2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/bitops.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
81 __u32 provided, calculated;
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !ext4_has_metadata_csum(inode->i_sb))
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
96 return provided == calculated;
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !ext4_has_metadata_csum(inode->i_sb))
109 csum = ext4_inode_csum(inode, raw, ei);
110 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
111 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
112 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
113 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 trace_ext4_begin_ordered_truncate(inode, new_size);
121 * If jinode is zero, then we never opened the file for
122 * writing, so there's no need to call
123 * jbd2_journal_begin_ordered_truncate() since there's no
124 * outstanding writes we need to flush.
126 if (!EXT4_I(inode)->jinode)
128 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
129 EXT4_I(inode)->jinode,
133 static void ext4_invalidatepage(struct page *page, unsigned int offset,
134 unsigned int length);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 * Test whether an inode is a fast symlink.
143 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 int ea_blocks = EXT4_I(inode)->i_file_acl ?
146 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148 if (ext4_has_inline_data(inode))
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
181 * Called at the last iput() if i_nlink is zero.
183 void ext4_evict_inode(struct inode *inode)
188 trace_ext4_evict_inode(inode);
190 if (inode->i_nlink) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215 jbd2_complete_transaction(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
218 truncate_inode_pages_final(&inode->i_data);
220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224 if (is_bad_inode(inode))
226 dquot_initialize(inode);
228 if (ext4_should_order_data(inode))
229 ext4_begin_ordered_truncate(inode, 0);
230 truncate_inode_pages_final(&inode->i_data);
232 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
254 ext4_handle_sync(handle);
256 err = ext4_mark_inode_dirty(handle, inode);
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
263 ext4_truncate(inode);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
274 err = ext4_journal_restart(handle, 3);
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 return &EXT4_I(inode)->i_reserved_quota;
324 * Called with i_data_sem down, which is important since we can call
325 * ext4_discard_preallocations() from here.
327 void ext4_da_update_reserve_space(struct inode *inode,
328 int used, int quota_claim)
330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331 struct ext4_inode_info *ei = EXT4_I(inode);
333 spin_lock(&ei->i_block_reservation_lock);
334 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
335 if (unlikely(used > ei->i_reserved_data_blocks)) {
336 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
337 "with only %d reserved data blocks",
338 __func__, inode->i_ino, used,
339 ei->i_reserved_data_blocks);
341 used = ei->i_reserved_data_blocks;
344 /* Update per-inode reservations */
345 ei->i_reserved_data_blocks -= used;
346 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350 /* Update quota subsystem for data blocks */
352 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 * We did fallocate with an offset that is already delayed
356 * allocated. So on delayed allocated writeback we should
357 * not re-claim the quota for fallocated blocks.
359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
363 * If we have done all the pending block allocations and if
364 * there aren't any writers on the inode, we can discard the
365 * inode's preallocations.
367 if ((ei->i_reserved_data_blocks == 0) &&
368 (atomic_read(&inode->i_writecount) == 0))
369 ext4_discard_preallocations(inode);
372 static int __check_block_validity(struct inode *inode, const char *func,
374 struct ext4_map_blocks *map)
376 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 ext4_error_inode(inode, func, line, map->m_pblk,
379 "lblock %lu mapped to illegal pblock "
380 "(length %d)", (unsigned long) map->m_lblk,
387 #define check_block_validity(inode, map) \
388 __check_block_validity((inode), __func__, __LINE__, (map))
390 #ifdef ES_AGGRESSIVE_TEST
391 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct ext4_map_blocks *es_map,
394 struct ext4_map_blocks *map,
401 * There is a race window that the result is not the same.
402 * e.g. xfstests #223 when dioread_nolock enables. The reason
403 * is that we lookup a block mapping in extent status tree with
404 * out taking i_data_sem. So at the time the unwritten extent
405 * could be converted.
407 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
408 down_read(&EXT4_I(inode)->i_data_sem);
409 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
410 retval = ext4_ext_map_blocks(handle, inode, map, flags &
411 EXT4_GET_BLOCKS_KEEP_SIZE);
413 retval = ext4_ind_map_blocks(handle, inode, map, flags &
414 EXT4_GET_BLOCKS_KEEP_SIZE);
416 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
417 up_read((&EXT4_I(inode)->i_data_sem));
420 * We don't check m_len because extent will be collpased in status
421 * tree. So the m_len might not equal.
423 if (es_map->m_lblk != map->m_lblk ||
424 es_map->m_flags != map->m_flags ||
425 es_map->m_pblk != map->m_pblk) {
426 printk("ES cache assertion failed for inode: %lu "
427 "es_cached ex [%d/%d/%llu/%x] != "
428 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
429 inode->i_ino, es_map->m_lblk, es_map->m_len,
430 es_map->m_pblk, es_map->m_flags, map->m_lblk,
431 map->m_len, map->m_pblk, map->m_flags,
435 #endif /* ES_AGGRESSIVE_TEST */
438 * The ext4_map_blocks() function tries to look up the requested blocks,
439 * and returns if the blocks are already mapped.
441 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
442 * and store the allocated blocks in the result buffer head and mark it
445 * If file type is extents based, it will call ext4_ext_map_blocks(),
446 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
449 * On success, it returns the number of blocks being mapped or allocated.
450 * if create==0 and the blocks are pre-allocated and unwritten block,
451 * the result buffer head is unmapped. If the create ==1, it will make sure
452 * the buffer head is mapped.
454 * It returns 0 if plain look up failed (blocks have not been allocated), in
455 * that case, buffer head is unmapped
457 * It returns the error in case of allocation failure.
459 int ext4_map_blocks(handle_t *handle, struct inode *inode,
460 struct ext4_map_blocks *map, int flags)
462 struct extent_status es;
465 #ifdef ES_AGGRESSIVE_TEST
466 struct ext4_map_blocks orig_map;
468 memcpy(&orig_map, map, sizeof(*map));
472 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
473 "logical block %lu\n", inode->i_ino, flags, map->m_len,
474 (unsigned long) map->m_lblk);
477 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 if (unlikely(map->m_len > INT_MAX))
480 map->m_len = INT_MAX;
482 /* We can handle the block number less than EXT_MAX_BLOCKS */
483 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
486 /* Lookup extent status tree firstly */
487 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
488 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
489 map->m_pblk = ext4_es_pblock(&es) +
490 map->m_lblk - es.es_lblk;
491 map->m_flags |= ext4_es_is_written(&es) ?
492 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
493 retval = es.es_len - (map->m_lblk - es.es_lblk);
494 if (retval > map->m_len)
497 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
502 #ifdef ES_AGGRESSIVE_TEST
503 ext4_map_blocks_es_recheck(handle, inode, map,
510 * Try to see if we can get the block without requesting a new
513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 down_read(&EXT4_I(inode)->i_data_sem);
515 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 retval = ext4_ext_map_blocks(handle, inode, map, flags &
517 EXT4_GET_BLOCKS_KEEP_SIZE);
519 retval = ext4_ind_map_blocks(handle, inode, map, flags &
520 EXT4_GET_BLOCKS_KEEP_SIZE);
525 if (unlikely(retval != map->m_len)) {
526 ext4_warning(inode->i_sb,
527 "ES len assertion failed for inode "
528 "%lu: retval %d != map->m_len %d",
529 inode->i_ino, retval, map->m_len);
533 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
534 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
535 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 ret = check_block_validity(inode, map);
554 /* If it is only a block(s) look up */
555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
559 * Returns if the blocks have already allocated
561 * Note that if blocks have been preallocated
562 * ext4_ext_get_block() returns the create = 0
563 * with buffer head unmapped.
565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
578 map->m_flags &= ~EXT4_MAP_FLAGS;
581 * New blocks allocate and/or writing to unwritten extent
582 * will possibly result in updating i_data, so we take
583 * the write lock of i_data_sem, and call get_block()
584 * with create == 1 flag.
586 down_write(&EXT4_I(inode)->i_data_sem);
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 ext4_da_update_reserve_space(inode, retval, 1);
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
650 up_write((&EXT4_I(inode)->i_data_sem));
651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 ret = check_block_validity(inode, map);
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661 struct inode *inode = bh->b_assoc_map->host;
662 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
667 WARN_ON(!buffer_unwritten(bh));
668 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675 struct buffer_head *bh, int flags)
677 handle_t *handle = ext4_journal_current_handle();
678 struct ext4_map_blocks map;
679 int ret = 0, started = 0;
682 if (ext4_has_inline_data(inode))
686 map.m_len = bh->b_size >> inode->i_blkbits;
688 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689 /* Direct IO write... */
690 if (map.m_len > DIO_MAX_BLOCKS)
691 map.m_len = DIO_MAX_BLOCKS;
692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695 if (IS_ERR(handle)) {
696 ret = PTR_ERR(handle);
702 ret = ext4_map_blocks(handle, inode, &map, flags);
704 ext4_io_end_t *io_end = ext4_inode_aio(inode);
706 map_bh(bh, inode->i_sb, map.m_pblk);
707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709 bh->b_assoc_map = inode->i_mapping;
710 bh->b_private = (void *)(unsigned long)iblock;
711 bh->b_end_io = ext4_end_io_unwritten;
713 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714 set_buffer_defer_completion(bh);
715 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
719 ext4_journal_stop(handle);
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724 struct buffer_head *bh, int create)
726 return _ext4_get_block(inode, iblock, bh,
727 create ? EXT4_GET_BLOCKS_CREATE : 0);
731 * `handle' can be NULL if create is zero
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734 ext4_lblk_t block, int create)
736 struct ext4_map_blocks map;
737 struct buffer_head *bh;
740 J_ASSERT(handle != NULL || create == 0);
744 err = ext4_map_blocks(handle, inode, &map,
745 create ? EXT4_GET_BLOCKS_CREATE : 0);
748 return create ? ERR_PTR(-ENOSPC) : NULL;
752 bh = sb_getblk(inode->i_sb, map.m_pblk);
754 return ERR_PTR(-ENOMEM);
755 if (map.m_flags & EXT4_MAP_NEW) {
756 J_ASSERT(create != 0);
757 J_ASSERT(handle != NULL);
760 * Now that we do not always journal data, we should
761 * keep in mind whether this should always journal the
762 * new buffer as metadata. For now, regular file
763 * writes use ext4_get_block instead, so it's not a
767 BUFFER_TRACE(bh, "call get_create_access");
768 err = ext4_journal_get_create_access(handle, bh);
773 if (!buffer_uptodate(bh)) {
774 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775 set_buffer_uptodate(bh);
778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779 err = ext4_handle_dirty_metadata(handle, inode, bh);
783 BUFFER_TRACE(bh, "not a new buffer");
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791 ext4_lblk_t block, int create)
793 struct buffer_head *bh;
795 bh = ext4_getblk(handle, inode, block, create);
798 if (!bh || buffer_uptodate(bh))
800 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
802 if (buffer_uptodate(bh))
805 return ERR_PTR(-EIO);
808 int ext4_walk_page_buffers(handle_t *handle,
809 struct buffer_head *head,
813 int (*fn)(handle_t *handle,
814 struct buffer_head *bh))
816 struct buffer_head *bh;
817 unsigned block_start, block_end;
818 unsigned blocksize = head->b_size;
820 struct buffer_head *next;
822 for (bh = head, block_start = 0;
823 ret == 0 && (bh != head || !block_start);
824 block_start = block_end, bh = next) {
825 next = bh->b_this_page;
826 block_end = block_start + blocksize;
827 if (block_end <= from || block_start >= to) {
828 if (partial && !buffer_uptodate(bh))
832 err = (*fn)(handle, bh);
840 * To preserve ordering, it is essential that the hole instantiation and
841 * the data write be encapsulated in a single transaction. We cannot
842 * close off a transaction and start a new one between the ext4_get_block()
843 * and the commit_write(). So doing the jbd2_journal_start at the start of
844 * prepare_write() is the right place.
846 * Also, this function can nest inside ext4_writepage(). In that case, we
847 * *know* that ext4_writepage() has generated enough buffer credits to do the
848 * whole page. So we won't block on the journal in that case, which is good,
849 * because the caller may be PF_MEMALLOC.
851 * By accident, ext4 can be reentered when a transaction is open via
852 * quota file writes. If we were to commit the transaction while thus
853 * reentered, there can be a deadlock - we would be holding a quota
854 * lock, and the commit would never complete if another thread had a
855 * transaction open and was blocking on the quota lock - a ranking
858 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859 * will _not_ run commit under these circumstances because handle->h_ref
860 * is elevated. We'll still have enough credits for the tiny quotafile
863 int do_journal_get_write_access(handle_t *handle,
864 struct buffer_head *bh)
866 int dirty = buffer_dirty(bh);
869 if (!buffer_mapped(bh) || buffer_freed(bh))
872 * __block_write_begin() could have dirtied some buffers. Clean
873 * the dirty bit as jbd2_journal_get_write_access() could complain
874 * otherwise about fs integrity issues. Setting of the dirty bit
875 * by __block_write_begin() isn't a real problem here as we clear
876 * the bit before releasing a page lock and thus writeback cannot
877 * ever write the buffer.
880 clear_buffer_dirty(bh);
881 BUFFER_TRACE(bh, "get write access");
882 ret = ext4_journal_get_write_access(handle, bh);
884 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889 struct buffer_head *bh_result, int create);
890 static int ext4_write_begin(struct file *file, struct address_space *mapping,
891 loff_t pos, unsigned len, unsigned flags,
892 struct page **pagep, void **fsdata)
894 struct inode *inode = mapping->host;
895 int ret, needed_blocks;
902 trace_ext4_write_begin(inode, pos, len, flags);
904 * Reserve one block more for addition to orphan list in case
905 * we allocate blocks but write fails for some reason
907 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
908 index = pos >> PAGE_CACHE_SHIFT;
909 from = pos & (PAGE_CACHE_SIZE - 1);
912 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
913 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
922 * grab_cache_page_write_begin() can take a long time if the
923 * system is thrashing due to memory pressure, or if the page
924 * is being written back. So grab it first before we start
925 * the transaction handle. This also allows us to allocate
926 * the page (if needed) without using GFP_NOFS.
929 page = grab_cache_page_write_begin(mapping, index, flags);
935 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
936 if (IS_ERR(handle)) {
937 page_cache_release(page);
938 return PTR_ERR(handle);
942 if (page->mapping != mapping) {
943 /* The page got truncated from under us */
945 page_cache_release(page);
946 ext4_journal_stop(handle);
949 /* In case writeback began while the page was unlocked */
950 wait_for_stable_page(page);
952 if (ext4_should_dioread_nolock(inode))
953 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
955 ret = __block_write_begin(page, pos, len, ext4_get_block);
957 if (!ret && ext4_should_journal_data(inode)) {
958 ret = ext4_walk_page_buffers(handle, page_buffers(page),
960 do_journal_get_write_access);
966 * __block_write_begin may have instantiated a few blocks
967 * outside i_size. Trim these off again. Don't need
968 * i_size_read because we hold i_mutex.
970 * Add inode to orphan list in case we crash before
973 if (pos + len > inode->i_size && ext4_can_truncate(inode))
974 ext4_orphan_add(handle, inode);
976 ext4_journal_stop(handle);
977 if (pos + len > inode->i_size) {
978 ext4_truncate_failed_write(inode);
980 * If truncate failed early the inode might
981 * still be on the orphan list; we need to
982 * make sure the inode is removed from the
983 * orphan list in that case.
986 ext4_orphan_del(NULL, inode);
989 if (ret == -ENOSPC &&
990 ext4_should_retry_alloc(inode->i_sb, &retries))
992 page_cache_release(page);
999 /* For write_end() in data=journal mode */
1000 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1003 if (!buffer_mapped(bh) || buffer_freed(bh))
1005 set_buffer_uptodate(bh);
1006 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1007 clear_buffer_meta(bh);
1008 clear_buffer_prio(bh);
1013 * We need to pick up the new inode size which generic_commit_write gave us
1014 * `file' can be NULL - eg, when called from page_symlink().
1016 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1017 * buffers are managed internally.
1019 static int ext4_write_end(struct file *file,
1020 struct address_space *mapping,
1021 loff_t pos, unsigned len, unsigned copied,
1022 struct page *page, void *fsdata)
1024 handle_t *handle = ext4_journal_current_handle();
1025 struct inode *inode = mapping->host;
1026 loff_t old_size = inode->i_size;
1028 int i_size_changed = 0;
1030 trace_ext4_write_end(inode, pos, len, copied);
1031 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1032 ret = ext4_jbd2_file_inode(handle, inode);
1035 page_cache_release(page);
1040 if (ext4_has_inline_data(inode)) {
1041 ret = ext4_write_inline_data_end(inode, pos, len,
1047 copied = block_write_end(file, mapping, pos,
1048 len, copied, page, fsdata);
1050 * it's important to update i_size while still holding page lock:
1051 * page writeout could otherwise come in and zero beyond i_size.
1053 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1055 page_cache_release(page);
1058 pagecache_isize_extended(inode, old_size, pos);
1060 * Don't mark the inode dirty under page lock. First, it unnecessarily
1061 * makes the holding time of page lock longer. Second, it forces lock
1062 * ordering of page lock and transaction start for journaling
1066 ext4_mark_inode_dirty(handle, inode);
1068 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1069 /* if we have allocated more blocks and copied
1070 * less. We will have blocks allocated outside
1071 * inode->i_size. So truncate them
1073 ext4_orphan_add(handle, inode);
1075 ret2 = ext4_journal_stop(handle);
1079 if (pos + len > inode->i_size) {
1080 ext4_truncate_failed_write(inode);
1082 * If truncate failed early the inode might still be
1083 * on the orphan list; we need to make sure the inode
1084 * is removed from the orphan list in that case.
1087 ext4_orphan_del(NULL, inode);
1090 return ret ? ret : copied;
1093 static int ext4_journalled_write_end(struct file *file,
1094 struct address_space *mapping,
1095 loff_t pos, unsigned len, unsigned copied,
1096 struct page *page, void *fsdata)
1098 handle_t *handle = ext4_journal_current_handle();
1099 struct inode *inode = mapping->host;
1100 loff_t old_size = inode->i_size;
1104 int size_changed = 0;
1106 trace_ext4_journalled_write_end(inode, pos, len, copied);
1107 from = pos & (PAGE_CACHE_SIZE - 1);
1110 BUG_ON(!ext4_handle_valid(handle));
1112 if (ext4_has_inline_data(inode))
1113 copied = ext4_write_inline_data_end(inode, pos, len,
1117 if (!PageUptodate(page))
1119 page_zero_new_buffers(page, from+copied, to);
1122 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1123 to, &partial, write_end_fn);
1125 SetPageUptodate(page);
1127 size_changed = ext4_update_inode_size(inode, pos + copied);
1128 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1129 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131 page_cache_release(page);
1134 pagecache_isize_extended(inode, old_size, pos);
1137 ret2 = ext4_mark_inode_dirty(handle, inode);
1142 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1143 /* if we have allocated more blocks and copied
1144 * less. We will have blocks allocated outside
1145 * inode->i_size. So truncate them
1147 ext4_orphan_add(handle, inode);
1149 ret2 = ext4_journal_stop(handle);
1152 if (pos + len > inode->i_size) {
1153 ext4_truncate_failed_write(inode);
1155 * If truncate failed early the inode might still be
1156 * on the orphan list; we need to make sure the inode
1157 * is removed from the orphan list in that case.
1160 ext4_orphan_del(NULL, inode);
1163 return ret ? ret : copied;
1167 * Reserve a single cluster located at lblock
1169 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1171 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1172 struct ext4_inode_info *ei = EXT4_I(inode);
1173 unsigned int md_needed;
1177 * We will charge metadata quota at writeout time; this saves
1178 * us from metadata over-estimation, though we may go over by
1179 * a small amount in the end. Here we just reserve for data.
1181 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1186 * recalculate the amount of metadata blocks to reserve
1187 * in order to allocate nrblocks
1188 * worse case is one extent per block
1190 spin_lock(&ei->i_block_reservation_lock);
1192 * ext4_calc_metadata_amount() has side effects, which we have
1193 * to be prepared undo if we fail to claim space.
1196 trace_ext4_da_reserve_space(inode, 0);
1198 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1199 spin_unlock(&ei->i_block_reservation_lock);
1200 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1203 ei->i_reserved_data_blocks++;
1204 spin_unlock(&ei->i_block_reservation_lock);
1206 return 0; /* success */
1209 static void ext4_da_release_space(struct inode *inode, int to_free)
1211 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1212 struct ext4_inode_info *ei = EXT4_I(inode);
1215 return; /* Nothing to release, exit */
1217 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1219 trace_ext4_da_release_space(inode, to_free);
1220 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1222 * if there aren't enough reserved blocks, then the
1223 * counter is messed up somewhere. Since this
1224 * function is called from invalidate page, it's
1225 * harmless to return without any action.
1227 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1228 "ino %lu, to_free %d with only %d reserved "
1229 "data blocks", inode->i_ino, to_free,
1230 ei->i_reserved_data_blocks);
1232 to_free = ei->i_reserved_data_blocks;
1234 ei->i_reserved_data_blocks -= to_free;
1236 /* update fs dirty data blocks counter */
1237 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1239 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1241 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1244 static void ext4_da_page_release_reservation(struct page *page,
1245 unsigned int offset,
1246 unsigned int length)
1249 struct buffer_head *head, *bh;
1250 unsigned int curr_off = 0;
1251 struct inode *inode = page->mapping->host;
1252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253 unsigned int stop = offset + length;
1257 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1259 head = page_buffers(page);
1262 unsigned int next_off = curr_off + bh->b_size;
1264 if (next_off > stop)
1267 if ((offset <= curr_off) && (buffer_delay(bh))) {
1269 clear_buffer_delay(bh);
1271 curr_off = next_off;
1272 } while ((bh = bh->b_this_page) != head);
1275 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1276 ext4_es_remove_extent(inode, lblk, to_release);
1279 /* If we have released all the blocks belonging to a cluster, then we
1280 * need to release the reserved space for that cluster. */
1281 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1282 while (num_clusters > 0) {
1283 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1284 ((num_clusters - 1) << sbi->s_cluster_bits);
1285 if (sbi->s_cluster_ratio == 1 ||
1286 !ext4_find_delalloc_cluster(inode, lblk))
1287 ext4_da_release_space(inode, 1);
1294 * Delayed allocation stuff
1297 struct mpage_da_data {
1298 struct inode *inode;
1299 struct writeback_control *wbc;
1301 pgoff_t first_page; /* The first page to write */
1302 pgoff_t next_page; /* Current page to examine */
1303 pgoff_t last_page; /* Last page to examine */
1305 * Extent to map - this can be after first_page because that can be
1306 * fully mapped. We somewhat abuse m_flags to store whether the extent
1307 * is delalloc or unwritten.
1309 struct ext4_map_blocks map;
1310 struct ext4_io_submit io_submit; /* IO submission data */
1313 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1318 struct pagevec pvec;
1319 struct inode *inode = mpd->inode;
1320 struct address_space *mapping = inode->i_mapping;
1322 /* This is necessary when next_page == 0. */
1323 if (mpd->first_page >= mpd->next_page)
1326 index = mpd->first_page;
1327 end = mpd->next_page - 1;
1329 ext4_lblk_t start, last;
1330 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1331 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332 ext4_es_remove_extent(inode, start, last - start + 1);
1335 pagevec_init(&pvec, 0);
1336 while (index <= end) {
1337 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1340 for (i = 0; i < nr_pages; i++) {
1341 struct page *page = pvec.pages[i];
1342 if (page->index > end)
1344 BUG_ON(!PageLocked(page));
1345 BUG_ON(PageWriteback(page));
1347 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1348 ClearPageUptodate(page);
1352 index = pvec.pages[nr_pages - 1]->index + 1;
1353 pagevec_release(&pvec);
1357 static void ext4_print_free_blocks(struct inode *inode)
1359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1360 struct super_block *sb = inode->i_sb;
1361 struct ext4_inode_info *ei = EXT4_I(inode);
1363 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1364 EXT4_C2B(EXT4_SB(inode->i_sb),
1365 ext4_count_free_clusters(sb)));
1366 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1367 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1368 (long long) EXT4_C2B(EXT4_SB(sb),
1369 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1370 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1371 (long long) EXT4_C2B(EXT4_SB(sb),
1372 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1373 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1374 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1375 ei->i_reserved_data_blocks);
1379 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1381 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1385 * This function is grabs code from the very beginning of
1386 * ext4_map_blocks, but assumes that the caller is from delayed write
1387 * time. This function looks up the requested blocks and sets the
1388 * buffer delay bit under the protection of i_data_sem.
1390 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1391 struct ext4_map_blocks *map,
1392 struct buffer_head *bh)
1394 struct extent_status es;
1396 sector_t invalid_block = ~((sector_t) 0xffff);
1397 #ifdef ES_AGGRESSIVE_TEST
1398 struct ext4_map_blocks orig_map;
1400 memcpy(&orig_map, map, sizeof(*map));
1403 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1407 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1408 "logical block %lu\n", inode->i_ino, map->m_len,
1409 (unsigned long) map->m_lblk);
1411 /* Lookup extent status tree firstly */
1412 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1413 if (ext4_es_is_hole(&es)) {
1415 down_read(&EXT4_I(inode)->i_data_sem);
1420 * Delayed extent could be allocated by fallocate.
1421 * So we need to check it.
1423 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1424 map_bh(bh, inode->i_sb, invalid_block);
1426 set_buffer_delay(bh);
1430 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1431 retval = es.es_len - (iblock - es.es_lblk);
1432 if (retval > map->m_len)
1433 retval = map->m_len;
1434 map->m_len = retval;
1435 if (ext4_es_is_written(&es))
1436 map->m_flags |= EXT4_MAP_MAPPED;
1437 else if (ext4_es_is_unwritten(&es))
1438 map->m_flags |= EXT4_MAP_UNWRITTEN;
1442 #ifdef ES_AGGRESSIVE_TEST
1443 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1449 * Try to see if we can get the block without requesting a new
1450 * file system block.
1452 down_read(&EXT4_I(inode)->i_data_sem);
1453 if (ext4_has_inline_data(inode))
1455 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1456 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1458 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1464 * XXX: __block_prepare_write() unmaps passed block,
1468 * If the block was allocated from previously allocated cluster,
1469 * then we don't need to reserve it again. However we still need
1470 * to reserve metadata for every block we're going to write.
1472 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1473 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1474 ret = ext4_da_reserve_space(inode, iblock);
1476 /* not enough space to reserve */
1482 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1483 ~0, EXTENT_STATUS_DELAYED);
1489 map_bh(bh, inode->i_sb, invalid_block);
1491 set_buffer_delay(bh);
1492 } else if (retval > 0) {
1494 unsigned int status;
1496 if (unlikely(retval != map->m_len)) {
1497 ext4_warning(inode->i_sb,
1498 "ES len assertion failed for inode "
1499 "%lu: retval %d != map->m_len %d",
1500 inode->i_ino, retval, map->m_len);
1504 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1505 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1506 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1507 map->m_pblk, status);
1513 up_read((&EXT4_I(inode)->i_data_sem));
1519 * This is a special get_block_t callback which is used by
1520 * ext4_da_write_begin(). It will either return mapped block or
1521 * reserve space for a single block.
1523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524 * We also have b_blocknr = -1 and b_bdev initialized properly
1526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528 * initialized properly.
1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1531 struct buffer_head *bh, int create)
1533 struct ext4_map_blocks map;
1536 BUG_ON(create == 0);
1537 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1539 map.m_lblk = iblock;
1543 * first, we need to know whether the block is allocated already
1544 * preallocated blocks are unmapped but should treated
1545 * the same as allocated blocks.
1547 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1551 map_bh(bh, inode->i_sb, map.m_pblk);
1552 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1554 if (buffer_unwritten(bh)) {
1555 /* A delayed write to unwritten bh should be marked
1556 * new and mapped. Mapped ensures that we don't do
1557 * get_block multiple times when we write to the same
1558 * offset and new ensures that we do proper zero out
1559 * for partial write.
1562 set_buffer_mapped(bh);
1567 static int bget_one(handle_t *handle, struct buffer_head *bh)
1573 static int bput_one(handle_t *handle, struct buffer_head *bh)
1579 static int __ext4_journalled_writepage(struct page *page,
1582 struct address_space *mapping = page->mapping;
1583 struct inode *inode = mapping->host;
1584 struct buffer_head *page_bufs = NULL;
1585 handle_t *handle = NULL;
1586 int ret = 0, err = 0;
1587 int inline_data = ext4_has_inline_data(inode);
1588 struct buffer_head *inode_bh = NULL;
1590 ClearPageChecked(page);
1593 BUG_ON(page->index != 0);
1594 BUG_ON(len > ext4_get_max_inline_size(inode));
1595 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1596 if (inode_bh == NULL)
1599 page_bufs = page_buffers(page);
1604 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1607 /* As soon as we unlock the page, it can go away, but we have
1608 * references to buffers so we are safe */
1611 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1612 ext4_writepage_trans_blocks(inode));
1613 if (IS_ERR(handle)) {
1614 ret = PTR_ERR(handle);
1618 BUG_ON(!ext4_handle_valid(handle));
1621 BUFFER_TRACE(inode_bh, "get write access");
1622 ret = ext4_journal_get_write_access(handle, inode_bh);
1624 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1627 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1628 do_journal_get_write_access);
1630 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1635 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1636 err = ext4_journal_stop(handle);
1640 if (!ext4_has_inline_data(inode))
1641 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1643 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1650 * Note that we don't need to start a transaction unless we're journaling data
1651 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652 * need to file the inode to the transaction's list in ordered mode because if
1653 * we are writing back data added by write(), the inode is already there and if
1654 * we are writing back data modified via mmap(), no one guarantees in which
1655 * transaction the data will hit the disk. In case we are journaling data, we
1656 * cannot start transaction directly because transaction start ranks above page
1657 * lock so we have to do some magic.
1659 * This function can get called via...
1660 * - ext4_writepages after taking page lock (have journal handle)
1661 * - journal_submit_inode_data_buffers (no journal handle)
1662 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663 * - grab_page_cache when doing write_begin (have journal handle)
1665 * We don't do any block allocation in this function. If we have page with
1666 * multiple blocks we need to write those buffer_heads that are mapped. This
1667 * is important for mmaped based write. So if we do with blocksize 1K
1668 * truncate(f, 1024);
1669 * a = mmap(f, 0, 4096);
1671 * truncate(f, 4096);
1672 * we have in the page first buffer_head mapped via page_mkwrite call back
1673 * but other buffer_heads would be unmapped but dirty (dirty done via the
1674 * do_wp_page). So writepage should write the first block. If we modify
1675 * the mmap area beyond 1024 we will again get a page_fault and the
1676 * page_mkwrite callback will do the block allocation and mark the
1677 * buffer_heads mapped.
1679 * We redirty the page if we have any buffer_heads that is either delay or
1680 * unwritten in the page.
1682 * We can get recursively called as show below.
1684 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1687 * But since we don't do any block allocation we should not deadlock.
1688 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1690 static int ext4_writepage(struct page *page,
1691 struct writeback_control *wbc)
1696 struct buffer_head *page_bufs = NULL;
1697 struct inode *inode = page->mapping->host;
1698 struct ext4_io_submit io_submit;
1699 bool keep_towrite = false;
1701 trace_ext4_writepage(page);
1702 size = i_size_read(inode);
1703 if (page->index == size >> PAGE_CACHE_SHIFT)
1704 len = size & ~PAGE_CACHE_MASK;
1706 len = PAGE_CACHE_SIZE;
1708 page_bufs = page_buffers(page);
1710 * We cannot do block allocation or other extent handling in this
1711 * function. If there are buffers needing that, we have to redirty
1712 * the page. But we may reach here when we do a journal commit via
1713 * journal_submit_inode_data_buffers() and in that case we must write
1714 * allocated buffers to achieve data=ordered mode guarantees.
1716 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1717 ext4_bh_delay_or_unwritten)) {
1718 redirty_page_for_writepage(wbc, page);
1719 if (current->flags & PF_MEMALLOC) {
1721 * For memory cleaning there's no point in writing only
1722 * some buffers. So just bail out. Warn if we came here
1723 * from direct reclaim.
1725 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1730 keep_towrite = true;
1733 if (PageChecked(page) && ext4_should_journal_data(inode))
1735 * It's mmapped pagecache. Add buffers and journal it. There
1736 * doesn't seem much point in redirtying the page here.
1738 return __ext4_journalled_writepage(page, len);
1740 ext4_io_submit_init(&io_submit, wbc);
1741 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1742 if (!io_submit.io_end) {
1743 redirty_page_for_writepage(wbc, page);
1747 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1748 ext4_io_submit(&io_submit);
1749 /* Drop io_end reference we got from init */
1750 ext4_put_io_end_defer(io_submit.io_end);
1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1757 loff_t size = i_size_read(mpd->inode);
1760 BUG_ON(page->index != mpd->first_page);
1761 if (page->index == size >> PAGE_CACHE_SHIFT)
1762 len = size & ~PAGE_CACHE_MASK;
1764 len = PAGE_CACHE_SIZE;
1765 clear_page_dirty_for_io(page);
1766 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1768 mpd->wbc->nr_to_write--;
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1777 * mballoc gives us at most this number of blocks...
1778 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779 * The rest of mballoc seems to handle chunks up to full group size.
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1784 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1786 * @mpd - extent of blocks
1787 * @lblk - logical number of the block in the file
1788 * @bh - buffer head we want to add to the extent
1790 * The function is used to collect contig. blocks in the same state. If the
1791 * buffer doesn't require mapping for writeback and we haven't started the
1792 * extent of buffers to map yet, the function returns 'true' immediately - the
1793 * caller can write the buffer right away. Otherwise the function returns true
1794 * if the block has been added to the extent, false if the block couldn't be
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1798 struct buffer_head *bh)
1800 struct ext4_map_blocks *map = &mpd->map;
1802 /* Buffer that doesn't need mapping for writeback? */
1803 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1804 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1805 /* So far no extent to map => we write the buffer right away */
1806 if (map->m_len == 0)
1811 /* First block in the extent? */
1812 if (map->m_len == 0) {
1815 map->m_flags = bh->b_state & BH_FLAGS;
1819 /* Don't go larger than mballoc is willing to allocate */
1820 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1823 /* Can we merge the block to our big extent? */
1824 if (lblk == map->m_lblk + map->m_len &&
1825 (bh->b_state & BH_FLAGS) == map->m_flags) {
1833 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1835 * @mpd - extent of blocks for mapping
1836 * @head - the first buffer in the page
1837 * @bh - buffer we should start processing from
1838 * @lblk - logical number of the block in the file corresponding to @bh
1840 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841 * the page for IO if all buffers in this page were mapped and there's no
1842 * accumulated extent of buffers to map or add buffers in the page to the
1843 * extent of buffers to map. The function returns 1 if the caller can continue
1844 * by processing the next page, 0 if it should stop adding buffers to the
1845 * extent to map because we cannot extend it anymore. It can also return value
1846 * < 0 in case of error during IO submission.
1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1849 struct buffer_head *head,
1850 struct buffer_head *bh,
1853 struct inode *inode = mpd->inode;
1855 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1856 >> inode->i_blkbits;
1859 BUG_ON(buffer_locked(bh));
1861 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1862 /* Found extent to map? */
1865 /* Everything mapped so far and we hit EOF */
1868 } while (lblk++, (bh = bh->b_this_page) != head);
1869 /* So far everything mapped? Submit the page for IO. */
1870 if (mpd->map.m_len == 0) {
1871 err = mpage_submit_page(mpd, head->b_page);
1875 return lblk < blocks;
1879 * mpage_map_buffers - update buffers corresponding to changed extent and
1880 * submit fully mapped pages for IO
1882 * @mpd - description of extent to map, on return next extent to map
1884 * Scan buffers corresponding to changed extent (we expect corresponding pages
1885 * to be already locked) and update buffer state according to new extent state.
1886 * We map delalloc buffers to their physical location, clear unwritten bits,
1887 * and mark buffers as uninit when we perform writes to unwritten extents
1888 * and do extent conversion after IO is finished. If the last page is not fully
1889 * mapped, we update @map to the next extent in the last page that needs
1890 * mapping. Otherwise we submit the page for IO.
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1894 struct pagevec pvec;
1896 struct inode *inode = mpd->inode;
1897 struct buffer_head *head, *bh;
1898 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1904 start = mpd->map.m_lblk >> bpp_bits;
1905 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1906 lblk = start << bpp_bits;
1907 pblock = mpd->map.m_pblk;
1909 pagevec_init(&pvec, 0);
1910 while (start <= end) {
1911 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1918 if (page->index > end)
1920 /* Up to 'end' pages must be contiguous */
1921 BUG_ON(page->index != start);
1922 bh = head = page_buffers(page);
1924 if (lblk < mpd->map.m_lblk)
1926 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1928 * Buffer after end of mapped extent.
1929 * Find next buffer in the page to map.
1932 mpd->map.m_flags = 0;
1934 * FIXME: If dioread_nolock supports
1935 * blocksize < pagesize, we need to make
1936 * sure we add size mapped so far to
1937 * io_end->size as the following call
1938 * can submit the page for IO.
1940 err = mpage_process_page_bufs(mpd, head,
1942 pagevec_release(&pvec);
1947 if (buffer_delay(bh)) {
1948 clear_buffer_delay(bh);
1949 bh->b_blocknr = pblock++;
1951 clear_buffer_unwritten(bh);
1952 } while (lblk++, (bh = bh->b_this_page) != head);
1955 * FIXME: This is going to break if dioread_nolock
1956 * supports blocksize < pagesize as we will try to
1957 * convert potentially unmapped parts of inode.
1959 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1960 /* Page fully mapped - let IO run! */
1961 err = mpage_submit_page(mpd, page);
1963 pagevec_release(&pvec);
1968 pagevec_release(&pvec);
1970 /* Extent fully mapped and matches with page boundary. We are done. */
1972 mpd->map.m_flags = 0;
1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1978 struct inode *inode = mpd->inode;
1979 struct ext4_map_blocks *map = &mpd->map;
1980 int get_blocks_flags;
1981 int err, dioread_nolock;
1983 trace_ext4_da_write_pages_extent(inode, map);
1985 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986 * to convert an unwritten extent to be initialized (in the case
1987 * where we have written into one or more preallocated blocks). It is
1988 * possible that we're going to need more metadata blocks than
1989 * previously reserved. However we must not fail because we're in
1990 * writeback and there is nothing we can do about it so it might result
1991 * in data loss. So use reserved blocks to allocate metadata if
1994 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995 * the blocks in question are delalloc blocks. This indicates
1996 * that the blocks and quotas has already been checked when
1997 * the data was copied into the page cache.
1999 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2000 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2001 dioread_nolock = ext4_should_dioread_nolock(inode);
2003 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2004 if (map->m_flags & (1 << BH_Delay))
2005 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2007 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2010 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2011 if (!mpd->io_submit.io_end->handle &&
2012 ext4_handle_valid(handle)) {
2013 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2014 handle->h_rsv_handle = NULL;
2016 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2019 BUG_ON(map->m_len == 0);
2020 if (map->m_flags & EXT4_MAP_NEW) {
2021 struct block_device *bdev = inode->i_sb->s_bdev;
2024 for (i = 0; i < map->m_len; i++)
2025 unmap_underlying_metadata(bdev, map->m_pblk + i);
2031 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032 * mpd->len and submit pages underlying it for IO
2034 * @handle - handle for journal operations
2035 * @mpd - extent to map
2036 * @give_up_on_write - we set this to true iff there is a fatal error and there
2037 * is no hope of writing the data. The caller should discard
2038 * dirty pages to avoid infinite loops.
2040 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042 * them to initialized or split the described range from larger unwritten
2043 * extent. Note that we need not map all the described range since allocation
2044 * can return less blocks or the range is covered by more unwritten extents. We
2045 * cannot map more because we are limited by reserved transaction credits. On
2046 * the other hand we always make sure that the last touched page is fully
2047 * mapped so that it can be written out (and thus forward progress is
2048 * guaranteed). After mapping we submit all mapped pages for IO.
2050 static int mpage_map_and_submit_extent(handle_t *handle,
2051 struct mpage_da_data *mpd,
2052 bool *give_up_on_write)
2054 struct inode *inode = mpd->inode;
2055 struct ext4_map_blocks *map = &mpd->map;
2060 mpd->io_submit.io_end->offset =
2061 ((loff_t)map->m_lblk) << inode->i_blkbits;
2063 err = mpage_map_one_extent(handle, mpd);
2065 struct super_block *sb = inode->i_sb;
2067 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2068 goto invalidate_dirty_pages;
2070 * Let the uper layers retry transient errors.
2071 * In the case of ENOSPC, if ext4_count_free_blocks()
2072 * is non-zero, a commit should free up blocks.
2074 if ((err == -ENOMEM) ||
2075 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2077 goto update_disksize;
2080 ext4_msg(sb, KERN_CRIT,
2081 "Delayed block allocation failed for "
2082 "inode %lu at logical offset %llu with"
2083 " max blocks %u with error %d",
2085 (unsigned long long)map->m_lblk,
2086 (unsigned)map->m_len, -err);
2087 ext4_msg(sb, KERN_CRIT,
2088 "This should not happen!! Data will "
2091 ext4_print_free_blocks(inode);
2092 invalidate_dirty_pages:
2093 *give_up_on_write = true;
2098 * Update buffer state, submit mapped pages, and get us new
2101 err = mpage_map_and_submit_buffers(mpd);
2103 goto update_disksize;
2104 } while (map->m_len);
2108 * Update on-disk size after IO is submitted. Races with
2109 * truncate are avoided by checking i_size under i_data_sem.
2111 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2112 if (disksize > EXT4_I(inode)->i_disksize) {
2116 down_write(&EXT4_I(inode)->i_data_sem);
2117 i_size = i_size_read(inode);
2118 if (disksize > i_size)
2120 if (disksize > EXT4_I(inode)->i_disksize)
2121 EXT4_I(inode)->i_disksize = disksize;
2122 err2 = ext4_mark_inode_dirty(handle, inode);
2123 up_write(&EXT4_I(inode)->i_data_sem);
2125 ext4_error(inode->i_sb,
2126 "Failed to mark inode %lu dirty",
2135 * Calculate the total number of credits to reserve for one writepages
2136 * iteration. This is called from ext4_writepages(). We map an extent of
2137 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139 * bpp - 1 blocks in bpp different extents.
2141 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2143 int bpp = ext4_journal_blocks_per_page(inode);
2145 return ext4_meta_trans_blocks(inode,
2146 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2150 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151 * and underlying extent to map
2153 * @mpd - where to look for pages
2155 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156 * IO immediately. When we find a page which isn't mapped we start accumulating
2157 * extent of buffers underlying these pages that needs mapping (formed by
2158 * either delayed or unwritten buffers). We also lock the pages containing
2159 * these buffers. The extent found is returned in @mpd structure (starting at
2160 * mpd->lblk with length mpd->len blocks).
2162 * Note that this function can attach bios to one io_end structure which are
2163 * neither logically nor physically contiguous. Although it may seem as an
2164 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165 * case as we need to track IO to all buffers underlying a page in one io_end.
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2169 struct address_space *mapping = mpd->inode->i_mapping;
2170 struct pagevec pvec;
2171 unsigned int nr_pages;
2172 long left = mpd->wbc->nr_to_write;
2173 pgoff_t index = mpd->first_page;
2174 pgoff_t end = mpd->last_page;
2177 int blkbits = mpd->inode->i_blkbits;
2179 struct buffer_head *head;
2181 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2182 tag = PAGECACHE_TAG_TOWRITE;
2184 tag = PAGECACHE_TAG_DIRTY;
2186 pagevec_init(&pvec, 0);
2188 mpd->next_page = index;
2189 while (index <= end) {
2190 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2195 for (i = 0; i < nr_pages; i++) {
2196 struct page *page = pvec.pages[i];
2199 * At this point, the page may be truncated or
2200 * invalidated (changing page->mapping to NULL), or
2201 * even swizzled back from swapper_space to tmpfs file
2202 * mapping. However, page->index will not change
2203 * because we have a reference on the page.
2205 if (page->index > end)
2209 * Accumulated enough dirty pages? This doesn't apply
2210 * to WB_SYNC_ALL mode. For integrity sync we have to
2211 * keep going because someone may be concurrently
2212 * dirtying pages, and we might have synced a lot of
2213 * newly appeared dirty pages, but have not synced all
2214 * of the old dirty pages.
2216 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2219 /* If we can't merge this page, we are done. */
2220 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2225 * If the page is no longer dirty, or its mapping no
2226 * longer corresponds to inode we are writing (which
2227 * means it has been truncated or invalidated), or the
2228 * page is already under writeback and we are not doing
2229 * a data integrity writeback, skip the page
2231 if (!PageDirty(page) ||
2232 (PageWriteback(page) &&
2233 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2234 unlikely(page->mapping != mapping)) {
2239 wait_on_page_writeback(page);
2240 BUG_ON(PageWriteback(page));
2242 if (mpd->map.m_len == 0)
2243 mpd->first_page = page->index;
2244 mpd->next_page = page->index + 1;
2245 /* Add all dirty buffers to mpd */
2246 lblk = ((ext4_lblk_t)page->index) <<
2247 (PAGE_CACHE_SHIFT - blkbits);
2248 head = page_buffers(page);
2249 err = mpage_process_page_bufs(mpd, head, head, lblk);
2255 pagevec_release(&pvec);
2260 pagevec_release(&pvec);
2264 static int __writepage(struct page *page, struct writeback_control *wbc,
2267 struct address_space *mapping = data;
2268 int ret = ext4_writepage(page, wbc);
2269 mapping_set_error(mapping, ret);
2273 static int ext4_writepages(struct address_space *mapping,
2274 struct writeback_control *wbc)
2276 pgoff_t writeback_index = 0;
2277 long nr_to_write = wbc->nr_to_write;
2278 int range_whole = 0;
2280 handle_t *handle = NULL;
2281 struct mpage_da_data mpd;
2282 struct inode *inode = mapping->host;
2283 int needed_blocks, rsv_blocks = 0, ret = 0;
2284 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2286 struct blk_plug plug;
2287 bool give_up_on_write = false;
2289 trace_ext4_writepages(inode, wbc);
2292 * No pages to write? This is mainly a kludge to avoid starting
2293 * a transaction for special inodes like journal inode on last iput()
2294 * because that could violate lock ordering on umount
2296 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2297 goto out_writepages;
2299 if (ext4_should_journal_data(inode)) {
2300 struct blk_plug plug;
2302 blk_start_plug(&plug);
2303 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2304 blk_finish_plug(&plug);
2305 goto out_writepages;
2309 * If the filesystem has aborted, it is read-only, so return
2310 * right away instead of dumping stack traces later on that
2311 * will obscure the real source of the problem. We test
2312 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313 * the latter could be true if the filesystem is mounted
2314 * read-only, and in that case, ext4_writepages should
2315 * *never* be called, so if that ever happens, we would want
2318 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2320 goto out_writepages;
2323 if (ext4_should_dioread_nolock(inode)) {
2325 * We may need to convert up to one extent per block in
2326 * the page and we may dirty the inode.
2328 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2332 * If we have inline data and arrive here, it means that
2333 * we will soon create the block for the 1st page, so
2334 * we'd better clear the inline data here.
2336 if (ext4_has_inline_data(inode)) {
2337 /* Just inode will be modified... */
2338 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2339 if (IS_ERR(handle)) {
2340 ret = PTR_ERR(handle);
2341 goto out_writepages;
2343 BUG_ON(ext4_test_inode_state(inode,
2344 EXT4_STATE_MAY_INLINE_DATA));
2345 ext4_destroy_inline_data(handle, inode);
2346 ext4_journal_stop(handle);
2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2352 if (wbc->range_cyclic) {
2353 writeback_index = mapping->writeback_index;
2354 if (writeback_index)
2356 mpd.first_page = writeback_index;
2359 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2360 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2365 ext4_io_submit_init(&mpd.io_submit, wbc);
2367 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2368 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2370 blk_start_plug(&plug);
2371 while (!done && mpd.first_page <= mpd.last_page) {
2372 /* For each extent of pages we use new io_end */
2373 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2374 if (!mpd.io_submit.io_end) {
2380 * We have two constraints: We find one extent to map and we
2381 * must always write out whole page (makes a difference when
2382 * blocksize < pagesize) so that we don't block on IO when we
2383 * try to write out the rest of the page. Journalled mode is
2384 * not supported by delalloc.
2386 BUG_ON(ext4_should_journal_data(inode));
2387 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2389 /* start a new transaction */
2390 handle = ext4_journal_start_with_reserve(inode,
2391 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2392 if (IS_ERR(handle)) {
2393 ret = PTR_ERR(handle);
2394 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2395 "%ld pages, ino %lu; err %d", __func__,
2396 wbc->nr_to_write, inode->i_ino, ret);
2397 /* Release allocated io_end */
2398 ext4_put_io_end(mpd.io_submit.io_end);
2402 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2403 ret = mpage_prepare_extent_to_map(&mpd);
2406 ret = mpage_map_and_submit_extent(handle, &mpd,
2410 * We scanned the whole range (or exhausted
2411 * nr_to_write), submitted what was mapped and
2412 * didn't find anything needing mapping. We are
2418 ext4_journal_stop(handle);
2419 /* Submit prepared bio */
2420 ext4_io_submit(&mpd.io_submit);
2421 /* Unlock pages we didn't use */
2422 mpage_release_unused_pages(&mpd, give_up_on_write);
2423 /* Drop our io_end reference we got from init */
2424 ext4_put_io_end(mpd.io_submit.io_end);
2426 if (ret == -ENOSPC && sbi->s_journal) {
2428 * Commit the transaction which would
2429 * free blocks released in the transaction
2432 jbd2_journal_force_commit_nested(sbi->s_journal);
2436 /* Fatal error - ENOMEM, EIO... */
2440 blk_finish_plug(&plug);
2441 if (!ret && !cycled && wbc->nr_to_write > 0) {
2443 mpd.last_page = writeback_index - 1;
2449 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2451 * Set the writeback_index so that range_cyclic
2452 * mode will write it back later
2454 mapping->writeback_index = mpd.first_page;
2457 trace_ext4_writepages_result(inode, wbc, ret,
2458 nr_to_write - wbc->nr_to_write);
2462 static int ext4_nonda_switch(struct super_block *sb)
2464 s64 free_clusters, dirty_clusters;
2465 struct ext4_sb_info *sbi = EXT4_SB(sb);
2468 * switch to non delalloc mode if we are running low
2469 * on free block. The free block accounting via percpu
2470 * counters can get slightly wrong with percpu_counter_batch getting
2471 * accumulated on each CPU without updating global counters
2472 * Delalloc need an accurate free block accounting. So switch
2473 * to non delalloc when we are near to error range.
2476 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2478 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2480 * Start pushing delalloc when 1/2 of free blocks are dirty.
2482 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2483 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2485 if (2 * free_clusters < 3 * dirty_clusters ||
2486 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2488 * free block count is less than 150% of dirty blocks
2489 * or free blocks is less than watermark
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2499 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2500 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2503 if (pos + len <= 0x7fffffffULL)
2506 /* We might need to update the superblock to set LARGE_FILE */
2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2511 loff_t pos, unsigned len, unsigned flags,
2512 struct page **pagep, void **fsdata)
2514 int ret, retries = 0;
2517 struct inode *inode = mapping->host;
2520 index = pos >> PAGE_CACHE_SHIFT;
2522 if (ext4_nonda_switch(inode->i_sb)) {
2523 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2524 return ext4_write_begin(file, mapping, pos,
2525 len, flags, pagep, fsdata);
2527 *fsdata = (void *)0;
2528 trace_ext4_da_write_begin(inode, pos, len, flags);
2530 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2531 ret = ext4_da_write_inline_data_begin(mapping, inode,
2541 * grab_cache_page_write_begin() can take a long time if the
2542 * system is thrashing due to memory pressure, or if the page
2543 * is being written back. So grab it first before we start
2544 * the transaction handle. This also allows us to allocate
2545 * the page (if needed) without using GFP_NOFS.
2548 page = grab_cache_page_write_begin(mapping, index, flags);
2554 * With delayed allocation, we don't log the i_disksize update
2555 * if there is delayed block allocation. But we still need
2556 * to journalling the i_disksize update if writes to the end
2557 * of file which has an already mapped buffer.
2560 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2561 ext4_da_write_credits(inode, pos, len));
2562 if (IS_ERR(handle)) {
2563 page_cache_release(page);
2564 return PTR_ERR(handle);
2568 if (page->mapping != mapping) {
2569 /* The page got truncated from under us */
2571 page_cache_release(page);
2572 ext4_journal_stop(handle);
2575 /* In case writeback began while the page was unlocked */
2576 wait_for_stable_page(page);
2578 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2581 ext4_journal_stop(handle);
2583 * block_write_begin may have instantiated a few blocks
2584 * outside i_size. Trim these off again. Don't need
2585 * i_size_read because we hold i_mutex.
2587 if (pos + len > inode->i_size)
2588 ext4_truncate_failed_write(inode);
2590 if (ret == -ENOSPC &&
2591 ext4_should_retry_alloc(inode->i_sb, &retries))
2594 page_cache_release(page);
2603 * Check if we should update i_disksize
2604 * when write to the end of file but not require block allocation
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607 unsigned long offset)
2609 struct buffer_head *bh;
2610 struct inode *inode = page->mapping->host;
2614 bh = page_buffers(page);
2615 idx = offset >> inode->i_blkbits;
2617 for (i = 0; i < idx; i++)
2618 bh = bh->b_this_page;
2620 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2625 static int ext4_da_write_end(struct file *file,
2626 struct address_space *mapping,
2627 loff_t pos, unsigned len, unsigned copied,
2628 struct page *page, void *fsdata)
2630 struct inode *inode = mapping->host;
2632 handle_t *handle = ext4_journal_current_handle();
2634 unsigned long start, end;
2635 int write_mode = (int)(unsigned long)fsdata;
2637 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638 return ext4_write_end(file, mapping, pos,
2639 len, copied, page, fsdata);
2641 trace_ext4_da_write_end(inode, pos, len, copied);
2642 start = pos & (PAGE_CACHE_SIZE - 1);
2643 end = start + copied - 1;
2646 * generic_write_end() will run mark_inode_dirty() if i_size
2647 * changes. So let's piggyback the i_disksize mark_inode_dirty
2650 new_i_size = pos + copied;
2651 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652 if (ext4_has_inline_data(inode) ||
2653 ext4_da_should_update_i_disksize(page, end)) {
2654 ext4_update_i_disksize(inode, new_i_size);
2655 /* We need to mark inode dirty even if
2656 * new_i_size is less that inode->i_size
2657 * bu greater than i_disksize.(hint delalloc)
2659 ext4_mark_inode_dirty(handle, inode);
2663 if (write_mode != CONVERT_INLINE_DATA &&
2664 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665 ext4_has_inline_data(inode))
2666 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2669 ret2 = generic_write_end(file, mapping, pos, len, copied,
2675 ret2 = ext4_journal_stop(handle);
2679 return ret ? ret : copied;
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683 unsigned int length)
2686 * Drop reserved blocks
2688 BUG_ON(!PageLocked(page));
2689 if (!page_has_buffers(page))
2692 ext4_da_page_release_reservation(page, offset, length);
2695 ext4_invalidatepage(page, offset, length);
2701 * Force all delayed allocation blocks to be allocated for a given inode.
2703 int ext4_alloc_da_blocks(struct inode *inode)
2705 trace_ext4_alloc_da_blocks(inode);
2707 if (!EXT4_I(inode)->i_reserved_data_blocks)
2711 * We do something simple for now. The filemap_flush() will
2712 * also start triggering a write of the data blocks, which is
2713 * not strictly speaking necessary (and for users of
2714 * laptop_mode, not even desirable). However, to do otherwise
2715 * would require replicating code paths in:
2717 * ext4_writepages() ->
2718 * write_cache_pages() ---> (via passed in callback function)
2719 * __mpage_da_writepage() -->
2720 * mpage_add_bh_to_extent()
2721 * mpage_da_map_blocks()
2723 * The problem is that write_cache_pages(), located in
2724 * mm/page-writeback.c, marks pages clean in preparation for
2725 * doing I/O, which is not desirable if we're not planning on
2728 * We could call write_cache_pages(), and then redirty all of
2729 * the pages by calling redirty_page_for_writepage() but that
2730 * would be ugly in the extreme. So instead we would need to
2731 * replicate parts of the code in the above functions,
2732 * simplifying them because we wouldn't actually intend to
2733 * write out the pages, but rather only collect contiguous
2734 * logical block extents, call the multi-block allocator, and
2735 * then update the buffer heads with the block allocations.
2737 * For now, though, we'll cheat by calling filemap_flush(),
2738 * which will map the blocks, and start the I/O, but not
2739 * actually wait for the I/O to complete.
2741 return filemap_flush(inode->i_mapping);
2745 * bmap() is special. It gets used by applications such as lilo and by
2746 * the swapper to find the on-disk block of a specific piece of data.
2748 * Naturally, this is dangerous if the block concerned is still in the
2749 * journal. If somebody makes a swapfile on an ext4 data-journaling
2750 * filesystem and enables swap, then they may get a nasty shock when the
2751 * data getting swapped to that swapfile suddenly gets overwritten by
2752 * the original zero's written out previously to the journal and
2753 * awaiting writeback in the kernel's buffer cache.
2755 * So, if we see any bmap calls here on a modified, data-journaled file,
2756 * take extra steps to flush any blocks which might be in the cache.
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2760 struct inode *inode = mapping->host;
2765 * We can get here for an inline file via the FIBMAP ioctl
2767 if (ext4_has_inline_data(inode))
2770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771 test_opt(inode->i_sb, DELALLOC)) {
2773 * With delalloc we want to sync the file
2774 * so that we can make sure we allocate
2777 filemap_write_and_wait(mapping);
2780 if (EXT4_JOURNAL(inode) &&
2781 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2783 * This is a REALLY heavyweight approach, but the use of
2784 * bmap on dirty files is expected to be extremely rare:
2785 * only if we run lilo or swapon on a freshly made file
2786 * do we expect this to happen.
2788 * (bmap requires CAP_SYS_RAWIO so this does not
2789 * represent an unprivileged user DOS attack --- we'd be
2790 * in trouble if mortal users could trigger this path at
2793 * NB. EXT4_STATE_JDATA is not set on files other than
2794 * regular files. If somebody wants to bmap a directory
2795 * or symlink and gets confused because the buffer
2796 * hasn't yet been flushed to disk, they deserve
2797 * everything they get.
2800 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801 journal = EXT4_JOURNAL(inode);
2802 jbd2_journal_lock_updates(journal);
2803 err = jbd2_journal_flush(journal);
2804 jbd2_journal_unlock_updates(journal);
2810 return generic_block_bmap(mapping, block, ext4_get_block);
2813 static int ext4_readpage(struct file *file, struct page *page)
2816 struct inode *inode = page->mapping->host;
2818 trace_ext4_readpage(page);
2820 if (ext4_has_inline_data(inode))
2821 ret = ext4_readpage_inline(inode, page);
2824 return mpage_readpage(page, ext4_get_block);
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831 struct list_head *pages, unsigned nr_pages)
2833 struct inode *inode = mapping->host;
2835 /* If the file has inline data, no need to do readpages. */
2836 if (ext4_has_inline_data(inode))
2839 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843 unsigned int length)
2845 trace_ext4_invalidatepage(page, offset, length);
2847 /* No journalling happens on data buffers when this function is used */
2848 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2850 block_invalidatepage(page, offset, length);
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854 unsigned int offset,
2855 unsigned int length)
2857 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2859 trace_ext4_journalled_invalidatepage(page, offset, length);
2862 * If it's a full truncate we just forget about the pending dirtying
2864 if (offset == 0 && length == PAGE_CACHE_SIZE)
2865 ClearPageChecked(page);
2867 return jbd2_journal_invalidatepage(journal, page, offset, length);
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872 unsigned int offset,
2873 unsigned int length)
2875 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2880 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2882 trace_ext4_releasepage(page);
2884 /* Page has dirty journalled data -> cannot release */
2885 if (PageChecked(page))
2888 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2890 return try_to_free_buffers(page);
2894 * ext4_get_block used when preparing for a DIO write or buffer write.
2895 * We allocate an uinitialized extent if blocks haven't been allocated.
2896 * The extent will be converted to initialized after the IO is complete.
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899 struct buffer_head *bh_result, int create)
2901 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902 inode->i_ino, create);
2903 return _ext4_get_block(inode, iblock, bh_result,
2904 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908 struct buffer_head *bh_result, int create)
2910 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911 inode->i_ino, create);
2912 return _ext4_get_block(inode, iblock, bh_result,
2913 EXT4_GET_BLOCKS_NO_LOCK);
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917 ssize_t size, void *private)
2919 ext4_io_end_t *io_end = iocb->private;
2921 /* if not async direct IO just return */
2925 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927 iocb->private, io_end->inode->i_ino, iocb, offset,
2930 iocb->private = NULL;
2931 io_end->offset = offset;
2932 io_end->size = size;
2933 ext4_put_io_end(io_end);
2937 * For ext4 extent files, ext4 will do direct-io write to holes,
2938 * preallocated extents, and those write extend the file, no need to
2939 * fall back to buffered IO.
2941 * For holes, we fallocate those blocks, mark them as unwritten
2942 * If those blocks were preallocated, we mark sure they are split, but
2943 * still keep the range to write as unwritten.
2945 * The unwritten extents will be converted to written when DIO is completed.
2946 * For async direct IO, since the IO may still pending when return, we
2947 * set up an end_io call back function, which will do the conversion
2948 * when async direct IO completed.
2950 * If the O_DIRECT write will extend the file then add this inode to the
2951 * orphan list. So recovery will truncate it back to the original size
2952 * if the machine crashes during the write.
2955 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
2958 struct file *file = iocb->ki_filp;
2959 struct inode *inode = file->f_mapping->host;
2961 size_t count = iov_iter_count(iter);
2963 get_block_t *get_block_func = NULL;
2965 loff_t final_size = offset + count;
2966 ext4_io_end_t *io_end = NULL;
2968 /* Use the old path for reads and writes beyond i_size. */
2969 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
2970 return ext4_ind_direct_IO(iocb, iter, offset);
2972 BUG_ON(iocb->private == NULL);
2975 * Make all waiters for direct IO properly wait also for extent
2976 * conversion. This also disallows race between truncate() and
2977 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2979 if (iov_iter_rw(iter) == WRITE)
2980 inode_dio_begin(inode);
2982 /* If we do a overwrite dio, i_mutex locking can be released */
2983 overwrite = *((int *)iocb->private);
2986 down_read(&EXT4_I(inode)->i_data_sem);
2987 mutex_unlock(&inode->i_mutex);
2991 * We could direct write to holes and fallocate.
2993 * Allocated blocks to fill the hole are marked as
2994 * unwritten to prevent parallel buffered read to expose
2995 * the stale data before DIO complete the data IO.
2997 * As to previously fallocated extents, ext4 get_block will
2998 * just simply mark the buffer mapped but still keep the
2999 * extents unwritten.
3001 * For non AIO case, we will convert those unwritten extents
3002 * to written after return back from blockdev_direct_IO.
3004 * For async DIO, the conversion needs to be deferred when the
3005 * IO is completed. The ext4 end_io callback function will be
3006 * called to take care of the conversion work. Here for async
3007 * case, we allocate an io_end structure to hook to the iocb.
3009 iocb->private = NULL;
3010 ext4_inode_aio_set(inode, NULL);
3011 if (!is_sync_kiocb(iocb)) {
3012 io_end = ext4_init_io_end(inode, GFP_NOFS);
3018 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3020 iocb->private = ext4_get_io_end(io_end);
3022 * we save the io structure for current async direct
3023 * IO, so that later ext4_map_blocks() could flag the
3024 * io structure whether there is a unwritten extents
3025 * needs to be converted when IO is completed.
3027 ext4_inode_aio_set(inode, io_end);
3031 get_block_func = ext4_get_block_write_nolock;
3033 get_block_func = ext4_get_block_write;
3034 dio_flags = DIO_LOCKING;
3037 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3038 ext4_end_io_dio, dio_flags);
3040 ret = __blockdev_direct_IO(iocb, inode,
3041 inode->i_sb->s_bdev, iter, offset,
3043 ext4_end_io_dio, NULL, dio_flags);
3046 * Put our reference to io_end. This can free the io_end structure e.g.
3047 * in sync IO case or in case of error. It can even perform extent
3048 * conversion if all bios we submitted finished before we got here.
3049 * Note that in that case iocb->private can be already set to NULL
3053 ext4_inode_aio_set(inode, NULL);
3054 ext4_put_io_end(io_end);
3056 * When no IO was submitted ext4_end_io_dio() was not
3057 * called so we have to put iocb's reference.
3059 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3060 WARN_ON(iocb->private != io_end);
3061 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3062 ext4_put_io_end(io_end);
3063 iocb->private = NULL;
3066 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3067 EXT4_STATE_DIO_UNWRITTEN)) {
3070 * for non AIO case, since the IO is already
3071 * completed, we could do the conversion right here
3073 err = ext4_convert_unwritten_extents(NULL, inode,
3077 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3081 if (iov_iter_rw(iter) == WRITE)
3082 inode_dio_end(inode);
3083 /* take i_mutex locking again if we do a ovewrite dio */
3085 up_read(&EXT4_I(inode)->i_data_sem);
3086 mutex_lock(&inode->i_mutex);
3092 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3095 struct file *file = iocb->ki_filp;
3096 struct inode *inode = file->f_mapping->host;
3097 size_t count = iov_iter_count(iter);
3101 * If we are doing data journalling we don't support O_DIRECT
3103 if (ext4_should_journal_data(inode))
3106 /* Let buffer I/O handle the inline data case. */
3107 if (ext4_has_inline_data(inode))
3110 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3111 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3112 ret = ext4_ext_direct_IO(iocb, iter, offset);
3114 ret = ext4_ind_direct_IO(iocb, iter, offset);
3115 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3120 * Pages can be marked dirty completely asynchronously from ext4's journalling
3121 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3122 * much here because ->set_page_dirty is called under VFS locks. The page is
3123 * not necessarily locked.
3125 * We cannot just dirty the page and leave attached buffers clean, because the
3126 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3127 * or jbddirty because all the journalling code will explode.
3129 * So what we do is to mark the page "pending dirty" and next time writepage
3130 * is called, propagate that into the buffers appropriately.
3132 static int ext4_journalled_set_page_dirty(struct page *page)
3134 SetPageChecked(page);
3135 return __set_page_dirty_nobuffers(page);
3138 static const struct address_space_operations ext4_aops = {
3139 .readpage = ext4_readpage,
3140 .readpages = ext4_readpages,
3141 .writepage = ext4_writepage,
3142 .writepages = ext4_writepages,
3143 .write_begin = ext4_write_begin,
3144 .write_end = ext4_write_end,
3146 .invalidatepage = ext4_invalidatepage,
3147 .releasepage = ext4_releasepage,
3148 .direct_IO = ext4_direct_IO,
3149 .migratepage = buffer_migrate_page,
3150 .is_partially_uptodate = block_is_partially_uptodate,
3151 .error_remove_page = generic_error_remove_page,
3154 static const struct address_space_operations ext4_journalled_aops = {
3155 .readpage = ext4_readpage,
3156 .readpages = ext4_readpages,
3157 .writepage = ext4_writepage,
3158 .writepages = ext4_writepages,
3159 .write_begin = ext4_write_begin,
3160 .write_end = ext4_journalled_write_end,
3161 .set_page_dirty = ext4_journalled_set_page_dirty,
3163 .invalidatepage = ext4_journalled_invalidatepage,
3164 .releasepage = ext4_releasepage,
3165 .direct_IO = ext4_direct_IO,
3166 .is_partially_uptodate = block_is_partially_uptodate,
3167 .error_remove_page = generic_error_remove_page,
3170 static const struct address_space_operations ext4_da_aops = {
3171 .readpage = ext4_readpage,
3172 .readpages = ext4_readpages,
3173 .writepage = ext4_writepage,
3174 .writepages = ext4_writepages,
3175 .write_begin = ext4_da_write_begin,
3176 .write_end = ext4_da_write_end,
3178 .invalidatepage = ext4_da_invalidatepage,
3179 .releasepage = ext4_releasepage,
3180 .direct_IO = ext4_direct_IO,
3181 .migratepage = buffer_migrate_page,
3182 .is_partially_uptodate = block_is_partially_uptodate,
3183 .error_remove_page = generic_error_remove_page,
3186 void ext4_set_aops(struct inode *inode)
3188 switch (ext4_inode_journal_mode(inode)) {
3189 case EXT4_INODE_ORDERED_DATA_MODE:
3190 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3192 case EXT4_INODE_WRITEBACK_DATA_MODE:
3193 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3195 case EXT4_INODE_JOURNAL_DATA_MODE:
3196 inode->i_mapping->a_ops = &ext4_journalled_aops;
3201 if (test_opt(inode->i_sb, DELALLOC))
3202 inode->i_mapping->a_ops = &ext4_da_aops;
3204 inode->i_mapping->a_ops = &ext4_aops;
3207 static int __ext4_block_zero_page_range(handle_t *handle,
3208 struct address_space *mapping, loff_t from, loff_t length)
3210 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3211 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3212 unsigned blocksize, pos;
3214 struct inode *inode = mapping->host;
3215 struct buffer_head *bh;
3219 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3220 mapping_gfp_mask(mapping) & ~__GFP_FS);
3224 blocksize = inode->i_sb->s_blocksize;
3226 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3228 if (!page_has_buffers(page))
3229 create_empty_buffers(page, blocksize, 0);
3231 /* Find the buffer that contains "offset" */
3232 bh = page_buffers(page);
3234 while (offset >= pos) {
3235 bh = bh->b_this_page;
3239 if (buffer_freed(bh)) {
3240 BUFFER_TRACE(bh, "freed: skip");
3243 if (!buffer_mapped(bh)) {
3244 BUFFER_TRACE(bh, "unmapped");
3245 ext4_get_block(inode, iblock, bh, 0);
3246 /* unmapped? It's a hole - nothing to do */
3247 if (!buffer_mapped(bh)) {
3248 BUFFER_TRACE(bh, "still unmapped");
3253 /* Ok, it's mapped. Make sure it's up-to-date */
3254 if (PageUptodate(page))
3255 set_buffer_uptodate(bh);
3257 if (!buffer_uptodate(bh)) {
3259 ll_rw_block(READ, 1, &bh);
3261 /* Uhhuh. Read error. Complain and punt. */
3262 if (!buffer_uptodate(bh))
3265 if (ext4_should_journal_data(inode)) {
3266 BUFFER_TRACE(bh, "get write access");
3267 err = ext4_journal_get_write_access(handle, bh);
3271 zero_user(page, offset, length);
3272 BUFFER_TRACE(bh, "zeroed end of block");
3274 if (ext4_should_journal_data(inode)) {
3275 err = ext4_handle_dirty_metadata(handle, inode, bh);
3278 mark_buffer_dirty(bh);
3279 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3280 err = ext4_jbd2_file_inode(handle, inode);
3285 page_cache_release(page);
3290 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3291 * starting from file offset 'from'. The range to be zero'd must
3292 * be contained with in one block. If the specified range exceeds
3293 * the end of the block it will be shortened to end of the block
3294 * that cooresponds to 'from'
3296 static int ext4_block_zero_page_range(handle_t *handle,
3297 struct address_space *mapping, loff_t from, loff_t length)
3299 struct inode *inode = mapping->host;
3300 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3301 unsigned blocksize = inode->i_sb->s_blocksize;
3302 unsigned max = blocksize - (offset & (blocksize - 1));
3305 * correct length if it does not fall between
3306 * 'from' and the end of the block
3308 if (length > max || length < 0)
3312 return dax_zero_page_range(inode, from, length, ext4_get_block);
3313 return __ext4_block_zero_page_range(handle, mapping, from, length);
3317 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3318 * up to the end of the block which corresponds to `from'.
3319 * This required during truncate. We need to physically zero the tail end
3320 * of that block so it doesn't yield old data if the file is later grown.
3322 static int ext4_block_truncate_page(handle_t *handle,
3323 struct address_space *mapping, loff_t from)
3325 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3328 struct inode *inode = mapping->host;
3330 blocksize = inode->i_sb->s_blocksize;
3331 length = blocksize - (offset & (blocksize - 1));
3333 return ext4_block_zero_page_range(handle, mapping, from, length);
3336 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3337 loff_t lstart, loff_t length)
3339 struct super_block *sb = inode->i_sb;
3340 struct address_space *mapping = inode->i_mapping;
3341 unsigned partial_start, partial_end;
3342 ext4_fsblk_t start, end;
3343 loff_t byte_end = (lstart + length - 1);
3346 partial_start = lstart & (sb->s_blocksize - 1);
3347 partial_end = byte_end & (sb->s_blocksize - 1);
3349 start = lstart >> sb->s_blocksize_bits;
3350 end = byte_end >> sb->s_blocksize_bits;
3352 /* Handle partial zero within the single block */
3354 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3355 err = ext4_block_zero_page_range(handle, mapping,
3359 /* Handle partial zero out on the start of the range */
3360 if (partial_start) {
3361 err = ext4_block_zero_page_range(handle, mapping,
3362 lstart, sb->s_blocksize);
3366 /* Handle partial zero out on the end of the range */
3367 if (partial_end != sb->s_blocksize - 1)
3368 err = ext4_block_zero_page_range(handle, mapping,
3369 byte_end - partial_end,
3374 int ext4_can_truncate(struct inode *inode)
3376 if (S_ISREG(inode->i_mode))
3378 if (S_ISDIR(inode->i_mode))
3380 if (S_ISLNK(inode->i_mode))
3381 return !ext4_inode_is_fast_symlink(inode);
3386 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3387 * associated with the given offset and length
3389 * @inode: File inode
3390 * @offset: The offset where the hole will begin
3391 * @len: The length of the hole
3393 * Returns: 0 on success or negative on failure
3396 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3398 struct super_block *sb = inode->i_sb;
3399 ext4_lblk_t first_block, stop_block;
3400 struct address_space *mapping = inode->i_mapping;
3401 loff_t first_block_offset, last_block_offset;
3403 unsigned int credits;
3406 if (!S_ISREG(inode->i_mode))
3409 trace_ext4_punch_hole(inode, offset, length, 0);
3412 * Write out all dirty pages to avoid race conditions
3413 * Then release them.
3415 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3416 ret = filemap_write_and_wait_range(mapping, offset,
3417 offset + length - 1);
3422 mutex_lock(&inode->i_mutex);
3424 /* No need to punch hole beyond i_size */
3425 if (offset >= inode->i_size)
3429 * If the hole extends beyond i_size, set the hole
3430 * to end after the page that contains i_size
3432 if (offset + length > inode->i_size) {
3433 length = inode->i_size +
3434 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3438 if (offset & (sb->s_blocksize - 1) ||
3439 (offset + length) & (sb->s_blocksize - 1)) {
3441 * Attach jinode to inode for jbd2 if we do any zeroing of
3444 ret = ext4_inode_attach_jinode(inode);
3450 first_block_offset = round_up(offset, sb->s_blocksize);
3451 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3453 /* Now release the pages and zero block aligned part of pages*/
3454 if (last_block_offset > first_block_offset)
3455 truncate_pagecache_range(inode, first_block_offset,
3458 /* Wait all existing dio workers, newcomers will block on i_mutex */
3459 ext4_inode_block_unlocked_dio(inode);
3460 inode_dio_wait(inode);
3462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3463 credits = ext4_writepage_trans_blocks(inode);
3465 credits = ext4_blocks_for_truncate(inode);
3466 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3467 if (IS_ERR(handle)) {
3468 ret = PTR_ERR(handle);
3469 ext4_std_error(sb, ret);
3473 ret = ext4_zero_partial_blocks(handle, inode, offset,
3478 first_block = (offset + sb->s_blocksize - 1) >>
3479 EXT4_BLOCK_SIZE_BITS(sb);
3480 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3482 /* If there are no blocks to remove, return now */
3483 if (first_block >= stop_block)
3486 down_write(&EXT4_I(inode)->i_data_sem);
3487 ext4_discard_preallocations(inode);
3489 ret = ext4_es_remove_extent(inode, first_block,
3490 stop_block - first_block);
3492 up_write(&EXT4_I(inode)->i_data_sem);
3496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3497 ret = ext4_ext_remove_space(inode, first_block,
3500 ret = ext4_ind_remove_space(handle, inode, first_block,
3503 up_write(&EXT4_I(inode)->i_data_sem);
3505 ext4_handle_sync(handle);
3507 /* Now release the pages again to reduce race window */
3508 if (last_block_offset > first_block_offset)
3509 truncate_pagecache_range(inode, first_block_offset,
3512 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3513 ext4_mark_inode_dirty(handle, inode);
3515 ext4_journal_stop(handle);
3517 ext4_inode_resume_unlocked_dio(inode);
3519 mutex_unlock(&inode->i_mutex);
3523 int ext4_inode_attach_jinode(struct inode *inode)
3525 struct ext4_inode_info *ei = EXT4_I(inode);
3526 struct jbd2_inode *jinode;
3528 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3531 jinode = jbd2_alloc_inode(GFP_KERNEL);
3532 spin_lock(&inode->i_lock);
3535 spin_unlock(&inode->i_lock);
3538 ei->jinode = jinode;
3539 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3542 spin_unlock(&inode->i_lock);
3543 if (unlikely(jinode != NULL))
3544 jbd2_free_inode(jinode);
3551 * We block out ext4_get_block() block instantiations across the entire
3552 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3553 * simultaneously on behalf of the same inode.
3555 * As we work through the truncate and commit bits of it to the journal there
3556 * is one core, guiding principle: the file's tree must always be consistent on
3557 * disk. We must be able to restart the truncate after a crash.
3559 * The file's tree may be transiently inconsistent in memory (although it
3560 * probably isn't), but whenever we close off and commit a journal transaction,
3561 * the contents of (the filesystem + the journal) must be consistent and
3562 * restartable. It's pretty simple, really: bottom up, right to left (although
3563 * left-to-right works OK too).
3565 * Note that at recovery time, journal replay occurs *before* the restart of
3566 * truncate against the orphan inode list.
3568 * The committed inode has the new, desired i_size (which is the same as
3569 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3570 * that this inode's truncate did not complete and it will again call
3571 * ext4_truncate() to have another go. So there will be instantiated blocks
3572 * to the right of the truncation point in a crashed ext4 filesystem. But
3573 * that's fine - as long as they are linked from the inode, the post-crash
3574 * ext4_truncate() run will find them and release them.
3576 void ext4_truncate(struct inode *inode)
3578 struct ext4_inode_info *ei = EXT4_I(inode);
3579 unsigned int credits;
3581 struct address_space *mapping = inode->i_mapping;
3584 * There is a possibility that we're either freeing the inode
3585 * or it's a completely new inode. In those cases we might not
3586 * have i_mutex locked because it's not necessary.
3588 if (!(inode->i_state & (I_NEW|I_FREEING)))
3589 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3590 trace_ext4_truncate_enter(inode);
3592 if (!ext4_can_truncate(inode))
3595 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3597 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3598 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3600 if (ext4_has_inline_data(inode)) {
3603 ext4_inline_data_truncate(inode, &has_inline);
3608 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3609 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3610 if (ext4_inode_attach_jinode(inode) < 0)
3614 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3615 credits = ext4_writepage_trans_blocks(inode);
3617 credits = ext4_blocks_for_truncate(inode);
3619 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3620 if (IS_ERR(handle)) {
3621 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3625 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3626 ext4_block_truncate_page(handle, mapping, inode->i_size);
3629 * We add the inode to the orphan list, so that if this
3630 * truncate spans multiple transactions, and we crash, we will
3631 * resume the truncate when the filesystem recovers. It also
3632 * marks the inode dirty, to catch the new size.
3634 * Implication: the file must always be in a sane, consistent
3635 * truncatable state while each transaction commits.
3637 if (ext4_orphan_add(handle, inode))
3640 down_write(&EXT4_I(inode)->i_data_sem);
3642 ext4_discard_preallocations(inode);
3644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3645 ext4_ext_truncate(handle, inode);
3647 ext4_ind_truncate(handle, inode);
3649 up_write(&ei->i_data_sem);
3652 ext4_handle_sync(handle);
3656 * If this was a simple ftruncate() and the file will remain alive,
3657 * then we need to clear up the orphan record which we created above.
3658 * However, if this was a real unlink then we were called by
3659 * ext4_evict_inode(), and we allow that function to clean up the
3660 * orphan info for us.
3663 ext4_orphan_del(handle, inode);
3665 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3666 ext4_mark_inode_dirty(handle, inode);
3667 ext4_journal_stop(handle);
3669 trace_ext4_truncate_exit(inode);
3673 * ext4_get_inode_loc returns with an extra refcount against the inode's
3674 * underlying buffer_head on success. If 'in_mem' is true, we have all
3675 * data in memory that is needed to recreate the on-disk version of this
3678 static int __ext4_get_inode_loc(struct inode *inode,
3679 struct ext4_iloc *iloc, int in_mem)
3681 struct ext4_group_desc *gdp;
3682 struct buffer_head *bh;
3683 struct super_block *sb = inode->i_sb;
3685 int inodes_per_block, inode_offset;
3688 if (!ext4_valid_inum(sb, inode->i_ino))
3691 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3692 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3697 * Figure out the offset within the block group inode table
3699 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3700 inode_offset = ((inode->i_ino - 1) %
3701 EXT4_INODES_PER_GROUP(sb));
3702 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3703 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3705 bh = sb_getblk(sb, block);
3708 if (!buffer_uptodate(bh)) {
3712 * If the buffer has the write error flag, we have failed
3713 * to write out another inode in the same block. In this
3714 * case, we don't have to read the block because we may
3715 * read the old inode data successfully.
3717 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3718 set_buffer_uptodate(bh);
3720 if (buffer_uptodate(bh)) {
3721 /* someone brought it uptodate while we waited */
3727 * If we have all information of the inode in memory and this
3728 * is the only valid inode in the block, we need not read the
3732 struct buffer_head *bitmap_bh;
3735 start = inode_offset & ~(inodes_per_block - 1);
3737 /* Is the inode bitmap in cache? */
3738 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3739 if (unlikely(!bitmap_bh))
3743 * If the inode bitmap isn't in cache then the
3744 * optimisation may end up performing two reads instead
3745 * of one, so skip it.
3747 if (!buffer_uptodate(bitmap_bh)) {
3751 for (i = start; i < start + inodes_per_block; i++) {
3752 if (i == inode_offset)
3754 if (ext4_test_bit(i, bitmap_bh->b_data))
3758 if (i == start + inodes_per_block) {
3759 /* all other inodes are free, so skip I/O */
3760 memset(bh->b_data, 0, bh->b_size);
3761 set_buffer_uptodate(bh);
3769 * If we need to do any I/O, try to pre-readahead extra
3770 * blocks from the inode table.
3772 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3773 ext4_fsblk_t b, end, table;
3775 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3777 table = ext4_inode_table(sb, gdp);
3778 /* s_inode_readahead_blks is always a power of 2 */
3779 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3783 num = EXT4_INODES_PER_GROUP(sb);
3784 if (ext4_has_group_desc_csum(sb))
3785 num -= ext4_itable_unused_count(sb, gdp);
3786 table += num / inodes_per_block;
3790 sb_breadahead(sb, b++);
3794 * There are other valid inodes in the buffer, this inode
3795 * has in-inode xattrs, or we don't have this inode in memory.
3796 * Read the block from disk.
3798 trace_ext4_load_inode(inode);
3800 bh->b_end_io = end_buffer_read_sync;
3801 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3803 if (!buffer_uptodate(bh)) {
3804 EXT4_ERROR_INODE_BLOCK(inode, block,
3805 "unable to read itable block");
3815 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3817 /* We have all inode data except xattrs in memory here. */
3818 return __ext4_get_inode_loc(inode, iloc,
3819 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3822 void ext4_set_inode_flags(struct inode *inode)
3824 unsigned int flags = EXT4_I(inode)->i_flags;
3825 unsigned int new_fl = 0;
3827 if (flags & EXT4_SYNC_FL)
3829 if (flags & EXT4_APPEND_FL)
3831 if (flags & EXT4_IMMUTABLE_FL)
3832 new_fl |= S_IMMUTABLE;
3833 if (flags & EXT4_NOATIME_FL)
3834 new_fl |= S_NOATIME;
3835 if (flags & EXT4_DIRSYNC_FL)
3836 new_fl |= S_DIRSYNC;
3837 if (test_opt(inode->i_sb, DAX))
3839 inode_set_flags(inode, new_fl,
3840 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3843 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3844 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3846 unsigned int vfs_fl;
3847 unsigned long old_fl, new_fl;
3850 vfs_fl = ei->vfs_inode.i_flags;
3851 old_fl = ei->i_flags;
3852 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3853 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3855 if (vfs_fl & S_SYNC)
3856 new_fl |= EXT4_SYNC_FL;
3857 if (vfs_fl & S_APPEND)
3858 new_fl |= EXT4_APPEND_FL;
3859 if (vfs_fl & S_IMMUTABLE)
3860 new_fl |= EXT4_IMMUTABLE_FL;
3861 if (vfs_fl & S_NOATIME)
3862 new_fl |= EXT4_NOATIME_FL;
3863 if (vfs_fl & S_DIRSYNC)
3864 new_fl |= EXT4_DIRSYNC_FL;
3865 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3868 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3869 struct ext4_inode_info *ei)
3872 struct inode *inode = &(ei->vfs_inode);
3873 struct super_block *sb = inode->i_sb;
3875 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3876 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3877 /* we are using combined 48 bit field */
3878 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3879 le32_to_cpu(raw_inode->i_blocks_lo);
3880 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3881 /* i_blocks represent file system block size */
3882 return i_blocks << (inode->i_blkbits - 9);
3887 return le32_to_cpu(raw_inode->i_blocks_lo);
3891 static inline void ext4_iget_extra_inode(struct inode *inode,
3892 struct ext4_inode *raw_inode,
3893 struct ext4_inode_info *ei)
3895 __le32 *magic = (void *)raw_inode +
3896 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3897 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3898 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3899 ext4_find_inline_data_nolock(inode);
3901 EXT4_I(inode)->i_inline_off = 0;
3904 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3906 struct ext4_iloc iloc;
3907 struct ext4_inode *raw_inode;
3908 struct ext4_inode_info *ei;
3909 struct inode *inode;
3910 journal_t *journal = EXT4_SB(sb)->s_journal;
3916 inode = iget_locked(sb, ino);
3918 return ERR_PTR(-ENOMEM);
3919 if (!(inode->i_state & I_NEW))
3925 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3928 raw_inode = ext4_raw_inode(&iloc);
3930 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3931 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3932 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3933 EXT4_INODE_SIZE(inode->i_sb)) {
3934 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3935 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3936 EXT4_INODE_SIZE(inode->i_sb));
3941 ei->i_extra_isize = 0;
3943 /* Precompute checksum seed for inode metadata */
3944 if (ext4_has_metadata_csum(sb)) {
3945 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3947 __le32 inum = cpu_to_le32(inode->i_ino);
3948 __le32 gen = raw_inode->i_generation;
3949 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3951 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3955 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3956 EXT4_ERROR_INODE(inode, "checksum invalid");
3961 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3962 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3963 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3964 if (!(test_opt(inode->i_sb, NO_UID32))) {
3965 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3966 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3968 i_uid_write(inode, i_uid);
3969 i_gid_write(inode, i_gid);
3970 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3972 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3973 ei->i_inline_off = 0;
3974 ei->i_dir_start_lookup = 0;
3975 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3976 /* We now have enough fields to check if the inode was active or not.
3977 * This is needed because nfsd might try to access dead inodes
3978 * the test is that same one that e2fsck uses
3979 * NeilBrown 1999oct15
3981 if (inode->i_nlink == 0) {
3982 if ((inode->i_mode == 0 ||
3983 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3984 ino != EXT4_BOOT_LOADER_INO) {
3985 /* this inode is deleted */
3989 /* The only unlinked inodes we let through here have
3990 * valid i_mode and are being read by the orphan
3991 * recovery code: that's fine, we're about to complete
3992 * the process of deleting those.
3993 * OR it is the EXT4_BOOT_LOADER_INO which is
3994 * not initialized on a new filesystem. */
3996 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3997 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3998 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3999 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4001 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4002 inode->i_size = ext4_isize(raw_inode);
4003 ei->i_disksize = inode->i_size;
4005 ei->i_reserved_quota = 0;
4007 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4008 ei->i_block_group = iloc.block_group;
4009 ei->i_last_alloc_group = ~0;
4011 * NOTE! The in-memory inode i_data array is in little-endian order
4012 * even on big-endian machines: we do NOT byteswap the block numbers!
4014 for (block = 0; block < EXT4_N_BLOCKS; block++)
4015 ei->i_data[block] = raw_inode->i_block[block];
4016 INIT_LIST_HEAD(&ei->i_orphan);
4019 * Set transaction id's of transactions that have to be committed
4020 * to finish f[data]sync. We set them to currently running transaction
4021 * as we cannot be sure that the inode or some of its metadata isn't
4022 * part of the transaction - the inode could have been reclaimed and
4023 * now it is reread from disk.
4026 transaction_t *transaction;
4029 read_lock(&journal->j_state_lock);
4030 if (journal->j_running_transaction)
4031 transaction = journal->j_running_transaction;
4033 transaction = journal->j_committing_transaction;
4035 tid = transaction->t_tid;
4037 tid = journal->j_commit_sequence;
4038 read_unlock(&journal->j_state_lock);
4039 ei->i_sync_tid = tid;
4040 ei->i_datasync_tid = tid;
4043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044 if (ei->i_extra_isize == 0) {
4045 /* The extra space is currently unused. Use it. */
4046 ei->i_extra_isize = sizeof(struct ext4_inode) -
4047 EXT4_GOOD_OLD_INODE_SIZE;
4049 ext4_iget_extra_inode(inode, raw_inode, ei);
4053 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4054 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4055 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4056 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4058 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4059 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4060 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4061 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4063 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4068 if (ei->i_file_acl &&
4069 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4070 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4074 } else if (!ext4_has_inline_data(inode)) {
4075 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4076 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4077 (S_ISLNK(inode->i_mode) &&
4078 !ext4_inode_is_fast_symlink(inode))))
4079 /* Validate extent which is part of inode */
4080 ret = ext4_ext_check_inode(inode);
4081 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4082 (S_ISLNK(inode->i_mode) &&
4083 !ext4_inode_is_fast_symlink(inode))) {
4084 /* Validate block references which are part of inode */
4085 ret = ext4_ind_check_inode(inode);
4091 if (S_ISREG(inode->i_mode)) {
4092 inode->i_op = &ext4_file_inode_operations;
4093 if (test_opt(inode->i_sb, DAX))
4094 inode->i_fop = &ext4_dax_file_operations;
4096 inode->i_fop = &ext4_file_operations;
4097 ext4_set_aops(inode);
4098 } else if (S_ISDIR(inode->i_mode)) {
4099 inode->i_op = &ext4_dir_inode_operations;
4100 inode->i_fop = &ext4_dir_operations;
4101 } else if (S_ISLNK(inode->i_mode)) {
4102 if (ext4_inode_is_fast_symlink(inode)) {
4103 inode->i_op = &ext4_fast_symlink_inode_operations;
4104 nd_terminate_link(ei->i_data, inode->i_size,
4105 sizeof(ei->i_data) - 1);
4107 inode->i_op = &ext4_symlink_inode_operations;
4108 ext4_set_aops(inode);
4110 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4111 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4112 inode->i_op = &ext4_special_inode_operations;
4113 if (raw_inode->i_block[0])
4114 init_special_inode(inode, inode->i_mode,
4115 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4117 init_special_inode(inode, inode->i_mode,
4118 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4119 } else if (ino == EXT4_BOOT_LOADER_INO) {
4120 make_bad_inode(inode);
4123 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4127 ext4_set_inode_flags(inode);
4128 unlock_new_inode(inode);
4134 return ERR_PTR(ret);
4137 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4139 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4140 return ERR_PTR(-EIO);
4141 return ext4_iget(sb, ino);
4144 static int ext4_inode_blocks_set(handle_t *handle,
4145 struct ext4_inode *raw_inode,
4146 struct ext4_inode_info *ei)
4148 struct inode *inode = &(ei->vfs_inode);
4149 u64 i_blocks = inode->i_blocks;
4150 struct super_block *sb = inode->i_sb;
4152 if (i_blocks <= ~0U) {
4154 * i_blocks can be represented in a 32 bit variable
4155 * as multiple of 512 bytes
4157 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4158 raw_inode->i_blocks_high = 0;
4159 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4162 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4165 if (i_blocks <= 0xffffffffffffULL) {
4167 * i_blocks can be represented in a 48 bit variable
4168 * as multiple of 512 bytes
4170 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4171 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4172 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4174 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4175 /* i_block is stored in file system block size */
4176 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4177 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4178 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4183 struct other_inode {
4184 unsigned long orig_ino;
4185 struct ext4_inode *raw_inode;
4188 static int other_inode_match(struct inode * inode, unsigned long ino,
4191 struct other_inode *oi = (struct other_inode *) data;
4193 if ((inode->i_ino != ino) ||
4194 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4195 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4196 ((inode->i_state & I_DIRTY_TIME) == 0))
4198 spin_lock(&inode->i_lock);
4199 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4200 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4201 (inode->i_state & I_DIRTY_TIME)) {
4202 struct ext4_inode_info *ei = EXT4_I(inode);
4204 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4205 spin_unlock(&inode->i_lock);
4207 spin_lock(&ei->i_raw_lock);
4208 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4209 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4210 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4211 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4212 spin_unlock(&ei->i_raw_lock);
4213 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4216 spin_unlock(&inode->i_lock);
4221 * Opportunistically update the other time fields for other inodes in
4222 * the same inode table block.
4224 static void ext4_update_other_inodes_time(struct super_block *sb,
4225 unsigned long orig_ino, char *buf)
4227 struct other_inode oi;
4229 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4230 int inode_size = EXT4_INODE_SIZE(sb);
4232 oi.orig_ino = orig_ino;
4233 ino = orig_ino & ~(inodes_per_block - 1);
4234 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4235 if (ino == orig_ino)
4237 oi.raw_inode = (struct ext4_inode *) buf;
4238 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4243 * Post the struct inode info into an on-disk inode location in the
4244 * buffer-cache. This gobbles the caller's reference to the
4245 * buffer_head in the inode location struct.
4247 * The caller must have write access to iloc->bh.
4249 static int ext4_do_update_inode(handle_t *handle,
4250 struct inode *inode,
4251 struct ext4_iloc *iloc)
4253 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4254 struct ext4_inode_info *ei = EXT4_I(inode);
4255 struct buffer_head *bh = iloc->bh;
4256 struct super_block *sb = inode->i_sb;
4257 int err = 0, rc, block;
4258 int need_datasync = 0, set_large_file = 0;
4262 spin_lock(&ei->i_raw_lock);
4264 /* For fields not tracked in the in-memory inode,
4265 * initialise them to zero for new inodes. */
4266 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4267 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4269 ext4_get_inode_flags(ei);
4270 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4271 i_uid = i_uid_read(inode);
4272 i_gid = i_gid_read(inode);
4273 if (!(test_opt(inode->i_sb, NO_UID32))) {
4274 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4275 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4277 * Fix up interoperability with old kernels. Otherwise, old inodes get
4278 * re-used with the upper 16 bits of the uid/gid intact
4281 raw_inode->i_uid_high =
4282 cpu_to_le16(high_16_bits(i_uid));
4283 raw_inode->i_gid_high =
4284 cpu_to_le16(high_16_bits(i_gid));
4286 raw_inode->i_uid_high = 0;
4287 raw_inode->i_gid_high = 0;
4290 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4291 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4292 raw_inode->i_uid_high = 0;
4293 raw_inode->i_gid_high = 0;
4295 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4297 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4298 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4299 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4300 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4304 spin_unlock(&ei->i_raw_lock);
4307 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4308 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4309 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4310 raw_inode->i_file_acl_high =
4311 cpu_to_le16(ei->i_file_acl >> 32);
4312 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4313 if (ei->i_disksize != ext4_isize(raw_inode)) {
4314 ext4_isize_set(raw_inode, ei->i_disksize);
4317 if (ei->i_disksize > 0x7fffffffULL) {
4318 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4319 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4320 EXT4_SB(sb)->s_es->s_rev_level ==
4321 cpu_to_le32(EXT4_GOOD_OLD_REV))
4324 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4325 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4326 if (old_valid_dev(inode->i_rdev)) {
4327 raw_inode->i_block[0] =
4328 cpu_to_le32(old_encode_dev(inode->i_rdev));
4329 raw_inode->i_block[1] = 0;
4331 raw_inode->i_block[0] = 0;
4332 raw_inode->i_block[1] =
4333 cpu_to_le32(new_encode_dev(inode->i_rdev));
4334 raw_inode->i_block[2] = 0;
4336 } else if (!ext4_has_inline_data(inode)) {
4337 for (block = 0; block < EXT4_N_BLOCKS; block++)
4338 raw_inode->i_block[block] = ei->i_data[block];
4341 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4342 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4343 if (ei->i_extra_isize) {
4344 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4345 raw_inode->i_version_hi =
4346 cpu_to_le32(inode->i_version >> 32);
4347 raw_inode->i_extra_isize =
4348 cpu_to_le16(ei->i_extra_isize);
4351 ext4_inode_csum_set(inode, raw_inode, ei);
4352 spin_unlock(&ei->i_raw_lock);
4353 if (inode->i_sb->s_flags & MS_LAZYTIME)
4354 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4357 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4358 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4361 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4362 if (set_large_file) {
4363 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4364 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4367 ext4_update_dynamic_rev(sb);
4368 EXT4_SET_RO_COMPAT_FEATURE(sb,
4369 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4370 ext4_handle_sync(handle);
4371 err = ext4_handle_dirty_super(handle, sb);
4373 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4376 ext4_std_error(inode->i_sb, err);
4381 * ext4_write_inode()
4383 * We are called from a few places:
4385 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4386 * Here, there will be no transaction running. We wait for any running
4387 * transaction to commit.
4389 * - Within flush work (sys_sync(), kupdate and such).
4390 * We wait on commit, if told to.
4392 * - Within iput_final() -> write_inode_now()
4393 * We wait on commit, if told to.
4395 * In all cases it is actually safe for us to return without doing anything,
4396 * because the inode has been copied into a raw inode buffer in
4397 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4400 * Note that we are absolutely dependent upon all inode dirtiers doing the
4401 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4402 * which we are interested.
4404 * It would be a bug for them to not do this. The code:
4406 * mark_inode_dirty(inode)
4408 * inode->i_size = expr;
4410 * is in error because write_inode() could occur while `stuff()' is running,
4411 * and the new i_size will be lost. Plus the inode will no longer be on the
4412 * superblock's dirty inode list.
4414 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4418 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4421 if (EXT4_SB(inode->i_sb)->s_journal) {
4422 if (ext4_journal_current_handle()) {
4423 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4429 * No need to force transaction in WB_SYNC_NONE mode. Also
4430 * ext4_sync_fs() will force the commit after everything is
4433 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4436 err = ext4_force_commit(inode->i_sb);
4438 struct ext4_iloc iloc;
4440 err = __ext4_get_inode_loc(inode, &iloc, 0);
4444 * sync(2) will flush the whole buffer cache. No need to do
4445 * it here separately for each inode.
4447 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4448 sync_dirty_buffer(iloc.bh);
4449 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4450 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4451 "IO error syncing inode");
4460 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4461 * buffers that are attached to a page stradding i_size and are undergoing
4462 * commit. In that case we have to wait for commit to finish and try again.
4464 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4468 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4469 tid_t commit_tid = 0;
4472 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4474 * All buffers in the last page remain valid? Then there's nothing to
4475 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4478 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4481 page = find_lock_page(inode->i_mapping,
4482 inode->i_size >> PAGE_CACHE_SHIFT);
4485 ret = __ext4_journalled_invalidatepage(page, offset,
4486 PAGE_CACHE_SIZE - offset);
4488 page_cache_release(page);
4492 read_lock(&journal->j_state_lock);
4493 if (journal->j_committing_transaction)
4494 commit_tid = journal->j_committing_transaction->t_tid;
4495 read_unlock(&journal->j_state_lock);
4497 jbd2_log_wait_commit(journal, commit_tid);
4504 * Called from notify_change.
4506 * We want to trap VFS attempts to truncate the file as soon as
4507 * possible. In particular, we want to make sure that when the VFS
4508 * shrinks i_size, we put the inode on the orphan list and modify
4509 * i_disksize immediately, so that during the subsequent flushing of
4510 * dirty pages and freeing of disk blocks, we can guarantee that any
4511 * commit will leave the blocks being flushed in an unused state on
4512 * disk. (On recovery, the inode will get truncated and the blocks will
4513 * be freed, so we have a strong guarantee that no future commit will
4514 * leave these blocks visible to the user.)
4516 * Another thing we have to assure is that if we are in ordered mode
4517 * and inode is still attached to the committing transaction, we must
4518 * we start writeout of all the dirty pages which are being truncated.
4519 * This way we are sure that all the data written in the previous
4520 * transaction are already on disk (truncate waits for pages under
4523 * Called with inode->i_mutex down.
4525 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4527 struct inode *inode = d_inode(dentry);
4530 const unsigned int ia_valid = attr->ia_valid;
4532 error = inode_change_ok(inode, attr);
4536 if (is_quota_modification(inode, attr))
4537 dquot_initialize(inode);
4538 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4539 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4542 /* (user+group)*(old+new) structure, inode write (sb,
4543 * inode block, ? - but truncate inode update has it) */
4544 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4545 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4546 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4547 if (IS_ERR(handle)) {
4548 error = PTR_ERR(handle);
4551 error = dquot_transfer(inode, attr);
4553 ext4_journal_stop(handle);
4556 /* Update corresponding info in inode so that everything is in
4557 * one transaction */
4558 if (attr->ia_valid & ATTR_UID)
4559 inode->i_uid = attr->ia_uid;
4560 if (attr->ia_valid & ATTR_GID)
4561 inode->i_gid = attr->ia_gid;
4562 error = ext4_mark_inode_dirty(handle, inode);
4563 ext4_journal_stop(handle);
4566 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4569 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4570 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4576 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4577 inode_inc_iversion(inode);
4579 if (S_ISREG(inode->i_mode) &&
4580 (attr->ia_size < inode->i_size)) {
4581 if (ext4_should_order_data(inode)) {
4582 error = ext4_begin_ordered_truncate(inode,
4587 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4588 if (IS_ERR(handle)) {
4589 error = PTR_ERR(handle);
4592 if (ext4_handle_valid(handle)) {
4593 error = ext4_orphan_add(handle, inode);
4596 down_write(&EXT4_I(inode)->i_data_sem);
4597 EXT4_I(inode)->i_disksize = attr->ia_size;
4598 rc = ext4_mark_inode_dirty(handle, inode);
4602 * We have to update i_size under i_data_sem together
4603 * with i_disksize to avoid races with writeback code
4604 * running ext4_wb_update_i_disksize().
4607 i_size_write(inode, attr->ia_size);
4608 up_write(&EXT4_I(inode)->i_data_sem);
4609 ext4_journal_stop(handle);
4611 ext4_orphan_del(NULL, inode);
4615 loff_t oldsize = inode->i_size;
4617 i_size_write(inode, attr->ia_size);
4618 pagecache_isize_extended(inode, oldsize, inode->i_size);
4622 * Blocks are going to be removed from the inode. Wait
4623 * for dio in flight. Temporarily disable
4624 * dioread_nolock to prevent livelock.
4627 if (!ext4_should_journal_data(inode)) {
4628 ext4_inode_block_unlocked_dio(inode);
4629 inode_dio_wait(inode);
4630 ext4_inode_resume_unlocked_dio(inode);
4632 ext4_wait_for_tail_page_commit(inode);
4635 * Truncate pagecache after we've waited for commit
4636 * in data=journal mode to make pages freeable.
4638 truncate_pagecache(inode, inode->i_size);
4641 * We want to call ext4_truncate() even if attr->ia_size ==
4642 * inode->i_size for cases like truncation of fallocated space
4644 if (attr->ia_valid & ATTR_SIZE)
4645 ext4_truncate(inode);
4648 setattr_copy(inode, attr);
4649 mark_inode_dirty(inode);
4653 * If the call to ext4_truncate failed to get a transaction handle at
4654 * all, we need to clean up the in-core orphan list manually.
4656 if (orphan && inode->i_nlink)
4657 ext4_orphan_del(NULL, inode);
4659 if (!rc && (ia_valid & ATTR_MODE))
4660 rc = posix_acl_chmod(inode, inode->i_mode);
4663 ext4_std_error(inode->i_sb, error);
4669 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4672 struct inode *inode;
4673 unsigned long long delalloc_blocks;
4675 inode = d_inode(dentry);
4676 generic_fillattr(inode, stat);
4679 * If there is inline data in the inode, the inode will normally not
4680 * have data blocks allocated (it may have an external xattr block).
4681 * Report at least one sector for such files, so tools like tar, rsync,
4682 * others doen't incorrectly think the file is completely sparse.
4684 if (unlikely(ext4_has_inline_data(inode)))
4685 stat->blocks += (stat->size + 511) >> 9;
4688 * We can't update i_blocks if the block allocation is delayed
4689 * otherwise in the case of system crash before the real block
4690 * allocation is done, we will have i_blocks inconsistent with
4691 * on-disk file blocks.
4692 * We always keep i_blocks updated together with real
4693 * allocation. But to not confuse with user, stat
4694 * will return the blocks that include the delayed allocation
4695 * blocks for this file.
4697 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4698 EXT4_I(inode)->i_reserved_data_blocks);
4699 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4703 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4706 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4707 return ext4_ind_trans_blocks(inode, lblocks);
4708 return ext4_ext_index_trans_blocks(inode, pextents);
4712 * Account for index blocks, block groups bitmaps and block group
4713 * descriptor blocks if modify datablocks and index blocks
4714 * worse case, the indexs blocks spread over different block groups
4716 * If datablocks are discontiguous, they are possible to spread over
4717 * different block groups too. If they are contiguous, with flexbg,
4718 * they could still across block group boundary.
4720 * Also account for superblock, inode, quota and xattr blocks
4722 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4725 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4731 * How many index blocks need to touch to map @lblocks logical blocks
4732 * to @pextents physical extents?
4734 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4739 * Now let's see how many group bitmaps and group descriptors need
4742 groups = idxblocks + pextents;
4744 if (groups > ngroups)
4746 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4747 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4749 /* bitmaps and block group descriptor blocks */
4750 ret += groups + gdpblocks;
4752 /* Blocks for super block, inode, quota and xattr blocks */
4753 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4759 * Calculate the total number of credits to reserve to fit
4760 * the modification of a single pages into a single transaction,
4761 * which may include multiple chunks of block allocations.
4763 * This could be called via ext4_write_begin()
4765 * We need to consider the worse case, when
4766 * one new block per extent.
4768 int ext4_writepage_trans_blocks(struct inode *inode)
4770 int bpp = ext4_journal_blocks_per_page(inode);
4773 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4775 /* Account for data blocks for journalled mode */
4776 if (ext4_should_journal_data(inode))
4782 * Calculate the journal credits for a chunk of data modification.
4784 * This is called from DIO, fallocate or whoever calling
4785 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4787 * journal buffers for data blocks are not included here, as DIO
4788 * and fallocate do no need to journal data buffers.
4790 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4792 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4796 * The caller must have previously called ext4_reserve_inode_write().
4797 * Give this, we know that the caller already has write access to iloc->bh.
4799 int ext4_mark_iloc_dirty(handle_t *handle,
4800 struct inode *inode, struct ext4_iloc *iloc)
4804 if (IS_I_VERSION(inode))
4805 inode_inc_iversion(inode);
4807 /* the do_update_inode consumes one bh->b_count */
4810 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4811 err = ext4_do_update_inode(handle, inode, iloc);
4817 * On success, We end up with an outstanding reference count against
4818 * iloc->bh. This _must_ be cleaned up later.
4822 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4823 struct ext4_iloc *iloc)
4827 err = ext4_get_inode_loc(inode, iloc);
4829 BUFFER_TRACE(iloc->bh, "get_write_access");
4830 err = ext4_journal_get_write_access(handle, iloc->bh);
4836 ext4_std_error(inode->i_sb, err);
4841 * Expand an inode by new_extra_isize bytes.
4842 * Returns 0 on success or negative error number on failure.
4844 static int ext4_expand_extra_isize(struct inode *inode,
4845 unsigned int new_extra_isize,
4846 struct ext4_iloc iloc,
4849 struct ext4_inode *raw_inode;
4850 struct ext4_xattr_ibody_header *header;
4852 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4855 raw_inode = ext4_raw_inode(&iloc);
4857 header = IHDR(inode, raw_inode);
4859 /* No extended attributes present */
4860 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4861 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4862 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4864 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4868 /* try to expand with EAs present */
4869 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4874 * What we do here is to mark the in-core inode as clean with respect to inode
4875 * dirtiness (it may still be data-dirty).
4876 * This means that the in-core inode may be reaped by prune_icache
4877 * without having to perform any I/O. This is a very good thing,
4878 * because *any* task may call prune_icache - even ones which
4879 * have a transaction open against a different journal.
4881 * Is this cheating? Not really. Sure, we haven't written the
4882 * inode out, but prune_icache isn't a user-visible syncing function.
4883 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4884 * we start and wait on commits.
4886 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4888 struct ext4_iloc iloc;
4889 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4890 static unsigned int mnt_count;
4894 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4895 err = ext4_reserve_inode_write(handle, inode, &iloc);
4896 if (ext4_handle_valid(handle) &&
4897 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4898 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4900 * We need extra buffer credits since we may write into EA block
4901 * with this same handle. If journal_extend fails, then it will
4902 * only result in a minor loss of functionality for that inode.
4903 * If this is felt to be critical, then e2fsck should be run to
4904 * force a large enough s_min_extra_isize.
4906 if ((jbd2_journal_extend(handle,
4907 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4908 ret = ext4_expand_extra_isize(inode,
4909 sbi->s_want_extra_isize,
4912 ext4_set_inode_state(inode,
4913 EXT4_STATE_NO_EXPAND);
4915 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4916 ext4_warning(inode->i_sb,
4917 "Unable to expand inode %lu. Delete"
4918 " some EAs or run e2fsck.",
4921 le16_to_cpu(sbi->s_es->s_mnt_count);
4927 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4932 * ext4_dirty_inode() is called from __mark_inode_dirty()
4934 * We're really interested in the case where a file is being extended.
4935 * i_size has been changed by generic_commit_write() and we thus need
4936 * to include the updated inode in the current transaction.
4938 * Also, dquot_alloc_block() will always dirty the inode when blocks
4939 * are allocated to the file.
4941 * If the inode is marked synchronous, we don't honour that here - doing
4942 * so would cause a commit on atime updates, which we don't bother doing.
4943 * We handle synchronous inodes at the highest possible level.
4945 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
4946 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4947 * to copy into the on-disk inode structure are the timestamp files.
4949 void ext4_dirty_inode(struct inode *inode, int flags)
4953 if (flags == I_DIRTY_TIME)
4955 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4959 ext4_mark_inode_dirty(handle, inode);
4961 ext4_journal_stop(handle);
4968 * Bind an inode's backing buffer_head into this transaction, to prevent
4969 * it from being flushed to disk early. Unlike
4970 * ext4_reserve_inode_write, this leaves behind no bh reference and
4971 * returns no iloc structure, so the caller needs to repeat the iloc
4972 * lookup to mark the inode dirty later.
4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4976 struct ext4_iloc iloc;
4980 err = ext4_get_inode_loc(inode, &iloc);
4982 BUFFER_TRACE(iloc.bh, "get_write_access");
4983 err = jbd2_journal_get_write_access(handle, iloc.bh);
4985 err = ext4_handle_dirty_metadata(handle,
4991 ext4_std_error(inode->i_sb, err);
4996 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5003 * We have to be very careful here: changing a data block's
5004 * journaling status dynamically is dangerous. If we write a
5005 * data block to the journal, change the status and then delete
5006 * that block, we risk forgetting to revoke the old log record
5007 * from the journal and so a subsequent replay can corrupt data.
5008 * So, first we make sure that the journal is empty and that
5009 * nobody is changing anything.
5012 journal = EXT4_JOURNAL(inode);
5015 if (is_journal_aborted(journal))
5017 /* We have to allocate physical blocks for delalloc blocks
5018 * before flushing journal. otherwise delalloc blocks can not
5019 * be allocated any more. even more truncate on delalloc blocks
5020 * could trigger BUG by flushing delalloc blocks in journal.
5021 * There is no delalloc block in non-journal data mode.
5023 if (val && test_opt(inode->i_sb, DELALLOC)) {
5024 err = ext4_alloc_da_blocks(inode);
5029 /* Wait for all existing dio workers */
5030 ext4_inode_block_unlocked_dio(inode);
5031 inode_dio_wait(inode);
5033 jbd2_journal_lock_updates(journal);
5036 * OK, there are no updates running now, and all cached data is
5037 * synced to disk. We are now in a completely consistent state
5038 * which doesn't have anything in the journal, and we know that
5039 * no filesystem updates are running, so it is safe to modify
5040 * the inode's in-core data-journaling state flag now.
5044 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5046 err = jbd2_journal_flush(journal);
5048 jbd2_journal_unlock_updates(journal);
5049 ext4_inode_resume_unlocked_dio(inode);
5052 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5054 ext4_set_aops(inode);
5056 jbd2_journal_unlock_updates(journal);
5057 ext4_inode_resume_unlocked_dio(inode);
5059 /* Finally we can mark the inode as dirty. */
5061 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5063 return PTR_ERR(handle);
5065 err = ext4_mark_inode_dirty(handle, inode);
5066 ext4_handle_sync(handle);
5067 ext4_journal_stop(handle);
5068 ext4_std_error(inode->i_sb, err);
5073 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5075 return !buffer_mapped(bh);
5078 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5080 struct page *page = vmf->page;
5084 struct file *file = vma->vm_file;
5085 struct inode *inode = file_inode(file);
5086 struct address_space *mapping = inode->i_mapping;
5088 get_block_t *get_block;
5091 sb_start_pagefault(inode->i_sb);
5092 file_update_time(vma->vm_file);
5093 /* Delalloc case is easy... */
5094 if (test_opt(inode->i_sb, DELALLOC) &&
5095 !ext4_should_journal_data(inode) &&
5096 !ext4_nonda_switch(inode->i_sb)) {
5098 ret = __block_page_mkwrite(vma, vmf,
5099 ext4_da_get_block_prep);
5100 } while (ret == -ENOSPC &&
5101 ext4_should_retry_alloc(inode->i_sb, &retries));
5106 size = i_size_read(inode);
5107 /* Page got truncated from under us? */
5108 if (page->mapping != mapping || page_offset(page) > size) {
5110 ret = VM_FAULT_NOPAGE;
5114 if (page->index == size >> PAGE_CACHE_SHIFT)
5115 len = size & ~PAGE_CACHE_MASK;
5117 len = PAGE_CACHE_SIZE;
5119 * Return if we have all the buffers mapped. This avoids the need to do
5120 * journal_start/journal_stop which can block and take a long time
5122 if (page_has_buffers(page)) {
5123 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5125 ext4_bh_unmapped)) {
5126 /* Wait so that we don't change page under IO */
5127 wait_for_stable_page(page);
5128 ret = VM_FAULT_LOCKED;
5133 /* OK, we need to fill the hole... */
5134 if (ext4_should_dioread_nolock(inode))
5135 get_block = ext4_get_block_write;
5137 get_block = ext4_get_block;
5139 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5140 ext4_writepage_trans_blocks(inode));
5141 if (IS_ERR(handle)) {
5142 ret = VM_FAULT_SIGBUS;
5145 ret = __block_page_mkwrite(vma, vmf, get_block);
5146 if (!ret && ext4_should_journal_data(inode)) {
5147 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5148 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5150 ret = VM_FAULT_SIGBUS;
5151 ext4_journal_stop(handle);
5154 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5156 ext4_journal_stop(handle);
5157 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5160 ret = block_page_mkwrite_return(ret);
5162 sb_end_pagefault(inode->i_sb);