]>
Commit | Line | Data |
---|---|---|
f5fdcd6e PM |
1 | /* |
2 | * ARM mach-virt emulation | |
3 | * | |
4 | * Copyright (c) 2013 Linaro Limited | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms and conditions of the GNU General Public License, | |
8 | * version 2 or later, as published by the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program. If not, see <http://www.gnu.org/licenses/>. | |
17 | * | |
18 | * Emulate a virtual board which works by passing Linux all the information | |
19 | * it needs about what devices are present via the device tree. | |
20 | * There are some restrictions about what we can do here: | |
21 | * + we can only present devices whose Linux drivers will work based | |
22 | * purely on the device tree with no platform data at all | |
23 | * + we want to present a very stripped-down minimalist platform, | |
24 | * both because this reduces the security attack surface from the guest | |
25 | * and also because it reduces our exposure to being broken when | |
26 | * the kernel updates its device tree bindings and requires further | |
27 | * information in a device binding that we aren't providing. | |
28 | * This is essentially the same approach kvmtool uses. | |
29 | */ | |
30 | ||
31 | #include "hw/sysbus.h" | |
32 | #include "hw/arm/arm.h" | |
33 | #include "hw/arm/primecell.h" | |
34 | #include "hw/devices.h" | |
35 | #include "net/net.h" | |
fa1d36df | 36 | #include "sysemu/block-backend.h" |
f5fdcd6e PM |
37 | #include "sysemu/device_tree.h" |
38 | #include "sysemu/sysemu.h" | |
39 | #include "sysemu/kvm.h" | |
40 | #include "hw/boards.h" | |
acf82361 | 41 | #include "hw/loader.h" |
f5fdcd6e PM |
42 | #include "exec/address-spaces.h" |
43 | #include "qemu/bitops.h" | |
44 | #include "qemu/error-report.h" | |
4ab29b82 | 45 | #include "hw/pci-host/gpex.h" |
f5fdcd6e PM |
46 | |
47 | #define NUM_VIRTIO_TRANSPORTS 32 | |
48 | ||
49 | /* Number of external interrupt lines to configure the GIC with */ | |
50 | #define NUM_IRQS 128 | |
51 | ||
52 | #define GIC_FDT_IRQ_TYPE_SPI 0 | |
53 | #define GIC_FDT_IRQ_TYPE_PPI 1 | |
54 | ||
55 | #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 | |
56 | #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 | |
57 | #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 | |
58 | #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 | |
59 | ||
60 | #define GIC_FDT_IRQ_PPI_CPU_START 8 | |
61 | #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 | |
62 | ||
63 | enum { | |
64 | VIRT_FLASH, | |
65 | VIRT_MEM, | |
66 | VIRT_CPUPERIPHS, | |
67 | VIRT_GIC_DIST, | |
68 | VIRT_GIC_CPU, | |
69 | VIRT_UART, | |
70 | VIRT_MMIO, | |
6e411af9 | 71 | VIRT_RTC, |
578f3c7b | 72 | VIRT_FW_CFG, |
4ab29b82 | 73 | VIRT_PCIE, |
f5fdcd6e PM |
74 | }; |
75 | ||
76 | typedef struct MemMapEntry { | |
77 | hwaddr base; | |
78 | hwaddr size; | |
79 | } MemMapEntry; | |
80 | ||
81 | typedef struct VirtBoardInfo { | |
82 | struct arm_boot_info bootinfo; | |
83 | const char *cpu_model; | |
f5fdcd6e PM |
84 | const MemMapEntry *memmap; |
85 | const int *irqmap; | |
86 | int smp_cpus; | |
87 | void *fdt; | |
88 | int fdt_size; | |
89 | uint32_t clock_phandle; | |
90 | } VirtBoardInfo; | |
91 | ||
c2919690 GB |
92 | typedef struct { |
93 | MachineClass parent; | |
94 | VirtBoardInfo *daughterboard; | |
95 | } VirtMachineClass; | |
96 | ||
97 | typedef struct { | |
98 | MachineState parent; | |
083a5890 | 99 | bool secure; |
c2919690 GB |
100 | } VirtMachineState; |
101 | ||
102 | #define TYPE_VIRT_MACHINE "virt" | |
103 | #define VIRT_MACHINE(obj) \ | |
104 | OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) | |
105 | #define VIRT_MACHINE_GET_CLASS(obj) \ | |
106 | OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) | |
107 | #define VIRT_MACHINE_CLASS(klass) \ | |
108 | OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) | |
109 | ||
f5fdcd6e PM |
110 | /* Addresses and sizes of our components. |
111 | * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. | |
112 | * 128MB..256MB is used for miscellaneous device I/O. | |
113 | * 256MB..1GB is reserved for possible future PCI support (ie where the | |
114 | * PCI memory window will go if we add a PCI host controller). | |
115 | * 1GB and up is RAM (which may happily spill over into the | |
116 | * high memory region beyond 4GB). | |
117 | * This represents a compromise between how much RAM can be given to | |
118 | * a 32 bit VM and leaving space for expansion and in particular for PCI. | |
6e411af9 PM |
119 | * Note that devices should generally be placed at multiples of 0x10000, |
120 | * to accommodate guests using 64K pages. | |
f5fdcd6e PM |
121 | */ |
122 | static const MemMapEntry a15memmap[] = { | |
123 | /* Space up to 0x8000000 is reserved for a boot ROM */ | |
fab46932 AJ |
124 | [VIRT_FLASH] = { 0, 0x08000000 }, |
125 | [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, | |
f5fdcd6e | 126 | /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ |
fab46932 AJ |
127 | [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, |
128 | [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, | |
129 | [VIRT_UART] = { 0x09000000, 0x00001000 }, | |
130 | [VIRT_RTC] = { 0x09010000, 0x00001000 }, | |
578f3c7b | 131 | [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, |
fab46932 | 132 | [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, |
f5fdcd6e | 133 | /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ |
4ab29b82 AG |
134 | /* |
135 | * PCIE verbose map: | |
136 | * | |
137 | * MMIO window { 0x10000000, 0x2eff0000 }, | |
138 | * PIO window { 0x3eff0000, 0x00010000 }, | |
139 | * ECAM { 0x3f000000, 0x01000000 }, | |
140 | */ | |
141 | [VIRT_PCIE] = { 0x10000000, 0x30000000 }, | |
fab46932 | 142 | [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, |
f5fdcd6e PM |
143 | }; |
144 | ||
145 | static const int a15irqmap[] = { | |
146 | [VIRT_UART] = 1, | |
6e411af9 | 147 | [VIRT_RTC] = 2, |
4ab29b82 | 148 | [VIRT_PCIE] = 3, /* ... to 6 */ |
f5fdcd6e PM |
149 | [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ |
150 | }; | |
151 | ||
152 | static VirtBoardInfo machines[] = { | |
153 | { | |
154 | .cpu_model = "cortex-a15", | |
f5fdcd6e PM |
155 | .memmap = a15memmap, |
156 | .irqmap = a15irqmap, | |
157 | }, | |
f42c5c8e PM |
158 | { |
159 | .cpu_model = "cortex-a57", | |
160 | .memmap = a15memmap, | |
161 | .irqmap = a15irqmap, | |
162 | }, | |
198aa064 PM |
163 | { |
164 | .cpu_model = "host", | |
198aa064 PM |
165 | .memmap = a15memmap, |
166 | .irqmap = a15irqmap, | |
167 | }, | |
f5fdcd6e PM |
168 | }; |
169 | ||
170 | static VirtBoardInfo *find_machine_info(const char *cpu) | |
171 | { | |
172 | int i; | |
173 | ||
174 | for (i = 0; i < ARRAY_SIZE(machines); i++) { | |
175 | if (strcmp(cpu, machines[i].cpu_model) == 0) { | |
176 | return &machines[i]; | |
177 | } | |
178 | } | |
179 | return NULL; | |
180 | } | |
181 | ||
182 | static void create_fdt(VirtBoardInfo *vbi) | |
183 | { | |
184 | void *fdt = create_device_tree(&vbi->fdt_size); | |
185 | ||
186 | if (!fdt) { | |
187 | error_report("create_device_tree() failed"); | |
188 | exit(1); | |
189 | } | |
190 | ||
191 | vbi->fdt = fdt; | |
192 | ||
193 | /* Header */ | |
5a4348d1 PC |
194 | qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); |
195 | qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); | |
196 | qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); | |
f5fdcd6e PM |
197 | |
198 | /* | |
199 | * /chosen and /memory nodes must exist for load_dtb | |
200 | * to fill in necessary properties later | |
201 | */ | |
5a4348d1 PC |
202 | qemu_fdt_add_subnode(fdt, "/chosen"); |
203 | qemu_fdt_add_subnode(fdt, "/memory"); | |
204 | qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); | |
f5fdcd6e PM |
205 | |
206 | /* Clock node, for the benefit of the UART. The kernel device tree | |
207 | * binding documentation claims the PL011 node clock properties are | |
208 | * optional but in practice if you omit them the kernel refuses to | |
209 | * probe for the device. | |
210 | */ | |
5a4348d1 PC |
211 | vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); |
212 | qemu_fdt_add_subnode(fdt, "/apb-pclk"); | |
213 | qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); | |
214 | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); | |
215 | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); | |
216 | qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", | |
f5fdcd6e | 217 | "clk24mhz"); |
5a4348d1 | 218 | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); |
f5fdcd6e | 219 | |
06955739 PS |
220 | } |
221 | ||
222 | static void fdt_add_psci_node(const VirtBoardInfo *vbi) | |
223 | { | |
211b0169 RH |
224 | uint32_t cpu_suspend_fn; |
225 | uint32_t cpu_off_fn; | |
226 | uint32_t cpu_on_fn; | |
227 | uint32_t migrate_fn; | |
06955739 PS |
228 | void *fdt = vbi->fdt; |
229 | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); | |
230 | ||
211b0169 RH |
231 | qemu_fdt_add_subnode(fdt, "/psci"); |
232 | if (armcpu->psci_version == 2) { | |
233 | const char comp[] = "arm,psci-0.2\0arm,psci"; | |
234 | qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); | |
863714ba | 235 | |
211b0169 RH |
236 | cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; |
237 | if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { | |
238 | cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; | |
239 | cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; | |
240 | migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; | |
241 | } else { | |
242 | cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; | |
243 | cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; | |
244 | migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; | |
06955739 | 245 | } |
211b0169 RH |
246 | } else { |
247 | qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); | |
06955739 | 248 | |
211b0169 RH |
249 | cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; |
250 | cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; | |
251 | cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; | |
252 | migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; | |
f5fdcd6e | 253 | } |
211b0169 RH |
254 | |
255 | /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer | |
256 | * to the instruction that should be used to invoke PSCI functions. | |
257 | * However, the device tree binding uses 'method' instead, so that is | |
258 | * what we should use here. | |
259 | */ | |
260 | qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); | |
261 | ||
262 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); | |
263 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); | |
264 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); | |
265 | qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); | |
f5fdcd6e PM |
266 | } |
267 | ||
268 | static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) | |
269 | { | |
270 | /* Note that on A15 h/w these interrupts are level-triggered, | |
271 | * but for the GIC implementation provided by both QEMU and KVM | |
272 | * they are edge-triggered. | |
273 | */ | |
b32a9509 | 274 | ARMCPU *armcpu; |
f5fdcd6e PM |
275 | uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; |
276 | ||
277 | irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, | |
278 | GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); | |
279 | ||
5a4348d1 | 280 | qemu_fdt_add_subnode(vbi->fdt, "/timer"); |
b32a9509 CF |
281 | |
282 | armcpu = ARM_CPU(qemu_get_cpu(0)); | |
283 | if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { | |
284 | const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; | |
285 | qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", | |
286 | compat, sizeof(compat)); | |
287 | } else { | |
288 | qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", | |
289 | "arm,armv7-timer"); | |
290 | } | |
5a4348d1 | 291 | qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", |
f5fdcd6e PM |
292 | GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, |
293 | GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, | |
294 | GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, | |
295 | GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); | |
296 | } | |
297 | ||
298 | static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) | |
299 | { | |
300 | int cpu; | |
301 | ||
5a4348d1 PC |
302 | qemu_fdt_add_subnode(vbi->fdt, "/cpus"); |
303 | qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); | |
304 | qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); | |
f5fdcd6e PM |
305 | |
306 | for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { | |
307 | char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); | |
308 | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); | |
309 | ||
5a4348d1 PC |
310 | qemu_fdt_add_subnode(vbi->fdt, nodename); |
311 | qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); | |
312 | qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", | |
f5fdcd6e PM |
313 | armcpu->dtb_compatible); |
314 | ||
315 | if (vbi->smp_cpus > 1) { | |
5a4348d1 | 316 | qemu_fdt_setprop_string(vbi->fdt, nodename, |
f5fdcd6e PM |
317 | "enable-method", "psci"); |
318 | } | |
319 | ||
5a4348d1 | 320 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); |
f5fdcd6e PM |
321 | g_free(nodename); |
322 | } | |
323 | } | |
324 | ||
4ab29b82 | 325 | static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi) |
f5fdcd6e PM |
326 | { |
327 | uint32_t gic_phandle; | |
328 | ||
5a4348d1 PC |
329 | gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); |
330 | qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); | |
f5fdcd6e | 331 | |
5a4348d1 | 332 | qemu_fdt_add_subnode(vbi->fdt, "/intc"); |
64204743 | 333 | /* 'cortex-a15-gic' means 'GIC v2' */ |
5a4348d1 | 334 | qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", |
64204743 | 335 | "arm,cortex-a15-gic"); |
5a4348d1 PC |
336 | qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); |
337 | qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); | |
338 | qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", | |
f5fdcd6e PM |
339 | 2, vbi->memmap[VIRT_GIC_DIST].base, |
340 | 2, vbi->memmap[VIRT_GIC_DIST].size, | |
341 | 2, vbi->memmap[VIRT_GIC_CPU].base, | |
342 | 2, vbi->memmap[VIRT_GIC_CPU].size); | |
5a4348d1 | 343 | qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); |
4ab29b82 AG |
344 | |
345 | return gic_phandle; | |
f5fdcd6e PM |
346 | } |
347 | ||
4ab29b82 | 348 | static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) |
64204743 PM |
349 | { |
350 | /* We create a standalone GIC v2 */ | |
351 | DeviceState *gicdev; | |
352 | SysBusDevice *gicbusdev; | |
353 | const char *gictype = "arm_gic"; | |
354 | int i; | |
355 | ||
356 | if (kvm_irqchip_in_kernel()) { | |
357 | gictype = "kvm-arm-gic"; | |
358 | } | |
359 | ||
360 | gicdev = qdev_create(NULL, gictype); | |
361 | qdev_prop_set_uint32(gicdev, "revision", 2); | |
362 | qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); | |
363 | /* Note that the num-irq property counts both internal and external | |
364 | * interrupts; there are always 32 of the former (mandated by GIC spec). | |
365 | */ | |
366 | qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); | |
367 | qdev_init_nofail(gicdev); | |
368 | gicbusdev = SYS_BUS_DEVICE(gicdev); | |
369 | sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); | |
370 | sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); | |
371 | ||
372 | /* Wire the outputs from each CPU's generic timer to the | |
373 | * appropriate GIC PPI inputs, and the GIC's IRQ output to | |
374 | * the CPU's IRQ input. | |
375 | */ | |
376 | for (i = 0; i < smp_cpus; i++) { | |
377 | DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); | |
378 | int ppibase = NUM_IRQS + i * 32; | |
379 | /* physical timer; we wire it up to the non-secure timer's ID, | |
380 | * since a real A15 always has TrustZone but QEMU doesn't. | |
381 | */ | |
382 | qdev_connect_gpio_out(cpudev, 0, | |
383 | qdev_get_gpio_in(gicdev, ppibase + 30)); | |
384 | /* virtual timer */ | |
385 | qdev_connect_gpio_out(cpudev, 1, | |
386 | qdev_get_gpio_in(gicdev, ppibase + 27)); | |
387 | ||
388 | sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); | |
389 | } | |
390 | ||
391 | for (i = 0; i < NUM_IRQS; i++) { | |
392 | pic[i] = qdev_get_gpio_in(gicdev, i); | |
393 | } | |
394 | ||
4ab29b82 | 395 | return fdt_add_gic_node(vbi); |
64204743 PM |
396 | } |
397 | ||
f5fdcd6e PM |
398 | static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) |
399 | { | |
400 | char *nodename; | |
401 | hwaddr base = vbi->memmap[VIRT_UART].base; | |
402 | hwaddr size = vbi->memmap[VIRT_UART].size; | |
403 | int irq = vbi->irqmap[VIRT_UART]; | |
404 | const char compat[] = "arm,pl011\0arm,primecell"; | |
405 | const char clocknames[] = "uartclk\0apb_pclk"; | |
406 | ||
407 | sysbus_create_simple("pl011", base, pic[irq]); | |
408 | ||
409 | nodename = g_strdup_printf("/pl011@%" PRIx64, base); | |
5a4348d1 | 410 | qemu_fdt_add_subnode(vbi->fdt, nodename); |
f5fdcd6e | 411 | /* Note that we can't use setprop_string because of the embedded NUL */ |
5a4348d1 | 412 | qemu_fdt_setprop(vbi->fdt, nodename, "compatible", |
f5fdcd6e | 413 | compat, sizeof(compat)); |
5a4348d1 | 414 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
f5fdcd6e | 415 | 2, base, 2, size); |
5a4348d1 | 416 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
f5fdcd6e | 417 | GIC_FDT_IRQ_TYPE_SPI, irq, |
0be969a2 | 418 | GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
5a4348d1 | 419 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", |
f5fdcd6e | 420 | vbi->clock_phandle, vbi->clock_phandle); |
5a4348d1 | 421 | qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", |
f5fdcd6e | 422 | clocknames, sizeof(clocknames)); |
f022b8e9 | 423 | |
9c7074da | 424 | qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); |
f5fdcd6e PM |
425 | g_free(nodename); |
426 | } | |
427 | ||
6e411af9 PM |
428 | static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) |
429 | { | |
430 | char *nodename; | |
431 | hwaddr base = vbi->memmap[VIRT_RTC].base; | |
432 | hwaddr size = vbi->memmap[VIRT_RTC].size; | |
433 | int irq = vbi->irqmap[VIRT_RTC]; | |
434 | const char compat[] = "arm,pl031\0arm,primecell"; | |
435 | ||
436 | sysbus_create_simple("pl031", base, pic[irq]); | |
437 | ||
438 | nodename = g_strdup_printf("/pl031@%" PRIx64, base); | |
439 | qemu_fdt_add_subnode(vbi->fdt, nodename); | |
440 | qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); | |
441 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
442 | 2, base, 2, size); | |
443 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", | |
444 | GIC_FDT_IRQ_TYPE_SPI, irq, | |
0be969a2 | 445 | GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
6e411af9 PM |
446 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); |
447 | qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); | |
448 | g_free(nodename); | |
449 | } | |
450 | ||
f5fdcd6e PM |
451 | static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) |
452 | { | |
453 | int i; | |
454 | hwaddr size = vbi->memmap[VIRT_MMIO].size; | |
455 | ||
587078f0 LE |
456 | /* We create the transports in forwards order. Since qbus_realize() |
457 | * prepends (not appends) new child buses, the incrementing loop below will | |
458 | * create a list of virtio-mmio buses with decreasing base addresses. | |
459 | * | |
460 | * When a -device option is processed from the command line, | |
461 | * qbus_find_recursive() picks the next free virtio-mmio bus in forwards | |
462 | * order. The upshot is that -device options in increasing command line | |
463 | * order are mapped to virtio-mmio buses with decreasing base addresses. | |
464 | * | |
465 | * When this code was originally written, that arrangement ensured that the | |
466 | * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to | |
467 | * the first -device on the command line. (The end-to-end order is a | |
468 | * function of this loop, qbus_realize(), qbus_find_recursive(), and the | |
469 | * guest kernel's name-to-address assignment strategy.) | |
470 | * | |
471 | * Meanwhile, the kernel's traversal seems to have been reversed; see eg. | |
472 | * the message, if not necessarily the code, of commit 70161ff336. | |
473 | * Therefore the loop now establishes the inverse of the original intent. | |
474 | * | |
475 | * Unfortunately, we can't counteract the kernel change by reversing the | |
476 | * loop; it would break existing command lines. | |
477 | * | |
478 | * In any case, the kernel makes no guarantee about the stability of | |
479 | * enumeration order of virtio devices (as demonstrated by it changing | |
480 | * between kernel versions). For reliable and stable identification | |
481 | * of disks users must use UUIDs or similar mechanisms. | |
f5fdcd6e PM |
482 | */ |
483 | for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { | |
484 | int irq = vbi->irqmap[VIRT_MMIO] + i; | |
485 | hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; | |
486 | ||
487 | sysbus_create_simple("virtio-mmio", base, pic[irq]); | |
488 | } | |
489 | ||
587078f0 LE |
490 | /* We add dtb nodes in reverse order so that they appear in the finished |
491 | * device tree lowest address first. | |
492 | * | |
493 | * Note that this mapping is independent of the loop above. The previous | |
494 | * loop influences virtio device to virtio transport assignment, whereas | |
495 | * this loop controls how virtio transports are laid out in the dtb. | |
496 | */ | |
f5fdcd6e PM |
497 | for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { |
498 | char *nodename; | |
499 | int irq = vbi->irqmap[VIRT_MMIO] + i; | |
500 | hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; | |
501 | ||
502 | nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); | |
5a4348d1 PC |
503 | qemu_fdt_add_subnode(vbi->fdt, nodename); |
504 | qemu_fdt_setprop_string(vbi->fdt, nodename, | |
505 | "compatible", "virtio,mmio"); | |
506 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
507 | 2, base, 2, size); | |
508 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", | |
509 | GIC_FDT_IRQ_TYPE_SPI, irq, | |
510 | GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); | |
f5fdcd6e PM |
511 | g_free(nodename); |
512 | } | |
513 | } | |
514 | ||
acf82361 PM |
515 | static void create_one_flash(const char *name, hwaddr flashbase, |
516 | hwaddr flashsize) | |
517 | { | |
518 | /* Create and map a single flash device. We use the same | |
519 | * parameters as the flash devices on the Versatile Express board. | |
520 | */ | |
521 | DriveInfo *dinfo = drive_get_next(IF_PFLASH); | |
522 | DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); | |
523 | const uint64_t sectorlength = 256 * 1024; | |
524 | ||
fa1d36df | 525 | if (dinfo && qdev_prop_set_drive(dev, "drive", |
4be74634 | 526 | blk_by_legacy_dinfo(dinfo))) { |
acf82361 PM |
527 | abort(); |
528 | } | |
529 | ||
530 | qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); | |
531 | qdev_prop_set_uint64(dev, "sector-length", sectorlength); | |
532 | qdev_prop_set_uint8(dev, "width", 4); | |
533 | qdev_prop_set_uint8(dev, "device-width", 2); | |
534 | qdev_prop_set_uint8(dev, "big-endian", 0); | |
535 | qdev_prop_set_uint16(dev, "id0", 0x89); | |
536 | qdev_prop_set_uint16(dev, "id1", 0x18); | |
537 | qdev_prop_set_uint16(dev, "id2", 0x00); | |
538 | qdev_prop_set_uint16(dev, "id3", 0x00); | |
539 | qdev_prop_set_string(dev, "name", name); | |
540 | qdev_init_nofail(dev); | |
541 | ||
542 | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); | |
543 | } | |
544 | ||
545 | static void create_flash(const VirtBoardInfo *vbi) | |
546 | { | |
547 | /* Create two flash devices to fill the VIRT_FLASH space in the memmap. | |
548 | * Any file passed via -bios goes in the first of these. | |
549 | */ | |
550 | hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; | |
551 | hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; | |
552 | char *nodename; | |
553 | ||
554 | if (bios_name) { | |
555 | const char *fn; | |
556 | ||
557 | if (drive_get(IF_PFLASH, 0, 0)) { | |
558 | error_report("The contents of the first flash device may be " | |
559 | "specified with -bios or with -drive if=pflash... " | |
560 | "but you cannot use both options at once"); | |
561 | exit(1); | |
562 | } | |
563 | fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | |
564 | if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) { | |
565 | error_report("Could not load ROM image '%s'", bios_name); | |
566 | exit(1); | |
567 | } | |
568 | } | |
569 | ||
570 | create_one_flash("virt.flash0", flashbase, flashsize); | |
571 | create_one_flash("virt.flash1", flashbase + flashsize, flashsize); | |
572 | ||
573 | nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); | |
574 | qemu_fdt_add_subnode(vbi->fdt, nodename); | |
575 | qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); | |
576 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
577 | 2, flashbase, 2, flashsize, | |
578 | 2, flashbase + flashsize, 2, flashsize); | |
579 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); | |
580 | g_free(nodename); | |
581 | } | |
582 | ||
578f3c7b LE |
583 | static void create_fw_cfg(const VirtBoardInfo *vbi) |
584 | { | |
585 | hwaddr base = vbi->memmap[VIRT_FW_CFG].base; | |
586 | hwaddr size = vbi->memmap[VIRT_FW_CFG].size; | |
587 | char *nodename; | |
588 | ||
589 | fw_cfg_init_mem_wide(base + 8, base, 8); | |
590 | ||
591 | nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); | |
592 | qemu_fdt_add_subnode(vbi->fdt, nodename); | |
593 | qemu_fdt_setprop_string(vbi->fdt, nodename, | |
594 | "compatible", "qemu,fw-cfg-mmio"); | |
595 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
596 | 2, base, 2, size); | |
597 | g_free(nodename); | |
598 | } | |
599 | ||
4ab29b82 AG |
600 | static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, |
601 | int first_irq, const char *nodename) | |
602 | { | |
603 | int devfn, pin; | |
604 | uint32_t full_irq_map[4 * 4 * 8] = { 0 }; | |
605 | uint32_t *irq_map = full_irq_map; | |
606 | ||
607 | for (devfn = 0; devfn <= 0x18; devfn += 0x8) { | |
608 | for (pin = 0; pin < 4; pin++) { | |
609 | int irq_type = GIC_FDT_IRQ_TYPE_SPI; | |
610 | int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); | |
611 | int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; | |
612 | int i; | |
613 | ||
614 | uint32_t map[] = { | |
615 | devfn << 8, 0, 0, /* devfn */ | |
616 | pin + 1, /* PCI pin */ | |
617 | gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */ | |
618 | ||
619 | /* Convert map to big endian */ | |
620 | for (i = 0; i < 8; i++) { | |
621 | irq_map[i] = cpu_to_be32(map[i]); | |
622 | } | |
623 | irq_map += 8; | |
624 | } | |
625 | } | |
626 | ||
627 | qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", | |
628 | full_irq_map, sizeof(full_irq_map)); | |
629 | ||
630 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", | |
631 | 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ | |
632 | 0x7 /* PCI irq */); | |
633 | } | |
634 | ||
635 | static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, | |
636 | uint32_t gic_phandle) | |
637 | { | |
638 | hwaddr base = vbi->memmap[VIRT_PCIE].base; | |
639 | hwaddr size = vbi->memmap[VIRT_PCIE].size; | |
640 | hwaddr end = base + size; | |
641 | hwaddr size_mmio; | |
642 | hwaddr size_ioport = 64 * 1024; | |
643 | int nr_pcie_buses = 16; | |
644 | hwaddr size_ecam = PCIE_MMCFG_SIZE_MIN * nr_pcie_buses; | |
645 | hwaddr base_mmio = base; | |
646 | hwaddr base_ioport; | |
647 | hwaddr base_ecam; | |
648 | int irq = vbi->irqmap[VIRT_PCIE]; | |
649 | MemoryRegion *mmio_alias; | |
650 | MemoryRegion *mmio_reg; | |
651 | MemoryRegion *ecam_alias; | |
652 | MemoryRegion *ecam_reg; | |
653 | DeviceState *dev; | |
654 | char *nodename; | |
655 | int i; | |
656 | ||
657 | base_ecam = QEMU_ALIGN_DOWN(end - size_ecam, size_ecam); | |
658 | base_ioport = QEMU_ALIGN_DOWN(base_ecam - size_ioport, size_ioport); | |
659 | size_mmio = base_ioport - base; | |
660 | ||
661 | dev = qdev_create(NULL, TYPE_GPEX_HOST); | |
662 | qdev_init_nofail(dev); | |
663 | ||
664 | /* Map only the first size_ecam bytes of ECAM space */ | |
665 | ecam_alias = g_new0(MemoryRegion, 1); | |
666 | ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); | |
667 | memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", | |
668 | ecam_reg, 0, size_ecam); | |
669 | memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); | |
670 | ||
671 | /* Map the MMIO window into system address space so as to expose | |
672 | * the section of PCI MMIO space which starts at the same base address | |
673 | * (ie 1:1 mapping for that part of PCI MMIO space visible through | |
674 | * the window). | |
675 | */ | |
676 | mmio_alias = g_new0(MemoryRegion, 1); | |
677 | mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); | |
678 | memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", | |
679 | mmio_reg, base_mmio, size_mmio); | |
680 | memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); | |
681 | ||
682 | /* Map IO port space */ | |
683 | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_ioport); | |
684 | ||
685 | for (i = 0; i < GPEX_NUM_IRQS; i++) { | |
686 | sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); | |
687 | } | |
688 | ||
689 | nodename = g_strdup_printf("/pcie@%" PRIx64, base); | |
690 | qemu_fdt_add_subnode(vbi->fdt, nodename); | |
691 | qemu_fdt_setprop_string(vbi->fdt, nodename, | |
692 | "compatible", "pci-host-ecam-generic"); | |
693 | qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); | |
694 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); | |
695 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); | |
696 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, | |
697 | nr_pcie_buses - 1); | |
698 | ||
699 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
700 | 2, base_ecam, 2, size_ecam); | |
701 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", | |
702 | 1, FDT_PCI_RANGE_IOPORT, 2, 0, | |
703 | 2, base_ioport, 2, size_ioport, | |
704 | 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, | |
705 | 2, base_mmio, 2, size_mmio); | |
706 | ||
707 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); | |
708 | create_pcie_irq_map(vbi, gic_phandle, irq, nodename); | |
709 | ||
710 | g_free(nodename); | |
711 | } | |
712 | ||
f5fdcd6e PM |
713 | static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) |
714 | { | |
715 | const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; | |
716 | ||
717 | *fdt_size = board->fdt_size; | |
718 | return board->fdt; | |
719 | } | |
720 | ||
3ef96221 | 721 | static void machvirt_init(MachineState *machine) |
f5fdcd6e | 722 | { |
e5a5604f | 723 | VirtMachineState *vms = VIRT_MACHINE(machine); |
f5fdcd6e PM |
724 | qemu_irq pic[NUM_IRQS]; |
725 | MemoryRegion *sysmem = get_system_memory(); | |
726 | int n; | |
727 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
3ef96221 | 728 | const char *cpu_model = machine->cpu_model; |
f5fdcd6e | 729 | VirtBoardInfo *vbi; |
4ab29b82 | 730 | uint32_t gic_phandle; |
f5fdcd6e PM |
731 | |
732 | if (!cpu_model) { | |
733 | cpu_model = "cortex-a15"; | |
734 | } | |
735 | ||
736 | vbi = find_machine_info(cpu_model); | |
737 | ||
738 | if (!vbi) { | |
739 | error_report("mach-virt: CPU %s not supported", cpu_model); | |
740 | exit(1); | |
741 | } | |
742 | ||
743 | vbi->smp_cpus = smp_cpus; | |
744 | ||
3ef96221 | 745 | if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { |
f5fdcd6e PM |
746 | error_report("mach-virt: cannot model more than 30GB RAM"); |
747 | exit(1); | |
748 | } | |
749 | ||
750 | create_fdt(vbi); | |
f5fdcd6e PM |
751 | |
752 | for (n = 0; n < smp_cpus; n++) { | |
753 | ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); | |
754 | Object *cpuobj; | |
755 | ||
756 | if (!oc) { | |
757 | fprintf(stderr, "Unable to find CPU definition\n"); | |
758 | exit(1); | |
759 | } | |
760 | cpuobj = object_new(object_class_get_name(oc)); | |
761 | ||
e5a5604f GB |
762 | if (!vms->secure) { |
763 | object_property_set_bool(cpuobj, false, "has_el3", NULL); | |
764 | } | |
765 | ||
211b0169 RH |
766 | object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", |
767 | NULL); | |
768 | ||
f5fdcd6e PM |
769 | /* Secondary CPUs start in PSCI powered-down state */ |
770 | if (n > 0) { | |
771 | object_property_set_bool(cpuobj, true, "start-powered-off", NULL); | |
772 | } | |
ba750085 PM |
773 | |
774 | if (object_property_find(cpuobj, "reset-cbar", NULL)) { | |
775 | object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, | |
776 | "reset-cbar", &error_abort); | |
777 | } | |
778 | ||
f5fdcd6e PM |
779 | object_property_set_bool(cpuobj, true, "realized", NULL); |
780 | } | |
b32a9509 | 781 | fdt_add_timer_nodes(vbi); |
f5fdcd6e | 782 | fdt_add_cpu_nodes(vbi); |
06955739 | 783 | fdt_add_psci_node(vbi); |
f5fdcd6e | 784 | |
49946538 HT |
785 | memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size, |
786 | &error_abort); | |
f5fdcd6e PM |
787 | vmstate_register_ram_global(ram); |
788 | memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); | |
789 | ||
acf82361 PM |
790 | create_flash(vbi); |
791 | ||
4ab29b82 | 792 | gic_phandle = create_gic(vbi, pic); |
f5fdcd6e PM |
793 | |
794 | create_uart(vbi, pic); | |
795 | ||
6e411af9 PM |
796 | create_rtc(vbi, pic); |
797 | ||
4ab29b82 AG |
798 | create_pcie(vbi, pic, gic_phandle); |
799 | ||
f5fdcd6e PM |
800 | /* Create mmio transports, so the user can create virtio backends |
801 | * (which will be automatically plugged in to the transports). If | |
802 | * no backend is created the transport will just sit harmlessly idle. | |
803 | */ | |
804 | create_virtio_devices(vbi, pic); | |
805 | ||
578f3c7b LE |
806 | create_fw_cfg(vbi); |
807 | ||
3ef96221 MA |
808 | vbi->bootinfo.ram_size = machine->ram_size; |
809 | vbi->bootinfo.kernel_filename = machine->kernel_filename; | |
810 | vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; | |
811 | vbi->bootinfo.initrd_filename = machine->initrd_filename; | |
f5fdcd6e PM |
812 | vbi->bootinfo.nb_cpus = smp_cpus; |
813 | vbi->bootinfo.board_id = -1; | |
814 | vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; | |
815 | vbi->bootinfo.get_dtb = machvirt_dtb; | |
aa351061 | 816 | vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); |
f5fdcd6e PM |
817 | arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); |
818 | } | |
819 | ||
083a5890 GB |
820 | static bool virt_get_secure(Object *obj, Error **errp) |
821 | { | |
822 | VirtMachineState *vms = VIRT_MACHINE(obj); | |
823 | ||
824 | return vms->secure; | |
825 | } | |
826 | ||
827 | static void virt_set_secure(Object *obj, bool value, Error **errp) | |
828 | { | |
829 | VirtMachineState *vms = VIRT_MACHINE(obj); | |
830 | ||
831 | vms->secure = value; | |
832 | } | |
833 | ||
834 | static void virt_instance_init(Object *obj) | |
835 | { | |
836 | VirtMachineState *vms = VIRT_MACHINE(obj); | |
837 | ||
838 | /* EL3 is enabled by default on virt */ | |
839 | vms->secure = true; | |
840 | object_property_add_bool(obj, "secure", virt_get_secure, | |
841 | virt_set_secure, NULL); | |
842 | object_property_set_description(obj, "secure", | |
843 | "Set on/off to enable/disable the ARM " | |
844 | "Security Extensions (TrustZone)", | |
845 | NULL); | |
846 | } | |
847 | ||
c2919690 GB |
848 | static void virt_class_init(ObjectClass *oc, void *data) |
849 | { | |
850 | MachineClass *mc = MACHINE_CLASS(oc); | |
851 | ||
852 | mc->name = TYPE_VIRT_MACHINE; | |
853 | mc->desc = "ARM Virtual Machine", | |
854 | mc->init = machvirt_init; | |
855 | mc->max_cpus = 8; | |
856 | } | |
857 | ||
858 | static const TypeInfo machvirt_info = { | |
859 | .name = TYPE_VIRT_MACHINE, | |
860 | .parent = TYPE_MACHINE, | |
861 | .instance_size = sizeof(VirtMachineState), | |
083a5890 | 862 | .instance_init = virt_instance_init, |
c2919690 GB |
863 | .class_size = sizeof(VirtMachineClass), |
864 | .class_init = virt_class_init, | |
f5fdcd6e PM |
865 | }; |
866 | ||
867 | static void machvirt_machine_init(void) | |
868 | { | |
c2919690 | 869 | type_register_static(&machvirt_info); |
f5fdcd6e PM |
870 | } |
871 | ||
872 | machine_init(machvirt_machine_init); |