]> Git Repo - qemu.git/blame - block/qcow2-cluster.c
linux-user: Fix getdents emulation for 64 bit guest on 32 bit host
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
45aba42f
KW
26#include <zlib.h>
27
c9a442e4 28#include "qapi/error.h"
45aba42f 29#include "qemu-common.h"
737e150e 30#include "block/block_int.h"
45aba42f 31#include "block/qcow2.h"
58369e22 32#include "qemu/bswap.h"
3cce16f4 33#include "trace.h"
45aba42f 34
46b732cd
PB
35int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
36{
37 BDRVQcow2State *s = bs->opaque;
38 int new_l1_size, i, ret;
39
40 if (exact_size >= s->l1_size) {
41 return 0;
42 }
43
44 new_l1_size = exact_size;
45
46#ifdef DEBUG_ALLOC2
47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48#endif
49
50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52 new_l1_size * sizeof(uint64_t),
53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54 if (ret < 0) {
55 goto fail;
56 }
57
58 ret = bdrv_flush(bs->file->bs);
59 if (ret < 0) {
60 goto fail;
61 }
62
63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 continue;
67 }
68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69 s->cluster_size, QCOW2_DISCARD_ALWAYS);
70 s->l1_table[i] = 0;
71 }
72 return 0;
73
74fail:
75 /*
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
79 */
80 memset(s->l1_table + new_l1_size, 0,
81 (s->l1_size - new_l1_size) * sizeof(uint64_t));
82 return ret;
83}
84
2cf7cfa1
KW
85int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 bool exact_size)
45aba42f 87{
ff99129a 88 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 89 int new_l1_size2, ret, i;
45aba42f 90 uint64_t *new_l1_table;
fda74f82 91 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 92 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
93 uint8_t data[12];
94
72893756 95 if (min_size <= s->l1_size)
45aba42f 96 return 0;
72893756 97
b93f9950
HR
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
100 * new_l1_size) */
101 if (min_size > INT_MAX / sizeof(uint64_t)) {
102 return -EFBIG;
103 }
104
72893756
SH
105 if (exact_size) {
106 new_l1_size = min_size;
107 } else {
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size = s->l1_size;
110 if (new_l1_size == 0) {
111 new_l1_size = 1;
112 }
113 while (min_size > new_l1_size) {
21cf3e12 114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
72893756 115 }
45aba42f 116 }
72893756 117
84c26520
HR
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2cf7cfa1
KW
120 return -EFBIG;
121 }
122
45aba42f 123#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125 s->l1_size, new_l1_size);
45aba42f
KW
126#endif
127
128 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
9a4f4c31 129 new_l1_table = qemu_try_blockalign(bs->file->bs,
9e029689 130 ROUND_UP(new_l1_size2, 512));
de82815d
KW
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
133 }
9e029689 134 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
de82815d 135
0647d47c
SH
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
138 }
45aba42f
KW
139
140 /* write new table (align to cluster) */
66f82cee 141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 143 if (new_l1_table_offset < 0) {
de82815d 144 qemu_vfree(new_l1_table);
5d757b56
KW
145 return new_l1_table_offset;
146 }
29c1a730
KW
147
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
80fa3341 150 goto fail;
29c1a730 151 }
45aba42f 152
cf93980e
HR
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
231bb267
HR
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2);
cf93980e
HR
157 if (ret < 0) {
158 goto fail;
159 }
160
66f82cee 161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
d9ca2ea2 164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
9a4f4c31 165 new_l1_table, new_l1_size2);
8b3b7206 166 if (ret < 0)
45aba42f
KW
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170
171 /* set new table */
66f82cee 172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
f1f7a1dd 173 stl_be_p(data, new_l1_size);
e4ef9f46 174 stq_be_p(data + 4, new_l1_table_offset);
d9ca2ea2 175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
9a4f4c31 176 data, sizeof(data));
8b3b7206 177 if (ret < 0) {
45aba42f 178 goto fail;
fb8fa77c 179 }
de82815d 180 qemu_vfree(s->l1_table);
fda74f82 181 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
fda74f82 184 old_l1_size = s->l1_size;
45aba42f 185 s->l1_size = new_l1_size;
fda74f82
HR
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER);
45aba42f
KW
188 return 0;
189 fail:
de82815d 190 qemu_vfree(new_l1_table);
6cfcb9b8
KW
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
8b3b7206 193 return ret;
45aba42f
KW
194}
195
45aba42f
KW
196/*
197 * l2_load
198 *
e2b5713e
AG
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
201 * table to load.
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
45aba42f 204 *
e2b5713e
AG
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
208 * file.
45aba42f 209 */
e2b5713e
AG
210static int l2_load(BlockDriverState *bs, uint64_t offset,
211 uint64_t l2_offset, uint64_t **l2_slice)
45aba42f 212{
ff99129a 213 BDRVQcow2State *s = bs->opaque;
e2b5713e
AG
214 int start_of_slice = sizeof(uint64_t) *
215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
45aba42f 216
e2b5713e
AG
217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218 (void **)l2_slice);
45aba42f
KW
219}
220
6583e3c7
KW
221/*
222 * Writes one sector of the L1 table to the disk (can't update single entries
223 * and we really don't want bdrv_pread to perform a read-modify-write)
224 */
225#define L1_ENTRIES_PER_SECTOR (512 / 8)
e23e400e 226int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 227{
ff99129a 228 BDRVQcow2State *s = bs->opaque;
a1391444 229 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
6583e3c7 230 int l1_start_index;
f7defcb6 231 int i, ret;
6583e3c7
KW
232
233 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
a1391444
HR
234 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
235 i++)
236 {
6583e3c7
KW
237 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
238 }
239
231bb267 240 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
cf93980e
HR
241 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
242 if (ret < 0) {
243 return ret;
244 }
245
66f82cee 246 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
d9ca2ea2 247 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31
KW
248 s->l1_table_offset + 8 * l1_start_index,
249 buf, sizeof(buf));
f7defcb6
KW
250 if (ret < 0) {
251 return ret;
6583e3c7
KW
252 }
253
254 return 0;
255}
256
45aba42f
KW
257/*
258 * l2_allocate
259 *
260 * Allocate a new l2 entry in the file. If l1_index points to an already
261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
262 * table) copy the contents of the old L2 table into the newly allocated one.
263 * Otherwise the new table is initialized with zeros.
264 *
265 */
266
3861946a 267static int l2_allocate(BlockDriverState *bs, int l1_index)
45aba42f 268{
ff99129a 269 BDRVQcow2State *s = bs->opaque;
6583e3c7 270 uint64_t old_l2_offset;
3861946a
AG
271 uint64_t *l2_slice = NULL;
272 unsigned slice, slice_size2, n_slices;
f4f0d391 273 int64_t l2_offset;
c46e1167 274 int ret;
45aba42f
KW
275
276 old_l2_offset = s->l1_table[l1_index];
277
3cce16f4
KW
278 trace_qcow2_l2_allocate(bs, l1_index);
279
45aba42f
KW
280 /* allocate a new l2 entry */
281
ed6ccf0f 282 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 283 if (l2_offset < 0) {
be0b742e
HR
284 ret = l2_offset;
285 goto fail;
5d757b56 286 }
29c1a730 287
98839750
AG
288 /* If we're allocating the table at offset 0 then something is wrong */
289 if (l2_offset == 0) {
290 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
291 "allocation of L2 table at offset 0");
292 ret = -EIO;
293 goto fail;
294 }
295
29c1a730
KW
296 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
297 if (ret < 0) {
298 goto fail;
299 }
45aba42f 300
45aba42f
KW
301 /* allocate a new entry in the l2 cache */
302
3861946a
AG
303 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
304 n_slices = s->cluster_size / slice_size2;
305
3cce16f4 306 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
3861946a 307 for (slice = 0; slice < n_slices; slice++) {
6580bb09 308 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
3861946a
AG
309 l2_offset + slice * slice_size2,
310 (void **) &l2_slice);
6580bb09
AG
311 if (ret < 0) {
312 goto fail;
313 }
29c1a730 314
6580bb09 315 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
3861946a
AG
316 /* if there was no old l2 table, clear the new slice */
317 memset(l2_slice, 0, slice_size2);
6580bb09 318 } else {
3861946a
AG
319 uint64_t *old_slice;
320 uint64_t old_l2_slice_offset =
321 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
29c1a730 322
3861946a 323 /* if there was an old l2 table, read a slice from the disk */
6580bb09 324 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
3861946a
AG
325 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
326 (void **) &old_slice);
6580bb09
AG
327 if (ret < 0) {
328 goto fail;
329 }
330
3861946a 331 memcpy(l2_slice, old_slice, slice_size2);
6580bb09 332
3861946a 333 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
29c1a730
KW
334 }
335
3861946a 336 /* write the l2 slice to the file */
6580bb09 337 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 338
6580bb09 339 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
3861946a
AG
340 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
341 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 342 }
29c1a730 343
29c1a730 344 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 345 if (ret < 0) {
175e1152
KW
346 goto fail;
347 }
348
349 /* update the L1 entry */
3cce16f4 350 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 351 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 352 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
353 if (ret < 0) {
354 goto fail;
c46e1167 355 }
45aba42f 356
3cce16f4 357 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 358 return 0;
175e1152
KW
359
360fail:
3cce16f4 361 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
3861946a
AG
362 if (l2_slice != NULL) {
363 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
8585afd8 364 }
68dba0bf 365 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9
HR
366 if (l2_offset > 0) {
367 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
368 QCOW2_DISCARD_ALWAYS);
369 }
175e1152 370 return ret;
45aba42f
KW
371}
372
2bfcc4a0 373/*
13f893c4 374 * Checks how many clusters in a given L2 slice are contiguous in the image
2bfcc4a0
KW
375 * file. As soon as one of the flags in the bitmask stop_flags changes compared
376 * to the first cluster, the search is stopped and the cluster is not counted
377 * as contiguous. (This allows it, for example, to stop at the first compressed
378 * cluster which may require a different handling)
379 */
b6d36def 380static int count_contiguous_clusters(int nb_clusters, int cluster_size,
13f893c4 381 uint64_t *l2_slice, uint64_t stop_flags)
45aba42f
KW
382{
383 int i;
3ef95218 384 QCow2ClusterType first_cluster_type;
78a52ad5 385 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
13f893c4 386 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
15684a47 387 uint64_t offset = first_entry & mask;
45aba42f 388
564a6b69 389 if (!offset) {
45aba42f 390 return 0;
564a6b69 391 }
45aba42f 392
564a6b69
HR
393 /* must be allocated */
394 first_cluster_type = qcow2_get_cluster_type(first_entry);
395 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
fdfab37d 396 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
15684a47 397
61653008 398 for (i = 0; i < nb_clusters; i++) {
13f893c4 399 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
2bfcc4a0 400 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 401 break;
2bfcc4a0
KW
402 }
403 }
45aba42f 404
61653008 405 return i;
45aba42f
KW
406}
407
4341df8a
EB
408/*
409 * Checks how many consecutive unallocated clusters in a given L2
c26f10ba 410 * slice have the same cluster type.
4341df8a
EB
411 */
412static int count_contiguous_clusters_unallocated(int nb_clusters,
c26f10ba 413 uint64_t *l2_slice,
3ef95218 414 QCow2ClusterType wanted_type)
45aba42f 415{
2bfcc4a0
KW
416 int i;
417
fdfab37d 418 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
4341df8a 419 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
2bfcc4a0 420 for (i = 0; i < nb_clusters; i++) {
c26f10ba 421 uint64_t entry = be64_to_cpu(l2_slice[i]);
3ef95218 422 QCow2ClusterType type = qcow2_get_cluster_type(entry);
45aba42f 423
fdfab37d 424 if (type != wanted_type) {
2bfcc4a0
KW
425 break;
426 }
427 }
45aba42f
KW
428
429 return i;
430}
431
672f0f2c
AG
432static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
433 uint64_t src_cluster_offset,
434 unsigned offset_in_cluster,
86b862c4 435 QEMUIOVector *qiov)
45aba42f 436{
aaa4d20b 437 int ret;
1b9f1491 438
86b862c4 439 if (qiov->size == 0) {
99450c6f
AG
440 return 0;
441 }
442
66f82cee 443 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6 444
dba28555 445 if (!bs->drv) {
672f0f2c 446 return -ENOMEDIUM;
dba28555
HR
447 }
448
aef4acb6
SH
449 /* Call .bdrv_co_readv() directly instead of using the public block-layer
450 * interface. This avoids double I/O throttling and request tracking,
451 * which can lead to deadlock when block layer copy-on-read is enabled.
452 */
aaa4d20b 453 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
86b862c4 454 qiov->size, qiov, 0);
1b9f1491 455 if (ret < 0) {
672f0f2c 456 return ret;
1b9f1491
KW
457 }
458
672f0f2c
AG
459 return 0;
460}
461
462static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
463 uint64_t src_cluster_offset,
4652b8f3 464 uint64_t cluster_offset,
672f0f2c
AG
465 unsigned offset_in_cluster,
466 uint8_t *buffer,
467 unsigned bytes)
468{
469 if (bytes && bs->encrypted) {
470 BDRVQcow2State *s = bs->opaque;
4609742a 471 int64_t offset = (s->crypt_physical_offset ?
4652b8f3 472 (cluster_offset + offset_in_cluster) :
4609742a 473 (src_cluster_offset + offset_in_cluster));
aaa4d20b
KW
474 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
475 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
b25b387f 476 assert(s->crypto);
4609742a 477 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
672f0f2c 478 return false;
f6fa64f6 479 }
45aba42f 480 }
672f0f2c
AG
481 return true;
482}
483
484static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
485 uint64_t cluster_offset,
486 unsigned offset_in_cluster,
86b862c4 487 QEMUIOVector *qiov)
672f0f2c 488{
672f0f2c
AG
489 int ret;
490
86b862c4 491 if (qiov->size == 0) {
672f0f2c
AG
492 return 0;
493 }
494
231bb267 495 ret = qcow2_pre_write_overlap_check(bs, 0,
86b862c4 496 cluster_offset + offset_in_cluster, qiov->size);
cf93980e 497 if (ret < 0) {
672f0f2c 498 return ret;
cf93980e
HR
499 }
500
66f82cee 501 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
a03ef88f 502 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
86b862c4 503 qiov->size, qiov, 0);
1b9f1491 504 if (ret < 0) {
672f0f2c 505 return ret;
1b9f1491
KW
506 }
507
672f0f2c 508 return 0;
45aba42f
KW
509}
510
511
512/*
513 * get_cluster_offset
514 *
ecfe1863
KW
515 * For a given offset of the virtual disk, find the cluster type and offset in
516 * the qcow2 file. The offset is stored in *cluster_offset.
45aba42f 517 *
ecfe1863
KW
518 * On entry, *bytes is the maximum number of contiguous bytes starting at
519 * offset that we are interested in.
45aba42f 520 *
ecfe1863
KW
521 * On exit, *bytes is the number of bytes starting at offset that have the same
522 * cluster type and (if applicable) are stored contiguously in the image file.
523 * Compressed clusters are always returned one by one.
45aba42f 524 *
68d000a3
KW
525 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
526 * cases.
45aba42f 527 */
1c46efaa 528int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
ecfe1863 529 unsigned int *bytes, uint64_t *cluster_offset)
45aba42f 530{
ff99129a 531 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 532 unsigned int l2_index;
fd630039
AG
533 uint64_t l1_index, l2_offset, *l2_slice;
534 int c;
c834cba9
HR
535 unsigned int offset_in_cluster;
536 uint64_t bytes_available, bytes_needed, nb_clusters;
3ef95218 537 QCow2ClusterType type;
55c17e98 538 int ret;
45aba42f 539
b2f65d6b 540 offset_in_cluster = offset_into_cluster(s, offset);
ecfe1863 541 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
45aba42f 542
b2f65d6b 543 /* compute how many bytes there are between the start of the cluster
fd630039
AG
544 * containing offset and the end of the l2 slice that contains
545 * the entry pointing to it */
546 bytes_available =
547 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
548 << s->cluster_bits;
45aba42f 549
b2f65d6b
KW
550 if (bytes_needed > bytes_available) {
551 bytes_needed = bytes_available;
45aba42f
KW
552 }
553
1c46efaa 554 *cluster_offset = 0;
45aba42f 555
b6af0975 556 /* seek to the l2 offset in the l1 table */
45aba42f 557
05b5b6ee 558 l1_index = offset_to_l1_index(s, offset);
68d000a3 559 if (l1_index >= s->l1_size) {
3ef95218 560 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 561 goto out;
68d000a3 562 }
45aba42f 563
68d000a3
KW
564 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
565 if (!l2_offset) {
3ef95218 566 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 567 goto out;
68d000a3 568 }
45aba42f 569
a97c67ee
HR
570 if (offset_into_cluster(s, l2_offset)) {
571 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
572 " unaligned (L1 index: %#" PRIx64 ")",
573 l2_offset, l1_index);
574 return -EIO;
575 }
576
fd630039 577 /* load the l2 slice in memory */
45aba42f 578
fd630039 579 ret = l2_load(bs, offset, l2_offset, &l2_slice);
55c17e98
KW
580 if (ret < 0) {
581 return ret;
1c46efaa 582 }
45aba42f
KW
583
584 /* find the cluster offset for the given disk offset */
585
fd630039
AG
586 l2_index = offset_to_l2_slice_index(s, offset);
587 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b6d36def 588
b2f65d6b 589 nb_clusters = size_to_clusters(s, bytes_needed);
c834cba9
HR
590 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
591 * integers; the minimum cluster size is 512, so this assertion is always
592 * true */
593 assert(nb_clusters <= INT_MAX);
45aba42f 594
3ef95218 595 type = qcow2_get_cluster_type(*cluster_offset);
fdfab37d
EB
596 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
597 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
598 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
599 " in pre-v3 image (L2 offset: %#" PRIx64
600 ", L2 index: %#x)", l2_offset, l2_index);
601 ret = -EIO;
602 goto fail;
603 }
3ef95218 604 switch (type) {
68d000a3
KW
605 case QCOW2_CLUSTER_COMPRESSED:
606 /* Compressed clusters can only be processed one by one */
607 c = 1;
608 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
609 break;
fdfab37d 610 case QCOW2_CLUSTER_ZERO_PLAIN:
68d000a3 611 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f 612 /* how many empty clusters ? */
4341df8a 613 c = count_contiguous_clusters_unallocated(nb_clusters,
fd630039 614 &l2_slice[l2_index], type);
68d000a3
KW
615 *cluster_offset = 0;
616 break;
fdfab37d 617 case QCOW2_CLUSTER_ZERO_ALLOC:
68d000a3 618 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
619 /* how many allocated clusters ? */
620 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
fd630039 621 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
68d000a3 622 *cluster_offset &= L2E_OFFSET_MASK;
a97c67ee 623 if (offset_into_cluster(s, *cluster_offset)) {
fdfab37d
EB
624 qcow2_signal_corruption(bs, true, -1, -1,
625 "Cluster allocation offset %#"
a97c67ee
HR
626 PRIx64 " unaligned (L2 offset: %#" PRIx64
627 ", L2 index: %#x)", *cluster_offset,
628 l2_offset, l2_index);
629 ret = -EIO;
630 goto fail;
631 }
68d000a3 632 break;
1417d7e4
KW
633 default:
634 abort();
45aba42f
KW
635 }
636
fd630039 637 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
29c1a730 638
c834cba9 639 bytes_available = (int64_t)c * s->cluster_size;
68d000a3 640
45aba42f 641out:
b2f65d6b
KW
642 if (bytes_available > bytes_needed) {
643 bytes_available = bytes_needed;
644 }
45aba42f 645
c834cba9
HR
646 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
647 * subtracting offset_in_cluster will therefore definitely yield something
648 * not exceeding UINT_MAX */
649 assert(bytes_available - offset_in_cluster <= UINT_MAX);
ecfe1863 650 *bytes = bytes_available - offset_in_cluster;
45aba42f 651
3ef95218 652 return type;
a97c67ee
HR
653
654fail:
fd630039 655 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
a97c67ee 656 return ret;
45aba42f
KW
657}
658
659/*
660 * get_cluster_table
661 *
662 * for a given disk offset, load (and allocate if needed)
c03bfc5b 663 * the appropriate slice of its l2 table.
45aba42f 664 *
c03bfc5b 665 * the cluster index in the l2 slice is given to the caller.
45aba42f 666 *
1e3e8f1a 667 * Returns 0 on success, -errno in failure case
45aba42f 668 */
45aba42f 669static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
c03bfc5b 670 uint64_t **new_l2_slice,
45aba42f
KW
671 int *new_l2_index)
672{
ff99129a 673 BDRVQcow2State *s = bs->opaque;
2cf7cfa1
KW
674 unsigned int l2_index;
675 uint64_t l1_index, l2_offset;
c03bfc5b 676 uint64_t *l2_slice = NULL;
80ee15a6 677 int ret;
45aba42f 678
b6af0975 679 /* seek to the l2 offset in the l1 table */
45aba42f 680
05b5b6ee 681 l1_index = offset_to_l1_index(s, offset);
45aba42f 682 if (l1_index >= s->l1_size) {
72893756 683 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
684 if (ret < 0) {
685 return ret;
686 }
45aba42f 687 }
8e37f681 688
2cf7cfa1 689 assert(l1_index < s->l1_size);
8e37f681 690 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
a97c67ee
HR
691 if (offset_into_cluster(s, l2_offset)) {
692 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
693 " unaligned (L1 index: %#" PRIx64 ")",
694 l2_offset, l1_index);
695 return -EIO;
696 }
45aba42f 697
05f9ee46 698 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
16fde5f2 699 /* First allocate a new L2 table (and do COW if needed) */
3861946a 700 ret = l2_allocate(bs, l1_index);
c46e1167
KW
701 if (ret < 0) {
702 return ret;
1e3e8f1a 703 }
16fde5f2
KW
704
705 /* Then decrease the refcount of the old table */
706 if (l2_offset) {
6cfcb9b8
KW
707 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
708 QCOW2_DISCARD_OTHER);
16fde5f2 709 }
3861946a
AG
710
711 /* Get the offset of the newly-allocated l2 table */
712 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
713 assert(offset_into_cluster(s, l2_offset) == 0);
05f9ee46
AG
714 }
715
c03bfc5b
AG
716 /* load the l2 slice in memory */
717 ret = l2_load(bs, offset, l2_offset, &l2_slice);
05f9ee46
AG
718 if (ret < 0) {
719 return ret;
45aba42f
KW
720 }
721
722 /* find the cluster offset for the given disk offset */
723
c03bfc5b 724 l2_index = offset_to_l2_slice_index(s, offset);
45aba42f 725
c03bfc5b 726 *new_l2_slice = l2_slice;
45aba42f
KW
727 *new_l2_index = l2_index;
728
1e3e8f1a 729 return 0;
45aba42f
KW
730}
731
732/*
733 * alloc_compressed_cluster_offset
734 *
735 * For a given offset of the disk image, return cluster offset in
736 * qcow2 file.
737 *
738 * If the offset is not found, allocate a new compressed cluster.
739 *
740 * Return the cluster offset if successful,
741 * Return 0, otherwise.
742 *
743 */
744
ed6ccf0f
KW
745uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
746 uint64_t offset,
747 int compressed_size)
45aba42f 748{
ff99129a 749 BDRVQcow2State *s = bs->opaque;
45aba42f 750 int l2_index, ret;
e4e72548 751 uint64_t *l2_slice;
f4f0d391 752 int64_t cluster_offset;
45aba42f
KW
753 int nb_csectors;
754
e4e72548 755 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1e3e8f1a 756 if (ret < 0) {
45aba42f 757 return 0;
1e3e8f1a 758 }
45aba42f 759
b0b6862e
KW
760 /* Compression can't overwrite anything. Fail if the cluster was already
761 * allocated. */
e4e72548 762 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b0b6862e 763 if (cluster_offset & L2E_OFFSET_MASK) {
e4e72548 764 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
8f1efd00
KW
765 return 0;
766 }
45aba42f 767
ed6ccf0f 768 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 769 if (cluster_offset < 0) {
e4e72548 770 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
5d757b56
KW
771 return 0;
772 }
773
45aba42f
KW
774 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
775 (cluster_offset >> 9);
776
777 cluster_offset |= QCOW_OFLAG_COMPRESSED |
778 ((uint64_t)nb_csectors << s->csize_shift);
779
780 /* update L2 table */
781
782 /* compressed clusters never have the copied flag */
783
66f82cee 784 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
e4e72548
AG
785 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
786 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
787 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
4c1612d9 788
29c1a730 789 return cluster_offset;
4c1612d9
KW
790}
791
99450c6f 792static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
593fb83c 793{
ff99129a 794 BDRVQcow2State *s = bs->opaque;
99450c6f
AG
795 Qcow2COWRegion *start = &m->cow_start;
796 Qcow2COWRegion *end = &m->cow_end;
672f0f2c 797 unsigned buffer_size;
b3cf1c7c
AG
798 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
799 bool merge_reads;
672f0f2c 800 uint8_t *start_buffer, *end_buffer;
86b862c4 801 QEMUIOVector qiov;
593fb83c
KW
802 int ret;
803
672f0f2c 804 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
b3cf1c7c
AG
805 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
806 assert(start->offset + start->nb_bytes <= end->offset);
ee22a9d8 807 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
672f0f2c 808
99450c6f 809 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
593fb83c
KW
810 return 0;
811 }
812
b3cf1c7c
AG
813 /* If we have to read both the start and end COW regions and the
814 * middle region is not too large then perform just one read
815 * operation */
816 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
817 if (merge_reads) {
818 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
819 } else {
820 /* If we have to do two reads, add some padding in the middle
821 * if necessary to make sure that the end region is optimally
822 * aligned. */
823 size_t align = bdrv_opt_mem_align(bs);
824 assert(align > 0 && align <= UINT_MAX);
825 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
826 UINT_MAX - end->nb_bytes);
827 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
828 }
829
830 /* Reserve a buffer large enough to store all the data that we're
831 * going to read */
672f0f2c
AG
832 start_buffer = qemu_try_blockalign(bs, buffer_size);
833 if (start_buffer == NULL) {
834 return -ENOMEM;
835 }
836 /* The part of the buffer where the end region is located */
837 end_buffer = start_buffer + buffer_size - end->nb_bytes;
838
ee22a9d8 839 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
86b862c4 840
593fb83c 841 qemu_co_mutex_unlock(&s->lock);
b3cf1c7c
AG
842 /* First we read the existing data from both COW regions. We
843 * either read the whole region in one go, or the start and end
844 * regions separately. */
845 if (merge_reads) {
86b862c4
AG
846 qemu_iovec_add(&qiov, start_buffer, buffer_size);
847 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c 848 } else {
86b862c4
AG
849 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
850 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c
AG
851 if (ret < 0) {
852 goto fail;
853 }
672f0f2c 854
86b862c4
AG
855 qemu_iovec_reset(&qiov);
856 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
857 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
b3cf1c7c 858 }
593fb83c 859 if (ret < 0) {
99450c6f 860 goto fail;
593fb83c
KW
861 }
862
672f0f2c
AG
863 /* Encrypt the data if necessary before writing it */
864 if (bs->encrypted) {
4652b8f3
DB
865 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
866 start->offset, start_buffer,
867 start->nb_bytes) ||
868 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
869 end->offset, end_buffer, end->nb_bytes)) {
672f0f2c
AG
870 ret = -EIO;
871 goto fail;
872 }
873 }
874
ee22a9d8
AG
875 /* And now we can write everything. If we have the guest data we
876 * can write everything in one single operation */
877 if (m->data_qiov) {
878 qemu_iovec_reset(&qiov);
879 if (start->nb_bytes) {
880 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
881 }
882 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
883 if (end->nb_bytes) {
884 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
885 }
886 /* NOTE: we have a write_aio blkdebug event here followed by
887 * a cow_write one in do_perform_cow_write(), but there's only
888 * one single I/O operation */
889 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
890 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
891 } else {
892 /* If there's no guest data then write both COW regions separately */
893 qemu_iovec_reset(&qiov);
894 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
895 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
896 if (ret < 0) {
897 goto fail;
898 }
899
900 qemu_iovec_reset(&qiov);
901 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
902 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
672f0f2c 903 }
99450c6f
AG
904
905fail:
906 qemu_co_mutex_lock(&s->lock);
907
593fb83c
KW
908 /*
909 * Before we update the L2 table to actually point to the new cluster, we
910 * need to be sure that the refcounts have been increased and COW was
911 * handled.
912 */
99450c6f
AG
913 if (ret == 0) {
914 qcow2_cache_depends_on_flush(s->l2_table_cache);
915 }
593fb83c 916
672f0f2c 917 qemu_vfree(start_buffer);
86b862c4 918 qemu_iovec_destroy(&qiov);
99450c6f 919 return ret;
593fb83c
KW
920}
921
148da7ea 922int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f 923{
ff99129a 924 BDRVQcow2State *s = bs->opaque;
45aba42f 925 int i, j = 0, l2_index, ret;
a002c0b0 926 uint64_t *old_cluster, *l2_slice;
250196f1 927 uint64_t cluster_offset = m->alloc_offset;
45aba42f 928
3cce16f4 929 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 930 assert(m->nb_clusters > 0);
45aba42f 931
5839e53b 932 old_cluster = g_try_new(uint64_t, m->nb_clusters);
de82815d
KW
933 if (old_cluster == NULL) {
934 ret = -ENOMEM;
935 goto err;
936 }
45aba42f
KW
937
938 /* copy content of unmodified sectors */
99450c6f 939 ret = perform_cow(bs, m);
593fb83c
KW
940 if (ret < 0) {
941 goto err;
29c1a730
KW
942 }
943
593fb83c 944 /* Update L2 table. */
74c4510a 945 if (s->use_lazy_refcounts) {
280d3735
KW
946 qcow2_mark_dirty(bs);
947 }
bfe8043e
SH
948 if (qcow2_need_accurate_refcounts(s)) {
949 qcow2_cache_set_dependency(bs, s->l2_table_cache,
950 s->refcount_block_cache);
951 }
280d3735 952
a002c0b0 953 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1e3e8f1a 954 if (ret < 0) {
45aba42f 955 goto err;
1e3e8f1a 956 }
a002c0b0 957 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
45aba42f 958
a002c0b0 959 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
45aba42f
KW
960 for (i = 0; i < m->nb_clusters; i++) {
961 /* if two concurrent writes happen to the same unallocated cluster
aaa4d20b
KW
962 * each write allocates separate cluster and writes data concurrently.
963 * The first one to complete updates l2 table with pointer to its
964 * cluster the second one has to do RMW (which is done above by
965 * perform_cow()), update l2 table with its cluster pointer and free
966 * old cluster. This is what this loop does */
a002c0b0
AG
967 if (l2_slice[l2_index + i] != 0) {
968 old_cluster[j++] = l2_slice[l2_index + i];
aaa4d20b 969 }
45aba42f 970
a002c0b0 971 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
45aba42f
KW
972 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
973 }
974
9f8e668e 975
a002c0b0 976 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 977
7ec5e6a4
KW
978 /*
979 * If this was a COW, we need to decrease the refcount of the old cluster.
6cfcb9b8
KW
980 *
981 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
982 * clusters), the next write will reuse them anyway.
7ec5e6a4 983 */
564a6b69 984 if (!m->keep_old_clusters && j != 0) {
7ec5e6a4 985 for (i = 0; i < j; i++) {
6cfcb9b8
KW
986 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
987 QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
988 }
989 }
45aba42f
KW
990
991 ret = 0;
992err:
7267c094 993 g_free(old_cluster);
45aba42f
KW
994 return ret;
995 }
996
bf319ece
KW
997/*
998 * Returns the number of contiguous clusters that can be used for an allocating
999 * write, but require COW to be performed (this includes yet unallocated space,
1000 * which must copy from the backing file)
1001 */
ff99129a 1002static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
dd32c881 1003 uint64_t *l2_slice, int l2_index)
bf319ece 1004{
143550a8 1005 int i;
bf319ece 1006
143550a8 1007 for (i = 0; i < nb_clusters; i++) {
dd32c881 1008 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
3ef95218 1009 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
143550a8
KW
1010
1011 switch(cluster_type) {
1012 case QCOW2_CLUSTER_NORMAL:
1013 if (l2_entry & QCOW_OFLAG_COPIED) {
1014 goto out;
1015 }
bf319ece 1016 break;
143550a8
KW
1017 case QCOW2_CLUSTER_UNALLOCATED:
1018 case QCOW2_CLUSTER_COMPRESSED:
fdfab37d
EB
1019 case QCOW2_CLUSTER_ZERO_PLAIN:
1020 case QCOW2_CLUSTER_ZERO_ALLOC:
bf319ece 1021 break;
143550a8
KW
1022 default:
1023 abort();
1024 }
bf319ece
KW
1025 }
1026
143550a8 1027out:
bf319ece
KW
1028 assert(i <= nb_clusters);
1029 return i;
1030}
1031
250196f1 1032/*
226c3c26
KW
1033 * Check if there already is an AIO write request in flight which allocates
1034 * the same cluster. In this case we need to wait until the previous
1035 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
1036 *
1037 * Returns:
1038 * 0 if there was no dependency. *cur_bytes indicates the number of
1039 * bytes from guest_offset that can be read before the next
1040 * dependency must be processed (or the request is complete)
1041 *
1042 * -EAGAIN if we had to wait for another request, previously gathered
1043 * information on cluster allocation may be invalid now. The caller
1044 * must start over anyway, so consider *cur_bytes undefined.
250196f1 1045 */
226c3c26 1046static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 1047 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1 1048{
ff99129a 1049 BDRVQcow2State *s = bs->opaque;
250196f1 1050 QCowL2Meta *old_alloc;
65eb2e35 1051 uint64_t bytes = *cur_bytes;
250196f1 1052
250196f1
KW
1053 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1054
65eb2e35
KW
1055 uint64_t start = guest_offset;
1056 uint64_t end = start + bytes;
1057 uint64_t old_start = l2meta_cow_start(old_alloc);
1058 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 1059
d9d74f41 1060 if (end <= old_start || start >= old_end) {
250196f1
KW
1061 /* No intersection */
1062 } else {
1063 if (start < old_start) {
1064 /* Stop at the start of a running allocation */
65eb2e35 1065 bytes = old_start - start;
250196f1 1066 } else {
65eb2e35 1067 bytes = 0;
250196f1
KW
1068 }
1069
ecdd5333
KW
1070 /* Stop if already an l2meta exists. After yielding, it wouldn't
1071 * be valid any more, so we'd have to clean up the old L2Metas
1072 * and deal with requests depending on them before starting to
1073 * gather new ones. Not worth the trouble. */
1074 if (bytes == 0 && *m) {
1075 *cur_bytes = 0;
1076 return 0;
1077 }
1078
65eb2e35 1079 if (bytes == 0) {
250196f1
KW
1080 /* Wait for the dependency to complete. We need to recheck
1081 * the free/allocated clusters when we continue. */
1ace7cea 1082 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
250196f1
KW
1083 return -EAGAIN;
1084 }
1085 }
1086 }
1087
65eb2e35
KW
1088 /* Make sure that existing clusters and new allocations are only used up to
1089 * the next dependency if we shortened the request above */
1090 *cur_bytes = bytes;
250196f1 1091
226c3c26
KW
1092 return 0;
1093}
1094
0af729ec
KW
1095/*
1096 * Checks how many already allocated clusters that don't require a copy on
1097 * write there are at the given guest_offset (up to *bytes). If
1098 * *host_offset is not zero, only physically contiguous clusters beginning at
1099 * this host offset are counted.
1100 *
411d62b0
KW
1101 * Note that guest_offset may not be cluster aligned. In this case, the
1102 * returned *host_offset points to exact byte referenced by guest_offset and
1103 * therefore isn't cluster aligned as well.
0af729ec
KW
1104 *
1105 * Returns:
1106 * 0: if no allocated clusters are available at the given offset.
1107 * *bytes is normally unchanged. It is set to 0 if the cluster
1108 * is allocated and doesn't need COW, but doesn't have the right
1109 * physical offset.
1110 *
1111 * 1: if allocated clusters that don't require a COW are available at
1112 * the requested offset. *bytes may have decreased and describes
1113 * the length of the area that can be written to.
1114 *
1115 * -errno: in error cases
0af729ec
KW
1116 */
1117static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 1118 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec 1119{
ff99129a 1120 BDRVQcow2State *s = bs->opaque;
0af729ec
KW
1121 int l2_index;
1122 uint64_t cluster_offset;
cde91766 1123 uint64_t *l2_slice;
b6d36def 1124 uint64_t nb_clusters;
c53ede9f 1125 unsigned int keep_clusters;
a3f1afb4 1126 int ret;
0af729ec
KW
1127
1128 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1129 *bytes);
0af729ec 1130
411d62b0
KW
1131 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
1132 == offset_into_cluster(s, *host_offset));
1133
acb0467f 1134 /*
cde91766 1135 * Calculate the number of clusters to look for. We stop at L2 slice
acb0467f
KW
1136 * boundaries to keep things simple.
1137 */
1138 nb_clusters =
1139 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1140
cde91766
AG
1141 l2_index = offset_to_l2_slice_index(s, guest_offset);
1142 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1143 assert(nb_clusters <= INT_MAX);
acb0467f 1144
0af729ec 1145 /* Find L2 entry for the first involved cluster */
cde91766 1146 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
0af729ec
KW
1147 if (ret < 0) {
1148 return ret;
1149 }
1150
cde91766 1151 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
0af729ec
KW
1152
1153 /* Check how many clusters are already allocated and don't need COW */
1154 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1155 && (cluster_offset & QCOW_OFLAG_COPIED))
1156 {
e62daaf6
KW
1157 /* If a specific host_offset is required, check it */
1158 bool offset_matches =
1159 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1160
a97c67ee
HR
1161 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1162 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1163 "%#llx unaligned (guest offset: %#" PRIx64
1164 ")", cluster_offset & L2E_OFFSET_MASK,
1165 guest_offset);
1166 ret = -EIO;
1167 goto out;
1168 }
1169
e62daaf6
KW
1170 if (*host_offset != 0 && !offset_matches) {
1171 *bytes = 0;
1172 ret = 0;
1173 goto out;
1174 }
1175
0af729ec 1176 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 1177 keep_clusters =
acb0467f 1178 count_contiguous_clusters(nb_clusters, s->cluster_size,
cde91766 1179 &l2_slice[l2_index],
0af729ec 1180 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
1181 assert(keep_clusters <= nb_clusters);
1182
1183 *bytes = MIN(*bytes,
1184 keep_clusters * s->cluster_size
1185 - offset_into_cluster(s, guest_offset));
0af729ec
KW
1186
1187 ret = 1;
1188 } else {
0af729ec
KW
1189 ret = 0;
1190 }
1191
0af729ec 1192 /* Cleanup */
e62daaf6 1193out:
cde91766 1194 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
0af729ec 1195
e62daaf6
KW
1196 /* Only return a host offset if we actually made progress. Otherwise we
1197 * would make requirements for handle_alloc() that it can't fulfill */
a97c67ee 1198 if (ret > 0) {
411d62b0
KW
1199 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1200 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
1201 }
1202
0af729ec
KW
1203 return ret;
1204}
1205
226c3c26
KW
1206/*
1207 * Allocates new clusters for the given guest_offset.
1208 *
1209 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1210 * contain the number of clusters that have been allocated and are contiguous
1211 * in the image file.
1212 *
1213 * If *host_offset is non-zero, it specifies the offset in the image file at
1214 * which the new clusters must start. *nb_clusters can be 0 on return in this
1215 * case if the cluster at host_offset is already in use. If *host_offset is
1216 * zero, the clusters can be allocated anywhere in the image file.
1217 *
1218 * *host_offset is updated to contain the offset into the image file at which
1219 * the first allocated cluster starts.
1220 *
1221 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1222 * function has been waiting for another request and the allocation must be
1223 * restarted, but the whole request should not be failed.
1224 */
1225static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
b6d36def 1226 uint64_t *host_offset, uint64_t *nb_clusters)
226c3c26 1227{
ff99129a 1228 BDRVQcow2State *s = bs->opaque;
226c3c26
KW
1229
1230 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1231 *host_offset, *nb_clusters);
1232
250196f1
KW
1233 /* Allocate new clusters */
1234 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1235 if (*host_offset == 0) {
df021791
KW
1236 int64_t cluster_offset =
1237 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1238 if (cluster_offset < 0) {
1239 return cluster_offset;
1240 }
1241 *host_offset = cluster_offset;
1242 return 0;
250196f1 1243 } else {
b6d36def 1244 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1245 if (ret < 0) {
1246 return ret;
1247 }
1248 *nb_clusters = ret;
1249 return 0;
250196f1 1250 }
250196f1
KW
1251}
1252
10f0ed8b
KW
1253/*
1254 * Allocates new clusters for an area that either is yet unallocated or needs a
1255 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1256 * the new allocation can match the specified host offset.
1257 *
411d62b0
KW
1258 * Note that guest_offset may not be cluster aligned. In this case, the
1259 * returned *host_offset points to exact byte referenced by guest_offset and
1260 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1261 *
1262 * Returns:
1263 * 0: if no clusters could be allocated. *bytes is set to 0,
1264 * *host_offset is left unchanged.
1265 *
1266 * 1: if new clusters were allocated. *bytes may be decreased if the
1267 * new allocation doesn't cover all of the requested area.
1268 * *host_offset is updated to contain the host offset of the first
1269 * newly allocated cluster.
1270 *
1271 * -errno: in error cases
10f0ed8b
KW
1272 */
1273static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1274 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b 1275{
ff99129a 1276 BDRVQcow2State *s = bs->opaque;
10f0ed8b 1277 int l2_index;
6d99a344 1278 uint64_t *l2_slice;
10f0ed8b 1279 uint64_t entry;
b6d36def 1280 uint64_t nb_clusters;
10f0ed8b 1281 int ret;
564a6b69 1282 bool keep_old_clusters = false;
10f0ed8b 1283
564a6b69 1284 uint64_t alloc_cluster_offset = 0;
10f0ed8b
KW
1285
1286 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1287 *bytes);
1288 assert(*bytes > 0);
1289
f5bc6350 1290 /*
6d99a344 1291 * Calculate the number of clusters to look for. We stop at L2 slice
f5bc6350
KW
1292 * boundaries to keep things simple.
1293 */
c37f4cd7
KW
1294 nb_clusters =
1295 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1296
6d99a344
AG
1297 l2_index = offset_to_l2_slice_index(s, guest_offset);
1298 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1299 assert(nb_clusters <= INT_MAX);
f5bc6350 1300
10f0ed8b 1301 /* Find L2 entry for the first involved cluster */
6d99a344 1302 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
10f0ed8b
KW
1303 if (ret < 0) {
1304 return ret;
1305 }
1306
6d99a344 1307 entry = be64_to_cpu(l2_slice[l2_index]);
10f0ed8b
KW
1308
1309 /* For the moment, overwrite compressed clusters one by one */
1310 if (entry & QCOW_OFLAG_COMPRESSED) {
1311 nb_clusters = 1;
1312 } else {
6d99a344 1313 nb_clusters = count_cow_clusters(s, nb_clusters, l2_slice, l2_index);
10f0ed8b
KW
1314 }
1315
ecdd5333
KW
1316 /* This function is only called when there were no non-COW clusters, so if
1317 * we can't find any unallocated or COW clusters either, something is
1318 * wrong with our code. */
1319 assert(nb_clusters > 0);
1320
fdfab37d
EB
1321 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1322 (entry & QCOW_OFLAG_COPIED) &&
564a6b69
HR
1323 (!*host_offset ||
1324 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1325 {
93bbaf03
HR
1326 int preallocated_nb_clusters;
1327
1328 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1329 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1330 "cluster offset %#llx unaligned (guest "
1331 "offset: %#" PRIx64 ")",
1332 entry & L2E_OFFSET_MASK, guest_offset);
1333 ret = -EIO;
1334 goto fail;
1335 }
1336
564a6b69
HR
1337 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1338 * would be fine, too, but count_cow_clusters() above has limited
1339 * nb_clusters already to a range of COW clusters */
93bbaf03 1340 preallocated_nb_clusters =
564a6b69 1341 count_contiguous_clusters(nb_clusters, s->cluster_size,
6d99a344 1342 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
564a6b69 1343 assert(preallocated_nb_clusters > 0);
10f0ed8b 1344
564a6b69
HR
1345 nb_clusters = preallocated_nb_clusters;
1346 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
10f0ed8b 1347
564a6b69
HR
1348 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1349 * should not free them. */
1350 keep_old_clusters = true;
10f0ed8b
KW
1351 }
1352
6d99a344 1353 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
564a6b69 1354
ff52aab2 1355 if (!alloc_cluster_offset) {
564a6b69
HR
1356 /* Allocate, if necessary at a given offset in the image file */
1357 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1358 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1359 &nb_clusters);
1360 if (ret < 0) {
1361 goto fail;
1362 }
1363
1364 /* Can't extend contiguous allocation */
1365 if (nb_clusters == 0) {
1366 *bytes = 0;
1367 return 0;
1368 }
1369
1370 /* !*host_offset would overwrite the image header and is reserved for
1371 * "no host offset preferred". If 0 was a valid host offset, it'd
1372 * trigger the following overlap check; do that now to avoid having an
1373 * invalid value in *host_offset. */
1374 if (!alloc_cluster_offset) {
1375 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1376 nb_clusters * s->cluster_size);
1377 assert(ret < 0);
1378 goto fail;
1379 }
ff52aab2
HR
1380 }
1381
83baa9a4
KW
1382 /*
1383 * Save info needed for meta data update.
1384 *
85567393 1385 * requested_bytes: Number of bytes from the start of the first
83baa9a4
KW
1386 * newly allocated cluster to the end of the (possibly shortened
1387 * before) write request.
1388 *
85567393 1389 * avail_bytes: Number of bytes from the start of the first
83baa9a4
KW
1390 * newly allocated to the end of the last newly allocated cluster.
1391 *
85567393 1392 * nb_bytes: The number of bytes from the start of the first
83baa9a4
KW
1393 * newly allocated cluster to the end of the area that the write
1394 * request actually writes to (excluding COW at the end)
1395 */
85567393
KW
1396 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1397 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1398 int nb_bytes = MIN(requested_bytes, avail_bytes);
88c6588c 1399 QCowL2Meta *old_m = *m;
83baa9a4 1400
83baa9a4
KW
1401 *m = g_malloc0(sizeof(**m));
1402
1403 **m = (QCowL2Meta) {
88c6588c
KW
1404 .next = old_m,
1405
411d62b0 1406 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1407 .offset = start_of_cluster(s, guest_offset),
1408 .nb_clusters = nb_clusters,
83baa9a4 1409
564a6b69
HR
1410 .keep_old_clusters = keep_old_clusters,
1411
83baa9a4
KW
1412 .cow_start = {
1413 .offset = 0,
85567393 1414 .nb_bytes = offset_into_cluster(s, guest_offset),
83baa9a4
KW
1415 },
1416 .cow_end = {
85567393
KW
1417 .offset = nb_bytes,
1418 .nb_bytes = avail_bytes - nb_bytes,
83baa9a4
KW
1419 },
1420 };
1421 qemu_co_queue_init(&(*m)->dependent_requests);
1422 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1423
411d62b0 1424 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
85567393 1425 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
83baa9a4
KW
1426 assert(*bytes != 0);
1427
10f0ed8b
KW
1428 return 1;
1429
1430fail:
1431 if (*m && (*m)->nb_clusters > 0) {
1432 QLIST_REMOVE(*m, next_in_flight);
1433 }
1434 return ret;
1435}
1436
45aba42f
KW
1437/*
1438 * alloc_cluster_offset
1439 *
250196f1
KW
1440 * For a given offset on the virtual disk, find the cluster offset in qcow2
1441 * file. If the offset is not found, allocate a new cluster.
45aba42f 1442 *
250196f1 1443 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1444 * other fields in m are meaningless.
148da7ea
KW
1445 *
1446 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1447 * contiguous clusters that have been allocated. In this case, the other
1448 * fields of m are valid and contain information about the first allocated
1449 * cluster.
45aba42f 1450 *
68d100e9
KW
1451 * If the request conflicts with another write request in flight, the coroutine
1452 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1453 *
1454 * Return 0 on success and -errno in error cases
45aba42f 1455 */
f4f0d391 1456int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
d46a0bb2
KW
1457 unsigned int *bytes, uint64_t *host_offset,
1458 QCowL2Meta **m)
45aba42f 1459{
ff99129a 1460 BDRVQcow2State *s = bs->opaque;
710c2496 1461 uint64_t start, remaining;
250196f1 1462 uint64_t cluster_offset;
65eb2e35 1463 uint64_t cur_bytes;
710c2496 1464 int ret;
45aba42f 1465
d46a0bb2 1466 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
710c2496 1467
72424114 1468again:
16f0587e 1469 start = offset;
d46a0bb2 1470 remaining = *bytes;
0af729ec
KW
1471 cluster_offset = 0;
1472 *host_offset = 0;
ecdd5333
KW
1473 cur_bytes = 0;
1474 *m = NULL;
0af729ec 1475
2c3b32d2 1476 while (true) {
ecdd5333
KW
1477
1478 if (!*host_offset) {
1479 *host_offset = start_of_cluster(s, cluster_offset);
1480 }
1481
1482 assert(remaining >= cur_bytes);
1483
1484 start += cur_bytes;
1485 remaining -= cur_bytes;
1486 cluster_offset += cur_bytes;
1487
1488 if (remaining == 0) {
1489 break;
1490 }
1491
1492 cur_bytes = remaining;
1493
2c3b32d2
KW
1494 /*
1495 * Now start gathering as many contiguous clusters as possible:
1496 *
1497 * 1. Check for overlaps with in-flight allocations
1498 *
1499 * a) Overlap not in the first cluster -> shorten this request and
1500 * let the caller handle the rest in its next loop iteration.
1501 *
1502 * b) Real overlaps of two requests. Yield and restart the search
1503 * for contiguous clusters (the situation could have changed
1504 * while we were sleeping)
1505 *
1506 * c) TODO: Request starts in the same cluster as the in-flight
1507 * allocation ends. Shorten the COW of the in-fight allocation,
1508 * set cluster_offset to write to the same cluster and set up
1509 * the right synchronisation between the in-flight request and
1510 * the new one.
1511 */
ecdd5333 1512 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1513 if (ret == -EAGAIN) {
ecdd5333
KW
1514 /* Currently handle_dependencies() doesn't yield if we already had
1515 * an allocation. If it did, we would have to clean up the L2Meta
1516 * structs before starting over. */
1517 assert(*m == NULL);
2c3b32d2
KW
1518 goto again;
1519 } else if (ret < 0) {
1520 return ret;
ecdd5333
KW
1521 } else if (cur_bytes == 0) {
1522 break;
2c3b32d2
KW
1523 } else {
1524 /* handle_dependencies() may have decreased cur_bytes (shortened
1525 * the allocations below) so that the next dependency is processed
1526 * correctly during the next loop iteration. */
0af729ec 1527 }
710c2496 1528
2c3b32d2
KW
1529 /*
1530 * 2. Count contiguous COPIED clusters.
1531 */
1532 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1533 if (ret < 0) {
1534 return ret;
1535 } else if (ret) {
ecdd5333 1536 continue;
2c3b32d2
KW
1537 } else if (cur_bytes == 0) {
1538 break;
1539 }
060bee89 1540
2c3b32d2
KW
1541 /*
1542 * 3. If the request still hasn't completed, allocate new clusters,
1543 * considering any cluster_offset of steps 1c or 2.
1544 */
1545 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1546 if (ret < 0) {
1547 return ret;
1548 } else if (ret) {
ecdd5333 1549 continue;
2c3b32d2
KW
1550 } else {
1551 assert(cur_bytes == 0);
1552 break;
1553 }
f5bc6350 1554 }
10f0ed8b 1555
d46a0bb2
KW
1556 *bytes -= remaining;
1557 assert(*bytes > 0);
710c2496 1558 assert(*host_offset != 0);
45aba42f 1559
148da7ea 1560 return 0;
45aba42f
KW
1561}
1562
1563static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1564 const uint8_t *buf, int buf_size)
1565{
1566 z_stream strm1, *strm = &strm1;
1567 int ret, out_len;
1568
1569 memset(strm, 0, sizeof(*strm));
1570
1571 strm->next_in = (uint8_t *)buf;
1572 strm->avail_in = buf_size;
1573 strm->next_out = out_buf;
1574 strm->avail_out = out_buf_size;
1575
1576 ret = inflateInit2(strm, -12);
1577 if (ret != Z_OK)
1578 return -1;
1579 ret = inflate(strm, Z_FINISH);
1580 out_len = strm->next_out - out_buf;
1581 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1582 out_len != out_buf_size) {
1583 inflateEnd(strm);
1584 return -1;
1585 }
1586 inflateEnd(strm);
1587 return 0;
1588}
1589
66f82cee 1590int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 1591{
ff99129a 1592 BDRVQcow2State *s = bs->opaque;
45aba42f
KW
1593 int ret, csize, nb_csectors, sector_offset;
1594 uint64_t coffset;
1595
1596 coffset = cluster_offset & s->cluster_offset_mask;
1597 if (s->cluster_cache_offset != coffset) {
1598 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1599 sector_offset = coffset & 511;
1600 csize = nb_csectors * 512 - sector_offset;
3e4c7052
SH
1601
1602 /* Allocate buffers on first decompress operation, most images are
1603 * uncompressed and the memory overhead can be avoided. The buffers
1604 * are freed in .bdrv_close().
1605 */
1606 if (!s->cluster_data) {
1607 /* one more sector for decompressed data alignment */
1608 s->cluster_data = qemu_try_blockalign(bs->file->bs,
1609 QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1610 if (!s->cluster_data) {
1611 return -ENOMEM;
1612 }
1613 }
1614 if (!s->cluster_cache) {
1615 s->cluster_cache = g_malloc(s->cluster_size);
1616 }
1617
66f82cee 1618 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
fbcbbf4e 1619 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
9a4f4c31 1620 nb_csectors);
45aba42f 1621 if (ret < 0) {
8af36488 1622 return ret;
45aba42f
KW
1623 }
1624 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1625 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1626 return -EIO;
45aba42f
KW
1627 }
1628 s->cluster_cache_offset = coffset;
1629 }
1630 return 0;
1631}
5ea929e3
KW
1632
1633/*
1634 * This discards as many clusters of nb_clusters as possible at once (i.e.
21ab3add 1635 * all clusters in the same L2 slice) and returns the number of discarded
5ea929e3
KW
1636 * clusters.
1637 */
21ab3add
AG
1638static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1639 uint64_t nb_clusters,
1640 enum qcow2_discard_type type, bool full_discard)
5ea929e3 1641{
ff99129a 1642 BDRVQcow2State *s = bs->opaque;
21ab3add 1643 uint64_t *l2_slice;
5ea929e3
KW
1644 int l2_index;
1645 int ret;
1646 int i;
1647
21ab3add 1648 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
5ea929e3
KW
1649 if (ret < 0) {
1650 return ret;
1651 }
1652
21ab3add
AG
1653 /* Limit nb_clusters to one L2 slice */
1654 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1655 assert(nb_clusters <= INT_MAX);
5ea929e3
KW
1656
1657 for (i = 0; i < nb_clusters; i++) {
c883db0d 1658 uint64_t old_l2_entry;
5ea929e3 1659
21ab3add 1660 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
a71835a0
KW
1661
1662 /*
808c4b6f
HR
1663 * If full_discard is false, make sure that a discarded area reads back
1664 * as zeroes for v3 images (we cannot do it for v2 without actually
1665 * writing a zero-filled buffer). We can skip the operation if the
1666 * cluster is already marked as zero, or if it's unallocated and we
1667 * don't have a backing file.
a71835a0 1668 *
237d78f8 1669 * TODO We might want to use bdrv_block_status(bs) here, but we're
a71835a0 1670 * holding s->lock, so that doesn't work today.
808c4b6f
HR
1671 *
1672 * If full_discard is true, the sector should not read back as zeroes,
1673 * but rather fall through to the backing file.
a71835a0 1674 */
c883db0d 1675 switch (qcow2_get_cluster_type(old_l2_entry)) {
bbd995d8
EB
1676 case QCOW2_CLUSTER_UNALLOCATED:
1677 if (full_discard || !bs->backing) {
1678 continue;
1679 }
1680 break;
1681
fdfab37d
EB
1682 case QCOW2_CLUSTER_ZERO_PLAIN:
1683 if (!full_discard) {
bbd995d8
EB
1684 continue;
1685 }
1686 break;
1687
fdfab37d 1688 case QCOW2_CLUSTER_ZERO_ALLOC:
bbd995d8
EB
1689 case QCOW2_CLUSTER_NORMAL:
1690 case QCOW2_CLUSTER_COMPRESSED:
1691 break;
1692
1693 default:
1694 abort();
5ea929e3
KW
1695 }
1696
1697 /* First remove L2 entries */
21ab3add 1698 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
808c4b6f 1699 if (!full_discard && s->qcow_version >= 3) {
21ab3add 1700 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
a71835a0 1701 } else {
21ab3add 1702 l2_slice[l2_index + i] = cpu_to_be64(0);
a71835a0 1703 }
5ea929e3
KW
1704
1705 /* Then decrease the refcount */
c883db0d 1706 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
5ea929e3
KW
1707 }
1708
21ab3add 1709 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
5ea929e3
KW
1710
1711 return nb_clusters;
1712}
1713
d2cb36af
EB
1714int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1715 uint64_t bytes, enum qcow2_discard_type type,
1716 bool full_discard)
5ea929e3 1717{
ff99129a 1718 BDRVQcow2State *s = bs->opaque;
d2cb36af 1719 uint64_t end_offset = offset + bytes;
b6d36def 1720 uint64_t nb_clusters;
d2cb36af 1721 int64_t cleared;
5ea929e3
KW
1722 int ret;
1723
f10ee139 1724 /* Caller must pass aligned values, except at image end */
0c1bd469 1725 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
f10ee139
EB
1726 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1727 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
5ea929e3 1728
d2cb36af 1729 nb_clusters = size_to_clusters(s, bytes);
5ea929e3 1730
0b919fae
KW
1731 s->cache_discards = true;
1732
21ab3add 1733 /* Each L2 slice is handled by its own loop iteration */
5ea929e3 1734 while (nb_clusters > 0) {
21ab3add
AG
1735 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1736 full_discard);
d2cb36af
EB
1737 if (cleared < 0) {
1738 ret = cleared;
0b919fae 1739 goto fail;
5ea929e3
KW
1740 }
1741
d2cb36af
EB
1742 nb_clusters -= cleared;
1743 offset += (cleared * s->cluster_size);
5ea929e3
KW
1744 }
1745
0b919fae
KW
1746 ret = 0;
1747fail:
1748 s->cache_discards = false;
1749 qcow2_process_discards(bs, ret);
1750
1751 return ret;
5ea929e3 1752}
621f0589
KW
1753
1754/*
1755 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
a9a9f8f0 1756 * all clusters in the same L2 slice) and returns the number of zeroed
621f0589
KW
1757 * clusters.
1758 */
a9a9f8f0
AG
1759static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1760 uint64_t nb_clusters, int flags)
621f0589 1761{
ff99129a 1762 BDRVQcow2State *s = bs->opaque;
a9a9f8f0 1763 uint64_t *l2_slice;
621f0589
KW
1764 int l2_index;
1765 int ret;
1766 int i;
06cc5e2b 1767 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
621f0589 1768
a9a9f8f0 1769 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
621f0589
KW
1770 if (ret < 0) {
1771 return ret;
1772 }
1773
a9a9f8f0
AG
1774 /* Limit nb_clusters to one L2 slice */
1775 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1776 assert(nb_clusters <= INT_MAX);
621f0589
KW
1777
1778 for (i = 0; i < nb_clusters; i++) {
1779 uint64_t old_offset;
06cc5e2b 1780 QCow2ClusterType cluster_type;
621f0589 1781
a9a9f8f0 1782 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
621f0589 1783
06cc5e2b
EB
1784 /*
1785 * Minimize L2 changes if the cluster already reads back as
1786 * zeroes with correct allocation.
1787 */
1788 cluster_type = qcow2_get_cluster_type(old_offset);
1789 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1790 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1791 continue;
1792 }
1793
a9a9f8f0 1794 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
06cc5e2b 1795 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
a9a9f8f0 1796 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
6cfcb9b8 1797 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
621f0589 1798 } else {
a9a9f8f0 1799 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
621f0589
KW
1800 }
1801 }
1802
a9a9f8f0 1803 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
621f0589
KW
1804
1805 return nb_clusters;
1806}
1807
d2cb36af
EB
1808int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1809 uint64_t bytes, int flags)
621f0589 1810{
ff99129a 1811 BDRVQcow2State *s = bs->opaque;
d2cb36af 1812 uint64_t end_offset = offset + bytes;
b6d36def 1813 uint64_t nb_clusters;
d2cb36af 1814 int64_t cleared;
621f0589
KW
1815 int ret;
1816
f10ee139
EB
1817 /* Caller must pass aligned values, except at image end */
1818 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1819 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1820 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1821
621f0589
KW
1822 /* The zero flag is only supported by version 3 and newer */
1823 if (s->qcow_version < 3) {
1824 return -ENOTSUP;
1825 }
1826
a9a9f8f0 1827 /* Each L2 slice is handled by its own loop iteration */
d2cb36af 1828 nb_clusters = size_to_clusters(s, bytes);
621f0589 1829
0b919fae
KW
1830 s->cache_discards = true;
1831
621f0589 1832 while (nb_clusters > 0) {
a9a9f8f0 1833 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
d2cb36af
EB
1834 if (cleared < 0) {
1835 ret = cleared;
0b919fae 1836 goto fail;
621f0589
KW
1837 }
1838
d2cb36af
EB
1839 nb_clusters -= cleared;
1840 offset += (cleared * s->cluster_size);
621f0589
KW
1841 }
1842
0b919fae
KW
1843 ret = 0;
1844fail:
1845 s->cache_discards = false;
1846 qcow2_process_discards(bs, ret);
1847
1848 return ret;
621f0589 1849}
32b6444d
HR
1850
1851/*
1852 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1853 * non-backed non-pre-allocated zero clusters).
1854 *
4057a2b2
HR
1855 * l1_entries and *visited_l1_entries are used to keep track of progress for
1856 * status_cb(). l1_entries contains the total number of L1 entries and
1857 * *visited_l1_entries counts all visited L1 entries.
32b6444d
HR
1858 */
1859static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
ecf58777 1860 int l1_size, int64_t *visited_l1_entries,
4057a2b2 1861 int64_t l1_entries,
8b13976d
HR
1862 BlockDriverAmendStatusCB *status_cb,
1863 void *cb_opaque)
32b6444d 1864{
ff99129a 1865 BDRVQcow2State *s = bs->opaque;
32b6444d 1866 bool is_active_l1 = (l1_table == s->l1_table);
415184f5
AG
1867 uint64_t *l2_slice = NULL;
1868 unsigned slice, slice_size2, n_slices;
32b6444d
HR
1869 int ret;
1870 int i, j;
1871
415184f5
AG
1872 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1873 n_slices = s->cluster_size / slice_size2;
1874
32b6444d
HR
1875 if (!is_active_l1) {
1876 /* inactive L2 tables require a buffer to be stored in when loading
1877 * them from disk */
415184f5
AG
1878 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1879 if (l2_slice == NULL) {
de82815d
KW
1880 return -ENOMEM;
1881 }
32b6444d
HR
1882 }
1883
1884 for (i = 0; i < l1_size; i++) {
1885 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
0e06528e 1886 uint64_t l2_refcount;
32b6444d
HR
1887
1888 if (!l2_offset) {
1889 /* unallocated */
4057a2b2
HR
1890 (*visited_l1_entries)++;
1891 if (status_cb) {
8b13976d 1892 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 1893 }
32b6444d
HR
1894 continue;
1895 }
1896
8dd93d93
HR
1897 if (offset_into_cluster(s, l2_offset)) {
1898 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1899 PRIx64 " unaligned (L1 index: %#x)",
1900 l2_offset, i);
1901 ret = -EIO;
1902 goto fail;
1903 }
1904
9b765486
AG
1905 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1906 &l2_refcount);
1907 if (ret < 0) {
1908 goto fail;
1909 }
1910
415184f5
AG
1911 for (slice = 0; slice < n_slices; slice++) {
1912 uint64_t slice_offset = l2_offset + slice * slice_size2;
1913 bool l2_dirty = false;
226494ff
AG
1914 if (is_active_l1) {
1915 /* get active L2 tables from cache */
415184f5
AG
1916 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1917 (void **)&l2_slice);
226494ff
AG
1918 } else {
1919 /* load inactive L2 tables from disk */
415184f5 1920 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
226494ff
AG
1921 }
1922 if (ret < 0) {
1923 goto fail;
32b6444d
HR
1924 }
1925
415184f5
AG
1926 for (j = 0; j < s->l2_slice_size; j++) {
1927 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
226494ff
AG
1928 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1929 QCow2ClusterType cluster_type =
1930 qcow2_get_cluster_type(l2_entry);
1931
1932 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1933 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
32b6444d
HR
1934 continue;
1935 }
1936
226494ff
AG
1937 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1938 if (!bs->backing) {
1939 /* not backed; therefore we can simply deallocate the
1940 * cluster */
415184f5 1941 l2_slice[j] = 0;
226494ff
AG
1942 l2_dirty = true;
1943 continue;
1944 }
1945
1946 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1947 if (offset < 0) {
1948 ret = offset;
1949 goto fail;
1950 }
ecf58777 1951
226494ff
AG
1952 if (l2_refcount > 1) {
1953 /* For shared L2 tables, set the refcount accordingly
1954 * (it is already 1 and needs to be l2_refcount) */
1955 ret = qcow2_update_cluster_refcount(
1956 bs, offset >> s->cluster_bits,
2aabe7c7 1957 refcount_diff(1, l2_refcount), false,
ecf58777 1958 QCOW2_DISCARD_OTHER);
226494ff
AG
1959 if (ret < 0) {
1960 qcow2_free_clusters(bs, offset, s->cluster_size,
1961 QCOW2_DISCARD_OTHER);
1962 goto fail;
1963 }
ecf58777
HR
1964 }
1965 }
32b6444d 1966
226494ff 1967 if (offset_into_cluster(s, offset)) {
415184f5 1968 int l2_index = slice * s->l2_slice_size + j;
226494ff
AG
1969 qcow2_signal_corruption(
1970 bs, true, -1, -1,
1971 "Cluster allocation offset "
1972 "%#" PRIx64 " unaligned (L2 offset: %#"
1973 PRIx64 ", L2 index: %#x)", offset,
415184f5 1974 l2_offset, l2_index);
226494ff
AG
1975 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1976 qcow2_free_clusters(bs, offset, s->cluster_size,
1977 QCOW2_DISCARD_ALWAYS);
1978 }
1979 ret = -EIO;
1980 goto fail;
8dd93d93 1981 }
8dd93d93 1982
226494ff
AG
1983 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1984 s->cluster_size);
1985 if (ret < 0) {
1986 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1987 qcow2_free_clusters(bs, offset, s->cluster_size,
1988 QCOW2_DISCARD_ALWAYS);
1989 }
1990 goto fail;
320c7066 1991 }
32b6444d 1992
226494ff
AG
1993 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1994 if (ret < 0) {
1995 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1996 qcow2_free_clusters(bs, offset, s->cluster_size,
1997 QCOW2_DISCARD_ALWAYS);
1998 }
1999 goto fail;
320c7066 2000 }
32b6444d 2001
226494ff 2002 if (l2_refcount == 1) {
415184f5 2003 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
226494ff 2004 } else {
415184f5 2005 l2_slice[j] = cpu_to_be64(offset);
226494ff
AG
2006 }
2007 l2_dirty = true;
e390cf5a 2008 }
32b6444d 2009
226494ff
AG
2010 if (is_active_l1) {
2011 if (l2_dirty) {
415184f5 2012 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
226494ff 2013 qcow2_cache_depends_on_flush(s->l2_table_cache);
32b6444d 2014 }
415184f5 2015 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
226494ff
AG
2016 } else {
2017 if (l2_dirty) {
2018 ret = qcow2_pre_write_overlap_check(
2019 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
415184f5 2020 slice_offset, slice_size2);
226494ff
AG
2021 if (ret < 0) {
2022 goto fail;
2023 }
32b6444d 2024
415184f5
AG
2025 ret = bdrv_pwrite(bs->file, slice_offset,
2026 l2_slice, slice_size2);
226494ff
AG
2027 if (ret < 0) {
2028 goto fail;
2029 }
32b6444d
HR
2030 }
2031 }
2032 }
4057a2b2
HR
2033
2034 (*visited_l1_entries)++;
2035 if (status_cb) {
8b13976d 2036 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 2037 }
32b6444d
HR
2038 }
2039
2040 ret = 0;
2041
2042fail:
415184f5 2043 if (l2_slice) {
32b6444d 2044 if (!is_active_l1) {
415184f5 2045 qemu_vfree(l2_slice);
32b6444d 2046 } else {
415184f5 2047 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
32b6444d
HR
2048 }
2049 }
2050 return ret;
2051}
2052
2053/*
2054 * For backed images, expands all zero clusters on the image. For non-backed
2055 * images, deallocates all non-pre-allocated zero clusters (and claims the
2056 * allocation for pre-allocated ones). This is important for downgrading to a
2057 * qcow2 version which doesn't yet support metadata zero clusters.
2058 */
4057a2b2 2059int qcow2_expand_zero_clusters(BlockDriverState *bs,
8b13976d
HR
2060 BlockDriverAmendStatusCB *status_cb,
2061 void *cb_opaque)
32b6444d 2062{
ff99129a 2063 BDRVQcow2State *s = bs->opaque;
32b6444d 2064 uint64_t *l1_table = NULL;
4057a2b2 2065 int64_t l1_entries = 0, visited_l1_entries = 0;
32b6444d
HR
2066 int ret;
2067 int i, j;
2068
4057a2b2
HR
2069 if (status_cb) {
2070 l1_entries = s->l1_size;
2071 for (i = 0; i < s->nb_snapshots; i++) {
2072 l1_entries += s->snapshots[i].l1_size;
2073 }
2074 }
2075
32b6444d 2076 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
4057a2b2 2077 &visited_l1_entries, l1_entries,
8b13976d 2078 status_cb, cb_opaque);
32b6444d
HR
2079 if (ret < 0) {
2080 goto fail;
2081 }
2082
2083 /* Inactive L1 tables may point to active L2 tables - therefore it is
2084 * necessary to flush the L2 table cache before trying to access the L2
2085 * tables pointed to by inactive L1 entries (else we might try to expand
2086 * zero clusters that have already been expanded); furthermore, it is also
2087 * necessary to empty the L2 table cache, since it may contain tables which
2088 * are now going to be modified directly on disk, bypassing the cache.
2089 * qcow2_cache_empty() does both for us. */
2090 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2091 if (ret < 0) {
2092 goto fail;
2093 }
2094
2095 for (i = 0; i < s->nb_snapshots; i++) {
c9a442e4
AG
2096 int l1_size2;
2097 uint64_t *new_l1_table;
2098 Error *local_err = NULL;
2099
2100 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2101 s->snapshots[i].l1_size, sizeof(uint64_t),
2102 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2103 &local_err);
2104 if (ret < 0) {
2105 error_report_err(local_err);
2106 goto fail;
2107 }
32b6444d 2108
c9a442e4
AG
2109 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2110 new_l1_table = g_try_realloc(l1_table, l1_size2);
de7269d2
AG
2111
2112 if (!new_l1_table) {
2113 ret = -ENOMEM;
2114 goto fail;
2115 }
2116
2117 l1_table = new_l1_table;
32b6444d 2118
c9a442e4
AG
2119 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2120 l1_table, l1_size2);
32b6444d
HR
2121 if (ret < 0) {
2122 goto fail;
2123 }
2124
2125 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2126 be64_to_cpus(&l1_table[j]);
2127 }
2128
2129 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
4057a2b2 2130 &visited_l1_entries, l1_entries,
8b13976d 2131 status_cb, cb_opaque);
32b6444d
HR
2132 if (ret < 0) {
2133 goto fail;
2134 }
2135 }
2136
2137 ret = 0;
2138
2139fail:
32b6444d
HR
2140 g_free(l1_table);
2141 return ret;
2142}
This page took 0.86692 seconds and 4 git commands to generate.