]> Git Repo - qemu.git/blame - hw/arm/virt.c
sd: sdhci: Remove block count enable check in single block transfers
[qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
da34e65c 32#include "qapi/error.h"
f5fdcd6e
PM
33#include "hw/sysbus.h"
34#include "hw/arm/arm.h"
35#include "hw/arm/primecell.h"
afe0b380 36#include "hw/arm/virt.h"
f5fdcd6e
PM
37#include "hw/devices.h"
38#include "net/net.h"
fa1d36df 39#include "sysemu/block-backend.h"
f5fdcd6e 40#include "sysemu/device_tree.h"
9695200a 41#include "sysemu/numa.h"
f5fdcd6e
PM
42#include "sysemu/sysemu.h"
43#include "sysemu/kvm.h"
1287f2b3 44#include "hw/compat.h"
acf82361 45#include "hw/loader.h"
f5fdcd6e
PM
46#include "exec/address-spaces.h"
47#include "qemu/bitops.h"
48#include "qemu/error-report.h"
4ab29b82 49#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
50#include "hw/arm/sysbus-fdt.h"
51#include "hw/platform-bus.h"
decf4f80 52#include "hw/arm/fdt.h"
95eb49c8
AJ
53#include "hw/intc/arm_gic.h"
54#include "hw/intc/arm_gicv3_common.h"
e6fbcbc4 55#include "kvm_arm.h"
c30e1565 56#include "hw/smbios/smbios.h"
b92ad394 57#include "qapi/visitor.h"
3e6ebb64 58#include "standard-headers/linux/input.h"
f5fdcd6e 59
3356ebce 60#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
ab093c3c
AJ
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
82
3356ebce
AJ
83#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85#define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87
ab093c3c 88
a72d4363
AJ
89/* Number of external interrupt lines to configure the GIC with */
90#define NUM_IRQS 256
91
92#define PLATFORM_BUS_NUM_IRQS 64
93
94static ARMPlatformBusSystemParams platform_bus_params;
95
71c27684
PM
96/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
109 */
110#define RAMLIMIT_GB 255
111#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112
f5fdcd6e
PM
113/* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
f5fdcd6e
PM
124 */
125static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
b92ad394
PF
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
94edf02c 142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
71c27684 149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
5125f9cd
PF
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
f5fdcd6e
PM
152};
153
154static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
6e411af9 156 [VIRT_RTC] = 2,
4ab29b82 157 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 158 [VIRT_GPIO] = 7,
3df708eb 159 [VIRT_SECURE_UART] = 8,
f5fdcd6e 160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
5f7a5a0e 162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
163};
164
9ac4ef77
PM
165static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
f5fdcd6e
PM
170};
171
9ac4ef77 172static bool cpuname_valid(const char *cpu)
f5fdcd6e
PM
173{
174 int i;
175
9ac4ef77
PM
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
f5fdcd6e
PM
179 }
180 }
9ac4ef77 181 return false;
f5fdcd6e
PM
182}
183
c8ef2bda 184static void create_fdt(VirtMachineState *vms)
f5fdcd6e 185{
c8ef2bda 186 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
187
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
191 }
192
c8ef2bda 193 vms->fdt = fdt;
f5fdcd6e
PM
194
195 /* Header */
5a4348d1
PC
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e
PM
199
200 /*
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
203 */
5a4348d1
PC
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
f5fdcd6e
PM
207
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
212 */
c8ef2bda 213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 219 "clk24mhz");
c8ef2bda 220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 221
06955739
PS
222}
223
c8ef2bda 224static void fdt_add_psci_node(const VirtMachineState *vms)
06955739 225{
211b0169
RH
226 uint32_t cpu_suspend_fn;
227 uint32_t cpu_off_fn;
228 uint32_t cpu_on_fn;
229 uint32_t migrate_fn;
c8ef2bda 230 void *fdt = vms->fdt;
06955739 231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
2013c566 232 const char *psci_method;
06955739 233
2013c566
PM
234 switch (vms->psci_conduit) {
235 case QEMU_PSCI_CONDUIT_DISABLED:
4824a61a 236 return;
2013c566
PM
237 case QEMU_PSCI_CONDUIT_HVC:
238 psci_method = "hvc";
239 break;
240 case QEMU_PSCI_CONDUIT_SMC:
241 psci_method = "smc";
242 break;
243 default:
244 g_assert_not_reached();
4824a61a
PM
245 }
246
211b0169
RH
247 qemu_fdt_add_subnode(fdt, "/psci");
248 if (armcpu->psci_version == 2) {
249 const char comp[] = "arm,psci-0.2\0arm,psci";
250 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
863714ba 251
211b0169
RH
252 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
253 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
254 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
255 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
256 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
257 } else {
258 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
259 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
260 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
06955739 261 }
211b0169
RH
262 } else {
263 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
06955739 264
211b0169
RH
265 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
266 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
267 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
268 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
f5fdcd6e 269 }
211b0169
RH
270
271 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272 * to the instruction that should be used to invoke PSCI functions.
273 * However, the device tree binding uses 'method' instead, so that is
274 * what we should use here.
275 */
2013c566 276 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
211b0169
RH
277
278 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
279 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
280 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
281 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
f5fdcd6e
PM
282}
283
055a7f2b 284static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 285{
156bc9a5
PM
286 /* On real hardware these interrupts are level-triggered.
287 * On KVM they were edge-triggered before host kernel version 4.4,
288 * and level-triggered afterwards.
289 * On emulated QEMU they are level-triggered.
290 *
291 * Getting the DTB info about them wrong is awkward for some
292 * guest kernels:
293 * pre-4.8 ignore the DT and leave the interrupt configured
294 * with whatever the GIC reset value (or the bootloader) left it at
295 * 4.8 before rc6 honour the incorrect data by programming it back
296 * into the GIC, causing problems
297 * 4.8rc6 and later ignore the DT and always write "level triggered"
298 * into the GIC
299 *
300 * For backwards-compatibility, virt-2.8 and earlier will continue
301 * to say these are edge-triggered, but later machines will report
302 * the correct information.
f5fdcd6e 303 */
b32a9509 304 ARMCPU *armcpu;
156bc9a5
PM
305 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
306 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
307
308 if (vmc->claim_edge_triggered_timers) {
309 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
310 }
f5fdcd6e 311
055a7f2b 312 if (vms->gic_version == 2) {
b92ad394
PF
313 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
314 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 315 (1 << vms->smp_cpus) - 1);
b92ad394 316 }
f5fdcd6e 317
c8ef2bda 318 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
319
320 armcpu = ARM_CPU(qemu_get_cpu(0));
321 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
322 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 323 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
324 compat, sizeof(compat));
325 } else {
c8ef2bda 326 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
327 "arm,armv7-timer");
328 }
c8ef2bda
PM
329 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
330 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
331 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
332 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
333 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
334 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
335}
336
c8ef2bda 337static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
338{
339 int cpu;
8d45c54d 340 int addr_cells = 1;
9695200a 341 unsigned int i;
8d45c54d
PF
342
343 /*
344 * From Documentation/devicetree/bindings/arm/cpus.txt
345 * On ARM v8 64-bit systems value should be set to 2,
346 * that corresponds to the MPIDR_EL1 register size.
347 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348 * in the system, #address-cells can be set to 1, since
349 * MPIDR_EL1[63:32] bits are not used for CPUs
350 * identification.
351 *
352 * Here we actually don't know whether our system is 32- or 64-bit one.
353 * The simplest way to go is to examine affinity IDs of all our CPUs. If
354 * at least one of them has Aff3 populated, we set #address-cells to 2.
355 */
c8ef2bda 356 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
357 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
358
359 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
360 addr_cells = 2;
361 break;
362 }
363 }
f5fdcd6e 364
c8ef2bda
PM
365 qemu_fdt_add_subnode(vms->fdt, "/cpus");
366 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
367 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 368
c8ef2bda 369 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
370 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372
c8ef2bda
PM
373 qemu_fdt_add_subnode(vms->fdt, nodename);
374 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
376 armcpu->dtb_compatible);
377
2013c566
PM
378 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
379 && vms->smp_cpus > 1) {
c8ef2bda 380 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
381 "enable-method", "psci");
382 }
383
8d45c54d 384 if (addr_cells == 2) {
c8ef2bda 385 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
386 armcpu->mp_affinity);
387 } else {
c8ef2bda 388 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
389 armcpu->mp_affinity);
390 }
391
6bea1ddf
IM
392 i = numa_get_node_for_cpu(cpu);
393 if (i < nb_numa_nodes) {
c8ef2bda 394 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
9695200a
SZ
395 }
396
f5fdcd6e
PM
397 g_free(nodename);
398 }
399}
400
c8ef2bda 401static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 402{
c8ef2bda
PM
403 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
404 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
405 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
02f98731 406 "arm,gic-v3-its");
c8ef2bda
PM
407 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
408 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
409 2, vms->memmap[VIRT_GIC_ITS].base,
410 2, vms->memmap[VIRT_GIC_ITS].size);
411 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
02f98731
PF
412}
413
c8ef2bda 414static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 415{
c8ef2bda
PM
416 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
418 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
bd204e63 419 "arm,gic-v2m-frame");
c8ef2bda
PM
420 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
421 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
422 2, vms->memmap[VIRT_GIC_V2M].base,
423 2, vms->memmap[VIRT_GIC_V2M].size);
424 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
bd204e63 425}
f5fdcd6e 426
055a7f2b 427static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 428{
c8ef2bda
PM
429 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
430 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
431
432 qemu_fdt_add_subnode(vms->fdt, "/intc");
433 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
055a7f2b 438 if (vms->gic_version == 3) {
c8ef2bda 439 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
b92ad394 440 "arm,gic-v3");
c8ef2bda
PM
441 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size);
f29cacfb
PM
446 if (vms->virt) {
447 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
448 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
449 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
450 }
b92ad394
PF
451 } else {
452 /* 'cortex-a15-gic' means 'GIC v2' */
c8ef2bda 453 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
b92ad394 454 "arm,cortex-a15-gic");
c8ef2bda
PM
455 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
456 2, vms->memmap[VIRT_GIC_DIST].base,
457 2, vms->memmap[VIRT_GIC_DIST].size,
458 2, vms->memmap[VIRT_GIC_CPU].base,
459 2, vms->memmap[VIRT_GIC_CPU].size);
b92ad394
PF
460 }
461
c8ef2bda 462 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
f5fdcd6e
PM
463}
464
055a7f2b 465static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
466{
467 CPUState *cpu;
468 ARMCPU *armcpu;
469 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
470
471 CPU_FOREACH(cpu) {
472 armcpu = ARM_CPU(cpu);
929e754d 473 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
d6f02ce3 474 (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
01fe6b60
SZ
475 return;
476 }
477 }
478
055a7f2b 479 if (vms->gic_version == 2) {
01fe6b60
SZ
480 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
481 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 482 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
483 }
484
485 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 486 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
487 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
488 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 489 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 490 compat, sizeof(compat));
c8ef2bda 491 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
492 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
493 }
494}
495
c8ef2bda 496static void create_its(VirtMachineState *vms, DeviceState *gicdev)
02f98731
PF
497{
498 const char *itsclass = its_class_name();
499 DeviceState *dev;
500
501 if (!itsclass) {
502 /* Do nothing if not supported */
503 return;
504 }
505
506 dev = qdev_create(NULL, itsclass);
507
508 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
509 &error_abort);
510 qdev_init_nofail(dev);
c8ef2bda 511 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 512
c8ef2bda 513 fdt_add_its_gic_node(vms);
02f98731
PF
514}
515
c8ef2bda 516static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
bd204e63
CD
517{
518 int i;
c8ef2bda 519 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
520 DeviceState *dev;
521
522 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 523 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
524 qdev_prop_set_uint32(dev, "base-spi", irq);
525 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
526 qdev_init_nofail(dev);
527
528 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
529 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
530 }
531
c8ef2bda 532 fdt_add_v2m_gic_node(vms);
bd204e63
CD
533}
534
055a7f2b 535static void create_gic(VirtMachineState *vms, qemu_irq *pic)
64204743 536{
b92ad394 537 /* We create a standalone GIC */
0127937b 538 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
64204743
PM
539 DeviceState *gicdev;
540 SysBusDevice *gicbusdev;
e6fbcbc4 541 const char *gictype;
055a7f2b 542 int type = vms->gic_version, i;
64204743 543
b92ad394 544 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743
PM
545
546 gicdev = qdev_create(NULL, gictype);
b92ad394 547 qdev_prop_set_uint32(gicdev, "revision", type);
64204743
PM
548 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
549 /* Note that the num-irq property counts both internal and external
550 * interrupts; there are always 32 of the former (mandated by GIC spec).
551 */
552 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
0e21f183 553 if (!kvm_irqchip_in_kernel()) {
0127937b 554 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
0e21f183 555 }
64204743
PM
556 qdev_init_nofail(gicdev);
557 gicbusdev = SYS_BUS_DEVICE(gicdev);
c8ef2bda 558 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 559 if (type == 3) {
c8ef2bda 560 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
b92ad394 561 } else {
c8ef2bda 562 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
b92ad394 563 }
64204743 564
5454006a
PM
565 /* Wire the outputs from each CPU's generic timer and the GICv3
566 * maintenance interrupt signal to the appropriate GIC PPI inputs,
567 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
568 */
569 for (i = 0; i < smp_cpus; i++) {
570 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 571 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
572 int irq;
573 /* Mapping from the output timer irq lines from the CPU to the
574 * GIC PPI inputs we use for the virt board.
64204743 575 */
a007b1f8
PM
576 const int timer_irq[] = {
577 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
578 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
579 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
580 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
581 };
582
583 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
584 qdev_connect_gpio_out(cpudev, irq,
585 qdev_get_gpio_in(gicdev,
586 ppibase + timer_irq[irq]));
587 }
64204743 588
5454006a
PM
589 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
590 qdev_get_gpio_in(gicdev, ppibase
591 + ARCH_GICV3_MAINT_IRQ));
592
64204743 593 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
594 sysbus_connect_irq(gicbusdev, i + smp_cpus,
595 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
596 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
597 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
598 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
599 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
600 }
601
602 for (i = 0; i < NUM_IRQS; i++) {
603 pic[i] = qdev_get_gpio_in(gicdev, i);
604 }
605
055a7f2b 606 fdt_add_gic_node(vms);
bd204e63 607
0127937b 608 if (type == 3 && !vmc->no_its) {
c8ef2bda 609 create_its(vms, gicdev);
2231f69b 610 } else if (type == 2) {
c8ef2bda 611 create_v2m(vms, pic);
b92ad394 612 }
64204743
PM
613}
614
c8ef2bda 615static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
0ec7b3e7 616 MemoryRegion *mem, Chardev *chr)
f5fdcd6e
PM
617{
618 char *nodename;
c8ef2bda
PM
619 hwaddr base = vms->memmap[uart].base;
620 hwaddr size = vms->memmap[uart].size;
621 int irq = vms->irqmap[uart];
f5fdcd6e
PM
622 const char compat[] = "arm,pl011\0arm,primecell";
623 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
624 DeviceState *dev = qdev_create(NULL, "pl011");
625 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 626
9bbbf649 627 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
628 qdev_init_nofail(dev);
629 memory_region_add_subregion(mem, base,
630 sysbus_mmio_get_region(s, 0));
631 sysbus_connect_irq(s, 0, pic[irq]);
f5fdcd6e
PM
632
633 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 634 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 635 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 636 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 637 compat, sizeof(compat));
c8ef2bda 638 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 639 2, base, 2, size);
c8ef2bda 640 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 641 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 642 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
643 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
644 vms->clock_phandle, vms->clock_phandle);
645 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 646 clocknames, sizeof(clocknames));
f022b8e9 647
3df708eb 648 if (uart == VIRT_UART) {
c8ef2bda 649 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
650 } else {
651 /* Mark as not usable by the normal world */
c8ef2bda
PM
652 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
653 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
3df708eb
PM
654 }
655
f5fdcd6e
PM
656 g_free(nodename);
657}
658
c8ef2bda 659static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
6e411af9
PM
660{
661 char *nodename;
c8ef2bda
PM
662 hwaddr base = vms->memmap[VIRT_RTC].base;
663 hwaddr size = vms->memmap[VIRT_RTC].size;
664 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
665 const char compat[] = "arm,pl031\0arm,primecell";
666
667 sysbus_create_simple("pl031", base, pic[irq]);
668
669 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
670 qemu_fdt_add_subnode(vms->fdt, nodename);
671 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
672 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 673 2, base, 2, size);
c8ef2bda 674 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 675 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 676 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
677 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
678 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
679 g_free(nodename);
680}
681
94f02c5e 682static DeviceState *gpio_key_dev;
4bedd849
SZ
683static void virt_powerdown_req(Notifier *n, void *opaque)
684{
685 /* use gpio Pin 3 for power button event */
94f02c5e 686 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
4bedd849
SZ
687}
688
689static Notifier virt_system_powerdown_notifier = {
690 .notify = virt_powerdown_req
691};
692
c8ef2bda 693static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
b0a3721e
SZ
694{
695 char *nodename;
94f02c5e 696 DeviceState *pl061_dev;
c8ef2bda
PM
697 hwaddr base = vms->memmap[VIRT_GPIO].base;
698 hwaddr size = vms->memmap[VIRT_GPIO].size;
699 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
700 const char compat[] = "arm,pl061\0arm,primecell";
701
4bedd849 702 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
b0a3721e 703
c8ef2bda 704 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 705 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
706 qemu_fdt_add_subnode(vms->fdt, nodename);
707 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 708 2, base, 2, size);
c8ef2bda
PM
709 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
710 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
711 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
712 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
713 GIC_FDT_IRQ_TYPE_SPI, irq,
714 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
715 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
716 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
717 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 718
94f02c5e
SZ
719 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
720 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
721 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
722 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
723 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
724 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 725
c8ef2bda
PM
726 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
727 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 728 "label", "GPIO Key Poweroff");
c8ef2bda 729 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 730 KEY_POWER);
c8ef2bda 731 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 732 "gpios", phandle, 3, 0);
b0a3721e 733
4bedd849
SZ
734 /* connect powerdown request */
735 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
736
b0a3721e
SZ
737 g_free(nodename);
738}
739
c8ef2bda 740static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
f5fdcd6e
PM
741{
742 int i;
c8ef2bda 743 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 744
587078f0
LE
745 /* We create the transports in forwards order. Since qbus_realize()
746 * prepends (not appends) new child buses, the incrementing loop below will
747 * create a list of virtio-mmio buses with decreasing base addresses.
748 *
749 * When a -device option is processed from the command line,
750 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
751 * order. The upshot is that -device options in increasing command line
752 * order are mapped to virtio-mmio buses with decreasing base addresses.
753 *
754 * When this code was originally written, that arrangement ensured that the
755 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
756 * the first -device on the command line. (The end-to-end order is a
757 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
758 * guest kernel's name-to-address assignment strategy.)
759 *
760 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
761 * the message, if not necessarily the code, of commit 70161ff336.
762 * Therefore the loop now establishes the inverse of the original intent.
763 *
764 * Unfortunately, we can't counteract the kernel change by reversing the
765 * loop; it would break existing command lines.
766 *
767 * In any case, the kernel makes no guarantee about the stability of
768 * enumeration order of virtio devices (as demonstrated by it changing
769 * between kernel versions). For reliable and stable identification
770 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
771 */
772 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
773 int irq = vms->irqmap[VIRT_MMIO] + i;
774 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
775
776 sysbus_create_simple("virtio-mmio", base, pic[irq]);
777 }
778
587078f0
LE
779 /* We add dtb nodes in reverse order so that they appear in the finished
780 * device tree lowest address first.
781 *
782 * Note that this mapping is independent of the loop above. The previous
783 * loop influences virtio device to virtio transport assignment, whereas
784 * this loop controls how virtio transports are laid out in the dtb.
785 */
f5fdcd6e
PM
786 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
787 char *nodename;
c8ef2bda
PM
788 int irq = vms->irqmap[VIRT_MMIO] + i;
789 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
790
791 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
792 qemu_fdt_add_subnode(vms->fdt, nodename);
793 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 794 "compatible", "virtio,mmio");
c8ef2bda 795 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 796 2, base, 2, size);
c8ef2bda 797 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
798 GIC_FDT_IRQ_TYPE_SPI, irq,
799 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
054bb7b2 800 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
f5fdcd6e
PM
801 g_free(nodename);
802 }
803}
804
acf82361 805static void create_one_flash(const char *name, hwaddr flashbase,
738a5d9f
PM
806 hwaddr flashsize, const char *file,
807 MemoryRegion *sysmem)
acf82361
PM
808{
809 /* Create and map a single flash device. We use the same
810 * parameters as the flash devices on the Versatile Express board.
811 */
812 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
813 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
16f4a8dc 814 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
acf82361
PM
815 const uint64_t sectorlength = 256 * 1024;
816
9b3d111a
MA
817 if (dinfo) {
818 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
819 &error_abort);
acf82361
PM
820 }
821
822 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
823 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
824 qdev_prop_set_uint8(dev, "width", 4);
825 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 826 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
827 qdev_prop_set_uint16(dev, "id0", 0x89);
828 qdev_prop_set_uint16(dev, "id1", 0x18);
829 qdev_prop_set_uint16(dev, "id2", 0x00);
830 qdev_prop_set_uint16(dev, "id3", 0x00);
831 qdev_prop_set_string(dev, "name", name);
832 qdev_init_nofail(dev);
833
738a5d9f
PM
834 memory_region_add_subregion(sysmem, flashbase,
835 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
acf82361 836
16f4a8dc 837 if (file) {
6e05a12f 838 char *fn;
4de9a883 839 int image_size;
acf82361
PM
840
841 if (drive_get(IF_PFLASH, 0, 0)) {
842 error_report("The contents of the first flash device may be "
843 "specified with -bios or with -drive if=pflash... "
844 "but you cannot use both options at once");
845 exit(1);
846 }
16f4a8dc 847 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
4de9a883 848 if (!fn) {
16f4a8dc 849 error_report("Could not find ROM image '%s'", file);
4de9a883
SW
850 exit(1);
851 }
16f4a8dc 852 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
4de9a883
SW
853 g_free(fn);
854 if (image_size < 0) {
16f4a8dc 855 error_report("Could not load ROM image '%s'", file);
acf82361
PM
856 exit(1);
857 }
858 }
16f4a8dc
PM
859}
860
c8ef2bda 861static void create_flash(const VirtMachineState *vms,
738a5d9f
PM
862 MemoryRegion *sysmem,
863 MemoryRegion *secure_sysmem)
16f4a8dc
PM
864{
865 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
866 * Any file passed via -bios goes in the first of these.
738a5d9f
PM
867 * sysmem is the system memory space. secure_sysmem is the secure view
868 * of the system, and the first flash device should be made visible only
869 * there. The second flash device is visible to both secure and nonsecure.
870 * If sysmem == secure_sysmem this means there is no separate Secure
871 * address space and both flash devices are generally visible.
16f4a8dc 872 */
c8ef2bda
PM
873 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
874 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
16f4a8dc 875 char *nodename;
acf82361 876
738a5d9f
PM
877 create_one_flash("virt.flash0", flashbase, flashsize,
878 bios_name, secure_sysmem);
879 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
880 NULL, sysmem);
acf82361 881
738a5d9f
PM
882 if (sysmem == secure_sysmem) {
883 /* Report both flash devices as a single node in the DT */
884 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
885 qemu_fdt_add_subnode(vms->fdt, nodename);
886 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
887 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
888 2, flashbase, 2, flashsize,
889 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 890 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
891 g_free(nodename);
892 } else {
893 /* Report the devices as separate nodes so we can mark one as
894 * only visible to the secure world.
895 */
896 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
897 qemu_fdt_add_subnode(vms->fdt, nodename);
898 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
899 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 900 2, flashbase, 2, flashsize);
c8ef2bda
PM
901 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
902 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
903 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
904 g_free(nodename);
905
906 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
907 qemu_fdt_add_subnode(vms->fdt, nodename);
908 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
909 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 910 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 911 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
912 g_free(nodename);
913 }
acf82361
PM
914}
915
af1f60a4 916static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 917{
c8ef2bda
PM
918 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
919 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 920 FWCfgState *fw_cfg;
578f3c7b
LE
921 char *nodename;
922
5836d168
IM
923 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
924 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
578f3c7b
LE
925
926 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
927 qemu_fdt_add_subnode(vms->fdt, nodename);
928 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 929 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 930 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b 931 2, base, 2, size);
14efdb5c 932 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
578f3c7b 933 g_free(nodename);
af1f60a4 934 return fw_cfg;
578f3c7b
LE
935}
936
c8ef2bda 937static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 938 uint32_t gic_phandle,
4ab29b82
AG
939 int first_irq, const char *nodename)
940{
941 int devfn, pin;
dfd90a87 942 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
943 uint32_t *irq_map = full_irq_map;
944
945 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
946 for (pin = 0; pin < 4; pin++) {
947 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
948 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
949 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
950 int i;
951
952 uint32_t map[] = {
953 devfn << 8, 0, 0, /* devfn */
954 pin + 1, /* PCI pin */
dfd90a87 955 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
956
957 /* Convert map to big endian */
dfd90a87 958 for (i = 0; i < 10; i++) {
4ab29b82
AG
959 irq_map[i] = cpu_to_be32(map[i]);
960 }
dfd90a87 961 irq_map += 10;
4ab29b82
AG
962 }
963 }
964
c8ef2bda 965 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
966 full_irq_map, sizeof(full_irq_map));
967
c8ef2bda 968 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
969 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
970 0x7 /* PCI irq */);
971}
972
0127937b 973static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
4ab29b82 974{
c8ef2bda
PM
975 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
976 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
977 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
978 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
979 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
980 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
981 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
982 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
6a1f001b
SZ
983 hwaddr base = base_mmio;
984 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
c8ef2bda 985 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
986 MemoryRegion *mmio_alias;
987 MemoryRegion *mmio_reg;
988 MemoryRegion *ecam_alias;
989 MemoryRegion *ecam_reg;
990 DeviceState *dev;
991 char *nodename;
992 int i;
fea9b3ca 993 PCIHostState *pci;
4ab29b82 994
4ab29b82
AG
995 dev = qdev_create(NULL, TYPE_GPEX_HOST);
996 qdev_init_nofail(dev);
997
998 /* Map only the first size_ecam bytes of ECAM space */
999 ecam_alias = g_new0(MemoryRegion, 1);
1000 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1001 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1002 ecam_reg, 0, size_ecam);
1003 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1004
1005 /* Map the MMIO window into system address space so as to expose
1006 * the section of PCI MMIO space which starts at the same base address
1007 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1008 * the window).
1009 */
1010 mmio_alias = g_new0(MemoryRegion, 1);
1011 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1012 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1013 mmio_reg, base_mmio, size_mmio);
1014 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1015
0127937b 1016 if (vms->highmem) {
5125f9cd
PF
1017 /* Map high MMIO space */
1018 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1019
1020 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1021 mmio_reg, base_mmio_high, size_mmio_high);
1022 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1023 high_mmio_alias);
1024 }
1025
4ab29b82 1026 /* Map IO port space */
6a1f001b 1027 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1028
1029 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1030 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1031 }
1032
fea9b3ca
AK
1033 pci = PCI_HOST_BRIDGE(dev);
1034 if (pci->bus) {
1035 for (i = 0; i < nb_nics; i++) {
1036 NICInfo *nd = &nd_table[i];
1037
1038 if (!nd->model) {
1039 nd->model = g_strdup("virtio");
1040 }
1041
1042 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1043 }
1044 }
1045
4ab29b82 1046 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1047 qemu_fdt_add_subnode(vms->fdt, nodename);
1048 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1049 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1050 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1051 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1052 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1053 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1054 nr_pcie_buses - 1);
c8ef2bda 1055 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1056
c8ef2bda
PM
1057 if (vms->msi_phandle) {
1058 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1059 vms->msi_phandle);
b92ad394 1060 }
bd204e63 1061
c8ef2bda 1062 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1063 2, base_ecam, 2, size_ecam);
5125f9cd 1064
0127937b 1065 if (vms->highmem) {
c8ef2bda 1066 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1067 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1068 2, base_pio, 2, size_pio,
1069 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1070 2, base_mmio, 2, size_mmio,
1071 1, FDT_PCI_RANGE_MMIO_64BIT,
1072 2, base_mmio_high,
1073 2, base_mmio_high, 2, size_mmio_high);
1074 } else {
c8ef2bda 1075 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1076 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1077 2, base_pio, 2, size_pio,
1078 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1079 2, base_mmio, 2, size_mmio);
1080 }
4ab29b82 1081
c8ef2bda
PM
1082 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1083 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82
AG
1084
1085 g_free(nodename);
1086}
1087
c8ef2bda 1088static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
5f7a5a0e
EA
1089{
1090 DeviceState *dev;
1091 SysBusDevice *s;
1092 int i;
1093 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1094 MemoryRegion *sysmem = get_system_memory();
1095
c8ef2bda
PM
1096 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1097 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1098 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
5f7a5a0e
EA
1099 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1100
1101 fdt_params->system_params = &platform_bus_params;
c8ef2bda 1102 fdt_params->binfo = &vms->bootinfo;
5f7a5a0e
EA
1103 fdt_params->intc = "/intc";
1104 /*
1105 * register a machine init done notifier that creates the device tree
1106 * nodes of the platform bus and its children dynamic sysbus devices
1107 */
1108 arm_register_platform_bus_fdt_creator(fdt_params);
1109
1110 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1111 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1112 qdev_prop_set_uint32(dev, "num_irqs",
1113 platform_bus_params.platform_bus_num_irqs);
1114 qdev_prop_set_uint32(dev, "mmio_size",
1115 platform_bus_params.platform_bus_size);
1116 qdev_init_nofail(dev);
1117 s = SYS_BUS_DEVICE(dev);
1118
1119 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1120 int irqn = platform_bus_params.platform_bus_first_irq + i;
1121 sysbus_connect_irq(s, i, pic[irqn]);
1122 }
1123
1124 memory_region_add_subregion(sysmem,
1125 platform_bus_params.platform_bus_base,
1126 sysbus_mmio_get_region(s, 0));
1127}
1128
c8ef2bda 1129static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1130 MemoryRegion *secure_sysmem)
83ec1923
PM
1131{
1132 MemoryRegion *secram = g_new(MemoryRegion, 1);
1133 char *nodename;
c8ef2bda
PM
1134 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1135 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923
PM
1136
1137 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1138 vmstate_register_ram_global(secram);
1139 memory_region_add_subregion(secure_sysmem, base, secram);
1140
1141 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1142 qemu_fdt_add_subnode(vms->fdt, nodename);
1143 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1144 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1145 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1146 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1147
1148 g_free(nodename);
1149}
1150
f5fdcd6e
PM
1151static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1152{
9ac4ef77
PM
1153 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1154 bootinfo);
f5fdcd6e
PM
1155
1156 *fdt_size = board->fdt_size;
1157 return board->fdt;
1158}
1159
e9a8e474 1160static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1161{
c30e1565
WH
1162 uint8_t *smbios_tables, *smbios_anchor;
1163 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1164 const char *product = "QEMU Virtual Machine";
c30e1565 1165
af1f60a4 1166 if (!vms->fw_cfg) {
c30e1565
WH
1167 return;
1168 }
1169
bab27ea2
AJ
1170 if (kvm_enabled()) {
1171 product = "KVM Virtual Machine";
1172 }
1173
1174 smbios_set_defaults("QEMU", product,
c30e1565
WH
1175 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1176
1177 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1178 &smbios_anchor, &smbios_anchor_len);
1179
1180 if (smbios_anchor) {
af1f60a4 1181 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1182 smbios_tables, smbios_tables_len);
af1f60a4 1183 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1184 smbios_anchor, smbios_anchor_len);
1185 }
1186}
1187
d7c2e2db 1188static
054f4dc9 1189void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1190{
054f4dc9
AJ
1191 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1192 machine_done);
1193
e9a8e474
AJ
1194 virt_acpi_setup(vms);
1195 virt_build_smbios(vms);
d7c2e2db
SZ
1196}
1197
3ef96221 1198static void machvirt_init(MachineState *machine)
f5fdcd6e 1199{
e5a5604f 1200 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1201 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
f5fdcd6e
PM
1202 qemu_irq pic[NUM_IRQS];
1203 MemoryRegion *sysmem = get_system_memory();
3df708eb 1204 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1205 int n, virt_max_cpus;
f5fdcd6e 1206 MemoryRegion *ram = g_new(MemoryRegion, 1);
3ef96221 1207 const char *cpu_model = machine->cpu_model;
f313369f 1208 char **cpustr;
09f71b05
IM
1209 ObjectClass *oc;
1210 const char *typename;
1211 CPUClass *cc;
1212 Error *err = NULL;
4824a61a 1213 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
95eb49c8 1214 uint8_t clustersz;
f5fdcd6e
PM
1215
1216 if (!cpu_model) {
1217 cpu_model = "cortex-a15";
1218 }
1219
b92ad394
PF
1220 /* We can probe only here because during property set
1221 * KVM is not available yet
1222 */
055a7f2b 1223 if (!vms->gic_version) {
0bf8039d
CR
1224 if (!kvm_enabled()) {
1225 error_report("gic-version=host requires KVM");
1226 exit(1);
1227 }
1228
055a7f2b
AJ
1229 vms->gic_version = kvm_arm_vgic_probe();
1230 if (!vms->gic_version) {
faa811f6 1231 error_report("Unable to determine GIC version supported by host");
b92ad394
PF
1232 exit(1);
1233 }
1234 }
1235
f313369f
GB
1236 /* Separate the actual CPU model name from any appended features */
1237 cpustr = g_strsplit(cpu_model, ",", 2);
1238
9ac4ef77 1239 if (!cpuname_valid(cpustr[0])) {
f313369f 1240 error_report("mach-virt: CPU %s not supported", cpustr[0]);
f5fdcd6e
PM
1241 exit(1);
1242 }
1243
4824a61a
PM
1244 /* If we have an EL3 boot ROM then the assumption is that it will
1245 * implement PSCI itself, so disable QEMU's internal implementation
1246 * so it doesn't get in the way. Instead of starting secondary
1247 * CPUs in PSCI powerdown state we will start them all running and
1248 * let the boot ROM sort them out.
f29cacfb
PM
1249 * The usual case is that we do use QEMU's PSCI implementation;
1250 * if the guest has EL2 then we will use SMC as the conduit,
1251 * and otherwise we will use HVC (for backwards compatibility and
1252 * because if we're using KVM then we must use HVC).
4824a61a 1253 */
2013c566
PM
1254 if (vms->secure && firmware_loaded) {
1255 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
f29cacfb
PM
1256 } else if (vms->virt) {
1257 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2013c566
PM
1258 } else {
1259 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1260 }
4824a61a 1261
4b280b72
AJ
1262 /* The maximum number of CPUs depends on the GIC version, or on how
1263 * many redistributors we can fit into the memory map.
1264 */
055a7f2b 1265 if (vms->gic_version == 3) {
c8ef2bda 1266 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
95eb49c8 1267 clustersz = GICV3_TARGETLIST_BITS;
4b280b72 1268 } else {
7ea686f5 1269 virt_max_cpus = GIC_NCPU;
95eb49c8 1270 clustersz = GIC_TARGETLIST_BITS;
4b280b72
AJ
1271 }
1272
7ea686f5 1273 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1274 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1275 "supported by machine 'mach-virt' (%d)",
7ea686f5 1276 max_cpus, virt_max_cpus);
4b280b72
AJ
1277 exit(1);
1278 }
1279
c8ef2bda 1280 vms->smp_cpus = smp_cpus;
f5fdcd6e 1281
c8ef2bda 1282 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
71c27684 1283 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
f5fdcd6e
PM
1284 exit(1);
1285 }
1286
f29cacfb
PM
1287 if (vms->virt && kvm_enabled()) {
1288 error_report("mach-virt: KVM does not support providing "
1289 "Virtualization extensions to the guest CPU");
1290 exit(1);
1291 }
1292
3df708eb
PM
1293 if (vms->secure) {
1294 if (kvm_enabled()) {
1295 error_report("mach-virt: KVM does not support Security extensions");
1296 exit(1);
1297 }
1298
1299 /* The Secure view of the world is the same as the NonSecure,
1300 * but with a few extra devices. Create it as a container region
1301 * containing the system memory at low priority; any secure-only
1302 * devices go in at higher priority and take precedence.
1303 */
1304 secure_sysmem = g_new(MemoryRegion, 1);
1305 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1306 UINT64_MAX);
1307 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1308 }
1309
c8ef2bda 1310 create_fdt(vms);
f5fdcd6e 1311
09f71b05
IM
1312 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1313 if (!oc) {
1314 error_report("Unable to find CPU definition");
1315 exit(1);
1316 }
1317 typename = object_class_get_name(oc);
f5fdcd6e 1318
09f71b05
IM
1319 /* convert -smp CPU options specified by the user into global props */
1320 cc = CPU_CLASS(oc);
1321 cc->parse_features(typename, cpustr[1], &err);
1322 g_strfreev(cpustr);
1323 if (err) {
1324 error_report_err(err);
1325 exit(1);
1326 }
1327
1328 for (n = 0; n < smp_cpus; n++) {
1329 Object *cpuobj = object_new(typename);
95eb49c8
AJ
1330 if (!vmc->disallow_affinity_adjustment) {
1331 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1332 * GIC's target-list limitations. 32-bit KVM hosts currently
1333 * always create clusters of 4 CPUs, but that is expected to
1334 * change when they gain support for gicv3. When KVM is enabled
1335 * it will override the changes we make here, therefore our
1336 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1337 * and to improve SGI efficiency.
1338 */
1339 uint8_t aff1 = n / clustersz;
1340 uint8_t aff0 = n % clustersz;
1341 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1342 "mp-affinity", NULL);
1343 }
f313369f 1344
e5a5604f
GB
1345 if (!vms->secure) {
1346 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1347 }
1348
f29cacfb 1349 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
c25bd18a
PM
1350 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1351 }
1352
2013c566
PM
1353 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1354 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1355 "psci-conduit", NULL);
211b0169 1356
4824a61a
PM
1357 /* Secondary CPUs start in PSCI powered-down state */
1358 if (n > 0) {
1359 object_property_set_bool(cpuobj, true,
1360 "start-powered-off", NULL);
1361 }
f5fdcd6e 1362 }
ba750085 1363
1141d1eb
WH
1364 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1365 object_property_set_bool(cpuobj, false, "pmu", NULL);
1366 }
1367
ba750085 1368 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1369 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1370 "reset-cbar", &error_abort);
1371 }
1372
1d939a68
PM
1373 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1374 &error_abort);
3df708eb
PM
1375 if (vms->secure) {
1376 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1377 "secure-memory", &error_abort);
1378 }
1d939a68 1379
f5fdcd6e
PM
1380 object_property_set_bool(cpuobj, true, "realized", NULL);
1381 }
055a7f2b 1382 fdt_add_timer_nodes(vms);
c8ef2bda
PM
1383 fdt_add_cpu_nodes(vms);
1384 fdt_add_psci_node(vms);
f5fdcd6e 1385
c8623c02
DM
1386 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1387 machine->ram_size);
c8ef2bda 1388 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
f5fdcd6e 1389
c8ef2bda 1390 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
acf82361 1391
055a7f2b 1392 create_gic(vms, pic);
f5fdcd6e 1393
055a7f2b 1394 fdt_add_pmu_nodes(vms);
01fe6b60 1395
c8ef2bda 1396 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
3df708eb
PM
1397
1398 if (vms->secure) {
c8ef2bda
PM
1399 create_secure_ram(vms, secure_sysmem);
1400 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
3df708eb 1401 }
f5fdcd6e 1402
c8ef2bda 1403 create_rtc(vms, pic);
6e411af9 1404
0127937b 1405 create_pcie(vms, pic);
4ab29b82 1406
c8ef2bda 1407 create_gpio(vms, pic);
b0a3721e 1408
f5fdcd6e
PM
1409 /* Create mmio transports, so the user can create virtio backends
1410 * (which will be automatically plugged in to the transports). If
1411 * no backend is created the transport will just sit harmlessly idle.
1412 */
c8ef2bda 1413 create_virtio_devices(vms, pic);
f5fdcd6e 1414
af1f60a4
AJ
1415 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1416 rom_set_fw(vms->fw_cfg);
d7c2e2db 1417
054f4dc9
AJ
1418 vms->machine_done.notify = virt_machine_done;
1419 qemu_add_machine_init_done_notifier(&vms->machine_done);
578f3c7b 1420
c8ef2bda
PM
1421 vms->bootinfo.ram_size = machine->ram_size;
1422 vms->bootinfo.kernel_filename = machine->kernel_filename;
1423 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1424 vms->bootinfo.initrd_filename = machine->initrd_filename;
1425 vms->bootinfo.nb_cpus = smp_cpus;
1426 vms->bootinfo.board_id = -1;
1427 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1428 vms->bootinfo.get_dtb = machvirt_dtb;
1429 vms->bootinfo.firmware_loaded = firmware_loaded;
1430 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
5f7a5a0e
EA
1431
1432 /*
1433 * arm_load_kernel machine init done notifier registration must
1434 * happen before the platform_bus_create call. In this latter,
1435 * another notifier is registered which adds platform bus nodes.
1436 * Notifiers are executed in registration reverse order.
1437 */
c8ef2bda 1438 create_platform_bus(vms, pic);
f5fdcd6e
PM
1439}
1440
083a5890
GB
1441static bool virt_get_secure(Object *obj, Error **errp)
1442{
1443 VirtMachineState *vms = VIRT_MACHINE(obj);
1444
1445 return vms->secure;
1446}
1447
1448static void virt_set_secure(Object *obj, bool value, Error **errp)
1449{
1450 VirtMachineState *vms = VIRT_MACHINE(obj);
1451
1452 vms->secure = value;
1453}
1454
f29cacfb
PM
1455static bool virt_get_virt(Object *obj, Error **errp)
1456{
1457 VirtMachineState *vms = VIRT_MACHINE(obj);
1458
1459 return vms->virt;
1460}
1461
1462static void virt_set_virt(Object *obj, bool value, Error **errp)
1463{
1464 VirtMachineState *vms = VIRT_MACHINE(obj);
1465
1466 vms->virt = value;
1467}
1468
5125f9cd
PF
1469static bool virt_get_highmem(Object *obj, Error **errp)
1470{
1471 VirtMachineState *vms = VIRT_MACHINE(obj);
1472
1473 return vms->highmem;
1474}
1475
1476static void virt_set_highmem(Object *obj, bool value, Error **errp)
1477{
1478 VirtMachineState *vms = VIRT_MACHINE(obj);
1479
1480 vms->highmem = value;
1481}
1482
b92ad394
PF
1483static char *virt_get_gic_version(Object *obj, Error **errp)
1484{
1485 VirtMachineState *vms = VIRT_MACHINE(obj);
1486 const char *val = vms->gic_version == 3 ? "3" : "2";
1487
1488 return g_strdup(val);
1489}
1490
1491static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1492{
1493 VirtMachineState *vms = VIRT_MACHINE(obj);
1494
1495 if (!strcmp(value, "3")) {
1496 vms->gic_version = 3;
1497 } else if (!strcmp(value, "2")) {
1498 vms->gic_version = 2;
1499 } else if (!strcmp(value, "host")) {
1500 vms->gic_version = 0; /* Will probe later */
1501 } else {
7b55044f
MA
1502 error_setg(errp, "Invalid gic-version value");
1503 error_append_hint(errp, "Valid values are 3, 2, host.\n");
b92ad394
PF
1504 }
1505}
1506
ed796373
WH
1507static void virt_machine_class_init(ObjectClass *oc, void *data)
1508{
9c94d8e6
WH
1509 MachineClass *mc = MACHINE_CLASS(oc);
1510
1511 mc->init = machvirt_init;
1512 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1513 * it later in machvirt_init, where we have more information about the
1514 * configuration of the particular instance.
1515 */
079019f2 1516 mc->max_cpus = 255;
9c94d8e6
WH
1517 mc->has_dynamic_sysbus = true;
1518 mc->block_default_type = IF_VIRTIO;
1519 mc->no_cdrom = 1;
1520 mc->pci_allow_0_address = true;
a2519ad1
PM
1521 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1522 mc->minimum_page_bits = 12;
ed796373
WH
1523}
1524
1525static const TypeInfo virt_machine_info = {
1526 .name = TYPE_VIRT_MACHINE,
1527 .parent = TYPE_MACHINE,
1528 .abstract = true,
1529 .instance_size = sizeof(VirtMachineState),
1530 .class_size = sizeof(VirtMachineClass),
1531 .class_init = virt_machine_class_init,
1532};
1533
7a2ecd95
AJ
1534static void machvirt_machine_init(void)
1535{
1536 type_register_static(&virt_machine_info);
1537}
1538type_init(machvirt_machine_init);
1539
e353aac5 1540static void virt_2_9_instance_init(Object *obj)
083a5890
GB
1541{
1542 VirtMachineState *vms = VIRT_MACHINE(obj);
1543
2d710006
PM
1544 /* EL3 is disabled by default on virt: this makes us consistent
1545 * between KVM and TCG for this board, and it also allows us to
1546 * boot UEFI blobs which assume no TrustZone support.
1547 */
1548 vms->secure = false;
083a5890
GB
1549 object_property_add_bool(obj, "secure", virt_get_secure,
1550 virt_set_secure, NULL);
1551 object_property_set_description(obj, "secure",
1552 "Set on/off to enable/disable the ARM "
1553 "Security Extensions (TrustZone)",
1554 NULL);
5125f9cd 1555
f29cacfb
PM
1556 /* EL2 is also disabled by default, for similar reasons */
1557 vms->virt = false;
1558 object_property_add_bool(obj, "virtualization", virt_get_virt,
1559 virt_set_virt, NULL);
1560 object_property_set_description(obj, "virtualization",
1561 "Set on/off to enable/disable emulating a "
1562 "guest CPU which implements the ARM "
1563 "Virtualization Extensions",
1564 NULL);
1565
5125f9cd
PF
1566 /* High memory is enabled by default */
1567 vms->highmem = true;
1568 object_property_add_bool(obj, "highmem", virt_get_highmem,
1569 virt_set_highmem, NULL);
1570 object_property_set_description(obj, "highmem",
1571 "Set on/off to enable/disable using "
1572 "physical address space above 32 bits",
1573 NULL);
b92ad394
PF
1574 /* Default GIC type is v2 */
1575 vms->gic_version = 2;
1576 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1577 virt_set_gic_version, NULL);
1578 object_property_set_description(obj, "gic-version",
1579 "Set GIC version. "
1580 "Valid values are 2, 3 and host", NULL);
9ac4ef77
PM
1581
1582 vms->memmap = a15memmap;
1583 vms->irqmap = a15irqmap;
083a5890
GB
1584}
1585
e353aac5
PM
1586static void virt_machine_2_9_options(MachineClass *mc)
1587{
1588}
1589DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1590
1591#define VIRT_COMPAT_2_8 \
1592 HW_COMPAT_2_8
1593
1594static void virt_2_8_instance_init(Object *obj)
1595{
1596 virt_2_9_instance_init(obj);
1597}
1598
96b0439b
AJ
1599static void virt_machine_2_8_options(MachineClass *mc)
1600{
156bc9a5
PM
1601 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1602
e353aac5
PM
1603 virt_machine_2_9_options(mc);
1604 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
156bc9a5
PM
1605 /* For 2.8 and earlier we falsely claimed in the DT that
1606 * our timers were edge-triggered, not level-triggered.
1607 */
1608 vmc->claim_edge_triggered_timers = true;
96b0439b 1609}
e353aac5 1610DEFINE_VIRT_MACHINE(2, 8)
96b0439b
AJ
1611
1612#define VIRT_COMPAT_2_7 \
1613 HW_COMPAT_2_7
1614
1615static void virt_2_7_instance_init(Object *obj)
1616{
1617 virt_2_8_instance_init(obj);
1618}
1619
1287f2b3
AJ
1620static void virt_machine_2_7_options(MachineClass *mc)
1621{
2231f69b
AJ
1622 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1623
96b0439b
AJ
1624 virt_machine_2_8_options(mc);
1625 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
2231f69b
AJ
1626 /* ITS was introduced with 2.8 */
1627 vmc->no_its = true;
a2519ad1
PM
1628 /* Stick with 1K pages for migration compatibility */
1629 mc->minimum_page_bits = 0;
1287f2b3 1630}
96b0439b 1631DEFINE_VIRT_MACHINE(2, 7)
1287f2b3
AJ
1632
1633#define VIRT_COMPAT_2_6 \
1634 HW_COMPAT_2_6
1635
1636static void virt_2_6_instance_init(Object *obj)
1637{
1638 virt_2_7_instance_init(obj);
1639}
1640
ab093c3c 1641static void virt_machine_2_6_options(MachineClass *mc)
c2919690 1642{
95eb49c8
AJ
1643 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1644
1287f2b3
AJ
1645 virt_machine_2_7_options(mc);
1646 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
95eb49c8 1647 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
1648 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1649 vmc->no_pmu = true;
c2919690 1650}
1287f2b3 1651DEFINE_VIRT_MACHINE(2, 6)
This page took 0.444653 seconds and 4 git commands to generate.