]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
d33a1810 | 25 | #include "hw/hw.h" |
e22a25c9 | 26 | #include "gdbstub.h" |
05330448 AL |
27 | #include "kvm.h" |
28 | ||
f65ed4c1 AL |
29 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
30 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
31 | ||
05330448 AL |
32 | //#define DEBUG_KVM |
33 | ||
34 | #ifdef DEBUG_KVM | |
35 | #define dprintf(fmt, ...) \ | |
36 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
37 | #else | |
38 | #define dprintf(fmt, ...) \ | |
39 | do { } while (0) | |
40 | #endif | |
41 | ||
34fc643f AL |
42 | typedef struct KVMSlot |
43 | { | |
44 | target_phys_addr_t start_addr; | |
45 | ram_addr_t memory_size; | |
46 | ram_addr_t phys_offset; | |
47 | int slot; | |
48 | int flags; | |
49 | } KVMSlot; | |
05330448 | 50 | |
5832d1f2 AL |
51 | typedef struct kvm_dirty_log KVMDirtyLog; |
52 | ||
05330448 AL |
53 | int kvm_allowed = 0; |
54 | ||
55 | struct KVMState | |
56 | { | |
57 | KVMSlot slots[32]; | |
58 | int fd; | |
59 | int vmfd; | |
4c0960c0 | 60 | int regs_modified; |
f65ed4c1 | 61 | int coalesced_mmio; |
e69917e2 | 62 | int broken_set_mem_region; |
4495d6a7 | 63 | int migration_log; |
e22a25c9 AL |
64 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
65 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
66 | #endif | |
6f725c13 GC |
67 | int irqchip_in_kernel; |
68 | int pit_in_kernel; | |
05330448 AL |
69 | }; |
70 | ||
71 | static KVMState *kvm_state; | |
72 | ||
73 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
74 | { | |
75 | int i; | |
76 | ||
77 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
78 | /* KVM private memory slots */ |
79 | if (i >= 8 && i < 12) | |
80 | continue; | |
05330448 AL |
81 | if (s->slots[i].memory_size == 0) |
82 | return &s->slots[i]; | |
83 | } | |
84 | ||
d3f8d37f AL |
85 | fprintf(stderr, "%s: no free slot available\n", __func__); |
86 | abort(); | |
87 | } | |
88 | ||
89 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
90 | target_phys_addr_t start_addr, | |
91 | target_phys_addr_t end_addr) | |
92 | { | |
93 | int i; | |
94 | ||
95 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
96 | KVMSlot *mem = &s->slots[i]; | |
97 | ||
98 | if (start_addr == mem->start_addr && | |
99 | end_addr == mem->start_addr + mem->memory_size) { | |
100 | return mem; | |
101 | } | |
102 | } | |
103 | ||
05330448 AL |
104 | return NULL; |
105 | } | |
106 | ||
6152e2ae AL |
107 | /* |
108 | * Find overlapping slot with lowest start address | |
109 | */ | |
110 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
111 | target_phys_addr_t start_addr, | |
112 | target_phys_addr_t end_addr) | |
05330448 | 113 | { |
6152e2ae | 114 | KVMSlot *found = NULL; |
05330448 AL |
115 | int i; |
116 | ||
117 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
118 | KVMSlot *mem = &s->slots[i]; | |
119 | ||
6152e2ae AL |
120 | if (mem->memory_size == 0 || |
121 | (found && found->start_addr < mem->start_addr)) { | |
122 | continue; | |
123 | } | |
124 | ||
125 | if (end_addr > mem->start_addr && | |
126 | start_addr < mem->start_addr + mem->memory_size) { | |
127 | found = mem; | |
128 | } | |
05330448 AL |
129 | } |
130 | ||
6152e2ae | 131 | return found; |
05330448 AL |
132 | } |
133 | ||
5832d1f2 AL |
134 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
135 | { | |
136 | struct kvm_userspace_memory_region mem; | |
137 | ||
138 | mem.slot = slot->slot; | |
139 | mem.guest_phys_addr = slot->start_addr; | |
140 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 141 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 142 | mem.flags = slot->flags; |
4495d6a7 JK |
143 | if (s->migration_log) { |
144 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
145 | } | |
5832d1f2 AL |
146 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
147 | } | |
148 | ||
8d2ba1fb JK |
149 | static void kvm_reset_vcpu(void *opaque) |
150 | { | |
151 | CPUState *env = opaque; | |
152 | ||
153 | if (kvm_arch_put_registers(env)) { | |
154 | fprintf(stderr, "Fatal: kvm vcpu reset failed\n"); | |
155 | abort(); | |
156 | } | |
157 | } | |
5832d1f2 | 158 | |
6f725c13 GC |
159 | int kvm_irqchip_in_kernel(void) |
160 | { | |
161 | return kvm_state->irqchip_in_kernel; | |
162 | } | |
163 | ||
164 | int kvm_pit_in_kernel(void) | |
165 | { | |
166 | return kvm_state->pit_in_kernel; | |
167 | } | |
168 | ||
169 | ||
05330448 AL |
170 | int kvm_init_vcpu(CPUState *env) |
171 | { | |
172 | KVMState *s = kvm_state; | |
173 | long mmap_size; | |
174 | int ret; | |
175 | ||
176 | dprintf("kvm_init_vcpu\n"); | |
177 | ||
984b5181 | 178 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
179 | if (ret < 0) { |
180 | dprintf("kvm_create_vcpu failed\n"); | |
181 | goto err; | |
182 | } | |
183 | ||
184 | env->kvm_fd = ret; | |
185 | env->kvm_state = s; | |
186 | ||
187 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
188 | if (mmap_size < 0) { | |
189 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
190 | goto err; | |
191 | } | |
192 | ||
193 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
194 | env->kvm_fd, 0); | |
195 | if (env->kvm_run == MAP_FAILED) { | |
196 | ret = -errno; | |
197 | dprintf("mmap'ing vcpu state failed\n"); | |
198 | goto err; | |
199 | } | |
200 | ||
201 | ret = kvm_arch_init_vcpu(env); | |
8d2ba1fb | 202 | if (ret == 0) { |
a08d4367 | 203 | qemu_register_reset(kvm_reset_vcpu, env); |
8d2ba1fb JK |
204 | ret = kvm_arch_put_registers(env); |
205 | } | |
05330448 AL |
206 | err: |
207 | return ret; | |
208 | } | |
209 | ||
f8d926e9 JK |
210 | int kvm_put_mp_state(CPUState *env) |
211 | { | |
212 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
213 | ||
214 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
215 | } | |
216 | ||
217 | int kvm_get_mp_state(CPUState *env) | |
218 | { | |
219 | struct kvm_mp_state mp_state; | |
220 | int ret; | |
221 | ||
222 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
223 | if (ret < 0) { | |
224 | return ret; | |
225 | } | |
226 | env->mp_state = mp_state.mp_state; | |
227 | return 0; | |
228 | } | |
229 | ||
5832d1f2 AL |
230 | /* |
231 | * dirty pages logging control | |
232 | */ | |
d3f8d37f | 233 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
4495d6a7 | 234 | ram_addr_t size, int flags, int mask) |
5832d1f2 AL |
235 | { |
236 | KVMState *s = kvm_state; | |
d3f8d37f | 237 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
238 | int old_flags; |
239 | ||
5832d1f2 | 240 | if (mem == NULL) { |
d3f8d37f AL |
241 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
242 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
b80a55e6 | 243 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
244 | return -EINVAL; |
245 | } | |
246 | ||
4495d6a7 | 247 | old_flags = mem->flags; |
5832d1f2 | 248 | |
4495d6a7 | 249 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
250 | mem->flags = flags; |
251 | ||
4495d6a7 JK |
252 | /* If nothing changed effectively, no need to issue ioctl */ |
253 | if (s->migration_log) { | |
254 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
255 | } | |
256 | if (flags == old_flags) { | |
257 | return 0; | |
258 | } | |
259 | ||
5832d1f2 AL |
260 | return kvm_set_user_memory_region(s, mem); |
261 | } | |
262 | ||
d3f8d37f | 263 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 264 | { |
d3f8d37f | 265 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
266 | KVM_MEM_LOG_DIRTY_PAGES, |
267 | KVM_MEM_LOG_DIRTY_PAGES); | |
268 | } | |
269 | ||
d3f8d37f | 270 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 271 | { |
d3f8d37f | 272 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
273 | 0, |
274 | KVM_MEM_LOG_DIRTY_PAGES); | |
275 | } | |
276 | ||
4495d6a7 JK |
277 | int kvm_set_migration_log(int enable) |
278 | { | |
279 | KVMState *s = kvm_state; | |
280 | KVMSlot *mem; | |
281 | int i, err; | |
282 | ||
283 | s->migration_log = enable; | |
284 | ||
285 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
286 | mem = &s->slots[i]; | |
287 | ||
288 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
289 | continue; | |
290 | } | |
291 | err = kvm_set_user_memory_region(s, mem); | |
292 | if (err) { | |
293 | return err; | |
294 | } | |
295 | } | |
296 | return 0; | |
297 | } | |
298 | ||
96c1606b AG |
299 | static int test_le_bit(unsigned long nr, unsigned char *addr) |
300 | { | |
301 | return (addr[nr >> 3] >> (nr & 7)) & 1; | |
302 | } | |
303 | ||
5832d1f2 AL |
304 | /** |
305 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
306 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
307 | * This means all bits are set to dirty. | |
308 | * | |
d3f8d37f | 309 | * @start_add: start of logged region. |
5832d1f2 AL |
310 | * @end_addr: end of logged region. |
311 | */ | |
151f7749 JK |
312 | int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
313 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
314 | { |
315 | KVMState *s = kvm_state; | |
151f7749 JK |
316 | unsigned long size, allocated_size = 0; |
317 | target_phys_addr_t phys_addr; | |
5832d1f2 | 318 | ram_addr_t addr; |
151f7749 JK |
319 | KVMDirtyLog d; |
320 | KVMSlot *mem; | |
321 | int ret = 0; | |
5832d1f2 | 322 | |
151f7749 JK |
323 | d.dirty_bitmap = NULL; |
324 | while (start_addr < end_addr) { | |
325 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
326 | if (mem == NULL) { | |
327 | break; | |
328 | } | |
5832d1f2 | 329 | |
151f7749 JK |
330 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
331 | if (!d.dirty_bitmap) { | |
332 | d.dirty_bitmap = qemu_malloc(size); | |
333 | } else if (size > allocated_size) { | |
334 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
335 | } | |
336 | allocated_size = size; | |
337 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 338 | |
151f7749 | 339 | d.slot = mem->slot; |
5832d1f2 | 340 | |
6e489f3f | 341 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
151f7749 JK |
342 | dprintf("ioctl failed %d\n", errno); |
343 | ret = -1; | |
344 | break; | |
345 | } | |
5832d1f2 | 346 | |
151f7749 JK |
347 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
348 | phys_addr < mem->start_addr + mem->memory_size; | |
349 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
96c1606b | 350 | unsigned char *bitmap = (unsigned char *)d.dirty_bitmap; |
151f7749 | 351 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
151f7749 | 352 | |
96c1606b | 353 | if (test_le_bit(nr, bitmap)) { |
151f7749 JK |
354 | cpu_physical_memory_set_dirty(addr); |
355 | } | |
356 | } | |
357 | start_addr = phys_addr; | |
5832d1f2 | 358 | } |
5832d1f2 | 359 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
360 | |
361 | return ret; | |
5832d1f2 AL |
362 | } |
363 | ||
f65ed4c1 AL |
364 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
365 | { | |
366 | int ret = -ENOSYS; | |
367 | #ifdef KVM_CAP_COALESCED_MMIO | |
368 | KVMState *s = kvm_state; | |
369 | ||
370 | if (s->coalesced_mmio) { | |
371 | struct kvm_coalesced_mmio_zone zone; | |
372 | ||
373 | zone.addr = start; | |
374 | zone.size = size; | |
375 | ||
376 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
377 | } | |
378 | #endif | |
379 | ||
380 | return ret; | |
381 | } | |
382 | ||
383 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
384 | { | |
385 | int ret = -ENOSYS; | |
386 | #ifdef KVM_CAP_COALESCED_MMIO | |
387 | KVMState *s = kvm_state; | |
388 | ||
389 | if (s->coalesced_mmio) { | |
390 | struct kvm_coalesced_mmio_zone zone; | |
391 | ||
392 | zone.addr = start; | |
393 | zone.size = size; | |
394 | ||
395 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
396 | } | |
397 | #endif | |
398 | ||
399 | return ret; | |
400 | } | |
401 | ||
ad7b8b33 AL |
402 | int kvm_check_extension(KVMState *s, unsigned int extension) |
403 | { | |
404 | int ret; | |
405 | ||
406 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
407 | if (ret < 0) { | |
408 | ret = 0; | |
409 | } | |
410 | ||
411 | return ret; | |
412 | } | |
413 | ||
05330448 AL |
414 | int kvm_init(int smp_cpus) |
415 | { | |
168ccc11 JK |
416 | static const char upgrade_note[] = |
417 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
418 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
419 | KVMState *s; |
420 | int ret; | |
421 | int i; | |
422 | ||
9f8fd694 MM |
423 | if (smp_cpus > 1) { |
424 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 425 | return -EINVAL; |
9f8fd694 | 426 | } |
05330448 AL |
427 | |
428 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 429 | |
e22a25c9 AL |
430 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
431 | TAILQ_INIT(&s->kvm_sw_breakpoints); | |
432 | #endif | |
05330448 AL |
433 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
434 | s->slots[i].slot = i; | |
435 | ||
436 | s->vmfd = -1; | |
437 | s->fd = open("/dev/kvm", O_RDWR); | |
438 | if (s->fd == -1) { | |
439 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
440 | ret = -errno; | |
441 | goto err; | |
442 | } | |
443 | ||
444 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
445 | if (ret < KVM_API_VERSION) { | |
446 | if (ret > 0) | |
447 | ret = -EINVAL; | |
448 | fprintf(stderr, "kvm version too old\n"); | |
449 | goto err; | |
450 | } | |
451 | ||
452 | if (ret > KVM_API_VERSION) { | |
453 | ret = -EINVAL; | |
454 | fprintf(stderr, "kvm version not supported\n"); | |
455 | goto err; | |
456 | } | |
457 | ||
458 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
459 | if (s->vmfd < 0) | |
460 | goto err; | |
461 | ||
462 | /* initially, KVM allocated its own memory and we had to jump through | |
463 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 464 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
465 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
466 | */ | |
ad7b8b33 AL |
467 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
468 | ret = -EINVAL; | |
168ccc11 JK |
469 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
470 | upgrade_note); | |
05330448 AL |
471 | goto err; |
472 | } | |
473 | ||
d85dc283 AL |
474 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
475 | * destroyed properly. Since we rely on this capability, refuse to work | |
476 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
477 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
478 | ret = -EINVAL; | |
d85dc283 AL |
479 | |
480 | fprintf(stderr, | |
168ccc11 JK |
481 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
482 | upgrade_note); | |
d85dc283 AL |
483 | goto err; |
484 | } | |
485 | ||
f65ed4c1 | 486 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 AL |
487 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
488 | #else | |
489 | s->coalesced_mmio = 0; | |
f65ed4c1 AL |
490 | #endif |
491 | ||
e69917e2 JK |
492 | s->broken_set_mem_region = 1; |
493 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
494 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
495 | if (ret > 0) { | |
496 | s->broken_set_mem_region = 0; | |
497 | } | |
498 | #endif | |
499 | ||
05330448 AL |
500 | ret = kvm_arch_init(s, smp_cpus); |
501 | if (ret < 0) | |
502 | goto err; | |
503 | ||
504 | kvm_state = s; | |
505 | ||
506 | return 0; | |
507 | ||
508 | err: | |
509 | if (s) { | |
510 | if (s->vmfd != -1) | |
511 | close(s->vmfd); | |
512 | if (s->fd != -1) | |
513 | close(s->fd); | |
514 | } | |
515 | qemu_free(s); | |
516 | ||
517 | return ret; | |
518 | } | |
519 | ||
520 | static int kvm_handle_io(CPUState *env, uint16_t port, void *data, | |
521 | int direction, int size, uint32_t count) | |
522 | { | |
523 | int i; | |
524 | uint8_t *ptr = data; | |
525 | ||
526 | for (i = 0; i < count; i++) { | |
527 | if (direction == KVM_EXIT_IO_IN) { | |
528 | switch (size) { | |
529 | case 1: | |
530 | stb_p(ptr, cpu_inb(env, port)); | |
531 | break; | |
532 | case 2: | |
533 | stw_p(ptr, cpu_inw(env, port)); | |
534 | break; | |
535 | case 4: | |
536 | stl_p(ptr, cpu_inl(env, port)); | |
537 | break; | |
538 | } | |
539 | } else { | |
540 | switch (size) { | |
541 | case 1: | |
542 | cpu_outb(env, port, ldub_p(ptr)); | |
543 | break; | |
544 | case 2: | |
545 | cpu_outw(env, port, lduw_p(ptr)); | |
546 | break; | |
547 | case 4: | |
548 | cpu_outl(env, port, ldl_p(ptr)); | |
549 | break; | |
550 | } | |
551 | } | |
552 | ||
553 | ptr += size; | |
554 | } | |
555 | ||
556 | return 1; | |
557 | } | |
558 | ||
f65ed4c1 AL |
559 | static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) |
560 | { | |
561 | #ifdef KVM_CAP_COALESCED_MMIO | |
562 | KVMState *s = kvm_state; | |
563 | if (s->coalesced_mmio) { | |
564 | struct kvm_coalesced_mmio_ring *ring; | |
565 | ||
566 | ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); | |
567 | while (ring->first != ring->last) { | |
568 | struct kvm_coalesced_mmio *ent; | |
569 | ||
570 | ent = &ring->coalesced_mmio[ring->first]; | |
571 | ||
572 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
573 | /* FIXME smp_wmb() */ | |
574 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
575 | } | |
576 | } | |
577 | #endif | |
578 | } | |
579 | ||
4c0960c0 AK |
580 | void kvm_cpu_synchronize_state(CPUState *env) |
581 | { | |
582 | if (!env->kvm_state->regs_modified) { | |
583 | kvm_arch_get_registers(env); | |
584 | env->kvm_state->regs_modified = 1; | |
585 | } | |
586 | } | |
587 | ||
05330448 AL |
588 | int kvm_cpu_exec(CPUState *env) |
589 | { | |
590 | struct kvm_run *run = env->kvm_run; | |
591 | int ret; | |
592 | ||
593 | dprintf("kvm_cpu_exec()\n"); | |
594 | ||
595 | do { | |
be214e6c | 596 | if (env->exit_request) { |
05330448 AL |
597 | dprintf("interrupt exit requested\n"); |
598 | ret = 0; | |
599 | break; | |
600 | } | |
601 | ||
4c0960c0 AK |
602 | if (env->kvm_state->regs_modified) { |
603 | kvm_arch_put_registers(env); | |
604 | env->kvm_state->regs_modified = 0; | |
605 | } | |
606 | ||
8c14c173 | 607 | kvm_arch_pre_run(env, run); |
05330448 AL |
608 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
609 | kvm_arch_post_run(env, run); | |
610 | ||
611 | if (ret == -EINTR || ret == -EAGAIN) { | |
612 | dprintf("io window exit\n"); | |
613 | ret = 0; | |
614 | break; | |
615 | } | |
616 | ||
617 | if (ret < 0) { | |
618 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
619 | abort(); | |
620 | } | |
621 | ||
f65ed4c1 AL |
622 | kvm_run_coalesced_mmio(env, run); |
623 | ||
05330448 AL |
624 | ret = 0; /* exit loop */ |
625 | switch (run->exit_reason) { | |
626 | case KVM_EXIT_IO: | |
627 | dprintf("handle_io\n"); | |
628 | ret = kvm_handle_io(env, run->io.port, | |
629 | (uint8_t *)run + run->io.data_offset, | |
630 | run->io.direction, | |
631 | run->io.size, | |
632 | run->io.count); | |
633 | break; | |
634 | case KVM_EXIT_MMIO: | |
635 | dprintf("handle_mmio\n"); | |
636 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
637 | run->mmio.data, | |
638 | run->mmio.len, | |
639 | run->mmio.is_write); | |
640 | ret = 1; | |
641 | break; | |
642 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
643 | dprintf("irq_window_open\n"); | |
644 | break; | |
645 | case KVM_EXIT_SHUTDOWN: | |
646 | dprintf("shutdown\n"); | |
647 | qemu_system_reset_request(); | |
648 | ret = 1; | |
649 | break; | |
650 | case KVM_EXIT_UNKNOWN: | |
651 | dprintf("kvm_exit_unknown\n"); | |
652 | break; | |
653 | case KVM_EXIT_FAIL_ENTRY: | |
654 | dprintf("kvm_exit_fail_entry\n"); | |
655 | break; | |
656 | case KVM_EXIT_EXCEPTION: | |
657 | dprintf("kvm_exit_exception\n"); | |
658 | break; | |
659 | case KVM_EXIT_DEBUG: | |
660 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
661 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
662 | if (kvm_arch_debug(&run->debug.arch)) { | |
663 | gdb_set_stop_cpu(env); | |
664 | vm_stop(EXCP_DEBUG); | |
665 | env->exception_index = EXCP_DEBUG; | |
666 | return 0; | |
667 | } | |
668 | /* re-enter, this exception was guest-internal */ | |
669 | ret = 1; | |
670 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
671 | break; |
672 | default: | |
673 | dprintf("kvm_arch_handle_exit\n"); | |
674 | ret = kvm_arch_handle_exit(env, run); | |
675 | break; | |
676 | } | |
677 | } while (ret > 0); | |
678 | ||
be214e6c AJ |
679 | if (env->exit_request) { |
680 | env->exit_request = 0; | |
becfc390 AL |
681 | env->exception_index = EXCP_INTERRUPT; |
682 | } | |
683 | ||
05330448 AL |
684 | return ret; |
685 | } | |
686 | ||
687 | void kvm_set_phys_mem(target_phys_addr_t start_addr, | |
688 | ram_addr_t size, | |
689 | ram_addr_t phys_offset) | |
690 | { | |
691 | KVMState *s = kvm_state; | |
692 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
6152e2ae AL |
693 | KVMSlot *mem, old; |
694 | int err; | |
05330448 | 695 | |
d3f8d37f | 696 | if (start_addr & ~TARGET_PAGE_MASK) { |
e6f4afe0 JK |
697 | if (flags >= IO_MEM_UNASSIGNED) { |
698 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
699 | start_addr + size)) { | |
700 | return; | |
701 | } | |
702 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
703 | } else { | |
704 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
705 | } | |
d3f8d37f AL |
706 | abort(); |
707 | } | |
708 | ||
05330448 AL |
709 | /* KVM does not support read-only slots */ |
710 | phys_offset &= ~IO_MEM_ROM; | |
711 | ||
6152e2ae AL |
712 | while (1) { |
713 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
714 | if (!mem) { | |
715 | break; | |
716 | } | |
62d60e8c | 717 | |
6152e2ae AL |
718 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && |
719 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
720 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
721 | /* The new slot fits into the existing one and comes with | |
722 | * identical parameters - nothing to be done. */ | |
05330448 | 723 | return; |
6152e2ae AL |
724 | } |
725 | ||
726 | old = *mem; | |
727 | ||
728 | /* unregister the overlapping slot */ | |
729 | mem->memory_size = 0; | |
730 | err = kvm_set_user_memory_region(s, mem); | |
731 | if (err) { | |
732 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
733 | __func__, strerror(-err)); | |
62d60e8c AL |
734 | abort(); |
735 | } | |
6152e2ae AL |
736 | |
737 | /* Workaround for older KVM versions: we can't join slots, even not by | |
738 | * unregistering the previous ones and then registering the larger | |
739 | * slot. We have to maintain the existing fragmentation. Sigh. | |
740 | * | |
741 | * This workaround assumes that the new slot starts at the same | |
742 | * address as the first existing one. If not or if some overlapping | |
743 | * slot comes around later, we will fail (not seen in practice so far) | |
744 | * - and actually require a recent KVM version. */ | |
e69917e2 JK |
745 | if (s->broken_set_mem_region && |
746 | old.start_addr == start_addr && old.memory_size < size && | |
6152e2ae AL |
747 | flags < IO_MEM_UNASSIGNED) { |
748 | mem = kvm_alloc_slot(s); | |
749 | mem->memory_size = old.memory_size; | |
750 | mem->start_addr = old.start_addr; | |
751 | mem->phys_offset = old.phys_offset; | |
752 | mem->flags = 0; | |
753 | ||
754 | err = kvm_set_user_memory_region(s, mem); | |
755 | if (err) { | |
756 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
757 | strerror(-err)); | |
758 | abort(); | |
759 | } | |
760 | ||
761 | start_addr += old.memory_size; | |
762 | phys_offset += old.memory_size; | |
763 | size -= old.memory_size; | |
764 | continue; | |
765 | } | |
766 | ||
767 | /* register prefix slot */ | |
768 | if (old.start_addr < start_addr) { | |
769 | mem = kvm_alloc_slot(s); | |
770 | mem->memory_size = start_addr - old.start_addr; | |
771 | mem->start_addr = old.start_addr; | |
772 | mem->phys_offset = old.phys_offset; | |
773 | mem->flags = 0; | |
774 | ||
775 | err = kvm_set_user_memory_region(s, mem); | |
776 | if (err) { | |
777 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
778 | __func__, strerror(-err)); | |
779 | abort(); | |
780 | } | |
781 | } | |
782 | ||
783 | /* register suffix slot */ | |
784 | if (old.start_addr + old.memory_size > start_addr + size) { | |
785 | ram_addr_t size_delta; | |
786 | ||
787 | mem = kvm_alloc_slot(s); | |
788 | mem->start_addr = start_addr + size; | |
789 | size_delta = mem->start_addr - old.start_addr; | |
790 | mem->memory_size = old.memory_size - size_delta; | |
791 | mem->phys_offset = old.phys_offset + size_delta; | |
792 | mem->flags = 0; | |
793 | ||
794 | err = kvm_set_user_memory_region(s, mem); | |
795 | if (err) { | |
796 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
797 | __func__, strerror(-err)); | |
798 | abort(); | |
799 | } | |
800 | } | |
05330448 | 801 | } |
6152e2ae AL |
802 | |
803 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
804 | if (!size) | |
805 | return; | |
806 | ||
05330448 AL |
807 | /* KVM does not need to know about this memory */ |
808 | if (flags >= IO_MEM_UNASSIGNED) | |
809 | return; | |
810 | ||
811 | mem = kvm_alloc_slot(s); | |
812 | mem->memory_size = size; | |
34fc643f AL |
813 | mem->start_addr = start_addr; |
814 | mem->phys_offset = phys_offset; | |
05330448 AL |
815 | mem->flags = 0; |
816 | ||
6152e2ae AL |
817 | err = kvm_set_user_memory_region(s, mem); |
818 | if (err) { | |
819 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
820 | strerror(-err)); | |
821 | abort(); | |
822 | } | |
05330448 AL |
823 | } |
824 | ||
984b5181 | 825 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
826 | { |
827 | int ret; | |
984b5181 AL |
828 | void *arg; |
829 | va_list ap; | |
05330448 | 830 | |
984b5181 AL |
831 | va_start(ap, type); |
832 | arg = va_arg(ap, void *); | |
833 | va_end(ap); | |
834 | ||
835 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
836 | if (ret == -1) |
837 | ret = -errno; | |
838 | ||
839 | return ret; | |
840 | } | |
841 | ||
984b5181 | 842 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
843 | { |
844 | int ret; | |
984b5181 AL |
845 | void *arg; |
846 | va_list ap; | |
847 | ||
848 | va_start(ap, type); | |
849 | arg = va_arg(ap, void *); | |
850 | va_end(ap); | |
05330448 | 851 | |
984b5181 | 852 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
853 | if (ret == -1) |
854 | ret = -errno; | |
855 | ||
856 | return ret; | |
857 | } | |
858 | ||
984b5181 | 859 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
860 | { |
861 | int ret; | |
984b5181 AL |
862 | void *arg; |
863 | va_list ap; | |
864 | ||
865 | va_start(ap, type); | |
866 | arg = va_arg(ap, void *); | |
867 | va_end(ap); | |
05330448 | 868 | |
984b5181 | 869 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
870 | if (ret == -1) |
871 | ret = -errno; | |
872 | ||
873 | return ret; | |
874 | } | |
bd322087 AL |
875 | |
876 | int kvm_has_sync_mmu(void) | |
877 | { | |
a9c11522 | 878 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
879 | KVMState *s = kvm_state; |
880 | ||
ad7b8b33 AL |
881 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
882 | #else | |
bd322087 | 883 | return 0; |
ad7b8b33 | 884 | #endif |
bd322087 | 885 | } |
e22a25c9 | 886 | |
6f0437e8 JK |
887 | void kvm_setup_guest_memory(void *start, size_t size) |
888 | { | |
889 | if (!kvm_has_sync_mmu()) { | |
890 | #ifdef MADV_DONTFORK | |
891 | int ret = madvise(start, size, MADV_DONTFORK); | |
892 | ||
893 | if (ret) { | |
894 | perror("madvice"); | |
895 | exit(1); | |
896 | } | |
897 | #else | |
898 | fprintf(stderr, | |
899 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
900 | exit(1); | |
901 | #endif | |
902 | } | |
903 | } | |
904 | ||
e22a25c9 | 905 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
fc5d642f LC |
906 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
907 | { | |
908 | if (env == cpu_single_env) { | |
909 | func(data); | |
910 | return; | |
911 | } | |
912 | abort(); | |
913 | } | |
914 | ||
e22a25c9 AL |
915 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
916 | target_ulong pc) | |
917 | { | |
918 | struct kvm_sw_breakpoint *bp; | |
919 | ||
920 | TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | |
921 | if (bp->pc == pc) | |
922 | return bp; | |
923 | } | |
924 | return NULL; | |
925 | } | |
926 | ||
927 | int kvm_sw_breakpoints_active(CPUState *env) | |
928 | { | |
929 | return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | |
930 | } | |
931 | ||
452e4751 GC |
932 | struct kvm_set_guest_debug_data { |
933 | struct kvm_guest_debug dbg; | |
934 | CPUState *env; | |
935 | int err; | |
936 | }; | |
937 | ||
938 | static void kvm_invoke_set_guest_debug(void *data) | |
939 | { | |
940 | struct kvm_set_guest_debug_data *dbg_data = data; | |
941 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
942 | } | |
943 | ||
e22a25c9 AL |
944 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
945 | { | |
452e4751 | 946 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 947 | |
452e4751 | 948 | data.dbg.control = 0; |
e22a25c9 | 949 | if (env->singlestep_enabled) |
452e4751 | 950 | data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
e22a25c9 | 951 | |
452e4751 GC |
952 | kvm_arch_update_guest_debug(env, &data.dbg); |
953 | data.dbg.control |= reinject_trap; | |
954 | data.env = env; | |
e22a25c9 | 955 | |
452e4751 GC |
956 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
957 | return data.err; | |
e22a25c9 AL |
958 | } |
959 | ||
960 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
961 | target_ulong len, int type) | |
962 | { | |
963 | struct kvm_sw_breakpoint *bp; | |
964 | CPUState *env; | |
965 | int err; | |
966 | ||
967 | if (type == GDB_BREAKPOINT_SW) { | |
968 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
969 | if (bp) { | |
970 | bp->use_count++; | |
971 | return 0; | |
972 | } | |
973 | ||
974 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
975 | if (!bp) | |
976 | return -ENOMEM; | |
977 | ||
978 | bp->pc = addr; | |
979 | bp->use_count = 1; | |
980 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
981 | if (err) { | |
982 | free(bp); | |
983 | return err; | |
984 | } | |
985 | ||
986 | TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | |
987 | bp, entry); | |
988 | } else { | |
989 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
990 | if (err) | |
991 | return err; | |
992 | } | |
993 | ||
994 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
995 | err = kvm_update_guest_debug(env, 0); | |
996 | if (err) | |
997 | return err; | |
998 | } | |
999 | return 0; | |
1000 | } | |
1001 | ||
1002 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1003 | target_ulong len, int type) | |
1004 | { | |
1005 | struct kvm_sw_breakpoint *bp; | |
1006 | CPUState *env; | |
1007 | int err; | |
1008 | ||
1009 | if (type == GDB_BREAKPOINT_SW) { | |
1010 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1011 | if (!bp) | |
1012 | return -ENOENT; | |
1013 | ||
1014 | if (bp->use_count > 1) { | |
1015 | bp->use_count--; | |
1016 | return 0; | |
1017 | } | |
1018 | ||
1019 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1020 | if (err) | |
1021 | return err; | |
1022 | ||
1023 | TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1024 | qemu_free(bp); | |
1025 | } else { | |
1026 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1027 | if (err) | |
1028 | return err; | |
1029 | } | |
1030 | ||
1031 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1032 | err = kvm_update_guest_debug(env, 0); | |
1033 | if (err) | |
1034 | return err; | |
1035 | } | |
1036 | return 0; | |
1037 | } | |
1038 | ||
1039 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1040 | { | |
1041 | struct kvm_sw_breakpoint *bp, *next; | |
1042 | KVMState *s = current_env->kvm_state; | |
1043 | CPUState *env; | |
1044 | ||
1045 | TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1046 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | |
1047 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1048 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1049 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1050 | break; | |
1051 | } | |
1052 | } | |
1053 | } | |
1054 | kvm_arch_remove_all_hw_breakpoints(); | |
1055 | ||
1056 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1057 | kvm_update_guest_debug(env, 0); | |
1058 | } | |
1059 | ||
1060 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1061 | ||
1062 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1063 | { | |
1064 | return -EINVAL; | |
1065 | } | |
1066 | ||
1067 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1068 | target_ulong len, int type) | |
1069 | { | |
1070 | return -EINVAL; | |
1071 | } | |
1072 | ||
1073 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1074 | target_ulong len, int type) | |
1075 | { | |
1076 | return -EINVAL; | |
1077 | } | |
1078 | ||
1079 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1080 | { | |
1081 | } | |
1082 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |