]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
80c71a24 | 25 | #include "qemu/osdep.h" |
45aba42f KW |
26 | #include <zlib.h> |
27 | ||
da34e65c | 28 | #include "qapi/error.h" |
45aba42f | 29 | #include "qemu-common.h" |
737e150e | 30 | #include "block/block_int.h" |
45aba42f | 31 | #include "block/qcow2.h" |
58369e22 | 32 | #include "qemu/bswap.h" |
3cce16f4 | 33 | #include "trace.h" |
45aba42f | 34 | |
2cf7cfa1 KW |
35 | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, |
36 | bool exact_size) | |
45aba42f | 37 | { |
ff99129a | 38 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 | 39 | int new_l1_size2, ret, i; |
45aba42f | 40 | uint64_t *new_l1_table; |
fda74f82 | 41 | int64_t old_l1_table_offset, old_l1_size; |
2cf7cfa1 | 42 | int64_t new_l1_table_offset, new_l1_size; |
45aba42f KW |
43 | uint8_t data[12]; |
44 | ||
72893756 | 45 | if (min_size <= s->l1_size) |
45aba42f | 46 | return 0; |
72893756 | 47 | |
b93f9950 HR |
48 | /* Do a sanity check on min_size before trying to calculate new_l1_size |
49 | * (this prevents overflows during the while loop for the calculation of | |
50 | * new_l1_size) */ | |
51 | if (min_size > INT_MAX / sizeof(uint64_t)) { | |
52 | return -EFBIG; | |
53 | } | |
54 | ||
72893756 SH |
55 | if (exact_size) { |
56 | new_l1_size = min_size; | |
57 | } else { | |
58 | /* Bump size up to reduce the number of times we have to grow */ | |
59 | new_l1_size = s->l1_size; | |
60 | if (new_l1_size == 0) { | |
61 | new_l1_size = 1; | |
62 | } | |
63 | while (min_size > new_l1_size) { | |
64 | new_l1_size = (new_l1_size * 3 + 1) / 2; | |
65 | } | |
45aba42f | 66 | } |
72893756 | 67 | |
84c26520 HR |
68 | QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); |
69 | if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { | |
2cf7cfa1 KW |
70 | return -EFBIG; |
71 | } | |
72 | ||
45aba42f | 73 | #ifdef DEBUG_ALLOC2 |
2cf7cfa1 KW |
74 | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", |
75 | s->l1_size, new_l1_size); | |
45aba42f KW |
76 | #endif |
77 | ||
78 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
9a4f4c31 | 79 | new_l1_table = qemu_try_blockalign(bs->file->bs, |
de82815d KW |
80 | align_offset(new_l1_size2, 512)); |
81 | if (new_l1_table == NULL) { | |
82 | return -ENOMEM; | |
83 | } | |
84 | memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); | |
85 | ||
0647d47c SH |
86 | if (s->l1_size) { |
87 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); | |
88 | } | |
45aba42f KW |
89 | |
90 | /* write new table (align to cluster) */ | |
66f82cee | 91 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 92 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 93 | if (new_l1_table_offset < 0) { |
de82815d | 94 | qemu_vfree(new_l1_table); |
5d757b56 KW |
95 | return new_l1_table_offset; |
96 | } | |
29c1a730 KW |
97 | |
98 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
99 | if (ret < 0) { | |
80fa3341 | 100 | goto fail; |
29c1a730 | 101 | } |
45aba42f | 102 | |
cf93980e HR |
103 | /* the L1 position has not yet been updated, so these clusters must |
104 | * indeed be completely free */ | |
231bb267 HR |
105 | ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, |
106 | new_l1_size2); | |
cf93980e HR |
107 | if (ret < 0) { |
108 | goto fail; | |
109 | } | |
110 | ||
66f82cee | 111 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
112 | for(i = 0; i < s->l1_size; i++) |
113 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
d9ca2ea2 | 114 | ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, |
9a4f4c31 | 115 | new_l1_table, new_l1_size2); |
8b3b7206 | 116 | if (ret < 0) |
45aba42f KW |
117 | goto fail; |
118 | for(i = 0; i < s->l1_size; i++) | |
119 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
120 | ||
121 | /* set new table */ | |
66f82cee | 122 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
f1f7a1dd | 123 | stl_be_p(data, new_l1_size); |
e4ef9f46 | 124 | stq_be_p(data + 4, new_l1_table_offset); |
d9ca2ea2 | 125 | ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), |
9a4f4c31 | 126 | data, sizeof(data)); |
8b3b7206 | 127 | if (ret < 0) { |
45aba42f | 128 | goto fail; |
fb8fa77c | 129 | } |
de82815d | 130 | qemu_vfree(s->l1_table); |
fda74f82 | 131 | old_l1_table_offset = s->l1_table_offset; |
45aba42f KW |
132 | s->l1_table_offset = new_l1_table_offset; |
133 | s->l1_table = new_l1_table; | |
fda74f82 | 134 | old_l1_size = s->l1_size; |
45aba42f | 135 | s->l1_size = new_l1_size; |
fda74f82 HR |
136 | qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), |
137 | QCOW2_DISCARD_OTHER); | |
45aba42f KW |
138 | return 0; |
139 | fail: | |
de82815d | 140 | qemu_vfree(new_l1_table); |
6cfcb9b8 KW |
141 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, |
142 | QCOW2_DISCARD_OTHER); | |
8b3b7206 | 143 | return ret; |
45aba42f KW |
144 | } |
145 | ||
45aba42f KW |
146 | /* |
147 | * l2_load | |
148 | * | |
149 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
150 | * is used; otherwise the L2 table is loaded from the image file. | |
151 | * | |
152 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
153 | * the image file failed. | |
154 | */ | |
155 | ||
55c17e98 KW |
156 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
157 | uint64_t **l2_table) | |
45aba42f | 158 | { |
ff99129a | 159 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 160 | |
9be38598 EH |
161 | return qcow2_cache_get(bs, s->l2_table_cache, l2_offset, |
162 | (void **)l2_table); | |
45aba42f KW |
163 | } |
164 | ||
6583e3c7 KW |
165 | /* |
166 | * Writes one sector of the L1 table to the disk (can't update single entries | |
167 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
168 | */ | |
169 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
e23e400e | 170 | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 171 | { |
ff99129a | 172 | BDRVQcow2State *s = bs->opaque; |
a1391444 | 173 | uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; |
6583e3c7 | 174 | int l1_start_index; |
f7defcb6 | 175 | int i, ret; |
6583e3c7 KW |
176 | |
177 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
a1391444 HR |
178 | for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; |
179 | i++) | |
180 | { | |
6583e3c7 KW |
181 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); |
182 | } | |
183 | ||
231bb267 | 184 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, |
cf93980e HR |
185 | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); |
186 | if (ret < 0) { | |
187 | return ret; | |
188 | } | |
189 | ||
66f82cee | 190 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
d9ca2ea2 | 191 | ret = bdrv_pwrite_sync(bs->file, |
9a4f4c31 KW |
192 | s->l1_table_offset + 8 * l1_start_index, |
193 | buf, sizeof(buf)); | |
f7defcb6 KW |
194 | if (ret < 0) { |
195 | return ret; | |
6583e3c7 KW |
196 | } |
197 | ||
198 | return 0; | |
199 | } | |
200 | ||
45aba42f KW |
201 | /* |
202 | * l2_allocate | |
203 | * | |
204 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
205 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
206 | * table) copy the contents of the old L2 table into the newly allocated one. | |
207 | * Otherwise the new table is initialized with zeros. | |
208 | * | |
209 | */ | |
210 | ||
c46e1167 | 211 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f | 212 | { |
ff99129a | 213 | BDRVQcow2State *s = bs->opaque; |
6583e3c7 | 214 | uint64_t old_l2_offset; |
8585afd8 | 215 | uint64_t *l2_table = NULL; |
f4f0d391 | 216 | int64_t l2_offset; |
c46e1167 | 217 | int ret; |
45aba42f KW |
218 | |
219 | old_l2_offset = s->l1_table[l1_index]; | |
220 | ||
3cce16f4 KW |
221 | trace_qcow2_l2_allocate(bs, l1_index); |
222 | ||
45aba42f KW |
223 | /* allocate a new l2 entry */ |
224 | ||
ed6ccf0f | 225 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 226 | if (l2_offset < 0) { |
be0b742e HR |
227 | ret = l2_offset; |
228 | goto fail; | |
5d757b56 | 229 | } |
29c1a730 KW |
230 | |
231 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
232 | if (ret < 0) { | |
233 | goto fail; | |
234 | } | |
45aba42f | 235 | |
45aba42f KW |
236 | /* allocate a new entry in the l2 cache */ |
237 | ||
3cce16f4 | 238 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
239 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
240 | if (ret < 0) { | |
be0b742e | 241 | goto fail; |
29c1a730 KW |
242 | } |
243 | ||
244 | l2_table = *table; | |
45aba42f | 245 | |
8e37f681 | 246 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
247 | /* if there was no old l2 table, clear the new table */ |
248 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
249 | } else { | |
29c1a730 KW |
250 | uint64_t* old_table; |
251 | ||
45aba42f | 252 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 253 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
254 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
255 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
256 | (void**) &old_table); |
257 | if (ret < 0) { | |
258 | goto fail; | |
259 | } | |
260 | ||
261 | memcpy(l2_table, old_table, s->cluster_size); | |
262 | ||
a3f1afb4 | 263 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); |
45aba42f | 264 | } |
29c1a730 | 265 | |
45aba42f | 266 | /* write the l2 table to the file */ |
66f82cee | 267 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 268 | |
3cce16f4 | 269 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
72e80b89 | 270 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
29c1a730 | 271 | ret = qcow2_cache_flush(bs, s->l2_table_cache); |
c46e1167 | 272 | if (ret < 0) { |
175e1152 KW |
273 | goto fail; |
274 | } | |
275 | ||
276 | /* update the L1 entry */ | |
3cce16f4 | 277 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 | 278 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
e23e400e | 279 | ret = qcow2_write_l1_entry(bs, l1_index); |
175e1152 KW |
280 | if (ret < 0) { |
281 | goto fail; | |
c46e1167 | 282 | } |
45aba42f | 283 | |
c46e1167 | 284 | *table = l2_table; |
3cce16f4 | 285 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 286 | return 0; |
175e1152 KW |
287 | |
288 | fail: | |
3cce16f4 | 289 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
8585afd8 HR |
290 | if (l2_table != NULL) { |
291 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); | |
292 | } | |
68dba0bf | 293 | s->l1_table[l1_index] = old_l2_offset; |
e3b21ef9 HR |
294 | if (l2_offset > 0) { |
295 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | |
296 | QCOW2_DISCARD_ALWAYS); | |
297 | } | |
175e1152 | 298 | return ret; |
45aba42f KW |
299 | } |
300 | ||
2bfcc4a0 KW |
301 | /* |
302 | * Checks how many clusters in a given L2 table are contiguous in the image | |
303 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
304 | * to the first cluster, the search is stopped and the cluster is not counted | |
305 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
306 | * cluster which may require a different handling) | |
307 | */ | |
b6d36def | 308 | static int count_contiguous_clusters(int nb_clusters, int cluster_size, |
61653008 | 309 | uint64_t *l2_table, uint64_t stop_flags) |
45aba42f KW |
310 | { |
311 | int i; | |
3ef95218 | 312 | QCow2ClusterType first_cluster_type; |
78a52ad5 | 313 | uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; |
15684a47 HR |
314 | uint64_t first_entry = be64_to_cpu(l2_table[0]); |
315 | uint64_t offset = first_entry & mask; | |
45aba42f | 316 | |
564a6b69 | 317 | if (!offset) { |
45aba42f | 318 | return 0; |
564a6b69 | 319 | } |
45aba42f | 320 | |
564a6b69 HR |
321 | /* must be allocated */ |
322 | first_cluster_type = qcow2_get_cluster_type(first_entry); | |
323 | assert(first_cluster_type == QCOW2_CLUSTER_NORMAL || | |
fdfab37d | 324 | first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC); |
15684a47 | 325 | |
61653008 | 326 | for (i = 0; i < nb_clusters; i++) { |
2bfcc4a0 KW |
327 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; |
328 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 329 | break; |
2bfcc4a0 KW |
330 | } |
331 | } | |
45aba42f | 332 | |
61653008 | 333 | return i; |
45aba42f KW |
334 | } |
335 | ||
4341df8a EB |
336 | /* |
337 | * Checks how many consecutive unallocated clusters in a given L2 | |
338 | * table have the same cluster type. | |
339 | */ | |
340 | static int count_contiguous_clusters_unallocated(int nb_clusters, | |
341 | uint64_t *l2_table, | |
3ef95218 | 342 | QCow2ClusterType wanted_type) |
45aba42f | 343 | { |
2bfcc4a0 KW |
344 | int i; |
345 | ||
fdfab37d | 346 | assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN || |
4341df8a | 347 | wanted_type == QCOW2_CLUSTER_UNALLOCATED); |
2bfcc4a0 | 348 | for (i = 0; i < nb_clusters; i++) { |
4341df8a | 349 | uint64_t entry = be64_to_cpu(l2_table[i]); |
3ef95218 | 350 | QCow2ClusterType type = qcow2_get_cluster_type(entry); |
45aba42f | 351 | |
fdfab37d | 352 | if (type != wanted_type) { |
2bfcc4a0 KW |
353 | break; |
354 | } | |
355 | } | |
45aba42f KW |
356 | |
357 | return i; | |
358 | } | |
359 | ||
360 | /* The crypt function is compatible with the linux cryptoloop | |
361 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
362 | supported */ | |
ff99129a | 363 | int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, |
f6fa64f6 DB |
364 | uint8_t *out_buf, const uint8_t *in_buf, |
365 | int nb_sectors, bool enc, | |
366 | Error **errp) | |
45aba42f KW |
367 | { |
368 | union { | |
369 | uint64_t ll[2]; | |
370 | uint8_t b[16]; | |
371 | } ivec; | |
372 | int i; | |
f6fa64f6 | 373 | int ret; |
45aba42f KW |
374 | |
375 | for(i = 0; i < nb_sectors; i++) { | |
376 | ivec.ll[0] = cpu_to_le64(sector_num); | |
377 | ivec.ll[1] = 0; | |
f6fa64f6 DB |
378 | if (qcrypto_cipher_setiv(s->cipher, |
379 | ivec.b, G_N_ELEMENTS(ivec.b), | |
380 | errp) < 0) { | |
381 | return -1; | |
382 | } | |
383 | if (enc) { | |
384 | ret = qcrypto_cipher_encrypt(s->cipher, | |
385 | in_buf, | |
386 | out_buf, | |
387 | 512, | |
388 | errp); | |
389 | } else { | |
390 | ret = qcrypto_cipher_decrypt(s->cipher, | |
391 | in_buf, | |
392 | out_buf, | |
393 | 512, | |
394 | errp); | |
395 | } | |
396 | if (ret < 0) { | |
397 | return -1; | |
398 | } | |
45aba42f KW |
399 | sector_num++; |
400 | in_buf += 512; | |
401 | out_buf += 512; | |
402 | } | |
f6fa64f6 | 403 | return 0; |
45aba42f KW |
404 | } |
405 | ||
aaa4d20b KW |
406 | static int coroutine_fn do_perform_cow(BlockDriverState *bs, |
407 | uint64_t src_cluster_offset, | |
408 | uint64_t cluster_offset, | |
409 | int offset_in_cluster, | |
410 | int bytes) | |
45aba42f | 411 | { |
ff99129a | 412 | BDRVQcow2State *s = bs->opaque; |
aef4acb6 SH |
413 | QEMUIOVector qiov; |
414 | struct iovec iov; | |
aaa4d20b | 415 | int ret; |
1b9f1491 | 416 | |
aaa4d20b | 417 | iov.iov_len = bytes; |
de82815d KW |
418 | iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); |
419 | if (iov.iov_base == NULL) { | |
420 | return -ENOMEM; | |
421 | } | |
aef4acb6 SH |
422 | |
423 | qemu_iovec_init_external(&qiov, &iov, 1); | |
1b9f1491 | 424 | |
66f82cee | 425 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 | 426 | |
dba28555 | 427 | if (!bs->drv) { |
bd604369 KW |
428 | ret = -ENOMEDIUM; |
429 | goto out; | |
dba28555 HR |
430 | } |
431 | ||
aef4acb6 SH |
432 | /* Call .bdrv_co_readv() directly instead of using the public block-layer |
433 | * interface. This avoids double I/O throttling and request tracking, | |
434 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
435 | */ | |
aaa4d20b KW |
436 | ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, |
437 | bytes, &qiov, 0); | |
1b9f1491 KW |
438 | if (ret < 0) { |
439 | goto out; | |
440 | } | |
441 | ||
8336aafa | 442 | if (bs->encrypted) { |
bb9f8dd0 | 443 | int64_t sector = (src_cluster_offset + offset_in_cluster) |
aaa4d20b | 444 | >> BDRV_SECTOR_BITS; |
f6fa64f6 | 445 | assert(s->cipher); |
aaa4d20b KW |
446 | assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); |
447 | assert((bytes & ~BDRV_SECTOR_MASK) == 0); | |
448 | if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base, | |
026ac158 | 449 | bytes >> BDRV_SECTOR_BITS, true, NULL) < 0) { |
f6fa64f6 | 450 | ret = -EIO; |
f6fa64f6 DB |
451 | goto out; |
452 | } | |
45aba42f | 453 | } |
1b9f1491 | 454 | |
231bb267 | 455 | ret = qcow2_pre_write_overlap_check(bs, 0, |
aaa4d20b | 456 | cluster_offset + offset_in_cluster, bytes); |
cf93980e HR |
457 | if (ret < 0) { |
458 | goto out; | |
459 | } | |
460 | ||
66f82cee | 461 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
a03ef88f | 462 | ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster, |
aaa4d20b | 463 | bytes, &qiov, 0); |
1b9f1491 KW |
464 | if (ret < 0) { |
465 | goto out; | |
466 | } | |
467 | ||
468 | ret = 0; | |
469 | out: | |
aef4acb6 | 470 | qemu_vfree(iov.iov_base); |
1b9f1491 | 471 | return ret; |
45aba42f KW |
472 | } |
473 | ||
474 | ||
475 | /* | |
476 | * get_cluster_offset | |
477 | * | |
ecfe1863 KW |
478 | * For a given offset of the virtual disk, find the cluster type and offset in |
479 | * the qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 480 | * |
ecfe1863 KW |
481 | * On entry, *bytes is the maximum number of contiguous bytes starting at |
482 | * offset that we are interested in. | |
45aba42f | 483 | * |
ecfe1863 KW |
484 | * On exit, *bytes is the number of bytes starting at offset that have the same |
485 | * cluster type and (if applicable) are stored contiguously in the image file. | |
486 | * Compressed clusters are always returned one by one. | |
45aba42f | 487 | * |
68d000a3 KW |
488 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
489 | * cases. | |
45aba42f | 490 | */ |
1c46efaa | 491 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
ecfe1863 | 492 | unsigned int *bytes, uint64_t *cluster_offset) |
45aba42f | 493 | { |
ff99129a | 494 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
495 | unsigned int l2_index; |
496 | uint64_t l1_index, l2_offset, *l2_table; | |
45aba42f | 497 | int l1_bits, c; |
c834cba9 HR |
498 | unsigned int offset_in_cluster; |
499 | uint64_t bytes_available, bytes_needed, nb_clusters; | |
3ef95218 | 500 | QCow2ClusterType type; |
55c17e98 | 501 | int ret; |
45aba42f | 502 | |
b2f65d6b | 503 | offset_in_cluster = offset_into_cluster(s, offset); |
ecfe1863 | 504 | bytes_needed = (uint64_t) *bytes + offset_in_cluster; |
45aba42f | 505 | |
b2f65d6b | 506 | l1_bits = s->l2_bits + s->cluster_bits; |
45aba42f | 507 | |
b2f65d6b KW |
508 | /* compute how many bytes there are between the start of the cluster |
509 | * containing offset and the end of the l1 entry */ | |
510 | bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)) | |
511 | + offset_in_cluster; | |
45aba42f | 512 | |
b2f65d6b KW |
513 | if (bytes_needed > bytes_available) { |
514 | bytes_needed = bytes_available; | |
45aba42f KW |
515 | } |
516 | ||
1c46efaa | 517 | *cluster_offset = 0; |
45aba42f | 518 | |
b6af0975 | 519 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
520 | |
521 | l1_index = offset >> l1_bits; | |
68d000a3 | 522 | if (l1_index >= s->l1_size) { |
3ef95218 | 523 | type = QCOW2_CLUSTER_UNALLOCATED; |
45aba42f | 524 | goto out; |
68d000a3 | 525 | } |
45aba42f | 526 | |
68d000a3 KW |
527 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
528 | if (!l2_offset) { | |
3ef95218 | 529 | type = QCOW2_CLUSTER_UNALLOCATED; |
45aba42f | 530 | goto out; |
68d000a3 | 531 | } |
45aba42f | 532 | |
a97c67ee HR |
533 | if (offset_into_cluster(s, l2_offset)) { |
534 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
535 | " unaligned (L1 index: %#" PRIx64 ")", | |
536 | l2_offset, l1_index); | |
537 | return -EIO; | |
538 | } | |
539 | ||
45aba42f KW |
540 | /* load the l2 table in memory */ |
541 | ||
55c17e98 KW |
542 | ret = l2_load(bs, l2_offset, &l2_table); |
543 | if (ret < 0) { | |
544 | return ret; | |
1c46efaa | 545 | } |
45aba42f KW |
546 | |
547 | /* find the cluster offset for the given disk offset */ | |
548 | ||
549 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
1c46efaa | 550 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b6d36def | 551 | |
b2f65d6b | 552 | nb_clusters = size_to_clusters(s, bytes_needed); |
c834cba9 HR |
553 | /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned |
554 | * integers; the minimum cluster size is 512, so this assertion is always | |
555 | * true */ | |
556 | assert(nb_clusters <= INT_MAX); | |
45aba42f | 557 | |
3ef95218 | 558 | type = qcow2_get_cluster_type(*cluster_offset); |
fdfab37d EB |
559 | if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN || |
560 | type == QCOW2_CLUSTER_ZERO_ALLOC)) { | |
561 | qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" | |
562 | " in pre-v3 image (L2 offset: %#" PRIx64 | |
563 | ", L2 index: %#x)", l2_offset, l2_index); | |
564 | ret = -EIO; | |
565 | goto fail; | |
566 | } | |
3ef95218 | 567 | switch (type) { |
68d000a3 KW |
568 | case QCOW2_CLUSTER_COMPRESSED: |
569 | /* Compressed clusters can only be processed one by one */ | |
570 | c = 1; | |
571 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
572 | break; | |
fdfab37d | 573 | case QCOW2_CLUSTER_ZERO_PLAIN: |
68d000a3 | 574 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f | 575 | /* how many empty clusters ? */ |
4341df8a | 576 | c = count_contiguous_clusters_unallocated(nb_clusters, |
fdfab37d | 577 | &l2_table[l2_index], type); |
68d000a3 KW |
578 | *cluster_offset = 0; |
579 | break; | |
fdfab37d | 580 | case QCOW2_CLUSTER_ZERO_ALLOC: |
68d000a3 | 581 | case QCOW2_CLUSTER_NORMAL: |
45aba42f KW |
582 | /* how many allocated clusters ? */ |
583 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
fdfab37d | 584 | &l2_table[l2_index], QCOW_OFLAG_ZERO); |
68d000a3 | 585 | *cluster_offset &= L2E_OFFSET_MASK; |
a97c67ee | 586 | if (offset_into_cluster(s, *cluster_offset)) { |
fdfab37d EB |
587 | qcow2_signal_corruption(bs, true, -1, -1, |
588 | "Cluster allocation offset %#" | |
a97c67ee HR |
589 | PRIx64 " unaligned (L2 offset: %#" PRIx64 |
590 | ", L2 index: %#x)", *cluster_offset, | |
591 | l2_offset, l2_index); | |
592 | ret = -EIO; | |
593 | goto fail; | |
594 | } | |
68d000a3 | 595 | break; |
1417d7e4 KW |
596 | default: |
597 | abort(); | |
45aba42f KW |
598 | } |
599 | ||
29c1a730 KW |
600 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
601 | ||
c834cba9 | 602 | bytes_available = (int64_t)c * s->cluster_size; |
68d000a3 | 603 | |
45aba42f | 604 | out: |
b2f65d6b KW |
605 | if (bytes_available > bytes_needed) { |
606 | bytes_available = bytes_needed; | |
607 | } | |
45aba42f | 608 | |
c834cba9 HR |
609 | /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; |
610 | * subtracting offset_in_cluster will therefore definitely yield something | |
611 | * not exceeding UINT_MAX */ | |
612 | assert(bytes_available - offset_in_cluster <= UINT_MAX); | |
ecfe1863 | 613 | *bytes = bytes_available - offset_in_cluster; |
45aba42f | 614 | |
3ef95218 | 615 | return type; |
a97c67ee HR |
616 | |
617 | fail: | |
618 | qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | |
619 | return ret; | |
45aba42f KW |
620 | } |
621 | ||
622 | /* | |
623 | * get_cluster_table | |
624 | * | |
625 | * for a given disk offset, load (and allocate if needed) | |
626 | * the l2 table. | |
627 | * | |
628 | * the l2 table offset in the qcow2 file and the cluster index | |
629 | * in the l2 table are given to the caller. | |
630 | * | |
1e3e8f1a | 631 | * Returns 0 on success, -errno in failure case |
45aba42f | 632 | */ |
45aba42f KW |
633 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
634 | uint64_t **new_l2_table, | |
45aba42f KW |
635 | int *new_l2_index) |
636 | { | |
ff99129a | 637 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
638 | unsigned int l2_index; |
639 | uint64_t l1_index, l2_offset; | |
c46e1167 | 640 | uint64_t *l2_table = NULL; |
80ee15a6 | 641 | int ret; |
45aba42f | 642 | |
b6af0975 | 643 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
644 | |
645 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
646 | if (l1_index >= s->l1_size) { | |
72893756 | 647 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
648 | if (ret < 0) { |
649 | return ret; | |
650 | } | |
45aba42f | 651 | } |
8e37f681 | 652 | |
2cf7cfa1 | 653 | assert(l1_index < s->l1_size); |
8e37f681 | 654 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
a97c67ee HR |
655 | if (offset_into_cluster(s, l2_offset)) { |
656 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
657 | " unaligned (L1 index: %#" PRIx64 ")", | |
658 | l2_offset, l1_index); | |
659 | return -EIO; | |
660 | } | |
45aba42f KW |
661 | |
662 | /* seek the l2 table of the given l2 offset */ | |
663 | ||
8e37f681 | 664 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 665 | /* load the l2 table in memory */ |
55c17e98 KW |
666 | ret = l2_load(bs, l2_offset, &l2_table); |
667 | if (ret < 0) { | |
668 | return ret; | |
1e3e8f1a | 669 | } |
45aba42f | 670 | } else { |
16fde5f2 | 671 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
672 | ret = l2_allocate(bs, l1_index, &l2_table); |
673 | if (ret < 0) { | |
674 | return ret; | |
1e3e8f1a | 675 | } |
16fde5f2 KW |
676 | |
677 | /* Then decrease the refcount of the old table */ | |
678 | if (l2_offset) { | |
6cfcb9b8 KW |
679 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), |
680 | QCOW2_DISCARD_OTHER); | |
16fde5f2 | 681 | } |
45aba42f KW |
682 | } |
683 | ||
684 | /* find the cluster offset for the given disk offset */ | |
685 | ||
686 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
687 | ||
688 | *new_l2_table = l2_table; | |
45aba42f KW |
689 | *new_l2_index = l2_index; |
690 | ||
1e3e8f1a | 691 | return 0; |
45aba42f KW |
692 | } |
693 | ||
694 | /* | |
695 | * alloc_compressed_cluster_offset | |
696 | * | |
697 | * For a given offset of the disk image, return cluster offset in | |
698 | * qcow2 file. | |
699 | * | |
700 | * If the offset is not found, allocate a new compressed cluster. | |
701 | * | |
702 | * Return the cluster offset if successful, | |
703 | * Return 0, otherwise. | |
704 | * | |
705 | */ | |
706 | ||
ed6ccf0f KW |
707 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
708 | uint64_t offset, | |
709 | int compressed_size) | |
45aba42f | 710 | { |
ff99129a | 711 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 712 | int l2_index, ret; |
3948d1d4 | 713 | uint64_t *l2_table; |
f4f0d391 | 714 | int64_t cluster_offset; |
45aba42f KW |
715 | int nb_csectors; |
716 | ||
3948d1d4 | 717 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 718 | if (ret < 0) { |
45aba42f | 719 | return 0; |
1e3e8f1a | 720 | } |
45aba42f | 721 | |
b0b6862e KW |
722 | /* Compression can't overwrite anything. Fail if the cluster was already |
723 | * allocated. */ | |
45aba42f | 724 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 725 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
726 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
727 | return 0; | |
728 | } | |
45aba42f | 729 | |
ed6ccf0f | 730 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 731 | if (cluster_offset < 0) { |
29c1a730 | 732 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
733 | return 0; |
734 | } | |
735 | ||
45aba42f KW |
736 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
737 | (cluster_offset >> 9); | |
738 | ||
739 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
740 | ((uint64_t)nb_csectors << s->csize_shift); | |
741 | ||
742 | /* update L2 table */ | |
743 | ||
744 | /* compressed clusters never have the copied flag */ | |
745 | ||
66f82cee | 746 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
72e80b89 | 747 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 748 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
a3f1afb4 | 749 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
4c1612d9 | 750 | |
29c1a730 | 751 | return cluster_offset; |
4c1612d9 KW |
752 | } |
753 | ||
593fb83c KW |
754 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) |
755 | { | |
ff99129a | 756 | BDRVQcow2State *s = bs->opaque; |
593fb83c KW |
757 | int ret; |
758 | ||
85567393 | 759 | if (r->nb_bytes == 0) { |
593fb83c KW |
760 | return 0; |
761 | } | |
762 | ||
763 | qemu_co_mutex_unlock(&s->lock); | |
85567393 | 764 | ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes); |
593fb83c KW |
765 | qemu_co_mutex_lock(&s->lock); |
766 | ||
767 | if (ret < 0) { | |
768 | return ret; | |
769 | } | |
770 | ||
771 | /* | |
772 | * Before we update the L2 table to actually point to the new cluster, we | |
773 | * need to be sure that the refcounts have been increased and COW was | |
774 | * handled. | |
775 | */ | |
776 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
777 | ||
778 | return 0; | |
779 | } | |
780 | ||
148da7ea | 781 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f | 782 | { |
ff99129a | 783 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 784 | int i, j = 0, l2_index, ret; |
593fb83c | 785 | uint64_t *old_cluster, *l2_table; |
250196f1 | 786 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 787 | |
3cce16f4 | 788 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 789 | assert(m->nb_clusters > 0); |
45aba42f | 790 | |
5839e53b | 791 | old_cluster = g_try_new(uint64_t, m->nb_clusters); |
de82815d KW |
792 | if (old_cluster == NULL) { |
793 | ret = -ENOMEM; | |
794 | goto err; | |
795 | } | |
45aba42f KW |
796 | |
797 | /* copy content of unmodified sectors */ | |
593fb83c KW |
798 | ret = perform_cow(bs, m, &m->cow_start); |
799 | if (ret < 0) { | |
800 | goto err; | |
45aba42f KW |
801 | } |
802 | ||
593fb83c KW |
803 | ret = perform_cow(bs, m, &m->cow_end); |
804 | if (ret < 0) { | |
805 | goto err; | |
29c1a730 KW |
806 | } |
807 | ||
593fb83c | 808 | /* Update L2 table. */ |
74c4510a | 809 | if (s->use_lazy_refcounts) { |
280d3735 KW |
810 | qcow2_mark_dirty(bs); |
811 | } | |
bfe8043e SH |
812 | if (qcow2_need_accurate_refcounts(s)) { |
813 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
814 | s->refcount_block_cache); | |
815 | } | |
280d3735 | 816 | |
3948d1d4 | 817 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 818 | if (ret < 0) { |
45aba42f | 819 | goto err; |
1e3e8f1a | 820 | } |
72e80b89 | 821 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 822 | |
c01dbccb | 823 | assert(l2_index + m->nb_clusters <= s->l2_size); |
45aba42f KW |
824 | for (i = 0; i < m->nb_clusters; i++) { |
825 | /* if two concurrent writes happen to the same unallocated cluster | |
aaa4d20b KW |
826 | * each write allocates separate cluster and writes data concurrently. |
827 | * The first one to complete updates l2 table with pointer to its | |
828 | * cluster the second one has to do RMW (which is done above by | |
829 | * perform_cow()), update l2 table with its cluster pointer and free | |
830 | * old cluster. This is what this loop does */ | |
831 | if (l2_table[l2_index + i] != 0) { | |
45aba42f | 832 | old_cluster[j++] = l2_table[l2_index + i]; |
aaa4d20b | 833 | } |
45aba42f KW |
834 | |
835 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
836 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
837 | } | |
838 | ||
9f8e668e | 839 | |
a3f1afb4 | 840 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
45aba42f | 841 | |
7ec5e6a4 KW |
842 | /* |
843 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
6cfcb9b8 KW |
844 | * |
845 | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | |
846 | * clusters), the next write will reuse them anyway. | |
7ec5e6a4 | 847 | */ |
564a6b69 | 848 | if (!m->keep_old_clusters && j != 0) { |
7ec5e6a4 | 849 | for (i = 0; i < j; i++) { |
6cfcb9b8 KW |
850 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, |
851 | QCOW2_DISCARD_NEVER); | |
7ec5e6a4 KW |
852 | } |
853 | } | |
45aba42f KW |
854 | |
855 | ret = 0; | |
856 | err: | |
7267c094 | 857 | g_free(old_cluster); |
45aba42f KW |
858 | return ret; |
859 | } | |
860 | ||
bf319ece KW |
861 | /* |
862 | * Returns the number of contiguous clusters that can be used for an allocating | |
863 | * write, but require COW to be performed (this includes yet unallocated space, | |
864 | * which must copy from the backing file) | |
865 | */ | |
ff99129a | 866 | static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, |
bf319ece KW |
867 | uint64_t *l2_table, int l2_index) |
868 | { | |
143550a8 | 869 | int i; |
bf319ece | 870 | |
143550a8 KW |
871 | for (i = 0; i < nb_clusters; i++) { |
872 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
3ef95218 | 873 | QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry); |
143550a8 KW |
874 | |
875 | switch(cluster_type) { | |
876 | case QCOW2_CLUSTER_NORMAL: | |
877 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
878 | goto out; | |
879 | } | |
bf319ece | 880 | break; |
143550a8 KW |
881 | case QCOW2_CLUSTER_UNALLOCATED: |
882 | case QCOW2_CLUSTER_COMPRESSED: | |
fdfab37d EB |
883 | case QCOW2_CLUSTER_ZERO_PLAIN: |
884 | case QCOW2_CLUSTER_ZERO_ALLOC: | |
bf319ece | 885 | break; |
143550a8 KW |
886 | default: |
887 | abort(); | |
888 | } | |
bf319ece KW |
889 | } |
890 | ||
143550a8 | 891 | out: |
bf319ece KW |
892 | assert(i <= nb_clusters); |
893 | return i; | |
894 | } | |
895 | ||
250196f1 | 896 | /* |
226c3c26 KW |
897 | * Check if there already is an AIO write request in flight which allocates |
898 | * the same cluster. In this case we need to wait until the previous | |
899 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
900 | * |
901 | * Returns: | |
902 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
903 | * bytes from guest_offset that can be read before the next | |
904 | * dependency must be processed (or the request is complete) | |
905 | * | |
906 | * -EAGAIN if we had to wait for another request, previously gathered | |
907 | * information on cluster allocation may be invalid now. The caller | |
908 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 909 | */ |
226c3c26 | 910 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 911 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 | 912 | { |
ff99129a | 913 | BDRVQcow2State *s = bs->opaque; |
250196f1 | 914 | QCowL2Meta *old_alloc; |
65eb2e35 | 915 | uint64_t bytes = *cur_bytes; |
250196f1 | 916 | |
250196f1 KW |
917 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
918 | ||
65eb2e35 KW |
919 | uint64_t start = guest_offset; |
920 | uint64_t end = start + bytes; | |
921 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
922 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 923 | |
d9d74f41 | 924 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
925 | /* No intersection */ |
926 | } else { | |
927 | if (start < old_start) { | |
928 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 929 | bytes = old_start - start; |
250196f1 | 930 | } else { |
65eb2e35 | 931 | bytes = 0; |
250196f1 KW |
932 | } |
933 | ||
ecdd5333 KW |
934 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
935 | * be valid any more, so we'd have to clean up the old L2Metas | |
936 | * and deal with requests depending on them before starting to | |
937 | * gather new ones. Not worth the trouble. */ | |
938 | if (bytes == 0 && *m) { | |
939 | *cur_bytes = 0; | |
940 | return 0; | |
941 | } | |
942 | ||
65eb2e35 | 943 | if (bytes == 0) { |
250196f1 KW |
944 | /* Wait for the dependency to complete. We need to recheck |
945 | * the free/allocated clusters when we continue. */ | |
1ace7cea | 946 | qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); |
250196f1 KW |
947 | return -EAGAIN; |
948 | } | |
949 | } | |
950 | } | |
951 | ||
65eb2e35 KW |
952 | /* Make sure that existing clusters and new allocations are only used up to |
953 | * the next dependency if we shortened the request above */ | |
954 | *cur_bytes = bytes; | |
250196f1 | 955 | |
226c3c26 KW |
956 | return 0; |
957 | } | |
958 | ||
0af729ec KW |
959 | /* |
960 | * Checks how many already allocated clusters that don't require a copy on | |
961 | * write there are at the given guest_offset (up to *bytes). If | |
962 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
963 | * this host offset are counted. | |
964 | * | |
411d62b0 KW |
965 | * Note that guest_offset may not be cluster aligned. In this case, the |
966 | * returned *host_offset points to exact byte referenced by guest_offset and | |
967 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
968 | * |
969 | * Returns: | |
970 | * 0: if no allocated clusters are available at the given offset. | |
971 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
972 | * is allocated and doesn't need COW, but doesn't have the right | |
973 | * physical offset. | |
974 | * | |
975 | * 1: if allocated clusters that don't require a COW are available at | |
976 | * the requested offset. *bytes may have decreased and describes | |
977 | * the length of the area that can be written to. | |
978 | * | |
979 | * -errno: in error cases | |
0af729ec KW |
980 | */ |
981 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 982 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec | 983 | { |
ff99129a | 984 | BDRVQcow2State *s = bs->opaque; |
0af729ec KW |
985 | int l2_index; |
986 | uint64_t cluster_offset; | |
987 | uint64_t *l2_table; | |
b6d36def | 988 | uint64_t nb_clusters; |
c53ede9f | 989 | unsigned int keep_clusters; |
a3f1afb4 | 990 | int ret; |
0af729ec KW |
991 | |
992 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
993 | *bytes); | |
0af729ec | 994 | |
411d62b0 KW |
995 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
996 | == offset_into_cluster(s, *host_offset)); | |
997 | ||
acb0467f KW |
998 | /* |
999 | * Calculate the number of clusters to look for. We stop at L2 table | |
1000 | * boundaries to keep things simple. | |
1001 | */ | |
1002 | nb_clusters = | |
1003 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1004 | ||
1005 | l2_index = offset_to_l2_index(s, guest_offset); | |
1006 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1007 | assert(nb_clusters <= INT_MAX); |
acb0467f | 1008 | |
0af729ec KW |
1009 | /* Find L2 entry for the first involved cluster */ |
1010 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1011 | if (ret < 0) { | |
1012 | return ret; | |
1013 | } | |
1014 | ||
1015 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
1016 | ||
1017 | /* Check how many clusters are already allocated and don't need COW */ | |
1018 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
1019 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
1020 | { | |
e62daaf6 KW |
1021 | /* If a specific host_offset is required, check it */ |
1022 | bool offset_matches = | |
1023 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
1024 | ||
a97c67ee HR |
1025 | if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { |
1026 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | |
1027 | "%#llx unaligned (guest offset: %#" PRIx64 | |
1028 | ")", cluster_offset & L2E_OFFSET_MASK, | |
1029 | guest_offset); | |
1030 | ret = -EIO; | |
1031 | goto out; | |
1032 | } | |
1033 | ||
e62daaf6 KW |
1034 | if (*host_offset != 0 && !offset_matches) { |
1035 | *bytes = 0; | |
1036 | ret = 0; | |
1037 | goto out; | |
1038 | } | |
1039 | ||
0af729ec | 1040 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 1041 | keep_clusters = |
acb0467f | 1042 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
61653008 | 1043 | &l2_table[l2_index], |
0af729ec | 1044 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); |
c53ede9f KW |
1045 | assert(keep_clusters <= nb_clusters); |
1046 | ||
1047 | *bytes = MIN(*bytes, | |
1048 | keep_clusters * s->cluster_size | |
1049 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
1050 | |
1051 | ret = 1; | |
1052 | } else { | |
0af729ec KW |
1053 | ret = 0; |
1054 | } | |
1055 | ||
0af729ec | 1056 | /* Cleanup */ |
e62daaf6 | 1057 | out: |
a3f1afb4 | 1058 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
0af729ec | 1059 | |
e62daaf6 KW |
1060 | /* Only return a host offset if we actually made progress. Otherwise we |
1061 | * would make requirements for handle_alloc() that it can't fulfill */ | |
a97c67ee | 1062 | if (ret > 0) { |
411d62b0 KW |
1063 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
1064 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
1065 | } |
1066 | ||
0af729ec KW |
1067 | return ret; |
1068 | } | |
1069 | ||
226c3c26 KW |
1070 | /* |
1071 | * Allocates new clusters for the given guest_offset. | |
1072 | * | |
1073 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
1074 | * contain the number of clusters that have been allocated and are contiguous | |
1075 | * in the image file. | |
1076 | * | |
1077 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
1078 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
1079 | * case if the cluster at host_offset is already in use. If *host_offset is | |
1080 | * zero, the clusters can be allocated anywhere in the image file. | |
1081 | * | |
1082 | * *host_offset is updated to contain the offset into the image file at which | |
1083 | * the first allocated cluster starts. | |
1084 | * | |
1085 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
1086 | * function has been waiting for another request and the allocation must be | |
1087 | * restarted, but the whole request should not be failed. | |
1088 | */ | |
1089 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
b6d36def | 1090 | uint64_t *host_offset, uint64_t *nb_clusters) |
226c3c26 | 1091 | { |
ff99129a | 1092 | BDRVQcow2State *s = bs->opaque; |
226c3c26 KW |
1093 | |
1094 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
1095 | *host_offset, *nb_clusters); | |
1096 | ||
250196f1 KW |
1097 | /* Allocate new clusters */ |
1098 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
1099 | if (*host_offset == 0) { | |
df021791 KW |
1100 | int64_t cluster_offset = |
1101 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
1102 | if (cluster_offset < 0) { | |
1103 | return cluster_offset; | |
1104 | } | |
1105 | *host_offset = cluster_offset; | |
1106 | return 0; | |
250196f1 | 1107 | } else { |
b6d36def | 1108 | int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
1109 | if (ret < 0) { |
1110 | return ret; | |
1111 | } | |
1112 | *nb_clusters = ret; | |
1113 | return 0; | |
250196f1 | 1114 | } |
250196f1 KW |
1115 | } |
1116 | ||
10f0ed8b KW |
1117 | /* |
1118 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
1119 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
1120 | * the new allocation can match the specified host offset. | |
1121 | * | |
411d62b0 KW |
1122 | * Note that guest_offset may not be cluster aligned. In this case, the |
1123 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1124 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
1125 | * |
1126 | * Returns: | |
1127 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
1128 | * *host_offset is left unchanged. | |
1129 | * | |
1130 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
1131 | * new allocation doesn't cover all of the requested area. | |
1132 | * *host_offset is updated to contain the host offset of the first | |
1133 | * newly allocated cluster. | |
1134 | * | |
1135 | * -errno: in error cases | |
10f0ed8b KW |
1136 | */ |
1137 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 1138 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b | 1139 | { |
ff99129a | 1140 | BDRVQcow2State *s = bs->opaque; |
10f0ed8b KW |
1141 | int l2_index; |
1142 | uint64_t *l2_table; | |
1143 | uint64_t entry; | |
b6d36def | 1144 | uint64_t nb_clusters; |
10f0ed8b | 1145 | int ret; |
564a6b69 | 1146 | bool keep_old_clusters = false; |
10f0ed8b | 1147 | |
564a6b69 | 1148 | uint64_t alloc_cluster_offset = 0; |
10f0ed8b KW |
1149 | |
1150 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1151 | *bytes); | |
1152 | assert(*bytes > 0); | |
1153 | ||
f5bc6350 KW |
1154 | /* |
1155 | * Calculate the number of clusters to look for. We stop at L2 table | |
1156 | * boundaries to keep things simple. | |
1157 | */ | |
c37f4cd7 KW |
1158 | nb_clusters = |
1159 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1160 | ||
f5bc6350 | 1161 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1162 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
b6d36def | 1163 | assert(nb_clusters <= INT_MAX); |
f5bc6350 | 1164 | |
10f0ed8b KW |
1165 | /* Find L2 entry for the first involved cluster */ |
1166 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1167 | if (ret < 0) { | |
1168 | return ret; | |
1169 | } | |
1170 | ||
3b8e2e26 | 1171 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1172 | |
1173 | /* For the moment, overwrite compressed clusters one by one */ | |
1174 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1175 | nb_clusters = 1; | |
1176 | } else { | |
3b8e2e26 | 1177 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1178 | } |
1179 | ||
ecdd5333 KW |
1180 | /* This function is only called when there were no non-COW clusters, so if |
1181 | * we can't find any unallocated or COW clusters either, something is | |
1182 | * wrong with our code. */ | |
1183 | assert(nb_clusters > 0); | |
1184 | ||
fdfab37d EB |
1185 | if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC && |
1186 | (entry & QCOW_OFLAG_COPIED) && | |
564a6b69 HR |
1187 | (!*host_offset || |
1188 | start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK))) | |
1189 | { | |
1190 | /* Try to reuse preallocated zero clusters; contiguous normal clusters | |
1191 | * would be fine, too, but count_cow_clusters() above has limited | |
1192 | * nb_clusters already to a range of COW clusters */ | |
1193 | int preallocated_nb_clusters = | |
1194 | count_contiguous_clusters(nb_clusters, s->cluster_size, | |
1195 | &l2_table[l2_index], QCOW_OFLAG_COPIED); | |
1196 | assert(preallocated_nb_clusters > 0); | |
10f0ed8b | 1197 | |
564a6b69 HR |
1198 | nb_clusters = preallocated_nb_clusters; |
1199 | alloc_cluster_offset = entry & L2E_OFFSET_MASK; | |
10f0ed8b | 1200 | |
564a6b69 HR |
1201 | /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2() |
1202 | * should not free them. */ | |
1203 | keep_old_clusters = true; | |
10f0ed8b KW |
1204 | } |
1205 | ||
564a6b69 HR |
1206 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
1207 | ||
ff52aab2 | 1208 | if (!alloc_cluster_offset) { |
564a6b69 HR |
1209 | /* Allocate, if necessary at a given offset in the image file */ |
1210 | alloc_cluster_offset = start_of_cluster(s, *host_offset); | |
1211 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, | |
1212 | &nb_clusters); | |
1213 | if (ret < 0) { | |
1214 | goto fail; | |
1215 | } | |
1216 | ||
1217 | /* Can't extend contiguous allocation */ | |
1218 | if (nb_clusters == 0) { | |
1219 | *bytes = 0; | |
1220 | return 0; | |
1221 | } | |
1222 | ||
1223 | /* !*host_offset would overwrite the image header and is reserved for | |
1224 | * "no host offset preferred". If 0 was a valid host offset, it'd | |
1225 | * trigger the following overlap check; do that now to avoid having an | |
1226 | * invalid value in *host_offset. */ | |
1227 | if (!alloc_cluster_offset) { | |
1228 | ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, | |
1229 | nb_clusters * s->cluster_size); | |
1230 | assert(ret < 0); | |
1231 | goto fail; | |
1232 | } | |
ff52aab2 HR |
1233 | } |
1234 | ||
83baa9a4 KW |
1235 | /* |
1236 | * Save info needed for meta data update. | |
1237 | * | |
85567393 | 1238 | * requested_bytes: Number of bytes from the start of the first |
83baa9a4 KW |
1239 | * newly allocated cluster to the end of the (possibly shortened |
1240 | * before) write request. | |
1241 | * | |
85567393 | 1242 | * avail_bytes: Number of bytes from the start of the first |
83baa9a4 KW |
1243 | * newly allocated to the end of the last newly allocated cluster. |
1244 | * | |
85567393 | 1245 | * nb_bytes: The number of bytes from the start of the first |
83baa9a4 KW |
1246 | * newly allocated cluster to the end of the area that the write |
1247 | * request actually writes to (excluding COW at the end) | |
1248 | */ | |
85567393 KW |
1249 | uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); |
1250 | int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); | |
1251 | int nb_bytes = MIN(requested_bytes, avail_bytes); | |
88c6588c | 1252 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1253 | |
83baa9a4 KW |
1254 | *m = g_malloc0(sizeof(**m)); |
1255 | ||
1256 | **m = (QCowL2Meta) { | |
88c6588c KW |
1257 | .next = old_m, |
1258 | ||
411d62b0 | 1259 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1260 | .offset = start_of_cluster(s, guest_offset), |
1261 | .nb_clusters = nb_clusters, | |
83baa9a4 | 1262 | |
564a6b69 HR |
1263 | .keep_old_clusters = keep_old_clusters, |
1264 | ||
83baa9a4 KW |
1265 | .cow_start = { |
1266 | .offset = 0, | |
85567393 | 1267 | .nb_bytes = offset_into_cluster(s, guest_offset), |
83baa9a4 KW |
1268 | }, |
1269 | .cow_end = { | |
85567393 KW |
1270 | .offset = nb_bytes, |
1271 | .nb_bytes = avail_bytes - nb_bytes, | |
83baa9a4 KW |
1272 | }, |
1273 | }; | |
1274 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1275 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1276 | ||
411d62b0 | 1277 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
85567393 | 1278 | *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); |
83baa9a4 KW |
1279 | assert(*bytes != 0); |
1280 | ||
10f0ed8b KW |
1281 | return 1; |
1282 | ||
1283 | fail: | |
1284 | if (*m && (*m)->nb_clusters > 0) { | |
1285 | QLIST_REMOVE(*m, next_in_flight); | |
1286 | } | |
1287 | return ret; | |
1288 | } | |
1289 | ||
45aba42f KW |
1290 | /* |
1291 | * alloc_cluster_offset | |
1292 | * | |
250196f1 KW |
1293 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1294 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1295 | * |
250196f1 | 1296 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1297 | * other fields in m are meaningless. |
148da7ea KW |
1298 | * |
1299 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1300 | * contiguous clusters that have been allocated. In this case, the other |
1301 | * fields of m are valid and contain information about the first allocated | |
1302 | * cluster. | |
45aba42f | 1303 | * |
68d100e9 KW |
1304 | * If the request conflicts with another write request in flight, the coroutine |
1305 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1306 | * |
1307 | * Return 0 on success and -errno in error cases | |
45aba42f | 1308 | */ |
f4f0d391 | 1309 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
d46a0bb2 KW |
1310 | unsigned int *bytes, uint64_t *host_offset, |
1311 | QCowL2Meta **m) | |
45aba42f | 1312 | { |
ff99129a | 1313 | BDRVQcow2State *s = bs->opaque; |
710c2496 | 1314 | uint64_t start, remaining; |
250196f1 | 1315 | uint64_t cluster_offset; |
65eb2e35 | 1316 | uint64_t cur_bytes; |
710c2496 | 1317 | int ret; |
45aba42f | 1318 | |
d46a0bb2 | 1319 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); |
710c2496 | 1320 | |
72424114 | 1321 | again: |
16f0587e | 1322 | start = offset; |
d46a0bb2 | 1323 | remaining = *bytes; |
0af729ec KW |
1324 | cluster_offset = 0; |
1325 | *host_offset = 0; | |
ecdd5333 KW |
1326 | cur_bytes = 0; |
1327 | *m = NULL; | |
0af729ec | 1328 | |
2c3b32d2 | 1329 | while (true) { |
ecdd5333 KW |
1330 | |
1331 | if (!*host_offset) { | |
1332 | *host_offset = start_of_cluster(s, cluster_offset); | |
1333 | } | |
1334 | ||
1335 | assert(remaining >= cur_bytes); | |
1336 | ||
1337 | start += cur_bytes; | |
1338 | remaining -= cur_bytes; | |
1339 | cluster_offset += cur_bytes; | |
1340 | ||
1341 | if (remaining == 0) { | |
1342 | break; | |
1343 | } | |
1344 | ||
1345 | cur_bytes = remaining; | |
1346 | ||
2c3b32d2 KW |
1347 | /* |
1348 | * Now start gathering as many contiguous clusters as possible: | |
1349 | * | |
1350 | * 1. Check for overlaps with in-flight allocations | |
1351 | * | |
1352 | * a) Overlap not in the first cluster -> shorten this request and | |
1353 | * let the caller handle the rest in its next loop iteration. | |
1354 | * | |
1355 | * b) Real overlaps of two requests. Yield and restart the search | |
1356 | * for contiguous clusters (the situation could have changed | |
1357 | * while we were sleeping) | |
1358 | * | |
1359 | * c) TODO: Request starts in the same cluster as the in-flight | |
1360 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1361 | * set cluster_offset to write to the same cluster and set up | |
1362 | * the right synchronisation between the in-flight request and | |
1363 | * the new one. | |
1364 | */ | |
ecdd5333 | 1365 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1366 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1367 | /* Currently handle_dependencies() doesn't yield if we already had |
1368 | * an allocation. If it did, we would have to clean up the L2Meta | |
1369 | * structs before starting over. */ | |
1370 | assert(*m == NULL); | |
2c3b32d2 KW |
1371 | goto again; |
1372 | } else if (ret < 0) { | |
1373 | return ret; | |
ecdd5333 KW |
1374 | } else if (cur_bytes == 0) { |
1375 | break; | |
2c3b32d2 KW |
1376 | } else { |
1377 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1378 | * the allocations below) so that the next dependency is processed | |
1379 | * correctly during the next loop iteration. */ | |
0af729ec | 1380 | } |
710c2496 | 1381 | |
2c3b32d2 KW |
1382 | /* |
1383 | * 2. Count contiguous COPIED clusters. | |
1384 | */ | |
1385 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1386 | if (ret < 0) { | |
1387 | return ret; | |
1388 | } else if (ret) { | |
ecdd5333 | 1389 | continue; |
2c3b32d2 KW |
1390 | } else if (cur_bytes == 0) { |
1391 | break; | |
1392 | } | |
060bee89 | 1393 | |
2c3b32d2 KW |
1394 | /* |
1395 | * 3. If the request still hasn't completed, allocate new clusters, | |
1396 | * considering any cluster_offset of steps 1c or 2. | |
1397 | */ | |
1398 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1399 | if (ret < 0) { | |
1400 | return ret; | |
1401 | } else if (ret) { | |
ecdd5333 | 1402 | continue; |
2c3b32d2 KW |
1403 | } else { |
1404 | assert(cur_bytes == 0); | |
1405 | break; | |
1406 | } | |
f5bc6350 | 1407 | } |
10f0ed8b | 1408 | |
d46a0bb2 KW |
1409 | *bytes -= remaining; |
1410 | assert(*bytes > 0); | |
710c2496 | 1411 | assert(*host_offset != 0); |
45aba42f | 1412 | |
148da7ea | 1413 | return 0; |
45aba42f KW |
1414 | } |
1415 | ||
1416 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1417 | const uint8_t *buf, int buf_size) | |
1418 | { | |
1419 | z_stream strm1, *strm = &strm1; | |
1420 | int ret, out_len; | |
1421 | ||
1422 | memset(strm, 0, sizeof(*strm)); | |
1423 | ||
1424 | strm->next_in = (uint8_t *)buf; | |
1425 | strm->avail_in = buf_size; | |
1426 | strm->next_out = out_buf; | |
1427 | strm->avail_out = out_buf_size; | |
1428 | ||
1429 | ret = inflateInit2(strm, -12); | |
1430 | if (ret != Z_OK) | |
1431 | return -1; | |
1432 | ret = inflate(strm, Z_FINISH); | |
1433 | out_len = strm->next_out - out_buf; | |
1434 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1435 | out_len != out_buf_size) { | |
1436 | inflateEnd(strm); | |
1437 | return -1; | |
1438 | } | |
1439 | inflateEnd(strm); | |
1440 | return 0; | |
1441 | } | |
1442 | ||
66f82cee | 1443 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1444 | { |
ff99129a | 1445 | BDRVQcow2State *s = bs->opaque; |
45aba42f KW |
1446 | int ret, csize, nb_csectors, sector_offset; |
1447 | uint64_t coffset; | |
1448 | ||
1449 | coffset = cluster_offset & s->cluster_offset_mask; | |
1450 | if (s->cluster_cache_offset != coffset) { | |
1451 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1452 | sector_offset = coffset & 511; | |
1453 | csize = nb_csectors * 512 - sector_offset; | |
66f82cee | 1454 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
fbcbbf4e | 1455 | ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, |
9a4f4c31 | 1456 | nb_csectors); |
45aba42f | 1457 | if (ret < 0) { |
8af36488 | 1458 | return ret; |
45aba42f KW |
1459 | } |
1460 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1461 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1462 | return -EIO; |
45aba42f KW |
1463 | } |
1464 | s->cluster_cache_offset = coffset; | |
1465 | } | |
1466 | return 0; | |
1467 | } | |
5ea929e3 KW |
1468 | |
1469 | /* | |
1470 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1471 | * all clusters in the same L2 table) and returns the number of discarded | |
1472 | * clusters. | |
1473 | */ | |
1474 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
b6d36def HR |
1475 | uint64_t nb_clusters, enum qcow2_discard_type type, |
1476 | bool full_discard) | |
5ea929e3 | 1477 | { |
ff99129a | 1478 | BDRVQcow2State *s = bs->opaque; |
3948d1d4 | 1479 | uint64_t *l2_table; |
5ea929e3 KW |
1480 | int l2_index; |
1481 | int ret; | |
1482 | int i; | |
1483 | ||
3948d1d4 | 1484 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1485 | if (ret < 0) { |
1486 | return ret; | |
1487 | } | |
1488 | ||
1489 | /* Limit nb_clusters to one L2 table */ | |
1490 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1491 | assert(nb_clusters <= INT_MAX); |
5ea929e3 KW |
1492 | |
1493 | for (i = 0; i < nb_clusters; i++) { | |
c883db0d | 1494 | uint64_t old_l2_entry; |
5ea929e3 | 1495 | |
c883db0d | 1496 | old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); |
a71835a0 KW |
1497 | |
1498 | /* | |
808c4b6f HR |
1499 | * If full_discard is false, make sure that a discarded area reads back |
1500 | * as zeroes for v3 images (we cannot do it for v2 without actually | |
1501 | * writing a zero-filled buffer). We can skip the operation if the | |
1502 | * cluster is already marked as zero, or if it's unallocated and we | |
1503 | * don't have a backing file. | |
a71835a0 KW |
1504 | * |
1505 | * TODO We might want to use bdrv_get_block_status(bs) here, but we're | |
1506 | * holding s->lock, so that doesn't work today. | |
808c4b6f HR |
1507 | * |
1508 | * If full_discard is true, the sector should not read back as zeroes, | |
1509 | * but rather fall through to the backing file. | |
a71835a0 | 1510 | */ |
c883db0d | 1511 | switch (qcow2_get_cluster_type(old_l2_entry)) { |
bbd995d8 EB |
1512 | case QCOW2_CLUSTER_UNALLOCATED: |
1513 | if (full_discard || !bs->backing) { | |
1514 | continue; | |
1515 | } | |
1516 | break; | |
1517 | ||
fdfab37d EB |
1518 | case QCOW2_CLUSTER_ZERO_PLAIN: |
1519 | if (!full_discard) { | |
bbd995d8 EB |
1520 | continue; |
1521 | } | |
1522 | break; | |
1523 | ||
fdfab37d | 1524 | case QCOW2_CLUSTER_ZERO_ALLOC: |
bbd995d8 EB |
1525 | case QCOW2_CLUSTER_NORMAL: |
1526 | case QCOW2_CLUSTER_COMPRESSED: | |
1527 | break; | |
1528 | ||
1529 | default: | |
1530 | abort(); | |
5ea929e3 KW |
1531 | } |
1532 | ||
1533 | /* First remove L2 entries */ | |
72e80b89 | 1534 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
808c4b6f | 1535 | if (!full_discard && s->qcow_version >= 3) { |
a71835a0 KW |
1536 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); |
1537 | } else { | |
1538 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1539 | } | |
5ea929e3 KW |
1540 | |
1541 | /* Then decrease the refcount */ | |
c883db0d | 1542 | qcow2_free_any_clusters(bs, old_l2_entry, 1, type); |
5ea929e3 KW |
1543 | } |
1544 | ||
a3f1afb4 | 1545 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
5ea929e3 KW |
1546 | |
1547 | return nb_clusters; | |
1548 | } | |
1549 | ||
d2cb36af EB |
1550 | int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, |
1551 | uint64_t bytes, enum qcow2_discard_type type, | |
1552 | bool full_discard) | |
5ea929e3 | 1553 | { |
ff99129a | 1554 | BDRVQcow2State *s = bs->opaque; |
d2cb36af | 1555 | uint64_t end_offset = offset + bytes; |
b6d36def | 1556 | uint64_t nb_clusters; |
d2cb36af | 1557 | int64_t cleared; |
5ea929e3 KW |
1558 | int ret; |
1559 | ||
f10ee139 | 1560 | /* Caller must pass aligned values, except at image end */ |
0c1bd469 | 1561 | assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
f10ee139 EB |
1562 | assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || |
1563 | end_offset == bs->total_sectors << BDRV_SECTOR_BITS); | |
5ea929e3 | 1564 | |
d2cb36af | 1565 | nb_clusters = size_to_clusters(s, bytes); |
5ea929e3 | 1566 | |
0b919fae KW |
1567 | s->cache_discards = true; |
1568 | ||
5ea929e3 KW |
1569 | /* Each L2 table is handled by its own loop iteration */ |
1570 | while (nb_clusters > 0) { | |
d2cb36af EB |
1571 | cleared = discard_single_l2(bs, offset, nb_clusters, type, |
1572 | full_discard); | |
1573 | if (cleared < 0) { | |
1574 | ret = cleared; | |
0b919fae | 1575 | goto fail; |
5ea929e3 KW |
1576 | } |
1577 | ||
d2cb36af EB |
1578 | nb_clusters -= cleared; |
1579 | offset += (cleared * s->cluster_size); | |
5ea929e3 KW |
1580 | } |
1581 | ||
0b919fae KW |
1582 | ret = 0; |
1583 | fail: | |
1584 | s->cache_discards = false; | |
1585 | qcow2_process_discards(bs, ret); | |
1586 | ||
1587 | return ret; | |
5ea929e3 | 1588 | } |
621f0589 KW |
1589 | |
1590 | /* | |
1591 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1592 | * all clusters in the same L2 table) and returns the number of zeroed | |
1593 | * clusters. | |
1594 | */ | |
1595 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
170f4b2e | 1596 | uint64_t nb_clusters, int flags) |
621f0589 | 1597 | { |
ff99129a | 1598 | BDRVQcow2State *s = bs->opaque; |
621f0589 KW |
1599 | uint64_t *l2_table; |
1600 | int l2_index; | |
1601 | int ret; | |
1602 | int i; | |
06cc5e2b | 1603 | bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP); |
621f0589 KW |
1604 | |
1605 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1606 | if (ret < 0) { | |
1607 | return ret; | |
1608 | } | |
1609 | ||
1610 | /* Limit nb_clusters to one L2 table */ | |
1611 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1612 | assert(nb_clusters <= INT_MAX); |
621f0589 KW |
1613 | |
1614 | for (i = 0; i < nb_clusters; i++) { | |
1615 | uint64_t old_offset; | |
06cc5e2b | 1616 | QCow2ClusterType cluster_type; |
621f0589 KW |
1617 | |
1618 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1619 | ||
06cc5e2b EB |
1620 | /* |
1621 | * Minimize L2 changes if the cluster already reads back as | |
1622 | * zeroes with correct allocation. | |
1623 | */ | |
1624 | cluster_type = qcow2_get_cluster_type(old_offset); | |
1625 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN || | |
1626 | (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) { | |
1627 | continue; | |
1628 | } | |
1629 | ||
72e80b89 | 1630 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
06cc5e2b | 1631 | if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) { |
621f0589 | 1632 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); |
6cfcb9b8 | 1633 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
621f0589 KW |
1634 | } else { |
1635 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1636 | } | |
1637 | } | |
1638 | ||
a3f1afb4 | 1639 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
621f0589 KW |
1640 | |
1641 | return nb_clusters; | |
1642 | } | |
1643 | ||
d2cb36af EB |
1644 | int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset, |
1645 | uint64_t bytes, int flags) | |
621f0589 | 1646 | { |
ff99129a | 1647 | BDRVQcow2State *s = bs->opaque; |
d2cb36af | 1648 | uint64_t end_offset = offset + bytes; |
b6d36def | 1649 | uint64_t nb_clusters; |
d2cb36af | 1650 | int64_t cleared; |
621f0589 KW |
1651 | int ret; |
1652 | ||
f10ee139 EB |
1653 | /* Caller must pass aligned values, except at image end */ |
1654 | assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); | |
1655 | assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || | |
1656 | end_offset == bs->total_sectors << BDRV_SECTOR_BITS); | |
1657 | ||
621f0589 KW |
1658 | /* The zero flag is only supported by version 3 and newer */ |
1659 | if (s->qcow_version < 3) { | |
1660 | return -ENOTSUP; | |
1661 | } | |
1662 | ||
1663 | /* Each L2 table is handled by its own loop iteration */ | |
d2cb36af | 1664 | nb_clusters = size_to_clusters(s, bytes); |
621f0589 | 1665 | |
0b919fae KW |
1666 | s->cache_discards = true; |
1667 | ||
621f0589 | 1668 | while (nb_clusters > 0) { |
d2cb36af EB |
1669 | cleared = zero_single_l2(bs, offset, nb_clusters, flags); |
1670 | if (cleared < 0) { | |
1671 | ret = cleared; | |
0b919fae | 1672 | goto fail; |
621f0589 KW |
1673 | } |
1674 | ||
d2cb36af EB |
1675 | nb_clusters -= cleared; |
1676 | offset += (cleared * s->cluster_size); | |
621f0589 KW |
1677 | } |
1678 | ||
0b919fae KW |
1679 | ret = 0; |
1680 | fail: | |
1681 | s->cache_discards = false; | |
1682 | qcow2_process_discards(bs, ret); | |
1683 | ||
1684 | return ret; | |
621f0589 | 1685 | } |
32b6444d HR |
1686 | |
1687 | /* | |
1688 | * Expands all zero clusters in a specific L1 table (or deallocates them, for | |
1689 | * non-backed non-pre-allocated zero clusters). | |
1690 | * | |
4057a2b2 HR |
1691 | * l1_entries and *visited_l1_entries are used to keep track of progress for |
1692 | * status_cb(). l1_entries contains the total number of L1 entries and | |
1693 | * *visited_l1_entries counts all visited L1 entries. | |
32b6444d HR |
1694 | */ |
1695 | static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, | |
ecf58777 | 1696 | int l1_size, int64_t *visited_l1_entries, |
4057a2b2 | 1697 | int64_t l1_entries, |
8b13976d HR |
1698 | BlockDriverAmendStatusCB *status_cb, |
1699 | void *cb_opaque) | |
32b6444d | 1700 | { |
ff99129a | 1701 | BDRVQcow2State *s = bs->opaque; |
32b6444d HR |
1702 | bool is_active_l1 = (l1_table == s->l1_table); |
1703 | uint64_t *l2_table = NULL; | |
1704 | int ret; | |
1705 | int i, j; | |
1706 | ||
1707 | if (!is_active_l1) { | |
1708 | /* inactive L2 tables require a buffer to be stored in when loading | |
1709 | * them from disk */ | |
9a4f4c31 | 1710 | l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); |
de82815d KW |
1711 | if (l2_table == NULL) { |
1712 | return -ENOMEM; | |
1713 | } | |
32b6444d HR |
1714 | } |
1715 | ||
1716 | for (i = 0; i < l1_size; i++) { | |
1717 | uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; | |
1718 | bool l2_dirty = false; | |
0e06528e | 1719 | uint64_t l2_refcount; |
32b6444d HR |
1720 | |
1721 | if (!l2_offset) { | |
1722 | /* unallocated */ | |
4057a2b2 HR |
1723 | (*visited_l1_entries)++; |
1724 | if (status_cb) { | |
8b13976d | 1725 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1726 | } |
32b6444d HR |
1727 | continue; |
1728 | } | |
1729 | ||
8dd93d93 HR |
1730 | if (offset_into_cluster(s, l2_offset)) { |
1731 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" | |
1732 | PRIx64 " unaligned (L1 index: %#x)", | |
1733 | l2_offset, i); | |
1734 | ret = -EIO; | |
1735 | goto fail; | |
1736 | } | |
1737 | ||
32b6444d HR |
1738 | if (is_active_l1) { |
1739 | /* get active L2 tables from cache */ | |
1740 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, | |
1741 | (void **)&l2_table); | |
1742 | } else { | |
1743 | /* load inactive L2 tables from disk */ | |
fbcbbf4e | 1744 | ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, |
9a4f4c31 | 1745 | (void *)l2_table, s->cluster_sectors); |
32b6444d HR |
1746 | } |
1747 | if (ret < 0) { | |
1748 | goto fail; | |
1749 | } | |
1750 | ||
7324c10f HR |
1751 | ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, |
1752 | &l2_refcount); | |
1753 | if (ret < 0) { | |
ecf58777 HR |
1754 | goto fail; |
1755 | } | |
1756 | ||
32b6444d HR |
1757 | for (j = 0; j < s->l2_size; j++) { |
1758 | uint64_t l2_entry = be64_to_cpu(l2_table[j]); | |
ecf58777 | 1759 | int64_t offset = l2_entry & L2E_OFFSET_MASK; |
3ef95218 | 1760 | QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry); |
32b6444d | 1761 | |
fdfab37d EB |
1762 | if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && |
1763 | cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { | |
32b6444d HR |
1764 | continue; |
1765 | } | |
1766 | ||
fdfab37d | 1767 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
760e0063 | 1768 | if (!bs->backing) { |
32b6444d HR |
1769 | /* not backed; therefore we can simply deallocate the |
1770 | * cluster */ | |
1771 | l2_table[j] = 0; | |
1772 | l2_dirty = true; | |
1773 | continue; | |
1774 | } | |
1775 | ||
1776 | offset = qcow2_alloc_clusters(bs, s->cluster_size); | |
1777 | if (offset < 0) { | |
1778 | ret = offset; | |
1779 | goto fail; | |
1780 | } | |
ecf58777 HR |
1781 | |
1782 | if (l2_refcount > 1) { | |
1783 | /* For shared L2 tables, set the refcount accordingly (it is | |
1784 | * already 1 and needs to be l2_refcount) */ | |
1785 | ret = qcow2_update_cluster_refcount(bs, | |
2aabe7c7 HR |
1786 | offset >> s->cluster_bits, |
1787 | refcount_diff(1, l2_refcount), false, | |
ecf58777 HR |
1788 | QCOW2_DISCARD_OTHER); |
1789 | if (ret < 0) { | |
1790 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1791 | QCOW2_DISCARD_OTHER); | |
1792 | goto fail; | |
1793 | } | |
1794 | } | |
32b6444d HR |
1795 | } |
1796 | ||
8dd93d93 | 1797 | if (offset_into_cluster(s, offset)) { |
bcb07dba EB |
1798 | qcow2_signal_corruption(bs, true, -1, -1, |
1799 | "Cluster allocation offset " | |
8dd93d93 HR |
1800 | "%#" PRIx64 " unaligned (L2 offset: %#" |
1801 | PRIx64 ", L2 index: %#x)", offset, | |
1802 | l2_offset, j); | |
fdfab37d | 1803 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
8dd93d93 HR |
1804 | qcow2_free_clusters(bs, offset, s->cluster_size, |
1805 | QCOW2_DISCARD_ALWAYS); | |
1806 | } | |
1807 | ret = -EIO; | |
1808 | goto fail; | |
1809 | } | |
1810 | ||
231bb267 | 1811 | ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); |
32b6444d | 1812 | if (ret < 0) { |
fdfab37d | 1813 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
320c7066 HR |
1814 | qcow2_free_clusters(bs, offset, s->cluster_size, |
1815 | QCOW2_DISCARD_ALWAYS); | |
1816 | } | |
32b6444d HR |
1817 | goto fail; |
1818 | } | |
1819 | ||
720ff280 | 1820 | ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0); |
32b6444d | 1821 | if (ret < 0) { |
fdfab37d | 1822 | if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { |
320c7066 HR |
1823 | qcow2_free_clusters(bs, offset, s->cluster_size, |
1824 | QCOW2_DISCARD_ALWAYS); | |
1825 | } | |
32b6444d HR |
1826 | goto fail; |
1827 | } | |
1828 | ||
ecf58777 HR |
1829 | if (l2_refcount == 1) { |
1830 | l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); | |
1831 | } else { | |
1832 | l2_table[j] = cpu_to_be64(offset); | |
e390cf5a | 1833 | } |
ecf58777 | 1834 | l2_dirty = true; |
32b6444d HR |
1835 | } |
1836 | ||
1837 | if (is_active_l1) { | |
1838 | if (l2_dirty) { | |
72e80b89 | 1839 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
32b6444d HR |
1840 | qcow2_cache_depends_on_flush(s->l2_table_cache); |
1841 | } | |
a3f1afb4 | 1842 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1843 | } else { |
1844 | if (l2_dirty) { | |
231bb267 HR |
1845 | ret = qcow2_pre_write_overlap_check(bs, |
1846 | QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, | |
32b6444d HR |
1847 | s->cluster_size); |
1848 | if (ret < 0) { | |
1849 | goto fail; | |
1850 | } | |
1851 | ||
18d51c4b | 1852 | ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, |
9a4f4c31 | 1853 | (void *)l2_table, s->cluster_sectors); |
32b6444d HR |
1854 | if (ret < 0) { |
1855 | goto fail; | |
1856 | } | |
1857 | } | |
1858 | } | |
4057a2b2 HR |
1859 | |
1860 | (*visited_l1_entries)++; | |
1861 | if (status_cb) { | |
8b13976d | 1862 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1863 | } |
32b6444d HR |
1864 | } |
1865 | ||
1866 | ret = 0; | |
1867 | ||
1868 | fail: | |
1869 | if (l2_table) { | |
1870 | if (!is_active_l1) { | |
1871 | qemu_vfree(l2_table); | |
1872 | } else { | |
a3f1afb4 | 1873 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1874 | } |
1875 | } | |
1876 | return ret; | |
1877 | } | |
1878 | ||
1879 | /* | |
1880 | * For backed images, expands all zero clusters on the image. For non-backed | |
1881 | * images, deallocates all non-pre-allocated zero clusters (and claims the | |
1882 | * allocation for pre-allocated ones). This is important for downgrading to a | |
1883 | * qcow2 version which doesn't yet support metadata zero clusters. | |
1884 | */ | |
4057a2b2 | 1885 | int qcow2_expand_zero_clusters(BlockDriverState *bs, |
8b13976d HR |
1886 | BlockDriverAmendStatusCB *status_cb, |
1887 | void *cb_opaque) | |
32b6444d | 1888 | { |
ff99129a | 1889 | BDRVQcow2State *s = bs->opaque; |
32b6444d | 1890 | uint64_t *l1_table = NULL; |
4057a2b2 | 1891 | int64_t l1_entries = 0, visited_l1_entries = 0; |
32b6444d HR |
1892 | int ret; |
1893 | int i, j; | |
1894 | ||
4057a2b2 HR |
1895 | if (status_cb) { |
1896 | l1_entries = s->l1_size; | |
1897 | for (i = 0; i < s->nb_snapshots; i++) { | |
1898 | l1_entries += s->snapshots[i].l1_size; | |
1899 | } | |
1900 | } | |
1901 | ||
32b6444d | 1902 | ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, |
4057a2b2 | 1903 | &visited_l1_entries, l1_entries, |
8b13976d | 1904 | status_cb, cb_opaque); |
32b6444d HR |
1905 | if (ret < 0) { |
1906 | goto fail; | |
1907 | } | |
1908 | ||
1909 | /* Inactive L1 tables may point to active L2 tables - therefore it is | |
1910 | * necessary to flush the L2 table cache before trying to access the L2 | |
1911 | * tables pointed to by inactive L1 entries (else we might try to expand | |
1912 | * zero clusters that have already been expanded); furthermore, it is also | |
1913 | * necessary to empty the L2 table cache, since it may contain tables which | |
1914 | * are now going to be modified directly on disk, bypassing the cache. | |
1915 | * qcow2_cache_empty() does both for us. */ | |
1916 | ret = qcow2_cache_empty(bs, s->l2_table_cache); | |
1917 | if (ret < 0) { | |
1918 | goto fail; | |
1919 | } | |
1920 | ||
1921 | for (i = 0; i < s->nb_snapshots; i++) { | |
d737b78c LV |
1922 | int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size * |
1923 | sizeof(uint64_t), BDRV_SECTOR_SIZE); | |
32b6444d HR |
1924 | |
1925 | l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); | |
1926 | ||
fbcbbf4e | 1927 | ret = bdrv_read(bs->file, |
9a4f4c31 KW |
1928 | s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, |
1929 | (void *)l1_table, l1_sectors); | |
32b6444d HR |
1930 | if (ret < 0) { |
1931 | goto fail; | |
1932 | } | |
1933 | ||
1934 | for (j = 0; j < s->snapshots[i].l1_size; j++) { | |
1935 | be64_to_cpus(&l1_table[j]); | |
1936 | } | |
1937 | ||
1938 | ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, | |
4057a2b2 | 1939 | &visited_l1_entries, l1_entries, |
8b13976d | 1940 | status_cb, cb_opaque); |
32b6444d HR |
1941 | if (ret < 0) { |
1942 | goto fail; | |
1943 | } | |
1944 | } | |
1945 | ||
1946 | ret = 0; | |
1947 | ||
1948 | fail: | |
32b6444d HR |
1949 | g_free(l1_table); |
1950 | return ret; | |
1951 | } |