | |
2285 | | with the inexact exception raised if the input cannot be represented exactly | |
2286 | | as an integer. However, if the fixed-point input is too large, the invalid | |
2287 | | exception is raised and the largest unsigned integer is returned. | |
2288 | *----------------------------------------------------------------------------*/ | |
2289 | ||
f42c2224 | 2290 | static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, |
e5a41ffa | 2291 | uint64_t absZ1, float_status *status) |
fb3ea83a | 2292 | { |
8f506c70 | 2293 | int8_t roundingMode; |
fb3ea83a TM |
2294 | flag roundNearestEven, increment; |
2295 | ||
a2f2d288 | 2296 | roundingMode = status->float_rounding_mode; |
fb3ea83a | 2297 | roundNearestEven = (roundingMode == float_round_nearest_even); |
dc355b76 PM |
2298 | switch (roundingMode) { |
2299 | case float_round_nearest_even: | |
f9288a76 | 2300 | case float_round_ties_away: |
dc355b76 PM |
2301 | increment = ((int64_t)absZ1 < 0); |
2302 | break; | |
2303 | case float_round_to_zero: | |
2304 | increment = 0; | |
2305 | break; | |
2306 | case float_round_up: | |
2307 | increment = !zSign && absZ1; | |
2308 | break; | |
2309 | case float_round_down: | |
2310 | increment = zSign && absZ1; | |
2311 | break; | |
2312 | default: | |
2313 | abort(); | |
fb3ea83a TM |
2314 | } |
2315 | if (increment) { | |
2316 | ++absZ0; | |
2317 | if (absZ0 == 0) { | |
ff32e16e | 2318 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
2319 | return LIT64(0xFFFFFFFFFFFFFFFF); |
2320 | } | |
2321 | absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); | |
2322 | } | |
2323 | ||
2324 | if (zSign && absZ0) { | |
ff32e16e | 2325 | float_raise(float_flag_invalid, status); |
fb3ea83a TM |
2326 | return 0; |
2327 | } | |
2328 | ||
2329 | if (absZ1) { | |
a2f2d288 | 2330 | status->float_exception_flags |= float_flag_inexact; |
fb3ea83a TM |
2331 | } |
2332 | return absZ0; | |
2333 | } | |
2334 | ||
37d18660 PM |
2335 | /*---------------------------------------------------------------------------- |
2336 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
2337 | | input-denormal exception and return zero. Otherwise just return the value. | |
2338 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 2339 | float32 float32_squash_input_denormal(float32 a, float_status *status) |
37d18660 | 2340 | { |
a2f2d288 | 2341 | if (status->flush_inputs_to_zero) { |
37d18660 | 2342 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { |
ff32e16e | 2343 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
2344 | return make_float32(float32_val(a) & 0x80000000); |
2345 | } | |
2346 | } | |
2347 | return a; | |
2348 | } | |
2349 | ||
158142c2 FB |
2350 | /*---------------------------------------------------------------------------- |
2351 | | Normalizes the subnormal single-precision floating-point value represented | |
2352 | | by the denormalized significand `aSig'. The normalized exponent and | |
2353 | | significand are stored at the locations pointed to by `zExpPtr' and | |
2354 | | `zSigPtr', respectively. | |
2355 | *----------------------------------------------------------------------------*/ | |
2356 | ||
2357 | static void | |
0c48262d | 2358 | normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) |
158142c2 | 2359 | { |
8f506c70 | 2360 | int8_t shiftCount; |
158142c2 FB |
2361 | |
2362 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
2363 | *zSigPtr = aSig<<shiftCount; | |
2364 | *zExpPtr = 1 - shiftCount; | |
2365 | ||
2366 | } | |
2367 | ||
158142c2 FB |
2368 | /*---------------------------------------------------------------------------- |
2369 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
2370 | | and significand `zSig', and returns the proper single-precision floating- | |
2371 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
2372 | | value is simply rounded and packed into the single-precision format, with | |
2373 | | the inexact exception raised if the abstract input cannot be represented | |
2374 | | exactly. However, if the abstract value is too large, the overflow and | |
2375 | | inexact exceptions are raised and an infinity or maximal finite value is | |
2376 | | returned. If the abstract value is too small, the input value is rounded to | |
2377 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
2378 | | the abstract input cannot be represented exactly as a subnormal single- | |
2379 | | precision floating-point number. | |
2380 | | The input significand `zSig' has its binary point between bits 30 | |
2381 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
2382 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
2383 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
2384 | | and it must not require rounding. In the usual case that `zSig' is | |
2385 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
2386 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
2387 | | Binary Floating-Point Arithmetic. | |
2388 | *----------------------------------------------------------------------------*/ | |
2389 | ||
0c48262d | 2390 | static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 2391 | float_status *status) |
158142c2 | 2392 | { |
8f506c70 | 2393 | int8_t roundingMode; |
158142c2 | 2394 | flag roundNearestEven; |
8f506c70 | 2395 | int8_t roundIncrement, roundBits; |
158142c2 FB |
2396 | flag isTiny; |
2397 | ||
a2f2d288 | 2398 | roundingMode = status->float_rounding_mode; |
158142c2 | 2399 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
2400 | switch (roundingMode) { |
2401 | case float_round_nearest_even: | |
f9288a76 | 2402 | case float_round_ties_away: |
dc355b76 PM |
2403 | roundIncrement = 0x40; |
2404 | break; | |
2405 | case float_round_to_zero: | |
2406 | roundIncrement = 0; | |
2407 | break; | |
2408 | case float_round_up: | |
2409 | roundIncrement = zSign ? 0 : 0x7f; | |
2410 | break; | |
2411 | case float_round_down: | |
2412 | roundIncrement = zSign ? 0x7f : 0; | |
2413 | break; | |
2414 | default: | |
2415 | abort(); | |
2416 | break; | |
158142c2 FB |
2417 | } |
2418 | roundBits = zSig & 0x7F; | |
bb98fe42 | 2419 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
2420 | if ( ( 0xFD < zExp ) |
2421 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 2422 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 2423 | ) { |
ff32e16e | 2424 | float_raise(float_flag_overflow | float_flag_inexact, status); |
f090c9d4 | 2425 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
2426 | } |
2427 | if ( zExp < 0 ) { | |
a2f2d288 | 2428 | if (status->flush_to_zero) { |
ff32e16e | 2429 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
2430 | return packFloat32(zSign, 0, 0); |
2431 | } | |
158142c2 | 2432 | isTiny = |
a2f2d288 PM |
2433 | (status->float_detect_tininess |
2434 | == float_tininess_before_rounding) | |
158142c2 FB |
2435 | || ( zExp < -1 ) |
2436 | || ( zSig + roundIncrement < 0x80000000 ); | |
2437 | shift32RightJamming( zSig, - zExp, &zSig ); | |
2438 | zExp = 0; | |
2439 | roundBits = zSig & 0x7F; | |
ff32e16e PM |
2440 | if (isTiny && roundBits) { |
2441 | float_raise(float_flag_underflow, status); | |
2442 | } | |
158142c2 FB |
2443 | } |
2444 | } | |
a2f2d288 PM |
2445 | if (roundBits) { |
2446 | status->float_exception_flags |= float_flag_inexact; | |
2447 | } | |
158142c2 FB |
2448 | zSig = ( zSig + roundIncrement )>>7; |
2449 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
2450 | if ( zSig == 0 ) zExp = 0; | |
2451 | return packFloat32( zSign, zExp, zSig ); | |
2452 | ||
2453 | } | |
2454 | ||
2455 | /*---------------------------------------------------------------------------- | |
2456 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
2457 | | and significand `zSig', and returns the proper single-precision floating- | |
2458 | | point value corresponding to the abstract input. This routine is just like | |
2459 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
2460 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
2461 | | floating-point exponent. | |
2462 | *----------------------------------------------------------------------------*/ | |
2463 | ||
2464 | static float32 | |
0c48262d | 2465 | normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
e5a41ffa | 2466 | float_status *status) |
158142c2 | 2467 | { |
8f506c70 | 2468 | int8_t shiftCount; |
158142c2 FB |
2469 | |
2470 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
ff32e16e PM |
2471 | return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, |
2472 | status); | |
158142c2 FB |
2473 | |
2474 | } | |
2475 | ||
37d18660 PM |
2476 | /*---------------------------------------------------------------------------- |
2477 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
2478 | | input-denormal exception and return zero. Otherwise just return the value. | |
2479 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 2480 | float64 float64_squash_input_denormal(float64 a, float_status *status) |
37d18660 | 2481 | { |
a2f2d288 | 2482 | if (status->flush_inputs_to_zero) { |
37d18660 | 2483 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { |
ff32e16e | 2484 | float_raise(float_flag_input_denormal, status); |
37d18660 PM |
2485 | return make_float64(float64_val(a) & (1ULL << 63)); |
2486 | } | |
2487 | } | |
2488 | return a; | |
2489 | } | |
2490 | ||
158142c2 FB |
2491 | /*---------------------------------------------------------------------------- |
2492 | | Normalizes the subnormal double-precision floating-point value represented | |
2493 | | by the denormalized significand `aSig'. The normalized exponent and | |
2494 | | significand are stored at the locations pointed to by `zExpPtr' and | |
2495 | | `zSigPtr', respectively. | |
2496 | *----------------------------------------------------------------------------*/ | |
2497 | ||
2498 | static void | |
0c48262d | 2499 | normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) |
158142c2 | 2500 | { |
8f506c70 | 2501 | int8_t shiftCount; |
158142c2 FB |
2502 | |
2503 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
2504 | *zSigPtr = aSig<<shiftCount; | |
2505 | *zExpPtr = 1 - shiftCount; | |
2506 | ||
2507 | } | |
2508 | ||
2509 | /*---------------------------------------------------------------------------- | |
2510 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
2511 | | double-precision floating-point value, returning the result. After being | |
2512 | | shifted into the proper positions, the three fields are simply added | |
2513 | | together to form the result. This means that any integer portion of `zSig' | |
2514 | | will be added into the exponent. Since a properly normalized significand | |
2515 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
2516 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
2517 | | significand. | |
2518 | *----------------------------------------------------------------------------*/ | |
2519 | ||
0c48262d | 2520 | static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) |
158142c2 FB |
2521 | { |
2522 | ||
f090c9d4 | 2523 | return make_float64( |
bb98fe42 | 2524 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
2525 | |
2526 | } | |
2527 | ||
2528 | /*---------------------------------------------------------------------------- | |
2529 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
2530 | | and significand `zSig', and returns the proper double-precision floating- | |
2531 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
2532 | | value is simply rounded and packed into the double-precision format, with | |
2533 | | the inexact exception raised if the abstract input cannot be represented | |
2534 | | exactly. However, if the abstract value is too large, the overflow and | |
2535 | | inexact exceptions are raised and an infinity or maximal finite value is | |
a7d1ac78 PM |
2536 | | returned. If the abstract value is too small, the input value is rounded to |
2537 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
2538 | | the abstract input cannot be represented exactly as a subnormal double- | |
158142c2 FB |
2539 | | precision floating-point number. |
2540 | | The input significand `zSig' has its binary point between bits 62 | |
2541 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
2542 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
2543 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
2544 | | and it must not require rounding. In the usual case that `zSig' is | |
2545 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
2546 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
2547 | | Binary Floating-Point Arithmetic. | |
2548 | *----------------------------------------------------------------------------*/ | |
2549 | ||
0c48262d | 2550 | static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 2551 | float_status *status) |
158142c2 | 2552 | { |
8f506c70 | 2553 | int8_t roundingMode; |
158142c2 | 2554 | flag roundNearestEven; |
0c48262d | 2555 | int roundIncrement, roundBits; |
158142c2 FB |
2556 | flag isTiny; |
2557 | ||
a2f2d288 | 2558 | roundingMode = status->float_rounding_mode; |
158142c2 | 2559 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
2560 | switch (roundingMode) { |
2561 | case float_round_nearest_even: | |
f9288a76 | 2562 | case float_round_ties_away: |
dc355b76 PM |
2563 | roundIncrement = 0x200; |
2564 | break; | |
2565 | case float_round_to_zero: | |
2566 | roundIncrement = 0; | |
2567 | break; | |
2568 | case float_round_up: | |
2569 | roundIncrement = zSign ? 0 : 0x3ff; | |
2570 | break; | |
2571 | case float_round_down: | |
2572 | roundIncrement = zSign ? 0x3ff : 0; | |
2573 | break; | |
9ee6f678 BR |
2574 | case float_round_to_odd: |
2575 | roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; | |
2576 | break; | |
dc355b76 PM |
2577 | default: |
2578 | abort(); | |
158142c2 FB |
2579 | } |
2580 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 2581 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
2582 | if ( ( 0x7FD < zExp ) |
2583 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 2584 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 | 2585 | ) { |
9ee6f678 BR |
2586 | bool overflow_to_inf = roundingMode != float_round_to_odd && |
2587 | roundIncrement != 0; | |
ff32e16e | 2588 | float_raise(float_flag_overflow | float_flag_inexact, status); |
9ee6f678 | 2589 | return packFloat64(zSign, 0x7FF, -(!overflow_to_inf)); |
158142c2 FB |
2590 | } |
2591 | if ( zExp < 0 ) { | |
a2f2d288 | 2592 | if (status->flush_to_zero) { |
ff32e16e | 2593 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
2594 | return packFloat64(zSign, 0, 0); |
2595 | } | |
158142c2 | 2596 | isTiny = |
a2f2d288 PM |
2597 | (status->float_detect_tininess |
2598 | == float_tininess_before_rounding) | |
158142c2 FB |
2599 | || ( zExp < -1 ) |
2600 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
2601 | shift64RightJamming( zSig, - zExp, &zSig ); | |
2602 | zExp = 0; | |
2603 | roundBits = zSig & 0x3FF; | |
ff32e16e PM |
2604 | if (isTiny && roundBits) { |
2605 | float_raise(float_flag_underflow, status); | |
2606 | } | |
9ee6f678 BR |
2607 | if (roundingMode == float_round_to_odd) { |
2608 | /* | |
2609 | * For round-to-odd case, the roundIncrement depends on | |
2610 | * zSig which just changed. | |
2611 | */ | |
2612 | roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; | |
2613 | } | |
158142c2 FB |
2614 | } |
2615 | } | |
a2f2d288 PM |
2616 | if (roundBits) { |
2617 | status->float_exception_flags |= float_flag_inexact; | |
2618 | } | |
158142c2 FB |
2619 | zSig = ( zSig + roundIncrement )>>10; |
2620 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
2621 | if ( zSig == 0 ) zExp = 0; | |
2622 | return packFloat64( zSign, zExp, zSig ); | |
2623 | ||
2624 | } | |
2625 | ||
2626 | /*---------------------------------------------------------------------------- | |
2627 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
2628 | | and significand `zSig', and returns the proper double-precision floating- | |
2629 | | point value corresponding to the abstract input. This routine is just like | |
2630 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
2631 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
2632 | | floating-point exponent. | |
2633 | *----------------------------------------------------------------------------*/ | |
2634 | ||
2635 | static float64 | |
0c48262d | 2636 | normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
e5a41ffa | 2637 | float_status *status) |
158142c2 | 2638 | { |
8f506c70 | 2639 | int8_t shiftCount; |
158142c2 FB |
2640 | |
2641 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
ff32e16e PM |
2642 | return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, |
2643 | status); | |
158142c2 FB |
2644 | |
2645 | } | |
2646 | ||
158142c2 FB |
2647 | /*---------------------------------------------------------------------------- |
2648 | | Normalizes the subnormal extended double-precision floating-point value | |
2649 | | represented by the denormalized significand `aSig'. The normalized exponent | |
2650 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
2651 | | `zSigPtr', respectively. | |
2652 | *----------------------------------------------------------------------------*/ | |
2653 | ||
88857aca LV |
2654 | void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, |
2655 | uint64_t *zSigPtr) | |
158142c2 | 2656 | { |
8f506c70 | 2657 | int8_t shiftCount; |
158142c2 FB |
2658 | |
2659 | shiftCount = countLeadingZeros64( aSig ); | |
2660 | *zSigPtr = aSig<<shiftCount; | |
2661 | *zExpPtr = 1 - shiftCount; | |
158142c2 FB |
2662 | } |
2663 | ||
2664 | /*---------------------------------------------------------------------------- | |
2665 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
2666 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
2667 | | and returns the proper extended double-precision floating-point value | |
2668 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
2669 | | rounded and packed into the extended double-precision format, with the | |
2670 | | inexact exception raised if the abstract input cannot be represented | |
2671 | | exactly. However, if the abstract value is too large, the overflow and | |
2672 | | inexact exceptions are raised and an infinity or maximal finite value is | |
2673 | | returned. If the abstract value is too small, the input value is rounded to | |
2674 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
2675 | | the abstract input cannot be represented exactly as a subnormal extended | |
2676 | | double-precision floating-point number. | |
2677 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
2678 | | number of bits as single or double precision, respectively. Otherwise, the | |
2679 | | result is rounded to the full precision of the extended double-precision | |
2680 | | format. | |
2681 | | The input significand must be normalized or smaller. If the input | |
2682 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
2683 | | returned is a subnormal number, and it must not require rounding. The | |
2684 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
2685 | | Floating-Point Arithmetic. | |
2686 | *----------------------------------------------------------------------------*/ | |
2687 | ||
88857aca LV |
2688 | floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, |
2689 | int32_t zExp, uint64_t zSig0, uint64_t zSig1, | |
2690 | float_status *status) | |
158142c2 | 2691 | { |
8f506c70 | 2692 | int8_t roundingMode; |
158142c2 | 2693 | flag roundNearestEven, increment, isTiny; |
f42c2224 | 2694 | int64_t roundIncrement, roundMask, roundBits; |
158142c2 | 2695 | |
a2f2d288 | 2696 | roundingMode = status->float_rounding_mode; |
158142c2 FB |
2697 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
2698 | if ( roundingPrecision == 80 ) goto precision80; | |
2699 | if ( roundingPrecision == 64 ) { | |
2700 | roundIncrement = LIT64( 0x0000000000000400 ); | |
2701 | roundMask = LIT64( 0x00000000000007FF ); | |
2702 | } | |
2703 | else if ( roundingPrecision == 32 ) { | |
2704 | roundIncrement = LIT64( 0x0000008000000000 ); | |
2705 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
2706 | } | |
2707 | else { | |
2708 | goto precision80; | |
2709 | } | |
2710 | zSig0 |= ( zSig1 != 0 ); | |
dc355b76 PM |
2711 | switch (roundingMode) { |
2712 | case float_round_nearest_even: | |
f9288a76 | 2713 | case float_round_ties_away: |
dc355b76 PM |
2714 | break; |
2715 | case float_round_to_zero: | |
2716 | roundIncrement = 0; | |
2717 | break; | |
2718 | case float_round_up: | |
2719 | roundIncrement = zSign ? 0 : roundMask; | |
2720 | break; | |
2721 | case float_round_down: | |
2722 | roundIncrement = zSign ? roundMask : 0; | |
2723 | break; | |
2724 | default: | |
2725 | abort(); | |
158142c2 FB |
2726 | } |
2727 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 2728 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
2729 | if ( ( 0x7FFE < zExp ) |
2730 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
2731 | ) { | |
2732 | goto overflow; | |
2733 | } | |
2734 | if ( zExp <= 0 ) { | |
a2f2d288 | 2735 | if (status->flush_to_zero) { |
ff32e16e | 2736 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
2737 | return packFloatx80(zSign, 0, 0); |
2738 | } | |
158142c2 | 2739 | isTiny = |
a2f2d288 PM |
2740 | (status->float_detect_tininess |
2741 | == float_tininess_before_rounding) | |
158142c2 FB |
2742 | || ( zExp < 0 ) |
2743 | || ( zSig0 <= zSig0 + roundIncrement ); | |
2744 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
2745 | zExp = 0; | |
2746 | roundBits = zSig0 & roundMask; | |
ff32e16e PM |
2747 | if (isTiny && roundBits) { |
2748 | float_raise(float_flag_underflow, status); | |
2749 | } | |
a2f2d288 PM |
2750 | if (roundBits) { |
2751 | status->float_exception_flags |= float_flag_inexact; | |
2752 | } | |
158142c2 | 2753 | zSig0 += roundIncrement; |
bb98fe42 | 2754 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
2755 | roundIncrement = roundMask + 1; |
2756 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
2757 | roundMask |= roundIncrement; | |
2758 | } | |
2759 | zSig0 &= ~ roundMask; | |
2760 | return packFloatx80( zSign, zExp, zSig0 ); | |
2761 | } | |
2762 | } | |
a2f2d288 PM |
2763 | if (roundBits) { |
2764 | status->float_exception_flags |= float_flag_inexact; | |
2765 | } | |
158142c2 FB |
2766 | zSig0 += roundIncrement; |
2767 | if ( zSig0 < roundIncrement ) { | |
2768 | ++zExp; | |
2769 | zSig0 = LIT64( 0x8000000000000000 ); | |
2770 | } | |
2771 | roundIncrement = roundMask + 1; | |
2772 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
2773 | roundMask |= roundIncrement; | |
2774 | } | |
2775 | zSig0 &= ~ roundMask; | |
2776 | if ( zSig0 == 0 ) zExp = 0; | |
2777 | return packFloatx80( zSign, zExp, zSig0 ); | |
2778 | precision80: | |
dc355b76 PM |
2779 | switch (roundingMode) { |
2780 | case float_round_nearest_even: | |
f9288a76 | 2781 | case float_round_ties_away: |
dc355b76 PM |
2782 | increment = ((int64_t)zSig1 < 0); |
2783 | break; | |
2784 | case float_round_to_zero: | |
2785 | increment = 0; | |
2786 | break; | |
2787 | case float_round_up: | |
2788 | increment = !zSign && zSig1; | |
2789 | break; | |
2790 | case float_round_down: | |
2791 | increment = zSign && zSig1; | |
2792 | break; | |
2793 | default: | |
2794 | abort(); | |
158142c2 | 2795 | } |
bb98fe42 | 2796 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
2797 | if ( ( 0x7FFE < zExp ) |
2798 | || ( ( zExp == 0x7FFE ) | |
2799 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
2800 | && increment | |
2801 | ) | |
2802 | ) { | |
2803 | roundMask = 0; | |
2804 | overflow: | |
ff32e16e | 2805 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
2806 | if ( ( roundingMode == float_round_to_zero ) |
2807 | || ( zSign && ( roundingMode == float_round_up ) ) | |
2808 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
2809 | ) { | |
2810 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
2811 | } | |
0f605c88 LV |
2812 | return packFloatx80(zSign, |
2813 | floatx80_infinity_high, | |
2814 | floatx80_infinity_low); | |
158142c2 FB |
2815 | } |
2816 | if ( zExp <= 0 ) { | |
2817 | isTiny = | |
a2f2d288 PM |
2818 | (status->float_detect_tininess |
2819 | == float_tininess_before_rounding) | |
158142c2 FB |
2820 | || ( zExp < 0 ) |
2821 | || ! increment | |
2822 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
2823 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
2824 | zExp = 0; | |
ff32e16e PM |
2825 | if (isTiny && zSig1) { |
2826 | float_raise(float_flag_underflow, status); | |
2827 | } | |
a2f2d288 PM |
2828 | if (zSig1) { |
2829 | status->float_exception_flags |= float_flag_inexact; | |
2830 | } | |
dc355b76 PM |
2831 | switch (roundingMode) { |
2832 | case float_round_nearest_even: | |
f9288a76 | 2833 | case float_round_ties_away: |
dc355b76 PM |
2834 | increment = ((int64_t)zSig1 < 0); |
2835 | break; | |
2836 | case float_round_to_zero: | |
2837 | increment = 0; | |
2838 | break; | |
2839 | case float_round_up: | |
2840 | increment = !zSign && zSig1; | |
2841 | break; | |
2842 | case float_round_down: | |
2843 | increment = zSign && zSig1; | |
2844 | break; | |
2845 | default: | |
2846 | abort(); | |
158142c2 FB |
2847 | } |
2848 | if ( increment ) { | |
2849 | ++zSig0; | |
2850 | zSig0 &= | |
bb98fe42 AF |
2851 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
2852 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
2853 | } |
2854 | return packFloatx80( zSign, zExp, zSig0 ); | |
2855 | } | |
2856 | } | |
a2f2d288 PM |
2857 | if (zSig1) { |
2858 | status->float_exception_flags |= float_flag_inexact; | |
2859 | } | |
158142c2 FB |
2860 | if ( increment ) { |
2861 | ++zSig0; | |
2862 | if ( zSig0 == 0 ) { | |
2863 | ++zExp; | |
2864 | zSig0 = LIT64( 0x8000000000000000 ); | |
2865 | } | |
2866 | else { | |
bb98fe42 | 2867 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
2868 | } |
2869 | } | |
2870 | else { | |
2871 | if ( zSig0 == 0 ) zExp = 0; | |
2872 | } | |
2873 | return packFloatx80( zSign, zExp, zSig0 ); | |
2874 | ||
2875 | } | |
2876 | ||
2877 | /*---------------------------------------------------------------------------- | |
2878 | | Takes an abstract floating-point value having sign `zSign', exponent | |
2879 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
2880 | | and returns the proper extended double-precision floating-point value | |
2881 | | corresponding to the abstract input. This routine is just like | |
2882 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
2883 | | normalized. | |
2884 | *----------------------------------------------------------------------------*/ | |
2885 | ||
88857aca LV |
2886 | floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, |
2887 | flag zSign, int32_t zExp, | |
2888 | uint64_t zSig0, uint64_t zSig1, | |
2889 | float_status *status) | |
158142c2 | 2890 | { |
8f506c70 | 2891 | int8_t shiftCount; |
158142c2 FB |
2892 | |
2893 | if ( zSig0 == 0 ) { | |
2894 | zSig0 = zSig1; | |
2895 | zSig1 = 0; | |
2896 | zExp -= 64; | |
2897 | } | |
2898 | shiftCount = countLeadingZeros64( zSig0 ); | |
2899 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
2900 | zExp -= shiftCount; | |
ff32e16e PM |
2901 | return roundAndPackFloatx80(roundingPrecision, zSign, zExp, |
2902 | zSig0, zSig1, status); | |
158142c2 FB |
2903 | |
2904 | } | |
2905 | ||
158142c2 FB |
2906 | /*---------------------------------------------------------------------------- |
2907 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
2908 | | floating-point value `a'. | |
2909 | *----------------------------------------------------------------------------*/ | |
2910 | ||
a49db98d | 2911 | static inline uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
2912 | { |
2913 | ||
2914 | return a.low; | |
2915 | ||
2916 | } | |
2917 | ||
2918 | /*---------------------------------------------------------------------------- | |
2919 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
2920 | | floating-point value `a'. | |
2921 | *----------------------------------------------------------------------------*/ | |
2922 | ||
a49db98d | 2923 | static inline uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
2924 | { |
2925 | ||
2926 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
2927 | ||
2928 | } | |
2929 | ||
2930 | /*---------------------------------------------------------------------------- | |
2931 | | Returns the exponent bits of the quadruple-precision floating-point value | |
2932 | | `a'. | |
2933 | *----------------------------------------------------------------------------*/ | |
2934 | ||
f4014512 | 2935 | static inline int32_t extractFloat128Exp( float128 a ) |
158142c2 FB |
2936 | { |
2937 | ||
2938 | return ( a.high>>48 ) & 0x7FFF; | |
2939 | ||
2940 | } | |
2941 | ||
2942 | /*---------------------------------------------------------------------------- | |
2943 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
2944 | *----------------------------------------------------------------------------*/ | |
2945 | ||
a49db98d | 2946 | static inline flag extractFloat128Sign( float128 a ) |
158142c2 FB |
2947 | { |
2948 | ||
2949 | return a.high>>63; | |
2950 | ||
2951 | } | |
2952 | ||
2953 | /*---------------------------------------------------------------------------- | |
2954 | | Normalizes the subnormal quadruple-precision floating-point value | |
2955 | | represented by the denormalized significand formed by the concatenation of | |
2956 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
2957 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
2958 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
2959 | | least significant 64 bits of the normalized significand are stored at the | |
2960 | | location pointed to by `zSig1Ptr'. | |
2961 | *----------------------------------------------------------------------------*/ | |
2962 | ||
2963 | static void | |
2964 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
2965 | uint64_t aSig0, |
2966 | uint64_t aSig1, | |
f4014512 | 2967 | int32_t *zExpPtr, |
bb98fe42 AF |
2968 | uint64_t *zSig0Ptr, |
2969 | uint64_t *zSig1Ptr | |
158142c2 FB |
2970 | ) |
2971 | { | |
8f506c70 | 2972 | int8_t shiftCount; |
158142c2 FB |
2973 | |
2974 | if ( aSig0 == 0 ) { | |
2975 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
2976 | if ( shiftCount < 0 ) { | |
2977 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
2978 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
2979 | } | |
2980 | else { | |
2981 | *zSig0Ptr = aSig1<<shiftCount; | |
2982 | *zSig1Ptr = 0; | |
2983 | } | |
2984 | *zExpPtr = - shiftCount - 63; | |
2985 | } | |
2986 | else { | |
2987 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
2988 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
2989 | *zExpPtr = 1 - shiftCount; | |
2990 | } | |
2991 | ||
2992 | } | |
2993 | ||
2994 | /*---------------------------------------------------------------------------- | |
2995 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
2996 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
2997 | | floating-point value, returning the result. After being shifted into the | |
2998 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
2999 | | added together to form the most significant 32 bits of the result. This | |
3000 | | means that any integer portion of `zSig0' will be added into the exponent. | |
3001 | | Since a properly normalized significand will have an integer portion equal | |
3002 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
3003 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
3004 | | significand. | |
3005 | *----------------------------------------------------------------------------*/ | |
3006 | ||
a49db98d | 3007 | static inline float128 |
f4014512 | 3008 | packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
3009 | { |
3010 | float128 z; | |
3011 | ||
3012 | z.low = zSig1; | |
bb98fe42 | 3013 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
3014 | return z; |
3015 | ||
3016 | } | |
3017 | ||
3018 | /*---------------------------------------------------------------------------- | |
3019 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3020 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
3021 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
3022 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
3023 | | simply rounded and packed into the quadruple-precision format, with the | |
3024 | | inexact exception raised if the abstract input cannot be represented | |
3025 | | exactly. However, if the abstract value is too large, the overflow and | |
3026 | | inexact exceptions are raised and an infinity or maximal finite value is | |
3027 | | returned. If the abstract value is too small, the input value is rounded to | |
3028 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
3029 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
3030 | | precision floating-point number. | |
3031 | | The input significand must be normalized or smaller. If the input | |
3032 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
3033 | | returned is a subnormal number, and it must not require rounding. In the | |
3034 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
3035 | | than the ``true'' floating-point exponent. The handling of underflow and | |
3036 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3037 | *----------------------------------------------------------------------------*/ | |
3038 | ||
f4014512 | 3039 | static float128 roundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
3040 | uint64_t zSig0, uint64_t zSig1, |
3041 | uint64_t zSig2, float_status *status) | |
158142c2 | 3042 | { |
8f506c70 | 3043 | int8_t roundingMode; |
158142c2 FB |
3044 | flag roundNearestEven, increment, isTiny; |
3045 | ||
a2f2d288 | 3046 | roundingMode = status->float_rounding_mode; |
158142c2 | 3047 | roundNearestEven = ( roundingMode == float_round_nearest_even ); |
dc355b76 PM |
3048 | switch (roundingMode) { |
3049 | case float_round_nearest_even: | |
f9288a76 | 3050 | case float_round_ties_away: |
dc355b76 PM |
3051 | increment = ((int64_t)zSig2 < 0); |
3052 | break; | |
3053 | case float_round_to_zero: | |
3054 | increment = 0; | |
3055 | break; | |
3056 | case float_round_up: | |
3057 | increment = !zSign && zSig2; | |
3058 | break; | |
3059 | case float_round_down: | |
3060 | increment = zSign && zSig2; | |
3061 | break; | |
9ee6f678 BR |
3062 | case float_round_to_odd: |
3063 | increment = !(zSig1 & 0x1) && zSig2; | |
3064 | break; | |
dc355b76 PM |
3065 | default: |
3066 | abort(); | |
158142c2 | 3067 | } |
bb98fe42 | 3068 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
3069 | if ( ( 0x7FFD < zExp ) |
3070 | || ( ( zExp == 0x7FFD ) | |
3071 | && eq128( | |
3072 | LIT64( 0x0001FFFFFFFFFFFF ), | |
3073 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
3074 | zSig0, | |
3075 | zSig1 | |
3076 | ) | |
3077 | && increment | |
3078 | ) | |
3079 | ) { | |
ff32e16e | 3080 | float_raise(float_flag_overflow | float_flag_inexact, status); |
158142c2 FB |
3081 | if ( ( roundingMode == float_round_to_zero ) |
3082 | || ( zSign && ( roundingMode == float_round_up ) ) | |
3083 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
9ee6f678 | 3084 | || (roundingMode == float_round_to_odd) |
158142c2 FB |
3085 | ) { |
3086 | return | |
3087 | packFloat128( | |
3088 | zSign, | |
3089 | 0x7FFE, | |
3090 | LIT64( 0x0000FFFFFFFFFFFF ), | |
3091 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
3092 | ); | |
3093 | } | |
3094 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
3095 | } | |
3096 | if ( zExp < 0 ) { | |
a2f2d288 | 3097 | if (status->flush_to_zero) { |
ff32e16e | 3098 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
3099 | return packFloat128(zSign, 0, 0, 0); |
3100 | } | |
158142c2 | 3101 | isTiny = |
a2f2d288 PM |
3102 | (status->float_detect_tininess |
3103 | == float_tininess_before_rounding) | |
158142c2 FB |
3104 | || ( zExp < -1 ) |
3105 | || ! increment | |
3106 | || lt128( | |
3107 | zSig0, | |
3108 | zSig1, | |
3109 | LIT64( 0x0001FFFFFFFFFFFF ), | |
3110 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
3111 | ); | |
3112 | shift128ExtraRightJamming( | |
3113 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
3114 | zExp = 0; | |
ff32e16e PM |
3115 | if (isTiny && zSig2) { |
3116 | float_raise(float_flag_underflow, status); | |
3117 | } | |
dc355b76 PM |
3118 | switch (roundingMode) { |
3119 | case float_round_nearest_even: | |
f9288a76 | 3120 | case float_round_ties_away: |
dc355b76 PM |
3121 | increment = ((int64_t)zSig2 < 0); |
3122 | break; | |
3123 | case float_round_to_zero: | |
3124 | increment = 0; | |
3125 | break; | |
3126 | case float_round_up: | |
3127 | increment = !zSign && zSig2; | |
3128 | break; | |
3129 | case float_round_down: | |
3130 | increment = zSign && zSig2; | |
3131 | break; | |
9ee6f678 BR |
3132 | case float_round_to_odd: |
3133 | increment = !(zSig1 & 0x1) && zSig2; | |
3134 | break; | |
dc355b76 PM |
3135 | default: |
3136 | abort(); | |
158142c2 FB |
3137 | } |
3138 | } | |
3139 | } | |
a2f2d288 PM |
3140 | if (zSig2) { |
3141 | status->float_exception_flags |= float_flag_inexact; | |
3142 | } | |
158142c2 FB |
3143 | if ( increment ) { |
3144 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
3145 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
3146 | } | |
3147 | else { | |
3148 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
3149 | } | |
3150 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
3151 | ||
3152 | } | |
3153 | ||
3154 | /*---------------------------------------------------------------------------- | |
3155 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
3156 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
3157 | | returns the proper quadruple-precision floating-point value corresponding | |
3158 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
3159 | | except that the input significand has fewer bits and does not have to be | |
3160 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
3161 | | point exponent. | |
3162 | *----------------------------------------------------------------------------*/ | |
3163 | ||
f4014512 | 3164 | static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, |
e5a41ffa PM |
3165 | uint64_t zSig0, uint64_t zSig1, |
3166 | float_status *status) | |
158142c2 | 3167 | { |
8f506c70 | 3168 | int8_t shiftCount; |
bb98fe42 | 3169 | uint64_t zSig2; |
158142c2 FB |
3170 | |
3171 | if ( zSig0 == 0 ) { | |
3172 | zSig0 = zSig1; | |
3173 | zSig1 = 0; | |
3174 | zExp -= 64; | |
3175 | } | |
3176 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
3177 | if ( 0 <= shiftCount ) { | |
3178 | zSig2 = 0; | |
3179 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
3180 | } | |
3181 | else { | |
3182 | shift128ExtraRightJamming( | |
3183 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
3184 | } | |
3185 | zExp -= shiftCount; | |
ff32e16e | 3186 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
3187 | |
3188 | } | |
3189 | ||
158142c2 | 3190 | |
158142c2 FB |
3191 | /*---------------------------------------------------------------------------- |
3192 | | Returns the result of converting the 32-bit two's complement integer `a' | |
3193 | | to the extended double-precision floating-point format. The conversion | |
3194 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3195 | | Arithmetic. | |
3196 | *----------------------------------------------------------------------------*/ | |
3197 | ||
e5a41ffa | 3198 | floatx80 int32_to_floatx80(int32_t a, float_status *status) |
158142c2 FB |
3199 | { |
3200 | flag zSign; | |
3a87d009 | 3201 | uint32_t absA; |
8f506c70 | 3202 | int8_t shiftCount; |
bb98fe42 | 3203 | uint64_t zSig; |
158142c2 FB |
3204 | |
3205 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
3206 | zSign = ( a < 0 ); | |
3207 | absA = zSign ? - a : a; | |
3208 | shiftCount = countLeadingZeros32( absA ) + 32; | |
3209 | zSig = absA; | |
3210 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
3211 | ||
3212 | } | |
3213 | ||
158142c2 FB |
3214 | /*---------------------------------------------------------------------------- |
3215 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
3216 | | the quadruple-precision floating-point format. The conversion is performed | |
3217 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3218 | *----------------------------------------------------------------------------*/ | |
3219 | ||
e5a41ffa | 3220 | float128 int32_to_float128(int32_t a, float_status *status) |
158142c2 FB |
3221 | { |
3222 | flag zSign; | |
3a87d009 | 3223 | uint32_t absA; |
8f506c70 | 3224 | int8_t shiftCount; |
bb98fe42 | 3225 | uint64_t zSig0; |
158142c2 FB |
3226 | |
3227 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
3228 | zSign = ( a < 0 ); | |
3229 | absA = zSign ? - a : a; | |
3230 | shiftCount = countLeadingZeros32( absA ) + 17; | |
3231 | zSig0 = absA; | |
3232 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
3233 | ||
3234 | } | |
3235 | ||
158142c2 FB |
3236 | /*---------------------------------------------------------------------------- |
3237 | | Returns the result of converting the 64-bit two's complement integer `a' | |
3238 | | to the extended double-precision floating-point format. The conversion | |
3239 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3240 | | Arithmetic. | |
3241 | *----------------------------------------------------------------------------*/ | |
3242 | ||
e5a41ffa | 3243 | floatx80 int64_to_floatx80(int64_t a, float_status *status) |
158142c2 FB |
3244 | { |
3245 | flag zSign; | |
182f42fd | 3246 | uint64_t absA; |
8f506c70 | 3247 | int8_t shiftCount; |
158142c2 FB |
3248 | |
3249 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
3250 | zSign = ( a < 0 ); | |
3251 | absA = zSign ? - a : a; | |
3252 | shiftCount = countLeadingZeros64( absA ); | |
3253 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
3254 | ||
3255 | } | |
3256 | ||
158142c2 FB |
3257 | /*---------------------------------------------------------------------------- |
3258 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
3259 | | the quadruple-precision floating-point format. The conversion is performed | |
3260 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3261 | *----------------------------------------------------------------------------*/ | |
3262 | ||
e5a41ffa | 3263 | float128 int64_to_float128(int64_t a, float_status *status) |
158142c2 FB |
3264 | { |
3265 | flag zSign; | |
182f42fd | 3266 | uint64_t absA; |
8f506c70 | 3267 | int8_t shiftCount; |
f4014512 | 3268 | int32_t zExp; |
bb98fe42 | 3269 | uint64_t zSig0, zSig1; |
158142c2 FB |
3270 | |
3271 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
3272 | zSign = ( a < 0 ); | |
3273 | absA = zSign ? - a : a; | |
3274 | shiftCount = countLeadingZeros64( absA ) + 49; | |
3275 | zExp = 0x406E - shiftCount; | |
3276 | if ( 64 <= shiftCount ) { | |
3277 | zSig1 = 0; | |
3278 | zSig0 = absA; | |
3279 | shiftCount -= 64; | |
3280 | } | |
3281 | else { | |
3282 | zSig1 = absA; | |
3283 | zSig0 = 0; | |
3284 | } | |
3285 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
3286 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
3287 | ||
3288 | } | |
3289 | ||
6bb8e0f1 PM |
3290 | /*---------------------------------------------------------------------------- |
3291 | | Returns the result of converting the 64-bit unsigned integer `a' | |
3292 | | to the quadruple-precision floating-point format. The conversion is performed | |
3293 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3294 | *----------------------------------------------------------------------------*/ | |
3295 | ||
e5a41ffa | 3296 | float128 uint64_to_float128(uint64_t a, float_status *status) |
1e397ead RH |
3297 | { |
3298 | if (a == 0) { | |
3299 | return float128_zero; | |
3300 | } | |
6603d506 | 3301 | return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status); |
1e397ead RH |
3302 | } |
3303 | ||
158142c2 FB |
3304 | /*---------------------------------------------------------------------------- |
3305 | | Returns the result of converting the single-precision floating-point value | |
3306 | | `a' to the extended double-precision floating-point format. The conversion | |
3307 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3308 | | Arithmetic. | |
3309 | *----------------------------------------------------------------------------*/ | |
3310 | ||
e5a41ffa | 3311 | floatx80 float32_to_floatx80(float32 a, float_status *status) |
158142c2 FB |
3312 | { |
3313 | flag aSign; | |
0c48262d | 3314 | int aExp; |
bb98fe42 | 3315 | uint32_t aSig; |
158142c2 | 3316 | |
ff32e16e | 3317 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
3318 | aSig = extractFloat32Frac( a ); |
3319 | aExp = extractFloat32Exp( a ); | |
3320 | aSign = extractFloat32Sign( a ); | |
3321 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
3322 | if (aSig) { |
3323 | return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); | |
3324 | } | |
0f605c88 LV |
3325 | return packFloatx80(aSign, |
3326 | floatx80_infinity_high, | |
3327 | floatx80_infinity_low); | |
158142c2 FB |
3328 | } |
3329 | if ( aExp == 0 ) { | |
3330 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
3331 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
3332 | } | |
3333 | aSig |= 0x00800000; | |
bb98fe42 | 3334 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
3335 | |
3336 | } | |
3337 | ||
158142c2 FB |
3338 | /*---------------------------------------------------------------------------- |
3339 | | Returns the result of converting the single-precision floating-point value | |
3340 | | `a' to the double-precision floating-point format. The conversion is | |
3341 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3342 | | Arithmetic. | |
3343 | *----------------------------------------------------------------------------*/ | |
3344 | ||
e5a41ffa | 3345 | float128 float32_to_float128(float32 a, float_status *status) |
158142c2 FB |
3346 | { |
3347 | flag aSign; | |
0c48262d | 3348 | int aExp; |
bb98fe42 | 3349 | uint32_t aSig; |
158142c2 | 3350 | |
ff32e16e | 3351 | a = float32_squash_input_denormal(a, status); |
158142c2 FB |
3352 | aSig = extractFloat32Frac( a ); |
3353 | aExp = extractFloat32Exp( a ); | |
3354 | aSign = extractFloat32Sign( a ); | |
3355 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
3356 | if (aSig) { |
3357 | return commonNaNToFloat128(float32ToCommonNaN(a, status), status); | |
3358 | } | |
158142c2 FB |
3359 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
3360 | } | |
3361 | if ( aExp == 0 ) { | |
3362 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
3363 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
3364 | --aExp; | |
3365 | } | |
bb98fe42 | 3366 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
3367 | |
3368 | } | |
3369 | ||
158142c2 FB |
3370 | /*---------------------------------------------------------------------------- |
3371 | | Returns the remainder of the single-precision floating-point value `a' | |
3372 | | with respect to the corresponding value `b'. The operation is performed | |
3373 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3374 | *----------------------------------------------------------------------------*/ | |
3375 | ||
e5a41ffa | 3376 | float32 float32_rem(float32 a, float32 b, float_status *status) |
158142c2 | 3377 | { |
ed086f3d | 3378 | flag aSign, zSign; |
0c48262d | 3379 | int aExp, bExp, expDiff; |
bb98fe42 AF |
3380 | uint32_t aSig, bSig; |
3381 | uint32_t q; | |
3382 | uint64_t aSig64, bSig64, q64; | |
3383 | uint32_t alternateASig; | |
3384 | int32_t sigMean; | |
ff32e16e PM |
3385 | a = float32_squash_input_denormal(a, status); |
3386 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3387 | |
3388 | aSig = extractFloat32Frac( a ); | |
3389 | aExp = extractFloat32Exp( a ); | |
3390 | aSign = extractFloat32Sign( a ); | |
3391 | bSig = extractFloat32Frac( b ); | |
3392 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
3393 | if ( aExp == 0xFF ) { |
3394 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
ff32e16e | 3395 | return propagateFloat32NaN(a, b, status); |
158142c2 | 3396 | } |
ff32e16e | 3397 | float_raise(float_flag_invalid, status); |
af39bc8c | 3398 | return float32_default_nan(status); |
158142c2 FB |
3399 | } |
3400 | if ( bExp == 0xFF ) { | |
ff32e16e PM |
3401 | if (bSig) { |
3402 | return propagateFloat32NaN(a, b, status); | |
3403 | } | |
158142c2 FB |
3404 | return a; |
3405 | } | |
3406 | if ( bExp == 0 ) { | |
3407 | if ( bSig == 0 ) { | |
ff32e16e | 3408 | float_raise(float_flag_invalid, status); |
af39bc8c | 3409 | return float32_default_nan(status); |
158142c2 FB |
3410 | } |
3411 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
3412 | } | |
3413 | if ( aExp == 0 ) { | |
3414 | if ( aSig == 0 ) return a; | |
3415 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
3416 | } | |
3417 | expDiff = aExp - bExp; | |
3418 | aSig |= 0x00800000; | |
3419 | bSig |= 0x00800000; | |
3420 | if ( expDiff < 32 ) { | |
3421 | aSig <<= 8; | |
3422 | bSig <<= 8; | |
3423 | if ( expDiff < 0 ) { | |
3424 | if ( expDiff < -1 ) return a; | |
3425 | aSig >>= 1; | |
3426 | } | |
3427 | q = ( bSig <= aSig ); | |
3428 | if ( q ) aSig -= bSig; | |
3429 | if ( 0 < expDiff ) { | |
bb98fe42 | 3430 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
3431 | q >>= 32 - expDiff; |
3432 | bSig >>= 2; | |
3433 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
3434 | } | |
3435 | else { | |
3436 | aSig >>= 2; | |
3437 | bSig >>= 2; | |
3438 | } | |
3439 | } | |
3440 | else { | |
3441 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
3442 | aSig64 = ( (uint64_t) aSig )<<40; |
3443 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
3444 | expDiff -= 64; |
3445 | while ( 0 < expDiff ) { | |
3446 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
3447 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
3448 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
3449 | expDiff -= 62; | |
3450 | } | |
3451 | expDiff += 64; | |
3452 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
3453 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
3454 | q = q64>>( 64 - expDiff ); | |
3455 | bSig <<= 6; | |
3456 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
3457 | } | |
3458 | do { | |
3459 | alternateASig = aSig; | |
3460 | ++q; | |
3461 | aSig -= bSig; | |
bb98fe42 | 3462 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
3463 | sigMean = aSig + alternateASig; |
3464 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
3465 | aSig = alternateASig; | |
3466 | } | |
bb98fe42 | 3467 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 | 3468 | if ( zSign ) aSig = - aSig; |
ff32e16e | 3469 | return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
3470 | } |
3471 | ||
369be8f6 | 3472 | |
158142c2 | 3473 | |
8229c991 AJ |
3474 | /*---------------------------------------------------------------------------- |
3475 | | Returns the binary exponential of the single-precision floating-point value | |
3476 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
3477 | | Binary Floating-Point Arithmetic. | |
3478 | | | |
3479 | | Uses the following identities: | |
3480 | | | |
3481 | | 1. ------------------------------------------------------------------------- | |
3482 | | x x*ln(2) | |
3483 | | 2 = e | |
3484 | | | |
3485 | | 2. ------------------------------------------------------------------------- | |
3486 | | 2 3 4 5 n | |
3487 | | x x x x x x x | |
3488 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
3489 | | 1! 2! 3! 4! 5! n! | |
3490 | *----------------------------------------------------------------------------*/ | |
3491 | ||
3492 | static const float64 float32_exp2_coefficients[15] = | |
3493 | { | |
d5138cf4 PM |
3494 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
3495 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
3496 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
3497 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
3498 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
3499 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
3500 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
3501 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
3502 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
3503 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
3504 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
3505 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
3506 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
3507 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
3508 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
3509 | }; |
3510 | ||
e5a41ffa | 3511 | float32 float32_exp2(float32 a, float_status *status) |
8229c991 AJ |
3512 | { |
3513 | flag aSign; | |
0c48262d | 3514 | int aExp; |
bb98fe42 | 3515 | uint32_t aSig; |
8229c991 AJ |
3516 | float64 r, x, xn; |
3517 | int i; | |
ff32e16e | 3518 | a = float32_squash_input_denormal(a, status); |
8229c991 AJ |
3519 | |
3520 | aSig = extractFloat32Frac( a ); | |
3521 | aExp = extractFloat32Exp( a ); | |
3522 | aSign = extractFloat32Sign( a ); | |
3523 | ||
3524 | if ( aExp == 0xFF) { | |
ff32e16e PM |
3525 | if (aSig) { |
3526 | return propagateFloat32NaN(a, float32_zero, status); | |
3527 | } | |
8229c991 AJ |
3528 | return (aSign) ? float32_zero : a; |
3529 | } | |
3530 | if (aExp == 0) { | |
3531 | if (aSig == 0) return float32_one; | |
3532 | } | |
3533 | ||
ff32e16e | 3534 | float_raise(float_flag_inexact, status); |
8229c991 AJ |
3535 | |
3536 | /* ******************************* */ | |
3537 | /* using float64 for approximation */ | |
3538 | /* ******************************* */ | |
ff32e16e PM |
3539 | x = float32_to_float64(a, status); |
3540 | x = float64_mul(x, float64_ln2, status); | |
8229c991 AJ |
3541 | |
3542 | xn = x; | |
3543 | r = float64_one; | |
3544 | for (i = 0 ; i < 15 ; i++) { | |
3545 | float64 f; | |
3546 | ||
ff32e16e PM |
3547 | f = float64_mul(xn, float32_exp2_coefficients[i], status); |
3548 | r = float64_add(r, f, status); | |
8229c991 | 3549 | |
ff32e16e | 3550 | xn = float64_mul(xn, x, status); |
8229c991 AJ |
3551 | } |
3552 | ||
3553 | return float64_to_float32(r, status); | |
3554 | } | |
3555 | ||
374dfc33 AJ |
3556 | /*---------------------------------------------------------------------------- |
3557 | | Returns the binary log of the single-precision floating-point value `a'. | |
3558 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3559 | | Floating-Point Arithmetic. | |
3560 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 3561 | float32 float32_log2(float32 a, float_status *status) |
374dfc33 AJ |
3562 | { |
3563 | flag aSign, zSign; | |
0c48262d | 3564 | int aExp; |
bb98fe42 | 3565 | uint32_t aSig, zSig, i; |
374dfc33 | 3566 | |
ff32e16e | 3567 | a = float32_squash_input_denormal(a, status); |
374dfc33 AJ |
3568 | aSig = extractFloat32Frac( a ); |
3569 | aExp = extractFloat32Exp( a ); | |
3570 | aSign = extractFloat32Sign( a ); | |
3571 | ||
3572 | if ( aExp == 0 ) { | |
3573 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
3574 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
3575 | } | |
3576 | if ( aSign ) { | |
ff32e16e | 3577 | float_raise(float_flag_invalid, status); |
af39bc8c | 3578 | return float32_default_nan(status); |
374dfc33 AJ |
3579 | } |
3580 | if ( aExp == 0xFF ) { | |
ff32e16e PM |
3581 | if (aSig) { |
3582 | return propagateFloat32NaN(a, float32_zero, status); | |
3583 | } | |
374dfc33 AJ |
3584 | return a; |
3585 | } | |
3586 | ||
3587 | aExp -= 0x7F; | |
3588 | aSig |= 0x00800000; | |
3589 | zSign = aExp < 0; | |
3590 | zSig = aExp << 23; | |
3591 | ||
3592 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 3593 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
3594 | if ( aSig & 0x01000000 ) { |
3595 | aSig >>= 1; | |
3596 | zSig |= i; | |
3597 | } | |
3598 | } | |
3599 | ||
3600 | if ( zSign ) | |
3601 | zSig = -zSig; | |
3602 | ||
ff32e16e | 3603 | return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); |
374dfc33 AJ |
3604 | } |
3605 | ||
158142c2 FB |
3606 | /*---------------------------------------------------------------------------- |
3607 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
3608 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
3609 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
3610 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
3611 | *----------------------------------------------------------------------------*/ | |
3612 | ||
e5a41ffa | 3613 | int float32_eq(float32 a, float32 b, float_status *status) |
158142c2 | 3614 | { |
b689362d | 3615 | uint32_t av, bv; |
ff32e16e PM |
3616 | a = float32_squash_input_denormal(a, status); |
3617 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3618 | |
3619 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3620 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3621 | ) { | |
ff32e16e | 3622 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3623 | return 0; |
3624 | } | |
b689362d AJ |
3625 | av = float32_val(a); |
3626 | bv = float32_val(b); | |
3627 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
3628 | } |
3629 | ||
3630 | /*---------------------------------------------------------------------------- | |
3631 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
3632 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
3633 | | exception is raised if either operand is a NaN. The comparison is performed | |
3634 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
3635 | *----------------------------------------------------------------------------*/ |
3636 | ||
e5a41ffa | 3637 | int float32_le(float32 a, float32 b, float_status *status) |
158142c2 FB |
3638 | { |
3639 | flag aSign, bSign; | |
bb98fe42 | 3640 | uint32_t av, bv; |
ff32e16e PM |
3641 | a = float32_squash_input_denormal(a, status); |
3642 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3643 | |
3644 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3645 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3646 | ) { | |
ff32e16e | 3647 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3648 | return 0; |
3649 | } | |
3650 | aSign = extractFloat32Sign( a ); | |
3651 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3652 | av = float32_val(a); |
3653 | bv = float32_val(b); | |
bb98fe42 | 3654 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 3655 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3656 | |
3657 | } | |
3658 | ||
3659 | /*---------------------------------------------------------------------------- | |
3660 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
3661 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
3662 | | raised if either operand is a NaN. The comparison is performed according | |
3663 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
3664 | *----------------------------------------------------------------------------*/ |
3665 | ||
e5a41ffa | 3666 | int float32_lt(float32 a, float32 b, float_status *status) |
158142c2 FB |
3667 | { |
3668 | flag aSign, bSign; | |
bb98fe42 | 3669 | uint32_t av, bv; |
ff32e16e PM |
3670 | a = float32_squash_input_denormal(a, status); |
3671 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3672 | |
3673 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3674 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3675 | ) { | |
ff32e16e | 3676 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3677 | return 0; |
3678 | } | |
3679 | aSign = extractFloat32Sign( a ); | |
3680 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3681 | av = float32_val(a); |
3682 | bv = float32_val(b); | |
bb98fe42 | 3683 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 3684 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3685 | |
3686 | } | |
3687 | ||
67b7861d AJ |
3688 | /*---------------------------------------------------------------------------- |
3689 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
3690 | | be compared, and 0 otherwise. The invalid exception is raised if either |
3691 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
3692 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
3693 | *----------------------------------------------------------------------------*/ |
3694 | ||
e5a41ffa | 3695 | int float32_unordered(float32 a, float32 b, float_status *status) |
67b7861d | 3696 | { |
ff32e16e PM |
3697 | a = float32_squash_input_denormal(a, status); |
3698 | b = float32_squash_input_denormal(b, status); | |
67b7861d AJ |
3699 | |
3700 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3701 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3702 | ) { | |
ff32e16e | 3703 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
3704 | return 1; |
3705 | } | |
3706 | return 0; | |
3707 | } | |
b689362d | 3708 | |
158142c2 FB |
3709 | /*---------------------------------------------------------------------------- |
3710 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
3711 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
3712 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
3713 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
3714 | *----------------------------------------------------------------------------*/ |
3715 | ||
e5a41ffa | 3716 | int float32_eq_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 3717 | { |
ff32e16e PM |
3718 | a = float32_squash_input_denormal(a, status); |
3719 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3720 | |
3721 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3722 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3723 | ) { | |
af39bc8c AM |
3724 | if (float32_is_signaling_nan(a, status) |
3725 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3726 | float_raise(float_flag_invalid, status); |
b689362d | 3727 | } |
158142c2 FB |
3728 | return 0; |
3729 | } | |
b689362d AJ |
3730 | return ( float32_val(a) == float32_val(b) ) || |
3731 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
3732 | } |
3733 | ||
3734 | /*---------------------------------------------------------------------------- | |
3735 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
3736 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
3737 | | cause an exception. Otherwise, the comparison is performed according to the | |
3738 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3739 | *----------------------------------------------------------------------------*/ | |
3740 | ||
e5a41ffa | 3741 | int float32_le_quiet(float32 a, float32 b, float_status *status) |
158142c2 FB |
3742 | { |
3743 | flag aSign, bSign; | |
bb98fe42 | 3744 | uint32_t av, bv; |
ff32e16e PM |
3745 | a = float32_squash_input_denormal(a, status); |
3746 | b = float32_squash_input_denormal(b, status); | |
158142c2 FB |
3747 | |
3748 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
3749 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3750 | ) { | |
af39bc8c AM |
3751 | if (float32_is_signaling_nan(a, status) |
3752 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3753 | float_raise(float_flag_invalid, status); |
158142c2 FB |
3754 | } |
3755 | return 0; | |
3756 | } | |
3757 | aSign = extractFloat32Sign( a ); | |
3758 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
3759 | av = float32_val(a); |
3760 | bv = float32_val(b); | |
bb98fe42 | 3761 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 3762 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
3763 | |
3764 | } | |
3765 | ||
3766 | /*---------------------------------------------------------------------------- | |
3767 | | Returns 1 if the single-precision floating-point value `a' is less than | |
3768 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
3769 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
ab52f973 | 3770 | | Standard for Binary Floating-Point Arithmetic. |
158142c2 FB |
3771 | *----------------------------------------------------------------------------*/ |
3772 | ||
ab52f973 | 3773 | int float32_lt_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 3774 | { |
ab52f973 AB |
3775 | flag aSign, bSign; |
3776 | uint32_t av, bv; | |
3777 | a = float32_squash_input_denormal(a, status); | |
3778 | b = float32_squash_input_denormal(b, status); | |
158142c2 | 3779 | |
ab52f973 AB |
3780 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
3781 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3782 | ) { | |
3783 | if (float32_is_signaling_nan(a, status) | |
3784 | || float32_is_signaling_nan(b, status)) { | |
ff32e16e | 3785 | float_raise(float_flag_invalid, status); |
158142c2 | 3786 | } |
ab52f973 | 3787 | return 0; |
158142c2 | 3788 | } |
ab52f973 AB |
3789 | aSign = extractFloat32Sign( a ); |
3790 | bSign = extractFloat32Sign( b ); | |
3791 | av = float32_val(a); | |
3792 | bv = float32_val(b); | |
3793 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); | |
3794 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
3795 | |
3796 | } | |
3797 | ||
3798 | /*---------------------------------------------------------------------------- | |
ab52f973 AB |
3799 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot |
3800 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
3801 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
3802 | | Floating-Point Arithmetic. | |
158142c2 FB |
3803 | *----------------------------------------------------------------------------*/ |
3804 | ||
ab52f973 | 3805 | int float32_unordered_quiet(float32 a, float32 b, float_status *status) |
158142c2 | 3806 | { |
ab52f973 AB |
3807 | a = float32_squash_input_denormal(a, status); |
3808 | b = float32_squash_input_denormal(b, status); | |
158142c2 | 3809 | |
ab52f973 AB |
3810 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
3811 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
3812 | ) { | |
3813 | if (float32_is_signaling_nan(a, status) | |
3814 | || float32_is_signaling_nan(b, status)) { | |
3815 | float_raise(float_flag_invalid, status); | |
158142c2 | 3816 | } |
ab52f973 | 3817 | return 1; |
158142c2 | 3818 | } |
ab52f973 | 3819 | return 0; |
158142c2 FB |
3820 | } |
3821 | ||
210cbd49 AB |
3822 | /*---------------------------------------------------------------------------- |
3823 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
3824 | | input-denormal exception and return zero. Otherwise just return the value. | |
3825 | *----------------------------------------------------------------------------*/ | |
3826 | float16 float16_squash_input_denormal(float16 a, float_status *status) | |
3827 | { | |
3828 | if (status->flush_inputs_to_zero) { | |
3829 | if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) { | |
3830 | float_raise(float_flag_input_denormal, status); | |
3831 | return make_float16(float16_val(a) & 0x8000); | |
3832 | } | |
3833 | } | |
3834 | return a; | |
3835 | } | |
3836 | ||
158142c2 FB |
3837 | /*---------------------------------------------------------------------------- |
3838 | | Returns the result of converting the double-precision floating-point value | |
3839 | | `a' to the extended double-precision floating-point format. The conversion | |
3840 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3841 | | Arithmetic. | |
3842 | *----------------------------------------------------------------------------*/ | |
3843 | ||
e5a41ffa | 3844 | floatx80 float64_to_floatx80(float64 a, float_status *status) |
158142c2 FB |
3845 | { |
3846 | flag aSign; | |
0c48262d | 3847 | int aExp; |
bb98fe42 | 3848 | uint64_t aSig; |
158142c2 | 3849 | |
ff32e16e | 3850 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3851 | aSig = extractFloat64Frac( a ); |
3852 | aExp = extractFloat64Exp( a ); | |
3853 | aSign = extractFloat64Sign( a ); | |
3854 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3855 | if (aSig) { |
3856 | return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); | |
3857 | } | |
0f605c88 LV |
3858 | return packFloatx80(aSign, |
3859 | floatx80_infinity_high, | |
3860 | floatx80_infinity_low); | |
158142c2 FB |
3861 | } |
3862 | if ( aExp == 0 ) { | |
3863 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
3864 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3865 | } | |
3866 | return | |
3867 | packFloatx80( | |
3868 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
3869 | ||
3870 | } | |
3871 | ||
158142c2 FB |
3872 | /*---------------------------------------------------------------------------- |
3873 | | Returns the result of converting the double-precision floating-point value | |
3874 | | `a' to the quadruple-precision floating-point format. The conversion is | |
3875 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3876 | | Arithmetic. | |
3877 | *----------------------------------------------------------------------------*/ | |
3878 | ||
e5a41ffa | 3879 | float128 float64_to_float128(float64 a, float_status *status) |
158142c2 FB |
3880 | { |
3881 | flag aSign; | |
0c48262d | 3882 | int aExp; |
bb98fe42 | 3883 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 3884 | |
ff32e16e | 3885 | a = float64_squash_input_denormal(a, status); |
158142c2 FB |
3886 | aSig = extractFloat64Frac( a ); |
3887 | aExp = extractFloat64Exp( a ); | |
3888 | aSign = extractFloat64Sign( a ); | |
3889 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
3890 | if (aSig) { |
3891 | return commonNaNToFloat128(float64ToCommonNaN(a, status), status); | |
3892 | } | |
158142c2 FB |
3893 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
3894 | } | |
3895 | if ( aExp == 0 ) { | |
3896 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
3897 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3898 | --aExp; | |
3899 | } | |
3900 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
3901 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
3902 | ||
3903 | } | |
3904 | ||
158142c2 FB |
3905 | |
3906 | /*---------------------------------------------------------------------------- | |
3907 | | Returns the remainder of the double-precision floating-point value `a' | |
3908 | | with respect to the corresponding value `b'. The operation is performed | |
3909 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3910 | *----------------------------------------------------------------------------*/ | |
3911 | ||
e5a41ffa | 3912 | float64 float64_rem(float64 a, float64 b, float_status *status) |
158142c2 | 3913 | { |
ed086f3d | 3914 | flag aSign, zSign; |
0c48262d | 3915 | int aExp, bExp, expDiff; |
bb98fe42 AF |
3916 | uint64_t aSig, bSig; |
3917 | uint64_t q, alternateASig; | |
3918 | int64_t sigMean; | |
158142c2 | 3919 | |
ff32e16e PM |
3920 | a = float64_squash_input_denormal(a, status); |
3921 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
3922 | aSig = extractFloat64Frac( a ); |
3923 | aExp = extractFloat64Exp( a ); | |
3924 | aSign = extractFloat64Sign( a ); | |
3925 | bSig = extractFloat64Frac( b ); | |
3926 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
3927 | if ( aExp == 0x7FF ) { |
3928 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
ff32e16e | 3929 | return propagateFloat64NaN(a, b, status); |
158142c2 | 3930 | } |
ff32e16e | 3931 | float_raise(float_flag_invalid, status); |
af39bc8c | 3932 | return float64_default_nan(status); |
158142c2 FB |
3933 | } |
3934 | if ( bExp == 0x7FF ) { | |
ff32e16e PM |
3935 | if (bSig) { |
3936 | return propagateFloat64NaN(a, b, status); | |
3937 | } | |
158142c2 FB |
3938 | return a; |
3939 | } | |
3940 | if ( bExp == 0 ) { | |
3941 | if ( bSig == 0 ) { | |
ff32e16e | 3942 | float_raise(float_flag_invalid, status); |
af39bc8c | 3943 | return float64_default_nan(status); |
158142c2 FB |
3944 | } |
3945 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3946 | } | |
3947 | if ( aExp == 0 ) { | |
3948 | if ( aSig == 0 ) return a; | |
3949 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3950 | } | |
3951 | expDiff = aExp - bExp; | |
3952 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
3953 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3954 | if ( expDiff < 0 ) { | |
3955 | if ( expDiff < -1 ) return a; | |
3956 | aSig >>= 1; | |
3957 | } | |
3958 | q = ( bSig <= aSig ); | |
3959 | if ( q ) aSig -= bSig; | |
3960 | expDiff -= 64; | |
3961 | while ( 0 < expDiff ) { | |
3962 | q = estimateDiv128To64( aSig, 0, bSig ); | |
3963 | q = ( 2 < q ) ? q - 2 : 0; | |
3964 | aSig = - ( ( bSig>>2 ) * q ); | |
3965 | expDiff -= 62; | |
3966 | } | |
3967 | expDiff += 64; | |
3968 | if ( 0 < expDiff ) { | |
3969 | q = estimateDiv128To64( aSig, 0, bSig ); | |
3970 | q = ( 2 < q ) ? q - 2 : 0; | |
3971 | q >>= 64 - expDiff; | |
3972 | bSig >>= 2; | |
3973 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
3974 | } | |
3975 | else { | |
3976 | aSig >>= 2; | |
3977 | bSig >>= 2; | |
3978 | } | |
3979 | do { | |
3980 | alternateASig = aSig; | |
3981 | ++q; | |
3982 | aSig -= bSig; | |
bb98fe42 | 3983 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
3984 | sigMean = aSig + alternateASig; |
3985 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
3986 | aSig = alternateASig; | |
3987 | } | |
bb98fe42 | 3988 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 | 3989 | if ( zSign ) aSig = - aSig; |
ff32e16e | 3990 | return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); |
158142c2 FB |
3991 | |
3992 | } | |
3993 | ||
374dfc33 AJ |
3994 | /*---------------------------------------------------------------------------- |
3995 | | Returns the binary log of the double-precision floating-point value `a'. | |
3996 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3997 | | Floating-Point Arithmetic. | |
3998 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 3999 | float64 float64_log2(float64 a, float_status *status) |
374dfc33 AJ |
4000 | { |
4001 | flag aSign, zSign; | |
0c48262d | 4002 | int aExp; |
bb98fe42 | 4003 | uint64_t aSig, aSig0, aSig1, zSig, i; |
ff32e16e | 4004 | a = float64_squash_input_denormal(a, status); |
374dfc33 AJ |
4005 | |
4006 | aSig = extractFloat64Frac( a ); | |
4007 | aExp = extractFloat64Exp( a ); | |
4008 | aSign = extractFloat64Sign( a ); | |
4009 | ||
4010 | if ( aExp == 0 ) { | |
4011 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
4012 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
4013 | } | |
4014 | if ( aSign ) { | |
ff32e16e | 4015 | float_raise(float_flag_invalid, status); |
af39bc8c | 4016 | return float64_default_nan(status); |
374dfc33 AJ |
4017 | } |
4018 | if ( aExp == 0x7FF ) { | |
ff32e16e PM |
4019 | if (aSig) { |
4020 | return propagateFloat64NaN(a, float64_zero, status); | |
4021 | } | |
374dfc33 AJ |
4022 | return a; |
4023 | } | |
4024 | ||
4025 | aExp -= 0x3FF; | |
4026 | aSig |= LIT64( 0x0010000000000000 ); | |
4027 | zSign = aExp < 0; | |
bb98fe42 | 4028 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
4029 | for (i = 1LL << 51; i > 0; i >>= 1) { |
4030 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
4031 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
4032 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
4033 | aSig >>= 1; | |
4034 | zSig |= i; | |
4035 | } | |
4036 | } | |
4037 | ||
4038 | if ( zSign ) | |
4039 | zSig = -zSig; | |
ff32e16e | 4040 | return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); |
374dfc33 AJ |
4041 | } |
4042 | ||
158142c2 FB |
4043 | /*---------------------------------------------------------------------------- |
4044 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
4045 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
4046 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4047 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4048 | *----------------------------------------------------------------------------*/ | |
4049 | ||
e5a41ffa | 4050 | int float64_eq(float64 a, float64 b, float_status *status) |
158142c2 | 4051 | { |
bb98fe42 | 4052 | uint64_t av, bv; |
ff32e16e PM |
4053 | a = float64_squash_input_denormal(a, status); |
4054 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4055 | |
4056 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4057 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4058 | ) { | |
ff32e16e | 4059 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4060 | return 0; |
4061 | } | |
f090c9d4 | 4062 | av = float64_val(a); |
a1b91bb4 | 4063 | bv = float64_val(b); |
bb98fe42 | 4064 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4065 | |
4066 | } | |
4067 | ||
4068 | /*---------------------------------------------------------------------------- | |
4069 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
4070 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
4071 | | exception is raised if either operand is a NaN. The comparison is performed | |
4072 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4073 | *----------------------------------------------------------------------------*/ |
4074 | ||
e5a41ffa | 4075 | int float64_le(float64 a, float64 b, float_status *status) |
158142c2 FB |
4076 | { |
4077 | flag aSign, bSign; | |
bb98fe42 | 4078 | uint64_t av, bv; |
ff32e16e PM |
4079 | a = float64_squash_input_denormal(a, status); |
4080 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4081 | |
4082 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4083 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4084 | ) { | |
ff32e16e | 4085 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4086 | return 0; |
4087 | } | |
4088 | aSign = extractFloat64Sign( a ); | |
4089 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4090 | av = float64_val(a); |
a1b91bb4 | 4091 | bv = float64_val(b); |
bb98fe42 | 4092 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4093 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4094 | |
4095 | } | |
4096 | ||
4097 | /*---------------------------------------------------------------------------- | |
4098 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
4099 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4100 | | raised if either operand is a NaN. The comparison is performed according | |
4101 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4102 | *----------------------------------------------------------------------------*/ |
4103 | ||
e5a41ffa | 4104 | int float64_lt(float64 a, float64 b, float_status *status) |
158142c2 FB |
4105 | { |
4106 | flag aSign, bSign; | |
bb98fe42 | 4107 | uint64_t av, bv; |
158142c2 | 4108 | |
ff32e16e PM |
4109 | a = float64_squash_input_denormal(a, status); |
4110 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4111 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
4112 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4113 | ) { | |
ff32e16e | 4114 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4115 | return 0; |
4116 | } | |
4117 | aSign = extractFloat64Sign( a ); | |
4118 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4119 | av = float64_val(a); |
a1b91bb4 | 4120 | bv = float64_val(b); |
bb98fe42 | 4121 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4122 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4123 | |
4124 | } | |
4125 | ||
67b7861d AJ |
4126 | /*---------------------------------------------------------------------------- |
4127 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4128 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4129 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4130 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4131 | *----------------------------------------------------------------------------*/ |
4132 | ||
e5a41ffa | 4133 | int float64_unordered(float64 a, float64 b, float_status *status) |
67b7861d | 4134 | { |
ff32e16e PM |
4135 | a = float64_squash_input_denormal(a, status); |
4136 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4137 | |
4138 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4139 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4140 | ) { | |
ff32e16e | 4141 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4142 | return 1; |
4143 | } | |
4144 | return 0; | |
4145 | } | |
4146 | ||
158142c2 FB |
4147 | /*---------------------------------------------------------------------------- |
4148 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
4149 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4150 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
4151 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4152 | *----------------------------------------------------------------------------*/ |
4153 | ||
e5a41ffa | 4154 | int float64_eq_quiet(float64 a, float64 b, float_status *status) |
158142c2 | 4155 | { |
bb98fe42 | 4156 | uint64_t av, bv; |
ff32e16e PM |
4157 | a = float64_squash_input_denormal(a, status); |
4158 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4159 | |
4160 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4161 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4162 | ) { | |
af39bc8c AM |
4163 | if (float64_is_signaling_nan(a, status) |
4164 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4165 | float_raise(float_flag_invalid, status); |
b689362d | 4166 | } |
158142c2 FB |
4167 | return 0; |
4168 | } | |
f090c9d4 | 4169 | av = float64_val(a); |
a1b91bb4 | 4170 | bv = float64_val(b); |
bb98fe42 | 4171 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4172 | |
4173 | } | |
4174 | ||
4175 | /*---------------------------------------------------------------------------- | |
4176 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
4177 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4178 | | cause an exception. Otherwise, the comparison is performed according to the | |
4179 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4180 | *----------------------------------------------------------------------------*/ | |
4181 | ||
e5a41ffa | 4182 | int float64_le_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4183 | { |
4184 | flag aSign, bSign; | |
bb98fe42 | 4185 | uint64_t av, bv; |
ff32e16e PM |
4186 | a = float64_squash_input_denormal(a, status); |
4187 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4188 | |
4189 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4190 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4191 | ) { | |
af39bc8c AM |
4192 | if (float64_is_signaling_nan(a, status) |
4193 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4194 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4195 | } |
4196 | return 0; | |
4197 | } | |
4198 | aSign = extractFloat64Sign( a ); | |
4199 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4200 | av = float64_val(a); |
a1b91bb4 | 4201 | bv = float64_val(b); |
bb98fe42 | 4202 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4203 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4204 | |
4205 | } | |
4206 | ||
4207 | /*---------------------------------------------------------------------------- | |
4208 | | Returns 1 if the double-precision floating-point value `a' is less than | |
4209 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4210 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
4211 | | Standard for Binary Floating-Point Arithmetic. | |
4212 | *----------------------------------------------------------------------------*/ | |
4213 | ||
e5a41ffa | 4214 | int float64_lt_quiet(float64 a, float64 b, float_status *status) |
158142c2 FB |
4215 | { |
4216 | flag aSign, bSign; | |
bb98fe42 | 4217 | uint64_t av, bv; |
ff32e16e PM |
4218 | a = float64_squash_input_denormal(a, status); |
4219 | b = float64_squash_input_denormal(b, status); | |
158142c2 FB |
4220 | |
4221 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4222 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4223 | ) { | |
af39bc8c AM |
4224 | if (float64_is_signaling_nan(a, status) |
4225 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4226 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4227 | } |
4228 | return 0; | |
4229 | } | |
4230 | aSign = extractFloat64Sign( a ); | |
4231 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4232 | av = float64_val(a); |
a1b91bb4 | 4233 | bv = float64_val(b); |
bb98fe42 | 4234 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4235 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4236 | |
4237 | } | |
4238 | ||
67b7861d AJ |
4239 | /*---------------------------------------------------------------------------- |
4240 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
4241 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4242 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4243 | | Floating-Point Arithmetic. | |
4244 | *----------------------------------------------------------------------------*/ | |
4245 | ||
e5a41ffa | 4246 | int float64_unordered_quiet(float64 a, float64 b, float_status *status) |
67b7861d | 4247 | { |
ff32e16e PM |
4248 | a = float64_squash_input_denormal(a, status); |
4249 | b = float64_squash_input_denormal(b, status); | |
67b7861d AJ |
4250 | |
4251 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4252 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4253 | ) { | |
af39bc8c AM |
4254 | if (float64_is_signaling_nan(a, status) |
4255 | || float64_is_signaling_nan(b, status)) { | |
ff32e16e | 4256 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
4257 | } |
4258 | return 1; | |
4259 | } | |
4260 | return 0; | |
4261 | } | |
4262 | ||
158142c2 FB |
4263 | /*---------------------------------------------------------------------------- |
4264 | | Returns the result of converting the extended double-precision floating- | |
4265 | | point value `a' to the 32-bit two's complement integer format. The | |
4266 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4267 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4268 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
4269 | | largest positive integer is returned. Otherwise, if the conversion | |
4270 | | overflows, the largest integer with the same sign as `a' is returned. | |
4271 | *----------------------------------------------------------------------------*/ | |
4272 | ||
f4014512 | 4273 | int32_t floatx80_to_int32(floatx80 a, float_status *status) |
158142c2 FB |
4274 | { |
4275 | flag aSign; | |
f4014512 | 4276 | int32_t aExp, shiftCount; |
bb98fe42 | 4277 | uint64_t aSig; |
158142c2 | 4278 | |
d1eb8f2a AD |
4279 | if (floatx80_invalid_encoding(a)) { |
4280 | float_raise(float_flag_invalid, status); | |
4281 | return 1 << 31; | |
4282 | } | |
158142c2 FB |
4283 | aSig = extractFloatx80Frac( a ); |
4284 | aExp = extractFloatx80Exp( a ); | |
4285 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4286 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4287 | shiftCount = 0x4037 - aExp; |
4288 | if ( shiftCount <= 0 ) shiftCount = 1; | |
4289 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
ff32e16e | 4290 | return roundAndPackInt32(aSign, aSig, status); |
158142c2 FB |
4291 | |
4292 | } | |
4293 | ||
4294 | /*---------------------------------------------------------------------------- | |
4295 | | Returns the result of converting the extended double-precision floating- | |
4296 | | point value `a' to the 32-bit two's complement integer format. The | |
4297 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4298 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4299 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4300 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4301 | | sign as `a' is returned. | |
4302 | *----------------------------------------------------------------------------*/ | |
4303 | ||
f4014512 | 4304 | int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4305 | { |
4306 | flag aSign; | |
f4014512 | 4307 | int32_t aExp, shiftCount; |
bb98fe42 | 4308 | uint64_t aSig, savedASig; |
b3a6a2e0 | 4309 | int32_t z; |
158142c2 | 4310 | |
d1eb8f2a AD |
4311 | if (floatx80_invalid_encoding(a)) { |
4312 | float_raise(float_flag_invalid, status); | |
4313 | return 1 << 31; | |
4314 | } | |
158142c2 FB |
4315 | aSig = extractFloatx80Frac( a ); |
4316 | aExp = extractFloatx80Exp( a ); | |
4317 | aSign = extractFloatx80Sign( a ); | |
4318 | if ( 0x401E < aExp ) { | |
bb98fe42 | 4319 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4320 | goto invalid; |
4321 | } | |
4322 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4323 | if (aExp || aSig) { |
4324 | status->float_exception_flags |= float_flag_inexact; | |
4325 | } | |
158142c2 FB |
4326 | return 0; |
4327 | } | |
4328 | shiftCount = 0x403E - aExp; | |
4329 | savedASig = aSig; | |
4330 | aSig >>= shiftCount; | |
4331 | z = aSig; | |
4332 | if ( aSign ) z = - z; | |
4333 | if ( ( z < 0 ) ^ aSign ) { | |
4334 | invalid: | |
ff32e16e | 4335 | float_raise(float_flag_invalid, status); |
bb98fe42 | 4336 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
4337 | } |
4338 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
a2f2d288 | 4339 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4340 | } |
4341 | return z; | |
4342 | ||
4343 | } | |
4344 | ||
4345 | /*---------------------------------------------------------------------------- | |
4346 | | Returns the result of converting the extended double-precision floating- | |
4347 | | point value `a' to the 64-bit two's complement integer format. The | |
4348 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4349 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4350 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
4351 | | the largest positive integer is returned. Otherwise, if the conversion | |
4352 | | overflows, the largest integer with the same sign as `a' is returned. | |
4353 | *----------------------------------------------------------------------------*/ | |
4354 | ||
f42c2224 | 4355 | int64_t floatx80_to_int64(floatx80 a, float_status *status) |
158142c2 FB |
4356 | { |
4357 | flag aSign; | |
f4014512 | 4358 | int32_t aExp, shiftCount; |
bb98fe42 | 4359 | uint64_t aSig, aSigExtra; |
158142c2 | 4360 | |
d1eb8f2a AD |
4361 | if (floatx80_invalid_encoding(a)) { |
4362 | float_raise(float_flag_invalid, status); | |
4363 | return 1ULL << 63; | |
4364 | } | |
158142c2 FB |
4365 | aSig = extractFloatx80Frac( a ); |
4366 | aExp = extractFloatx80Exp( a ); | |
4367 | aSign = extractFloatx80Sign( a ); | |
4368 | shiftCount = 0x403E - aExp; | |
4369 | if ( shiftCount <= 0 ) { | |
4370 | if ( shiftCount ) { | |
ff32e16e | 4371 | float_raise(float_flag_invalid, status); |
0f605c88 | 4372 | if (!aSign || floatx80_is_any_nan(a)) { |
158142c2 FB |
4373 | return LIT64( 0x7FFFFFFFFFFFFFFF ); |
4374 | } | |
bb98fe42 | 4375 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4376 | } |
4377 | aSigExtra = 0; | |
4378 | } | |
4379 | else { | |
4380 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
4381 | } | |
ff32e16e | 4382 | return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
158142c2 FB |
4383 | |
4384 | } | |
4385 | ||
4386 | /*---------------------------------------------------------------------------- | |
4387 | | Returns the result of converting the extended double-precision floating- | |
4388 | | point value `a' to the 64-bit two's complement integer format. The | |
4389 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4390 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4391 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4392 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4393 | | sign as `a' is returned. | |
4394 | *----------------------------------------------------------------------------*/ | |
4395 | ||
f42c2224 | 4396 | int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) |
158142c2 FB |
4397 | { |
4398 | flag aSign; | |
f4014512 | 4399 | int32_t aExp, shiftCount; |
bb98fe42 | 4400 | uint64_t aSig; |
f42c2224 | 4401 | int64_t z; |
158142c2 | 4402 | |
d1eb8f2a AD |
4403 | if (floatx80_invalid_encoding(a)) { |
4404 | float_raise(float_flag_invalid, status); | |
4405 | return 1ULL << 63; | |
4406 | } | |
158142c2 FB |
4407 | aSig = extractFloatx80Frac( a ); |
4408 | aExp = extractFloatx80Exp( a ); | |
4409 | aSign = extractFloatx80Sign( a ); | |
4410 | shiftCount = aExp - 0x403E; | |
4411 | if ( 0 <= shiftCount ) { | |
4412 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4413 | if ( ( a.high != 0xC03E ) || aSig ) { | |
ff32e16e | 4414 | float_raise(float_flag_invalid, status); |
158142c2 FB |
4415 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { |
4416 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4417 | } | |
4418 | } | |
bb98fe42 | 4419 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4420 | } |
4421 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
4422 | if (aExp | aSig) { |
4423 | status->float_exception_flags |= float_flag_inexact; | |
4424 | } | |
158142c2 FB |
4425 | return 0; |
4426 | } | |
4427 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 4428 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
a2f2d288 | 4429 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
4430 | } |
4431 | if ( aSign ) z = - z; | |
4432 | return z; | |
4433 | ||
4434 | } | |
4435 | ||
4436 | /*---------------------------------------------------------------------------- | |
4437 | | Returns the result of converting the extended double-precision floating- | |
4438 | | point value `a' to the single-precision floating-point format. The | |
4439 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4440 | | Floating-Point Arithmetic. | |
4441 | *----------------------------------------------------------------------------*/ | |
4442 | ||
e5a41ffa | 4443 | float32 floatx80_to_float32(floatx80 a, float_status *status) |
158142c2 FB |
4444 | { |
4445 | flag aSign; | |
f4014512 | 4446 | int32_t aExp; |
bb98fe42 | 4447 | uint64_t aSig; |
158142c2 | 4448 | |
d1eb8f2a AD |
4449 | if (floatx80_invalid_encoding(a)) { |
4450 | float_raise(float_flag_invalid, status); | |
4451 | return float32_default_nan(status); | |
4452 | } | |
158142c2 FB |
4453 | aSig = extractFloatx80Frac( a ); |
4454 | aExp = extractFloatx80Exp( a ); | |
4455 | aSign = extractFloatx80Sign( a ); | |
4456 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4457 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 4458 | return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
4459 | } |
4460 | return packFloat32( aSign, 0xFF, 0 ); | |
4461 | } | |
4462 | shift64RightJamming( aSig, 33, &aSig ); | |
4463 | if ( aExp || aSig ) aExp -= 0x3F81; | |
ff32e16e | 4464 | return roundAndPackFloat32(aSign, aExp, aSig, status); |
158142c2 FB |
4465 | |
4466 | } | |
4467 | ||
4468 | /*---------------------------------------------------------------------------- | |
4469 | | Returns the result of converting the extended double-precision floating- | |
4470 | | point value `a' to the double-precision floating-point format. The | |
4471 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4472 | | Floating-Point Arithmetic. | |
4473 | *----------------------------------------------------------------------------*/ | |
4474 | ||
e5a41ffa | 4475 | float64 floatx80_to_float64(floatx80 a, float_status *status) |
158142c2 FB |
4476 | { |
4477 | flag aSign; | |
f4014512 | 4478 | int32_t aExp; |
bb98fe42 | 4479 | uint64_t aSig, zSig; |
158142c2 | 4480 | |
d1eb8f2a AD |
4481 | if (floatx80_invalid_encoding(a)) { |
4482 | float_raise(float_flag_invalid, status); | |
4483 | return float64_default_nan(status); | |
4484 | } | |
158142c2 FB |
4485 | aSig = extractFloatx80Frac( a ); |
4486 | aExp = extractFloatx80Exp( a ); | |
4487 | aSign = extractFloatx80Sign( a ); | |
4488 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4489 | if ( (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 4490 | return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
4491 | } |
4492 | return packFloat64( aSign, 0x7FF, 0 ); | |
4493 | } | |
4494 | shift64RightJamming( aSig, 1, &zSig ); | |
4495 | if ( aExp || aSig ) aExp -= 0x3C01; | |
ff32e16e | 4496 | return roundAndPackFloat64(aSign, aExp, zSig, status); |
158142c2 FB |
4497 | |
4498 | } | |
4499 | ||
158142c2 FB |
4500 | /*---------------------------------------------------------------------------- |
4501 | | Returns the result of converting the extended double-precision floating- | |
4502 | | point value `a' to the quadruple-precision floating-point format. The | |
4503 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4504 | | Floating-Point Arithmetic. | |
4505 | *----------------------------------------------------------------------------*/ | |
4506 | ||
e5a41ffa | 4507 | float128 floatx80_to_float128(floatx80 a, float_status *status) |
158142c2 FB |
4508 | { |
4509 | flag aSign; | |
0c48262d | 4510 | int aExp; |
bb98fe42 | 4511 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 4512 | |
d1eb8f2a AD |
4513 | if (floatx80_invalid_encoding(a)) { |
4514 | float_raise(float_flag_invalid, status); | |
4515 | return float128_default_nan(status); | |
4516 | } | |
158142c2 FB |
4517 | aSig = extractFloatx80Frac( a ); |
4518 | aExp = extractFloatx80Exp( a ); | |
4519 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4520 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
ff32e16e | 4521 | return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); |
158142c2 FB |
4522 | } |
4523 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
4524 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
4525 | ||
4526 | } | |
4527 | ||
0f721292 LV |
4528 | /*---------------------------------------------------------------------------- |
4529 | | Rounds the extended double-precision floating-point value `a' | |
4530 | | to the precision provided by floatx80_rounding_precision and returns the | |
4531 | | result as an extended double-precision floating-point value. | |
4532 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
4533 | | Floating-Point Arithmetic. | |
4534 | *----------------------------------------------------------------------------*/ | |
4535 | ||
4536 | floatx80 floatx80_round(floatx80 a, float_status *status) | |
4537 | { | |
4538 | return roundAndPackFloatx80(status->floatx80_rounding_precision, | |
4539 | extractFloatx80Sign(a), | |
4540 | extractFloatx80Exp(a), | |
4541 | extractFloatx80Frac(a), 0, status); | |
4542 | } | |
4543 | ||
158142c2 FB |
4544 | /*---------------------------------------------------------------------------- |
4545 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
4546 | | and returns the result as an extended quadruple-precision floating-point | |
4547 | | value. The operation is performed according to the IEC/IEEE Standard for | |
4548 | | Binary Floating-Point Arithmetic. | |
4549 | *----------------------------------------------------------------------------*/ | |
4550 | ||
e5a41ffa | 4551 | floatx80 floatx80_round_to_int(floatx80 a, float_status *status) |
158142c2 FB |
4552 | { |
4553 | flag aSign; | |
f4014512 | 4554 | int32_t aExp; |
bb98fe42 | 4555 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
4556 | floatx80 z; |
4557 | ||
d1eb8f2a AD |
4558 | if (floatx80_invalid_encoding(a)) { |
4559 | float_raise(float_flag_invalid, status); | |
4560 | return floatx80_default_nan(status); | |
4561 | } | |
158142c2 FB |
4562 | aExp = extractFloatx80Exp( a ); |
4563 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 4564 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
ff32e16e | 4565 | return propagateFloatx80NaN(a, a, status); |
158142c2 FB |
4566 | } |
4567 | return a; | |
4568 | } | |
4569 | if ( aExp < 0x3FFF ) { | |
4570 | if ( ( aExp == 0 ) | |
bb98fe42 | 4571 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
4572 | return a; |
4573 | } | |
a2f2d288 | 4574 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 4575 | aSign = extractFloatx80Sign( a ); |
a2f2d288 | 4576 | switch (status->float_rounding_mode) { |
158142c2 | 4577 | case float_round_nearest_even: |
bb98fe42 | 4578 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
4579 | ) { |
4580 | return | |
4581 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
4582 | } | |
4583 | break; | |
f9288a76 PM |
4584 | case float_round_ties_away: |
4585 | if (aExp == 0x3FFE) { | |
4586 | return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); | |
4587 | } | |
4588 | break; | |
158142c2 FB |
4589 | case float_round_down: |
4590 | return | |
4591 | aSign ? | |
4592 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
4593 | : packFloatx80( 0, 0, 0 ); | |
4594 | case float_round_up: | |
4595 | return | |
4596 | aSign ? packFloatx80( 1, 0, 0 ) | |
4597 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
4598 | } | |
4599 | return packFloatx80( aSign, 0, 0 ); | |
4600 | } | |
4601 | lastBitMask = 1; | |
4602 | lastBitMask <<= 0x403E - aExp; | |
4603 | roundBitsMask = lastBitMask - 1; | |
4604 | z = a; | |
a2f2d288 | 4605 | switch (status->float_rounding_mode) { |
dc355b76 | 4606 | case float_round_nearest_even: |
158142c2 | 4607 | z.low += lastBitMask>>1; |
dc355b76 PM |
4608 | if ((z.low & roundBitsMask) == 0) { |
4609 | z.low &= ~lastBitMask; | |
4610 | } | |
4611 | break; | |
f9288a76 PM |
4612 | case float_round_ties_away: |
4613 | z.low += lastBitMask >> 1; | |
4614 | break; | |
dc355b76 PM |
4615 | case float_round_to_zero: |
4616 | break; | |
4617 | case float_round_up: | |
4618 | if (!extractFloatx80Sign(z)) { | |
4619 | z.low += roundBitsMask; | |
4620 | } | |
4621 | break; | |
4622 | case float_round_down: | |
4623 | if (extractFloatx80Sign(z)) { | |
158142c2 FB |
4624 | z.low += roundBitsMask; |
4625 | } | |
dc355b76 PM |
4626 | break; |
4627 | default: | |
4628 | abort(); | |
158142c2 FB |
4629 | } |
4630 | z.low &= ~ roundBitsMask; | |
4631 | if ( z.low == 0 ) { | |
4632 | ++z.high; | |
4633 | z.low = LIT64( 0x8000000000000000 ); | |
4634 | } | |
a2f2d288 PM |
4635 | if (z.low != a.low) { |
4636 | status->float_exception_flags |= float_flag_inexact; | |
4637 | } | |
158142c2 FB |
4638 | return z; |
4639 | ||
4640 | } | |
4641 | ||
4642 | /*---------------------------------------------------------------------------- | |
4643 | | Returns the result of adding the absolute values of the extended double- | |
4644 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
4645 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
4646 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
4647 | | Floating-Point Arithmetic. | |
4648 | *----------------------------------------------------------------------------*/ | |
4649 | ||
e5a41ffa PM |
4650 | static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
4651 | float_status *status) | |
158142c2 | 4652 | { |
f4014512 | 4653 | int32_t aExp, bExp, zExp; |
bb98fe42 | 4654 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 4655 | int32_t expDiff; |
158142c2 FB |
4656 | |
4657 | aSig = extractFloatx80Frac( a ); | |
4658 | aExp = extractFloatx80Exp( a ); | |
4659 | bSig = extractFloatx80Frac( b ); | |
4660 | bExp = extractFloatx80Exp( b ); | |
4661 | expDiff = aExp - bExp; | |
4662 | if ( 0 < expDiff ) { | |
4663 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
4664 | if ((uint64_t)(aSig << 1)) { |
4665 | return propagateFloatx80NaN(a, b, status); | |
4666 | } | |
158142c2 FB |
4667 | return a; |
4668 | } | |
4669 | if ( bExp == 0 ) --expDiff; | |
4670 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
4671 | zExp = aExp; | |
4672 | } | |
4673 | else if ( expDiff < 0 ) { | |
4674 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
4675 | if ((uint64_t)(bSig << 1)) { |
4676 | return propagateFloatx80NaN(a, b, status); | |
4677 | } | |
0f605c88 LV |
4678 | return packFloatx80(zSign, |
4679 | floatx80_infinity_high, | |
4680 | floatx80_infinity_low); | |
158142c2 FB |
4681 | } |
4682 | if ( aExp == 0 ) ++expDiff; | |
4683 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
4684 | zExp = bExp; | |
4685 | } | |
4686 | else { | |
4687 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4688 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 4689 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
4690 | } |
4691 | return a; | |
4692 | } | |
4693 | zSig1 = 0; | |
4694 | zSig0 = aSig + bSig; | |
4695 | if ( aExp == 0 ) { | |
4696 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
4697 | goto roundAndPack; | |
4698 | } | |
4699 | zExp = aExp; | |
4700 | goto shiftRight1; | |
4701 | } | |
4702 | zSig0 = aSig + bSig; | |
bb98fe42 | 4703 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
4704 | shiftRight1: |
4705 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
4706 | zSig0 |= LIT64( 0x8000000000000000 ); | |
4707 | ++zExp; | |
4708 | roundAndPack: | |
a2f2d288 | 4709 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 4710 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
4711 | } |
4712 | ||
4713 | /*---------------------------------------------------------------------------- | |
4714 | | Returns the result of subtracting the absolute values of the extended | |
4715 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
4716 | | difference is negated before being returned. `zSign' is ignored if the | |
4717 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
4718 | | Standard for Binary Floating-Point Arithmetic. | |
4719 | *----------------------------------------------------------------------------*/ | |
4720 | ||
e5a41ffa PM |
4721 | static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
4722 | float_status *status) | |
158142c2 | 4723 | { |
f4014512 | 4724 | int32_t aExp, bExp, zExp; |
bb98fe42 | 4725 | uint64_t aSig, bSig, zSig0, zSig1; |
f4014512 | 4726 | int32_t expDiff; |
158142c2 FB |
4727 | |
4728 | aSig = extractFloatx80Frac( a ); | |
4729 | aExp = extractFloatx80Exp( a ); | |
4730 | bSig = extractFloatx80Frac( b ); | |
4731 | bExp = extractFloatx80Exp( b ); | |
4732 | expDiff = aExp - bExp; | |
4733 | if ( 0 < expDiff ) goto aExpBigger; | |
4734 | if ( expDiff < 0 ) goto bExpBigger; | |
4735 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4736 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
ff32e16e | 4737 | return propagateFloatx80NaN(a, b, status); |
158142c2 | 4738 | } |
ff32e16e | 4739 | float_raise(float_flag_invalid, status); |
af39bc8c | 4740 | return floatx80_default_nan(status); |
158142c2 FB |
4741 | } |
4742 | if ( aExp == 0 ) { | |
4743 | aExp = 1; | |
4744 | bExp = 1; | |
4745 | } | |
4746 | zSig1 = 0; | |
4747 | if ( bSig < aSig ) goto aBigger; | |
4748 | if ( aSig < bSig ) goto bBigger; | |
a2f2d288 | 4749 | return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); |
158142c2 FB |
4750 | bExpBigger: |
4751 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
4752 | if ((uint64_t)(bSig << 1)) { |
4753 | return propagateFloatx80NaN(a, b, status); | |
4754 | } | |
0f605c88 LV |
4755 | return packFloatx80(zSign ^ 1, floatx80_infinity_high, |
4756 | floatx80_infinity_low); | |
158142c2 FB |
4757 | } |
4758 | if ( aExp == 0 ) ++expDiff; | |
4759 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
4760 | bBigger: | |
4761 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
4762 | zExp = bExp; | |
4763 | zSign ^= 1; | |
4764 | goto normalizeRoundAndPack; | |
4765 | aExpBigger: | |
4766 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
4767 | if ((uint64_t)(aSig << 1)) { |
4768 | return propagateFloatx80NaN(a, b, status); | |
4769 | } | |
158142c2 FB |
4770 | return a; |
4771 | } | |
4772 | if ( bExp == 0 ) --expDiff; | |
4773 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
4774 | aBigger: | |
4775 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
4776 | zExp = aExp; | |
4777 | normalizeRoundAndPack: | |
a2f2d288 | 4778 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 4779 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
4780 | } |
4781 | ||
4782 | /*---------------------------------------------------------------------------- | |
4783 | | Returns the result of adding the extended double-precision floating-point | |
4784 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
4785 | | Standard for Binary Floating-Point Arithmetic. | |
4786 | *----------------------------------------------------------------------------*/ | |
4787 | ||
e5a41ffa | 4788 | floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
4789 | { |
4790 | flag aSign, bSign; | |
4791 | ||
d1eb8f2a AD |
4792 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
4793 | float_raise(float_flag_invalid, status); | |
4794 | return floatx80_default_nan(status); | |
4795 | } | |
158142c2 FB |
4796 | aSign = extractFloatx80Sign( a ); |
4797 | bSign = extractFloatx80Sign( b ); | |
4798 | if ( aSign == bSign ) { | |
ff32e16e | 4799 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
4800 | } |
4801 | else { | |
ff32e16e | 4802 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
4803 | } |
4804 | ||
4805 | } | |
4806 | ||
4807 | /*---------------------------------------------------------------------------- | |
4808 | | Returns the result of subtracting the extended double-precision floating- | |
4809 | | point values `a' and `b'. The operation is performed according to the | |
4810 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4811 | *----------------------------------------------------------------------------*/ | |
4812 | ||
e5a41ffa | 4813 | floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
4814 | { |
4815 | flag aSign, bSign; | |
4816 | ||
d1eb8f2a AD |
4817 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
4818 | float_raise(float_flag_invalid, status); | |
4819 | return floatx80_default_nan(status); | |
4820 | } | |
158142c2 FB |
4821 | aSign = extractFloatx80Sign( a ); |
4822 | bSign = extractFloatx80Sign( b ); | |
4823 | if ( aSign == bSign ) { | |
ff32e16e | 4824 | return subFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
4825 | } |
4826 | else { | |
ff32e16e | 4827 | return addFloatx80Sigs(a, b, aSign, status); |
158142c2 FB |
4828 | } |
4829 | ||
4830 | } | |
4831 | ||
4832 | /*---------------------------------------------------------------------------- | |
4833 | | Returns the result of multiplying the extended double-precision floating- | |
4834 | | point values `a' and `b'. The operation is performed according to the | |
4835 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4836 | *----------------------------------------------------------------------------*/ | |
4837 | ||
e5a41ffa | 4838 | floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
4839 | { |
4840 | flag aSign, bSign, zSign; | |
f4014512 | 4841 | int32_t aExp, bExp, zExp; |
bb98fe42 | 4842 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 4843 | |
d1eb8f2a AD |
4844 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
4845 | float_raise(float_flag_invalid, status); | |
4846 | return floatx80_default_nan(status); | |
4847 | } | |
158142c2 FB |
4848 | aSig = extractFloatx80Frac( a ); |
4849 | aExp = extractFloatx80Exp( a ); | |
4850 | aSign = extractFloatx80Sign( a ); | |
4851 | bSig = extractFloatx80Frac( b ); | |
4852 | bExp = extractFloatx80Exp( b ); | |
4853 | bSign = extractFloatx80Sign( b ); | |
4854 | zSign = aSign ^ bSign; | |
4855 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
4856 | if ( (uint64_t) ( aSig<<1 ) |
4857 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 4858 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
4859 | } |
4860 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
0f605c88 LV |
4861 | return packFloatx80(zSign, floatx80_infinity_high, |
4862 | floatx80_infinity_low); | |
158142c2 FB |
4863 | } |
4864 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
4865 | if ((uint64_t)(bSig << 1)) { |
4866 | return propagateFloatx80NaN(a, b, status); | |
4867 | } | |
158142c2 FB |
4868 | if ( ( aExp | aSig ) == 0 ) { |
4869 | invalid: | |
ff32e16e | 4870 | float_raise(float_flag_invalid, status); |
af39bc8c | 4871 | return floatx80_default_nan(status); |
158142c2 | 4872 | } |
0f605c88 LV |
4873 | return packFloatx80(zSign, floatx80_infinity_high, |
4874 | floatx80_infinity_low); | |
158142c2 FB |
4875 | } |
4876 | if ( aExp == 0 ) { | |
4877 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
4878 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
4879 | } | |
4880 | if ( bExp == 0 ) { | |
4881 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
4882 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
4883 | } | |
4884 | zExp = aExp + bExp - 0x3FFE; | |
4885 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 4886 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
4887 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
4888 | --zExp; | |
4889 | } | |
a2f2d288 | 4890 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 4891 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
4892 | } |
4893 | ||
4894 | /*---------------------------------------------------------------------------- | |
4895 | | Returns the result of dividing the extended double-precision floating-point | |
4896 | | value `a' by the corresponding value `b'. The operation is performed | |
4897 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4898 | *----------------------------------------------------------------------------*/ | |
4899 | ||
e5a41ffa | 4900 | floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
4901 | { |
4902 | flag aSign, bSign, zSign; | |
f4014512 | 4903 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
4904 | uint64_t aSig, bSig, zSig0, zSig1; |
4905 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 | 4906 | |
d1eb8f2a AD |
4907 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
4908 | float_raise(float_flag_invalid, status); | |
4909 | return floatx80_default_nan(status); | |
4910 | } | |
158142c2 FB |
4911 | aSig = extractFloatx80Frac( a ); |
4912 | aExp = extractFloatx80Exp( a ); | |
4913 | aSign = extractFloatx80Sign( a ); | |
4914 | bSig = extractFloatx80Frac( b ); | |
4915 | bExp = extractFloatx80Exp( b ); | |
4916 | bSign = extractFloatx80Sign( b ); | |
4917 | zSign = aSign ^ bSign; | |
4918 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
4919 | if ((uint64_t)(aSig << 1)) { |
4920 | return propagateFloatx80NaN(a, b, status); | |
4921 | } | |
158142c2 | 4922 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
4923 | if ((uint64_t)(bSig << 1)) { |
4924 | return propagateFloatx80NaN(a, b, status); | |
4925 | } | |
158142c2 FB |
4926 | goto invalid; |
4927 | } | |
0f605c88 LV |
4928 | return packFloatx80(zSign, floatx80_infinity_high, |
4929 | floatx80_infinity_low); | |
158142c2 FB |
4930 | } |
4931 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
4932 | if ((uint64_t)(bSig << 1)) { |
4933 | return propagateFloatx80NaN(a, b, status); | |
4934 | } | |
158142c2 FB |
4935 | return packFloatx80( zSign, 0, 0 ); |
4936 | } | |
4937 | if ( bExp == 0 ) { | |
4938 | if ( bSig == 0 ) { | |
4939 | if ( ( aExp | aSig ) == 0 ) { | |
4940 | invalid: | |
ff32e16e | 4941 | float_raise(float_flag_invalid, status); |
af39bc8c | 4942 | return floatx80_default_nan(status); |
158142c2 | 4943 | } |
ff32e16e | 4944 | float_raise(float_flag_divbyzero, status); |
0f605c88 LV |
4945 | return packFloatx80(zSign, floatx80_infinity_high, |
4946 | floatx80_infinity_low); | |
158142c2 FB |
4947 | } |
4948 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
4949 | } | |
4950 | if ( aExp == 0 ) { | |
4951 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
4952 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
4953 | } | |
4954 | zExp = aExp - bExp + 0x3FFE; | |
4955 | rem1 = 0; | |
4956 | if ( bSig <= aSig ) { | |
4957 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
4958 | ++zExp; | |
4959 | } | |
4960 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
4961 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
4962 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4963 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4964 | --zSig0; |
4965 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
4966 | } | |
4967 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 4968 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
4969 | mul64To128( bSig, zSig1, &term1, &term2 ); |
4970 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 4971 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
4972 | --zSig1; |
4973 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
4974 | } | |
4975 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
4976 | } | |
a2f2d288 | 4977 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
ff32e16e | 4978 | zSign, zExp, zSig0, zSig1, status); |
158142c2 FB |
4979 | } |
4980 | ||
4981 | /*---------------------------------------------------------------------------- | |
4982 | | Returns the remainder of the extended double-precision floating-point value | |
4983 | | `a' with respect to the corresponding value `b'. The operation is performed | |
4984 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4985 | *----------------------------------------------------------------------------*/ | |
4986 | ||
e5a41ffa | 4987 | floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) |
158142c2 | 4988 | { |
ed086f3d | 4989 | flag aSign, zSign; |
f4014512 | 4990 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
4991 | uint64_t aSig0, aSig1, bSig; |
4992 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 | 4993 | |
d1eb8f2a AD |
4994 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
4995 | float_raise(float_flag_invalid, status); | |
4996 | return floatx80_default_nan(status); | |
4997 | } | |
158142c2 FB |
4998 | aSig0 = extractFloatx80Frac( a ); |
4999 | aExp = extractFloatx80Exp( a ); | |
5000 | aSign = extractFloatx80Sign( a ); | |
5001 | bSig = extractFloatx80Frac( b ); | |
5002 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 5003 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
5004 | if ( (uint64_t) ( aSig0<<1 ) |
5005 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
ff32e16e | 5006 | return propagateFloatx80NaN(a, b, status); |
158142c2 FB |
5007 | } |
5008 | goto invalid; | |
5009 | } | |
5010 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5011 | if ((uint64_t)(bSig << 1)) { |
5012 | return propagateFloatx80NaN(a, b, status); | |
5013 | } | |
158142c2 FB |
5014 | return a; |
5015 | } | |
5016 | if ( bExp == 0 ) { | |
5017 | if ( bSig == 0 ) { | |
5018 | invalid: | |
ff32e16e | 5019 | float_raise(float_flag_invalid, status); |
af39bc8c | 5020 | return floatx80_default_nan(status); |
158142c2 FB |
5021 | } |
5022 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
5023 | } | |
5024 | if ( aExp == 0 ) { | |
bb98fe42 | 5025 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
5026 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
5027 | } | |
5028 | bSig |= LIT64( 0x8000000000000000 ); | |
5029 | zSign = aSign; | |
5030 | expDiff = aExp - bExp; | |
5031 | aSig1 = 0; | |
5032 | if ( expDiff < 0 ) { | |
5033 | if ( expDiff < -1 ) return a; | |
5034 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
5035 | expDiff = 0; | |
5036 | } | |
5037 | q = ( bSig <= aSig0 ); | |
5038 | if ( q ) aSig0 -= bSig; | |
5039 | expDiff -= 64; | |
5040 | while ( 0 < expDiff ) { | |
5041 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5042 | q = ( 2 < q ) ? q - 2 : 0; | |
5043 | mul64To128( bSig, q, &term0, &term1 ); | |
5044 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5045 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
5046 | expDiff -= 62; | |
5047 | } | |
5048 | expDiff += 64; | |
5049 | if ( 0 < expDiff ) { | |
5050 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
5051 | q = ( 2 < q ) ? q - 2 : 0; | |
5052 | q >>= 64 - expDiff; | |
5053 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
5054 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5055 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
5056 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
5057 | ++q; | |
5058 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
5059 | } | |
5060 | } | |
5061 | else { | |
5062 | term1 = 0; | |
5063 | term0 = bSig; | |
5064 | } | |
5065 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
5066 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5067 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
5068 | && ( q & 1 ) ) | |
5069 | ) { | |
5070 | aSig0 = alternateASig0; | |
5071 | aSig1 = alternateASig1; | |
5072 | zSign = ! zSign; | |
5073 | } | |
5074 | return | |
5075 | normalizeRoundAndPackFloatx80( | |
ff32e16e | 5076 | 80, zSign, bExp + expDiff, aSig0, aSig1, status); |
158142c2 FB |
5077 | |
5078 | } | |
5079 | ||
5080 | /*---------------------------------------------------------------------------- | |
5081 | | Returns the square root of the extended double-precision floating-point | |
5082 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
5083 | | for Binary Floating-Point Arithmetic. | |
5084 | *----------------------------------------------------------------------------*/ | |
5085 | ||
e5a41ffa | 5086 | floatx80 floatx80_sqrt(floatx80 a, float_status *status) |
158142c2 FB |
5087 | { |
5088 | flag aSign; | |
f4014512 | 5089 | int32_t aExp, zExp; |
bb98fe42 AF |
5090 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
5091 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 | 5092 | |
d1eb8f2a AD |
5093 | if (floatx80_invalid_encoding(a)) { |
5094 | float_raise(float_flag_invalid, status); | |
5095 | return floatx80_default_nan(status); | |
5096 | } | |
158142c2 FB |
5097 | aSig0 = extractFloatx80Frac( a ); |
5098 | aExp = extractFloatx80Exp( a ); | |
5099 | aSign = extractFloatx80Sign( a ); | |
5100 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5101 | if ((uint64_t)(aSig0 << 1)) { |
5102 | return propagateFloatx80NaN(a, a, status); | |
5103 | } | |
158142c2 FB |
5104 | if ( ! aSign ) return a; |
5105 | goto invalid; | |
5106 | } | |
5107 | if ( aSign ) { | |
5108 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
5109 | invalid: | |
ff32e16e | 5110 | float_raise(float_flag_invalid, status); |
af39bc8c | 5111 | return floatx80_default_nan(status); |
158142c2 FB |
5112 | } |
5113 | if ( aExp == 0 ) { | |
5114 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
5115 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
5116 | } | |
5117 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
5118 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
5119 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
5120 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
5121 | doubleZSig0 = zSig0<<1; | |
5122 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
5123 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 5124 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5125 | --zSig0; |
5126 | doubleZSig0 -= 2; | |
5127 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
5128 | } | |
5129 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
5130 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
5131 | if ( zSig1 == 0 ) zSig1 = 1; | |
5132 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5133 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5134 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5135 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5136 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5137 | --zSig1; |
5138 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5139 | term3 |= 1; | |
5140 | term2 |= doubleZSig0; | |
5141 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5142 | } | |
5143 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5144 | } | |
5145 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
5146 | zSig0 |= doubleZSig0; | |
a2f2d288 PM |
5147 | return roundAndPackFloatx80(status->floatx80_rounding_precision, |
5148 | 0, zExp, zSig0, zSig1, status); | |
158142c2 FB |
5149 | } |
5150 | ||
5151 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
5152 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
5153 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
5154 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5155 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5156 | *----------------------------------------------------------------------------*/ |
5157 | ||
e5a41ffa | 5158 | int floatx80_eq(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5159 | { |
5160 | ||
d1eb8f2a AD |
5161 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5162 | || (extractFloatx80Exp(a) == 0x7FFF | |
5163 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5164 | || (extractFloatx80Exp(b) == 0x7FFF | |
5165 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5166 | ) { |
ff32e16e | 5167 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5168 | return 0; |
5169 | } | |
5170 | return | |
5171 | ( a.low == b.low ) | |
5172 | && ( ( a.high == b.high ) | |
5173 | || ( ( a.low == 0 ) | |
bb98fe42 | 5174 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5175 | ); |
5176 | ||
5177 | } | |
5178 | ||
5179 | /*---------------------------------------------------------------------------- | |
5180 | | Returns 1 if the extended double-precision floating-point value `a' is | |
5181 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
5182 | | invalid exception is raised if either operand is a NaN. The comparison is |
5183 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5184 | | Arithmetic. | |
158142c2 FB |
5185 | *----------------------------------------------------------------------------*/ |
5186 | ||
e5a41ffa | 5187 | int floatx80_le(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5188 | { |
5189 | flag aSign, bSign; | |
5190 | ||
d1eb8f2a AD |
5191 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5192 | || (extractFloatx80Exp(a) == 0x7FFF | |
5193 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5194 | || (extractFloatx80Exp(b) == 0x7FFF | |
5195 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5196 | ) { |
ff32e16e | 5197 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5198 | return 0; |
5199 | } | |
5200 | aSign = extractFloatx80Sign( a ); | |
5201 | bSign = extractFloatx80Sign( b ); | |
5202 | if ( aSign != bSign ) { | |
5203 | return | |
5204 | aSign | |
bb98fe42 | 5205 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5206 | == 0 ); |
5207 | } | |
5208 | return | |
5209 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5210 | : le128( a.high, a.low, b.high, b.low ); | |
5211 | ||
5212 | } | |
5213 | ||
5214 | /*---------------------------------------------------------------------------- | |
5215 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
5216 | | less than the corresponding value `b', and 0 otherwise. The invalid |
5217 | | exception is raised if either operand is a NaN. The comparison is performed | |
5218 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5219 | *----------------------------------------------------------------------------*/ |
5220 | ||
e5a41ffa | 5221 | int floatx80_lt(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5222 | { |
5223 | flag aSign, bSign; | |
5224 | ||
d1eb8f2a AD |
5225 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5226 | || (extractFloatx80Exp(a) == 0x7FFF | |
5227 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5228 | || (extractFloatx80Exp(b) == 0x7FFF | |
5229 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
158142c2 | 5230 | ) { |
ff32e16e | 5231 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5232 | return 0; |
5233 | } | |
5234 | aSign = extractFloatx80Sign( a ); | |
5235 | bSign = extractFloatx80Sign( b ); | |
5236 | if ( aSign != bSign ) { | |
5237 | return | |
5238 | aSign | |
bb98fe42 | 5239 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5240 | != 0 ); |
5241 | } | |
5242 | return | |
5243 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5244 | : lt128( a.high, a.low, b.high, b.low ); | |
5245 | ||
5246 | } | |
5247 | ||
67b7861d AJ |
5248 | /*---------------------------------------------------------------------------- |
5249 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
5250 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
5251 | | either operand is a NaN. The comparison is performed according to the | |
5252 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d | 5253 | *----------------------------------------------------------------------------*/ |
e5a41ffa | 5254 | int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 5255 | { |
d1eb8f2a AD |
5256 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
5257 | || (extractFloatx80Exp(a) == 0x7FFF | |
5258 | && (uint64_t) (extractFloatx80Frac(a) << 1)) | |
5259 | || (extractFloatx80Exp(b) == 0x7FFF | |
5260 | && (uint64_t) (extractFloatx80Frac(b) << 1)) | |
67b7861d | 5261 | ) { |
ff32e16e | 5262 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5263 | return 1; |
5264 | } | |
5265 | return 0; | |
5266 | } | |
5267 | ||
158142c2 | 5268 | /*---------------------------------------------------------------------------- |
b689362d | 5269 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
5270 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
5271 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
5272 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5273 | *----------------------------------------------------------------------------*/ |
5274 | ||
e5a41ffa | 5275 | int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5276 | { |
5277 | ||
d1eb8f2a AD |
5278 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5279 | float_raise(float_flag_invalid, status); | |
5280 | return 0; | |
5281 | } | |
158142c2 | 5282 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5283 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5284 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5285 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5286 | ) { |
af39bc8c AM |
5287 | if (floatx80_is_signaling_nan(a, status) |
5288 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5289 | float_raise(float_flag_invalid, status); |
b689362d | 5290 | } |
158142c2 FB |
5291 | return 0; |
5292 | } | |
5293 | return | |
5294 | ( a.low == b.low ) | |
5295 | && ( ( a.high == b.high ) | |
5296 | || ( ( a.low == 0 ) | |
bb98fe42 | 5297 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5298 | ); |
5299 | ||
5300 | } | |
5301 | ||
5302 | /*---------------------------------------------------------------------------- | |
5303 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5304 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
5305 | | do not cause an exception. Otherwise, the comparison is performed according | |
5306 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5307 | *----------------------------------------------------------------------------*/ | |
5308 | ||
e5a41ffa | 5309 | int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5310 | { |
5311 | flag aSign, bSign; | |
5312 | ||
d1eb8f2a AD |
5313 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5314 | float_raise(float_flag_invalid, status); | |
5315 | return 0; | |
5316 | } | |
158142c2 | 5317 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5318 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5319 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5320 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5321 | ) { |
af39bc8c AM |
5322 | if (floatx80_is_signaling_nan(a, status) |
5323 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5324 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5325 | } |
5326 | return 0; | |
5327 | } | |
5328 | aSign = extractFloatx80Sign( a ); | |
5329 | bSign = extractFloatx80Sign( b ); | |
5330 | if ( aSign != bSign ) { | |
5331 | return | |
5332 | aSign | |
bb98fe42 | 5333 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5334 | == 0 ); |
5335 | } | |
5336 | return | |
5337 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5338 | : le128( a.high, a.low, b.high, b.low ); | |
5339 | ||
5340 | } | |
5341 | ||
5342 | /*---------------------------------------------------------------------------- | |
5343 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5344 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
5345 | | an exception. Otherwise, the comparison is performed according to the | |
5346 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5347 | *----------------------------------------------------------------------------*/ | |
5348 | ||
e5a41ffa | 5349 | int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) |
158142c2 FB |
5350 | { |
5351 | flag aSign, bSign; | |
5352 | ||
d1eb8f2a AD |
5353 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5354 | float_raise(float_flag_invalid, status); | |
5355 | return 0; | |
5356 | } | |
158142c2 | 5357 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
bb98fe42 | 5358 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5359 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5360 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5361 | ) { |
af39bc8c AM |
5362 | if (floatx80_is_signaling_nan(a, status) |
5363 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5364 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5365 | } |
5366 | return 0; | |
5367 | } | |
5368 | aSign = extractFloatx80Sign( a ); | |
5369 | bSign = extractFloatx80Sign( b ); | |
5370 | if ( aSign != bSign ) { | |
5371 | return | |
5372 | aSign | |
bb98fe42 | 5373 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5374 | != 0 ); |
5375 | } | |
5376 | return | |
5377 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5378 | : lt128( a.high, a.low, b.high, b.low ); | |
5379 | ||
5380 | } | |
5381 | ||
67b7861d AJ |
5382 | /*---------------------------------------------------------------------------- |
5383 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
5384 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
5385 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
5386 | | Floating-Point Arithmetic. | |
5387 | *----------------------------------------------------------------------------*/ | |
e5a41ffa | 5388 | int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) |
67b7861d | 5389 | { |
d1eb8f2a AD |
5390 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
5391 | float_raise(float_flag_invalid, status); | |
5392 | return 1; | |
5393 | } | |
67b7861d AJ |
5394 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
5395 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5396 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5397 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5398 | ) { | |
af39bc8c AM |
5399 | if (floatx80_is_signaling_nan(a, status) |
5400 | || floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 5401 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
5402 | } |
5403 | return 1; | |
5404 | } | |
5405 | return 0; | |
5406 | } | |
5407 | ||
158142c2 FB |
5408 | /*---------------------------------------------------------------------------- |
5409 | | Returns the result of converting the quadruple-precision floating-point | |
5410 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5411 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5412 | | Arithmetic---which means in particular that the conversion is rounded | |
5413 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5414 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5415 | | largest integer with the same sign as `a' is returned. | |
5416 | *----------------------------------------------------------------------------*/ | |
5417 | ||
f4014512 | 5418 | int32_t float128_to_int32(float128 a, float_status *status) |
158142c2 FB |
5419 | { |
5420 | flag aSign; | |
f4014512 | 5421 | int32_t aExp, shiftCount; |
bb98fe42 | 5422 | uint64_t aSig0, aSig1; |
158142c2 FB |
5423 | |
5424 | aSig1 = extractFloat128Frac1( a ); | |
5425 | aSig0 = extractFloat128Frac0( a ); | |
5426 | aExp = extractFloat128Exp( a ); | |
5427 | aSign = extractFloat128Sign( a ); | |
5428 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
5429 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5430 | aSig0 |= ( aSig1 != 0 ); | |
5431 | shiftCount = 0x4028 - aExp; | |
5432 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
ff32e16e | 5433 | return roundAndPackInt32(aSign, aSig0, status); |
158142c2 FB |
5434 | |
5435 | } | |
5436 | ||
5437 | /*---------------------------------------------------------------------------- | |
5438 | | Returns the result of converting the quadruple-precision floating-point | |
5439 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5440 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5441 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
5442 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
5443 | | conversion overflows, the largest integer with the same sign as `a' is | |
5444 | | returned. | |
5445 | *----------------------------------------------------------------------------*/ | |
5446 | ||
f4014512 | 5447 | int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
5448 | { |
5449 | flag aSign; | |
f4014512 | 5450 | int32_t aExp, shiftCount; |
bb98fe42 | 5451 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 5452 | int32_t z; |
158142c2 FB |
5453 | |
5454 | aSig1 = extractFloat128Frac1( a ); | |
5455 | aSig0 = extractFloat128Frac0( a ); | |
5456 | aExp = extractFloat128Exp( a ); | |
5457 | aSign = extractFloat128Sign( a ); | |
5458 | aSig0 |= ( aSig1 != 0 ); | |
5459 | if ( 0x401E < aExp ) { | |
5460 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
5461 | goto invalid; | |
5462 | } | |
5463 | else if ( aExp < 0x3FFF ) { | |
a2f2d288 PM |
5464 | if (aExp || aSig0) { |
5465 | status->float_exception_flags |= float_flag_inexact; | |
5466 | } | |
158142c2 FB |
5467 | return 0; |
5468 | } | |
5469 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5470 | shiftCount = 0x402F - aExp; | |
5471 | savedASig = aSig0; | |
5472 | aSig0 >>= shiftCount; | |
5473 | z = aSig0; | |
5474 | if ( aSign ) z = - z; | |
5475 | if ( ( z < 0 ) ^ aSign ) { | |
5476 | invalid: | |
ff32e16e | 5477 | float_raise(float_flag_invalid, status); |
bb98fe42 | 5478 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
5479 | } |
5480 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
a2f2d288 | 5481 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5482 | } |
5483 | return z; | |
5484 | ||
5485 | } | |
5486 | ||
5487 | /*---------------------------------------------------------------------------- | |
5488 | | Returns the result of converting the quadruple-precision floating-point | |
5489 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5490 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5491 | | Arithmetic---which means in particular that the conversion is rounded | |
5492 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5493 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5494 | | largest integer with the same sign as `a' is returned. | |
5495 | *----------------------------------------------------------------------------*/ | |
5496 | ||
f42c2224 | 5497 | int64_t float128_to_int64(float128 a, float_status *status) |
158142c2 FB |
5498 | { |
5499 | flag aSign; | |
f4014512 | 5500 | int32_t aExp, shiftCount; |
bb98fe42 | 5501 | uint64_t aSig0, aSig1; |
158142c2 FB |
5502 | |
5503 | aSig1 = extractFloat128Frac1( a ); | |
5504 | aSig0 = extractFloat128Frac0( a ); | |
5505 | aExp = extractFloat128Exp( a ); | |
5506 | aSign = extractFloat128Sign( a ); | |
5507 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5508 | shiftCount = 0x402F - aExp; | |
5509 | if ( shiftCount <= 0 ) { | |
5510 | if ( 0x403E < aExp ) { | |
ff32e16e | 5511 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5512 | if ( ! aSign |
5513 | || ( ( aExp == 0x7FFF ) | |
5514 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
5515 | ) | |
5516 | ) { | |
5517 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5518 | } | |
bb98fe42 | 5519 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5520 | } |
5521 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
5522 | } | |
5523 | else { | |
5524 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
5525 | } | |
ff32e16e | 5526 | return roundAndPackInt64(aSign, aSig0, aSig1, status); |
158142c2 FB |
5527 | |
5528 | } | |
5529 | ||
5530 | /*---------------------------------------------------------------------------- | |
5531 | | Returns the result of converting the quadruple-precision floating-point | |
5532 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5533 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5534 | | Arithmetic, except that the conversion is always rounded toward zero. | |
5535 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
5536 | | the conversion overflows, the largest integer with the same sign as `a' is | |
5537 | | returned. | |
5538 | *----------------------------------------------------------------------------*/ | |
5539 | ||
f42c2224 | 5540 | int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) |
158142c2 FB |
5541 | { |
5542 | flag aSign; | |
f4014512 | 5543 | int32_t aExp, shiftCount; |
bb98fe42 | 5544 | uint64_t aSig0, aSig1; |
f42c2224 | 5545 | int64_t z; |
158142c2 FB |
5546 | |
5547 | aSig1 = extractFloat128Frac1( a ); | |
5548 | aSig0 = extractFloat128Frac0( a ); | |
5549 | aExp = extractFloat128Exp( a ); | |
5550 | aSign = extractFloat128Sign( a ); | |
5551 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5552 | shiftCount = aExp - 0x402F; | |
5553 | if ( 0 < shiftCount ) { | |
5554 | if ( 0x403E <= aExp ) { | |
5555 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
5556 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
5557 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
a2f2d288 PM |
5558 | if (aSig1) { |
5559 | status->float_exception_flags |= float_flag_inexact; | |
5560 | } | |
158142c2 FB |
5561 | } |
5562 | else { | |
ff32e16e | 5563 | float_raise(float_flag_invalid, status); |
158142c2 FB |
5564 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { |
5565 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5566 | } | |
5567 | } | |
bb98fe42 | 5568 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5569 | } |
5570 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 5571 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
a2f2d288 | 5572 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5573 | } |
5574 | } | |
5575 | else { | |
5576 | if ( aExp < 0x3FFF ) { | |
5577 | if ( aExp | aSig0 | aSig1 ) { | |
a2f2d288 | 5578 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5579 | } |
5580 | return 0; | |
5581 | } | |
5582 | z = aSig0>>( - shiftCount ); | |
5583 | if ( aSig1 | |
bb98fe42 | 5584 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
a2f2d288 | 5585 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5586 | } |
5587 | } | |
5588 | if ( aSign ) z = - z; | |
5589 | return z; | |
5590 | ||
5591 | } | |
5592 | ||
2e6d8568 BR |
5593 | /*---------------------------------------------------------------------------- |
5594 | | Returns the result of converting the quadruple-precision floating-point value | |
5595 | | `a' to the 64-bit unsigned integer format. The conversion is | |
5596 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5597 | | Arithmetic---which means in particular that the conversion is rounded | |
5598 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5599 | | positive integer is returned. If the conversion overflows, the | |
5600 | | largest unsigned integer is returned. If 'a' is negative, the value is | |
5601 | | rounded and zero is returned; negative values that do not round to zero | |
5602 | | will raise the inexact exception. | |
5603 | *----------------------------------------------------------------------------*/ | |
5604 | ||
5605 | uint64_t float128_to_uint64(float128 a, float_status *status) | |
5606 | { | |
5607 | flag aSign; | |
5608 | int aExp; | |
5609 | int shiftCount; | |
5610 | uint64_t aSig0, aSig1; | |
5611 | ||
5612 | aSig0 = extractFloat128Frac0(a); | |
5613 | aSig1 = extractFloat128Frac1(a); | |
5614 | aExp = extractFloat128Exp(a); | |
5615 | aSign = extractFloat128Sign(a); | |
5616 | if (aSign && (aExp > 0x3FFE)) { | |
5617 | float_raise(float_flag_invalid, status); | |
5618 | if (float128_is_any_nan(a)) { | |
5619 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
5620 | } else { | |
5621 | return 0; | |
5622 | } | |
5623 | } | |
5624 | if (aExp) { | |
5625 | aSig0 |= LIT64(0x0001000000000000); | |
5626 | } | |
5627 | shiftCount = 0x402F - aExp; | |
5628 | if (shiftCount <= 0) { | |
5629 | if (0x403E < aExp) { | |
5630 | float_raise(float_flag_invalid, status); | |
5631 | return LIT64(0xFFFFFFFFFFFFFFFF); | |
5632 | } | |
5633 | shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1); | |
5634 | } else { | |
5635 | shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1); | |
5636 | } | |
5637 | return roundAndPackUint64(aSign, aSig0, aSig1, status); | |
5638 | } | |
5639 | ||
5640 | uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status) | |
5641 | { | |
5642 | uint64_t v; | |
5643 | signed char current_rounding_mode = status->float_rounding_mode; | |
5644 | ||
5645 | set_float_rounding_mode(float_round_to_zero, status); | |
5646 | v = float128_to_uint64(a, status); | |
5647 | set_float_rounding_mode(current_rounding_mode, status); | |
5648 | ||
5649 | return v; | |
5650 | } | |
5651 | ||
158142c2 FB |
5652 | /*---------------------------------------------------------------------------- |
5653 | | Returns the result of converting the quadruple-precision floating-point | |
fd425037 BR |
5654 | | value `a' to the 32-bit unsigned integer format. The conversion |
5655 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5656 | | Arithmetic except that the conversion is always rounded toward zero. | |
5657 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, | |
5658 | | if the conversion overflows, the largest unsigned integer is returned. | |
5659 | | If 'a' is negative, the value is rounded and zero is returned; negative | |
5660 | | values that do not round to zero will raise the inexact exception. | |
5661 | *----------------------------------------------------------------------------*/ | |
5662 | ||
5663 | uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status) | |
5664 | { | |
5665 | uint64_t v; | |
5666 | uint32_t res; | |
5667 | int old_exc_flags = get_float_exception_flags(status); | |
5668 | ||
5669 | v = float128_to_uint64_round_to_zero(a, status); | |
5670 | if (v > 0xffffffff) { | |
5671 | res = 0xffffffff; | |
5672 | } else { | |
5673 | return v; | |
5674 | } | |
5675 | set_float_exception_flags(old_exc_flags, status); | |
5676 | float_raise(float_flag_invalid, status); | |
5677 | return res; | |
5678 | } | |
5679 | ||
5680 | /*---------------------------------------------------------------------------- | |
5681 | | Returns the result of converting the quadruple-precision floating-point | |
158142c2 FB |
5682 | | value `a' to the single-precision floating-point format. The conversion |
5683 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5684 | | Arithmetic. | |
5685 | *----------------------------------------------------------------------------*/ | |
5686 | ||
e5a41ffa | 5687 | float32 float128_to_float32(float128 a, float_status *status) |
158142c2 FB |
5688 | { |
5689 | flag aSign; | |
f4014512 | 5690 | int32_t aExp; |
bb98fe42 AF |
5691 | uint64_t aSig0, aSig1; |
5692 | uint32_t zSig; | |
158142c2 FB |
5693 | |
5694 | aSig1 = extractFloat128Frac1( a ); | |
5695 | aSig0 = extractFloat128Frac0( a ); | |
5696 | aExp = extractFloat128Exp( a ); | |
5697 | aSign = extractFloat128Sign( a ); | |
5698 | if ( aExp == 0x7FFF ) { | |
5699 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 5700 | return commonNaNToFloat32(float128ToCommonNaN(a, status), status); |
158142c2 FB |
5701 | } |
5702 | return packFloat32( aSign, 0xFF, 0 ); | |
5703 | } | |
5704 | aSig0 |= ( aSig1 != 0 ); | |
5705 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
5706 | zSig = aSig0; | |
5707 | if ( aExp || zSig ) { | |
5708 | zSig |= 0x40000000; | |
5709 | aExp -= 0x3F81; | |
5710 | } | |
ff32e16e | 5711 | return roundAndPackFloat32(aSign, aExp, zSig, status); |
158142c2 FB |
5712 | |
5713 | } | |
5714 | ||
5715 | /*---------------------------------------------------------------------------- | |
5716 | | Returns the result of converting the quadruple-precision floating-point | |
5717 | | value `a' to the double-precision floating-point format. The conversion | |
5718 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5719 | | Arithmetic. | |
5720 | *----------------------------------------------------------------------------*/ | |
5721 | ||
e5a41ffa | 5722 | float64 float128_to_float64(float128 a, float_status *status) |
158142c2 FB |
5723 | { |
5724 | flag aSign; | |
f4014512 | 5725 | int32_t aExp; |
bb98fe42 | 5726 | uint64_t aSig0, aSig1; |
158142c2 FB |
5727 | |
5728 | aSig1 = extractFloat128Frac1( a ); | |
5729 | aSig0 = extractFloat128Frac0( a ); | |
5730 | aExp = extractFloat128Exp( a ); | |
5731 | aSign = extractFloat128Sign( a ); | |
5732 | if ( aExp == 0x7FFF ) { | |
5733 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 5734 | return commonNaNToFloat64(float128ToCommonNaN(a, status), status); |
158142c2 FB |
5735 | } |
5736 | return packFloat64( aSign, 0x7FF, 0 ); | |
5737 | } | |
5738 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
5739 | aSig0 |= ( aSig1 != 0 ); | |
5740 | if ( aExp || aSig0 ) { | |
5741 | aSig0 |= LIT64( 0x4000000000000000 ); | |
5742 | aExp -= 0x3C01; | |
5743 | } | |
ff32e16e | 5744 | return roundAndPackFloat64(aSign, aExp, aSig0, status); |
158142c2 FB |
5745 | |
5746 | } | |
5747 | ||
158142c2 FB |
5748 | /*---------------------------------------------------------------------------- |
5749 | | Returns the result of converting the quadruple-precision floating-point | |
5750 | | value `a' to the extended double-precision floating-point format. The | |
5751 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5752 | | Floating-Point Arithmetic. | |
5753 | *----------------------------------------------------------------------------*/ | |
5754 | ||
e5a41ffa | 5755 | floatx80 float128_to_floatx80(float128 a, float_status *status) |
158142c2 FB |
5756 | { |
5757 | flag aSign; | |
f4014512 | 5758 | int32_t aExp; |
bb98fe42 | 5759 | uint64_t aSig0, aSig1; |
158142c2 FB |
5760 | |
5761 | aSig1 = extractFloat128Frac1( a ); | |
5762 | aSig0 = extractFloat128Frac0( a ); | |
5763 | aExp = extractFloat128Exp( a ); | |
5764 | aSign = extractFloat128Sign( a ); | |
5765 | if ( aExp == 0x7FFF ) { | |
5766 | if ( aSig0 | aSig1 ) { | |
ff32e16e | 5767 | return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); |
158142c2 | 5768 | } |
0f605c88 LV |
5769 | return packFloatx80(aSign, floatx80_infinity_high, |
5770 | floatx80_infinity_low); | |
158142c2 FB |
5771 | } |
5772 | if ( aExp == 0 ) { | |
5773 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
5774 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5775 | } | |
5776 | else { | |
5777 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5778 | } | |
5779 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
ff32e16e | 5780 | return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); |
158142c2 FB |
5781 | |
5782 | } | |
5783 | ||
158142c2 FB |
5784 | /*---------------------------------------------------------------------------- |
5785 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
5786 | | returns the result as a quadruple-precision floating-point value. The | |
5787 | | operation is performed according to the IEC/IEEE Standard for Binary | |
5788 | | Floating-Point Arithmetic. | |
5789 | *----------------------------------------------------------------------------*/ | |
5790 | ||
e5a41ffa | 5791 | float128 float128_round_to_int(float128 a, float_status *status) |
158142c2 FB |
5792 | { |
5793 | flag aSign; | |
f4014512 | 5794 | int32_t aExp; |
bb98fe42 | 5795 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5796 | float128 z; |
5797 | ||
5798 | aExp = extractFloat128Exp( a ); | |
5799 | if ( 0x402F <= aExp ) { | |
5800 | if ( 0x406F <= aExp ) { | |
5801 | if ( ( aExp == 0x7FFF ) | |
5802 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
5803 | ) { | |
ff32e16e | 5804 | return propagateFloat128NaN(a, a, status); |
158142c2 FB |
5805 | } |
5806 | return a; | |
5807 | } | |
5808 | lastBitMask = 1; | |
5809 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
5810 | roundBitsMask = lastBitMask - 1; | |
5811 | z = a; | |
a2f2d288 | 5812 | switch (status->float_rounding_mode) { |
dc355b76 | 5813 | case float_round_nearest_even: |
158142c2 FB |
5814 | if ( lastBitMask ) { |
5815 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
5816 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
5817 | } | |
5818 | else { | |
bb98fe42 | 5819 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 5820 | ++z.high; |
bb98fe42 | 5821 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
5822 | } |
5823 | } | |
dc355b76 | 5824 | break; |
f9288a76 PM |
5825 | case float_round_ties_away: |
5826 | if (lastBitMask) { | |
5827 | add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); | |
5828 | } else { | |
5829 | if ((int64_t) z.low < 0) { | |
5830 | ++z.high; | |
5831 | } | |
5832 | } | |
5833 | break; | |
dc355b76 PM |
5834 | case float_round_to_zero: |
5835 | break; | |
5836 | case float_round_up: | |
5837 | if (!extractFloat128Sign(z)) { | |
5838 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
5839 | } | |
5840 | break; | |
5841 | case float_round_down: | |
5842 | if (extractFloat128Sign(z)) { | |
5843 | add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); | |
158142c2 | 5844 | } |
dc355b76 PM |
5845 | break; |
5846 | default: | |
5847 | abort(); | |
158142c2 FB |
5848 | } |
5849 | z.low &= ~ roundBitsMask; | |
5850 | } | |
5851 | else { | |
5852 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 5853 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
a2f2d288 | 5854 | status->float_exception_flags |= float_flag_inexact; |
158142c2 | 5855 | aSign = extractFloat128Sign( a ); |
a2f2d288 | 5856 | switch (status->float_rounding_mode) { |
158142c2 FB |
5857 | case float_round_nearest_even: |
5858 | if ( ( aExp == 0x3FFE ) | |
5859 | && ( extractFloat128Frac0( a ) | |
5860 | | extractFloat128Frac1( a ) ) | |
5861 | ) { | |
5862 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
5863 | } | |
5864 | break; | |
f9288a76 PM |
5865 | case float_round_ties_away: |
5866 | if (aExp == 0x3FFE) { | |
5867 | return packFloat128(aSign, 0x3FFF, 0, 0); | |
5868 | } | |
5869 | break; | |
158142c2 FB |
5870 | case float_round_down: |
5871 | return | |
5872 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
5873 | : packFloat128( 0, 0, 0, 0 ); | |
5874 | case float_round_up: | |
5875 | return | |
5876 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
5877 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
5878 | } | |
5879 | return packFloat128( aSign, 0, 0, 0 ); | |
5880 | } | |
5881 | lastBitMask = 1; | |
5882 | lastBitMask <<= 0x402F - aExp; | |
5883 | roundBitsMask = lastBitMask - 1; | |
5884 | z.low = 0; | |
5885 | z.high = a.high; | |
a2f2d288 | 5886 | switch (status->float_rounding_mode) { |
dc355b76 | 5887 | case float_round_nearest_even: |
158142c2 FB |
5888 | z.high += lastBitMask>>1; |
5889 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
5890 | z.high &= ~ lastBitMask; | |
5891 | } | |
dc355b76 | 5892 | break; |
f9288a76 PM |
5893 | case float_round_ties_away: |
5894 | z.high += lastBitMask>>1; | |
5895 | break; | |
dc355b76 PM |
5896 | case float_round_to_zero: |
5897 | break; | |
5898 | case float_round_up: | |
5899 | if (!extractFloat128Sign(z)) { | |
158142c2 FB |
5900 | z.high |= ( a.low != 0 ); |
5901 | z.high += roundBitsMask; | |
5902 | } | |
dc355b76 PM |
5903 | break; |
5904 | case float_round_down: | |
5905 | if (extractFloat128Sign(z)) { | |
5906 | z.high |= (a.low != 0); | |
5907 | z.high += roundBitsMask; | |
5908 | } | |
5909 | break; | |
5910 | default: | |
5911 | abort(); | |
158142c2 FB |
5912 | } |
5913 | z.high &= ~ roundBitsMask; | |
5914 | } | |
5915 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
a2f2d288 | 5916 | status->float_exception_flags |= float_flag_inexact; |
158142c2 FB |
5917 | } |
5918 | return z; | |
5919 | ||
5920 | } | |
5921 | ||
5922 | /*---------------------------------------------------------------------------- | |
5923 | | Returns the result of adding the absolute values of the quadruple-precision | |
5924 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
5925 | | before being returned. `zSign' is ignored if the result is a NaN. | |
5926 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
5927 | | Floating-Point Arithmetic. | |
5928 | *----------------------------------------------------------------------------*/ | |
5929 | ||
e5a41ffa PM |
5930 | static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, |
5931 | float_status *status) | |
158142c2 | 5932 | { |
f4014512 | 5933 | int32_t aExp, bExp, zExp; |
bb98fe42 | 5934 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
f4014512 | 5935 | int32_t expDiff; |
158142c2 FB |
5936 | |
5937 | aSig1 = extractFloat128Frac1( a ); | |
5938 | aSig0 = extractFloat128Frac0( a ); | |
5939 | aExp = extractFloat128Exp( a ); | |
5940 | bSig1 = extractFloat128Frac1( b ); | |
5941 | bSig0 = extractFloat128Frac0( b ); | |
5942 | bExp = extractFloat128Exp( b ); | |
5943 | expDiff = aExp - bExp; | |
5944 | if ( 0 < expDiff ) { | |
5945 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
5946 | if (aSig0 | aSig1) { |
5947 | return propagateFloat128NaN(a, b, status); | |
5948 | } | |
158142c2 FB |
5949 | return a; |
5950 | } | |
5951 | if ( bExp == 0 ) { | |
5952 | --expDiff; | |
5953 | } | |
5954 | else { | |
5955 | bSig0 |= LIT64( 0x0001000000000000 ); | |
5956 | } | |
5957 | shift128ExtraRightJamming( | |
5958 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
5959 | zExp = aExp; | |
5960 | } | |
5961 | else if ( expDiff < 0 ) { | |
5962 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
5963 | if (bSig0 | bSig1) { |
5964 | return propagateFloat128NaN(a, b, status); | |
5965 | } | |
158142c2 FB |
5966 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
5967 | } | |
5968 | if ( aExp == 0 ) { | |
5969 | ++expDiff; | |
5970 | } | |
5971 | else { | |
5972 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5973 | } | |
5974 | shift128ExtraRightJamming( | |
5975 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
5976 | zExp = bExp; | |
5977 | } | |
5978 | else { | |
5979 | if ( aExp == 0x7FFF ) { | |
5980 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 5981 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
5982 | } |
5983 | return a; | |
5984 | } | |
5985 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 5986 | if ( aExp == 0 ) { |
a2f2d288 | 5987 | if (status->flush_to_zero) { |
e6afc87f | 5988 | if (zSig0 | zSig1) { |
ff32e16e | 5989 | float_raise(float_flag_output_denormal, status); |
e6afc87f PM |
5990 | } |
5991 | return packFloat128(zSign, 0, 0, 0); | |
5992 | } | |
fe76d976 PB |
5993 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
5994 | } | |
158142c2 FB |
5995 | zSig2 = 0; |
5996 | zSig0 |= LIT64( 0x0002000000000000 ); | |
5997 | zExp = aExp; | |
5998 | goto shiftRight1; | |
5999 | } | |
6000 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6001 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6002 | --zExp; | |
6003 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
6004 | ++zExp; | |
6005 | shiftRight1: | |
6006 | shift128ExtraRightJamming( | |
6007 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6008 | roundAndPack: | |
ff32e16e | 6009 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6010 | |
6011 | } | |
6012 | ||
6013 | /*---------------------------------------------------------------------------- | |
6014 | | Returns the result of subtracting the absolute values of the quadruple- | |
6015 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
6016 | | difference is negated before being returned. `zSign' is ignored if the | |
6017 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
6018 | | Standard for Binary Floating-Point Arithmetic. | |
6019 | *----------------------------------------------------------------------------*/ | |
6020 | ||
e5a41ffa PM |
6021 | static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, |
6022 | float_status *status) | |
158142c2 | 6023 | { |
f4014512 | 6024 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6025 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
f4014512 | 6026 | int32_t expDiff; |
158142c2 FB |
6027 | |
6028 | aSig1 = extractFloat128Frac1( a ); | |
6029 | aSig0 = extractFloat128Frac0( a ); | |
6030 | aExp = extractFloat128Exp( a ); | |
6031 | bSig1 = extractFloat128Frac1( b ); | |
6032 | bSig0 = extractFloat128Frac0( b ); | |
6033 | bExp = extractFloat128Exp( b ); | |
6034 | expDiff = aExp - bExp; | |
6035 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
6036 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
6037 | if ( 0 < expDiff ) goto aExpBigger; | |
6038 | if ( expDiff < 0 ) goto bExpBigger; | |
6039 | if ( aExp == 0x7FFF ) { | |
6040 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
ff32e16e | 6041 | return propagateFloat128NaN(a, b, status); |
158142c2 | 6042 | } |
ff32e16e | 6043 | float_raise(float_flag_invalid, status); |
af39bc8c | 6044 | return float128_default_nan(status); |
158142c2 FB |
6045 | } |
6046 | if ( aExp == 0 ) { | |
6047 | aExp = 1; | |
6048 | bExp = 1; | |
6049 | } | |
6050 | if ( bSig0 < aSig0 ) goto aBigger; | |
6051 | if ( aSig0 < bSig0 ) goto bBigger; | |
6052 | if ( bSig1 < aSig1 ) goto aBigger; | |
6053 | if ( aSig1 < bSig1 ) goto bBigger; | |
a2f2d288 PM |
6054 | return packFloat128(status->float_rounding_mode == float_round_down, |
6055 | 0, 0, 0); | |
158142c2 FB |
6056 | bExpBigger: |
6057 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6058 | if (bSig0 | bSig1) { |
6059 | return propagateFloat128NaN(a, b, status); | |
6060 | } | |
158142c2 FB |
6061 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); |
6062 | } | |
6063 | if ( aExp == 0 ) { | |
6064 | ++expDiff; | |
6065 | } | |
6066 | else { | |
6067 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6068 | } | |
6069 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6070 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6071 | bBigger: | |
6072 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6073 | zExp = bExp; | |
6074 | zSign ^= 1; | |
6075 | goto normalizeRoundAndPack; | |
6076 | aExpBigger: | |
6077 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6078 | if (aSig0 | aSig1) { |
6079 | return propagateFloat128NaN(a, b, status); | |
6080 | } | |
158142c2 FB |
6081 | return a; |
6082 | } | |
6083 | if ( bExp == 0 ) { | |
6084 | --expDiff; | |
6085 | } | |
6086 | else { | |
6087 | bSig0 |= LIT64( 0x4000000000000000 ); | |
6088 | } | |
6089 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
6090 | aSig0 |= LIT64( 0x4000000000000000 ); | |
6091 | aBigger: | |
6092 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
6093 | zExp = aExp; | |
6094 | normalizeRoundAndPack: | |
6095 | --zExp; | |
ff32e16e PM |
6096 | return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, |
6097 | status); | |
158142c2 FB |
6098 | |
6099 | } | |
6100 | ||
6101 | /*---------------------------------------------------------------------------- | |
6102 | | Returns the result of adding the quadruple-precision floating-point values | |
6103 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
6104 | | for Binary Floating-Point Arithmetic. | |
6105 | *----------------------------------------------------------------------------*/ | |
6106 | ||
e5a41ffa | 6107 | float128 float128_add(float128 a, float128 b, float_status *status) |
158142c2 FB |
6108 | { |
6109 | flag aSign, bSign; | |
6110 | ||
6111 | aSign = extractFloat128Sign( a ); | |
6112 | bSign = extractFloat128Sign( b ); | |
6113 | if ( aSign == bSign ) { | |
ff32e16e | 6114 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6115 | } |
6116 | else { | |
ff32e16e | 6117 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6118 | } |
6119 | ||
6120 | } | |
6121 | ||
6122 | /*---------------------------------------------------------------------------- | |
6123 | | Returns the result of subtracting the quadruple-precision floating-point | |
6124 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6125 | | Standard for Binary Floating-Point Arithmetic. | |
6126 | *----------------------------------------------------------------------------*/ | |
6127 | ||
e5a41ffa | 6128 | float128 float128_sub(float128 a, float128 b, float_status *status) |
158142c2 FB |
6129 | { |
6130 | flag aSign, bSign; | |
6131 | ||
6132 | aSign = extractFloat128Sign( a ); | |
6133 | bSign = extractFloat128Sign( b ); | |
6134 | if ( aSign == bSign ) { | |
ff32e16e | 6135 | return subFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6136 | } |
6137 | else { | |
ff32e16e | 6138 | return addFloat128Sigs(a, b, aSign, status); |
158142c2 FB |
6139 | } |
6140 | ||
6141 | } | |
6142 | ||
6143 | /*---------------------------------------------------------------------------- | |
6144 | | Returns the result of multiplying the quadruple-precision floating-point | |
6145 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
6146 | | Standard for Binary Floating-Point Arithmetic. | |
6147 | *----------------------------------------------------------------------------*/ | |
6148 | ||
e5a41ffa | 6149 | float128 float128_mul(float128 a, float128 b, float_status *status) |
158142c2 FB |
6150 | { |
6151 | flag aSign, bSign, zSign; | |
f4014512 | 6152 | int32_t aExp, bExp, zExp; |
bb98fe42 | 6153 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
6154 | |
6155 | aSig1 = extractFloat128Frac1( a ); | |
6156 | aSig0 = extractFloat128Frac0( a ); | |
6157 | aExp = extractFloat128Exp( a ); | |
6158 | aSign = extractFloat128Sign( a ); | |
6159 | bSig1 = extractFloat128Frac1( b ); | |
6160 | bSig0 = extractFloat128Frac0( b ); | |
6161 | bExp = extractFloat128Exp( b ); | |
6162 | bSign = extractFloat128Sign( b ); | |
6163 | zSign = aSign ^ bSign; | |
6164 | if ( aExp == 0x7FFF ) { | |
6165 | if ( ( aSig0 | aSig1 ) | |
6166 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6167 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6168 | } |
6169 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
6170 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6171 | } | |
6172 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6173 | if (bSig0 | bSig1) { |
6174 | return propagateFloat128NaN(a, b, status); | |
6175 | } | |
158142c2 FB |
6176 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
6177 | invalid: | |
ff32e16e | 6178 | float_raise(float_flag_invalid, status); |
af39bc8c | 6179 | return float128_default_nan(status); |
158142c2 FB |
6180 | } |
6181 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6182 | } | |
6183 | if ( aExp == 0 ) { | |
6184 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6185 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6186 | } | |
6187 | if ( bExp == 0 ) { | |
6188 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6189 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6190 | } | |
6191 | zExp = aExp + bExp - 0x4000; | |
6192 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6193 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
6194 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
6195 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
6196 | zSig2 |= ( zSig3 != 0 ); | |
6197 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
6198 | shift128ExtraRightJamming( | |
6199 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
6200 | ++zExp; | |
6201 | } | |
ff32e16e | 6202 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6203 | |
6204 | } | |
6205 | ||
6206 | /*---------------------------------------------------------------------------- | |
6207 | | Returns the result of dividing the quadruple-precision floating-point value | |
6208 | | `a' by the corresponding value `b'. The operation is performed according to | |
6209 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6210 | *----------------------------------------------------------------------------*/ | |
6211 | ||
e5a41ffa | 6212 | float128 float128_div(float128 a, float128 b, float_status *status) |
158142c2 FB |
6213 | { |
6214 | flag aSign, bSign, zSign; | |
f4014512 | 6215 | int32_t aExp, bExp, zExp; |
bb98fe42 AF |
6216 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
6217 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6218 | |
6219 | aSig1 = extractFloat128Frac1( a ); | |
6220 | aSig0 = extractFloat128Frac0( a ); | |
6221 | aExp = extractFloat128Exp( a ); | |
6222 | aSign = extractFloat128Sign( a ); | |
6223 | bSig1 = extractFloat128Frac1( b ); | |
6224 | bSig0 = extractFloat128Frac0( b ); | |
6225 | bExp = extractFloat128Exp( b ); | |
6226 | bSign = extractFloat128Sign( b ); | |
6227 | zSign = aSign ^ bSign; | |
6228 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6229 | if (aSig0 | aSig1) { |
6230 | return propagateFloat128NaN(a, b, status); | |
6231 | } | |
158142c2 | 6232 | if ( bExp == 0x7FFF ) { |
ff32e16e PM |
6233 | if (bSig0 | bSig1) { |
6234 | return propagateFloat128NaN(a, b, status); | |
6235 | } | |
158142c2 FB |
6236 | goto invalid; |
6237 | } | |
6238 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
6239 | } | |
6240 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6241 | if (bSig0 | bSig1) { |
6242 | return propagateFloat128NaN(a, b, status); | |
6243 | } | |
158142c2 FB |
6244 | return packFloat128( zSign, 0, 0, 0 ); |
6245 | } | |
6246 | if ( bExp == 0 ) { | |
6247 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6248 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
6249 | invalid: | |
ff32e16e | 6250 | float_raise(float_flag_invalid, status); |
af39bc8c | 6251 | return float128_default_nan(status); |
158142c2 | 6252 | } |
ff32e16e | 6253 | float_raise(float_flag_divbyzero, status); |
158142c2 FB |
6254 | return packFloat128( zSign, 0x7FFF, 0, 0 ); |
6255 | } | |
6256 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6257 | } | |
6258 | if ( aExp == 0 ) { | |
6259 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
6260 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6261 | } | |
6262 | zExp = aExp - bExp + 0x3FFD; | |
6263 | shortShift128Left( | |
6264 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
6265 | shortShift128Left( | |
6266 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6267 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
6268 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
6269 | ++zExp; | |
6270 | } | |
6271 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6272 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
6273 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 6274 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6275 | --zSig0; |
6276 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
6277 | } | |
6278 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
6279 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
6280 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
6281 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6282 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6283 | --zSig1; |
6284 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
6285 | } | |
6286 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6287 | } | |
6288 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6289 | return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6290 | |
6291 | } | |
6292 | ||
6293 | /*---------------------------------------------------------------------------- | |
6294 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
6295 | | with respect to the corresponding value `b'. The operation is performed | |
6296 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6297 | *----------------------------------------------------------------------------*/ | |
6298 | ||
e5a41ffa | 6299 | float128 float128_rem(float128 a, float128 b, float_status *status) |
158142c2 | 6300 | { |
ed086f3d | 6301 | flag aSign, zSign; |
f4014512 | 6302 | int32_t aExp, bExp, expDiff; |
bb98fe42 AF |
6303 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
6304 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
6305 | int64_t sigMean0; | |
158142c2 FB |
6306 | |
6307 | aSig1 = extractFloat128Frac1( a ); | |
6308 | aSig0 = extractFloat128Frac0( a ); | |
6309 | aExp = extractFloat128Exp( a ); | |
6310 | aSign = extractFloat128Sign( a ); | |
6311 | bSig1 = extractFloat128Frac1( b ); | |
6312 | bSig0 = extractFloat128Frac0( b ); | |
6313 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
6314 | if ( aExp == 0x7FFF ) { |
6315 | if ( ( aSig0 | aSig1 ) | |
6316 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
ff32e16e | 6317 | return propagateFloat128NaN(a, b, status); |
158142c2 FB |
6318 | } |
6319 | goto invalid; | |
6320 | } | |
6321 | if ( bExp == 0x7FFF ) { | |
ff32e16e PM |
6322 | if (bSig0 | bSig1) { |
6323 | return propagateFloat128NaN(a, b, status); | |
6324 | } | |
158142c2 FB |
6325 | return a; |
6326 | } | |
6327 | if ( bExp == 0 ) { | |
6328 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6329 | invalid: | |
ff32e16e | 6330 | float_raise(float_flag_invalid, status); |
af39bc8c | 6331 | return float128_default_nan(status); |
158142c2 FB |
6332 | } |
6333 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6334 | } | |
6335 | if ( aExp == 0 ) { | |
6336 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
6337 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6338 | } | |
6339 | expDiff = aExp - bExp; | |
6340 | if ( expDiff < -1 ) return a; | |
6341 | shortShift128Left( | |
6342 | aSig0 | LIT64( 0x0001000000000000 ), | |
6343 | aSig1, | |
6344 | 15 - ( expDiff < 0 ), | |
6345 | &aSig0, | |
6346 | &aSig1 | |
6347 | ); | |
6348 | shortShift128Left( | |
6349 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6350 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
6351 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
6352 | expDiff -= 64; | |
6353 | while ( 0 < expDiff ) { | |
6354 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6355 | q = ( 4 < q ) ? q - 4 : 0; | |
6356 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6357 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
6358 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
6359 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
6360 | expDiff -= 61; | |
6361 | } | |
6362 | if ( -64 < expDiff ) { | |
6363 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6364 | q = ( 4 < q ) ? q - 4 : 0; | |
6365 | q >>= - expDiff; | |
6366 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6367 | expDiff += 52; | |
6368 | if ( expDiff < 0 ) { | |
6369 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6370 | } | |
6371 | else { | |
6372 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
6373 | } | |
6374 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6375 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
6376 | } | |
6377 | else { | |
6378 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
6379 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6380 | } | |
6381 | do { | |
6382 | alternateASig0 = aSig0; | |
6383 | alternateASig1 = aSig1; | |
6384 | ++q; | |
6385 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 6386 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 6387 | add128( |
bb98fe42 | 6388 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
6389 | if ( ( sigMean0 < 0 ) |
6390 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
6391 | aSig0 = alternateASig0; | |
6392 | aSig1 = alternateASig1; | |
6393 | } | |
bb98fe42 | 6394 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 | 6395 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
ff32e16e PM |
6396 | return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, |
6397 | status); | |
158142c2 FB |
6398 | } |
6399 | ||
6400 | /*---------------------------------------------------------------------------- | |
6401 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
6402 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
6403 | | Floating-Point Arithmetic. | |
6404 | *----------------------------------------------------------------------------*/ | |
6405 | ||
e5a41ffa | 6406 | float128 float128_sqrt(float128 a, float_status *status) |
158142c2 FB |
6407 | { |
6408 | flag aSign; | |
f4014512 | 6409 | int32_t aExp, zExp; |
bb98fe42 AF |
6410 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
6411 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6412 | |
6413 | aSig1 = extractFloat128Frac1( a ); | |
6414 | aSig0 = extractFloat128Frac0( a ); | |
6415 | aExp = extractFloat128Exp( a ); | |
6416 | aSign = extractFloat128Sign( a ); | |
6417 | if ( aExp == 0x7FFF ) { | |
ff32e16e PM |
6418 | if (aSig0 | aSig1) { |
6419 | return propagateFloat128NaN(a, a, status); | |
6420 | } | |
158142c2 FB |
6421 | if ( ! aSign ) return a; |
6422 | goto invalid; | |
6423 | } | |
6424 | if ( aSign ) { | |
6425 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
6426 | invalid: | |
ff32e16e | 6427 | float_raise(float_flag_invalid, status); |
af39bc8c | 6428 | return float128_default_nan(status); |
158142c2 FB |
6429 | } |
6430 | if ( aExp == 0 ) { | |
6431 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
6432 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6433 | } | |
6434 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
6435 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6436 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
6437 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
6438 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
6439 | doubleZSig0 = zSig0<<1; | |
6440 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
6441 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6442 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6443 | --zSig0; |
6444 | doubleZSig0 -= 2; | |
6445 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
6446 | } | |
6447 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
6448 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
6449 | if ( zSig1 == 0 ) zSig1 = 1; | |
6450 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
6451 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
6452 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
6453 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6454 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6455 | --zSig1; |
6456 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
6457 | term3 |= 1; | |
6458 | term2 |= doubleZSig0; | |
6459 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
6460 | } | |
6461 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6462 | } | |
6463 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
ff32e16e | 6464 | return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); |
158142c2 FB |
6465 | |
6466 | } | |
6467 | ||
6468 | /*---------------------------------------------------------------------------- | |
6469 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
6470 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6471 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
6472 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
6473 | *----------------------------------------------------------------------------*/ | |
6474 | ||
e5a41ffa | 6475 | int float128_eq(float128 a, float128 b, float_status *status) |
158142c2 FB |
6476 | { |
6477 | ||
6478 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6479 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6480 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6481 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6482 | ) { | |
ff32e16e | 6483 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6484 | return 0; |
6485 | } | |
6486 | return | |
6487 | ( a.low == b.low ) | |
6488 | && ( ( a.high == b.high ) | |
6489 | || ( ( a.low == 0 ) | |
bb98fe42 | 6490 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6491 | ); |
6492 | ||
6493 | } | |
6494 | ||
6495 | /*---------------------------------------------------------------------------- | |
6496 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6497 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
6498 | | exception is raised if either operand is a NaN. The comparison is performed | |
6499 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6500 | *----------------------------------------------------------------------------*/ |
6501 | ||
e5a41ffa | 6502 | int float128_le(float128 a, float128 b, float_status *status) |
158142c2 FB |
6503 | { |
6504 | flag aSign, bSign; | |
6505 | ||
6506 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6507 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6508 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6509 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6510 | ) { | |
ff32e16e | 6511 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6512 | return 0; |
6513 | } | |
6514 | aSign = extractFloat128Sign( a ); | |
6515 | bSign = extractFloat128Sign( b ); | |
6516 | if ( aSign != bSign ) { | |
6517 | return | |
6518 | aSign | |
bb98fe42 | 6519 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6520 | == 0 ); |
6521 | } | |
6522 | return | |
6523 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6524 | : le128( a.high, a.low, b.high, b.low ); | |
6525 | ||
6526 | } | |
6527 | ||
6528 | /*---------------------------------------------------------------------------- | |
6529 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6530 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6531 | | raised if either operand is a NaN. The comparison is performed according | |
6532 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6533 | *----------------------------------------------------------------------------*/ |
6534 | ||
e5a41ffa | 6535 | int float128_lt(float128 a, float128 b, float_status *status) |
158142c2 FB |
6536 | { |
6537 | flag aSign, bSign; | |
6538 | ||
6539 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6540 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6541 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6542 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6543 | ) { | |
ff32e16e | 6544 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6545 | return 0; |
6546 | } | |
6547 | aSign = extractFloat128Sign( a ); | |
6548 | bSign = extractFloat128Sign( b ); | |
6549 | if ( aSign != bSign ) { | |
6550 | return | |
6551 | aSign | |
bb98fe42 | 6552 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6553 | != 0 ); |
6554 | } | |
6555 | return | |
6556 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6557 | : lt128( a.high, a.low, b.high, b.low ); | |
6558 | ||
6559 | } | |
6560 | ||
67b7861d AJ |
6561 | /*---------------------------------------------------------------------------- |
6562 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
6563 | | be compared, and 0 otherwise. The invalid exception is raised if either |
6564 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
6565 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
6566 | *----------------------------------------------------------------------------*/ |
6567 | ||
e5a41ffa | 6568 | int float128_unordered(float128 a, float128 b, float_status *status) |
67b7861d AJ |
6569 | { |
6570 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6571 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6572 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6573 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6574 | ) { | |
ff32e16e | 6575 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
6576 | return 1; |
6577 | } | |
6578 | return 0; | |
6579 | } | |
6580 | ||
158142c2 FB |
6581 | /*---------------------------------------------------------------------------- |
6582 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
6583 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
6584 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
6585 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6586 | *----------------------------------------------------------------------------*/ |
6587 | ||
e5a41ffa | 6588 | int float128_eq_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
6589 | { |
6590 | ||
6591 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6592 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6593 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6594 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6595 | ) { | |
af39bc8c AM |
6596 | if (float128_is_signaling_nan(a, status) |
6597 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 6598 | float_raise(float_flag_invalid, status); |
b689362d | 6599 | } |
158142c2 FB |
6600 | return 0; |
6601 | } | |
6602 | return | |
6603 | ( a.low == b.low ) | |
6604 | && ( ( a.high == b.high ) | |
6605 | || ( ( a.low == 0 ) | |
bb98fe42 | 6606 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6607 | ); |
6608 | ||
6609 | } | |
6610 | ||
6611 | /*---------------------------------------------------------------------------- | |
6612 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6613 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
6614 | | cause an exception. Otherwise, the comparison is performed according to the | |
6615 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6616 | *----------------------------------------------------------------------------*/ | |
6617 | ||
e5a41ffa | 6618 | int float128_le_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
6619 | { |
6620 | flag aSign, bSign; | |
6621 | ||
6622 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6623 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6624 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6625 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6626 | ) { | |
af39bc8c AM |
6627 | if (float128_is_signaling_nan(a, status) |
6628 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 6629 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6630 | } |
6631 | return 0; | |
6632 | } | |
6633 | aSign = extractFloat128Sign( a ); | |
6634 | bSign = extractFloat128Sign( b ); | |
6635 | if ( aSign != bSign ) { | |
6636 | return | |
6637 | aSign | |
bb98fe42 | 6638 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6639 | == 0 ); |
6640 | } | |
6641 | return | |
6642 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6643 | : le128( a.high, a.low, b.high, b.low ); | |
6644 | ||
6645 | } | |
6646 | ||
6647 | /*---------------------------------------------------------------------------- | |
6648 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6649 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
6650 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
6651 | | Standard for Binary Floating-Point Arithmetic. | |
6652 | *----------------------------------------------------------------------------*/ | |
6653 | ||
e5a41ffa | 6654 | int float128_lt_quiet(float128 a, float128 b, float_status *status) |
158142c2 FB |
6655 | { |
6656 | flag aSign, bSign; | |
6657 | ||
6658 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6659 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6660 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6661 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6662 | ) { | |
af39bc8c AM |
6663 | if (float128_is_signaling_nan(a, status) |
6664 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 6665 | float_raise(float_flag_invalid, status); |
158142c2 FB |
6666 | } |
6667 | return 0; | |
6668 | } | |
6669 | aSign = extractFloat128Sign( a ); | |
6670 | bSign = extractFloat128Sign( b ); | |
6671 | if ( aSign != bSign ) { | |
6672 | return | |
6673 | aSign | |
bb98fe42 | 6674 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6675 | != 0 ); |
6676 | } | |
6677 | return | |
6678 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6679 | : lt128( a.high, a.low, b.high, b.low ); | |
6680 | ||
6681 | } | |
6682 | ||
67b7861d AJ |
6683 | /*---------------------------------------------------------------------------- |
6684 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
6685 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
6686 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
6687 | | Floating-Point Arithmetic. | |
6688 | *----------------------------------------------------------------------------*/ | |
6689 | ||
e5a41ffa | 6690 | int float128_unordered_quiet(float128 a, float128 b, float_status *status) |
67b7861d AJ |
6691 | { |
6692 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6693 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6694 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6695 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6696 | ) { | |
af39bc8c AM |
6697 | if (float128_is_signaling_nan(a, status) |
6698 | || float128_is_signaling_nan(b, status)) { | |
ff32e16e | 6699 | float_raise(float_flag_invalid, status); |
67b7861d AJ |
6700 | } |
6701 | return 1; | |
6702 | } | |
6703 | return 0; | |
6704 | } | |
6705 | ||
e5a41ffa PM |
6706 | static inline int floatx80_compare_internal(floatx80 a, floatx80 b, |
6707 | int is_quiet, float_status *status) | |
f6714d36 AJ |
6708 | { |
6709 | flag aSign, bSign; | |
6710 | ||
d1eb8f2a AD |
6711 | if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
6712 | float_raise(float_flag_invalid, status); | |
6713 | return float_relation_unordered; | |
6714 | } | |
f6714d36 AJ |
6715 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && |
6716 | ( extractFloatx80Frac( a )<<1 ) ) || | |
6717 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
6718 | ( extractFloatx80Frac( b )<<1 ) )) { | |
6719 | if (!is_quiet || | |
af39bc8c AM |
6720 | floatx80_is_signaling_nan(a, status) || |
6721 | floatx80_is_signaling_nan(b, status)) { | |
ff32e16e | 6722 | float_raise(float_flag_invalid, status); |
f6714d36 AJ |
6723 | } |
6724 | return float_relation_unordered; | |
6725 | } | |
6726 | aSign = extractFloatx80Sign( a ); | |
6727 | bSign = extractFloatx80Sign( b ); | |
6728 | if ( aSign != bSign ) { | |
6729 | ||
6730 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
6731 | ( ( a.low | b.low ) == 0 ) ) { | |
6732 | /* zero case */ | |
6733 | return float_relation_equal; | |
6734 | } else { | |
6735 | return 1 - (2 * aSign); | |
6736 | } | |
6737 | } else { | |
6738 | if (a.low == b.low && a.high == b.high) { | |
6739 | return float_relation_equal; | |
6740 | } else { | |
6741 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
6742 | } | |
6743 | } | |
6744 | } | |
6745 | ||
e5a41ffa | 6746 | int floatx80_compare(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 6747 | { |
ff32e16e | 6748 | return floatx80_compare_internal(a, b, 0, status); |
f6714d36 AJ |
6749 | } |
6750 | ||
e5a41ffa | 6751 | int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) |
f6714d36 | 6752 | { |
ff32e16e | 6753 | return floatx80_compare_internal(a, b, 1, status); |
f6714d36 AJ |
6754 | } |
6755 | ||
e5a41ffa PM |
6756 | static inline int float128_compare_internal(float128 a, float128 b, |
6757 | int is_quiet, float_status *status) | |
1f587329 BS |
6758 | { |
6759 | flag aSign, bSign; | |
6760 | ||
6761 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
6762 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
6763 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
6764 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
6765 | if (!is_quiet || | |
af39bc8c AM |
6766 | float128_is_signaling_nan(a, status) || |
6767 | float128_is_signaling_nan(b, status)) { | |
ff32e16e | 6768 | float_raise(float_flag_invalid, status); |
1f587329 BS |
6769 | } |
6770 | return float_relation_unordered; | |
6771 | } | |
6772 | aSign = extractFloat128Sign( a ); | |
6773 | bSign = extractFloat128Sign( b ); | |
6774 | if ( aSign != bSign ) { | |
6775 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
6776 | /* zero case */ | |
6777 | return float_relation_equal; | |
6778 | } else { | |
6779 | return 1 - (2 * aSign); | |
6780 | } | |
6781 | } else { | |
6782 | if (a.low == b.low && a.high == b.high) { | |
6783 | return float_relation_equal; | |
6784 | } else { | |
6785 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
6786 | } | |
6787 | } | |
6788 | } | |
6789 | ||
e5a41ffa | 6790 | int float128_compare(float128 a, float128 b, float_status *status) |
1f587329 | 6791 | { |
ff32e16e | 6792 | return float128_compare_internal(a, b, 0, status); |
1f587329 BS |
6793 | } |
6794 | ||
e5a41ffa | 6795 | int float128_compare_quiet(float128 a, float128 b, float_status *status) |
1f587329 | 6796 | { |
ff32e16e | 6797 | return float128_compare_internal(a, b, 1, status); |
1f587329 BS |
6798 | } |
6799 | ||
e5a41ffa | 6800 | floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) |
9ee6e8bb PB |
6801 | { |
6802 | flag aSign; | |
326b9e98 | 6803 | int32_t aExp; |
bb98fe42 | 6804 | uint64_t aSig; |
9ee6e8bb | 6805 | |
d1eb8f2a AD |
6806 | if (floatx80_invalid_encoding(a)) { |
6807 | float_raise(float_flag_invalid, status); | |
6808 | return floatx80_default_nan(status); | |
6809 | } | |
9ee6e8bb PB |
6810 | aSig = extractFloatx80Frac( a ); |
6811 | aExp = extractFloatx80Exp( a ); | |
6812 | aSign = extractFloatx80Sign( a ); | |
6813 | ||
326b9e98 AJ |
6814 | if ( aExp == 0x7FFF ) { |
6815 | if ( aSig<<1 ) { | |
ff32e16e | 6816 | return propagateFloatx80NaN(a, a, status); |
326b9e98 | 6817 | } |
9ee6e8bb PB |
6818 | return a; |
6819 | } | |
326b9e98 | 6820 | |
3c85c37f PM |
6821 | if (aExp == 0) { |
6822 | if (aSig == 0) { | |
6823 | return a; | |
6824 | } | |
6825 | aExp++; | |
6826 | } | |
69397542 | 6827 | |
326b9e98 AJ |
6828 | if (n > 0x10000) { |
6829 | n = 0x10000; | |
6830 | } else if (n < -0x10000) { | |
6831 | n = -0x10000; | |
6832 | } | |
6833 | ||
9ee6e8bb | 6834 | aExp += n; |
a2f2d288 PM |
6835 | return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
6836 | aSign, aExp, aSig, 0, status); | |
9ee6e8bb | 6837 | } |
9ee6e8bb | 6838 | |
e5a41ffa | 6839 | float128 float128_scalbn(float128 a, int n, float_status *status) |
9ee6e8bb PB |
6840 | { |
6841 | flag aSign; | |
326b9e98 | 6842 | int32_t aExp; |
bb98fe42 | 6843 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
6844 | |
6845 | aSig1 = extractFloat128Frac1( a ); | |
6846 | aSig0 = extractFloat128Frac0( a ); | |
6847 | aExp = extractFloat128Exp( a ); | |
6848 | aSign = extractFloat128Sign( a ); | |
6849 | if ( aExp == 0x7FFF ) { | |
326b9e98 | 6850 | if ( aSig0 | aSig1 ) { |
ff32e16e | 6851 | return propagateFloat128NaN(a, a, status); |
326b9e98 | 6852 | } |
9ee6e8bb PB |
6853 | return a; |
6854 | } | |
3c85c37f | 6855 | if (aExp != 0) { |
69397542 | 6856 | aSig0 |= LIT64( 0x0001000000000000 ); |
3c85c37f | 6857 | } else if (aSig0 == 0 && aSig1 == 0) { |
69397542 | 6858 | return a; |
3c85c37f PM |
6859 | } else { |
6860 | aExp++; | |
6861 | } | |
69397542 | 6862 | |
326b9e98 AJ |
6863 | if (n > 0x10000) { |
6864 | n = 0x10000; | |
6865 | } else if (n < -0x10000) { | |
6866 | n = -0x10000; | |
6867 | } | |
6868 | ||
69397542 PB |
6869 | aExp += n - 1; |
6870 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
ff32e16e | 6871 | , status); |
9ee6e8bb PB |
6872 | |
6873 | } |