]>
Commit | Line | Data |
---|---|---|
f5fdcd6e PM |
1 | /* |
2 | * ARM mach-virt emulation | |
3 | * | |
4 | * Copyright (c) 2013 Linaro Limited | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms and conditions of the GNU General Public License, | |
8 | * version 2 or later, as published by the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program. If not, see <http://www.gnu.org/licenses/>. | |
17 | * | |
18 | * Emulate a virtual board which works by passing Linux all the information | |
19 | * it needs about what devices are present via the device tree. | |
20 | * There are some restrictions about what we can do here: | |
21 | * + we can only present devices whose Linux drivers will work based | |
22 | * purely on the device tree with no platform data at all | |
23 | * + we want to present a very stripped-down minimalist platform, | |
24 | * both because this reduces the security attack surface from the guest | |
25 | * and also because it reduces our exposure to being broken when | |
26 | * the kernel updates its device tree bindings and requires further | |
27 | * information in a device binding that we aren't providing. | |
28 | * This is essentially the same approach kvmtool uses. | |
29 | */ | |
30 | ||
31 | #include "hw/sysbus.h" | |
32 | #include "hw/arm/arm.h" | |
33 | #include "hw/arm/primecell.h" | |
34 | #include "hw/devices.h" | |
35 | #include "net/net.h" | |
fa1d36df | 36 | #include "sysemu/block-backend.h" |
f5fdcd6e PM |
37 | #include "sysemu/device_tree.h" |
38 | #include "sysemu/sysemu.h" | |
39 | #include "sysemu/kvm.h" | |
40 | #include "hw/boards.h" | |
acf82361 | 41 | #include "hw/loader.h" |
f5fdcd6e PM |
42 | #include "exec/address-spaces.h" |
43 | #include "qemu/bitops.h" | |
44 | #include "qemu/error-report.h" | |
45 | ||
46 | #define NUM_VIRTIO_TRANSPORTS 32 | |
47 | ||
48 | /* Number of external interrupt lines to configure the GIC with */ | |
49 | #define NUM_IRQS 128 | |
50 | ||
51 | #define GIC_FDT_IRQ_TYPE_SPI 0 | |
52 | #define GIC_FDT_IRQ_TYPE_PPI 1 | |
53 | ||
54 | #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 | |
55 | #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 | |
56 | #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 | |
57 | #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 | |
58 | ||
59 | #define GIC_FDT_IRQ_PPI_CPU_START 8 | |
60 | #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 | |
61 | ||
62 | enum { | |
63 | VIRT_FLASH, | |
64 | VIRT_MEM, | |
65 | VIRT_CPUPERIPHS, | |
66 | VIRT_GIC_DIST, | |
67 | VIRT_GIC_CPU, | |
68 | VIRT_UART, | |
69 | VIRT_MMIO, | |
6e411af9 | 70 | VIRT_RTC, |
f5fdcd6e PM |
71 | }; |
72 | ||
73 | typedef struct MemMapEntry { | |
74 | hwaddr base; | |
75 | hwaddr size; | |
76 | } MemMapEntry; | |
77 | ||
78 | typedef struct VirtBoardInfo { | |
79 | struct arm_boot_info bootinfo; | |
80 | const char *cpu_model; | |
f5fdcd6e PM |
81 | const MemMapEntry *memmap; |
82 | const int *irqmap; | |
83 | int smp_cpus; | |
84 | void *fdt; | |
85 | int fdt_size; | |
86 | uint32_t clock_phandle; | |
87 | } VirtBoardInfo; | |
88 | ||
89 | /* Addresses and sizes of our components. | |
90 | * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. | |
91 | * 128MB..256MB is used for miscellaneous device I/O. | |
92 | * 256MB..1GB is reserved for possible future PCI support (ie where the | |
93 | * PCI memory window will go if we add a PCI host controller). | |
94 | * 1GB and up is RAM (which may happily spill over into the | |
95 | * high memory region beyond 4GB). | |
96 | * This represents a compromise between how much RAM can be given to | |
97 | * a 32 bit VM and leaving space for expansion and in particular for PCI. | |
6e411af9 PM |
98 | * Note that devices should generally be placed at multiples of 0x10000, |
99 | * to accommodate guests using 64K pages. | |
f5fdcd6e PM |
100 | */ |
101 | static const MemMapEntry a15memmap[] = { | |
102 | /* Space up to 0x8000000 is reserved for a boot ROM */ | |
fab46932 AJ |
103 | [VIRT_FLASH] = { 0, 0x08000000 }, |
104 | [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, | |
f5fdcd6e | 105 | /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ |
fab46932 AJ |
106 | [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, |
107 | [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, | |
108 | [VIRT_UART] = { 0x09000000, 0x00001000 }, | |
109 | [VIRT_RTC] = { 0x09010000, 0x00001000 }, | |
110 | [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, | |
f5fdcd6e PM |
111 | /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ |
112 | /* 0x10000000 .. 0x40000000 reserved for PCI */ | |
fab46932 | 113 | [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, |
f5fdcd6e PM |
114 | }; |
115 | ||
116 | static const int a15irqmap[] = { | |
117 | [VIRT_UART] = 1, | |
6e411af9 | 118 | [VIRT_RTC] = 2, |
f5fdcd6e PM |
119 | [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ |
120 | }; | |
121 | ||
122 | static VirtBoardInfo machines[] = { | |
123 | { | |
124 | .cpu_model = "cortex-a15", | |
f5fdcd6e PM |
125 | .memmap = a15memmap, |
126 | .irqmap = a15irqmap, | |
127 | }, | |
f42c5c8e PM |
128 | { |
129 | .cpu_model = "cortex-a57", | |
130 | .memmap = a15memmap, | |
131 | .irqmap = a15irqmap, | |
132 | }, | |
198aa064 PM |
133 | { |
134 | .cpu_model = "host", | |
198aa064 PM |
135 | .memmap = a15memmap, |
136 | .irqmap = a15irqmap, | |
137 | }, | |
f5fdcd6e PM |
138 | }; |
139 | ||
140 | static VirtBoardInfo *find_machine_info(const char *cpu) | |
141 | { | |
142 | int i; | |
143 | ||
144 | for (i = 0; i < ARRAY_SIZE(machines); i++) { | |
145 | if (strcmp(cpu, machines[i].cpu_model) == 0) { | |
146 | return &machines[i]; | |
147 | } | |
148 | } | |
149 | return NULL; | |
150 | } | |
151 | ||
152 | static void create_fdt(VirtBoardInfo *vbi) | |
153 | { | |
154 | void *fdt = create_device_tree(&vbi->fdt_size); | |
155 | ||
156 | if (!fdt) { | |
157 | error_report("create_device_tree() failed"); | |
158 | exit(1); | |
159 | } | |
160 | ||
161 | vbi->fdt = fdt; | |
162 | ||
163 | /* Header */ | |
5a4348d1 PC |
164 | qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); |
165 | qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); | |
166 | qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); | |
f5fdcd6e PM |
167 | |
168 | /* | |
169 | * /chosen and /memory nodes must exist for load_dtb | |
170 | * to fill in necessary properties later | |
171 | */ | |
5a4348d1 PC |
172 | qemu_fdt_add_subnode(fdt, "/chosen"); |
173 | qemu_fdt_add_subnode(fdt, "/memory"); | |
174 | qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); | |
f5fdcd6e PM |
175 | |
176 | /* Clock node, for the benefit of the UART. The kernel device tree | |
177 | * binding documentation claims the PL011 node clock properties are | |
178 | * optional but in practice if you omit them the kernel refuses to | |
179 | * probe for the device. | |
180 | */ | |
5a4348d1 PC |
181 | vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); |
182 | qemu_fdt_add_subnode(fdt, "/apb-pclk"); | |
183 | qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); | |
184 | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); | |
185 | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); | |
186 | qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", | |
f5fdcd6e | 187 | "clk24mhz"); |
5a4348d1 | 188 | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); |
f5fdcd6e | 189 | |
06955739 PS |
190 | } |
191 | ||
192 | static void fdt_add_psci_node(const VirtBoardInfo *vbi) | |
193 | { | |
211b0169 RH |
194 | uint32_t cpu_suspend_fn; |
195 | uint32_t cpu_off_fn; | |
196 | uint32_t cpu_on_fn; | |
197 | uint32_t migrate_fn; | |
06955739 PS |
198 | void *fdt = vbi->fdt; |
199 | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); | |
200 | ||
211b0169 RH |
201 | qemu_fdt_add_subnode(fdt, "/psci"); |
202 | if (armcpu->psci_version == 2) { | |
203 | const char comp[] = "arm,psci-0.2\0arm,psci"; | |
204 | qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); | |
863714ba | 205 | |
211b0169 RH |
206 | cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; |
207 | if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { | |
208 | cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; | |
209 | cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; | |
210 | migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; | |
211 | } else { | |
212 | cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; | |
213 | cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; | |
214 | migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; | |
06955739 | 215 | } |
211b0169 RH |
216 | } else { |
217 | qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); | |
06955739 | 218 | |
211b0169 RH |
219 | cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; |
220 | cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; | |
221 | cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; | |
222 | migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; | |
f5fdcd6e | 223 | } |
211b0169 RH |
224 | |
225 | /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer | |
226 | * to the instruction that should be used to invoke PSCI functions. | |
227 | * However, the device tree binding uses 'method' instead, so that is | |
228 | * what we should use here. | |
229 | */ | |
230 | qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); | |
231 | ||
232 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); | |
233 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); | |
234 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); | |
235 | qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); | |
f5fdcd6e PM |
236 | } |
237 | ||
238 | static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) | |
239 | { | |
240 | /* Note that on A15 h/w these interrupts are level-triggered, | |
241 | * but for the GIC implementation provided by both QEMU and KVM | |
242 | * they are edge-triggered. | |
243 | */ | |
b32a9509 | 244 | ARMCPU *armcpu; |
f5fdcd6e PM |
245 | uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; |
246 | ||
247 | irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, | |
248 | GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); | |
249 | ||
5a4348d1 | 250 | qemu_fdt_add_subnode(vbi->fdt, "/timer"); |
b32a9509 CF |
251 | |
252 | armcpu = ARM_CPU(qemu_get_cpu(0)); | |
253 | if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { | |
254 | const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; | |
255 | qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", | |
256 | compat, sizeof(compat)); | |
257 | } else { | |
258 | qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", | |
259 | "arm,armv7-timer"); | |
260 | } | |
5a4348d1 | 261 | qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", |
f5fdcd6e PM |
262 | GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, |
263 | GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, | |
264 | GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, | |
265 | GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); | |
266 | } | |
267 | ||
268 | static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) | |
269 | { | |
270 | int cpu; | |
271 | ||
5a4348d1 PC |
272 | qemu_fdt_add_subnode(vbi->fdt, "/cpus"); |
273 | qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); | |
274 | qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); | |
f5fdcd6e PM |
275 | |
276 | for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { | |
277 | char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); | |
278 | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); | |
279 | ||
5a4348d1 PC |
280 | qemu_fdt_add_subnode(vbi->fdt, nodename); |
281 | qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); | |
282 | qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", | |
f5fdcd6e PM |
283 | armcpu->dtb_compatible); |
284 | ||
285 | if (vbi->smp_cpus > 1) { | |
5a4348d1 | 286 | qemu_fdt_setprop_string(vbi->fdt, nodename, |
f5fdcd6e PM |
287 | "enable-method", "psci"); |
288 | } | |
289 | ||
5a4348d1 | 290 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); |
f5fdcd6e PM |
291 | g_free(nodename); |
292 | } | |
293 | } | |
294 | ||
295 | static void fdt_add_gic_node(const VirtBoardInfo *vbi) | |
296 | { | |
297 | uint32_t gic_phandle; | |
298 | ||
5a4348d1 PC |
299 | gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); |
300 | qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); | |
f5fdcd6e | 301 | |
5a4348d1 | 302 | qemu_fdt_add_subnode(vbi->fdt, "/intc"); |
64204743 | 303 | /* 'cortex-a15-gic' means 'GIC v2' */ |
5a4348d1 | 304 | qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", |
64204743 | 305 | "arm,cortex-a15-gic"); |
5a4348d1 PC |
306 | qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); |
307 | qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); | |
308 | qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", | |
f5fdcd6e PM |
309 | 2, vbi->memmap[VIRT_GIC_DIST].base, |
310 | 2, vbi->memmap[VIRT_GIC_DIST].size, | |
311 | 2, vbi->memmap[VIRT_GIC_CPU].base, | |
312 | 2, vbi->memmap[VIRT_GIC_CPU].size); | |
5a4348d1 | 313 | qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); |
f5fdcd6e PM |
314 | } |
315 | ||
64204743 PM |
316 | static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) |
317 | { | |
318 | /* We create a standalone GIC v2 */ | |
319 | DeviceState *gicdev; | |
320 | SysBusDevice *gicbusdev; | |
321 | const char *gictype = "arm_gic"; | |
322 | int i; | |
323 | ||
324 | if (kvm_irqchip_in_kernel()) { | |
325 | gictype = "kvm-arm-gic"; | |
326 | } | |
327 | ||
328 | gicdev = qdev_create(NULL, gictype); | |
329 | qdev_prop_set_uint32(gicdev, "revision", 2); | |
330 | qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); | |
331 | /* Note that the num-irq property counts both internal and external | |
332 | * interrupts; there are always 32 of the former (mandated by GIC spec). | |
333 | */ | |
334 | qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); | |
335 | qdev_init_nofail(gicdev); | |
336 | gicbusdev = SYS_BUS_DEVICE(gicdev); | |
337 | sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); | |
338 | sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); | |
339 | ||
340 | /* Wire the outputs from each CPU's generic timer to the | |
341 | * appropriate GIC PPI inputs, and the GIC's IRQ output to | |
342 | * the CPU's IRQ input. | |
343 | */ | |
344 | for (i = 0; i < smp_cpus; i++) { | |
345 | DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); | |
346 | int ppibase = NUM_IRQS + i * 32; | |
347 | /* physical timer; we wire it up to the non-secure timer's ID, | |
348 | * since a real A15 always has TrustZone but QEMU doesn't. | |
349 | */ | |
350 | qdev_connect_gpio_out(cpudev, 0, | |
351 | qdev_get_gpio_in(gicdev, ppibase + 30)); | |
352 | /* virtual timer */ | |
353 | qdev_connect_gpio_out(cpudev, 1, | |
354 | qdev_get_gpio_in(gicdev, ppibase + 27)); | |
355 | ||
356 | sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); | |
357 | } | |
358 | ||
359 | for (i = 0; i < NUM_IRQS; i++) { | |
360 | pic[i] = qdev_get_gpio_in(gicdev, i); | |
361 | } | |
362 | ||
363 | fdt_add_gic_node(vbi); | |
364 | } | |
365 | ||
f5fdcd6e PM |
366 | static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) |
367 | { | |
368 | char *nodename; | |
369 | hwaddr base = vbi->memmap[VIRT_UART].base; | |
370 | hwaddr size = vbi->memmap[VIRT_UART].size; | |
371 | int irq = vbi->irqmap[VIRT_UART]; | |
372 | const char compat[] = "arm,pl011\0arm,primecell"; | |
373 | const char clocknames[] = "uartclk\0apb_pclk"; | |
374 | ||
375 | sysbus_create_simple("pl011", base, pic[irq]); | |
376 | ||
377 | nodename = g_strdup_printf("/pl011@%" PRIx64, base); | |
5a4348d1 | 378 | qemu_fdt_add_subnode(vbi->fdt, nodename); |
f5fdcd6e | 379 | /* Note that we can't use setprop_string because of the embedded NUL */ |
5a4348d1 | 380 | qemu_fdt_setprop(vbi->fdt, nodename, "compatible", |
f5fdcd6e | 381 | compat, sizeof(compat)); |
5a4348d1 | 382 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
f5fdcd6e | 383 | 2, base, 2, size); |
5a4348d1 | 384 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
f5fdcd6e | 385 | GIC_FDT_IRQ_TYPE_SPI, irq, |
0be969a2 | 386 | GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
5a4348d1 | 387 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", |
f5fdcd6e | 388 | vbi->clock_phandle, vbi->clock_phandle); |
5a4348d1 | 389 | qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", |
f5fdcd6e | 390 | clocknames, sizeof(clocknames)); |
f022b8e9 | 391 | |
9c7074da | 392 | qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); |
f5fdcd6e PM |
393 | g_free(nodename); |
394 | } | |
395 | ||
6e411af9 PM |
396 | static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) |
397 | { | |
398 | char *nodename; | |
399 | hwaddr base = vbi->memmap[VIRT_RTC].base; | |
400 | hwaddr size = vbi->memmap[VIRT_RTC].size; | |
401 | int irq = vbi->irqmap[VIRT_RTC]; | |
402 | const char compat[] = "arm,pl031\0arm,primecell"; | |
403 | ||
404 | sysbus_create_simple("pl031", base, pic[irq]); | |
405 | ||
406 | nodename = g_strdup_printf("/pl031@%" PRIx64, base); | |
407 | qemu_fdt_add_subnode(vbi->fdt, nodename); | |
408 | qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); | |
409 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
410 | 2, base, 2, size); | |
411 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", | |
412 | GIC_FDT_IRQ_TYPE_SPI, irq, | |
0be969a2 | 413 | GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
6e411af9 PM |
414 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); |
415 | qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); | |
416 | g_free(nodename); | |
417 | } | |
418 | ||
f5fdcd6e PM |
419 | static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) |
420 | { | |
421 | int i; | |
422 | hwaddr size = vbi->memmap[VIRT_MMIO].size; | |
423 | ||
424 | /* Note that we have to create the transports in forwards order | |
425 | * so that command line devices are inserted lowest address first, | |
426 | * and then add dtb nodes in reverse order so that they appear in | |
427 | * the finished device tree lowest address first. | |
428 | */ | |
429 | for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { | |
430 | int irq = vbi->irqmap[VIRT_MMIO] + i; | |
431 | hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; | |
432 | ||
433 | sysbus_create_simple("virtio-mmio", base, pic[irq]); | |
434 | } | |
435 | ||
436 | for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { | |
437 | char *nodename; | |
438 | int irq = vbi->irqmap[VIRT_MMIO] + i; | |
439 | hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; | |
440 | ||
441 | nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); | |
5a4348d1 PC |
442 | qemu_fdt_add_subnode(vbi->fdt, nodename); |
443 | qemu_fdt_setprop_string(vbi->fdt, nodename, | |
444 | "compatible", "virtio,mmio"); | |
445 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
446 | 2, base, 2, size); | |
447 | qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", | |
448 | GIC_FDT_IRQ_TYPE_SPI, irq, | |
449 | GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); | |
f5fdcd6e PM |
450 | g_free(nodename); |
451 | } | |
452 | } | |
453 | ||
acf82361 PM |
454 | static void create_one_flash(const char *name, hwaddr flashbase, |
455 | hwaddr flashsize) | |
456 | { | |
457 | /* Create and map a single flash device. We use the same | |
458 | * parameters as the flash devices on the Versatile Express board. | |
459 | */ | |
460 | DriveInfo *dinfo = drive_get_next(IF_PFLASH); | |
461 | DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); | |
462 | const uint64_t sectorlength = 256 * 1024; | |
463 | ||
fa1d36df | 464 | if (dinfo && qdev_prop_set_drive(dev, "drive", |
4be74634 | 465 | blk_by_legacy_dinfo(dinfo))) { |
acf82361 PM |
466 | abort(); |
467 | } | |
468 | ||
469 | qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); | |
470 | qdev_prop_set_uint64(dev, "sector-length", sectorlength); | |
471 | qdev_prop_set_uint8(dev, "width", 4); | |
472 | qdev_prop_set_uint8(dev, "device-width", 2); | |
473 | qdev_prop_set_uint8(dev, "big-endian", 0); | |
474 | qdev_prop_set_uint16(dev, "id0", 0x89); | |
475 | qdev_prop_set_uint16(dev, "id1", 0x18); | |
476 | qdev_prop_set_uint16(dev, "id2", 0x00); | |
477 | qdev_prop_set_uint16(dev, "id3", 0x00); | |
478 | qdev_prop_set_string(dev, "name", name); | |
479 | qdev_init_nofail(dev); | |
480 | ||
481 | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); | |
482 | } | |
483 | ||
484 | static void create_flash(const VirtBoardInfo *vbi) | |
485 | { | |
486 | /* Create two flash devices to fill the VIRT_FLASH space in the memmap. | |
487 | * Any file passed via -bios goes in the first of these. | |
488 | */ | |
489 | hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; | |
490 | hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; | |
491 | char *nodename; | |
492 | ||
493 | if (bios_name) { | |
494 | const char *fn; | |
495 | ||
496 | if (drive_get(IF_PFLASH, 0, 0)) { | |
497 | error_report("The contents of the first flash device may be " | |
498 | "specified with -bios or with -drive if=pflash... " | |
499 | "but you cannot use both options at once"); | |
500 | exit(1); | |
501 | } | |
502 | fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | |
503 | if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) { | |
504 | error_report("Could not load ROM image '%s'", bios_name); | |
505 | exit(1); | |
506 | } | |
507 | } | |
508 | ||
509 | create_one_flash("virt.flash0", flashbase, flashsize); | |
510 | create_one_flash("virt.flash1", flashbase + flashsize, flashsize); | |
511 | ||
512 | nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); | |
513 | qemu_fdt_add_subnode(vbi->fdt, nodename); | |
514 | qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); | |
515 | qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", | |
516 | 2, flashbase, 2, flashsize, | |
517 | 2, flashbase + flashsize, 2, flashsize); | |
518 | qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); | |
519 | g_free(nodename); | |
520 | } | |
521 | ||
f5fdcd6e PM |
522 | static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) |
523 | { | |
524 | const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; | |
525 | ||
526 | *fdt_size = board->fdt_size; | |
527 | return board->fdt; | |
528 | } | |
529 | ||
3ef96221 | 530 | static void machvirt_init(MachineState *machine) |
f5fdcd6e PM |
531 | { |
532 | qemu_irq pic[NUM_IRQS]; | |
533 | MemoryRegion *sysmem = get_system_memory(); | |
534 | int n; | |
535 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
3ef96221 | 536 | const char *cpu_model = machine->cpu_model; |
f5fdcd6e PM |
537 | VirtBoardInfo *vbi; |
538 | ||
539 | if (!cpu_model) { | |
540 | cpu_model = "cortex-a15"; | |
541 | } | |
542 | ||
543 | vbi = find_machine_info(cpu_model); | |
544 | ||
545 | if (!vbi) { | |
546 | error_report("mach-virt: CPU %s not supported", cpu_model); | |
547 | exit(1); | |
548 | } | |
549 | ||
550 | vbi->smp_cpus = smp_cpus; | |
551 | ||
3ef96221 | 552 | if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { |
f5fdcd6e PM |
553 | error_report("mach-virt: cannot model more than 30GB RAM"); |
554 | exit(1); | |
555 | } | |
556 | ||
557 | create_fdt(vbi); | |
f5fdcd6e PM |
558 | |
559 | for (n = 0; n < smp_cpus; n++) { | |
560 | ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); | |
561 | Object *cpuobj; | |
562 | ||
563 | if (!oc) { | |
564 | fprintf(stderr, "Unable to find CPU definition\n"); | |
565 | exit(1); | |
566 | } | |
567 | cpuobj = object_new(object_class_get_name(oc)); | |
568 | ||
211b0169 RH |
569 | object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", |
570 | NULL); | |
571 | ||
f5fdcd6e PM |
572 | /* Secondary CPUs start in PSCI powered-down state */ |
573 | if (n > 0) { | |
574 | object_property_set_bool(cpuobj, true, "start-powered-off", NULL); | |
575 | } | |
ba750085 PM |
576 | |
577 | if (object_property_find(cpuobj, "reset-cbar", NULL)) { | |
578 | object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, | |
579 | "reset-cbar", &error_abort); | |
580 | } | |
581 | ||
f5fdcd6e PM |
582 | object_property_set_bool(cpuobj, true, "realized", NULL); |
583 | } | |
b32a9509 | 584 | fdt_add_timer_nodes(vbi); |
f5fdcd6e | 585 | fdt_add_cpu_nodes(vbi); |
06955739 | 586 | fdt_add_psci_node(vbi); |
f5fdcd6e | 587 | |
49946538 HT |
588 | memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size, |
589 | &error_abort); | |
f5fdcd6e PM |
590 | vmstate_register_ram_global(ram); |
591 | memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); | |
592 | ||
acf82361 PM |
593 | create_flash(vbi); |
594 | ||
64204743 | 595 | create_gic(vbi, pic); |
f5fdcd6e PM |
596 | |
597 | create_uart(vbi, pic); | |
598 | ||
6e411af9 PM |
599 | create_rtc(vbi, pic); |
600 | ||
f5fdcd6e PM |
601 | /* Create mmio transports, so the user can create virtio backends |
602 | * (which will be automatically plugged in to the transports). If | |
603 | * no backend is created the transport will just sit harmlessly idle. | |
604 | */ | |
605 | create_virtio_devices(vbi, pic); | |
606 | ||
3ef96221 MA |
607 | vbi->bootinfo.ram_size = machine->ram_size; |
608 | vbi->bootinfo.kernel_filename = machine->kernel_filename; | |
609 | vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; | |
610 | vbi->bootinfo.initrd_filename = machine->initrd_filename; | |
f5fdcd6e PM |
611 | vbi->bootinfo.nb_cpus = smp_cpus; |
612 | vbi->bootinfo.board_id = -1; | |
613 | vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; | |
614 | vbi->bootinfo.get_dtb = machvirt_dtb; | |
615 | arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); | |
616 | } | |
617 | ||
618 | static QEMUMachine machvirt_a15_machine = { | |
619 | .name = "virt", | |
620 | .desc = "ARM Virtual Machine", | |
621 | .init = machvirt_init, | |
d3579f36 | 622 | .max_cpus = 8, |
f5fdcd6e PM |
623 | }; |
624 | ||
625 | static void machvirt_machine_init(void) | |
626 | { | |
627 | qemu_register_machine(&machvirt_a15_machine); | |
628 | } | |
629 | ||
630 | machine_init(machvirt_machine_init); |