]> Git Repo - linux.git/blob - fs/ext4/inode.c
Merge tag 'sched_ext-for-6.14-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      ([email protected])
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static void ext4_journalled_zero_new_buffers(handle_t *handle,
53                                             struct inode *inode,
54                                             struct folio *folio,
55                                             unsigned from, unsigned to);
56
57 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58                               struct ext4_inode_info *ei)
59 {
60         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61         __u32 csum;
62         __u16 dummy_csum = 0;
63         int offset = offsetof(struct ext4_inode, i_checksum_lo);
64         unsigned int csum_size = sizeof(dummy_csum);
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68         offset += csum_size;
69         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70                            EXT4_GOOD_OLD_INODE_SIZE - offset);
71
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73                 offset = offsetof(struct ext4_inode, i_checksum_hi);
74                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75                                    EXT4_GOOD_OLD_INODE_SIZE,
76                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
77                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79                                            csum_size);
80                         offset += csum_size;
81                 }
82                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
84         }
85
86         return csum;
87 }
88
89 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90                                   struct ext4_inode_info *ei)
91 {
92         __u32 provided, calculated;
93
94         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95             cpu_to_le32(EXT4_OS_LINUX) ||
96             !ext4_has_metadata_csum(inode->i_sb))
97                 return 1;
98
99         provided = le16_to_cpu(raw->i_checksum_lo);
100         calculated = ext4_inode_csum(inode, raw, ei);
101         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104         else
105                 calculated &= 0xFFFF;
106
107         return provided == calculated;
108 }
109
110 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111                          struct ext4_inode_info *ei)
112 {
113         __u32 csum;
114
115         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116             cpu_to_le32(EXT4_OS_LINUX) ||
117             !ext4_has_metadata_csum(inode->i_sb))
118                 return;
119
120         csum = ext4_inode_csum(inode, raw, ei);
121         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125 }
126
127 static inline int ext4_begin_ordered_truncate(struct inode *inode,
128                                               loff_t new_size)
129 {
130         trace_ext4_begin_ordered_truncate(inode, new_size);
131         /*
132          * If jinode is zero, then we never opened the file for
133          * writing, so there's no need to call
134          * jbd2_journal_begin_ordered_truncate() since there's no
135          * outstanding writes we need to flush.
136          */
137         if (!EXT4_I(inode)->jinode)
138                 return 0;
139         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140                                                    EXT4_I(inode)->jinode,
141                                                    new_size);
142 }
143
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171         handle_t *handle;
172         int err;
173         /*
174          * Credits for final inode cleanup and freeing:
175          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176          * (xattr block freeing), bitmap, group descriptor (inode freeing)
177          */
178         int extra_credits = 6;
179         struct ext4_xattr_inode_array *ea_inode_array = NULL;
180         bool freeze_protected = false;
181
182         trace_ext4_evict_inode(inode);
183
184         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185                 ext4_evict_ea_inode(inode);
186         if (inode->i_nlink) {
187                 truncate_inode_pages_final(&inode->i_data);
188
189                 goto no_delete;
190         }
191
192         if (is_bad_inode(inode))
193                 goto no_delete;
194         dquot_initialize(inode);
195
196         if (ext4_should_order_data(inode))
197                 ext4_begin_ordered_truncate(inode, 0);
198         truncate_inode_pages_final(&inode->i_data);
199
200         /*
201          * For inodes with journalled data, transaction commit could have
202          * dirtied the inode. And for inodes with dioread_nolock, unwritten
203          * extents converting worker could merge extents and also have dirtied
204          * the inode. Flush worker is ignoring it because of I_FREEING flag but
205          * we still need to remove the inode from the writeback lists.
206          */
207         if (!list_empty_careful(&inode->i_io_list))
208                 inode_io_list_del(inode);
209
210         /*
211          * Protect us against freezing - iput() caller didn't have to have any
212          * protection against it. When we are in a running transaction though,
213          * we are already protected against freezing and we cannot grab further
214          * protection due to lock ordering constraints.
215          */
216         if (!ext4_journal_current_handle()) {
217                 sb_start_intwrite(inode->i_sb);
218                 freeze_protected = true;
219         }
220
221         if (!IS_NOQUOTA(inode))
222                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223
224         /*
225          * Block bitmap, group descriptor, and inode are accounted in both
226          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227          */
228         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
230         if (IS_ERR(handle)) {
231                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
232                 /*
233                  * If we're going to skip the normal cleanup, we still need to
234                  * make sure that the in-core orphan linked list is properly
235                  * cleaned up.
236                  */
237                 ext4_orphan_del(NULL, inode);
238                 if (freeze_protected)
239                         sb_end_intwrite(inode->i_sb);
240                 goto no_delete;
241         }
242
243         if (IS_SYNC(inode))
244                 ext4_handle_sync(handle);
245
246         /*
247          * Set inode->i_size to 0 before calling ext4_truncate(). We need
248          * special handling of symlinks here because i_size is used to
249          * determine whether ext4_inode_info->i_data contains symlink data or
250          * block mappings. Setting i_size to 0 will remove its fast symlink
251          * status. Erase i_data so that it becomes a valid empty block map.
252          */
253         if (ext4_inode_is_fast_symlink(inode))
254                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks) {
263                 err = ext4_truncate(inode);
264                 if (err) {
265                         ext4_error_err(inode->i_sb, -err,
266                                        "couldn't truncate inode %lu (err %d)",
267                                        inode->i_ino, err);
268                         goto stop_handle;
269                 }
270         }
271
272         /* Remove xattr references. */
273         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274                                       extra_credits);
275         if (err) {
276                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277 stop_handle:
278                 ext4_journal_stop(handle);
279                 ext4_orphan_del(NULL, inode);
280                 if (freeze_protected)
281                         sb_end_intwrite(inode->i_sb);
282                 ext4_xattr_inode_array_free(ea_inode_array);
283                 goto no_delete;
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         if (freeze_protected)
311                 sb_end_intwrite(inode->i_sb);
312         ext4_xattr_inode_array_free(ea_inode_array);
313         return;
314 no_delete:
315         /*
316          * Check out some where else accidentally dirty the evicting inode,
317          * which may probably cause inode use-after-free issues later.
318          */
319         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320
321         if (!list_empty(&EXT4_I(inode)->i_fc_list))
322                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
324 }
325
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 {
329         return &EXT4_I(inode)->i_reserved_quota;
330 }
331 #endif
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         /* Update per-inode reservations */
355         ei->i_reserved_data_blocks -= used;
356         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357
358         spin_unlock(&ei->i_block_reservation_lock);
359
360         /* Update quota subsystem for data blocks */
361         if (quota_claim)
362                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
363         else {
364                 /*
365                  * We did fallocate with an offset that is already delayed
366                  * allocated. So on delayed allocated writeback we should
367                  * not re-claim the quota for fallocated blocks.
368                  */
369                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370         }
371
372         /*
373          * If we have done all the pending block allocations and if
374          * there aren't any writers on the inode, we can discard the
375          * inode's preallocations.
376          */
377         if ((ei->i_reserved_data_blocks == 0) &&
378             !inode_is_open_for_write(inode))
379                 ext4_discard_preallocations(inode);
380 }
381
382 static int __check_block_validity(struct inode *inode, const char *func,
383                                 unsigned int line,
384                                 struct ext4_map_blocks *map)
385 {
386         if (ext4_has_feature_journal(inode->i_sb) &&
387             (inode->i_ino ==
388              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389                 return 0;
390         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391                 ext4_error_inode(inode, func, line, map->m_pblk,
392                                  "lblock %lu mapped to illegal pblock %llu "
393                                  "(length %d)", (unsigned long) map->m_lblk,
394                                  map->m_pblk, map->m_len);
395                 return -EFSCORRUPTED;
396         }
397         return 0;
398 }
399
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401                        ext4_lblk_t len)
402 {
403         int ret;
404
405         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
407
408         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409         if (ret > 0)
410                 ret = 0;
411
412         return ret;
413 }
414
415 #define check_block_validity(inode, map)        \
416         __check_block_validity((inode), __func__, __LINE__, (map))
417
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420                                        struct inode *inode,
421                                        struct ext4_map_blocks *es_map,
422                                        struct ext4_map_blocks *map,
423                                        int flags)
424 {
425         int retval;
426
427         map->m_flags = 0;
428         /*
429          * There is a race window that the result is not the same.
430          * e.g. xfstests #223 when dioread_nolock enables.  The reason
431          * is that we lookup a block mapping in extent status tree with
432          * out taking i_data_sem.  So at the time the unwritten extent
433          * could be converted.
434          */
435         down_read(&EXT4_I(inode)->i_data_sem);
436         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
438         } else {
439                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
440         }
441         up_read((&EXT4_I(inode)->i_data_sem));
442
443         /*
444          * We don't check m_len because extent will be collpased in status
445          * tree.  So the m_len might not equal.
446          */
447         if (es_map->m_lblk != map->m_lblk ||
448             es_map->m_flags != map->m_flags ||
449             es_map->m_pblk != map->m_pblk) {
450                 printk("ES cache assertion failed for inode: %lu "
451                        "es_cached ex [%d/%d/%llu/%x] != "
452                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453                        inode->i_ino, es_map->m_lblk, es_map->m_len,
454                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
455                        map->m_len, map->m_pblk, map->m_flags,
456                        retval, flags);
457         }
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460
461 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462                                  struct ext4_map_blocks *map)
463 {
464         unsigned int status;
465         int retval;
466
467         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
469         else
470                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
471
472         if (retval <= 0)
473                 return retval;
474
475         if (unlikely(retval != map->m_len)) {
476                 ext4_warning(inode->i_sb,
477                              "ES len assertion failed for inode "
478                              "%lu: retval %d != map->m_len %d",
479                              inode->i_ino, retval, map->m_len);
480                 WARN_ON(1);
481         }
482
483         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484                         EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485         ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486                               map->m_pblk, status, false);
487         return retval;
488 }
489
490 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491                                   struct ext4_map_blocks *map, int flags)
492 {
493         struct extent_status es;
494         unsigned int status;
495         int err, retval = 0;
496
497         /*
498          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499          * indicates that the blocks and quotas has already been
500          * checked when the data was copied into the page cache.
501          */
502         if (map->m_flags & EXT4_MAP_DELAYED)
503                 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504
505         /*
506          * Here we clear m_flags because after allocating an new extent,
507          * it will be set again.
508          */
509         map->m_flags &= ~EXT4_MAP_FLAGS;
510
511         /*
512          * We need to check for EXT4 here because migrate could have
513          * changed the inode type in between.
514          */
515         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
517         } else {
518                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
519
520                 /*
521                  * We allocated new blocks which will result in i_data's
522                  * format changing. Force the migrate to fail by clearing
523                  * migrate flags.
524                  */
525                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527         }
528         if (retval <= 0)
529                 return retval;
530
531         if (unlikely(retval != map->m_len)) {
532                 ext4_warning(inode->i_sb,
533                              "ES len assertion failed for inode %lu: "
534                              "retval %d != map->m_len %d",
535                              inode->i_ino, retval, map->m_len);
536                 WARN_ON(1);
537         }
538
539         /*
540          * We have to zeroout blocks before inserting them into extent
541          * status tree. Otherwise someone could look them up there and
542          * use them before they are really zeroed. We also have to
543          * unmap metadata before zeroing as otherwise writeback can
544          * overwrite zeros with stale data from block device.
545          */
546         if (flags & EXT4_GET_BLOCKS_ZERO &&
547             map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548                 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549                                          map->m_len);
550                 if (err)
551                         return err;
552         }
553
554         /*
555          * If the extent has been zeroed out, we don't need to update
556          * extent status tree.
557          */
558         if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560                 if (ext4_es_is_written(&es))
561                         return retval;
562         }
563
564         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565                         EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566         ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
567                               status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
568
569         return retval;
570 }
571
572 /*
573  * The ext4_map_blocks() function tries to look up the requested blocks,
574  * and returns if the blocks are already mapped.
575  *
576  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577  * and store the allocated blocks in the result buffer head and mark it
578  * mapped.
579  *
580  * If file type is extents based, it will call ext4_ext_map_blocks(),
581  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582  * based files
583  *
584  * On success, it returns the number of blocks being mapped or allocated.
585  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588  *
589  * It returns 0 if plain look up failed (blocks have not been allocated), in
590  * that case, @map is returned as unmapped but we still do fill map->m_len to
591  * indicate the length of a hole starting at map->m_lblk.
592  *
593  * It returns the error in case of allocation failure.
594  */
595 int ext4_map_blocks(handle_t *handle, struct inode *inode,
596                     struct ext4_map_blocks *map, int flags)
597 {
598         struct extent_status es;
599         int retval;
600         int ret = 0;
601 #ifdef ES_AGGRESSIVE_TEST
602         struct ext4_map_blocks orig_map;
603
604         memcpy(&orig_map, map, sizeof(*map));
605 #endif
606
607         map->m_flags = 0;
608         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609                   flags, map->m_len, (unsigned long) map->m_lblk);
610
611         /*
612          * ext4_map_blocks returns an int, and m_len is an unsigned int
613          */
614         if (unlikely(map->m_len > INT_MAX))
615                 map->m_len = INT_MAX;
616
617         /* We can handle the block number less than EXT_MAX_BLOCKS */
618         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619                 return -EFSCORRUPTED;
620
621         /* Lookup extent status tree firstly */
622         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625                         map->m_pblk = ext4_es_pblock(&es) +
626                                         map->m_lblk - es.es_lblk;
627                         map->m_flags |= ext4_es_is_written(&es) ?
628                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629                         retval = es.es_len - (map->m_lblk - es.es_lblk);
630                         if (retval > map->m_len)
631                                 retval = map->m_len;
632                         map->m_len = retval;
633                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634                         map->m_pblk = 0;
635                         map->m_flags |= ext4_es_is_delayed(&es) ?
636                                         EXT4_MAP_DELAYED : 0;
637                         retval = es.es_len - (map->m_lblk - es.es_lblk);
638                         if (retval > map->m_len)
639                                 retval = map->m_len;
640                         map->m_len = retval;
641                         retval = 0;
642                 } else {
643                         BUG();
644                 }
645
646                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647                         return retval;
648 #ifdef ES_AGGRESSIVE_TEST
649                 ext4_map_blocks_es_recheck(handle, inode, map,
650                                            &orig_map, flags);
651 #endif
652                 goto found;
653         }
654         /*
655          * In the query cache no-wait mode, nothing we can do more if we
656          * cannot find extent in the cache.
657          */
658         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659                 return 0;
660
661         /*
662          * Try to see if we can get the block without requesting a new
663          * file system block.
664          */
665         down_read(&EXT4_I(inode)->i_data_sem);
666         retval = ext4_map_query_blocks(handle, inode, map);
667         up_read((&EXT4_I(inode)->i_data_sem));
668
669 found:
670         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671                 ret = check_block_validity(inode, map);
672                 if (ret != 0)
673                         return ret;
674         }
675
676         /* If it is only a block(s) look up */
677         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678                 return retval;
679
680         /*
681          * Returns if the blocks have already allocated
682          *
683          * Note that if blocks have been preallocated
684          * ext4_ext_map_blocks() returns with buffer head unmapped
685          */
686         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687                 /*
688                  * If we need to convert extent to unwritten
689                  * we continue and do the actual work in
690                  * ext4_ext_map_blocks()
691                  */
692                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693                         return retval;
694
695         /*
696          * New blocks allocate and/or writing to unwritten extent
697          * will possibly result in updating i_data, so we take
698          * the write lock of i_data_sem, and call get_block()
699          * with create == 1 flag.
700          */
701         down_write(&EXT4_I(inode)->i_data_sem);
702         retval = ext4_map_create_blocks(handle, inode, map, flags);
703         up_write((&EXT4_I(inode)->i_data_sem));
704         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705                 ret = check_block_validity(inode, map);
706                 if (ret != 0)
707                         return ret;
708
709                 /*
710                  * Inodes with freshly allocated blocks where contents will be
711                  * visible after transaction commit must be on transaction's
712                  * ordered data list.
713                  */
714                 if (map->m_flags & EXT4_MAP_NEW &&
715                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
717                     !ext4_is_quota_file(inode) &&
718                     ext4_should_order_data(inode)) {
719                         loff_t start_byte =
720                                 (loff_t)map->m_lblk << inode->i_blkbits;
721                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
725                                                 start_byte, length);
726                         else
727                                 ret = ext4_jbd2_inode_add_write(handle, inode,
728                                                 start_byte, length);
729                         if (ret)
730                                 return ret;
731                 }
732         }
733         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734                                 map->m_flags & EXT4_MAP_MAPPED))
735                 ext4_fc_track_range(handle, inode, map->m_lblk,
736                                         map->m_lblk + map->m_len - 1);
737         if (retval < 0)
738                 ext_debug(inode, "failed with err %d\n", retval);
739         return retval;
740 }
741
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748         unsigned long old_state;
749         unsigned long new_state;
750
751         flags &= EXT4_MAP_FLAGS;
752
753         /* Dummy buffer_head? Set non-atomically. */
754         if (!bh->b_page) {
755                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756                 return;
757         }
758         /*
759          * Someone else may be modifying b_state. Be careful! This is ugly but
760          * once we get rid of using bh as a container for mapping information
761          * to pass to / from get_block functions, this can go away.
762          */
763         old_state = READ_ONCE(bh->b_state);
764         do {
765                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         int ret = 0;
811
812         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813                    inode->i_ino, create);
814         ret = _ext4_get_block(inode, iblock, bh_result,
815                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816
817         /*
818          * If the buffer is marked unwritten, mark it as new to make sure it is
819          * zeroed out correctly in case of partial writes. Otherwise, there is
820          * a chance of stale data getting exposed.
821          */
822         if (ret == 0 && buffer_unwritten(bh_result))
823                 set_buffer_new(bh_result);
824
825         return ret;
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841         int err;
842
843         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844                     || handle != NULL || create == 0);
845         ASSERT(create == 0 || !nowait);
846
847         map.m_lblk = block;
848         map.m_len = 1;
849         err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851         if (err == 0)
852                 return create ? ERR_PTR(-ENOSPC) : NULL;
853         if (err < 0)
854                 return ERR_PTR(err);
855
856         if (nowait)
857                 return sb_find_get_block(inode->i_sb, map.m_pblk);
858
859         /*
860          * Since bh could introduce extra ref count such as referred by
861          * journal_head etc. Try to avoid using __GFP_MOVABLE here
862          * as it may fail the migration when journal_head remains.
863          */
864         bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
865                                 inode->i_sb->s_blocksize);
866
867         if (unlikely(!bh))
868                 return ERR_PTR(-ENOMEM);
869         if (map.m_flags & EXT4_MAP_NEW) {
870                 ASSERT(create != 0);
871                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872                             || (handle != NULL));
873
874                 /*
875                  * Now that we do not always journal data, we should
876                  * keep in mind whether this should always journal the
877                  * new buffer as metadata.  For now, regular file
878                  * writes use ext4_get_block instead, so it's not a
879                  * problem.
880                  */
881                 lock_buffer(bh);
882                 BUFFER_TRACE(bh, "call get_create_access");
883                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884                                                      EXT4_JTR_NONE);
885                 if (unlikely(err)) {
886                         unlock_buffer(bh);
887                         goto errout;
888                 }
889                 if (!buffer_uptodate(bh)) {
890                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891                         set_buffer_uptodate(bh);
892                 }
893                 unlock_buffer(bh);
894                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895                 err = ext4_handle_dirty_metadata(handle, inode, bh);
896                 if (unlikely(err))
897                         goto errout;
898         } else
899                 BUFFER_TRACE(bh, "not a new buffer");
900         return bh;
901 errout:
902         brelse(bh);
903         return ERR_PTR(err);
904 }
905
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907                                ext4_lblk_t block, int map_flags)
908 {
909         struct buffer_head *bh;
910         int ret;
911
912         bh = ext4_getblk(handle, inode, block, map_flags);
913         if (IS_ERR(bh))
914                 return bh;
915         if (!bh || ext4_buffer_uptodate(bh))
916                 return bh;
917
918         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919         if (ret) {
920                 put_bh(bh);
921                 return ERR_PTR(ret);
922         }
923         return bh;
924 }
925
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928                      bool wait, struct buffer_head **bhs)
929 {
930         int i, err;
931
932         for (i = 0; i < bh_count; i++) {
933                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934                 if (IS_ERR(bhs[i])) {
935                         err = PTR_ERR(bhs[i]);
936                         bh_count = i;
937                         goto out_brelse;
938                 }
939         }
940
941         for (i = 0; i < bh_count; i++)
942                 /* Note that NULL bhs[i] is valid because of holes. */
943                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945
946         if (!wait)
947                 return 0;
948
949         for (i = 0; i < bh_count; i++)
950                 if (bhs[i])
951                         wait_on_buffer(bhs[i]);
952
953         for (i = 0; i < bh_count; i++) {
954                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
955                         err = -EIO;
956                         goto out_brelse;
957                 }
958         }
959         return 0;
960
961 out_brelse:
962         for (i = 0; i < bh_count; i++) {
963                 brelse(bhs[i]);
964                 bhs[i] = NULL;
965         }
966         return err;
967 }
968
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970                            struct buffer_head *head,
971                            unsigned from,
972                            unsigned to,
973                            int *partial,
974                            int (*fn)(handle_t *handle, struct inode *inode,
975                                      struct buffer_head *bh))
976 {
977         struct buffer_head *bh;
978         unsigned block_start, block_end;
979         unsigned blocksize = head->b_size;
980         int err, ret = 0;
981         struct buffer_head *next;
982
983         for (bh = head, block_start = 0;
984              ret == 0 && (bh != head || !block_start);
985              block_start = block_end, bh = next) {
986                 next = bh->b_this_page;
987                 block_end = block_start + blocksize;
988                 if (block_end <= from || block_start >= to) {
989                         if (partial && !buffer_uptodate(bh))
990                                 *partial = 1;
991                         continue;
992                 }
993                 err = (*fn)(handle, inode, bh);
994                 if (!ret)
995                         ret = err;
996         }
997         return ret;
998 }
999
1000 /*
1001  * Helper for handling dirtying of journalled data. We also mark the folio as
1002  * dirty so that writeback code knows about this page (and inode) contains
1003  * dirty data. ext4_writepages() then commits appropriate transaction to
1004  * make data stable.
1005  */
1006 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007 {
1008         folio_mark_dirty(bh->b_folio);
1009         return ext4_handle_dirty_metadata(handle, NULL, bh);
1010 }
1011
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                 struct buffer_head *bh)
1014 {
1015         if (!buffer_mapped(bh) || buffer_freed(bh))
1016                 return 0;
1017         BUFFER_TRACE(bh, "get write access");
1018         return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019                                             EXT4_JTR_NONE);
1020 }
1021
1022 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023                            loff_t pos, unsigned len,
1024                            get_block_t *get_block)
1025 {
1026         unsigned from = pos & (PAGE_SIZE - 1);
1027         unsigned to = from + len;
1028         struct inode *inode = folio->mapping->host;
1029         unsigned block_start, block_end;
1030         sector_t block;
1031         int err = 0;
1032         unsigned blocksize = inode->i_sb->s_blocksize;
1033         unsigned bbits;
1034         struct buffer_head *bh, *head, *wait[2];
1035         int nr_wait = 0;
1036         int i;
1037         bool should_journal_data = ext4_should_journal_data(inode);
1038
1039         BUG_ON(!folio_test_locked(folio));
1040         BUG_ON(from > PAGE_SIZE);
1041         BUG_ON(to > PAGE_SIZE);
1042         BUG_ON(from > to);
1043
1044         head = folio_buffers(folio);
1045         if (!head)
1046                 head = create_empty_buffers(folio, blocksize, 0);
1047         bbits = ilog2(blocksize);
1048         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050         for (bh = head, block_start = 0; bh != head || !block_start;
1051             block++, block_start = block_end, bh = bh->b_this_page) {
1052                 block_end = block_start + blocksize;
1053                 if (block_end <= from || block_start >= to) {
1054                         if (folio_test_uptodate(folio)) {
1055                                 set_buffer_uptodate(bh);
1056                         }
1057                         continue;
1058                 }
1059                 if (buffer_new(bh))
1060                         clear_buffer_new(bh);
1061                 if (!buffer_mapped(bh)) {
1062                         WARN_ON(bh->b_size != blocksize);
1063                         err = get_block(inode, block, bh, 1);
1064                         if (err)
1065                                 break;
1066                         if (buffer_new(bh)) {
1067                                 /*
1068                                  * We may be zeroing partial buffers or all new
1069                                  * buffers in case of failure. Prepare JBD2 for
1070                                  * that.
1071                                  */
1072                                 if (should_journal_data)
1073                                         do_journal_get_write_access(handle,
1074                                                                     inode, bh);
1075                                 if (folio_test_uptodate(folio)) {
1076                                         /*
1077                                          * Unlike __block_write_begin() we leave
1078                                          * dirtying of new uptodate buffers to
1079                                          * ->write_end() time or
1080                                          * folio_zero_new_buffers().
1081                                          */
1082                                         set_buffer_uptodate(bh);
1083                                         continue;
1084                                 }
1085                                 if (block_end > to || block_start < from)
1086                                         folio_zero_segments(folio, to,
1087                                                             block_end,
1088                                                             block_start, from);
1089                                 continue;
1090                         }
1091                 }
1092                 if (folio_test_uptodate(folio)) {
1093                         set_buffer_uptodate(bh);
1094                         continue;
1095                 }
1096                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097                     !buffer_unwritten(bh) &&
1098                     (block_start < from || block_end > to)) {
1099                         ext4_read_bh_lock(bh, 0, false);
1100                         wait[nr_wait++] = bh;
1101                 }
1102         }
1103         /*
1104          * If we issued read requests, let them complete.
1105          */
1106         for (i = 0; i < nr_wait; i++) {
1107                 wait_on_buffer(wait[i]);
1108                 if (!buffer_uptodate(wait[i]))
1109                         err = -EIO;
1110         }
1111         if (unlikely(err)) {
1112                 if (should_journal_data)
1113                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1114                                                          from, to);
1115                 else
1116                         folio_zero_new_buffers(folio, from, to);
1117         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118                 for (i = 0; i < nr_wait; i++) {
1119                         int err2;
1120
1121                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122                                                 blocksize, bh_offset(wait[i]));
1123                         if (err2) {
1124                                 clear_buffer_uptodate(wait[i]);
1125                                 err = err2;
1126                         }
1127                 }
1128         }
1129
1130         return err;
1131 }
1132
1133 /*
1134  * To preserve ordering, it is essential that the hole instantiation and
1135  * the data write be encapsulated in a single transaction.  We cannot
1136  * close off a transaction and start a new one between the ext4_get_block()
1137  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138  * ext4_write_begin() is the right place.
1139  */
1140 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141                             loff_t pos, unsigned len,
1142                             struct folio **foliop, void **fsdata)
1143 {
1144         struct inode *inode = mapping->host;
1145         int ret, needed_blocks;
1146         handle_t *handle;
1147         int retries = 0;
1148         struct folio *folio;
1149         pgoff_t index;
1150         unsigned from, to;
1151
1152         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153                 return -EIO;
1154
1155         trace_ext4_write_begin(inode, pos, len);
1156         /*
1157          * Reserve one block more for addition to orphan list in case
1158          * we allocate blocks but write fails for some reason
1159          */
1160         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161         index = pos >> PAGE_SHIFT;
1162         from = pos & (PAGE_SIZE - 1);
1163         to = from + len;
1164
1165         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167                                                     foliop);
1168                 if (ret < 0)
1169                         return ret;
1170                 if (ret == 1)
1171                         return 0;
1172         }
1173
1174         /*
1175          * __filemap_get_folio() can take a long time if the
1176          * system is thrashing due to memory pressure, or if the folio
1177          * is being written back.  So grab it first before we start
1178          * the transaction handle.  This also allows us to allocate
1179          * the folio (if needed) without using GFP_NOFS.
1180          */
1181 retry_grab:
1182         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183                                         mapping_gfp_mask(mapping));
1184         if (IS_ERR(folio))
1185                 return PTR_ERR(folio);
1186         /*
1187          * The same as page allocation, we prealloc buffer heads before
1188          * starting the handle.
1189          */
1190         if (!folio_buffers(folio))
1191                 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193         folio_unlock(folio);
1194
1195 retry_journal:
1196         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197         if (IS_ERR(handle)) {
1198                 folio_put(folio);
1199                 return PTR_ERR(handle);
1200         }
1201
1202         folio_lock(folio);
1203         if (folio->mapping != mapping) {
1204                 /* The folio got truncated from under us */
1205                 folio_unlock(folio);
1206                 folio_put(folio);
1207                 ext4_journal_stop(handle);
1208                 goto retry_grab;
1209         }
1210         /* In case writeback began while the folio was unlocked */
1211         folio_wait_stable(folio);
1212
1213         if (ext4_should_dioread_nolock(inode))
1214                 ret = ext4_block_write_begin(handle, folio, pos, len,
1215                                              ext4_get_block_unwritten);
1216         else
1217                 ret = ext4_block_write_begin(handle, folio, pos, len,
1218                                              ext4_get_block);
1219         if (!ret && ext4_should_journal_data(inode)) {
1220                 ret = ext4_walk_page_buffers(handle, inode,
1221                                              folio_buffers(folio), from, to,
1222                                              NULL, do_journal_get_write_access);
1223         }
1224
1225         if (ret) {
1226                 bool extended = (pos + len > inode->i_size) &&
1227                                 !ext4_verity_in_progress(inode);
1228
1229                 folio_unlock(folio);
1230                 /*
1231                  * ext4_block_write_begin may have instantiated a few blocks
1232                  * outside i_size.  Trim these off again. Don't need
1233                  * i_size_read because we hold i_rwsem.
1234                  *
1235                  * Add inode to orphan list in case we crash before
1236                  * truncate finishes
1237                  */
1238                 if (extended && ext4_can_truncate(inode))
1239                         ext4_orphan_add(handle, inode);
1240
1241                 ext4_journal_stop(handle);
1242                 if (extended) {
1243                         ext4_truncate_failed_write(inode);
1244                         /*
1245                          * If truncate failed early the inode might
1246                          * still be on the orphan list; we need to
1247                          * make sure the inode is removed from the
1248                          * orphan list in that case.
1249                          */
1250                         if (inode->i_nlink)
1251                                 ext4_orphan_del(NULL, inode);
1252                 }
1253
1254                 if (ret == -ENOSPC &&
1255                     ext4_should_retry_alloc(inode->i_sb, &retries))
1256                         goto retry_journal;
1257                 folio_put(folio);
1258                 return ret;
1259         }
1260         *foliop = folio;
1261         return ret;
1262 }
1263
1264 /* For write_end() in data=journal mode */
1265 static int write_end_fn(handle_t *handle, struct inode *inode,
1266                         struct buffer_head *bh)
1267 {
1268         int ret;
1269         if (!buffer_mapped(bh) || buffer_freed(bh))
1270                 return 0;
1271         set_buffer_uptodate(bh);
1272         ret = ext4_dirty_journalled_data(handle, bh);
1273         clear_buffer_meta(bh);
1274         clear_buffer_prio(bh);
1275         return ret;
1276 }
1277
1278 /*
1279  * We need to pick up the new inode size which generic_commit_write gave us
1280  * `file' can be NULL - eg, when called from page_symlink().
1281  *
1282  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283  * buffers are managed internally.
1284  */
1285 static int ext4_write_end(struct file *file,
1286                           struct address_space *mapping,
1287                           loff_t pos, unsigned len, unsigned copied,
1288                           struct folio *folio, void *fsdata)
1289 {
1290         handle_t *handle = ext4_journal_current_handle();
1291         struct inode *inode = mapping->host;
1292         loff_t old_size = inode->i_size;
1293         int ret = 0, ret2;
1294         int i_size_changed = 0;
1295         bool verity = ext4_verity_in_progress(inode);
1296
1297         trace_ext4_write_end(inode, pos, len, copied);
1298
1299         if (ext4_has_inline_data(inode) &&
1300             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301                 return ext4_write_inline_data_end(inode, pos, len, copied,
1302                                                   folio);
1303
1304         copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305         /*
1306          * it's important to update i_size while still holding folio lock:
1307          * page writeout could otherwise come in and zero beyond i_size.
1308          *
1309          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310          * blocks are being written past EOF, so skip the i_size update.
1311          */
1312         if (!verity)
1313                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314         folio_unlock(folio);
1315         folio_put(folio);
1316
1317         if (old_size < pos && !verity) {
1318                 pagecache_isize_extended(inode, old_size, pos);
1319                 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320         }
1321         /*
1322          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323          * makes the holding time of folio lock longer. Second, it forces lock
1324          * ordering of folio lock and transaction start for journaling
1325          * filesystems.
1326          */
1327         if (i_size_changed)
1328                 ret = ext4_mark_inode_dirty(handle, inode);
1329
1330         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331                 /* if we have allocated more blocks and copied
1332                  * less. We will have blocks allocated outside
1333                  * inode->i_size. So truncate them
1334                  */
1335                 ext4_orphan_add(handle, inode);
1336
1337         ret2 = ext4_journal_stop(handle);
1338         if (!ret)
1339                 ret = ret2;
1340
1341         if (pos + len > inode->i_size && !verity) {
1342                 ext4_truncate_failed_write(inode);
1343                 /*
1344                  * If truncate failed early the inode might still be
1345                  * on the orphan list; we need to make sure the inode
1346                  * is removed from the orphan list in that case.
1347                  */
1348                 if (inode->i_nlink)
1349                         ext4_orphan_del(NULL, inode);
1350         }
1351
1352         return ret ? ret : copied;
1353 }
1354
1355 /*
1356  * This is a private version of folio_zero_new_buffers() which doesn't
1357  * set the buffer to be dirty, since in data=journalled mode we need
1358  * to call ext4_dirty_journalled_data() instead.
1359  */
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361                                             struct inode *inode,
1362                                             struct folio *folio,
1363                                             unsigned from, unsigned to)
1364 {
1365         unsigned int block_start = 0, block_end;
1366         struct buffer_head *head, *bh;
1367
1368         bh = head = folio_buffers(folio);
1369         do {
1370                 block_end = block_start + bh->b_size;
1371                 if (buffer_new(bh)) {
1372                         if (block_end > from && block_start < to) {
1373                                 if (!folio_test_uptodate(folio)) {
1374                                         unsigned start, size;
1375
1376                                         start = max(from, block_start);
1377                                         size = min(to, block_end) - start;
1378
1379                                         folio_zero_range(folio, start, size);
1380                                 }
1381                                 clear_buffer_new(bh);
1382                                 write_end_fn(handle, inode, bh);
1383                         }
1384                 }
1385                 block_start = block_end;
1386                 bh = bh->b_this_page;
1387         } while (bh != head);
1388 }
1389
1390 static int ext4_journalled_write_end(struct file *file,
1391                                      struct address_space *mapping,
1392                                      loff_t pos, unsigned len, unsigned copied,
1393                                      struct folio *folio, void *fsdata)
1394 {
1395         handle_t *handle = ext4_journal_current_handle();
1396         struct inode *inode = mapping->host;
1397         loff_t old_size = inode->i_size;
1398         int ret = 0, ret2;
1399         int partial = 0;
1400         unsigned from, to;
1401         int size_changed = 0;
1402         bool verity = ext4_verity_in_progress(inode);
1403
1404         trace_ext4_journalled_write_end(inode, pos, len, copied);
1405         from = pos & (PAGE_SIZE - 1);
1406         to = from + len;
1407
1408         BUG_ON(!ext4_handle_valid(handle));
1409
1410         if (ext4_has_inline_data(inode))
1411                 return ext4_write_inline_data_end(inode, pos, len, copied,
1412                                                   folio);
1413
1414         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415                 copied = 0;
1416                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1417                                                  from, to);
1418         } else {
1419                 if (unlikely(copied < len))
1420                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1421                                                          from + copied, to);
1422                 ret = ext4_walk_page_buffers(handle, inode,
1423                                              folio_buffers(folio),
1424                                              from, from + copied, &partial,
1425                                              write_end_fn);
1426                 if (!partial)
1427                         folio_mark_uptodate(folio);
1428         }
1429         if (!verity)
1430                 size_changed = ext4_update_inode_size(inode, pos + copied);
1431         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432         folio_unlock(folio);
1433         folio_put(folio);
1434
1435         if (old_size < pos && !verity) {
1436                 pagecache_isize_extended(inode, old_size, pos);
1437                 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438         }
1439
1440         if (size_changed) {
1441                 ret2 = ext4_mark_inode_dirty(handle, inode);
1442                 if (!ret)
1443                         ret = ret2;
1444         }
1445
1446         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447                 /* if we have allocated more blocks and copied
1448                  * less. We will have blocks allocated outside
1449                  * inode->i_size. So truncate them
1450                  */
1451                 ext4_orphan_add(handle, inode);
1452
1453         ret2 = ext4_journal_stop(handle);
1454         if (!ret)
1455                 ret = ret2;
1456         if (pos + len > inode->i_size && !verity) {
1457                 ext4_truncate_failed_write(inode);
1458                 /*
1459                  * If truncate failed early the inode might still be
1460                  * on the orphan list; we need to make sure the inode
1461                  * is removed from the orphan list in that case.
1462                  */
1463                 if (inode->i_nlink)
1464                         ext4_orphan_del(NULL, inode);
1465         }
1466
1467         return ret ? ret : copied;
1468 }
1469
1470 /*
1471  * Reserve space for 'nr_resv' clusters
1472  */
1473 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474 {
1475         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476         struct ext4_inode_info *ei = EXT4_I(inode);
1477         int ret;
1478
1479         /*
1480          * We will charge metadata quota at writeout time; this saves
1481          * us from metadata over-estimation, though we may go over by
1482          * a small amount in the end.  Here we just reserve for data.
1483          */
1484         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485         if (ret)
1486                 return ret;
1487
1488         spin_lock(&ei->i_block_reservation_lock);
1489         if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490                 spin_unlock(&ei->i_block_reservation_lock);
1491                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492                 return -ENOSPC;
1493         }
1494         ei->i_reserved_data_blocks += nr_resv;
1495         trace_ext4_da_reserve_space(inode, nr_resv);
1496         spin_unlock(&ei->i_block_reservation_lock);
1497
1498         return 0;       /* success */
1499 }
1500
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1502 {
1503         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504         struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506         if (!to_free)
1507                 return;         /* Nothing to release, exit */
1508
1509         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511         trace_ext4_da_release_space(inode, to_free);
1512         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513                 /*
1514                  * if there aren't enough reserved blocks, then the
1515                  * counter is messed up somewhere.  Since this
1516                  * function is called from invalidate page, it's
1517                  * harmless to return without any action.
1518                  */
1519                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520                          "ino %lu, to_free %d with only %d reserved "
1521                          "data blocks", inode->i_ino, to_free,
1522                          ei->i_reserved_data_blocks);
1523                 WARN_ON(1);
1524                 to_free = ei->i_reserved_data_blocks;
1525         }
1526         ei->i_reserved_data_blocks -= to_free;
1527
1528         /* update fs dirty data blocks counter */
1529         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534 }
1535
1536 /*
1537  * Delayed allocation stuff
1538  */
1539
1540 struct mpage_da_data {
1541         /* These are input fields for ext4_do_writepages() */
1542         struct inode *inode;
1543         struct writeback_control *wbc;
1544         unsigned int can_map:1; /* Can writepages call map blocks? */
1545
1546         /* These are internal state of ext4_do_writepages() */
1547         pgoff_t first_page;     /* The first page to write */
1548         pgoff_t next_page;      /* Current page to examine */
1549         pgoff_t last_page;      /* Last page to examine */
1550         /*
1551          * Extent to map - this can be after first_page because that can be
1552          * fully mapped. We somewhat abuse m_flags to store whether the extent
1553          * is delalloc or unwritten.
1554          */
1555         struct ext4_map_blocks map;
1556         struct ext4_io_submit io_submit;        /* IO submission data */
1557         unsigned int do_map:1;
1558         unsigned int scanned_until_end:1;
1559         unsigned int journalled_more_data:1;
1560 };
1561
1562 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563                                        bool invalidate)
1564 {
1565         unsigned nr, i;
1566         pgoff_t index, end;
1567         struct folio_batch fbatch;
1568         struct inode *inode = mpd->inode;
1569         struct address_space *mapping = inode->i_mapping;
1570
1571         /* This is necessary when next_page == 0. */
1572         if (mpd->first_page >= mpd->next_page)
1573                 return;
1574
1575         mpd->scanned_until_end = 0;
1576         index = mpd->first_page;
1577         end   = mpd->next_page - 1;
1578         if (invalidate) {
1579                 ext4_lblk_t start, last;
1580                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1581                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583                 /*
1584                  * avoid racing with extent status tree scans made by
1585                  * ext4_insert_delayed_block()
1586                  */
1587                 down_write(&EXT4_I(inode)->i_data_sem);
1588                 ext4_es_remove_extent(inode, start, last - start + 1);
1589                 up_write(&EXT4_I(inode)->i_data_sem);
1590         }
1591
1592         folio_batch_init(&fbatch);
1593         while (index <= end) {
1594                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595                 if (nr == 0)
1596                         break;
1597                 for (i = 0; i < nr; i++) {
1598                         struct folio *folio = fbatch.folios[i];
1599
1600                         if (folio->index < mpd->first_page)
1601                                 continue;
1602                         if (folio_next_index(folio) - 1 > end)
1603                                 continue;
1604                         BUG_ON(!folio_test_locked(folio));
1605                         BUG_ON(folio_test_writeback(folio));
1606                         if (invalidate) {
1607                                 if (folio_mapped(folio))
1608                                         folio_clear_dirty_for_io(folio);
1609                                 block_invalidate_folio(folio, 0,
1610                                                 folio_size(folio));
1611                                 folio_clear_uptodate(folio);
1612                         }
1613                         folio_unlock(folio);
1614                 }
1615                 folio_batch_release(&fbatch);
1616         }
1617 }
1618
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622         struct super_block *sb = inode->i_sb;
1623         struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626                EXT4_C2B(EXT4_SB(inode->i_sb),
1627                         ext4_count_free_clusters(sb)));
1628         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630                (long long) EXT4_C2B(EXT4_SB(sb),
1631                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633                (long long) EXT4_C2B(EXT4_SB(sb),
1634                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637                  ei->i_reserved_data_blocks);
1638         return;
1639 }
1640
1641 /*
1642  * Check whether the cluster containing lblk has been allocated or has
1643  * delalloc reservation.
1644  *
1645  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646  * reservation, 2 if it's already been allocated, negative error code on
1647  * failure.
1648  */
1649 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650 {
1651         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652         int ret;
1653
1654         /* Has delalloc reservation? */
1655         if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656                 return 1;
1657
1658         /* Already been allocated? */
1659         if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660                 return 2;
1661         ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662         if (ret < 0)
1663                 return ret;
1664         if (ret > 0)
1665                 return 2;
1666
1667         return 0;
1668 }
1669
1670 /*
1671  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672  *                              status tree, incrementing the reserved
1673  *                              cluster/block count or making pending
1674  *                              reservations where needed
1675  *
1676  * @inode - file containing the newly added block
1677  * @lblk - start logical block to be added
1678  * @len - length of blocks to be added
1679  *
1680  * Returns 0 on success, negative error code on failure.
1681  */
1682 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683                                       ext4_lblk_t len)
1684 {
1685         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686         int ret;
1687         bool lclu_allocated = false;
1688         bool end_allocated = false;
1689         ext4_lblk_t resv_clu;
1690         ext4_lblk_t end = lblk + len - 1;
1691
1692         /*
1693          * If the cluster containing lblk or end is shared with a delayed,
1694          * written, or unwritten extent in a bigalloc file system, it's
1695          * already been accounted for and does not need to be reserved.
1696          * A pending reservation must be made for the cluster if it's
1697          * shared with a written or unwritten extent and doesn't already
1698          * have one.  Written and unwritten extents can be purged from the
1699          * extents status tree if the system is under memory pressure, so
1700          * it's necessary to examine the extent tree if a search of the
1701          * extents status tree doesn't get a match.
1702          */
1703         if (sbi->s_cluster_ratio == 1) {
1704                 ret = ext4_da_reserve_space(inode, len);
1705                 if (ret != 0)   /* ENOSPC */
1706                         return ret;
1707         } else {   /* bigalloc */
1708                 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710                 ret = ext4_clu_alloc_state(inode, lblk);
1711                 if (ret < 0)
1712                         return ret;
1713                 if (ret > 0) {
1714                         resv_clu--;
1715                         lclu_allocated = (ret == 2);
1716                 }
1717
1718                 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719                         ret = ext4_clu_alloc_state(inode, end);
1720                         if (ret < 0)
1721                                 return ret;
1722                         if (ret > 0) {
1723                                 resv_clu--;
1724                                 end_allocated = (ret == 2);
1725                         }
1726                 }
1727
1728                 if (resv_clu) {
1729                         ret = ext4_da_reserve_space(inode, resv_clu);
1730                         if (ret != 0)   /* ENOSPC */
1731                                 return ret;
1732                 }
1733         }
1734
1735         ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736                                       end_allocated);
1737         return 0;
1738 }
1739
1740 /*
1741  * Looks up the requested blocks and sets the delalloc extent map.
1742  * First try to look up for the extent entry that contains the requested
1743  * blocks in the extent status tree without i_data_sem, then try to look
1744  * up for the ondisk extent mapping with i_data_sem in read mode,
1745  * finally hold i_data_sem in write mode, looks up again and add a
1746  * delalloc extent entry if it still couldn't find any extent. Pass out
1747  * the mapped extent through @map and return 0 on success.
1748  */
1749 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750 {
1751         struct extent_status es;
1752         int retval;
1753 #ifdef ES_AGGRESSIVE_TEST
1754         struct ext4_map_blocks orig_map;
1755
1756         memcpy(&orig_map, map, sizeof(*map));
1757 #endif
1758
1759         map->m_flags = 0;
1760         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761                   (unsigned long) map->m_lblk);
1762
1763         /* Lookup extent status tree firstly */
1764         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765                 map->m_len = min_t(unsigned int, map->m_len,
1766                                    es.es_len - (map->m_lblk - es.es_lblk));
1767
1768                 if (ext4_es_is_hole(&es))
1769                         goto add_delayed;
1770
1771 found:
1772                 /*
1773                  * Delayed extent could be allocated by fallocate.
1774                  * So we need to check it.
1775                  */
1776                 if (ext4_es_is_delayed(&es)) {
1777                         map->m_flags |= EXT4_MAP_DELAYED;
1778                         return 0;
1779                 }
1780
1781                 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1782                 if (ext4_es_is_written(&es))
1783                         map->m_flags |= EXT4_MAP_MAPPED;
1784                 else if (ext4_es_is_unwritten(&es))
1785                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1786                 else
1787                         BUG();
1788
1789 #ifdef ES_AGGRESSIVE_TEST
1790                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791 #endif
1792                 return 0;
1793         }
1794
1795         /*
1796          * Try to see if we can get the block without requesting a new
1797          * file system block.
1798          */
1799         down_read(&EXT4_I(inode)->i_data_sem);
1800         if (ext4_has_inline_data(inode))
1801                 retval = 0;
1802         else
1803                 retval = ext4_map_query_blocks(NULL, inode, map);
1804         up_read(&EXT4_I(inode)->i_data_sem);
1805         if (retval)
1806                 return retval < 0 ? retval : 0;
1807
1808 add_delayed:
1809         down_write(&EXT4_I(inode)->i_data_sem);
1810         /*
1811          * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812          * and fallocate path (no folio lock) can race. Make sure we
1813          * lookup the extent status tree here again while i_data_sem
1814          * is held in write mode, before inserting a new da entry in
1815          * the extent status tree.
1816          */
1817         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818                 map->m_len = min_t(unsigned int, map->m_len,
1819                                    es.es_len - (map->m_lblk - es.es_lblk));
1820
1821                 if (!ext4_es_is_hole(&es)) {
1822                         up_write(&EXT4_I(inode)->i_data_sem);
1823                         goto found;
1824                 }
1825         } else if (!ext4_has_inline_data(inode)) {
1826                 retval = ext4_map_query_blocks(NULL, inode, map);
1827                 if (retval) {
1828                         up_write(&EXT4_I(inode)->i_data_sem);
1829                         return retval < 0 ? retval : 0;
1830                 }
1831         }
1832
1833         map->m_flags |= EXT4_MAP_DELAYED;
1834         retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835         up_write(&EXT4_I(inode)->i_data_sem);
1836
1837         return retval;
1838 }
1839
1840 /*
1841  * This is a special get_block_t callback which is used by
1842  * ext4_da_write_begin().  It will either return mapped block or
1843  * reserve space for a single block.
1844  *
1845  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846  * We also have b_blocknr = -1 and b_bdev initialized properly
1847  *
1848  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850  * initialized properly.
1851  */
1852 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853                            struct buffer_head *bh, int create)
1854 {
1855         struct ext4_map_blocks map;
1856         sector_t invalid_block = ~((sector_t) 0xffff);
1857         int ret = 0;
1858
1859         BUG_ON(create == 0);
1860         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863                 invalid_block = ~0;
1864
1865         map.m_lblk = iblock;
1866         map.m_len = 1;
1867
1868         /*
1869          * first, we need to know whether the block is allocated already
1870          * preallocated blocks are unmapped but should treated
1871          * the same as allocated blocks.
1872          */
1873         ret = ext4_da_map_blocks(inode, &map);
1874         if (ret < 0)
1875                 return ret;
1876
1877         if (map.m_flags & EXT4_MAP_DELAYED) {
1878                 map_bh(bh, inode->i_sb, invalid_block);
1879                 set_buffer_new(bh);
1880                 set_buffer_delay(bh);
1881                 return 0;
1882         }
1883
1884         map_bh(bh, inode->i_sb, map.m_pblk);
1885         ext4_update_bh_state(bh, map.m_flags);
1886
1887         if (buffer_unwritten(bh)) {
1888                 /* A delayed write to unwritten bh should be marked
1889                  * new and mapped.  Mapped ensures that we don't do
1890                  * get_block multiple times when we write to the same
1891                  * offset and new ensures that we do proper zero out
1892                  * for partial write.
1893                  */
1894                 set_buffer_new(bh);
1895                 set_buffer_mapped(bh);
1896         }
1897         return 0;
1898 }
1899
1900 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901 {
1902         mpd->first_page += folio_nr_pages(folio);
1903         folio_unlock(folio);
1904 }
1905
1906 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907 {
1908         size_t len;
1909         loff_t size;
1910         int err;
1911
1912         BUG_ON(folio->index != mpd->first_page);
1913         folio_clear_dirty_for_io(folio);
1914         /*
1915          * We have to be very careful here!  Nothing protects writeback path
1916          * against i_size changes and the page can be writeably mapped into
1917          * page tables. So an application can be growing i_size and writing
1918          * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919          * write-protects our page in page tables and the page cannot get
1920          * written to again until we release folio lock. So only after
1921          * folio_clear_dirty_for_io() we are safe to sample i_size for
1922          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923          * on the barrier provided by folio_test_clear_dirty() in
1924          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925          * after page tables are updated.
1926          */
1927         size = i_size_read(mpd->inode);
1928         len = folio_size(folio);
1929         if (folio_pos(folio) + len > size &&
1930             !ext4_verity_in_progress(mpd->inode))
1931                 len = size & (len - 1);
1932         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933         if (!err)
1934                 mpd->wbc->nr_to_write--;
1935
1936         return err;
1937 }
1938
1939 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941 /*
1942  * mballoc gives us at most this number of blocks...
1943  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944  * The rest of mballoc seems to handle chunks up to full group size.
1945  */
1946 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948 /*
1949  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950  *
1951  * @mpd - extent of blocks
1952  * @lblk - logical number of the block in the file
1953  * @bh - buffer head we want to add to the extent
1954  *
1955  * The function is used to collect contig. blocks in the same state. If the
1956  * buffer doesn't require mapping for writeback and we haven't started the
1957  * extent of buffers to map yet, the function returns 'true' immediately - the
1958  * caller can write the buffer right away. Otherwise the function returns true
1959  * if the block has been added to the extent, false if the block couldn't be
1960  * added.
1961  */
1962 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963                                    struct buffer_head *bh)
1964 {
1965         struct ext4_map_blocks *map = &mpd->map;
1966
1967         /* Buffer that doesn't need mapping for writeback? */
1968         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970                 /* So far no extent to map => we write the buffer right away */
1971                 if (map->m_len == 0)
1972                         return true;
1973                 return false;
1974         }
1975
1976         /* First block in the extent? */
1977         if (map->m_len == 0) {
1978                 /* We cannot map unless handle is started... */
1979                 if (!mpd->do_map)
1980                         return false;
1981                 map->m_lblk = lblk;
1982                 map->m_len = 1;
1983                 map->m_flags = bh->b_state & BH_FLAGS;
1984                 return true;
1985         }
1986
1987         /* Don't go larger than mballoc is willing to allocate */
1988         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989                 return false;
1990
1991         /* Can we merge the block to our big extent? */
1992         if (lblk == map->m_lblk + map->m_len &&
1993             (bh->b_state & BH_FLAGS) == map->m_flags) {
1994                 map->m_len++;
1995                 return true;
1996         }
1997         return false;
1998 }
1999
2000 /*
2001  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002  *
2003  * @mpd - extent of blocks for mapping
2004  * @head - the first buffer in the page
2005  * @bh - buffer we should start processing from
2006  * @lblk - logical number of the block in the file corresponding to @bh
2007  *
2008  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009  * the page for IO if all buffers in this page were mapped and there's no
2010  * accumulated extent of buffers to map or add buffers in the page to the
2011  * extent of buffers to map. The function returns 1 if the caller can continue
2012  * by processing the next page, 0 if it should stop adding buffers to the
2013  * extent to map because we cannot extend it anymore. It can also return value
2014  * < 0 in case of error during IO submission.
2015  */
2016 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017                                    struct buffer_head *head,
2018                                    struct buffer_head *bh,
2019                                    ext4_lblk_t lblk)
2020 {
2021         struct inode *inode = mpd->inode;
2022         int err;
2023         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024                                                         >> inode->i_blkbits;
2025
2026         if (ext4_verity_in_progress(inode))
2027                 blocks = EXT_MAX_BLOCKS;
2028
2029         do {
2030                 BUG_ON(buffer_locked(bh));
2031
2032                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033                         /* Found extent to map? */
2034                         if (mpd->map.m_len)
2035                                 return 0;
2036                         /* Buffer needs mapping and handle is not started? */
2037                         if (!mpd->do_map)
2038                                 return 0;
2039                         /* Everything mapped so far and we hit EOF */
2040                         break;
2041                 }
2042         } while (lblk++, (bh = bh->b_this_page) != head);
2043         /* So far everything mapped? Submit the page for IO. */
2044         if (mpd->map.m_len == 0) {
2045                 err = mpage_submit_folio(mpd, head->b_folio);
2046                 if (err < 0)
2047                         return err;
2048                 mpage_folio_done(mpd, head->b_folio);
2049         }
2050         if (lblk >= blocks) {
2051                 mpd->scanned_until_end = 1;
2052                 return 0;
2053         }
2054         return 1;
2055 }
2056
2057 /*
2058  * mpage_process_folio - update folio buffers corresponding to changed extent
2059  *                       and may submit fully mapped page for IO
2060  * @mpd: description of extent to map, on return next extent to map
2061  * @folio: Contains these buffers.
2062  * @m_lblk: logical block mapping.
2063  * @m_pblk: corresponding physical mapping.
2064  * @map_bh: determines on return whether this page requires any further
2065  *                mapping or not.
2066  *
2067  * Scan given folio buffers corresponding to changed extent and update buffer
2068  * state according to new extent state.
2069  * We map delalloc buffers to their physical location, clear unwritten bits.
2070  * If the given folio is not fully mapped, we update @mpd to the next extent in
2071  * the given folio that needs mapping & return @map_bh as true.
2072  */
2073 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075                               bool *map_bh)
2076 {
2077         struct buffer_head *head, *bh;
2078         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079         ext4_lblk_t lblk = *m_lblk;
2080         ext4_fsblk_t pblock = *m_pblk;
2081         int err = 0;
2082         int blkbits = mpd->inode->i_blkbits;
2083         ssize_t io_end_size = 0;
2084         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086         bh = head = folio_buffers(folio);
2087         do {
2088                 if (lblk < mpd->map.m_lblk)
2089                         continue;
2090                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091                         /*
2092                          * Buffer after end of mapped extent.
2093                          * Find next buffer in the folio to map.
2094                          */
2095                         mpd->map.m_len = 0;
2096                         mpd->map.m_flags = 0;
2097                         io_end_vec->size += io_end_size;
2098
2099                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100                         if (err > 0)
2101                                 err = 0;
2102                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2104                                 if (IS_ERR(io_end_vec)) {
2105                                         err = PTR_ERR(io_end_vec);
2106                                         goto out;
2107                                 }
2108                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109                         }
2110                         *map_bh = true;
2111                         goto out;
2112                 }
2113                 if (buffer_delay(bh)) {
2114                         clear_buffer_delay(bh);
2115                         bh->b_blocknr = pblock++;
2116                 }
2117                 clear_buffer_unwritten(bh);
2118                 io_end_size += (1 << blkbits);
2119         } while (lblk++, (bh = bh->b_this_page) != head);
2120
2121         io_end_vec->size += io_end_size;
2122         *map_bh = false;
2123 out:
2124         *m_lblk = lblk;
2125         *m_pblk = pblock;
2126         return err;
2127 }
2128
2129 /*
2130  * mpage_map_buffers - update buffers corresponding to changed extent and
2131  *                     submit fully mapped pages for IO
2132  *
2133  * @mpd - description of extent to map, on return next extent to map
2134  *
2135  * Scan buffers corresponding to changed extent (we expect corresponding pages
2136  * to be already locked) and update buffer state according to new extent state.
2137  * We map delalloc buffers to their physical location, clear unwritten bits,
2138  * and mark buffers as uninit when we perform writes to unwritten extents
2139  * and do extent conversion after IO is finished. If the last page is not fully
2140  * mapped, we update @map to the next extent in the last page that needs
2141  * mapping. Otherwise we submit the page for IO.
2142  */
2143 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144 {
2145         struct folio_batch fbatch;
2146         unsigned nr, i;
2147         struct inode *inode = mpd->inode;
2148         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149         pgoff_t start, end;
2150         ext4_lblk_t lblk;
2151         ext4_fsblk_t pblock;
2152         int err;
2153         bool map_bh = false;
2154
2155         start = mpd->map.m_lblk >> bpp_bits;
2156         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157         lblk = start << bpp_bits;
2158         pblock = mpd->map.m_pblk;
2159
2160         folio_batch_init(&fbatch);
2161         while (start <= end) {
2162                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163                 if (nr == 0)
2164                         break;
2165                 for (i = 0; i < nr; i++) {
2166                         struct folio *folio = fbatch.folios[i];
2167
2168                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169                                                  &map_bh);
2170                         /*
2171                          * If map_bh is true, means page may require further bh
2172                          * mapping, or maybe the page was submitted for IO.
2173                          * So we return to call further extent mapping.
2174                          */
2175                         if (err < 0 || map_bh)
2176                                 goto out;
2177                         /* Page fully mapped - let IO run! */
2178                         err = mpage_submit_folio(mpd, folio);
2179                         if (err < 0)
2180                                 goto out;
2181                         mpage_folio_done(mpd, folio);
2182                 }
2183                 folio_batch_release(&fbatch);
2184         }
2185         /* Extent fully mapped and matches with page boundary. We are done. */
2186         mpd->map.m_len = 0;
2187         mpd->map.m_flags = 0;
2188         return 0;
2189 out:
2190         folio_batch_release(&fbatch);
2191         return err;
2192 }
2193
2194 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195 {
2196         struct inode *inode = mpd->inode;
2197         struct ext4_map_blocks *map = &mpd->map;
2198         int get_blocks_flags;
2199         int err, dioread_nolock;
2200
2201         trace_ext4_da_write_pages_extent(inode, map);
2202         /*
2203          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204          * to convert an unwritten extent to be initialized (in the case
2205          * where we have written into one or more preallocated blocks).  It is
2206          * possible that we're going to need more metadata blocks than
2207          * previously reserved. However we must not fail because we're in
2208          * writeback and there is nothing we can do about it so it might result
2209          * in data loss.  So use reserved blocks to allocate metadata if
2210          * possible.
2211          */
2212         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214                            EXT4_GET_BLOCKS_IO_SUBMIT;
2215         dioread_nolock = ext4_should_dioread_nolock(inode);
2216         if (dioread_nolock)
2217                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2218
2219         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220         if (err < 0)
2221                 return err;
2222         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223                 if (!mpd->io_submit.io_end->handle &&
2224                     ext4_handle_valid(handle)) {
2225                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226                         handle->h_rsv_handle = NULL;
2227                 }
2228                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229         }
2230
2231         BUG_ON(map->m_len == 0);
2232         return 0;
2233 }
2234
2235 /*
2236  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237  *                               mpd->len and submit pages underlying it for IO
2238  *
2239  * @handle - handle for journal operations
2240  * @mpd - extent to map
2241  * @give_up_on_write - we set this to true iff there is a fatal error and there
2242  *                     is no hope of writing the data. The caller should discard
2243  *                     dirty pages to avoid infinite loops.
2244  *
2245  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247  * them to initialized or split the described range from larger unwritten
2248  * extent. Note that we need not map all the described range since allocation
2249  * can return less blocks or the range is covered by more unwritten extents. We
2250  * cannot map more because we are limited by reserved transaction credits. On
2251  * the other hand we always make sure that the last touched page is fully
2252  * mapped so that it can be written out (and thus forward progress is
2253  * guaranteed). After mapping we submit all mapped pages for IO.
2254  */
2255 static int mpage_map_and_submit_extent(handle_t *handle,
2256                                        struct mpage_da_data *mpd,
2257                                        bool *give_up_on_write)
2258 {
2259         struct inode *inode = mpd->inode;
2260         struct ext4_map_blocks *map = &mpd->map;
2261         int err;
2262         loff_t disksize;
2263         int progress = 0;
2264         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265         struct ext4_io_end_vec *io_end_vec;
2266
2267         io_end_vec = ext4_alloc_io_end_vec(io_end);
2268         if (IS_ERR(io_end_vec))
2269                 return PTR_ERR(io_end_vec);
2270         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271         do {
2272                 err = mpage_map_one_extent(handle, mpd);
2273                 if (err < 0) {
2274                         struct super_block *sb = inode->i_sb;
2275
2276                         if (ext4_forced_shutdown(sb))
2277                                 goto invalidate_dirty_pages;
2278                         /*
2279                          * Let the uper layers retry transient errors.
2280                          * In the case of ENOSPC, if ext4_count_free_blocks()
2281                          * is non-zero, a commit should free up blocks.
2282                          */
2283                         if ((err == -ENOMEM) ||
2284                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285                                 if (progress)
2286                                         goto update_disksize;
2287                                 return err;
2288                         }
2289                         ext4_msg(sb, KERN_CRIT,
2290                                  "Delayed block allocation failed for "
2291                                  "inode %lu at logical offset %llu with"
2292                                  " max blocks %u with error %d",
2293                                  inode->i_ino,
2294                                  (unsigned long long)map->m_lblk,
2295                                  (unsigned)map->m_len, -err);
2296                         ext4_msg(sb, KERN_CRIT,
2297                                  "This should not happen!! Data will "
2298                                  "be lost\n");
2299                         if (err == -ENOSPC)
2300                                 ext4_print_free_blocks(inode);
2301                 invalidate_dirty_pages:
2302                         *give_up_on_write = true;
2303                         return err;
2304                 }
2305                 progress = 1;
2306                 /*
2307                  * Update buffer state, submit mapped pages, and get us new
2308                  * extent to map
2309                  */
2310                 err = mpage_map_and_submit_buffers(mpd);
2311                 if (err < 0)
2312                         goto update_disksize;
2313         } while (map->m_len);
2314
2315 update_disksize:
2316         /*
2317          * Update on-disk size after IO is submitted.  Races with
2318          * truncate are avoided by checking i_size under i_data_sem.
2319          */
2320         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322                 int err2;
2323                 loff_t i_size;
2324
2325                 down_write(&EXT4_I(inode)->i_data_sem);
2326                 i_size = i_size_read(inode);
2327                 if (disksize > i_size)
2328                         disksize = i_size;
2329                 if (disksize > EXT4_I(inode)->i_disksize)
2330                         EXT4_I(inode)->i_disksize = disksize;
2331                 up_write(&EXT4_I(inode)->i_data_sem);
2332                 err2 = ext4_mark_inode_dirty(handle, inode);
2333                 if (err2) {
2334                         ext4_error_err(inode->i_sb, -err2,
2335                                        "Failed to mark inode %lu dirty",
2336                                        inode->i_ino);
2337                 }
2338                 if (!err)
2339                         err = err2;
2340         }
2341         return err;
2342 }
2343
2344 /*
2345  * Calculate the total number of credits to reserve for one writepages
2346  * iteration. This is called from ext4_writepages(). We map an extent of
2347  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349  * bpp - 1 blocks in bpp different extents.
2350  */
2351 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352 {
2353         int bpp = ext4_journal_blocks_per_page(inode);
2354
2355         return ext4_meta_trans_blocks(inode,
2356                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357 }
2358
2359 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360                                      size_t len)
2361 {
2362         struct buffer_head *page_bufs = folio_buffers(folio);
2363         struct inode *inode = folio->mapping->host;
2364         int ret, err;
2365
2366         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367                                      NULL, do_journal_get_write_access);
2368         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369                                      NULL, write_end_fn);
2370         if (ret == 0)
2371                 ret = err;
2372         err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373         if (ret == 0)
2374                 ret = err;
2375         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377         return ret;
2378 }
2379
2380 static int mpage_journal_page_buffers(handle_t *handle,
2381                                       struct mpage_da_data *mpd,
2382                                       struct folio *folio)
2383 {
2384         struct inode *inode = mpd->inode;
2385         loff_t size = i_size_read(inode);
2386         size_t len = folio_size(folio);
2387
2388         folio_clear_checked(folio);
2389         mpd->wbc->nr_to_write--;
2390
2391         if (folio_pos(folio) + len > size &&
2392             !ext4_verity_in_progress(inode))
2393                 len = size & (len - 1);
2394
2395         return ext4_journal_folio_buffers(handle, folio, len);
2396 }
2397
2398 /*
2399  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400  *                               needing mapping, submit mapped pages
2401  *
2402  * @mpd - where to look for pages
2403  *
2404  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405  * IO immediately. If we cannot map blocks, we submit just already mapped
2406  * buffers in the page for IO and keep page dirty. When we can map blocks and
2407  * we find a page which isn't mapped we start accumulating extent of buffers
2408  * underlying these pages that needs mapping (formed by either delayed or
2409  * unwritten buffers). We also lock the pages containing these buffers. The
2410  * extent found is returned in @mpd structure (starting at mpd->lblk with
2411  * length mpd->len blocks).
2412  *
2413  * Note that this function can attach bios to one io_end structure which are
2414  * neither logically nor physically contiguous. Although it may seem as an
2415  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416  * case as we need to track IO to all buffers underlying a page in one io_end.
2417  */
2418 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419 {
2420         struct address_space *mapping = mpd->inode->i_mapping;
2421         struct folio_batch fbatch;
2422         unsigned int nr_folios;
2423         pgoff_t index = mpd->first_page;
2424         pgoff_t end = mpd->last_page;
2425         xa_mark_t tag;
2426         int i, err = 0;
2427         int blkbits = mpd->inode->i_blkbits;
2428         ext4_lblk_t lblk;
2429         struct buffer_head *head;
2430         handle_t *handle = NULL;
2431         int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434                 tag = PAGECACHE_TAG_TOWRITE;
2435         else
2436                 tag = PAGECACHE_TAG_DIRTY;
2437
2438         mpd->map.m_len = 0;
2439         mpd->next_page = index;
2440         if (ext4_should_journal_data(mpd->inode)) {
2441                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442                                             bpp);
2443                 if (IS_ERR(handle))
2444                         return PTR_ERR(handle);
2445         }
2446         folio_batch_init(&fbatch);
2447         while (index <= end) {
2448                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449                                 tag, &fbatch);
2450                 if (nr_folios == 0)
2451                         break;
2452
2453                 for (i = 0; i < nr_folios; i++) {
2454                         struct folio *folio = fbatch.folios[i];
2455
2456                         /*
2457                          * Accumulated enough dirty pages? This doesn't apply
2458                          * to WB_SYNC_ALL mode. For integrity sync we have to
2459                          * keep going because someone may be concurrently
2460                          * dirtying pages, and we might have synced a lot of
2461                          * newly appeared dirty pages, but have not synced all
2462                          * of the old dirty pages.
2463                          */
2464                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465                             mpd->wbc->nr_to_write <=
2466                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467                                 goto out;
2468
2469                         /* If we can't merge this page, we are done. */
2470                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471                                 goto out;
2472
2473                         if (handle) {
2474                                 err = ext4_journal_ensure_credits(handle, bpp,
2475                                                                   0);
2476                                 if (err < 0)
2477                                         goto out;
2478                         }
2479
2480                         folio_lock(folio);
2481                         /*
2482                          * If the page is no longer dirty, or its mapping no
2483                          * longer corresponds to inode we are writing (which
2484                          * means it has been truncated or invalidated), or the
2485                          * page is already under writeback and we are not doing
2486                          * a data integrity writeback, skip the page
2487                          */
2488                         if (!folio_test_dirty(folio) ||
2489                             (folio_test_writeback(folio) &&
2490                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491                             unlikely(folio->mapping != mapping)) {
2492                                 folio_unlock(folio);
2493                                 continue;
2494                         }
2495
2496                         folio_wait_writeback(folio);
2497                         BUG_ON(folio_test_writeback(folio));
2498
2499                         /*
2500                          * Should never happen but for buggy code in
2501                          * other subsystems that call
2502                          * set_page_dirty() without properly warning
2503                          * the file system first.  See [1] for more
2504                          * information.
2505                          *
2506                          * [1] https://lore.kernel.org/linux-mm/[email protected]
2507                          */
2508                         if (!folio_buffers(folio)) {
2509                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510                                 folio_clear_dirty(folio);
2511                                 folio_unlock(folio);
2512                                 continue;
2513                         }
2514
2515                         if (mpd->map.m_len == 0)
2516                                 mpd->first_page = folio->index;
2517                         mpd->next_page = folio_next_index(folio);
2518                         /*
2519                          * Writeout when we cannot modify metadata is simple.
2520                          * Just submit the page. For data=journal mode we
2521                          * first handle writeout of the page for checkpoint and
2522                          * only after that handle delayed page dirtying. This
2523                          * makes sure current data is checkpointed to the final
2524                          * location before possibly journalling it again which
2525                          * is desirable when the page is frequently dirtied
2526                          * through a pin.
2527                          */
2528                         if (!mpd->can_map) {
2529                                 err = mpage_submit_folio(mpd, folio);
2530                                 if (err < 0)
2531                                         goto out;
2532                                 /* Pending dirtying of journalled data? */
2533                                 if (folio_test_checked(folio)) {
2534                                         err = mpage_journal_page_buffers(handle,
2535                                                 mpd, folio);
2536                                         if (err < 0)
2537                                                 goto out;
2538                                         mpd->journalled_more_data = 1;
2539                                 }
2540                                 mpage_folio_done(mpd, folio);
2541                         } else {
2542                                 /* Add all dirty buffers to mpd */
2543                                 lblk = ((ext4_lblk_t)folio->index) <<
2544                                         (PAGE_SHIFT - blkbits);
2545                                 head = folio_buffers(folio);
2546                                 err = mpage_process_page_bufs(mpd, head, head,
2547                                                 lblk);
2548                                 if (err <= 0)
2549                                         goto out;
2550                                 err = 0;
2551                         }
2552                 }
2553                 folio_batch_release(&fbatch);
2554                 cond_resched();
2555         }
2556         mpd->scanned_until_end = 1;
2557         if (handle)
2558                 ext4_journal_stop(handle);
2559         return 0;
2560 out:
2561         folio_batch_release(&fbatch);
2562         if (handle)
2563                 ext4_journal_stop(handle);
2564         return err;
2565 }
2566
2567 static int ext4_do_writepages(struct mpage_da_data *mpd)
2568 {
2569         struct writeback_control *wbc = mpd->wbc;
2570         pgoff_t writeback_index = 0;
2571         long nr_to_write = wbc->nr_to_write;
2572         int range_whole = 0;
2573         int cycled = 1;
2574         handle_t *handle = NULL;
2575         struct inode *inode = mpd->inode;
2576         struct address_space *mapping = inode->i_mapping;
2577         int needed_blocks, rsv_blocks = 0, ret = 0;
2578         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579         struct blk_plug plug;
2580         bool give_up_on_write = false;
2581
2582         trace_ext4_writepages(inode, wbc);
2583
2584         /*
2585          * No pages to write? This is mainly a kludge to avoid starting
2586          * a transaction for special inodes like journal inode on last iput()
2587          * because that could violate lock ordering on umount
2588          */
2589         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590                 goto out_writepages;
2591
2592         /*
2593          * If the filesystem has aborted, it is read-only, so return
2594          * right away instead of dumping stack traces later on that
2595          * will obscure the real source of the problem.  We test
2596          * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597          * the latter could be true if the filesystem is mounted
2598          * read-only, and in that case, ext4_writepages should
2599          * *never* be called, so if that ever happens, we would want
2600          * the stack trace.
2601          */
2602         if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603                 ret = -EROFS;
2604                 goto out_writepages;
2605         }
2606
2607         /*
2608          * If we have inline data and arrive here, it means that
2609          * we will soon create the block for the 1st page, so
2610          * we'd better clear the inline data here.
2611          */
2612         if (ext4_has_inline_data(inode)) {
2613                 /* Just inode will be modified... */
2614                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615                 if (IS_ERR(handle)) {
2616                         ret = PTR_ERR(handle);
2617                         goto out_writepages;
2618                 }
2619                 BUG_ON(ext4_test_inode_state(inode,
2620                                 EXT4_STATE_MAY_INLINE_DATA));
2621                 ext4_destroy_inline_data(handle, inode);
2622                 ext4_journal_stop(handle);
2623         }
2624
2625         /*
2626          * data=journal mode does not do delalloc so we just need to writeout /
2627          * journal already mapped buffers. On the other hand we need to commit
2628          * transaction to make data stable. We expect all the data to be
2629          * already in the journal (the only exception are DMA pinned pages
2630          * dirtied behind our back) so we commit transaction here and run the
2631          * writeback loop to checkpoint them. The checkpointing is not actually
2632          * necessary to make data persistent *but* quite a few places (extent
2633          * shifting operations, fsverity, ...) depend on being able to drop
2634          * pagecache pages after calling filemap_write_and_wait() and for that
2635          * checkpointing needs to happen.
2636          */
2637         if (ext4_should_journal_data(inode)) {
2638                 mpd->can_map = 0;
2639                 if (wbc->sync_mode == WB_SYNC_ALL)
2640                         ext4_fc_commit(sbi->s_journal,
2641                                        EXT4_I(inode)->i_datasync_tid);
2642         }
2643         mpd->journalled_more_data = 0;
2644
2645         if (ext4_should_dioread_nolock(inode)) {
2646                 /*
2647                  * We may need to convert up to one extent per block in
2648                  * the page and we may dirty the inode.
2649                  */
2650                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651                                                 PAGE_SIZE >> inode->i_blkbits);
2652         }
2653
2654         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655                 range_whole = 1;
2656
2657         if (wbc->range_cyclic) {
2658                 writeback_index = mapping->writeback_index;
2659                 if (writeback_index)
2660                         cycled = 0;
2661                 mpd->first_page = writeback_index;
2662                 mpd->last_page = -1;
2663         } else {
2664                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666         }
2667
2668         ext4_io_submit_init(&mpd->io_submit, wbc);
2669 retry:
2670         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671                 tag_pages_for_writeback(mapping, mpd->first_page,
2672                                         mpd->last_page);
2673         blk_start_plug(&plug);
2674
2675         /*
2676          * First writeback pages that don't need mapping - we can avoid
2677          * starting a transaction unnecessarily and also avoid being blocked
2678          * in the block layer on device congestion while having transaction
2679          * started.
2680          */
2681         mpd->do_map = 0;
2682         mpd->scanned_until_end = 0;
2683         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684         if (!mpd->io_submit.io_end) {
2685                 ret = -ENOMEM;
2686                 goto unplug;
2687         }
2688         ret = mpage_prepare_extent_to_map(mpd);
2689         /* Unlock pages we didn't use */
2690         mpage_release_unused_pages(mpd, false);
2691         /* Submit prepared bio */
2692         ext4_io_submit(&mpd->io_submit);
2693         ext4_put_io_end_defer(mpd->io_submit.io_end);
2694         mpd->io_submit.io_end = NULL;
2695         if (ret < 0)
2696                 goto unplug;
2697
2698         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699                 /* For each extent of pages we use new io_end */
2700                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701                 if (!mpd->io_submit.io_end) {
2702                         ret = -ENOMEM;
2703                         break;
2704                 }
2705
2706                 WARN_ON_ONCE(!mpd->can_map);
2707                 /*
2708                  * We have two constraints: We find one extent to map and we
2709                  * must always write out whole page (makes a difference when
2710                  * blocksize < pagesize) so that we don't block on IO when we
2711                  * try to write out the rest of the page. Journalled mode is
2712                  * not supported by delalloc.
2713                  */
2714                 BUG_ON(ext4_should_journal_data(inode));
2715                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717                 /* start a new transaction */
2718                 handle = ext4_journal_start_with_reserve(inode,
2719                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720                 if (IS_ERR(handle)) {
2721                         ret = PTR_ERR(handle);
2722                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723                                "%ld pages, ino %lu; err %d", __func__,
2724                                 wbc->nr_to_write, inode->i_ino, ret);
2725                         /* Release allocated io_end */
2726                         ext4_put_io_end(mpd->io_submit.io_end);
2727                         mpd->io_submit.io_end = NULL;
2728                         break;
2729                 }
2730                 mpd->do_map = 1;
2731
2732                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733                 ret = mpage_prepare_extent_to_map(mpd);
2734                 if (!ret && mpd->map.m_len)
2735                         ret = mpage_map_and_submit_extent(handle, mpd,
2736                                         &give_up_on_write);
2737                 /*
2738                  * Caution: If the handle is synchronous,
2739                  * ext4_journal_stop() can wait for transaction commit
2740                  * to finish which may depend on writeback of pages to
2741                  * complete or on page lock to be released.  In that
2742                  * case, we have to wait until after we have
2743                  * submitted all the IO, released page locks we hold,
2744                  * and dropped io_end reference (for extent conversion
2745                  * to be able to complete) before stopping the handle.
2746                  */
2747                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748                         ext4_journal_stop(handle);
2749                         handle = NULL;
2750                         mpd->do_map = 0;
2751                 }
2752                 /* Unlock pages we didn't use */
2753                 mpage_release_unused_pages(mpd, give_up_on_write);
2754                 /* Submit prepared bio */
2755                 ext4_io_submit(&mpd->io_submit);
2756
2757                 /*
2758                  * Drop our io_end reference we got from init. We have
2759                  * to be careful and use deferred io_end finishing if
2760                  * we are still holding the transaction as we can
2761                  * release the last reference to io_end which may end
2762                  * up doing unwritten extent conversion.
2763                  */
2764                 if (handle) {
2765                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2766                         ext4_journal_stop(handle);
2767                 } else
2768                         ext4_put_io_end(mpd->io_submit.io_end);
2769                 mpd->io_submit.io_end = NULL;
2770
2771                 if (ret == -ENOSPC && sbi->s_journal) {
2772                         /*
2773                          * Commit the transaction which would
2774                          * free blocks released in the transaction
2775                          * and try again
2776                          */
2777                         jbd2_journal_force_commit_nested(sbi->s_journal);
2778                         ret = 0;
2779                         continue;
2780                 }
2781                 /* Fatal error - ENOMEM, EIO... */
2782                 if (ret)
2783                         break;
2784         }
2785 unplug:
2786         blk_finish_plug(&plug);
2787         if (!ret && !cycled && wbc->nr_to_write > 0) {
2788                 cycled = 1;
2789                 mpd->last_page = writeback_index - 1;
2790                 mpd->first_page = 0;
2791                 goto retry;
2792         }
2793
2794         /* Update index */
2795         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796                 /*
2797                  * Set the writeback_index so that range_cyclic
2798                  * mode will write it back later
2799                  */
2800                 mapping->writeback_index = mpd->first_page;
2801
2802 out_writepages:
2803         trace_ext4_writepages_result(inode, wbc, ret,
2804                                      nr_to_write - wbc->nr_to_write);
2805         return ret;
2806 }
2807
2808 static int ext4_writepages(struct address_space *mapping,
2809                            struct writeback_control *wbc)
2810 {
2811         struct super_block *sb = mapping->host->i_sb;
2812         struct mpage_da_data mpd = {
2813                 .inode = mapping->host,
2814                 .wbc = wbc,
2815                 .can_map = 1,
2816         };
2817         int ret;
2818         int alloc_ctx;
2819
2820         if (unlikely(ext4_forced_shutdown(sb)))
2821                 return -EIO;
2822
2823         alloc_ctx = ext4_writepages_down_read(sb);
2824         ret = ext4_do_writepages(&mpd);
2825         /*
2826          * For data=journal writeback we could have come across pages marked
2827          * for delayed dirtying (PageChecked) which were just added to the
2828          * running transaction. Try once more to get them to stable storage.
2829          */
2830         if (!ret && mpd.journalled_more_data)
2831                 ret = ext4_do_writepages(&mpd);
2832         ext4_writepages_up_read(sb, alloc_ctx);
2833
2834         return ret;
2835 }
2836
2837 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838 {
2839         struct writeback_control wbc = {
2840                 .sync_mode = WB_SYNC_ALL,
2841                 .nr_to_write = LONG_MAX,
2842                 .range_start = jinode->i_dirty_start,
2843                 .range_end = jinode->i_dirty_end,
2844         };
2845         struct mpage_da_data mpd = {
2846                 .inode = jinode->i_vfs_inode,
2847                 .wbc = &wbc,
2848                 .can_map = 0,
2849         };
2850         return ext4_do_writepages(&mpd);
2851 }
2852
2853 static int ext4_dax_writepages(struct address_space *mapping,
2854                                struct writeback_control *wbc)
2855 {
2856         int ret;
2857         long nr_to_write = wbc->nr_to_write;
2858         struct inode *inode = mapping->host;
2859         int alloc_ctx;
2860
2861         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862                 return -EIO;
2863
2864         alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865         trace_ext4_writepages(inode, wbc);
2866
2867         ret = dax_writeback_mapping_range(mapping,
2868                                           EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869         trace_ext4_writepages_result(inode, wbc, ret,
2870                                      nr_to_write - wbc->nr_to_write);
2871         ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872         return ret;
2873 }
2874
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877         s64 free_clusters, dirty_clusters;
2878         struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880         /*
2881          * switch to non delalloc mode if we are running low
2882          * on free block. The free block accounting via percpu
2883          * counters can get slightly wrong with percpu_counter_batch getting
2884          * accumulated on each CPU without updating global counters
2885          * Delalloc need an accurate free block accounting. So switch
2886          * to non delalloc when we are near to error range.
2887          */
2888         free_clusters =
2889                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890         dirty_clusters =
2891                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892         /*
2893          * Start pushing delalloc when 1/2 of free blocks are dirty.
2894          */
2895         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898         if (2 * free_clusters < 3 * dirty_clusters ||
2899             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900                 /*
2901                  * free block count is less than 150% of dirty blocks
2902                  * or free blocks is less than watermark
2903                  */
2904                 return 1;
2905         }
2906         return 0;
2907 }
2908
2909 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910                                loff_t pos, unsigned len,
2911                                struct folio **foliop, void **fsdata)
2912 {
2913         int ret, retries = 0;
2914         struct folio *folio;
2915         pgoff_t index;
2916         struct inode *inode = mapping->host;
2917
2918         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919                 return -EIO;
2920
2921         index = pos >> PAGE_SHIFT;
2922
2923         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925                 return ext4_write_begin(file, mapping, pos,
2926                                         len, foliop, fsdata);
2927         }
2928         *fsdata = (void *)0;
2929         trace_ext4_da_write_begin(inode, pos, len);
2930
2931         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933                                                       foliop, fsdata);
2934                 if (ret < 0)
2935                         return ret;
2936                 if (ret == 1)
2937                         return 0;
2938         }
2939
2940 retry:
2941         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942                         mapping_gfp_mask(mapping));
2943         if (IS_ERR(folio))
2944                 return PTR_ERR(folio);
2945
2946         ret = ext4_block_write_begin(NULL, folio, pos, len,
2947                                      ext4_da_get_block_prep);
2948         if (ret < 0) {
2949                 folio_unlock(folio);
2950                 folio_put(folio);
2951                 /*
2952                  * block_write_begin may have instantiated a few blocks
2953                  * outside i_size.  Trim these off again. Don't need
2954                  * i_size_read because we hold inode lock.
2955                  */
2956                 if (pos + len > inode->i_size)
2957                         ext4_truncate_failed_write(inode);
2958
2959                 if (ret == -ENOSPC &&
2960                     ext4_should_retry_alloc(inode->i_sb, &retries))
2961                         goto retry;
2962                 return ret;
2963         }
2964
2965         *foliop = folio;
2966         return ret;
2967 }
2968
2969 /*
2970  * Check if we should update i_disksize
2971  * when write to the end of file but not require block allocation
2972  */
2973 static int ext4_da_should_update_i_disksize(struct folio *folio,
2974                                             unsigned long offset)
2975 {
2976         struct buffer_head *bh;
2977         struct inode *inode = folio->mapping->host;
2978         unsigned int idx;
2979         int i;
2980
2981         bh = folio_buffers(folio);
2982         idx = offset >> inode->i_blkbits;
2983
2984         for (i = 0; i < idx; i++)
2985                 bh = bh->b_this_page;
2986
2987         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988                 return 0;
2989         return 1;
2990 }
2991
2992 static int ext4_da_do_write_end(struct address_space *mapping,
2993                         loff_t pos, unsigned len, unsigned copied,
2994                         struct folio *folio)
2995 {
2996         struct inode *inode = mapping->host;
2997         loff_t old_size = inode->i_size;
2998         bool disksize_changed = false;
2999         loff_t new_i_size, zero_len = 0;
3000         handle_t *handle;
3001
3002         if (unlikely(!folio_buffers(folio))) {
3003                 folio_unlock(folio);
3004                 folio_put(folio);
3005                 return -EIO;
3006         }
3007         /*
3008          * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009          * flag, which all that's needed to trigger page writeback.
3010          */
3011         copied = block_write_end(NULL, mapping, pos, len, copied,
3012                         folio, NULL);
3013         new_i_size = pos + copied;
3014
3015         /*
3016          * It's important to update i_size while still holding folio lock,
3017          * because folio writeout could otherwise come in and zero beyond
3018          * i_size.
3019          *
3020          * Since we are holding inode lock, we are sure i_disksize <=
3021          * i_size. We also know that if i_disksize < i_size, there are
3022          * delalloc writes pending in the range up to i_size. If the end of
3023          * the current write is <= i_size, there's no need to touch
3024          * i_disksize since writeback will push i_disksize up to i_size
3025          * eventually. If the end of the current write is > i_size and
3026          * inside an allocated block which ext4_da_should_update_i_disksize()
3027          * checked, we need to update i_disksize here as certain
3028          * ext4_writepages() paths not allocating blocks and update i_disksize.
3029          */
3030         if (new_i_size > inode->i_size) {
3031                 unsigned long end;
3032
3033                 i_size_write(inode, new_i_size);
3034                 end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035                 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036                         ext4_update_i_disksize(inode, new_i_size);
3037                         disksize_changed = true;
3038                 }
3039         }
3040
3041         folio_unlock(folio);
3042         folio_put(folio);
3043
3044         if (pos > old_size) {
3045                 pagecache_isize_extended(inode, old_size, pos);
3046                 zero_len = pos - old_size;
3047         }
3048
3049         if (!disksize_changed && !zero_len)
3050                 return copied;
3051
3052         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053         if (IS_ERR(handle))
3054                 return PTR_ERR(handle);
3055         if (zero_len)
3056                 ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057         ext4_mark_inode_dirty(handle, inode);
3058         ext4_journal_stop(handle);
3059
3060         return copied;
3061 }
3062
3063 static int ext4_da_write_end(struct file *file,
3064                              struct address_space *mapping,
3065                              loff_t pos, unsigned len, unsigned copied,
3066                              struct folio *folio, void *fsdata)
3067 {
3068         struct inode *inode = mapping->host;
3069         int write_mode = (int)(unsigned long)fsdata;
3070
3071         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072                 return ext4_write_end(file, mapping, pos,
3073                                       len, copied, folio, fsdata);
3074
3075         trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077         if (write_mode != CONVERT_INLINE_DATA &&
3078             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079             ext4_has_inline_data(inode))
3080                 return ext4_write_inline_data_end(inode, pos, len, copied,
3081                                                   folio);
3082
3083         if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084                 copied = 0;
3085
3086         return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087 }
3088
3089 /*
3090  * Force all delayed allocation blocks to be allocated for a given inode.
3091  */
3092 int ext4_alloc_da_blocks(struct inode *inode)
3093 {
3094         trace_ext4_alloc_da_blocks(inode);
3095
3096         if (!EXT4_I(inode)->i_reserved_data_blocks)
3097                 return 0;
3098
3099         /*
3100          * We do something simple for now.  The filemap_flush() will
3101          * also start triggering a write of the data blocks, which is
3102          * not strictly speaking necessary (and for users of
3103          * laptop_mode, not even desirable).  However, to do otherwise
3104          * would require replicating code paths in:
3105          *
3106          * ext4_writepages() ->
3107          *    write_cache_pages() ---> (via passed in callback function)
3108          *        __mpage_da_writepage() -->
3109          *           mpage_add_bh_to_extent()
3110          *           mpage_da_map_blocks()
3111          *
3112          * The problem is that write_cache_pages(), located in
3113          * mm/page-writeback.c, marks pages clean in preparation for
3114          * doing I/O, which is not desirable if we're not planning on
3115          * doing I/O at all.
3116          *
3117          * We could call write_cache_pages(), and then redirty all of
3118          * the pages by calling redirty_page_for_writepage() but that
3119          * would be ugly in the extreme.  So instead we would need to
3120          * replicate parts of the code in the above functions,
3121          * simplifying them because we wouldn't actually intend to
3122          * write out the pages, but rather only collect contiguous
3123          * logical block extents, call the multi-block allocator, and
3124          * then update the buffer heads with the block allocations.
3125          *
3126          * For now, though, we'll cheat by calling filemap_flush(),
3127          * which will map the blocks, and start the I/O, but not
3128          * actually wait for the I/O to complete.
3129          */
3130         return filemap_flush(inode->i_mapping);
3131 }
3132
3133 /*
3134  * bmap() is special.  It gets used by applications such as lilo and by
3135  * the swapper to find the on-disk block of a specific piece of data.
3136  *
3137  * Naturally, this is dangerous if the block concerned is still in the
3138  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139  * filesystem and enables swap, then they may get a nasty shock when the
3140  * data getting swapped to that swapfile suddenly gets overwritten by
3141  * the original zero's written out previously to the journal and
3142  * awaiting writeback in the kernel's buffer cache.
3143  *
3144  * So, if we see any bmap calls here on a modified, data-journaled file,
3145  * take extra steps to flush any blocks which might be in the cache.
3146  */
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148 {
3149         struct inode *inode = mapping->host;
3150         sector_t ret = 0;
3151
3152         inode_lock_shared(inode);
3153         /*
3154          * We can get here for an inline file via the FIBMAP ioctl
3155          */
3156         if (ext4_has_inline_data(inode))
3157                 goto out;
3158
3159         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160             (test_opt(inode->i_sb, DELALLOC) ||
3161              ext4_should_journal_data(inode))) {
3162                 /*
3163                  * With delalloc or journalled data we want to sync the file so
3164                  * that we can make sure we allocate blocks for file and data
3165                  * is in place for the user to see it
3166                  */
3167                 filemap_write_and_wait(mapping);
3168         }
3169
3170         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171
3172 out:
3173         inode_unlock_shared(inode);
3174         return ret;
3175 }
3176
3177 static int ext4_read_folio(struct file *file, struct folio *folio)
3178 {
3179         int ret = -EAGAIN;
3180         struct inode *inode = folio->mapping->host;
3181
3182         trace_ext4_read_folio(inode, folio);
3183
3184         if (ext4_has_inline_data(inode))
3185                 ret = ext4_readpage_inline(inode, folio);
3186
3187         if (ret == -EAGAIN)
3188                 return ext4_mpage_readpages(inode, NULL, folio);
3189
3190         return ret;
3191 }
3192
3193 static void ext4_readahead(struct readahead_control *rac)
3194 {
3195         struct inode *inode = rac->mapping->host;
3196
3197         /* If the file has inline data, no need to do readahead. */
3198         if (ext4_has_inline_data(inode))
3199                 return;
3200
3201         ext4_mpage_readpages(inode, rac, NULL);
3202 }
3203
3204 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205                                 size_t length)
3206 {
3207         trace_ext4_invalidate_folio(folio, offset, length);
3208
3209         /* No journalling happens on data buffers when this function is used */
3210         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212         block_invalidate_folio(folio, offset, length);
3213 }
3214
3215 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216                                             size_t offset, size_t length)
3217 {
3218         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222         /*
3223          * If it's a full truncate we just forget about the pending dirtying
3224          */
3225         if (offset == 0 && length == folio_size(folio))
3226                 folio_clear_checked(folio);
3227
3228         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229 }
3230
3231 /* Wrapper for aops... */
3232 static void ext4_journalled_invalidate_folio(struct folio *folio,
3233                                            size_t offset,
3234                                            size_t length)
3235 {
3236         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237 }
3238
3239 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240 {
3241         struct inode *inode = folio->mapping->host;
3242         journal_t *journal = EXT4_JOURNAL(inode);
3243
3244         trace_ext4_release_folio(inode, folio);
3245
3246         /* Page has dirty journalled data -> cannot release */
3247         if (folio_test_checked(folio))
3248                 return false;
3249         if (journal)
3250                 return jbd2_journal_try_to_free_buffers(journal, folio);
3251         else
3252                 return try_to_free_buffers(folio);
3253 }
3254
3255 static bool ext4_inode_datasync_dirty(struct inode *inode)
3256 {
3257         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259         if (journal) {
3260                 if (jbd2_transaction_committed(journal,
3261                         EXT4_I(inode)->i_datasync_tid))
3262                         return false;
3263                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3265                 return true;
3266         }
3267
3268         /* Any metadata buffers to write? */
3269         if (!list_empty(&inode->i_mapping->i_private_list))
3270                 return true;
3271         return inode->i_state & I_DIRTY_DATASYNC;
3272 }
3273
3274 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275                            struct ext4_map_blocks *map, loff_t offset,
3276                            loff_t length, unsigned int flags)
3277 {
3278         u8 blkbits = inode->i_blkbits;
3279
3280         /*
3281          * Writes that span EOF might trigger an I/O size update on completion,
3282          * so consider them to be dirty for the purpose of O_DSYNC, even if
3283          * there is no other metadata changes being made or are pending.
3284          */
3285         iomap->flags = 0;
3286         if (ext4_inode_datasync_dirty(inode) ||
3287             offset + length > i_size_read(inode))
3288                 iomap->flags |= IOMAP_F_DIRTY;
3289
3290         if (map->m_flags & EXT4_MAP_NEW)
3291                 iomap->flags |= IOMAP_F_NEW;
3292
3293         if (flags & IOMAP_DAX)
3294                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295         else
3296                 iomap->bdev = inode->i_sb->s_bdev;
3297         iomap->offset = (u64) map->m_lblk << blkbits;
3298         iomap->length = (u64) map->m_len << blkbits;
3299
3300         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302                 iomap->flags |= IOMAP_F_MERGED;
3303
3304         /*
3305          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307          * set. In order for any allocated unwritten extents to be converted
3308          * into written extents correctly within the ->end_io() handler, we
3309          * need to ensure that the iomap->type is set appropriately. Hence, the
3310          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311          * been set first.
3312          */
3313         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314                 iomap->type = IOMAP_UNWRITTEN;
3315                 iomap->addr = (u64) map->m_pblk << blkbits;
3316                 if (flags & IOMAP_DAX)
3317                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3319                 iomap->type = IOMAP_MAPPED;
3320                 iomap->addr = (u64) map->m_pblk << blkbits;
3321                 if (flags & IOMAP_DAX)
3322                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323         } else if (map->m_flags & EXT4_MAP_DELAYED) {
3324                 iomap->type = IOMAP_DELALLOC;
3325                 iomap->addr = IOMAP_NULL_ADDR;
3326         } else {
3327                 iomap->type = IOMAP_HOLE;
3328                 iomap->addr = IOMAP_NULL_ADDR;
3329         }
3330 }
3331
3332 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333                             unsigned int flags)
3334 {
3335         handle_t *handle;
3336         u8 blkbits = inode->i_blkbits;
3337         int ret, dio_credits, m_flags = 0, retries = 0;
3338
3339         /*
3340          * Trim the mapping request to the maximum value that we can map at
3341          * once for direct I/O.
3342          */
3343         if (map->m_len > DIO_MAX_BLOCKS)
3344                 map->m_len = DIO_MAX_BLOCKS;
3345         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347 retry:
3348         /*
3349          * Either we allocate blocks and then don't get an unwritten extent, so
3350          * in that case we have reserved enough credits. Or, the blocks are
3351          * already allocated and unwritten. In that case, the extent conversion
3352          * fits into the credits as well.
3353          */
3354         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355         if (IS_ERR(handle))
3356                 return PTR_ERR(handle);
3357
3358         /*
3359          * DAX and direct I/O are the only two operations that are currently
3360          * supported with IOMAP_WRITE.
3361          */
3362         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363         if (flags & IOMAP_DAX)
3364                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365         /*
3366          * We use i_size instead of i_disksize here because delalloc writeback
3367          * can complete at any point during the I/O and subsequently push the
3368          * i_disksize out to i_size. This could be beyond where direct I/O is
3369          * happening and thus expose allocated blocks to direct I/O reads.
3370          */
3371         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372                 m_flags = EXT4_GET_BLOCKS_CREATE;
3373         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376         ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
3378         /*
3379          * We cannot fill holes in indirect tree based inodes as that could
3380          * expose stale data in the case of a crash. Use the magic error code
3381          * to fallback to buffered I/O.
3382          */
3383         if (!m_flags && !ret)
3384                 ret = -ENOTBLK;
3385
3386         ext4_journal_stop(handle);
3387         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388                 goto retry;
3389
3390         return ret;
3391 }
3392
3393
3394 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396 {
3397         int ret;
3398         struct ext4_map_blocks map;
3399         u8 blkbits = inode->i_blkbits;
3400
3401         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402                 return -EINVAL;
3403
3404         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405                 return -ERANGE;
3406
3407         /*
3408          * Calculate the first and last logical blocks respectively.
3409          */
3410         map.m_lblk = offset >> blkbits;
3411         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414         if (flags & IOMAP_WRITE) {
3415                 /*
3416                  * We check here if the blocks are already allocated, then we
3417                  * don't need to start a journal txn and we can directly return
3418                  * the mapping information. This could boost performance
3419                  * especially in multi-threaded overwrite requests.
3420                  */
3421                 if (offset + length <= i_size_read(inode)) {
3422                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3423                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424                                 goto out;
3425                 }
3426                 ret = ext4_iomap_alloc(inode, &map, flags);
3427         } else {
3428                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3429         }
3430
3431         if (ret < 0)
3432                 return ret;
3433 out:
3434         /*
3435          * When inline encryption is enabled, sometimes I/O to an encrypted file
3436          * has to be broken up to guarantee DUN contiguity.  Handle this by
3437          * limiting the length of the mapping returned.
3438          */
3439         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443         return 0;
3444 }
3445
3446 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447                 loff_t length, unsigned flags, struct iomap *iomap,
3448                 struct iomap *srcmap)
3449 {
3450         int ret;
3451
3452         /*
3453          * Even for writes we don't need to allocate blocks, so just pretend
3454          * we are reading to save overhead of starting a transaction.
3455          */
3456         flags &= ~IOMAP_WRITE;
3457         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459         return ret;
3460 }
3461
3462 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463 {
3464         /* must be a directio to fall back to buffered */
3465         if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466                     (IOMAP_WRITE | IOMAP_DIRECT))
3467                 return false;
3468
3469         /* atomic writes are all-or-nothing */
3470         if (flags & IOMAP_ATOMIC)
3471                 return false;
3472
3473         /* can only try again if we wrote nothing */
3474         return written == 0;
3475 }
3476
3477 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478                           ssize_t written, unsigned flags, struct iomap *iomap)
3479 {
3480         /*
3481          * Check to see whether an error occurred while writing out the data to
3482          * the allocated blocks. If so, return the magic error code for
3483          * non-atomic write so that we fallback to buffered I/O and attempt to
3484          * complete the remainder of the I/O.
3485          * For non-atomic writes, any blocks that may have been
3486          * allocated in preparation for the direct I/O will be reused during
3487          * buffered I/O. For atomic write, we never fallback to buffered-io.
3488          */
3489         if (ext4_want_directio_fallback(flags, written))
3490                 return -ENOTBLK;
3491
3492         return 0;
3493 }
3494
3495 const struct iomap_ops ext4_iomap_ops = {
3496         .iomap_begin            = ext4_iomap_begin,
3497         .iomap_end              = ext4_iomap_end,
3498 };
3499
3500 const struct iomap_ops ext4_iomap_overwrite_ops = {
3501         .iomap_begin            = ext4_iomap_overwrite_begin,
3502         .iomap_end              = ext4_iomap_end,
3503 };
3504
3505 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506                                    loff_t length, unsigned int flags,
3507                                    struct iomap *iomap, struct iomap *srcmap)
3508 {
3509         int ret;
3510         struct ext4_map_blocks map;
3511         u8 blkbits = inode->i_blkbits;
3512
3513         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514                 return -EINVAL;
3515
3516         if (ext4_has_inline_data(inode)) {
3517                 ret = ext4_inline_data_iomap(inode, iomap);
3518                 if (ret != -EAGAIN) {
3519                         if (ret == 0 && offset >= iomap->length)
3520                                 ret = -ENOENT;
3521                         return ret;
3522                 }
3523         }
3524
3525         /*
3526          * Calculate the first and last logical block respectively.
3527          */
3528         map.m_lblk = offset >> blkbits;
3529         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531
3532         /*
3533          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534          * So handle it here itself instead of querying ext4_map_blocks().
3535          * Since ext4_map_blocks() will warn about it and will return
3536          * -EIO error.
3537          */
3538         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541                 if (offset >= sbi->s_bitmap_maxbytes) {
3542                         map.m_flags = 0;
3543                         goto set_iomap;
3544                 }
3545         }
3546
3547         ret = ext4_map_blocks(NULL, inode, &map, 0);
3548         if (ret < 0)
3549                 return ret;
3550 set_iomap:
3551         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553         return 0;
3554 }
3555
3556 const struct iomap_ops ext4_iomap_report_ops = {
3557         .iomap_begin = ext4_iomap_begin_report,
3558 };
3559
3560 /*
3561  * For data=journal mode, folio should be marked dirty only when it was
3562  * writeably mapped. When that happens, it was already attached to the
3563  * transaction and marked as jbddirty (we take care of this in
3564  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565  * so we should have nothing to do here, except for the case when someone
3566  * had the page pinned and dirtied the page through this pin (e.g. by doing
3567  * direct IO to it). In that case we'd need to attach buffers here to the
3568  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569  * folio and leave attached buffers clean, because the buffers' dirty state is
3570  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571  * the journalling code will explode.  So what we do is to mark the folio
3572  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573  * to the transaction appropriately.
3574  */
3575 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576                 struct folio *folio)
3577 {
3578         WARN_ON_ONCE(!folio_buffers(folio));
3579         if (folio_maybe_dma_pinned(folio))
3580                 folio_set_checked(folio);
3581         return filemap_dirty_folio(mapping, folio);
3582 }
3583
3584 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585 {
3586         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587         WARN_ON_ONCE(!folio_buffers(folio));
3588         return block_dirty_folio(mapping, folio);
3589 }
3590
3591 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592                                     struct file *file, sector_t *span)
3593 {
3594         return iomap_swapfile_activate(sis, file, span,
3595                                        &ext4_iomap_report_ops);
3596 }
3597
3598 static const struct address_space_operations ext4_aops = {
3599         .read_folio             = ext4_read_folio,
3600         .readahead              = ext4_readahead,
3601         .writepages             = ext4_writepages,
3602         .write_begin            = ext4_write_begin,
3603         .write_end              = ext4_write_end,
3604         .dirty_folio            = ext4_dirty_folio,
3605         .bmap                   = ext4_bmap,
3606         .invalidate_folio       = ext4_invalidate_folio,
3607         .release_folio          = ext4_release_folio,
3608         .migrate_folio          = buffer_migrate_folio,
3609         .is_partially_uptodate  = block_is_partially_uptodate,
3610         .error_remove_folio     = generic_error_remove_folio,
3611         .swap_activate          = ext4_iomap_swap_activate,
3612 };
3613
3614 static const struct address_space_operations ext4_journalled_aops = {
3615         .read_folio             = ext4_read_folio,
3616         .readahead              = ext4_readahead,
3617         .writepages             = ext4_writepages,
3618         .write_begin            = ext4_write_begin,
3619         .write_end              = ext4_journalled_write_end,
3620         .dirty_folio            = ext4_journalled_dirty_folio,
3621         .bmap                   = ext4_bmap,
3622         .invalidate_folio       = ext4_journalled_invalidate_folio,
3623         .release_folio          = ext4_release_folio,
3624         .migrate_folio          = buffer_migrate_folio_norefs,
3625         .is_partially_uptodate  = block_is_partially_uptodate,
3626         .error_remove_folio     = generic_error_remove_folio,
3627         .swap_activate          = ext4_iomap_swap_activate,
3628 };
3629
3630 static const struct address_space_operations ext4_da_aops = {
3631         .read_folio             = ext4_read_folio,
3632         .readahead              = ext4_readahead,
3633         .writepages             = ext4_writepages,
3634         .write_begin            = ext4_da_write_begin,
3635         .write_end              = ext4_da_write_end,
3636         .dirty_folio            = ext4_dirty_folio,
3637         .bmap                   = ext4_bmap,
3638         .invalidate_folio       = ext4_invalidate_folio,
3639         .release_folio          = ext4_release_folio,
3640         .migrate_folio          = buffer_migrate_folio,
3641         .is_partially_uptodate  = block_is_partially_uptodate,
3642         .error_remove_folio     = generic_error_remove_folio,
3643         .swap_activate          = ext4_iomap_swap_activate,
3644 };
3645
3646 static const struct address_space_operations ext4_dax_aops = {
3647         .writepages             = ext4_dax_writepages,
3648         .dirty_folio            = noop_dirty_folio,
3649         .bmap                   = ext4_bmap,
3650         .swap_activate          = ext4_iomap_swap_activate,
3651 };
3652
3653 void ext4_set_aops(struct inode *inode)
3654 {
3655         switch (ext4_inode_journal_mode(inode)) {
3656         case EXT4_INODE_ORDERED_DATA_MODE:
3657         case EXT4_INODE_WRITEBACK_DATA_MODE:
3658                 break;
3659         case EXT4_INODE_JOURNAL_DATA_MODE:
3660                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3661                 return;
3662         default:
3663                 BUG();
3664         }
3665         if (IS_DAX(inode))
3666                 inode->i_mapping->a_ops = &ext4_dax_aops;
3667         else if (test_opt(inode->i_sb, DELALLOC))
3668                 inode->i_mapping->a_ops = &ext4_da_aops;
3669         else
3670                 inode->i_mapping->a_ops = &ext4_aops;
3671 }
3672
3673 /*
3674  * Here we can't skip an unwritten buffer even though it usually reads zero
3675  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677  * racing writeback can come later and flush the stale pagecache to disk.
3678  */
3679 static int __ext4_block_zero_page_range(handle_t *handle,
3680                 struct address_space *mapping, loff_t from, loff_t length)
3681 {
3682         ext4_fsblk_t index = from >> PAGE_SHIFT;
3683         unsigned offset = from & (PAGE_SIZE-1);
3684         unsigned blocksize, pos;
3685         ext4_lblk_t iblock;
3686         struct inode *inode = mapping->host;
3687         struct buffer_head *bh;
3688         struct folio *folio;
3689         int err = 0;
3690
3691         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
3694         if (IS_ERR(folio))
3695                 return PTR_ERR(folio);
3696
3697         blocksize = inode->i_sb->s_blocksize;
3698
3699         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700
3701         bh = folio_buffers(folio);
3702         if (!bh)
3703                 bh = create_empty_buffers(folio, blocksize, 0);
3704
3705         /* Find the buffer that contains "offset" */
3706         pos = blocksize;
3707         while (offset >= pos) {
3708                 bh = bh->b_this_page;
3709                 iblock++;
3710                 pos += blocksize;
3711         }
3712         if (buffer_freed(bh)) {
3713                 BUFFER_TRACE(bh, "freed: skip");
3714                 goto unlock;
3715         }
3716         if (!buffer_mapped(bh)) {
3717                 BUFFER_TRACE(bh, "unmapped");
3718                 ext4_get_block(inode, iblock, bh, 0);
3719                 /* unmapped? It's a hole - nothing to do */
3720                 if (!buffer_mapped(bh)) {
3721                         BUFFER_TRACE(bh, "still unmapped");
3722                         goto unlock;
3723                 }
3724         }
3725
3726         /* Ok, it's mapped. Make sure it's up-to-date */
3727         if (folio_test_uptodate(folio))
3728                 set_buffer_uptodate(bh);
3729
3730         if (!buffer_uptodate(bh)) {
3731                 err = ext4_read_bh_lock(bh, 0, true);
3732                 if (err)
3733                         goto unlock;
3734                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735                         /* We expect the key to be set. */
3736                         BUG_ON(!fscrypt_has_encryption_key(inode));
3737                         err = fscrypt_decrypt_pagecache_blocks(folio,
3738                                                                blocksize,
3739                                                                bh_offset(bh));
3740                         if (err) {
3741                                 clear_buffer_uptodate(bh);
3742                                 goto unlock;
3743                         }
3744                 }
3745         }
3746         if (ext4_should_journal_data(inode)) {
3747                 BUFFER_TRACE(bh, "get write access");
3748                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749                                                     EXT4_JTR_NONE);
3750                 if (err)
3751                         goto unlock;
3752         }
3753         folio_zero_range(folio, offset, length);
3754         BUFFER_TRACE(bh, "zeroed end of block");
3755
3756         if (ext4_should_journal_data(inode)) {
3757                 err = ext4_dirty_journalled_data(handle, bh);
3758         } else {
3759                 err = 0;
3760                 mark_buffer_dirty(bh);
3761                 if (ext4_should_order_data(inode))
3762                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3763                                         length);
3764         }
3765
3766 unlock:
3767         folio_unlock(folio);
3768         folio_put(folio);
3769         return err;
3770 }
3771
3772 /*
3773  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774  * starting from file offset 'from'.  The range to be zero'd must
3775  * be contained with in one block.  If the specified range exceeds
3776  * the end of the block it will be shortened to end of the block
3777  * that corresponds to 'from'
3778  */
3779 static int ext4_block_zero_page_range(handle_t *handle,
3780                 struct address_space *mapping, loff_t from, loff_t length)
3781 {
3782         struct inode *inode = mapping->host;
3783         unsigned offset = from & (PAGE_SIZE-1);
3784         unsigned blocksize = inode->i_sb->s_blocksize;
3785         unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787         /*
3788          * correct length if it does not fall between
3789          * 'from' and the end of the block
3790          */
3791         if (length > max || length < 0)
3792                 length = max;
3793
3794         if (IS_DAX(inode)) {
3795                 return dax_zero_range(inode, from, length, NULL,
3796                                       &ext4_iomap_ops);
3797         }
3798         return __ext4_block_zero_page_range(handle, mapping, from, length);
3799 }
3800
3801 /*
3802  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803  * up to the end of the block which corresponds to `from'.
3804  * This required during truncate. We need to physically zero the tail end
3805  * of that block so it doesn't yield old data if the file is later grown.
3806  */
3807 static int ext4_block_truncate_page(handle_t *handle,
3808                 struct address_space *mapping, loff_t from)
3809 {
3810         unsigned offset = from & (PAGE_SIZE-1);
3811         unsigned length;
3812         unsigned blocksize;
3813         struct inode *inode = mapping->host;
3814
3815         /* If we are processing an encrypted inode during orphan list handling */
3816         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817                 return 0;
3818
3819         blocksize = inode->i_sb->s_blocksize;
3820         length = blocksize - (offset & (blocksize - 1));
3821
3822         return ext4_block_zero_page_range(handle, mapping, from, length);
3823 }
3824
3825 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826                              loff_t lstart, loff_t length)
3827 {
3828         struct super_block *sb = inode->i_sb;
3829         struct address_space *mapping = inode->i_mapping;
3830         unsigned partial_start, partial_end;
3831         ext4_fsblk_t start, end;
3832         loff_t byte_end = (lstart + length - 1);
3833         int err = 0;
3834
3835         partial_start = lstart & (sb->s_blocksize - 1);
3836         partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838         start = lstart >> sb->s_blocksize_bits;
3839         end = byte_end >> sb->s_blocksize_bits;
3840
3841         /* Handle partial zero within the single block */
3842         if (start == end &&
3843             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844                 err = ext4_block_zero_page_range(handle, mapping,
3845                                                  lstart, length);
3846                 return err;
3847         }
3848         /* Handle partial zero out on the start of the range */
3849         if (partial_start) {
3850                 err = ext4_block_zero_page_range(handle, mapping,
3851                                                  lstart, sb->s_blocksize);
3852                 if (err)
3853                         return err;
3854         }
3855         /* Handle partial zero out on the end of the range */
3856         if (partial_end != sb->s_blocksize - 1)
3857                 err = ext4_block_zero_page_range(handle, mapping,
3858                                                  byte_end - partial_end,
3859                                                  partial_end + 1);
3860         return err;
3861 }
3862
3863 int ext4_can_truncate(struct inode *inode)
3864 {
3865         if (S_ISREG(inode->i_mode))
3866                 return 1;
3867         if (S_ISDIR(inode->i_mode))
3868                 return 1;
3869         if (S_ISLNK(inode->i_mode))
3870                 return !ext4_inode_is_fast_symlink(inode);
3871         return 0;
3872 }
3873
3874 /*
3875  * We have to make sure i_disksize gets properly updated before we truncate
3876  * page cache due to hole punching or zero range. Otherwise i_disksize update
3877  * can get lost as it may have been postponed to submission of writeback but
3878  * that will never happen after we truncate page cache.
3879  */
3880 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881                                       loff_t len)
3882 {
3883         handle_t *handle;
3884         int ret;
3885
3886         loff_t size = i_size_read(inode);
3887
3888         WARN_ON(!inode_is_locked(inode));
3889         if (offset > size || offset + len < size)
3890                 return 0;
3891
3892         if (EXT4_I(inode)->i_disksize >= size)
3893                 return 0;
3894
3895         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896         if (IS_ERR(handle))
3897                 return PTR_ERR(handle);
3898         ext4_update_i_disksize(inode, size);
3899         ret = ext4_mark_inode_dirty(handle, inode);
3900         ext4_journal_stop(handle);
3901
3902         return ret;
3903 }
3904
3905 static void ext4_wait_dax_page(struct inode *inode)
3906 {
3907         filemap_invalidate_unlock(inode->i_mapping);
3908         schedule();
3909         filemap_invalidate_lock(inode->i_mapping);
3910 }
3911
3912 int ext4_break_layouts(struct inode *inode)
3913 {
3914         struct page *page;
3915         int error;
3916
3917         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918                 return -EINVAL;
3919
3920         do {
3921                 page = dax_layout_busy_page(inode->i_mapping);
3922                 if (!page)
3923                         return 0;
3924
3925                 error = ___wait_var_event(&page->_refcount,
3926                                 atomic_read(&page->_refcount) == 1,
3927                                 TASK_INTERRUPTIBLE, 0, 0,
3928                                 ext4_wait_dax_page(inode));
3929         } while (error == 0);
3930
3931         return error;
3932 }
3933
3934 /*
3935  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936  * associated with the given offset and length
3937  *
3938  * @inode:  File inode
3939  * @offset: The offset where the hole will begin
3940  * @len:    The length of the hole
3941  *
3942  * Returns: 0 on success or negative on failure
3943  */
3944
3945 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946 {
3947         struct inode *inode = file_inode(file);
3948         struct super_block *sb = inode->i_sb;
3949         ext4_lblk_t first_block, stop_block;
3950         struct address_space *mapping = inode->i_mapping;
3951         loff_t first_block_offset, last_block_offset, max_length;
3952         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953         handle_t *handle;
3954         unsigned int credits;
3955         int ret = 0, ret2 = 0;
3956
3957         trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959         /*
3960          * Write out all dirty pages to avoid race conditions
3961          * Then release them.
3962          */
3963         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964                 ret = filemap_write_and_wait_range(mapping, offset,
3965                                                    offset + length - 1);
3966                 if (ret)
3967                         return ret;
3968         }
3969
3970         inode_lock(inode);
3971
3972         /* No need to punch hole beyond i_size */
3973         if (offset >= inode->i_size)
3974                 goto out_mutex;
3975
3976         /*
3977          * If the hole extends beyond i_size, set the hole
3978          * to end after the page that contains i_size
3979          */
3980         if (offset + length > inode->i_size) {
3981                 length = inode->i_size +
3982                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983                    offset;
3984         }
3985
3986         /*
3987          * For punch hole the length + offset needs to be within one block
3988          * before last range. Adjust the length if it goes beyond that limit.
3989          */
3990         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991         if (offset + length > max_length)
3992                 length = max_length - offset;
3993
3994         if (offset & (sb->s_blocksize - 1) ||
3995             (offset + length) & (sb->s_blocksize - 1)) {
3996                 /*
3997                  * Attach jinode to inode for jbd2 if we do any zeroing of
3998                  * partial block
3999                  */
4000                 ret = ext4_inode_attach_jinode(inode);
4001                 if (ret < 0)
4002                         goto out_mutex;
4003
4004         }
4005
4006         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4007         inode_dio_wait(inode);
4008
4009         ret = file_modified(file);
4010         if (ret)
4011                 goto out_mutex;
4012
4013         /*
4014          * Prevent page faults from reinstantiating pages we have released from
4015          * page cache.
4016          */
4017         filemap_invalidate_lock(mapping);
4018
4019         ret = ext4_break_layouts(inode);
4020         if (ret)
4021                 goto out_dio;
4022
4023         first_block_offset = round_up(offset, sb->s_blocksize);
4024         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026         /* Now release the pages and zero block aligned part of pages*/
4027         if (last_block_offset > first_block_offset) {
4028                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4029                 if (ret)
4030                         goto out_dio;
4031                 truncate_pagecache_range(inode, first_block_offset,
4032                                          last_block_offset);
4033         }
4034
4035         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036                 credits = ext4_writepage_trans_blocks(inode);
4037         else
4038                 credits = ext4_blocks_for_truncate(inode);
4039         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040         if (IS_ERR(handle)) {
4041                 ret = PTR_ERR(handle);
4042                 ext4_std_error(sb, ret);
4043                 goto out_dio;
4044         }
4045
4046         ret = ext4_zero_partial_blocks(handle, inode, offset,
4047                                        length);
4048         if (ret)
4049                 goto out_stop;
4050
4051         first_block = (offset + sb->s_blocksize - 1) >>
4052                 EXT4_BLOCK_SIZE_BITS(sb);
4053         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055         /* If there are blocks to remove, do it */
4056         if (stop_block > first_block) {
4057                 ext4_lblk_t hole_len = stop_block - first_block;
4058
4059                 down_write(&EXT4_I(inode)->i_data_sem);
4060                 ext4_discard_preallocations(inode);
4061
4062                 ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065                         ret = ext4_ext_remove_space(inode, first_block,
4066                                                     stop_block - 1);
4067                 else
4068                         ret = ext4_ind_remove_space(handle, inode, first_block,
4069                                                     stop_block);
4070
4071                 ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072                                       EXTENT_STATUS_HOLE, 0);
4073                 up_write(&EXT4_I(inode)->i_data_sem);
4074         }
4075         ext4_fc_track_range(handle, inode, first_block, stop_block);
4076         if (IS_SYNC(inode))
4077                 ext4_handle_sync(handle);
4078
4079         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080         ret2 = ext4_mark_inode_dirty(handle, inode);
4081         if (unlikely(ret2))
4082                 ret = ret2;
4083         if (ret >= 0)
4084                 ext4_update_inode_fsync_trans(handle, inode, 1);
4085 out_stop:
4086         ext4_journal_stop(handle);
4087 out_dio:
4088         filemap_invalidate_unlock(mapping);
4089 out_mutex:
4090         inode_unlock(inode);
4091         return ret;
4092 }
4093
4094 int ext4_inode_attach_jinode(struct inode *inode)
4095 {
4096         struct ext4_inode_info *ei = EXT4_I(inode);
4097         struct jbd2_inode *jinode;
4098
4099         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100                 return 0;
4101
4102         jinode = jbd2_alloc_inode(GFP_KERNEL);
4103         spin_lock(&inode->i_lock);
4104         if (!ei->jinode) {
4105                 if (!jinode) {
4106                         spin_unlock(&inode->i_lock);
4107                         return -ENOMEM;
4108                 }
4109                 ei->jinode = jinode;
4110                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111                 jinode = NULL;
4112         }
4113         spin_unlock(&inode->i_lock);
4114         if (unlikely(jinode != NULL))
4115                 jbd2_free_inode(jinode);
4116         return 0;
4117 }
4118
4119 /*
4120  * ext4_truncate()
4121  *
4122  * We block out ext4_get_block() block instantiations across the entire
4123  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124  * simultaneously on behalf of the same inode.
4125  *
4126  * As we work through the truncate and commit bits of it to the journal there
4127  * is one core, guiding principle: the file's tree must always be consistent on
4128  * disk.  We must be able to restart the truncate after a crash.
4129  *
4130  * The file's tree may be transiently inconsistent in memory (although it
4131  * probably isn't), but whenever we close off and commit a journal transaction,
4132  * the contents of (the filesystem + the journal) must be consistent and
4133  * restartable.  It's pretty simple, really: bottom up, right to left (although
4134  * left-to-right works OK too).
4135  *
4136  * Note that at recovery time, journal replay occurs *before* the restart of
4137  * truncate against the orphan inode list.
4138  *
4139  * The committed inode has the new, desired i_size (which is the same as
4140  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141  * that this inode's truncate did not complete and it will again call
4142  * ext4_truncate() to have another go.  So there will be instantiated blocks
4143  * to the right of the truncation point in a crashed ext4 filesystem.  But
4144  * that's fine - as long as they are linked from the inode, the post-crash
4145  * ext4_truncate() run will find them and release them.
4146  */
4147 int ext4_truncate(struct inode *inode)
4148 {
4149         struct ext4_inode_info *ei = EXT4_I(inode);
4150         unsigned int credits;
4151         int err = 0, err2;
4152         handle_t *handle;
4153         struct address_space *mapping = inode->i_mapping;
4154
4155         /*
4156          * There is a possibility that we're either freeing the inode
4157          * or it's a completely new inode. In those cases we might not
4158          * have i_rwsem locked because it's not necessary.
4159          */
4160         if (!(inode->i_state & (I_NEW|I_FREEING)))
4161                 WARN_ON(!inode_is_locked(inode));
4162         trace_ext4_truncate_enter(inode);
4163
4164         if (!ext4_can_truncate(inode))
4165                 goto out_trace;
4166
4167         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170         if (ext4_has_inline_data(inode)) {
4171                 int has_inline = 1;
4172
4173                 err = ext4_inline_data_truncate(inode, &has_inline);
4174                 if (err || has_inline)
4175                         goto out_trace;
4176         }
4177
4178         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180                 err = ext4_inode_attach_jinode(inode);
4181                 if (err)
4182                         goto out_trace;
4183         }
4184
4185         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186                 credits = ext4_writepage_trans_blocks(inode);
4187         else
4188                 credits = ext4_blocks_for_truncate(inode);
4189
4190         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191         if (IS_ERR(handle)) {
4192                 err = PTR_ERR(handle);
4193                 goto out_trace;
4194         }
4195
4196         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199         /*
4200          * We add the inode to the orphan list, so that if this
4201          * truncate spans multiple transactions, and we crash, we will
4202          * resume the truncate when the filesystem recovers.  It also
4203          * marks the inode dirty, to catch the new size.
4204          *
4205          * Implication: the file must always be in a sane, consistent
4206          * truncatable state while each transaction commits.
4207          */
4208         err = ext4_orphan_add(handle, inode);
4209         if (err)
4210                 goto out_stop;
4211
4212         down_write(&EXT4_I(inode)->i_data_sem);
4213
4214         ext4_discard_preallocations(inode);
4215
4216         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217                 err = ext4_ext_truncate(handle, inode);
4218         else
4219                 ext4_ind_truncate(handle, inode);
4220
4221         up_write(&ei->i_data_sem);
4222         if (err)
4223                 goto out_stop;
4224
4225         if (IS_SYNC(inode))
4226                 ext4_handle_sync(handle);
4227
4228 out_stop:
4229         /*
4230          * If this was a simple ftruncate() and the file will remain alive,
4231          * then we need to clear up the orphan record which we created above.
4232          * However, if this was a real unlink then we were called by
4233          * ext4_evict_inode(), and we allow that function to clean up the
4234          * orphan info for us.
4235          */
4236         if (inode->i_nlink)
4237                 ext4_orphan_del(handle, inode);
4238
4239         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240         err2 = ext4_mark_inode_dirty(handle, inode);
4241         if (unlikely(err2 && !err))
4242                 err = err2;
4243         ext4_journal_stop(handle);
4244
4245 out_trace:
4246         trace_ext4_truncate_exit(inode);
4247         return err;
4248 }
4249
4250 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251 {
4252         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253                 return inode_peek_iversion_raw(inode);
4254         else
4255                 return inode_peek_iversion(inode);
4256 }
4257
4258 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259                                  struct ext4_inode_info *ei)
4260 {
4261         struct inode *inode = &(ei->vfs_inode);
4262         u64 i_blocks = READ_ONCE(inode->i_blocks);
4263         struct super_block *sb = inode->i_sb;
4264
4265         if (i_blocks <= ~0U) {
4266                 /*
4267                  * i_blocks can be represented in a 32 bit variable
4268                  * as multiple of 512 bytes
4269                  */
4270                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271                 raw_inode->i_blocks_high = 0;
4272                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273                 return 0;
4274         }
4275
4276         /*
4277          * This should never happen since sb->s_maxbytes should not have
4278          * allowed this, sb->s_maxbytes was set according to the huge_file
4279          * feature in ext4_fill_super().
4280          */
4281         if (!ext4_has_feature_huge_file(sb))
4282                 return -EFSCORRUPTED;
4283
4284         if (i_blocks <= 0xffffffffffffULL) {
4285                 /*
4286                  * i_blocks can be represented in a 48 bit variable
4287                  * as multiple of 512 bytes
4288                  */
4289                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292         } else {
4293                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294                 /* i_block is stored in file system block size */
4295                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298         }
4299         return 0;
4300 }
4301
4302 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303 {
4304         struct ext4_inode_info *ei = EXT4_I(inode);
4305         uid_t i_uid;
4306         gid_t i_gid;
4307         projid_t i_projid;
4308         int block;
4309         int err;
4310
4311         err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314         i_uid = i_uid_read(inode);
4315         i_gid = i_gid_read(inode);
4316         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317         if (!(test_opt(inode->i_sb, NO_UID32))) {
4318                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320                 /*
4321                  * Fix up interoperability with old kernels. Otherwise,
4322                  * old inodes get re-used with the upper 16 bits of the
4323                  * uid/gid intact.
4324                  */
4325                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326                         raw_inode->i_uid_high = 0;
4327                         raw_inode->i_gid_high = 0;
4328                 } else {
4329                         raw_inode->i_uid_high =
4330                                 cpu_to_le16(high_16_bits(i_uid));
4331                         raw_inode->i_gid_high =
4332                                 cpu_to_le16(high_16_bits(i_gid));
4333                 }
4334         } else {
4335                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337                 raw_inode->i_uid_high = 0;
4338                 raw_inode->i_gid_high = 0;
4339         }
4340         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342         EXT4_INODE_SET_CTIME(inode, raw_inode);
4343         EXT4_INODE_SET_MTIME(inode, raw_inode);
4344         EXT4_INODE_SET_ATIME(inode, raw_inode);
4345         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350                 raw_inode->i_file_acl_high =
4351                         cpu_to_le16(ei->i_file_acl >> 32);
4352         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353         ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357                 if (old_valid_dev(inode->i_rdev)) {
4358                         raw_inode->i_block[0] =
4359                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4360                         raw_inode->i_block[1] = 0;
4361                 } else {
4362                         raw_inode->i_block[0] = 0;
4363                         raw_inode->i_block[1] =
4364                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4365                         raw_inode->i_block[2] = 0;
4366                 }
4367         } else if (!ext4_has_inline_data(inode)) {
4368                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4369                         raw_inode->i_block[block] = ei->i_data[block];
4370         }
4371
4372         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373                 u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4376                 if (ei->i_extra_isize) {
4377                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378                                 raw_inode->i_version_hi =
4379                                         cpu_to_le32(ivers >> 32);
4380                         raw_inode->i_extra_isize =
4381                                 cpu_to_le16(ei->i_extra_isize);
4382                 }
4383         }
4384
4385         if (i_projid != EXT4_DEF_PROJID &&
4386             !ext4_has_feature_project(inode->i_sb))
4387                 err = err ?: -EFSCORRUPTED;
4388
4389         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391                 raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393         ext4_inode_csum_set(inode, raw_inode, ei);
4394         return err;
4395 }
4396
4397 /*
4398  * ext4_get_inode_loc returns with an extra refcount against the inode's
4399  * underlying buffer_head on success. If we pass 'inode' and it does not
4400  * have in-inode xattr, we have all inode data in memory that is needed
4401  * to recreate the on-disk version of this inode.
4402  */
4403 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404                                 struct inode *inode, struct ext4_iloc *iloc,
4405                                 ext4_fsblk_t *ret_block)
4406 {
4407         struct ext4_group_desc  *gdp;
4408         struct buffer_head      *bh;
4409         ext4_fsblk_t            block;
4410         struct blk_plug         plug;
4411         int                     inodes_per_block, inode_offset;
4412
4413         iloc->bh = NULL;
4414         if (ino < EXT4_ROOT_INO ||
4415             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416                 return -EFSCORRUPTED;
4417
4418         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420         if (!gdp)
4421                 return -EIO;
4422
4423         /*
4424          * Figure out the offset within the block group inode table
4425          */
4426         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427         inode_offset = ((ino - 1) %
4428                         EXT4_INODES_PER_GROUP(sb));
4429         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431         block = ext4_inode_table(sb, gdp);
4432         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434                 ext4_error(sb, "Invalid inode table block %llu in "
4435                            "block_group %u", block, iloc->block_group);
4436                 return -EFSCORRUPTED;
4437         }
4438         block += (inode_offset / inodes_per_block);
4439
4440         bh = sb_getblk(sb, block);
4441         if (unlikely(!bh))
4442                 return -ENOMEM;
4443         if (ext4_buffer_uptodate(bh))
4444                 goto has_buffer;
4445
4446         lock_buffer(bh);
4447         if (ext4_buffer_uptodate(bh)) {
4448                 /* Someone brought it uptodate while we waited */
4449                 unlock_buffer(bh);
4450                 goto has_buffer;
4451         }
4452
4453         /*
4454          * If we have all information of the inode in memory and this
4455          * is the only valid inode in the block, we need not read the
4456          * block.
4457          */
4458         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459                 struct buffer_head *bitmap_bh;
4460                 int i, start;
4461
4462                 start = inode_offset & ~(inodes_per_block - 1);
4463
4464                 /* Is the inode bitmap in cache? */
4465                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466                 if (unlikely(!bitmap_bh))
4467                         goto make_io;
4468
4469                 /*
4470                  * If the inode bitmap isn't in cache then the
4471                  * optimisation may end up performing two reads instead
4472                  * of one, so skip it.
4473                  */
4474                 if (!buffer_uptodate(bitmap_bh)) {
4475                         brelse(bitmap_bh);
4476                         goto make_io;
4477                 }
4478                 for (i = start; i < start + inodes_per_block; i++) {
4479                         if (i == inode_offset)
4480                                 continue;
4481                         if (ext4_test_bit(i, bitmap_bh->b_data))
4482                                 break;
4483                 }
4484                 brelse(bitmap_bh);
4485                 if (i == start + inodes_per_block) {
4486                         struct ext4_inode *raw_inode =
4487                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489                         /* all other inodes are free, so skip I/O */
4490                         memset(bh->b_data, 0, bh->b_size);
4491                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492                                 ext4_fill_raw_inode(inode, raw_inode);
4493                         set_buffer_uptodate(bh);
4494                         unlock_buffer(bh);
4495                         goto has_buffer;
4496                 }
4497         }
4498
4499 make_io:
4500         /*
4501          * If we need to do any I/O, try to pre-readahead extra
4502          * blocks from the inode table.
4503          */
4504         blk_start_plug(&plug);
4505         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506                 ext4_fsblk_t b, end, table;
4507                 unsigned num;
4508                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510                 table = ext4_inode_table(sb, gdp);
4511                 /* s_inode_readahead_blks is always a power of 2 */
4512                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513                 if (table > b)
4514                         b = table;
4515                 end = b + ra_blks;
4516                 num = EXT4_INODES_PER_GROUP(sb);
4517                 if (ext4_has_group_desc_csum(sb))
4518                         num -= ext4_itable_unused_count(sb, gdp);
4519                 table += num / inodes_per_block;
4520                 if (end > table)
4521                         end = table;
4522                 while (b <= end)
4523                         ext4_sb_breadahead_unmovable(sb, b++);
4524         }
4525
4526         /*
4527          * There are other valid inodes in the buffer, this inode
4528          * has in-inode xattrs, or we don't have this inode in memory.
4529          * Read the block from disk.
4530          */
4531         trace_ext4_load_inode(sb, ino);
4532         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533                             ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534         blk_finish_plug(&plug);
4535         wait_on_buffer(bh);
4536         if (!buffer_uptodate(bh)) {
4537                 if (ret_block)
4538                         *ret_block = block;
4539                 brelse(bh);
4540                 return -EIO;
4541         }
4542 has_buffer:
4543         iloc->bh = bh;
4544         return 0;
4545 }
4546
4547 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548                                         struct ext4_iloc *iloc)
4549 {
4550         ext4_fsblk_t err_blk = 0;
4551         int ret;
4552
4553         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554                                         &err_blk);
4555
4556         if (ret == -EIO)
4557                 ext4_error_inode_block(inode, err_blk, EIO,
4558                                         "unable to read itable block");
4559
4560         return ret;
4561 }
4562
4563 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564 {
4565         ext4_fsblk_t err_blk = 0;
4566         int ret;
4567
4568         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569                                         &err_blk);
4570
4571         if (ret == -EIO)
4572                 ext4_error_inode_block(inode, err_blk, EIO,
4573                                         "unable to read itable block");
4574
4575         return ret;
4576 }
4577
4578
4579 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580                           struct ext4_iloc *iloc)
4581 {
4582         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583 }
4584
4585 static bool ext4_should_enable_dax(struct inode *inode)
4586 {
4587         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589         if (test_opt2(inode->i_sb, DAX_NEVER))
4590                 return false;
4591         if (!S_ISREG(inode->i_mode))
4592                 return false;
4593         if (ext4_should_journal_data(inode))
4594                 return false;
4595         if (ext4_has_inline_data(inode))
4596                 return false;
4597         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598                 return false;
4599         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600                 return false;
4601         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602                 return false;
4603         if (test_opt(inode->i_sb, DAX_ALWAYS))
4604                 return true;
4605
4606         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607 }
4608
4609 void ext4_set_inode_flags(struct inode *inode, bool init)
4610 {
4611         unsigned int flags = EXT4_I(inode)->i_flags;
4612         unsigned int new_fl = 0;
4613
4614         WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616         if (flags & EXT4_SYNC_FL)
4617                 new_fl |= S_SYNC;
4618         if (flags & EXT4_APPEND_FL)
4619                 new_fl |= S_APPEND;
4620         if (flags & EXT4_IMMUTABLE_FL)
4621                 new_fl |= S_IMMUTABLE;
4622         if (flags & EXT4_NOATIME_FL)
4623                 new_fl |= S_NOATIME;
4624         if (flags & EXT4_DIRSYNC_FL)
4625                 new_fl |= S_DIRSYNC;
4626
4627         /* Because of the way inode_set_flags() works we must preserve S_DAX
4628          * here if already set. */
4629         new_fl |= (inode->i_flags & S_DAX);
4630         if (init && ext4_should_enable_dax(inode))
4631                 new_fl |= S_DAX;
4632
4633         if (flags & EXT4_ENCRYPT_FL)
4634                 new_fl |= S_ENCRYPTED;
4635         if (flags & EXT4_CASEFOLD_FL)
4636                 new_fl |= S_CASEFOLD;
4637         if (flags & EXT4_VERITY_FL)
4638                 new_fl |= S_VERITY;
4639         inode_set_flags(inode, new_fl,
4640                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4642 }
4643
4644 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645                                   struct ext4_inode_info *ei)
4646 {
4647         blkcnt_t i_blocks ;
4648         struct inode *inode = &(ei->vfs_inode);
4649         struct super_block *sb = inode->i_sb;
4650
4651         if (ext4_has_feature_huge_file(sb)) {
4652                 /* we are using combined 48 bit field */
4653                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654                                         le32_to_cpu(raw_inode->i_blocks_lo);
4655                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656                         /* i_blocks represent file system block size */
4657                         return i_blocks  << (inode->i_blkbits - 9);
4658                 } else {
4659                         return i_blocks;
4660                 }
4661         } else {
4662                 return le32_to_cpu(raw_inode->i_blocks_lo);
4663         }
4664 }
4665
4666 static inline int ext4_iget_extra_inode(struct inode *inode,
4667                                          struct ext4_inode *raw_inode,
4668                                          struct ext4_inode_info *ei)
4669 {
4670         __le32 *magic = (void *)raw_inode +
4671                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675                 int err;
4676
4677                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678                 err = ext4_find_inline_data_nolock(inode);
4679                 if (!err && ext4_has_inline_data(inode))
4680                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681                 return err;
4682         } else
4683                 EXT4_I(inode)->i_inline_off = 0;
4684         return 0;
4685 }
4686
4687 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688 {
4689         if (!ext4_has_feature_project(inode->i_sb))
4690                 return -EOPNOTSUPP;
4691         *projid = EXT4_I(inode)->i_projid;
4692         return 0;
4693 }
4694
4695 /*
4696  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698  * set.
4699  */
4700 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701 {
4702         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703                 inode_set_iversion_raw(inode, val);
4704         else
4705                 inode_set_iversion_queried(inode, val);
4706 }
4707
4708 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710 {
4711         if (flags & EXT4_IGET_EA_INODE) {
4712                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713                         return "missing EA_INODE flag";
4714                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715                     EXT4_I(inode)->i_file_acl)
4716                         return "ea_inode with extended attributes";
4717         } else {
4718                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719                         return "unexpected EA_INODE flag";
4720         }
4721         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4723         return NULL;
4724 }
4725
4726 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727                           ext4_iget_flags flags, const char *function,
4728                           unsigned int line)
4729 {
4730         struct ext4_iloc iloc;
4731         struct ext4_inode *raw_inode;
4732         struct ext4_inode_info *ei;
4733         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734         struct inode *inode;
4735         const char *err_str;
4736         journal_t *journal = EXT4_SB(sb)->s_journal;
4737         long ret;
4738         loff_t size;
4739         int block;
4740         uid_t i_uid;
4741         gid_t i_gid;
4742         projid_t i_projid;
4743
4744         if ((!(flags & EXT4_IGET_SPECIAL) &&
4745              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750             (ino < EXT4_ROOT_INO) ||
4751             (ino > le32_to_cpu(es->s_inodes_count))) {
4752                 if (flags & EXT4_IGET_HANDLE)
4753                         return ERR_PTR(-ESTALE);
4754                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755                              "inode #%lu: comm %s: iget: illegal inode #",
4756                              ino, current->comm);
4757                 return ERR_PTR(-EFSCORRUPTED);
4758         }
4759
4760         inode = iget_locked(sb, ino);
4761         if (!inode)
4762                 return ERR_PTR(-ENOMEM);
4763         if (!(inode->i_state & I_NEW)) {
4764                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765                         ext4_error_inode(inode, function, line, 0, err_str);
4766                         iput(inode);
4767                         return ERR_PTR(-EFSCORRUPTED);
4768                 }
4769                 return inode;
4770         }
4771
4772         ei = EXT4_I(inode);
4773         iloc.bh = NULL;
4774
4775         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776         if (ret < 0)
4777                 goto bad_inode;
4778         raw_inode = ext4_raw_inode(&iloc);
4779
4780         if ((flags & EXT4_IGET_HANDLE) &&
4781             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782                 ret = -ESTALE;
4783                 goto bad_inode;
4784         }
4785
4786         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789                         EXT4_INODE_SIZE(inode->i_sb) ||
4790                     (ei->i_extra_isize & 3)) {
4791                         ext4_error_inode(inode, function, line, 0,
4792                                          "iget: bad extra_isize %u "
4793                                          "(inode size %u)",
4794                                          ei->i_extra_isize,
4795                                          EXT4_INODE_SIZE(inode->i_sb));
4796                         ret = -EFSCORRUPTED;
4797                         goto bad_inode;
4798                 }
4799         } else
4800                 ei->i_extra_isize = 0;
4801
4802         /* Precompute checksum seed for inode metadata */
4803         if (ext4_has_metadata_csum(sb)) {
4804                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805                 __u32 csum;
4806                 __le32 inum = cpu_to_le32(inode->i_ino);
4807                 __le32 gen = raw_inode->i_generation;
4808                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809                                    sizeof(inum));
4810                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811                                               sizeof(gen));
4812         }
4813
4814         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817                 ext4_error_inode_err(inode, function, line, 0,
4818                                 EFSBADCRC, "iget: checksum invalid");
4819                 ret = -EFSBADCRC;
4820                 goto bad_inode;
4821         }
4822
4823         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826         if (ext4_has_feature_project(sb) &&
4827             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830         else
4831                 i_projid = EXT4_DEF_PROJID;
4832
4833         if (!(test_opt(inode->i_sb, NO_UID32))) {
4834                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836         }
4837         i_uid_write(inode, i_uid);
4838         i_gid_write(inode, i_gid);
4839         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4843         ei->i_inline_off = 0;
4844         ei->i_dir_start_lookup = 0;
4845         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846         /* We now have enough fields to check if the inode was active or not.
4847          * This is needed because nfsd might try to access dead inodes
4848          * the test is that same one that e2fsck uses
4849          * NeilBrown 1999oct15
4850          */
4851         if (inode->i_nlink == 0) {
4852                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854                     ino != EXT4_BOOT_LOADER_INO) {
4855                         /* this inode is deleted or unallocated */
4856                         if (flags & EXT4_IGET_SPECIAL) {
4857                                 ext4_error_inode(inode, function, line, 0,
4858                                                  "iget: special inode unallocated");
4859                                 ret = -EFSCORRUPTED;
4860                         } else
4861                                 ret = -ESTALE;
4862                         goto bad_inode;
4863                 }
4864                 /* The only unlinked inodes we let through here have
4865                  * valid i_mode and are being read by the orphan
4866                  * recovery code: that's fine, we're about to complete
4867                  * the process of deleting those.
4868                  * OR it is the EXT4_BOOT_LOADER_INO which is
4869                  * not initialized on a new filesystem. */
4870         }
4871         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872         ext4_set_inode_flags(inode, true);
4873         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875         if (ext4_has_feature_64bit(sb))
4876                 ei->i_file_acl |=
4877                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878         inode->i_size = ext4_isize(sb, raw_inode);
4879         if ((size = i_size_read(inode)) < 0) {
4880                 ext4_error_inode(inode, function, line, 0,
4881                                  "iget: bad i_size value: %lld", size);
4882                 ret = -EFSCORRUPTED;
4883                 goto bad_inode;
4884         }
4885         /*
4886          * If dir_index is not enabled but there's dir with INDEX flag set,
4887          * we'd normally treat htree data as empty space. But with metadata
4888          * checksumming that corrupts checksums so forbid that.
4889          */
4890         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892                 ext4_error_inode(inode, function, line, 0,
4893                          "iget: Dir with htree data on filesystem without dir_index feature.");
4894                 ret = -EFSCORRUPTED;
4895                 goto bad_inode;
4896         }
4897         ei->i_disksize = inode->i_size;
4898 #ifdef CONFIG_QUOTA
4899         ei->i_reserved_quota = 0;
4900 #endif
4901         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902         ei->i_block_group = iloc.block_group;
4903         ei->i_last_alloc_group = ~0;
4904         /*
4905          * NOTE! The in-memory inode i_data array is in little-endian order
4906          * even on big-endian machines: we do NOT byteswap the block numbers!
4907          */
4908         for (block = 0; block < EXT4_N_BLOCKS; block++)
4909                 ei->i_data[block] = raw_inode->i_block[block];
4910         INIT_LIST_HEAD(&ei->i_orphan);
4911         ext4_fc_init_inode(&ei->vfs_inode);
4912
4913         /*
4914          * Set transaction id's of transactions that have to be committed
4915          * to finish f[data]sync. We set them to currently running transaction
4916          * as we cannot be sure that the inode or some of its metadata isn't
4917          * part of the transaction - the inode could have been reclaimed and
4918          * now it is reread from disk.
4919          */
4920         if (journal) {
4921                 transaction_t *transaction;
4922                 tid_t tid;
4923
4924                 read_lock(&journal->j_state_lock);
4925                 if (journal->j_running_transaction)
4926                         transaction = journal->j_running_transaction;
4927                 else
4928                         transaction = journal->j_committing_transaction;
4929                 if (transaction)
4930                         tid = transaction->t_tid;
4931                 else
4932                         tid = journal->j_commit_sequence;
4933                 read_unlock(&journal->j_state_lock);
4934                 ei->i_sync_tid = tid;
4935                 ei->i_datasync_tid = tid;
4936         }
4937
4938         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939                 if (ei->i_extra_isize == 0) {
4940                         /* The extra space is currently unused. Use it. */
4941                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4943                                             EXT4_GOOD_OLD_INODE_SIZE;
4944                 } else {
4945                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946                         if (ret)
4947                                 goto bad_inode;
4948                 }
4949         }
4950
4951         EXT4_INODE_GET_CTIME(inode, raw_inode);
4952         EXT4_INODE_GET_ATIME(inode, raw_inode);
4953         EXT4_INODE_GET_MTIME(inode, raw_inode);
4954         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961                                 ivers |=
4962                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963                 }
4964                 ext4_inode_set_iversion_queried(inode, ivers);
4965         }
4966
4967         ret = 0;
4968         if (ei->i_file_acl &&
4969             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970                 ext4_error_inode(inode, function, line, 0,
4971                                  "iget: bad extended attribute block %llu",
4972                                  ei->i_file_acl);
4973                 ret = -EFSCORRUPTED;
4974                 goto bad_inode;
4975         } else if (!ext4_has_inline_data(inode)) {
4976                 /* validate the block references in the inode */
4977                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979                         (S_ISLNK(inode->i_mode) &&
4980                         !ext4_inode_is_fast_symlink(inode)))) {
4981                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982                                 ret = ext4_ext_check_inode(inode);
4983                         else
4984                                 ret = ext4_ind_check_inode(inode);
4985                 }
4986         }
4987         if (ret)
4988                 goto bad_inode;
4989
4990         if (S_ISREG(inode->i_mode)) {
4991                 inode->i_op = &ext4_file_inode_operations;
4992                 inode->i_fop = &ext4_file_operations;
4993                 ext4_set_aops(inode);
4994         } else if (S_ISDIR(inode->i_mode)) {
4995                 inode->i_op = &ext4_dir_inode_operations;
4996                 inode->i_fop = &ext4_dir_operations;
4997         } else if (S_ISLNK(inode->i_mode)) {
4998                 /* VFS does not allow setting these so must be corruption */
4999                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000                         ext4_error_inode(inode, function, line, 0,
5001                                          "iget: immutable or append flags "
5002                                          "not allowed on symlinks");
5003                         ret = -EFSCORRUPTED;
5004                         goto bad_inode;
5005                 }
5006                 if (IS_ENCRYPTED(inode)) {
5007                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008                 } else if (ext4_inode_is_fast_symlink(inode)) {
5009                         inode->i_op = &ext4_fast_symlink_inode_operations;
5010                         nd_terminate_link(ei->i_data, inode->i_size,
5011                                 sizeof(ei->i_data) - 1);
5012                         inode_set_cached_link(inode, (char *)ei->i_data,
5013                                               inode->i_size);
5014                 } else {
5015                         inode->i_op = &ext4_symlink_inode_operations;
5016                 }
5017         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5018               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5019                 inode->i_op = &ext4_special_inode_operations;
5020                 if (raw_inode->i_block[0])
5021                         init_special_inode(inode, inode->i_mode,
5022                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5023                 else
5024                         init_special_inode(inode, inode->i_mode,
5025                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5026         } else if (ino == EXT4_BOOT_LOADER_INO) {
5027                 make_bad_inode(inode);
5028         } else {
5029                 ret = -EFSCORRUPTED;
5030                 ext4_error_inode(inode, function, line, 0,
5031                                  "iget: bogus i_mode (%o)", inode->i_mode);
5032                 goto bad_inode;
5033         }
5034         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5035                 ext4_error_inode(inode, function, line, 0,
5036                                  "casefold flag without casefold feature");
5037                 ret = -EFSCORRUPTED;
5038                 goto bad_inode;
5039         }
5040         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5041                 ext4_error_inode(inode, function, line, 0, err_str);
5042                 ret = -EFSCORRUPTED;
5043                 goto bad_inode;
5044         }
5045
5046         brelse(iloc.bh);
5047         unlock_new_inode(inode);
5048         return inode;
5049
5050 bad_inode:
5051         brelse(iloc.bh);
5052         iget_failed(inode);
5053         return ERR_PTR(ret);
5054 }
5055
5056 static void __ext4_update_other_inode_time(struct super_block *sb,
5057                                            unsigned long orig_ino,
5058                                            unsigned long ino,
5059                                            struct ext4_inode *raw_inode)
5060 {
5061         struct inode *inode;
5062
5063         inode = find_inode_by_ino_rcu(sb, ino);
5064         if (!inode)
5065                 return;
5066
5067         if (!inode_is_dirtytime_only(inode))
5068                 return;
5069
5070         spin_lock(&inode->i_lock);
5071         if (inode_is_dirtytime_only(inode)) {
5072                 struct ext4_inode_info  *ei = EXT4_I(inode);
5073
5074                 inode->i_state &= ~I_DIRTY_TIME;
5075                 spin_unlock(&inode->i_lock);
5076
5077                 spin_lock(&ei->i_raw_lock);
5078                 EXT4_INODE_SET_CTIME(inode, raw_inode);
5079                 EXT4_INODE_SET_MTIME(inode, raw_inode);
5080                 EXT4_INODE_SET_ATIME(inode, raw_inode);
5081                 ext4_inode_csum_set(inode, raw_inode, ei);
5082                 spin_unlock(&ei->i_raw_lock);
5083                 trace_ext4_other_inode_update_time(inode, orig_ino);
5084                 return;
5085         }
5086         spin_unlock(&inode->i_lock);
5087 }
5088
5089 /*
5090  * Opportunistically update the other time fields for other inodes in
5091  * the same inode table block.
5092  */
5093 static void ext4_update_other_inodes_time(struct super_block *sb,
5094                                           unsigned long orig_ino, char *buf)
5095 {
5096         unsigned long ino;
5097         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5098         int inode_size = EXT4_INODE_SIZE(sb);
5099
5100         /*
5101          * Calculate the first inode in the inode table block.  Inode
5102          * numbers are one-based.  That is, the first inode in a block
5103          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5104          */
5105         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5106         rcu_read_lock();
5107         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5108                 if (ino == orig_ino)
5109                         continue;
5110                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5111                                                (struct ext4_inode *)buf);
5112         }
5113         rcu_read_unlock();
5114 }
5115
5116 /*
5117  * Post the struct inode info into an on-disk inode location in the
5118  * buffer-cache.  This gobbles the caller's reference to the
5119  * buffer_head in the inode location struct.
5120  *
5121  * The caller must have write access to iloc->bh.
5122  */
5123 static int ext4_do_update_inode(handle_t *handle,
5124                                 struct inode *inode,
5125                                 struct ext4_iloc *iloc)
5126 {
5127         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5128         struct ext4_inode_info *ei = EXT4_I(inode);
5129         struct buffer_head *bh = iloc->bh;
5130         struct super_block *sb = inode->i_sb;
5131         int err;
5132         int need_datasync = 0, set_large_file = 0;
5133
5134         spin_lock(&ei->i_raw_lock);
5135
5136         /*
5137          * For fields not tracked in the in-memory inode, initialise them
5138          * to zero for new inodes.
5139          */
5140         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5141                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5142
5143         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5144                 need_datasync = 1;
5145         if (ei->i_disksize > 0x7fffffffULL) {
5146                 if (!ext4_has_feature_large_file(sb) ||
5147                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5148                         set_large_file = 1;
5149         }
5150
5151         err = ext4_fill_raw_inode(inode, raw_inode);
5152         spin_unlock(&ei->i_raw_lock);
5153         if (err) {
5154                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5155                 goto out_brelse;
5156         }
5157
5158         if (inode->i_sb->s_flags & SB_LAZYTIME)
5159                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5160                                               bh->b_data);
5161
5162         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5163         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5164         if (err)
5165                 goto out_error;
5166         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5167         if (set_large_file) {
5168                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5169                 err = ext4_journal_get_write_access(handle, sb,
5170                                                     EXT4_SB(sb)->s_sbh,
5171                                                     EXT4_JTR_NONE);
5172                 if (err)
5173                         goto out_error;
5174                 lock_buffer(EXT4_SB(sb)->s_sbh);
5175                 ext4_set_feature_large_file(sb);
5176                 ext4_superblock_csum_set(sb);
5177                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5178                 ext4_handle_sync(handle);
5179                 err = ext4_handle_dirty_metadata(handle, NULL,
5180                                                  EXT4_SB(sb)->s_sbh);
5181         }
5182         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5183 out_error:
5184         ext4_std_error(inode->i_sb, err);
5185 out_brelse:
5186         brelse(bh);
5187         return err;
5188 }
5189
5190 /*
5191  * ext4_write_inode()
5192  *
5193  * We are called from a few places:
5194  *
5195  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5196  *   Here, there will be no transaction running. We wait for any running
5197  *   transaction to commit.
5198  *
5199  * - Within flush work (sys_sync(), kupdate and such).
5200  *   We wait on commit, if told to.
5201  *
5202  * - Within iput_final() -> write_inode_now()
5203  *   We wait on commit, if told to.
5204  *
5205  * In all cases it is actually safe for us to return without doing anything,
5206  * because the inode has been copied into a raw inode buffer in
5207  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5208  * writeback.
5209  *
5210  * Note that we are absolutely dependent upon all inode dirtiers doing the
5211  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5212  * which we are interested.
5213  *
5214  * It would be a bug for them to not do this.  The code:
5215  *
5216  *      mark_inode_dirty(inode)
5217  *      stuff();
5218  *      inode->i_size = expr;
5219  *
5220  * is in error because write_inode() could occur while `stuff()' is running,
5221  * and the new i_size will be lost.  Plus the inode will no longer be on the
5222  * superblock's dirty inode list.
5223  */
5224 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5225 {
5226         int err;
5227
5228         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5229                 return 0;
5230
5231         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5232                 return -EIO;
5233
5234         if (EXT4_SB(inode->i_sb)->s_journal) {
5235                 if (ext4_journal_current_handle()) {
5236                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5237                         dump_stack();
5238                         return -EIO;
5239                 }
5240
5241                 /*
5242                  * No need to force transaction in WB_SYNC_NONE mode. Also
5243                  * ext4_sync_fs() will force the commit after everything is
5244                  * written.
5245                  */
5246                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5247                         return 0;
5248
5249                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5250                                                 EXT4_I(inode)->i_sync_tid);
5251         } else {
5252                 struct ext4_iloc iloc;
5253
5254                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5255                 if (err)
5256                         return err;
5257                 /*
5258                  * sync(2) will flush the whole buffer cache. No need to do
5259                  * it here separately for each inode.
5260                  */
5261                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5262                         sync_dirty_buffer(iloc.bh);
5263                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5264                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5265                                                "IO error syncing inode");
5266                         err = -EIO;
5267                 }
5268                 brelse(iloc.bh);
5269         }
5270         return err;
5271 }
5272
5273 /*
5274  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5275  * buffers that are attached to a folio straddling i_size and are undergoing
5276  * commit. In that case we have to wait for commit to finish and try again.
5277  */
5278 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5279 {
5280         unsigned offset;
5281         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5282         tid_t commit_tid;
5283         int ret;
5284         bool has_transaction;
5285
5286         offset = inode->i_size & (PAGE_SIZE - 1);
5287         /*
5288          * If the folio is fully truncated, we don't need to wait for any commit
5289          * (and we even should not as __ext4_journalled_invalidate_folio() may
5290          * strip all buffers from the folio but keep the folio dirty which can then
5291          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5292          * buffers). Also we don't need to wait for any commit if all buffers in
5293          * the folio remain valid. This is most beneficial for the common case of
5294          * blocksize == PAGESIZE.
5295          */
5296         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5297                 return;
5298         while (1) {
5299                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5300                                       inode->i_size >> PAGE_SHIFT);
5301                 if (IS_ERR(folio))
5302                         return;
5303                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5304                                                 folio_size(folio) - offset);
5305                 folio_unlock(folio);
5306                 folio_put(folio);
5307                 if (ret != -EBUSY)
5308                         return;
5309                 has_transaction = false;
5310                 read_lock(&journal->j_state_lock);
5311                 if (journal->j_committing_transaction) {
5312                         commit_tid = journal->j_committing_transaction->t_tid;
5313                         has_transaction = true;
5314                 }
5315                 read_unlock(&journal->j_state_lock);
5316                 if (has_transaction)
5317                         jbd2_log_wait_commit(journal, commit_tid);
5318         }
5319 }
5320
5321 /*
5322  * ext4_setattr()
5323  *
5324  * Called from notify_change.
5325  *
5326  * We want to trap VFS attempts to truncate the file as soon as
5327  * possible.  In particular, we want to make sure that when the VFS
5328  * shrinks i_size, we put the inode on the orphan list and modify
5329  * i_disksize immediately, so that during the subsequent flushing of
5330  * dirty pages and freeing of disk blocks, we can guarantee that any
5331  * commit will leave the blocks being flushed in an unused state on
5332  * disk.  (On recovery, the inode will get truncated and the blocks will
5333  * be freed, so we have a strong guarantee that no future commit will
5334  * leave these blocks visible to the user.)
5335  *
5336  * Another thing we have to assure is that if we are in ordered mode
5337  * and inode is still attached to the committing transaction, we must
5338  * we start writeout of all the dirty pages which are being truncated.
5339  * This way we are sure that all the data written in the previous
5340  * transaction are already on disk (truncate waits for pages under
5341  * writeback).
5342  *
5343  * Called with inode->i_rwsem down.
5344  */
5345 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5346                  struct iattr *attr)
5347 {
5348         struct inode *inode = d_inode(dentry);
5349         int error, rc = 0;
5350         int orphan = 0;
5351         const unsigned int ia_valid = attr->ia_valid;
5352         bool inc_ivers = true;
5353
5354         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5355                 return -EIO;
5356
5357         if (unlikely(IS_IMMUTABLE(inode)))
5358                 return -EPERM;
5359
5360         if (unlikely(IS_APPEND(inode) &&
5361                      (ia_valid & (ATTR_MODE | ATTR_UID |
5362                                   ATTR_GID | ATTR_TIMES_SET))))
5363                 return -EPERM;
5364
5365         error = setattr_prepare(idmap, dentry, attr);
5366         if (error)
5367                 return error;
5368
5369         error = fscrypt_prepare_setattr(dentry, attr);
5370         if (error)
5371                 return error;
5372
5373         error = fsverity_prepare_setattr(dentry, attr);
5374         if (error)
5375                 return error;
5376
5377         if (is_quota_modification(idmap, inode, attr)) {
5378                 error = dquot_initialize(inode);
5379                 if (error)
5380                         return error;
5381         }
5382
5383         if (i_uid_needs_update(idmap, attr, inode) ||
5384             i_gid_needs_update(idmap, attr, inode)) {
5385                 handle_t *handle;
5386
5387                 /* (user+group)*(old+new) structure, inode write (sb,
5388                  * inode block, ? - but truncate inode update has it) */
5389                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5390                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5391                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5392                 if (IS_ERR(handle)) {
5393                         error = PTR_ERR(handle);
5394                         goto err_out;
5395                 }
5396
5397                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5398                  * counts xattr inode references.
5399                  */
5400                 down_read(&EXT4_I(inode)->xattr_sem);
5401                 error = dquot_transfer(idmap, inode, attr);
5402                 up_read(&EXT4_I(inode)->xattr_sem);
5403
5404                 if (error) {
5405                         ext4_journal_stop(handle);
5406                         return error;
5407                 }
5408                 /* Update corresponding info in inode so that everything is in
5409                  * one transaction */
5410                 i_uid_update(idmap, attr, inode);
5411                 i_gid_update(idmap, attr, inode);
5412                 error = ext4_mark_inode_dirty(handle, inode);
5413                 ext4_journal_stop(handle);
5414                 if (unlikely(error)) {
5415                         return error;
5416                 }
5417         }
5418
5419         if (attr->ia_valid & ATTR_SIZE) {
5420                 handle_t *handle;
5421                 loff_t oldsize = inode->i_size;
5422                 loff_t old_disksize;
5423                 int shrink = (attr->ia_size < inode->i_size);
5424
5425                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5426                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5427
5428                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5429                                 return -EFBIG;
5430                         }
5431                 }
5432                 if (!S_ISREG(inode->i_mode)) {
5433                         return -EINVAL;
5434                 }
5435
5436                 if (attr->ia_size == inode->i_size)
5437                         inc_ivers = false;
5438
5439                 if (shrink) {
5440                         if (ext4_should_order_data(inode)) {
5441                                 error = ext4_begin_ordered_truncate(inode,
5442                                                             attr->ia_size);
5443                                 if (error)
5444                                         goto err_out;
5445                         }
5446                         /*
5447                          * Blocks are going to be removed from the inode. Wait
5448                          * for dio in flight.
5449                          */
5450                         inode_dio_wait(inode);
5451                 }
5452
5453                 filemap_invalidate_lock(inode->i_mapping);
5454
5455                 rc = ext4_break_layouts(inode);
5456                 if (rc) {
5457                         filemap_invalidate_unlock(inode->i_mapping);
5458                         goto err_out;
5459                 }
5460
5461                 if (attr->ia_size != inode->i_size) {
5462                         /* attach jbd2 jinode for EOF folio tail zeroing */
5463                         if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5464                             oldsize & (inode->i_sb->s_blocksize - 1)) {
5465                                 error = ext4_inode_attach_jinode(inode);
5466                                 if (error)
5467                                         goto err_out;
5468                         }
5469
5470                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5471                         if (IS_ERR(handle)) {
5472                                 error = PTR_ERR(handle);
5473                                 goto out_mmap_sem;
5474                         }
5475                         if (ext4_handle_valid(handle) && shrink) {
5476                                 error = ext4_orphan_add(handle, inode);
5477                                 orphan = 1;
5478                         }
5479                         /*
5480                          * Update c/mtime and tail zero the EOF folio on
5481                          * truncate up. ext4_truncate() handles the shrink case
5482                          * below.
5483                          */
5484                         if (!shrink) {
5485                                 inode_set_mtime_to_ts(inode,
5486                                                       inode_set_ctime_current(inode));
5487                                 if (oldsize & (inode->i_sb->s_blocksize - 1))
5488                                         ext4_block_truncate_page(handle,
5489                                                         inode->i_mapping, oldsize);
5490                         }
5491
5492                         if (shrink)
5493                                 ext4_fc_track_range(handle, inode,
5494                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5495                                         inode->i_sb->s_blocksize_bits,
5496                                         EXT_MAX_BLOCKS - 1);
5497                         else
5498                                 ext4_fc_track_range(
5499                                         handle, inode,
5500                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5501                                         inode->i_sb->s_blocksize_bits,
5502                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5503                                         inode->i_sb->s_blocksize_bits);
5504
5505                         down_write(&EXT4_I(inode)->i_data_sem);
5506                         old_disksize = EXT4_I(inode)->i_disksize;
5507                         EXT4_I(inode)->i_disksize = attr->ia_size;
5508                         rc = ext4_mark_inode_dirty(handle, inode);
5509                         if (!error)
5510                                 error = rc;
5511                         /*
5512                          * We have to update i_size under i_data_sem together
5513                          * with i_disksize to avoid races with writeback code
5514                          * running ext4_wb_update_i_disksize().
5515                          */
5516                         if (!error)
5517                                 i_size_write(inode, attr->ia_size);
5518                         else
5519                                 EXT4_I(inode)->i_disksize = old_disksize;
5520                         up_write(&EXT4_I(inode)->i_data_sem);
5521                         ext4_journal_stop(handle);
5522                         if (error)
5523                                 goto out_mmap_sem;
5524                         if (!shrink) {
5525                                 pagecache_isize_extended(inode, oldsize,
5526                                                          inode->i_size);
5527                         } else if (ext4_should_journal_data(inode)) {
5528                                 ext4_wait_for_tail_page_commit(inode);
5529                         }
5530                 }
5531
5532                 /*
5533                  * Truncate pagecache after we've waited for commit
5534                  * in data=journal mode to make pages freeable.
5535                  */
5536                 truncate_pagecache(inode, inode->i_size);
5537                 /*
5538                  * Call ext4_truncate() even if i_size didn't change to
5539                  * truncate possible preallocated blocks.
5540                  */
5541                 if (attr->ia_size <= oldsize) {
5542                         rc = ext4_truncate(inode);
5543                         if (rc)
5544                                 error = rc;
5545                 }
5546 out_mmap_sem:
5547                 filemap_invalidate_unlock(inode->i_mapping);
5548         }
5549
5550         if (!error) {
5551                 if (inc_ivers)
5552                         inode_inc_iversion(inode);
5553                 setattr_copy(idmap, inode, attr);
5554                 mark_inode_dirty(inode);
5555         }
5556
5557         /*
5558          * If the call to ext4_truncate failed to get a transaction handle at
5559          * all, we need to clean up the in-core orphan list manually.
5560          */
5561         if (orphan && inode->i_nlink)
5562                 ext4_orphan_del(NULL, inode);
5563
5564         if (!error && (ia_valid & ATTR_MODE))
5565                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5566
5567 err_out:
5568         if  (error)
5569                 ext4_std_error(inode->i_sb, error);
5570         if (!error)
5571                 error = rc;
5572         return error;
5573 }
5574
5575 u32 ext4_dio_alignment(struct inode *inode)
5576 {
5577         if (fsverity_active(inode))
5578                 return 0;
5579         if (ext4_should_journal_data(inode))
5580                 return 0;
5581         if (ext4_has_inline_data(inode))
5582                 return 0;
5583         if (IS_ENCRYPTED(inode)) {
5584                 if (!fscrypt_dio_supported(inode))
5585                         return 0;
5586                 return i_blocksize(inode);
5587         }
5588         return 1; /* use the iomap defaults */
5589 }
5590
5591 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5592                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5593 {
5594         struct inode *inode = d_inode(path->dentry);
5595         struct ext4_inode *raw_inode;
5596         struct ext4_inode_info *ei = EXT4_I(inode);
5597         unsigned int flags;
5598
5599         if ((request_mask & STATX_BTIME) &&
5600             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5601                 stat->result_mask |= STATX_BTIME;
5602                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5603                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5604         }
5605
5606         /*
5607          * Return the DIO alignment restrictions if requested.  We only return
5608          * this information when requested, since on encrypted files it might
5609          * take a fair bit of work to get if the file wasn't opened recently.
5610          */
5611         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5612                 u32 dio_align = ext4_dio_alignment(inode);
5613
5614                 stat->result_mask |= STATX_DIOALIGN;
5615                 if (dio_align == 1) {
5616                         struct block_device *bdev = inode->i_sb->s_bdev;
5617
5618                         /* iomap defaults */
5619                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5620                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5621                 } else {
5622                         stat->dio_mem_align = dio_align;
5623                         stat->dio_offset_align = dio_align;
5624                 }
5625         }
5626
5627         if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5628                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5629                 unsigned int awu_min = 0, awu_max = 0;
5630
5631                 if (ext4_inode_can_atomic_write(inode)) {
5632                         awu_min = sbi->s_awu_min;
5633                         awu_max = sbi->s_awu_max;
5634                 }
5635
5636                 generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5637         }
5638
5639         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5640         if (flags & EXT4_APPEND_FL)
5641                 stat->attributes |= STATX_ATTR_APPEND;
5642         if (flags & EXT4_COMPR_FL)
5643                 stat->attributes |= STATX_ATTR_COMPRESSED;
5644         if (flags & EXT4_ENCRYPT_FL)
5645                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5646         if (flags & EXT4_IMMUTABLE_FL)
5647                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5648         if (flags & EXT4_NODUMP_FL)
5649                 stat->attributes |= STATX_ATTR_NODUMP;
5650         if (flags & EXT4_VERITY_FL)
5651                 stat->attributes |= STATX_ATTR_VERITY;
5652
5653         stat->attributes_mask |= (STATX_ATTR_APPEND |
5654                                   STATX_ATTR_COMPRESSED |
5655                                   STATX_ATTR_ENCRYPTED |
5656                                   STATX_ATTR_IMMUTABLE |
5657                                   STATX_ATTR_NODUMP |
5658                                   STATX_ATTR_VERITY);
5659
5660         generic_fillattr(idmap, request_mask, inode, stat);
5661         return 0;
5662 }
5663
5664 int ext4_file_getattr(struct mnt_idmap *idmap,
5665                       const struct path *path, struct kstat *stat,
5666                       u32 request_mask, unsigned int query_flags)
5667 {
5668         struct inode *inode = d_inode(path->dentry);
5669         u64 delalloc_blocks;
5670
5671         ext4_getattr(idmap, path, stat, request_mask, query_flags);
5672
5673         /*
5674          * If there is inline data in the inode, the inode will normally not
5675          * have data blocks allocated (it may have an external xattr block).
5676          * Report at least one sector for such files, so tools like tar, rsync,
5677          * others don't incorrectly think the file is completely sparse.
5678          */
5679         if (unlikely(ext4_has_inline_data(inode)))
5680                 stat->blocks += (stat->size + 511) >> 9;
5681
5682         /*
5683          * We can't update i_blocks if the block allocation is delayed
5684          * otherwise in the case of system crash before the real block
5685          * allocation is done, we will have i_blocks inconsistent with
5686          * on-disk file blocks.
5687          * We always keep i_blocks updated together with real
5688          * allocation. But to not confuse with user, stat
5689          * will return the blocks that include the delayed allocation
5690          * blocks for this file.
5691          */
5692         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5693                                    EXT4_I(inode)->i_reserved_data_blocks);
5694         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5695         return 0;
5696 }
5697
5698 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5699                                    int pextents)
5700 {
5701         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5702                 return ext4_ind_trans_blocks(inode, lblocks);
5703         return ext4_ext_index_trans_blocks(inode, pextents);
5704 }
5705
5706 /*
5707  * Account for index blocks, block groups bitmaps and block group
5708  * descriptor blocks if modify datablocks and index blocks
5709  * worse case, the indexs blocks spread over different block groups
5710  *
5711  * If datablocks are discontiguous, they are possible to spread over
5712  * different block groups too. If they are contiguous, with flexbg,
5713  * they could still across block group boundary.
5714  *
5715  * Also account for superblock, inode, quota and xattr blocks
5716  */
5717 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5718                                   int pextents)
5719 {
5720         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5721         int gdpblocks;
5722         int idxblocks;
5723         int ret;
5724
5725         /*
5726          * How many index blocks need to touch to map @lblocks logical blocks
5727          * to @pextents physical extents?
5728          */
5729         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5730
5731         ret = idxblocks;
5732
5733         /*
5734          * Now let's see how many group bitmaps and group descriptors need
5735          * to account
5736          */
5737         groups = idxblocks + pextents;
5738         gdpblocks = groups;
5739         if (groups > ngroups)
5740                 groups = ngroups;
5741         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5742                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5743
5744         /* bitmaps and block group descriptor blocks */
5745         ret += groups + gdpblocks;
5746
5747         /* Blocks for super block, inode, quota and xattr blocks */
5748         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5749
5750         return ret;
5751 }
5752
5753 /*
5754  * Calculate the total number of credits to reserve to fit
5755  * the modification of a single pages into a single transaction,
5756  * which may include multiple chunks of block allocations.
5757  *
5758  * This could be called via ext4_write_begin()
5759  *
5760  * We need to consider the worse case, when
5761  * one new block per extent.
5762  */
5763 int ext4_writepage_trans_blocks(struct inode *inode)
5764 {
5765         int bpp = ext4_journal_blocks_per_page(inode);
5766         int ret;
5767
5768         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5769
5770         /* Account for data blocks for journalled mode */
5771         if (ext4_should_journal_data(inode))
5772                 ret += bpp;
5773         return ret;
5774 }
5775
5776 /*
5777  * Calculate the journal credits for a chunk of data modification.
5778  *
5779  * This is called from DIO, fallocate or whoever calling
5780  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5781  *
5782  * journal buffers for data blocks are not included here, as DIO
5783  * and fallocate do no need to journal data buffers.
5784  */
5785 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5786 {
5787         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5788 }
5789
5790 /*
5791  * The caller must have previously called ext4_reserve_inode_write().
5792  * Give this, we know that the caller already has write access to iloc->bh.
5793  */
5794 int ext4_mark_iloc_dirty(handle_t *handle,
5795                          struct inode *inode, struct ext4_iloc *iloc)
5796 {
5797         int err = 0;
5798
5799         if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5800                 put_bh(iloc->bh);
5801                 return -EIO;
5802         }
5803         ext4_fc_track_inode(handle, inode);
5804
5805         /* the do_update_inode consumes one bh->b_count */
5806         get_bh(iloc->bh);
5807
5808         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5809         err = ext4_do_update_inode(handle, inode, iloc);
5810         put_bh(iloc->bh);
5811         return err;
5812 }
5813
5814 /*
5815  * On success, We end up with an outstanding reference count against
5816  * iloc->bh.  This _must_ be cleaned up later.
5817  */
5818
5819 int
5820 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5821                          struct ext4_iloc *iloc)
5822 {
5823         int err;
5824
5825         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5826                 return -EIO;
5827
5828         err = ext4_get_inode_loc(inode, iloc);
5829         if (!err) {
5830                 BUFFER_TRACE(iloc->bh, "get_write_access");
5831                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5832                                                     iloc->bh, EXT4_JTR_NONE);
5833                 if (err) {
5834                         brelse(iloc->bh);
5835                         iloc->bh = NULL;
5836                 }
5837         }
5838         ext4_std_error(inode->i_sb, err);
5839         return err;
5840 }
5841
5842 static int __ext4_expand_extra_isize(struct inode *inode,
5843                                      unsigned int new_extra_isize,
5844                                      struct ext4_iloc *iloc,
5845                                      handle_t *handle, int *no_expand)
5846 {
5847         struct ext4_inode *raw_inode;
5848         struct ext4_xattr_ibody_header *header;
5849         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5850         struct ext4_inode_info *ei = EXT4_I(inode);
5851         int error;
5852
5853         /* this was checked at iget time, but double check for good measure */
5854         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5855             (ei->i_extra_isize & 3)) {
5856                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5857                                  ei->i_extra_isize,
5858                                  EXT4_INODE_SIZE(inode->i_sb));
5859                 return -EFSCORRUPTED;
5860         }
5861         if ((new_extra_isize < ei->i_extra_isize) ||
5862             (new_extra_isize < 4) ||
5863             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5864                 return -EINVAL; /* Should never happen */
5865
5866         raw_inode = ext4_raw_inode(iloc);
5867
5868         header = IHDR(inode, raw_inode);
5869
5870         /* No extended attributes present */
5871         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5872             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5873                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5874                        EXT4_I(inode)->i_extra_isize, 0,
5875                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5876                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5877                 return 0;
5878         }
5879
5880         /*
5881          * We may need to allocate external xattr block so we need quotas
5882          * initialized. Here we can be called with various locks held so we
5883          * cannot affort to initialize quotas ourselves. So just bail.
5884          */
5885         if (dquot_initialize_needed(inode))
5886                 return -EAGAIN;
5887
5888         /* try to expand with EAs present */
5889         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5890                                            raw_inode, handle);
5891         if (error) {
5892                 /*
5893                  * Inode size expansion failed; don't try again
5894                  */
5895                 *no_expand = 1;
5896         }
5897
5898         return error;
5899 }
5900
5901 /*
5902  * Expand an inode by new_extra_isize bytes.
5903  * Returns 0 on success or negative error number on failure.
5904  */
5905 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5906                                           unsigned int new_extra_isize,
5907                                           struct ext4_iloc iloc,
5908                                           handle_t *handle)
5909 {
5910         int no_expand;
5911         int error;
5912
5913         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5914                 return -EOVERFLOW;
5915
5916         /*
5917          * In nojournal mode, we can immediately attempt to expand
5918          * the inode.  When journaled, we first need to obtain extra
5919          * buffer credits since we may write into the EA block
5920          * with this same handle. If journal_extend fails, then it will
5921          * only result in a minor loss of functionality for that inode.
5922          * If this is felt to be critical, then e2fsck should be run to
5923          * force a large enough s_min_extra_isize.
5924          */
5925         if (ext4_journal_extend(handle,
5926                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5927                 return -ENOSPC;
5928
5929         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5930                 return -EBUSY;
5931
5932         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5933                                           handle, &no_expand);
5934         ext4_write_unlock_xattr(inode, &no_expand);
5935
5936         return error;
5937 }
5938
5939 int ext4_expand_extra_isize(struct inode *inode,
5940                             unsigned int new_extra_isize,
5941                             struct ext4_iloc *iloc)
5942 {
5943         handle_t *handle;
5944         int no_expand;
5945         int error, rc;
5946
5947         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5948                 brelse(iloc->bh);
5949                 return -EOVERFLOW;
5950         }
5951
5952         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5953                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5954         if (IS_ERR(handle)) {
5955                 error = PTR_ERR(handle);
5956                 brelse(iloc->bh);
5957                 return error;
5958         }
5959
5960         ext4_write_lock_xattr(inode, &no_expand);
5961
5962         BUFFER_TRACE(iloc->bh, "get_write_access");
5963         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5964                                               EXT4_JTR_NONE);
5965         if (error) {
5966                 brelse(iloc->bh);
5967                 goto out_unlock;
5968         }
5969
5970         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5971                                           handle, &no_expand);
5972
5973         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5974         if (!error)
5975                 error = rc;
5976
5977 out_unlock:
5978         ext4_write_unlock_xattr(inode, &no_expand);
5979         ext4_journal_stop(handle);
5980         return error;
5981 }
5982
5983 /*
5984  * What we do here is to mark the in-core inode as clean with respect to inode
5985  * dirtiness (it may still be data-dirty).
5986  * This means that the in-core inode may be reaped by prune_icache
5987  * without having to perform any I/O.  This is a very good thing,
5988  * because *any* task may call prune_icache - even ones which
5989  * have a transaction open against a different journal.
5990  *
5991  * Is this cheating?  Not really.  Sure, we haven't written the
5992  * inode out, but prune_icache isn't a user-visible syncing function.
5993  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5994  * we start and wait on commits.
5995  */
5996 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5997                                 const char *func, unsigned int line)
5998 {
5999         struct ext4_iloc iloc;
6000         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6001         int err;
6002
6003         might_sleep();
6004         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6005         err = ext4_reserve_inode_write(handle, inode, &iloc);
6006         if (err)
6007                 goto out;
6008
6009         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6010                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6011                                                iloc, handle);
6012
6013         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6014 out:
6015         if (unlikely(err))
6016                 ext4_error_inode_err(inode, func, line, 0, err,
6017                                         "mark_inode_dirty error");
6018         return err;
6019 }
6020
6021 /*
6022  * ext4_dirty_inode() is called from __mark_inode_dirty()
6023  *
6024  * We're really interested in the case where a file is being extended.
6025  * i_size has been changed by generic_commit_write() and we thus need
6026  * to include the updated inode in the current transaction.
6027  *
6028  * Also, dquot_alloc_block() will always dirty the inode when blocks
6029  * are allocated to the file.
6030  *
6031  * If the inode is marked synchronous, we don't honour that here - doing
6032  * so would cause a commit on atime updates, which we don't bother doing.
6033  * We handle synchronous inodes at the highest possible level.
6034  */
6035 void ext4_dirty_inode(struct inode *inode, int flags)
6036 {
6037         handle_t *handle;
6038
6039         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6040         if (IS_ERR(handle))
6041                 return;
6042         ext4_mark_inode_dirty(handle, inode);
6043         ext4_journal_stop(handle);
6044 }
6045
6046 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6047 {
6048         journal_t *journal;
6049         handle_t *handle;
6050         int err;
6051         int alloc_ctx;
6052
6053         /*
6054          * We have to be very careful here: changing a data block's
6055          * journaling status dynamically is dangerous.  If we write a
6056          * data block to the journal, change the status and then delete
6057          * that block, we risk forgetting to revoke the old log record
6058          * from the journal and so a subsequent replay can corrupt data.
6059          * So, first we make sure that the journal is empty and that
6060          * nobody is changing anything.
6061          */
6062
6063         journal = EXT4_JOURNAL(inode);
6064         if (!journal)
6065                 return 0;
6066         if (is_journal_aborted(journal))
6067                 return -EROFS;
6068
6069         /* Wait for all existing dio workers */
6070         inode_dio_wait(inode);
6071
6072         /*
6073          * Before flushing the journal and switching inode's aops, we have
6074          * to flush all dirty data the inode has. There can be outstanding
6075          * delayed allocations, there can be unwritten extents created by
6076          * fallocate or buffered writes in dioread_nolock mode covered by
6077          * dirty data which can be converted only after flushing the dirty
6078          * data (and journalled aops don't know how to handle these cases).
6079          */
6080         if (val) {
6081                 filemap_invalidate_lock(inode->i_mapping);
6082                 err = filemap_write_and_wait(inode->i_mapping);
6083                 if (err < 0) {
6084                         filemap_invalidate_unlock(inode->i_mapping);
6085                         return err;
6086                 }
6087         }
6088
6089         alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6090         jbd2_journal_lock_updates(journal);
6091
6092         /*
6093          * OK, there are no updates running now, and all cached data is
6094          * synced to disk.  We are now in a completely consistent state
6095          * which doesn't have anything in the journal, and we know that
6096          * no filesystem updates are running, so it is safe to modify
6097          * the inode's in-core data-journaling state flag now.
6098          */
6099
6100         if (val)
6101                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6102         else {
6103                 err = jbd2_journal_flush(journal, 0);
6104                 if (err < 0) {
6105                         jbd2_journal_unlock_updates(journal);
6106                         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6107                         return err;
6108                 }
6109                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6110         }
6111         ext4_set_aops(inode);
6112
6113         jbd2_journal_unlock_updates(journal);
6114         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6115
6116         if (val)
6117                 filemap_invalidate_unlock(inode->i_mapping);
6118
6119         /* Finally we can mark the inode as dirty. */
6120
6121         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6122         if (IS_ERR(handle))
6123                 return PTR_ERR(handle);
6124
6125         ext4_fc_mark_ineligible(inode->i_sb,
6126                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6127         err = ext4_mark_inode_dirty(handle, inode);
6128         ext4_handle_sync(handle);
6129         ext4_journal_stop(handle);
6130         ext4_std_error(inode->i_sb, err);
6131
6132         return err;
6133 }
6134
6135 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6136                             struct buffer_head *bh)
6137 {
6138         return !buffer_mapped(bh);
6139 }
6140
6141 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6142 {
6143         struct vm_area_struct *vma = vmf->vma;
6144         struct folio *folio = page_folio(vmf->page);
6145         loff_t size;
6146         unsigned long len;
6147         int err;
6148         vm_fault_t ret;
6149         struct file *file = vma->vm_file;
6150         struct inode *inode = file_inode(file);
6151         struct address_space *mapping = inode->i_mapping;
6152         handle_t *handle;
6153         get_block_t *get_block;
6154         int retries = 0;
6155
6156         if (unlikely(IS_IMMUTABLE(inode)))
6157                 return VM_FAULT_SIGBUS;
6158
6159         sb_start_pagefault(inode->i_sb);
6160         file_update_time(vma->vm_file);
6161
6162         filemap_invalidate_lock_shared(mapping);
6163
6164         err = ext4_convert_inline_data(inode);
6165         if (err)
6166                 goto out_ret;
6167
6168         /*
6169          * On data journalling we skip straight to the transaction handle:
6170          * there's no delalloc; page truncated will be checked later; the
6171          * early return w/ all buffers mapped (calculates size/len) can't
6172          * be used; and there's no dioread_nolock, so only ext4_get_block.
6173          */
6174         if (ext4_should_journal_data(inode))
6175                 goto retry_alloc;
6176
6177         /* Delalloc case is easy... */
6178         if (test_opt(inode->i_sb, DELALLOC) &&
6179             !ext4_nonda_switch(inode->i_sb)) {
6180                 do {
6181                         err = block_page_mkwrite(vma, vmf,
6182                                                    ext4_da_get_block_prep);
6183                 } while (err == -ENOSPC &&
6184                        ext4_should_retry_alloc(inode->i_sb, &retries));
6185                 goto out_ret;
6186         }
6187
6188         folio_lock(folio);
6189         size = i_size_read(inode);
6190         /* Page got truncated from under us? */
6191         if (folio->mapping != mapping || folio_pos(folio) > size) {
6192                 folio_unlock(folio);
6193                 ret = VM_FAULT_NOPAGE;
6194                 goto out;
6195         }
6196
6197         len = folio_size(folio);
6198         if (folio_pos(folio) + len > size)
6199                 len = size - folio_pos(folio);
6200         /*
6201          * Return if we have all the buffers mapped. This avoids the need to do
6202          * journal_start/journal_stop which can block and take a long time
6203          *
6204          * This cannot be done for data journalling, as we have to add the
6205          * inode to the transaction's list to writeprotect pages on commit.
6206          */
6207         if (folio_buffers(folio)) {
6208                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6209                                             0, len, NULL,
6210                                             ext4_bh_unmapped)) {
6211                         /* Wait so that we don't change page under IO */
6212                         folio_wait_stable(folio);
6213                         ret = VM_FAULT_LOCKED;
6214                         goto out;
6215                 }
6216         }
6217         folio_unlock(folio);
6218         /* OK, we need to fill the hole... */
6219         if (ext4_should_dioread_nolock(inode))
6220                 get_block = ext4_get_block_unwritten;
6221         else
6222                 get_block = ext4_get_block;
6223 retry_alloc:
6224         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6225                                     ext4_writepage_trans_blocks(inode));
6226         if (IS_ERR(handle)) {
6227                 ret = VM_FAULT_SIGBUS;
6228                 goto out;
6229         }
6230         /*
6231          * Data journalling can't use block_page_mkwrite() because it
6232          * will set_buffer_dirty() before do_journal_get_write_access()
6233          * thus might hit warning messages for dirty metadata buffers.
6234          */
6235         if (!ext4_should_journal_data(inode)) {
6236                 err = block_page_mkwrite(vma, vmf, get_block);
6237         } else {
6238                 folio_lock(folio);
6239                 size = i_size_read(inode);
6240                 /* Page got truncated from under us? */
6241                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6242                         ret = VM_FAULT_NOPAGE;
6243                         goto out_error;
6244                 }
6245
6246                 len = folio_size(folio);
6247                 if (folio_pos(folio) + len > size)
6248                         len = size - folio_pos(folio);
6249
6250                 err = ext4_block_write_begin(handle, folio, 0, len,
6251                                              ext4_get_block);
6252                 if (!err) {
6253                         ret = VM_FAULT_SIGBUS;
6254                         if (ext4_journal_folio_buffers(handle, folio, len))
6255                                 goto out_error;
6256                 } else {
6257                         folio_unlock(folio);
6258                 }
6259         }
6260         ext4_journal_stop(handle);
6261         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6262                 goto retry_alloc;
6263 out_ret:
6264         ret = vmf_fs_error(err);
6265 out:
6266         filemap_invalidate_unlock_shared(mapping);
6267         sb_end_pagefault(inode->i_sb);
6268         return ret;
6269 out_error:
6270         folio_unlock(folio);
6271         ext4_journal_stop(handle);
6272         goto out;
6273 }
This page took 0.384145 seconds and 4 git commands to generate.