]> Git Repo - linux.git/blob - mm/hugetlb.c
kasan: move tests to mm/kasan/
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59                                 1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64         return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68
69 __initdata LIST_HEAD(huge_boot_pages);
70
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96         if (spool->count)
97                 return false;
98         if (spool->max_hpages != -1)
99                 return spool->used_hpages == 0;
100         if (spool->min_hpages != -1)
101                 return spool->rsv_hpages == spool->min_hpages;
102
103         return true;
104 }
105
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107                                                 unsigned long irq_flags)
108 {
109         spin_unlock_irqrestore(&spool->lock, irq_flags);
110
111         /* If no pages are used, and no other handles to the subpool
112          * remain, give up any reservations based on minimum size and
113          * free the subpool */
114         if (subpool_is_free(spool)) {
115                 if (spool->min_hpages != -1)
116                         hugetlb_acct_memory(spool->hstate,
117                                                 -spool->min_hpages);
118                 kfree(spool);
119         }
120 }
121
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123                                                 long min_hpages)
124 {
125         struct hugepage_subpool *spool;
126
127         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128         if (!spool)
129                 return NULL;
130
131         spin_lock_init(&spool->lock);
132         spool->count = 1;
133         spool->max_hpages = max_hpages;
134         spool->hstate = h;
135         spool->min_hpages = min_hpages;
136
137         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138                 kfree(spool);
139                 return NULL;
140         }
141         spool->rsv_hpages = min_hpages;
142
143         return spool;
144 }
145
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148         unsigned long flags;
149
150         spin_lock_irqsave(&spool->lock, flags);
151         BUG_ON(!spool->count);
152         spool->count--;
153         unlock_or_release_subpool(spool, flags);
154 }
155
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165                                       long delta)
166 {
167         long ret = delta;
168
169         if (!spool)
170                 return ret;
171
172         spin_lock_irq(&spool->lock);
173
174         if (spool->max_hpages != -1) {          /* maximum size accounting */
175                 if ((spool->used_hpages + delta) <= spool->max_hpages)
176                         spool->used_hpages += delta;
177                 else {
178                         ret = -ENOMEM;
179                         goto unlock_ret;
180                 }
181         }
182
183         /* minimum size accounting */
184         if (spool->min_hpages != -1 && spool->rsv_hpages) {
185                 if (delta > spool->rsv_hpages) {
186                         /*
187                          * Asking for more reserves than those already taken on
188                          * behalf of subpool.  Return difference.
189                          */
190                         ret = delta - spool->rsv_hpages;
191                         spool->rsv_hpages = 0;
192                 } else {
193                         ret = 0;        /* reserves already accounted for */
194                         spool->rsv_hpages -= delta;
195                 }
196         }
197
198 unlock_ret:
199         spin_unlock_irq(&spool->lock);
200         return ret;
201 }
202
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210                                        long delta)
211 {
212         long ret = delta;
213         unsigned long flags;
214
215         if (!spool)
216                 return delta;
217
218         spin_lock_irqsave(&spool->lock, flags);
219
220         if (spool->max_hpages != -1)            /* maximum size accounting */
221                 spool->used_hpages -= delta;
222
223          /* minimum size accounting */
224         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225                 if (spool->rsv_hpages + delta <= spool->min_hpages)
226                         ret = 0;
227                 else
228                         ret = spool->rsv_hpages + delta - spool->min_hpages;
229
230                 spool->rsv_hpages += delta;
231                 if (spool->rsv_hpages > spool->min_hpages)
232                         spool->rsv_hpages = spool->min_hpages;
233         }
234
235         /*
236          * If hugetlbfs_put_super couldn't free spool due to an outstanding
237          * quota reference, free it now.
238          */
239         unlock_or_release_subpool(spool, flags);
240
241         return ret;
242 }
243
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246         return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251         return subpool_inode(file_inode(vma->vm_file));
252 }
253
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260         struct file_region *nrg = NULL;
261
262         VM_BUG_ON(resv->region_cache_count <= 0);
263
264         resv->region_cache_count--;
265         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266         list_del(&nrg->link);
267
268         nrg->from = from;
269         nrg->to = to;
270
271         return nrg;
272 }
273
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275                                               struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278         nrg->reservation_counter = rg->reservation_counter;
279         nrg->css = rg->css;
280         if (rg->css)
281                 css_get(rg->css);
282 #endif
283 }
284
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287                                                 struct hstate *h,
288                                                 struct resv_map *resv,
289                                                 struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292         if (h_cg) {
293                 nrg->reservation_counter =
294                         &h_cg->rsvd_hugepage[hstate_index(h)];
295                 nrg->css = &h_cg->css;
296                 /*
297                  * The caller will hold exactly one h_cg->css reference for the
298                  * whole contiguous reservation region. But this area might be
299                  * scattered when there are already some file_regions reside in
300                  * it. As a result, many file_regions may share only one css
301                  * reference. In order to ensure that one file_region must hold
302                  * exactly one h_cg->css reference, we should do css_get for
303                  * each file_region and leave the reference held by caller
304                  * untouched.
305                  */
306                 css_get(&h_cg->css);
307                 if (!resv->pages_per_hpage)
308                         resv->pages_per_hpage = pages_per_huge_page(h);
309                 /* pages_per_hpage should be the same for all entries in
310                  * a resv_map.
311                  */
312                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313         } else {
314                 nrg->reservation_counter = NULL;
315                 nrg->css = NULL;
316         }
317 #endif
318 }
319
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         if (rg->css)
324                 css_put(rg->css);
325 #endif
326 }
327
328 static bool has_same_uncharge_info(struct file_region *rg,
329                                    struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332         return rg->reservation_counter == org->reservation_counter &&
333                rg->css == org->css;
334
335 #else
336         return true;
337 #endif
338 }
339
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342         struct file_region *nrg = NULL, *prg = NULL;
343
344         prg = list_prev_entry(rg, link);
345         if (&prg->link != &resv->regions && prg->to == rg->from &&
346             has_same_uncharge_info(prg, rg)) {
347                 prg->to = rg->to;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352
353                 rg = prg;
354         }
355
356         nrg = list_next_entry(rg, link);
357         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358             has_same_uncharge_info(nrg, rg)) {
359                 nrg->from = rg->from;
360
361                 list_del(&rg->link);
362                 put_uncharge_info(rg);
363                 kfree(rg);
364         }
365 }
366
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
370                      long *regions_needed)
371 {
372         struct file_region *nrg;
373
374         if (!regions_needed) {
375                 nrg = get_file_region_entry_from_cache(map, from, to);
376                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377                 list_add(&nrg->link, rg);
378                 coalesce_file_region(map, nrg);
379         } else
380                 *regions_needed += 1;
381
382         return to - from;
383 }
384
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394                                      struct hugetlb_cgroup *h_cg,
395                                      struct hstate *h, long *regions_needed)
396 {
397         long add = 0;
398         struct list_head *head = &resv->regions;
399         long last_accounted_offset = f;
400         struct file_region *iter, *trg = NULL;
401         struct list_head *rg = NULL;
402
403         if (regions_needed)
404                 *regions_needed = 0;
405
406         /* In this loop, we essentially handle an entry for the range
407          * [last_accounted_offset, iter->from), at every iteration, with some
408          * bounds checking.
409          */
410         list_for_each_entry_safe(iter, trg, head, link) {
411                 /* Skip irrelevant regions that start before our range. */
412                 if (iter->from < f) {
413                         /* If this region ends after the last accounted offset,
414                          * then we need to update last_accounted_offset.
415                          */
416                         if (iter->to > last_accounted_offset)
417                                 last_accounted_offset = iter->to;
418                         continue;
419                 }
420
421                 /* When we find a region that starts beyond our range, we've
422                  * finished.
423                  */
424                 if (iter->from >= t) {
425                         rg = iter->link.prev;
426                         break;
427                 }
428
429                 /* Add an entry for last_accounted_offset -> iter->from, and
430                  * update last_accounted_offset.
431                  */
432                 if (iter->from > last_accounted_offset)
433                         add += hugetlb_resv_map_add(resv, iter->link.prev,
434                                                     last_accounted_offset,
435                                                     iter->from, h, h_cg,
436                                                     regions_needed);
437
438                 last_accounted_offset = iter->to;
439         }
440
441         /* Handle the case where our range extends beyond
442          * last_accounted_offset.
443          */
444         if (!rg)
445                 rg = head->prev;
446         if (last_accounted_offset < t)
447                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448                                             t, h, h_cg, regions_needed);
449
450         return add;
451 }
452
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456                                         int regions_needed)
457         __must_hold(&resv->lock)
458 {
459         LIST_HEAD(allocated_regions);
460         int to_allocate = 0, i = 0;
461         struct file_region *trg = NULL, *rg = NULL;
462
463         VM_BUG_ON(regions_needed < 0);
464
465         /*
466          * Check for sufficient descriptors in the cache to accommodate
467          * the number of in progress add operations plus regions_needed.
468          *
469          * This is a while loop because when we drop the lock, some other call
470          * to region_add or region_del may have consumed some region_entries,
471          * so we keep looping here until we finally have enough entries for
472          * (adds_in_progress + regions_needed).
473          */
474         while (resv->region_cache_count <
475                (resv->adds_in_progress + regions_needed)) {
476                 to_allocate = resv->adds_in_progress + regions_needed -
477                               resv->region_cache_count;
478
479                 /* At this point, we should have enough entries in the cache
480                  * for all the existing adds_in_progress. We should only be
481                  * needing to allocate for regions_needed.
482                  */
483                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
484
485                 spin_unlock(&resv->lock);
486                 for (i = 0; i < to_allocate; i++) {
487                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
488                         if (!trg)
489                                 goto out_of_memory;
490                         list_add(&trg->link, &allocated_regions);
491                 }
492
493                 spin_lock(&resv->lock);
494
495                 list_splice(&allocated_regions, &resv->region_cache);
496                 resv->region_cache_count += to_allocate;
497         }
498
499         return 0;
500
501 out_of_memory:
502         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
503                 list_del(&rg->link);
504                 kfree(rg);
505         }
506         return -ENOMEM;
507 }
508
509 /*
510  * Add the huge page range represented by [f, t) to the reserve
511  * map.  Regions will be taken from the cache to fill in this range.
512  * Sufficient regions should exist in the cache due to the previous
513  * call to region_chg with the same range, but in some cases the cache will not
514  * have sufficient entries due to races with other code doing region_add or
515  * region_del.  The extra needed entries will be allocated.
516  *
517  * regions_needed is the out value provided by a previous call to region_chg.
518  *
519  * Return the number of new huge pages added to the map.  This number is greater
520  * than or equal to zero.  If file_region entries needed to be allocated for
521  * this operation and we were not able to allocate, it returns -ENOMEM.
522  * region_add of regions of length 1 never allocate file_regions and cannot
523  * fail; region_chg will always allocate at least 1 entry and a region_add for
524  * 1 page will only require at most 1 entry.
525  */
526 static long region_add(struct resv_map *resv, long f, long t,
527                        long in_regions_needed, struct hstate *h,
528                        struct hugetlb_cgroup *h_cg)
529 {
530         long add = 0, actual_regions_needed = 0;
531
532         spin_lock(&resv->lock);
533 retry:
534
535         /* Count how many regions are actually needed to execute this add. */
536         add_reservation_in_range(resv, f, t, NULL, NULL,
537                                  &actual_regions_needed);
538
539         /*
540          * Check for sufficient descriptors in the cache to accommodate
541          * this add operation. Note that actual_regions_needed may be greater
542          * than in_regions_needed, as the resv_map may have been modified since
543          * the region_chg call. In this case, we need to make sure that we
544          * allocate extra entries, such that we have enough for all the
545          * existing adds_in_progress, plus the excess needed for this
546          * operation.
547          */
548         if (actual_regions_needed > in_regions_needed &&
549             resv->region_cache_count <
550                     resv->adds_in_progress +
551                             (actual_regions_needed - in_regions_needed)) {
552                 /* region_add operation of range 1 should never need to
553                  * allocate file_region entries.
554                  */
555                 VM_BUG_ON(t - f <= 1);
556
557                 if (allocate_file_region_entries(
558                             resv, actual_regions_needed - in_regions_needed)) {
559                         return -ENOMEM;
560                 }
561
562                 goto retry;
563         }
564
565         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
566
567         resv->adds_in_progress -= in_regions_needed;
568
569         spin_unlock(&resv->lock);
570         return add;
571 }
572
573 /*
574  * Examine the existing reserve map and determine how many
575  * huge pages in the specified range [f, t) are NOT currently
576  * represented.  This routine is called before a subsequent
577  * call to region_add that will actually modify the reserve
578  * map to add the specified range [f, t).  region_chg does
579  * not change the number of huge pages represented by the
580  * map.  A number of new file_region structures is added to the cache as a
581  * placeholder, for the subsequent region_add call to use. At least 1
582  * file_region structure is added.
583  *
584  * out_regions_needed is the number of regions added to the
585  * resv->adds_in_progress.  This value needs to be provided to a follow up call
586  * to region_add or region_abort for proper accounting.
587  *
588  * Returns the number of huge pages that need to be added to the existing
589  * reservation map for the range [f, t).  This number is greater or equal to
590  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
591  * is needed and can not be allocated.
592  */
593 static long region_chg(struct resv_map *resv, long f, long t,
594                        long *out_regions_needed)
595 {
596         long chg = 0;
597
598         spin_lock(&resv->lock);
599
600         /* Count how many hugepages in this range are NOT represented. */
601         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
602                                        out_regions_needed);
603
604         if (*out_regions_needed == 0)
605                 *out_regions_needed = 1;
606
607         if (allocate_file_region_entries(resv, *out_regions_needed))
608                 return -ENOMEM;
609
610         resv->adds_in_progress += *out_regions_needed;
611
612         spin_unlock(&resv->lock);
613         return chg;
614 }
615
616 /*
617  * Abort the in progress add operation.  The adds_in_progress field
618  * of the resv_map keeps track of the operations in progress between
619  * calls to region_chg and region_add.  Operations are sometimes
620  * aborted after the call to region_chg.  In such cases, region_abort
621  * is called to decrement the adds_in_progress counter. regions_needed
622  * is the value returned by the region_chg call, it is used to decrement
623  * the adds_in_progress counter.
624  *
625  * NOTE: The range arguments [f, t) are not needed or used in this
626  * routine.  They are kept to make reading the calling code easier as
627  * arguments will match the associated region_chg call.
628  */
629 static void region_abort(struct resv_map *resv, long f, long t,
630                          long regions_needed)
631 {
632         spin_lock(&resv->lock);
633         VM_BUG_ON(!resv->region_cache_count);
634         resv->adds_in_progress -= regions_needed;
635         spin_unlock(&resv->lock);
636 }
637
638 /*
639  * Delete the specified range [f, t) from the reserve map.  If the
640  * t parameter is LONG_MAX, this indicates that ALL regions after f
641  * should be deleted.  Locate the regions which intersect [f, t)
642  * and either trim, delete or split the existing regions.
643  *
644  * Returns the number of huge pages deleted from the reserve map.
645  * In the normal case, the return value is zero or more.  In the
646  * case where a region must be split, a new region descriptor must
647  * be allocated.  If the allocation fails, -ENOMEM will be returned.
648  * NOTE: If the parameter t == LONG_MAX, then we will never split
649  * a region and possibly return -ENOMEM.  Callers specifying
650  * t == LONG_MAX do not need to check for -ENOMEM error.
651  */
652 static long region_del(struct resv_map *resv, long f, long t)
653 {
654         struct list_head *head = &resv->regions;
655         struct file_region *rg, *trg;
656         struct file_region *nrg = NULL;
657         long del = 0;
658
659 retry:
660         spin_lock(&resv->lock);
661         list_for_each_entry_safe(rg, trg, head, link) {
662                 /*
663                  * Skip regions before the range to be deleted.  file_region
664                  * ranges are normally of the form [from, to).  However, there
665                  * may be a "placeholder" entry in the map which is of the form
666                  * (from, to) with from == to.  Check for placeholder entries
667                  * at the beginning of the range to be deleted.
668                  */
669                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
670                         continue;
671
672                 if (rg->from >= t)
673                         break;
674
675                 if (f > rg->from && t < rg->to) { /* Must split region */
676                         /*
677                          * Check for an entry in the cache before dropping
678                          * lock and attempting allocation.
679                          */
680                         if (!nrg &&
681                             resv->region_cache_count > resv->adds_in_progress) {
682                                 nrg = list_first_entry(&resv->region_cache,
683                                                         struct file_region,
684                                                         link);
685                                 list_del(&nrg->link);
686                                 resv->region_cache_count--;
687                         }
688
689                         if (!nrg) {
690                                 spin_unlock(&resv->lock);
691                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
692                                 if (!nrg)
693                                         return -ENOMEM;
694                                 goto retry;
695                         }
696
697                         del += t - f;
698                         hugetlb_cgroup_uncharge_file_region(
699                                 resv, rg, t - f, false);
700
701                         /* New entry for end of split region */
702                         nrg->from = t;
703                         nrg->to = rg->to;
704
705                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
706
707                         INIT_LIST_HEAD(&nrg->link);
708
709                         /* Original entry is trimmed */
710                         rg->to = f;
711
712                         list_add(&nrg->link, &rg->link);
713                         nrg = NULL;
714                         break;
715                 }
716
717                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
718                         del += rg->to - rg->from;
719                         hugetlb_cgroup_uncharge_file_region(resv, rg,
720                                                             rg->to - rg->from, true);
721                         list_del(&rg->link);
722                         kfree(rg);
723                         continue;
724                 }
725
726                 if (f <= rg->from) {    /* Trim beginning of region */
727                         hugetlb_cgroup_uncharge_file_region(resv, rg,
728                                                             t - rg->from, false);
729
730                         del += t - rg->from;
731                         rg->from = t;
732                 } else {                /* Trim end of region */
733                         hugetlb_cgroup_uncharge_file_region(resv, rg,
734                                                             rg->to - f, false);
735
736                         del += rg->to - f;
737                         rg->to = f;
738                 }
739         }
740
741         spin_unlock(&resv->lock);
742         kfree(nrg);
743         return del;
744 }
745
746 /*
747  * A rare out of memory error was encountered which prevented removal of
748  * the reserve map region for a page.  The huge page itself was free'ed
749  * and removed from the page cache.  This routine will adjust the subpool
750  * usage count, and the global reserve count if needed.  By incrementing
751  * these counts, the reserve map entry which could not be deleted will
752  * appear as a "reserved" entry instead of simply dangling with incorrect
753  * counts.
754  */
755 void hugetlb_fix_reserve_counts(struct inode *inode)
756 {
757         struct hugepage_subpool *spool = subpool_inode(inode);
758         long rsv_adjust;
759         bool reserved = false;
760
761         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
762         if (rsv_adjust > 0) {
763                 struct hstate *h = hstate_inode(inode);
764
765                 if (!hugetlb_acct_memory(h, 1))
766                         reserved = true;
767         } else if (!rsv_adjust) {
768                 reserved = true;
769         }
770
771         if (!reserved)
772                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
773 }
774
775 /*
776  * Count and return the number of huge pages in the reserve map
777  * that intersect with the range [f, t).
778  */
779 static long region_count(struct resv_map *resv, long f, long t)
780 {
781         struct list_head *head = &resv->regions;
782         struct file_region *rg;
783         long chg = 0;
784
785         spin_lock(&resv->lock);
786         /* Locate each segment we overlap with, and count that overlap. */
787         list_for_each_entry(rg, head, link) {
788                 long seg_from;
789                 long seg_to;
790
791                 if (rg->to <= f)
792                         continue;
793                 if (rg->from >= t)
794                         break;
795
796                 seg_from = max(rg->from, f);
797                 seg_to = min(rg->to, t);
798
799                 chg += seg_to - seg_from;
800         }
801         spin_unlock(&resv->lock);
802
803         return chg;
804 }
805
806 /*
807  * Convert the address within this vma to the page offset within
808  * the mapping, in pagecache page units; huge pages here.
809  */
810 static pgoff_t vma_hugecache_offset(struct hstate *h,
811                         struct vm_area_struct *vma, unsigned long address)
812 {
813         return ((address - vma->vm_start) >> huge_page_shift(h)) +
814                         (vma->vm_pgoff >> huge_page_order(h));
815 }
816
817 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
818                                      unsigned long address)
819 {
820         return vma_hugecache_offset(hstate_vma(vma), vma, address);
821 }
822 EXPORT_SYMBOL_GPL(linear_hugepage_index);
823
824 /*
825  * Return the size of the pages allocated when backing a VMA. In the majority
826  * cases this will be same size as used by the page table entries.
827  */
828 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
829 {
830         if (vma->vm_ops && vma->vm_ops->pagesize)
831                 return vma->vm_ops->pagesize(vma);
832         return PAGE_SIZE;
833 }
834 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
835
836 /*
837  * Return the page size being used by the MMU to back a VMA. In the majority
838  * of cases, the page size used by the kernel matches the MMU size. On
839  * architectures where it differs, an architecture-specific 'strong'
840  * version of this symbol is required.
841  */
842 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
843 {
844         return vma_kernel_pagesize(vma);
845 }
846
847 /*
848  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
849  * bits of the reservation map pointer, which are always clear due to
850  * alignment.
851  */
852 #define HPAGE_RESV_OWNER    (1UL << 0)
853 #define HPAGE_RESV_UNMAPPED (1UL << 1)
854 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
855
856 /*
857  * These helpers are used to track how many pages are reserved for
858  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
859  * is guaranteed to have their future faults succeed.
860  *
861  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
862  * the reserve counters are updated with the hugetlb_lock held. It is safe
863  * to reset the VMA at fork() time as it is not in use yet and there is no
864  * chance of the global counters getting corrupted as a result of the values.
865  *
866  * The private mapping reservation is represented in a subtly different
867  * manner to a shared mapping.  A shared mapping has a region map associated
868  * with the underlying file, this region map represents the backing file
869  * pages which have ever had a reservation assigned which this persists even
870  * after the page is instantiated.  A private mapping has a region map
871  * associated with the original mmap which is attached to all VMAs which
872  * reference it, this region map represents those offsets which have consumed
873  * reservation ie. where pages have been instantiated.
874  */
875 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
876 {
877         return (unsigned long)vma->vm_private_data;
878 }
879
880 static void set_vma_private_data(struct vm_area_struct *vma,
881                                                         unsigned long value)
882 {
883         vma->vm_private_data = (void *)value;
884 }
885
886 static void
887 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
888                                           struct hugetlb_cgroup *h_cg,
889                                           struct hstate *h)
890 {
891 #ifdef CONFIG_CGROUP_HUGETLB
892         if (!h_cg || !h) {
893                 resv_map->reservation_counter = NULL;
894                 resv_map->pages_per_hpage = 0;
895                 resv_map->css = NULL;
896         } else {
897                 resv_map->reservation_counter =
898                         &h_cg->rsvd_hugepage[hstate_index(h)];
899                 resv_map->pages_per_hpage = pages_per_huge_page(h);
900                 resv_map->css = &h_cg->css;
901         }
902 #endif
903 }
904
905 struct resv_map *resv_map_alloc(void)
906 {
907         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
908         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
909
910         if (!resv_map || !rg) {
911                 kfree(resv_map);
912                 kfree(rg);
913                 return NULL;
914         }
915
916         kref_init(&resv_map->refs);
917         spin_lock_init(&resv_map->lock);
918         INIT_LIST_HEAD(&resv_map->regions);
919
920         resv_map->adds_in_progress = 0;
921         /*
922          * Initialize these to 0. On shared mappings, 0's here indicate these
923          * fields don't do cgroup accounting. On private mappings, these will be
924          * re-initialized to the proper values, to indicate that hugetlb cgroup
925          * reservations are to be un-charged from here.
926          */
927         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
928
929         INIT_LIST_HEAD(&resv_map->region_cache);
930         list_add(&rg->link, &resv_map->region_cache);
931         resv_map->region_cache_count = 1;
932
933         return resv_map;
934 }
935
936 void resv_map_release(struct kref *ref)
937 {
938         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
939         struct list_head *head = &resv_map->region_cache;
940         struct file_region *rg, *trg;
941
942         /* Clear out any active regions before we release the map. */
943         region_del(resv_map, 0, LONG_MAX);
944
945         /* ... and any entries left in the cache */
946         list_for_each_entry_safe(rg, trg, head, link) {
947                 list_del(&rg->link);
948                 kfree(rg);
949         }
950
951         VM_BUG_ON(resv_map->adds_in_progress);
952
953         kfree(resv_map);
954 }
955
956 static inline struct resv_map *inode_resv_map(struct inode *inode)
957 {
958         /*
959          * At inode evict time, i_mapping may not point to the original
960          * address space within the inode.  This original address space
961          * contains the pointer to the resv_map.  So, always use the
962          * address space embedded within the inode.
963          * The VERY common case is inode->mapping == &inode->i_data but,
964          * this may not be true for device special inodes.
965          */
966         return (struct resv_map *)(&inode->i_data)->private_data;
967 }
968
969 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
970 {
971         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
972         if (vma->vm_flags & VM_MAYSHARE) {
973                 struct address_space *mapping = vma->vm_file->f_mapping;
974                 struct inode *inode = mapping->host;
975
976                 return inode_resv_map(inode);
977
978         } else {
979                 return (struct resv_map *)(get_vma_private_data(vma) &
980                                                         ~HPAGE_RESV_MASK);
981         }
982 }
983
984 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
985 {
986         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989         set_vma_private_data(vma, (get_vma_private_data(vma) &
990                                 HPAGE_RESV_MASK) | (unsigned long)map);
991 }
992
993 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
994 {
995         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
996         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
997
998         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
999 }
1000
1001 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1002 {
1003         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004
1005         return (get_vma_private_data(vma) & flag) != 0;
1006 }
1007
1008 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1009 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1010 {
1011         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012         if (!(vma->vm_flags & VM_MAYSHARE))
1013                 vma->vm_private_data = (void *)0;
1014 }
1015
1016 /*
1017  * Reset and decrement one ref on hugepage private reservation.
1018  * Called with mm->mmap_sem writer semaphore held.
1019  * This function should be only used by move_vma() and operate on
1020  * same sized vma. It should never come here with last ref on the
1021  * reservation.
1022  */
1023 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1024 {
1025         /*
1026          * Clear the old hugetlb private page reservation.
1027          * It has already been transferred to new_vma.
1028          *
1029          * During a mremap() operation of a hugetlb vma we call move_vma()
1030          * which copies vma into new_vma and unmaps vma. After the copy
1031          * operation both new_vma and vma share a reference to the resv_map
1032          * struct, and at that point vma is about to be unmapped. We don't
1033          * want to return the reservation to the pool at unmap of vma because
1034          * the reservation still lives on in new_vma, so simply decrement the
1035          * ref here and remove the resv_map reference from this vma.
1036          */
1037         struct resv_map *reservations = vma_resv_map(vma);
1038
1039         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1040                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1041                 kref_put(&reservations->refs, resv_map_release);
1042         }
1043
1044         reset_vma_resv_huge_pages(vma);
1045 }
1046
1047 /* Returns true if the VMA has associated reserve pages */
1048 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1049 {
1050         if (vma->vm_flags & VM_NORESERVE) {
1051                 /*
1052                  * This address is already reserved by other process(chg == 0),
1053                  * so, we should decrement reserved count. Without decrementing,
1054                  * reserve count remains after releasing inode, because this
1055                  * allocated page will go into page cache and is regarded as
1056                  * coming from reserved pool in releasing step.  Currently, we
1057                  * don't have any other solution to deal with this situation
1058                  * properly, so add work-around here.
1059                  */
1060                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1061                         return true;
1062                 else
1063                         return false;
1064         }
1065
1066         /* Shared mappings always use reserves */
1067         if (vma->vm_flags & VM_MAYSHARE) {
1068                 /*
1069                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1070                  * be a region map for all pages.  The only situation where
1071                  * there is no region map is if a hole was punched via
1072                  * fallocate.  In this case, there really are no reserves to
1073                  * use.  This situation is indicated if chg != 0.
1074                  */
1075                 if (chg)
1076                         return false;
1077                 else
1078                         return true;
1079         }
1080
1081         /*
1082          * Only the process that called mmap() has reserves for
1083          * private mappings.
1084          */
1085         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1086                 /*
1087                  * Like the shared case above, a hole punch or truncate
1088                  * could have been performed on the private mapping.
1089                  * Examine the value of chg to determine if reserves
1090                  * actually exist or were previously consumed.
1091                  * Very Subtle - The value of chg comes from a previous
1092                  * call to vma_needs_reserves().  The reserve map for
1093                  * private mappings has different (opposite) semantics
1094                  * than that of shared mappings.  vma_needs_reserves()
1095                  * has already taken this difference in semantics into
1096                  * account.  Therefore, the meaning of chg is the same
1097                  * as in the shared case above.  Code could easily be
1098                  * combined, but keeping it separate draws attention to
1099                  * subtle differences.
1100                  */
1101                 if (chg)
1102                         return false;
1103                 else
1104                         return true;
1105         }
1106
1107         return false;
1108 }
1109
1110 static void enqueue_huge_page(struct hstate *h, struct page *page)
1111 {
1112         int nid = page_to_nid(page);
1113
1114         lockdep_assert_held(&hugetlb_lock);
1115         VM_BUG_ON_PAGE(page_count(page), page);
1116
1117         list_move(&page->lru, &h->hugepage_freelists[nid]);
1118         h->free_huge_pages++;
1119         h->free_huge_pages_node[nid]++;
1120         SetHPageFreed(page);
1121 }
1122
1123 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1124 {
1125         struct page *page;
1126         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1127
1128         lockdep_assert_held(&hugetlb_lock);
1129         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1130                 if (pin && !is_longterm_pinnable_page(page))
1131                         continue;
1132
1133                 if (PageHWPoison(page))
1134                         continue;
1135
1136                 list_move(&page->lru, &h->hugepage_activelist);
1137                 set_page_refcounted(page);
1138                 ClearHPageFreed(page);
1139                 h->free_huge_pages--;
1140                 h->free_huge_pages_node[nid]--;
1141                 return page;
1142         }
1143
1144         return NULL;
1145 }
1146
1147 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1148                 nodemask_t *nmask)
1149 {
1150         unsigned int cpuset_mems_cookie;
1151         struct zonelist *zonelist;
1152         struct zone *zone;
1153         struct zoneref *z;
1154         int node = NUMA_NO_NODE;
1155
1156         zonelist = node_zonelist(nid, gfp_mask);
1157
1158 retry_cpuset:
1159         cpuset_mems_cookie = read_mems_allowed_begin();
1160         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1161                 struct page *page;
1162
1163                 if (!cpuset_zone_allowed(zone, gfp_mask))
1164                         continue;
1165                 /*
1166                  * no need to ask again on the same node. Pool is node rather than
1167                  * zone aware
1168                  */
1169                 if (zone_to_nid(zone) == node)
1170                         continue;
1171                 node = zone_to_nid(zone);
1172
1173                 page = dequeue_huge_page_node_exact(h, node);
1174                 if (page)
1175                         return page;
1176         }
1177         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1178                 goto retry_cpuset;
1179
1180         return NULL;
1181 }
1182
1183 static struct page *dequeue_huge_page_vma(struct hstate *h,
1184                                 struct vm_area_struct *vma,
1185                                 unsigned long address, int avoid_reserve,
1186                                 long chg)
1187 {
1188         struct page *page = NULL;
1189         struct mempolicy *mpol;
1190         gfp_t gfp_mask;
1191         nodemask_t *nodemask;
1192         int nid;
1193
1194         /*
1195          * A child process with MAP_PRIVATE mappings created by their parent
1196          * have no page reserves. This check ensures that reservations are
1197          * not "stolen". The child may still get SIGKILLed
1198          */
1199         if (!vma_has_reserves(vma, chg) &&
1200                         h->free_huge_pages - h->resv_huge_pages == 0)
1201                 goto err;
1202
1203         /* If reserves cannot be used, ensure enough pages are in the pool */
1204         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1205                 goto err;
1206
1207         gfp_mask = htlb_alloc_mask(h);
1208         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1209
1210         if (mpol_is_preferred_many(mpol)) {
1211                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1212
1213                 /* Fallback to all nodes if page==NULL */
1214                 nodemask = NULL;
1215         }
1216
1217         if (!page)
1218                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1219
1220         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1221                 SetHPageRestoreReserve(page);
1222                 h->resv_huge_pages--;
1223         }
1224
1225         mpol_cond_put(mpol);
1226         return page;
1227
1228 err:
1229         return NULL;
1230 }
1231
1232 /*
1233  * common helper functions for hstate_next_node_to_{alloc|free}.
1234  * We may have allocated or freed a huge page based on a different
1235  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1236  * be outside of *nodes_allowed.  Ensure that we use an allowed
1237  * node for alloc or free.
1238  */
1239 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1240 {
1241         nid = next_node_in(nid, *nodes_allowed);
1242         VM_BUG_ON(nid >= MAX_NUMNODES);
1243
1244         return nid;
1245 }
1246
1247 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1248 {
1249         if (!node_isset(nid, *nodes_allowed))
1250                 nid = next_node_allowed(nid, nodes_allowed);
1251         return nid;
1252 }
1253
1254 /*
1255  * returns the previously saved node ["this node"] from which to
1256  * allocate a persistent huge page for the pool and advance the
1257  * next node from which to allocate, handling wrap at end of node
1258  * mask.
1259  */
1260 static int hstate_next_node_to_alloc(struct hstate *h,
1261                                         nodemask_t *nodes_allowed)
1262 {
1263         int nid;
1264
1265         VM_BUG_ON(!nodes_allowed);
1266
1267         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1268         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1269
1270         return nid;
1271 }
1272
1273 /*
1274  * helper for remove_pool_huge_page() - return the previously saved
1275  * node ["this node"] from which to free a huge page.  Advance the
1276  * next node id whether or not we find a free huge page to free so
1277  * that the next attempt to free addresses the next node.
1278  */
1279 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1280 {
1281         int nid;
1282
1283         VM_BUG_ON(!nodes_allowed);
1284
1285         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1286         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1287
1288         return nid;
1289 }
1290
1291 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1292         for (nr_nodes = nodes_weight(*mask);                            \
1293                 nr_nodes > 0 &&                                         \
1294                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1295                 nr_nodes--)
1296
1297 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1298         for (nr_nodes = nodes_weight(*mask);                            \
1299                 nr_nodes > 0 &&                                         \
1300                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1301                 nr_nodes--)
1302
1303 /* used to demote non-gigantic_huge pages as well */
1304 static void __destroy_compound_gigantic_page(struct page *page,
1305                                         unsigned int order, bool demote)
1306 {
1307         int i;
1308         int nr_pages = 1 << order;
1309         struct page *p = page + 1;
1310
1311         atomic_set(compound_mapcount_ptr(page), 0);
1312         atomic_set(compound_pincount_ptr(page), 0);
1313
1314         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1315                 p->mapping = NULL;
1316                 clear_compound_head(p);
1317                 if (!demote)
1318                         set_page_refcounted(p);
1319         }
1320
1321         set_compound_order(page, 0);
1322 #ifdef CONFIG_64BIT
1323         page[1].compound_nr = 0;
1324 #endif
1325         __ClearPageHead(page);
1326 }
1327
1328 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1329                                         unsigned int order)
1330 {
1331         __destroy_compound_gigantic_page(page, order, true);
1332 }
1333
1334 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1335 static void destroy_compound_gigantic_page(struct page *page,
1336                                         unsigned int order)
1337 {
1338         __destroy_compound_gigantic_page(page, order, false);
1339 }
1340
1341 static void free_gigantic_page(struct page *page, unsigned int order)
1342 {
1343         /*
1344          * If the page isn't allocated using the cma allocator,
1345          * cma_release() returns false.
1346          */
1347 #ifdef CONFIG_CMA
1348         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1349                 return;
1350 #endif
1351
1352         free_contig_range(page_to_pfn(page), 1 << order);
1353 }
1354
1355 #ifdef CONFIG_CONTIG_ALLOC
1356 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1357                 int nid, nodemask_t *nodemask)
1358 {
1359         unsigned long nr_pages = pages_per_huge_page(h);
1360         if (nid == NUMA_NO_NODE)
1361                 nid = numa_mem_id();
1362
1363 #ifdef CONFIG_CMA
1364         {
1365                 struct page *page;
1366                 int node;
1367
1368                 if (hugetlb_cma[nid]) {
1369                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1370                                         huge_page_order(h), true);
1371                         if (page)
1372                                 return page;
1373                 }
1374
1375                 if (!(gfp_mask & __GFP_THISNODE)) {
1376                         for_each_node_mask(node, *nodemask) {
1377                                 if (node == nid || !hugetlb_cma[node])
1378                                         continue;
1379
1380                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1381                                                 huge_page_order(h), true);
1382                                 if (page)
1383                                         return page;
1384                         }
1385                 }
1386         }
1387 #endif
1388
1389         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1390 }
1391
1392 #else /* !CONFIG_CONTIG_ALLOC */
1393 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1394                                         int nid, nodemask_t *nodemask)
1395 {
1396         return NULL;
1397 }
1398 #endif /* CONFIG_CONTIG_ALLOC */
1399
1400 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402                                         int nid, nodemask_t *nodemask)
1403 {
1404         return NULL;
1405 }
1406 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1407 static inline void destroy_compound_gigantic_page(struct page *page,
1408                                                 unsigned int order) { }
1409 #endif
1410
1411 /*
1412  * Remove hugetlb page from lists, and update dtor so that page appears
1413  * as just a compound page.
1414  *
1415  * A reference is held on the page, except in the case of demote.
1416  *
1417  * Must be called with hugetlb lock held.
1418  */
1419 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1420                                                         bool adjust_surplus,
1421                                                         bool demote)
1422 {
1423         int nid = page_to_nid(page);
1424
1425         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1426         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1427
1428         lockdep_assert_held(&hugetlb_lock);
1429         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1430                 return;
1431
1432         list_del(&page->lru);
1433
1434         if (HPageFreed(page)) {
1435                 h->free_huge_pages--;
1436                 h->free_huge_pages_node[nid]--;
1437         }
1438         if (adjust_surplus) {
1439                 h->surplus_huge_pages--;
1440                 h->surplus_huge_pages_node[nid]--;
1441         }
1442
1443         /*
1444          * Very subtle
1445          *
1446          * For non-gigantic pages set the destructor to the normal compound
1447          * page dtor.  This is needed in case someone takes an additional
1448          * temporary ref to the page, and freeing is delayed until they drop
1449          * their reference.
1450          *
1451          * For gigantic pages set the destructor to the null dtor.  This
1452          * destructor will never be called.  Before freeing the gigantic
1453          * page destroy_compound_gigantic_page will turn the compound page
1454          * into a simple group of pages.  After this the destructor does not
1455          * apply.
1456          *
1457          * This handles the case where more than one ref is held when and
1458          * after update_and_free_page is called.
1459          *
1460          * In the case of demote we do not ref count the page as it will soon
1461          * be turned into a page of smaller size.
1462          */
1463         if (!demote)
1464                 set_page_refcounted(page);
1465         if (hstate_is_gigantic(h))
1466                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1467         else
1468                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1469
1470         h->nr_huge_pages--;
1471         h->nr_huge_pages_node[nid]--;
1472 }
1473
1474 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1475                                                         bool adjust_surplus)
1476 {
1477         __remove_hugetlb_page(h, page, adjust_surplus, false);
1478 }
1479
1480 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1481                                                         bool adjust_surplus)
1482 {
1483         __remove_hugetlb_page(h, page, adjust_surplus, true);
1484 }
1485
1486 static void add_hugetlb_page(struct hstate *h, struct page *page,
1487                              bool adjust_surplus)
1488 {
1489         int zeroed;
1490         int nid = page_to_nid(page);
1491
1492         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1493
1494         lockdep_assert_held(&hugetlb_lock);
1495
1496         INIT_LIST_HEAD(&page->lru);
1497         h->nr_huge_pages++;
1498         h->nr_huge_pages_node[nid]++;
1499
1500         if (adjust_surplus) {
1501                 h->surplus_huge_pages++;
1502                 h->surplus_huge_pages_node[nid]++;
1503         }
1504
1505         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1506         set_page_private(page, 0);
1507         /*
1508          * We have to set HPageVmemmapOptimized again as above
1509          * set_page_private(page, 0) cleared it.
1510          */
1511         SetHPageVmemmapOptimized(page);
1512
1513         /*
1514          * This page is about to be managed by the hugetlb allocator and
1515          * should have no users.  Drop our reference, and check for others
1516          * just in case.
1517          */
1518         zeroed = put_page_testzero(page);
1519         if (!zeroed)
1520                 /*
1521                  * It is VERY unlikely soneone else has taken a ref on
1522                  * the page.  In this case, we simply return as the
1523                  * hugetlb destructor (free_huge_page) will be called
1524                  * when this other ref is dropped.
1525                  */
1526                 return;
1527
1528         arch_clear_hugepage_flags(page);
1529         enqueue_huge_page(h, page);
1530 }
1531
1532 static void __update_and_free_page(struct hstate *h, struct page *page)
1533 {
1534         int i;
1535         struct page *subpage = page;
1536
1537         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1538                 return;
1539
1540         /*
1541          * If we don't know which subpages are hwpoisoned, we can't free
1542          * the hugepage, so it's leaked intentionally.
1543          */
1544         if (HPageRawHwpUnreliable(page))
1545                 return;
1546
1547         if (hugetlb_vmemmap_restore(h, page)) {
1548                 spin_lock_irq(&hugetlb_lock);
1549                 /*
1550                  * If we cannot allocate vmemmap pages, just refuse to free the
1551                  * page and put the page back on the hugetlb free list and treat
1552                  * as a surplus page.
1553                  */
1554                 add_hugetlb_page(h, page, true);
1555                 spin_unlock_irq(&hugetlb_lock);
1556                 return;
1557         }
1558
1559         /*
1560          * Move PageHWPoison flag from head page to the raw error pages,
1561          * which makes any healthy subpages reusable.
1562          */
1563         if (unlikely(PageHWPoison(page)))
1564                 hugetlb_clear_page_hwpoison(page);
1565
1566         for (i = 0; i < pages_per_huge_page(h);
1567              i++, subpage = mem_map_next(subpage, page, i)) {
1568                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1569                                 1 << PG_referenced | 1 << PG_dirty |
1570                                 1 << PG_active | 1 << PG_private |
1571                                 1 << PG_writeback);
1572         }
1573
1574         /*
1575          * Non-gigantic pages demoted from CMA allocated gigantic pages
1576          * need to be given back to CMA in free_gigantic_page.
1577          */
1578         if (hstate_is_gigantic(h) ||
1579             hugetlb_cma_page(page, huge_page_order(h))) {
1580                 destroy_compound_gigantic_page(page, huge_page_order(h));
1581                 free_gigantic_page(page, huge_page_order(h));
1582         } else {
1583                 __free_pages(page, huge_page_order(h));
1584         }
1585 }
1586
1587 /*
1588  * As update_and_free_page() can be called under any context, so we cannot
1589  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1590  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1591  * the vmemmap pages.
1592  *
1593  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1594  * freed and frees them one-by-one. As the page->mapping pointer is going
1595  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1596  * structure of a lockless linked list of huge pages to be freed.
1597  */
1598 static LLIST_HEAD(hpage_freelist);
1599
1600 static void free_hpage_workfn(struct work_struct *work)
1601 {
1602         struct llist_node *node;
1603
1604         node = llist_del_all(&hpage_freelist);
1605
1606         while (node) {
1607                 struct page *page;
1608                 struct hstate *h;
1609
1610                 page = container_of((struct address_space **)node,
1611                                      struct page, mapping);
1612                 node = node->next;
1613                 page->mapping = NULL;
1614                 /*
1615                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1616                  * is going to trigger because a previous call to
1617                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1618                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1619                  */
1620                 h = size_to_hstate(page_size(page));
1621
1622                 __update_and_free_page(h, page);
1623
1624                 cond_resched();
1625         }
1626 }
1627 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1628
1629 static inline void flush_free_hpage_work(struct hstate *h)
1630 {
1631         if (hugetlb_vmemmap_optimizable(h))
1632                 flush_work(&free_hpage_work);
1633 }
1634
1635 static void update_and_free_page(struct hstate *h, struct page *page,
1636                                  bool atomic)
1637 {
1638         if (!HPageVmemmapOptimized(page) || !atomic) {
1639                 __update_and_free_page(h, page);
1640                 return;
1641         }
1642
1643         /*
1644          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1645          *
1646          * Only call schedule_work() if hpage_freelist is previously
1647          * empty. Otherwise, schedule_work() had been called but the workfn
1648          * hasn't retrieved the list yet.
1649          */
1650         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1651                 schedule_work(&free_hpage_work);
1652 }
1653
1654 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1655 {
1656         struct page *page, *t_page;
1657
1658         list_for_each_entry_safe(page, t_page, list, lru) {
1659                 update_and_free_page(h, page, false);
1660                 cond_resched();
1661         }
1662 }
1663
1664 struct hstate *size_to_hstate(unsigned long size)
1665 {
1666         struct hstate *h;
1667
1668         for_each_hstate(h) {
1669                 if (huge_page_size(h) == size)
1670                         return h;
1671         }
1672         return NULL;
1673 }
1674
1675 void free_huge_page(struct page *page)
1676 {
1677         /*
1678          * Can't pass hstate in here because it is called from the
1679          * compound page destructor.
1680          */
1681         struct hstate *h = page_hstate(page);
1682         int nid = page_to_nid(page);
1683         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1684         bool restore_reserve;
1685         unsigned long flags;
1686
1687         VM_BUG_ON_PAGE(page_count(page), page);
1688         VM_BUG_ON_PAGE(page_mapcount(page), page);
1689
1690         hugetlb_set_page_subpool(page, NULL);
1691         if (PageAnon(page))
1692                 __ClearPageAnonExclusive(page);
1693         page->mapping = NULL;
1694         restore_reserve = HPageRestoreReserve(page);
1695         ClearHPageRestoreReserve(page);
1696
1697         /*
1698          * If HPageRestoreReserve was set on page, page allocation consumed a
1699          * reservation.  If the page was associated with a subpool, there
1700          * would have been a page reserved in the subpool before allocation
1701          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1702          * reservation, do not call hugepage_subpool_put_pages() as this will
1703          * remove the reserved page from the subpool.
1704          */
1705         if (!restore_reserve) {
1706                 /*
1707                  * A return code of zero implies that the subpool will be
1708                  * under its minimum size if the reservation is not restored
1709                  * after page is free.  Therefore, force restore_reserve
1710                  * operation.
1711                  */
1712                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1713                         restore_reserve = true;
1714         }
1715
1716         spin_lock_irqsave(&hugetlb_lock, flags);
1717         ClearHPageMigratable(page);
1718         hugetlb_cgroup_uncharge_page(hstate_index(h),
1719                                      pages_per_huge_page(h), page);
1720         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1721                                           pages_per_huge_page(h), page);
1722         if (restore_reserve)
1723                 h->resv_huge_pages++;
1724
1725         if (HPageTemporary(page)) {
1726                 remove_hugetlb_page(h, page, false);
1727                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1728                 update_and_free_page(h, page, true);
1729         } else if (h->surplus_huge_pages_node[nid]) {
1730                 /* remove the page from active list */
1731                 remove_hugetlb_page(h, page, true);
1732                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1733                 update_and_free_page(h, page, true);
1734         } else {
1735                 arch_clear_hugepage_flags(page);
1736                 enqueue_huge_page(h, page);
1737                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1738         }
1739 }
1740
1741 /*
1742  * Must be called with the hugetlb lock held
1743  */
1744 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1745 {
1746         lockdep_assert_held(&hugetlb_lock);
1747         h->nr_huge_pages++;
1748         h->nr_huge_pages_node[nid]++;
1749 }
1750
1751 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1752 {
1753         hugetlb_vmemmap_optimize(h, page);
1754         INIT_LIST_HEAD(&page->lru);
1755         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1756         hugetlb_set_page_subpool(page, NULL);
1757         set_hugetlb_cgroup(page, NULL);
1758         set_hugetlb_cgroup_rsvd(page, NULL);
1759 }
1760
1761 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1762 {
1763         __prep_new_huge_page(h, page);
1764         spin_lock_irq(&hugetlb_lock);
1765         __prep_account_new_huge_page(h, nid);
1766         spin_unlock_irq(&hugetlb_lock);
1767 }
1768
1769 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1770                                                                 bool demote)
1771 {
1772         int i, j;
1773         int nr_pages = 1 << order;
1774         struct page *p = page + 1;
1775
1776         /* we rely on prep_new_huge_page to set the destructor */
1777         set_compound_order(page, order);
1778         __ClearPageReserved(page);
1779         __SetPageHead(page);
1780         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1781                 /*
1782                  * For gigantic hugepages allocated through bootmem at
1783                  * boot, it's safer to be consistent with the not-gigantic
1784                  * hugepages and clear the PG_reserved bit from all tail pages
1785                  * too.  Otherwise drivers using get_user_pages() to access tail
1786                  * pages may get the reference counting wrong if they see
1787                  * PG_reserved set on a tail page (despite the head page not
1788                  * having PG_reserved set).  Enforcing this consistency between
1789                  * head and tail pages allows drivers to optimize away a check
1790                  * on the head page when they need know if put_page() is needed
1791                  * after get_user_pages().
1792                  */
1793                 __ClearPageReserved(p);
1794                 /*
1795                  * Subtle and very unlikely
1796                  *
1797                  * Gigantic 'page allocators' such as memblock or cma will
1798                  * return a set of pages with each page ref counted.  We need
1799                  * to turn this set of pages into a compound page with tail
1800                  * page ref counts set to zero.  Code such as speculative page
1801                  * cache adding could take a ref on a 'to be' tail page.
1802                  * We need to respect any increased ref count, and only set
1803                  * the ref count to zero if count is currently 1.  If count
1804                  * is not 1, we return an error.  An error return indicates
1805                  * the set of pages can not be converted to a gigantic page.
1806                  * The caller who allocated the pages should then discard the
1807                  * pages using the appropriate free interface.
1808                  *
1809                  * In the case of demote, the ref count will be zero.
1810                  */
1811                 if (!demote) {
1812                         if (!page_ref_freeze(p, 1)) {
1813                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1814                                 goto out_error;
1815                         }
1816                 } else {
1817                         VM_BUG_ON_PAGE(page_count(p), p);
1818                 }
1819                 set_compound_head(p, page);
1820         }
1821         atomic_set(compound_mapcount_ptr(page), -1);
1822         atomic_set(compound_pincount_ptr(page), 0);
1823         return true;
1824
1825 out_error:
1826         /* undo tail page modifications made above */
1827         p = page + 1;
1828         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1829                 clear_compound_head(p);
1830                 set_page_refcounted(p);
1831         }
1832         /* need to clear PG_reserved on remaining tail pages  */
1833         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1834                 __ClearPageReserved(p);
1835         set_compound_order(page, 0);
1836 #ifdef CONFIG_64BIT
1837         page[1].compound_nr = 0;
1838 #endif
1839         __ClearPageHead(page);
1840         return false;
1841 }
1842
1843 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1844 {
1845         return __prep_compound_gigantic_page(page, order, false);
1846 }
1847
1848 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1849                                                         unsigned int order)
1850 {
1851         return __prep_compound_gigantic_page(page, order, true);
1852 }
1853
1854 /*
1855  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1856  * transparent huge pages.  See the PageTransHuge() documentation for more
1857  * details.
1858  */
1859 int PageHuge(struct page *page)
1860 {
1861         if (!PageCompound(page))
1862                 return 0;
1863
1864         page = compound_head(page);
1865         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1866 }
1867 EXPORT_SYMBOL_GPL(PageHuge);
1868
1869 /*
1870  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1871  * normal or transparent huge pages.
1872  */
1873 int PageHeadHuge(struct page *page_head)
1874 {
1875         if (!PageHead(page_head))
1876                 return 0;
1877
1878         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1879 }
1880 EXPORT_SYMBOL_GPL(PageHeadHuge);
1881
1882 /*
1883  * Find and lock address space (mapping) in write mode.
1884  *
1885  * Upon entry, the page is locked which means that page_mapping() is
1886  * stable.  Due to locking order, we can only trylock_write.  If we can
1887  * not get the lock, simply return NULL to caller.
1888  */
1889 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1890 {
1891         struct address_space *mapping = page_mapping(hpage);
1892
1893         if (!mapping)
1894                 return mapping;
1895
1896         if (i_mmap_trylock_write(mapping))
1897                 return mapping;
1898
1899         return NULL;
1900 }
1901
1902 pgoff_t hugetlb_basepage_index(struct page *page)
1903 {
1904         struct page *page_head = compound_head(page);
1905         pgoff_t index = page_index(page_head);
1906         unsigned long compound_idx;
1907
1908         if (compound_order(page_head) >= MAX_ORDER)
1909                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1910         else
1911                 compound_idx = page - page_head;
1912
1913         return (index << compound_order(page_head)) + compound_idx;
1914 }
1915
1916 static struct page *alloc_buddy_huge_page(struct hstate *h,
1917                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1918                 nodemask_t *node_alloc_noretry)
1919 {
1920         int order = huge_page_order(h);
1921         struct page *page;
1922         bool alloc_try_hard = true;
1923
1924         /*
1925          * By default we always try hard to allocate the page with
1926          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1927          * a loop (to adjust global huge page counts) and previous allocation
1928          * failed, do not continue to try hard on the same node.  Use the
1929          * node_alloc_noretry bitmap to manage this state information.
1930          */
1931         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1932                 alloc_try_hard = false;
1933         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1934         if (alloc_try_hard)
1935                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1936         if (nid == NUMA_NO_NODE)
1937                 nid = numa_mem_id();
1938         page = __alloc_pages(gfp_mask, order, nid, nmask);
1939         if (page)
1940                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1941         else
1942                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1943
1944         /*
1945          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1946          * indicates an overall state change.  Clear bit so that we resume
1947          * normal 'try hard' allocations.
1948          */
1949         if (node_alloc_noretry && page && !alloc_try_hard)
1950                 node_clear(nid, *node_alloc_noretry);
1951
1952         /*
1953          * If we tried hard to get a page but failed, set bit so that
1954          * subsequent attempts will not try as hard until there is an
1955          * overall state change.
1956          */
1957         if (node_alloc_noretry && !page && alloc_try_hard)
1958                 node_set(nid, *node_alloc_noretry);
1959
1960         return page;
1961 }
1962
1963 /*
1964  * Common helper to allocate a fresh hugetlb page. All specific allocators
1965  * should use this function to get new hugetlb pages
1966  */
1967 static struct page *alloc_fresh_huge_page(struct hstate *h,
1968                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1969                 nodemask_t *node_alloc_noretry)
1970 {
1971         struct page *page;
1972         bool retry = false;
1973
1974 retry:
1975         if (hstate_is_gigantic(h))
1976                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1977         else
1978                 page = alloc_buddy_huge_page(h, gfp_mask,
1979                                 nid, nmask, node_alloc_noretry);
1980         if (!page)
1981                 return NULL;
1982
1983         if (hstate_is_gigantic(h)) {
1984                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1985                         /*
1986                          * Rare failure to convert pages to compound page.
1987                          * Free pages and try again - ONCE!
1988                          */
1989                         free_gigantic_page(page, huge_page_order(h));
1990                         if (!retry) {
1991                                 retry = true;
1992                                 goto retry;
1993                         }
1994                         return NULL;
1995                 }
1996         }
1997         prep_new_huge_page(h, page, page_to_nid(page));
1998
1999         return page;
2000 }
2001
2002 /*
2003  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2004  * manner.
2005  */
2006 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2007                                 nodemask_t *node_alloc_noretry)
2008 {
2009         struct page *page;
2010         int nr_nodes, node;
2011         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2012
2013         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2014                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2015                                                 node_alloc_noretry);
2016                 if (page)
2017                         break;
2018         }
2019
2020         if (!page)
2021                 return 0;
2022
2023         put_page(page); /* free it into the hugepage allocator */
2024
2025         return 1;
2026 }
2027
2028 /*
2029  * Remove huge page from pool from next node to free.  Attempt to keep
2030  * persistent huge pages more or less balanced over allowed nodes.
2031  * This routine only 'removes' the hugetlb page.  The caller must make
2032  * an additional call to free the page to low level allocators.
2033  * Called with hugetlb_lock locked.
2034  */
2035 static struct page *remove_pool_huge_page(struct hstate *h,
2036                                                 nodemask_t *nodes_allowed,
2037                                                  bool acct_surplus)
2038 {
2039         int nr_nodes, node;
2040         struct page *page = NULL;
2041
2042         lockdep_assert_held(&hugetlb_lock);
2043         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2044                 /*
2045                  * If we're returning unused surplus pages, only examine
2046                  * nodes with surplus pages.
2047                  */
2048                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2049                     !list_empty(&h->hugepage_freelists[node])) {
2050                         page = list_entry(h->hugepage_freelists[node].next,
2051                                           struct page, lru);
2052                         remove_hugetlb_page(h, page, acct_surplus);
2053                         break;
2054                 }
2055         }
2056
2057         return page;
2058 }
2059
2060 /*
2061  * Dissolve a given free hugepage into free buddy pages. This function does
2062  * nothing for in-use hugepages and non-hugepages.
2063  * This function returns values like below:
2064  *
2065  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2066  *           when the system is under memory pressure and the feature of
2067  *           freeing unused vmemmap pages associated with each hugetlb page
2068  *           is enabled.
2069  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2070  *           (allocated or reserved.)
2071  *       0:  successfully dissolved free hugepages or the page is not a
2072  *           hugepage (considered as already dissolved)
2073  */
2074 int dissolve_free_huge_page(struct page *page)
2075 {
2076         int rc = -EBUSY;
2077
2078 retry:
2079         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2080         if (!PageHuge(page))
2081                 return 0;
2082
2083         spin_lock_irq(&hugetlb_lock);
2084         if (!PageHuge(page)) {
2085                 rc = 0;
2086                 goto out;
2087         }
2088
2089         if (!page_count(page)) {
2090                 struct page *head = compound_head(page);
2091                 struct hstate *h = page_hstate(head);
2092                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2093                         goto out;
2094
2095                 /*
2096                  * We should make sure that the page is already on the free list
2097                  * when it is dissolved.
2098                  */
2099                 if (unlikely(!HPageFreed(head))) {
2100                         spin_unlock_irq(&hugetlb_lock);
2101                         cond_resched();
2102
2103                         /*
2104                          * Theoretically, we should return -EBUSY when we
2105                          * encounter this race. In fact, we have a chance
2106                          * to successfully dissolve the page if we do a
2107                          * retry. Because the race window is quite small.
2108                          * If we seize this opportunity, it is an optimization
2109                          * for increasing the success rate of dissolving page.
2110                          */
2111                         goto retry;
2112                 }
2113
2114                 remove_hugetlb_page(h, head, false);
2115                 h->max_huge_pages--;
2116                 spin_unlock_irq(&hugetlb_lock);
2117
2118                 /*
2119                  * Normally update_and_free_page will allocate required vmemmmap
2120                  * before freeing the page.  update_and_free_page will fail to
2121                  * free the page if it can not allocate required vmemmap.  We
2122                  * need to adjust max_huge_pages if the page is not freed.
2123                  * Attempt to allocate vmemmmap here so that we can take
2124                  * appropriate action on failure.
2125                  */
2126                 rc = hugetlb_vmemmap_restore(h, head);
2127                 if (!rc) {
2128                         update_and_free_page(h, head, false);
2129                 } else {
2130                         spin_lock_irq(&hugetlb_lock);
2131                         add_hugetlb_page(h, head, false);
2132                         h->max_huge_pages++;
2133                         spin_unlock_irq(&hugetlb_lock);
2134                 }
2135
2136                 return rc;
2137         }
2138 out:
2139         spin_unlock_irq(&hugetlb_lock);
2140         return rc;
2141 }
2142
2143 /*
2144  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2145  * make specified memory blocks removable from the system.
2146  * Note that this will dissolve a free gigantic hugepage completely, if any
2147  * part of it lies within the given range.
2148  * Also note that if dissolve_free_huge_page() returns with an error, all
2149  * free hugepages that were dissolved before that error are lost.
2150  */
2151 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2152 {
2153         unsigned long pfn;
2154         struct page *page;
2155         int rc = 0;
2156         unsigned int order;
2157         struct hstate *h;
2158
2159         if (!hugepages_supported())
2160                 return rc;
2161
2162         order = huge_page_order(&default_hstate);
2163         for_each_hstate(h)
2164                 order = min(order, huge_page_order(h));
2165
2166         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2167                 page = pfn_to_page(pfn);
2168                 rc = dissolve_free_huge_page(page);
2169                 if (rc)
2170                         break;
2171         }
2172
2173         return rc;
2174 }
2175
2176 /*
2177  * Allocates a fresh surplus page from the page allocator.
2178  */
2179 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2180                 int nid, nodemask_t *nmask, bool zero_ref)
2181 {
2182         struct page *page = NULL;
2183         bool retry = false;
2184
2185         if (hstate_is_gigantic(h))
2186                 return NULL;
2187
2188         spin_lock_irq(&hugetlb_lock);
2189         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2190                 goto out_unlock;
2191         spin_unlock_irq(&hugetlb_lock);
2192
2193 retry:
2194         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2195         if (!page)
2196                 return NULL;
2197
2198         spin_lock_irq(&hugetlb_lock);
2199         /*
2200          * We could have raced with the pool size change.
2201          * Double check that and simply deallocate the new page
2202          * if we would end up overcommiting the surpluses. Abuse
2203          * temporary page to workaround the nasty free_huge_page
2204          * codeflow
2205          */
2206         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2207                 SetHPageTemporary(page);
2208                 spin_unlock_irq(&hugetlb_lock);
2209                 put_page(page);
2210                 return NULL;
2211         }
2212
2213         if (zero_ref) {
2214                 /*
2215                  * Caller requires a page with zero ref count.
2216                  * We will drop ref count here.  If someone else is holding
2217                  * a ref, the page will be freed when they drop it.  Abuse
2218                  * temporary page flag to accomplish this.
2219                  */
2220                 SetHPageTemporary(page);
2221                 if (!put_page_testzero(page)) {
2222                         /*
2223                          * Unexpected inflated ref count on freshly allocated
2224                          * huge.  Retry once.
2225                          */
2226                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2227                         spin_unlock_irq(&hugetlb_lock);
2228                         if (retry)
2229                                 return NULL;
2230
2231                         retry = true;
2232                         goto retry;
2233                 }
2234                 ClearHPageTemporary(page);
2235         }
2236
2237         h->surplus_huge_pages++;
2238         h->surplus_huge_pages_node[page_to_nid(page)]++;
2239
2240 out_unlock:
2241         spin_unlock_irq(&hugetlb_lock);
2242
2243         return page;
2244 }
2245
2246 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2247                                      int nid, nodemask_t *nmask)
2248 {
2249         struct page *page;
2250
2251         if (hstate_is_gigantic(h))
2252                 return NULL;
2253
2254         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2255         if (!page)
2256                 return NULL;
2257
2258         /*
2259          * We do not account these pages as surplus because they are only
2260          * temporary and will be released properly on the last reference
2261          */
2262         SetHPageTemporary(page);
2263
2264         return page;
2265 }
2266
2267 /*
2268  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2269  */
2270 static
2271 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2272                 struct vm_area_struct *vma, unsigned long addr)
2273 {
2274         struct page *page = NULL;
2275         struct mempolicy *mpol;
2276         gfp_t gfp_mask = htlb_alloc_mask(h);
2277         int nid;
2278         nodemask_t *nodemask;
2279
2280         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2281         if (mpol_is_preferred_many(mpol)) {
2282                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2283
2284                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2285                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2286
2287                 /* Fallback to all nodes if page==NULL */
2288                 nodemask = NULL;
2289         }
2290
2291         if (!page)
2292                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2293         mpol_cond_put(mpol);
2294         return page;
2295 }
2296
2297 /* page migration callback function */
2298 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2299                 nodemask_t *nmask, gfp_t gfp_mask)
2300 {
2301         spin_lock_irq(&hugetlb_lock);
2302         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2303                 struct page *page;
2304
2305                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2306                 if (page) {
2307                         spin_unlock_irq(&hugetlb_lock);
2308                         return page;
2309                 }
2310         }
2311         spin_unlock_irq(&hugetlb_lock);
2312
2313         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2314 }
2315
2316 /* mempolicy aware migration callback */
2317 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2318                 unsigned long address)
2319 {
2320         struct mempolicy *mpol;
2321         nodemask_t *nodemask;
2322         struct page *page;
2323         gfp_t gfp_mask;
2324         int node;
2325
2326         gfp_mask = htlb_alloc_mask(h);
2327         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2328         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2329         mpol_cond_put(mpol);
2330
2331         return page;
2332 }
2333
2334 /*
2335  * Increase the hugetlb pool such that it can accommodate a reservation
2336  * of size 'delta'.
2337  */
2338 static int gather_surplus_pages(struct hstate *h, long delta)
2339         __must_hold(&hugetlb_lock)
2340 {
2341         LIST_HEAD(surplus_list);
2342         struct page *page, *tmp;
2343         int ret;
2344         long i;
2345         long needed, allocated;
2346         bool alloc_ok = true;
2347
2348         lockdep_assert_held(&hugetlb_lock);
2349         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2350         if (needed <= 0) {
2351                 h->resv_huge_pages += delta;
2352                 return 0;
2353         }
2354
2355         allocated = 0;
2356
2357         ret = -ENOMEM;
2358 retry:
2359         spin_unlock_irq(&hugetlb_lock);
2360         for (i = 0; i < needed; i++) {
2361                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2362                                 NUMA_NO_NODE, NULL, true);
2363                 if (!page) {
2364                         alloc_ok = false;
2365                         break;
2366                 }
2367                 list_add(&page->lru, &surplus_list);
2368                 cond_resched();
2369         }
2370         allocated += i;
2371
2372         /*
2373          * After retaking hugetlb_lock, we need to recalculate 'needed'
2374          * because either resv_huge_pages or free_huge_pages may have changed.
2375          */
2376         spin_lock_irq(&hugetlb_lock);
2377         needed = (h->resv_huge_pages + delta) -
2378                         (h->free_huge_pages + allocated);
2379         if (needed > 0) {
2380                 if (alloc_ok)
2381                         goto retry;
2382                 /*
2383                  * We were not able to allocate enough pages to
2384                  * satisfy the entire reservation so we free what
2385                  * we've allocated so far.
2386                  */
2387                 goto free;
2388         }
2389         /*
2390          * The surplus_list now contains _at_least_ the number of extra pages
2391          * needed to accommodate the reservation.  Add the appropriate number
2392          * of pages to the hugetlb pool and free the extras back to the buddy
2393          * allocator.  Commit the entire reservation here to prevent another
2394          * process from stealing the pages as they are added to the pool but
2395          * before they are reserved.
2396          */
2397         needed += allocated;
2398         h->resv_huge_pages += delta;
2399         ret = 0;
2400
2401         /* Free the needed pages to the hugetlb pool */
2402         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2403                 if ((--needed) < 0)
2404                         break;
2405                 /* Add the page to the hugetlb allocator */
2406                 enqueue_huge_page(h, page);
2407         }
2408 free:
2409         spin_unlock_irq(&hugetlb_lock);
2410
2411         /*
2412          * Free unnecessary surplus pages to the buddy allocator.
2413          * Pages have no ref count, call free_huge_page directly.
2414          */
2415         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2416                 free_huge_page(page);
2417         spin_lock_irq(&hugetlb_lock);
2418
2419         return ret;
2420 }
2421
2422 /*
2423  * This routine has two main purposes:
2424  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2425  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2426  *    to the associated reservation map.
2427  * 2) Free any unused surplus pages that may have been allocated to satisfy
2428  *    the reservation.  As many as unused_resv_pages may be freed.
2429  */
2430 static void return_unused_surplus_pages(struct hstate *h,
2431                                         unsigned long unused_resv_pages)
2432 {
2433         unsigned long nr_pages;
2434         struct page *page;
2435         LIST_HEAD(page_list);
2436
2437         lockdep_assert_held(&hugetlb_lock);
2438         /* Uncommit the reservation */
2439         h->resv_huge_pages -= unused_resv_pages;
2440
2441         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2442                 goto out;
2443
2444         /*
2445          * Part (or even all) of the reservation could have been backed
2446          * by pre-allocated pages. Only free surplus pages.
2447          */
2448         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2449
2450         /*
2451          * We want to release as many surplus pages as possible, spread
2452          * evenly across all nodes with memory. Iterate across these nodes
2453          * until we can no longer free unreserved surplus pages. This occurs
2454          * when the nodes with surplus pages have no free pages.
2455          * remove_pool_huge_page() will balance the freed pages across the
2456          * on-line nodes with memory and will handle the hstate accounting.
2457          */
2458         while (nr_pages--) {
2459                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2460                 if (!page)
2461                         goto out;
2462
2463                 list_add(&page->lru, &page_list);
2464         }
2465
2466 out:
2467         spin_unlock_irq(&hugetlb_lock);
2468         update_and_free_pages_bulk(h, &page_list);
2469         spin_lock_irq(&hugetlb_lock);
2470 }
2471
2472
2473 /*
2474  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2475  * are used by the huge page allocation routines to manage reservations.
2476  *
2477  * vma_needs_reservation is called to determine if the huge page at addr
2478  * within the vma has an associated reservation.  If a reservation is
2479  * needed, the value 1 is returned.  The caller is then responsible for
2480  * managing the global reservation and subpool usage counts.  After
2481  * the huge page has been allocated, vma_commit_reservation is called
2482  * to add the page to the reservation map.  If the page allocation fails,
2483  * the reservation must be ended instead of committed.  vma_end_reservation
2484  * is called in such cases.
2485  *
2486  * In the normal case, vma_commit_reservation returns the same value
2487  * as the preceding vma_needs_reservation call.  The only time this
2488  * is not the case is if a reserve map was changed between calls.  It
2489  * is the responsibility of the caller to notice the difference and
2490  * take appropriate action.
2491  *
2492  * vma_add_reservation is used in error paths where a reservation must
2493  * be restored when a newly allocated huge page must be freed.  It is
2494  * to be called after calling vma_needs_reservation to determine if a
2495  * reservation exists.
2496  *
2497  * vma_del_reservation is used in error paths where an entry in the reserve
2498  * map was created during huge page allocation and must be removed.  It is to
2499  * be called after calling vma_needs_reservation to determine if a reservation
2500  * exists.
2501  */
2502 enum vma_resv_mode {
2503         VMA_NEEDS_RESV,
2504         VMA_COMMIT_RESV,
2505         VMA_END_RESV,
2506         VMA_ADD_RESV,
2507         VMA_DEL_RESV,
2508 };
2509 static long __vma_reservation_common(struct hstate *h,
2510                                 struct vm_area_struct *vma, unsigned long addr,
2511                                 enum vma_resv_mode mode)
2512 {
2513         struct resv_map *resv;
2514         pgoff_t idx;
2515         long ret;
2516         long dummy_out_regions_needed;
2517
2518         resv = vma_resv_map(vma);
2519         if (!resv)
2520                 return 1;
2521
2522         idx = vma_hugecache_offset(h, vma, addr);
2523         switch (mode) {
2524         case VMA_NEEDS_RESV:
2525                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2526                 /* We assume that vma_reservation_* routines always operate on
2527                  * 1 page, and that adding to resv map a 1 page entry can only
2528                  * ever require 1 region.
2529                  */
2530                 VM_BUG_ON(dummy_out_regions_needed != 1);
2531                 break;
2532         case VMA_COMMIT_RESV:
2533                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2534                 /* region_add calls of range 1 should never fail. */
2535                 VM_BUG_ON(ret < 0);
2536                 break;
2537         case VMA_END_RESV:
2538                 region_abort(resv, idx, idx + 1, 1);
2539                 ret = 0;
2540                 break;
2541         case VMA_ADD_RESV:
2542                 if (vma->vm_flags & VM_MAYSHARE) {
2543                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2544                         /* region_add calls of range 1 should never fail. */
2545                         VM_BUG_ON(ret < 0);
2546                 } else {
2547                         region_abort(resv, idx, idx + 1, 1);
2548                         ret = region_del(resv, idx, idx + 1);
2549                 }
2550                 break;
2551         case VMA_DEL_RESV:
2552                 if (vma->vm_flags & VM_MAYSHARE) {
2553                         region_abort(resv, idx, idx + 1, 1);
2554                         ret = region_del(resv, idx, idx + 1);
2555                 } else {
2556                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2557                         /* region_add calls of range 1 should never fail. */
2558                         VM_BUG_ON(ret < 0);
2559                 }
2560                 break;
2561         default:
2562                 BUG();
2563         }
2564
2565         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2566                 return ret;
2567         /*
2568          * We know private mapping must have HPAGE_RESV_OWNER set.
2569          *
2570          * In most cases, reserves always exist for private mappings.
2571          * However, a file associated with mapping could have been
2572          * hole punched or truncated after reserves were consumed.
2573          * As subsequent fault on such a range will not use reserves.
2574          * Subtle - The reserve map for private mappings has the
2575          * opposite meaning than that of shared mappings.  If NO
2576          * entry is in the reserve map, it means a reservation exists.
2577          * If an entry exists in the reserve map, it means the
2578          * reservation has already been consumed.  As a result, the
2579          * return value of this routine is the opposite of the
2580          * value returned from reserve map manipulation routines above.
2581          */
2582         if (ret > 0)
2583                 return 0;
2584         if (ret == 0)
2585                 return 1;
2586         return ret;
2587 }
2588
2589 static long vma_needs_reservation(struct hstate *h,
2590                         struct vm_area_struct *vma, unsigned long addr)
2591 {
2592         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2593 }
2594
2595 static long vma_commit_reservation(struct hstate *h,
2596                         struct vm_area_struct *vma, unsigned long addr)
2597 {
2598         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2599 }
2600
2601 static void vma_end_reservation(struct hstate *h,
2602                         struct vm_area_struct *vma, unsigned long addr)
2603 {
2604         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2605 }
2606
2607 static long vma_add_reservation(struct hstate *h,
2608                         struct vm_area_struct *vma, unsigned long addr)
2609 {
2610         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2611 }
2612
2613 static long vma_del_reservation(struct hstate *h,
2614                         struct vm_area_struct *vma, unsigned long addr)
2615 {
2616         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2617 }
2618
2619 /*
2620  * This routine is called to restore reservation information on error paths.
2621  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2622  * the hugetlb mutex should remain held when calling this routine.
2623  *
2624  * It handles two specific cases:
2625  * 1) A reservation was in place and the page consumed the reservation.
2626  *    HPageRestoreReserve is set in the page.
2627  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2628  *    not set.  However, alloc_huge_page always updates the reserve map.
2629  *
2630  * In case 1, free_huge_page later in the error path will increment the
2631  * global reserve count.  But, free_huge_page does not have enough context
2632  * to adjust the reservation map.  This case deals primarily with private
2633  * mappings.  Adjust the reserve map here to be consistent with global
2634  * reserve count adjustments to be made by free_huge_page.  Make sure the
2635  * reserve map indicates there is a reservation present.
2636  *
2637  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2638  */
2639 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2640                         unsigned long address, struct page *page)
2641 {
2642         long rc = vma_needs_reservation(h, vma, address);
2643
2644         if (HPageRestoreReserve(page)) {
2645                 if (unlikely(rc < 0))
2646                         /*
2647                          * Rare out of memory condition in reserve map
2648                          * manipulation.  Clear HPageRestoreReserve so that
2649                          * global reserve count will not be incremented
2650                          * by free_huge_page.  This will make it appear
2651                          * as though the reservation for this page was
2652                          * consumed.  This may prevent the task from
2653                          * faulting in the page at a later time.  This
2654                          * is better than inconsistent global huge page
2655                          * accounting of reserve counts.
2656                          */
2657                         ClearHPageRestoreReserve(page);
2658                 else if (rc)
2659                         (void)vma_add_reservation(h, vma, address);
2660                 else
2661                         vma_end_reservation(h, vma, address);
2662         } else {
2663                 if (!rc) {
2664                         /*
2665                          * This indicates there is an entry in the reserve map
2666                          * not added by alloc_huge_page.  We know it was added
2667                          * before the alloc_huge_page call, otherwise
2668                          * HPageRestoreReserve would be set on the page.
2669                          * Remove the entry so that a subsequent allocation
2670                          * does not consume a reservation.
2671                          */
2672                         rc = vma_del_reservation(h, vma, address);
2673                         if (rc < 0)
2674                                 /*
2675                                  * VERY rare out of memory condition.  Since
2676                                  * we can not delete the entry, set
2677                                  * HPageRestoreReserve so that the reserve
2678                                  * count will be incremented when the page
2679                                  * is freed.  This reserve will be consumed
2680                                  * on a subsequent allocation.
2681                                  */
2682                                 SetHPageRestoreReserve(page);
2683                 } else if (rc < 0) {
2684                         /*
2685                          * Rare out of memory condition from
2686                          * vma_needs_reservation call.  Memory allocation is
2687                          * only attempted if a new entry is needed.  Therefore,
2688                          * this implies there is not an entry in the
2689                          * reserve map.
2690                          *
2691                          * For shared mappings, no entry in the map indicates
2692                          * no reservation.  We are done.
2693                          */
2694                         if (!(vma->vm_flags & VM_MAYSHARE))
2695                                 /*
2696                                  * For private mappings, no entry indicates
2697                                  * a reservation is present.  Since we can
2698                                  * not add an entry, set SetHPageRestoreReserve
2699                                  * on the page so reserve count will be
2700                                  * incremented when freed.  This reserve will
2701                                  * be consumed on a subsequent allocation.
2702                                  */
2703                                 SetHPageRestoreReserve(page);
2704                 } else
2705                         /*
2706                          * No reservation present, do nothing
2707                          */
2708                          vma_end_reservation(h, vma, address);
2709         }
2710 }
2711
2712 /*
2713  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2714  * @h: struct hstate old page belongs to
2715  * @old_page: Old page to dissolve
2716  * @list: List to isolate the page in case we need to
2717  * Returns 0 on success, otherwise negated error.
2718  */
2719 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2720                                         struct list_head *list)
2721 {
2722         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2723         int nid = page_to_nid(old_page);
2724         bool alloc_retry = false;
2725         struct page *new_page;
2726         int ret = 0;
2727
2728         /*
2729          * Before dissolving the page, we need to allocate a new one for the
2730          * pool to remain stable.  Here, we allocate the page and 'prep' it
2731          * by doing everything but actually updating counters and adding to
2732          * the pool.  This simplifies and let us do most of the processing
2733          * under the lock.
2734          */
2735 alloc_retry:
2736         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2737         if (!new_page)
2738                 return -ENOMEM;
2739         /*
2740          * If all goes well, this page will be directly added to the free
2741          * list in the pool.  For this the ref count needs to be zero.
2742          * Attempt to drop now, and retry once if needed.  It is VERY
2743          * unlikely there is another ref on the page.
2744          *
2745          * If someone else has a reference to the page, it will be freed
2746          * when they drop their ref.  Abuse temporary page flag to accomplish
2747          * this.  Retry once if there is an inflated ref count.
2748          */
2749         SetHPageTemporary(new_page);
2750         if (!put_page_testzero(new_page)) {
2751                 if (alloc_retry)
2752                         return -EBUSY;
2753
2754                 alloc_retry = true;
2755                 goto alloc_retry;
2756         }
2757         ClearHPageTemporary(new_page);
2758
2759         __prep_new_huge_page(h, new_page);
2760
2761 retry:
2762         spin_lock_irq(&hugetlb_lock);
2763         if (!PageHuge(old_page)) {
2764                 /*
2765                  * Freed from under us. Drop new_page too.
2766                  */
2767                 goto free_new;
2768         } else if (page_count(old_page)) {
2769                 /*
2770                  * Someone has grabbed the page, try to isolate it here.
2771                  * Fail with -EBUSY if not possible.
2772                  */
2773                 spin_unlock_irq(&hugetlb_lock);
2774                 ret = isolate_hugetlb(old_page, list);
2775                 spin_lock_irq(&hugetlb_lock);
2776                 goto free_new;
2777         } else if (!HPageFreed(old_page)) {
2778                 /*
2779                  * Page's refcount is 0 but it has not been enqueued in the
2780                  * freelist yet. Race window is small, so we can succeed here if
2781                  * we retry.
2782                  */
2783                 spin_unlock_irq(&hugetlb_lock);
2784                 cond_resched();
2785                 goto retry;
2786         } else {
2787                 /*
2788                  * Ok, old_page is still a genuine free hugepage. Remove it from
2789                  * the freelist and decrease the counters. These will be
2790                  * incremented again when calling __prep_account_new_huge_page()
2791                  * and enqueue_huge_page() for new_page. The counters will remain
2792                  * stable since this happens under the lock.
2793                  */
2794                 remove_hugetlb_page(h, old_page, false);
2795
2796                 /*
2797                  * Ref count on new page is already zero as it was dropped
2798                  * earlier.  It can be directly added to the pool free list.
2799                  */
2800                 __prep_account_new_huge_page(h, nid);
2801                 enqueue_huge_page(h, new_page);
2802
2803                 /*
2804                  * Pages have been replaced, we can safely free the old one.
2805                  */
2806                 spin_unlock_irq(&hugetlb_lock);
2807                 update_and_free_page(h, old_page, false);
2808         }
2809
2810         return ret;
2811
2812 free_new:
2813         spin_unlock_irq(&hugetlb_lock);
2814         /* Page has a zero ref count, but needs a ref to be freed */
2815         set_page_refcounted(new_page);
2816         update_and_free_page(h, new_page, false);
2817
2818         return ret;
2819 }
2820
2821 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2822 {
2823         struct hstate *h;
2824         struct page *head;
2825         int ret = -EBUSY;
2826
2827         /*
2828          * The page might have been dissolved from under our feet, so make sure
2829          * to carefully check the state under the lock.
2830          * Return success when racing as if we dissolved the page ourselves.
2831          */
2832         spin_lock_irq(&hugetlb_lock);
2833         if (PageHuge(page)) {
2834                 head = compound_head(page);
2835                 h = page_hstate(head);
2836         } else {
2837                 spin_unlock_irq(&hugetlb_lock);
2838                 return 0;
2839         }
2840         spin_unlock_irq(&hugetlb_lock);
2841
2842         /*
2843          * Fence off gigantic pages as there is a cyclic dependency between
2844          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2845          * of bailing out right away without further retrying.
2846          */
2847         if (hstate_is_gigantic(h))
2848                 return -ENOMEM;
2849
2850         if (page_count(head) && !isolate_hugetlb(head, list))
2851                 ret = 0;
2852         else if (!page_count(head))
2853                 ret = alloc_and_dissolve_huge_page(h, head, list);
2854
2855         return ret;
2856 }
2857
2858 struct page *alloc_huge_page(struct vm_area_struct *vma,
2859                                     unsigned long addr, int avoid_reserve)
2860 {
2861         struct hugepage_subpool *spool = subpool_vma(vma);
2862         struct hstate *h = hstate_vma(vma);
2863         struct page *page;
2864         long map_chg, map_commit;
2865         long gbl_chg;
2866         int ret, idx;
2867         struct hugetlb_cgroup *h_cg;
2868         bool deferred_reserve;
2869
2870         idx = hstate_index(h);
2871         /*
2872          * Examine the region/reserve map to determine if the process
2873          * has a reservation for the page to be allocated.  A return
2874          * code of zero indicates a reservation exists (no change).
2875          */
2876         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2877         if (map_chg < 0)
2878                 return ERR_PTR(-ENOMEM);
2879
2880         /*
2881          * Processes that did not create the mapping will have no
2882          * reserves as indicated by the region/reserve map. Check
2883          * that the allocation will not exceed the subpool limit.
2884          * Allocations for MAP_NORESERVE mappings also need to be
2885          * checked against any subpool limit.
2886          */
2887         if (map_chg || avoid_reserve) {
2888                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2889                 if (gbl_chg < 0) {
2890                         vma_end_reservation(h, vma, addr);
2891                         return ERR_PTR(-ENOSPC);
2892                 }
2893
2894                 /*
2895                  * Even though there was no reservation in the region/reserve
2896                  * map, there could be reservations associated with the
2897                  * subpool that can be used.  This would be indicated if the
2898                  * return value of hugepage_subpool_get_pages() is zero.
2899                  * However, if avoid_reserve is specified we still avoid even
2900                  * the subpool reservations.
2901                  */
2902                 if (avoid_reserve)
2903                         gbl_chg = 1;
2904         }
2905
2906         /* If this allocation is not consuming a reservation, charge it now.
2907          */
2908         deferred_reserve = map_chg || avoid_reserve;
2909         if (deferred_reserve) {
2910                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2911                         idx, pages_per_huge_page(h), &h_cg);
2912                 if (ret)
2913                         goto out_subpool_put;
2914         }
2915
2916         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2917         if (ret)
2918                 goto out_uncharge_cgroup_reservation;
2919
2920         spin_lock_irq(&hugetlb_lock);
2921         /*
2922          * glb_chg is passed to indicate whether or not a page must be taken
2923          * from the global free pool (global change).  gbl_chg == 0 indicates
2924          * a reservation exists for the allocation.
2925          */
2926         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2927         if (!page) {
2928                 spin_unlock_irq(&hugetlb_lock);
2929                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2930                 if (!page)
2931                         goto out_uncharge_cgroup;
2932                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2933                         SetHPageRestoreReserve(page);
2934                         h->resv_huge_pages--;
2935                 }
2936                 spin_lock_irq(&hugetlb_lock);
2937                 list_add(&page->lru, &h->hugepage_activelist);
2938                 /* Fall through */
2939         }
2940         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2941         /* If allocation is not consuming a reservation, also store the
2942          * hugetlb_cgroup pointer on the page.
2943          */
2944         if (deferred_reserve) {
2945                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2946                                                   h_cg, page);
2947         }
2948
2949         spin_unlock_irq(&hugetlb_lock);
2950
2951         hugetlb_set_page_subpool(page, spool);
2952
2953         map_commit = vma_commit_reservation(h, vma, addr);
2954         if (unlikely(map_chg > map_commit)) {
2955                 /*
2956                  * The page was added to the reservation map between
2957                  * vma_needs_reservation and vma_commit_reservation.
2958                  * This indicates a race with hugetlb_reserve_pages.
2959                  * Adjust for the subpool count incremented above AND
2960                  * in hugetlb_reserve_pages for the same page.  Also,
2961                  * the reservation count added in hugetlb_reserve_pages
2962                  * no longer applies.
2963                  */
2964                 long rsv_adjust;
2965
2966                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2967                 hugetlb_acct_memory(h, -rsv_adjust);
2968                 if (deferred_reserve)
2969                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2970                                         pages_per_huge_page(h), page);
2971         }
2972         return page;
2973
2974 out_uncharge_cgroup:
2975         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2976 out_uncharge_cgroup_reservation:
2977         if (deferred_reserve)
2978                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2979                                                     h_cg);
2980 out_subpool_put:
2981         if (map_chg || avoid_reserve)
2982                 hugepage_subpool_put_pages(spool, 1);
2983         vma_end_reservation(h, vma, addr);
2984         return ERR_PTR(-ENOSPC);
2985 }
2986
2987 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2988         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2989 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2990 {
2991         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2992         int nr_nodes, node;
2993
2994         /* do node specific alloc */
2995         if (nid != NUMA_NO_NODE) {
2996                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2997                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2998                 if (!m)
2999                         return 0;
3000                 goto found;
3001         }
3002         /* allocate from next node when distributing huge pages */
3003         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3004                 m = memblock_alloc_try_nid_raw(
3005                                 huge_page_size(h), huge_page_size(h),
3006                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3007                 /*
3008                  * Use the beginning of the huge page to store the
3009                  * huge_bootmem_page struct (until gather_bootmem
3010                  * puts them into the mem_map).
3011                  */
3012                 if (!m)
3013                         return 0;
3014                 goto found;
3015         }
3016
3017 found:
3018         /* Put them into a private list first because mem_map is not up yet */
3019         INIT_LIST_HEAD(&m->list);
3020         list_add(&m->list, &huge_boot_pages);
3021         m->hstate = h;
3022         return 1;
3023 }
3024
3025 /*
3026  * Put bootmem huge pages into the standard lists after mem_map is up.
3027  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3028  */
3029 static void __init gather_bootmem_prealloc(void)
3030 {
3031         struct huge_bootmem_page *m;
3032
3033         list_for_each_entry(m, &huge_boot_pages, list) {
3034                 struct page *page = virt_to_page(m);
3035                 struct hstate *h = m->hstate;
3036
3037                 VM_BUG_ON(!hstate_is_gigantic(h));
3038                 WARN_ON(page_count(page) != 1);
3039                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3040                         WARN_ON(PageReserved(page));
3041                         prep_new_huge_page(h, page, page_to_nid(page));
3042                         put_page(page); /* add to the hugepage allocator */
3043                 } else {
3044                         /* VERY unlikely inflated ref count on a tail page */
3045                         free_gigantic_page(page, huge_page_order(h));
3046                 }
3047
3048                 /*
3049                  * We need to restore the 'stolen' pages to totalram_pages
3050                  * in order to fix confusing memory reports from free(1) and
3051                  * other side-effects, like CommitLimit going negative.
3052                  */
3053                 adjust_managed_page_count(page, pages_per_huge_page(h));
3054                 cond_resched();
3055         }
3056 }
3057 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3058 {
3059         unsigned long i;
3060         char buf[32];
3061
3062         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3063                 if (hstate_is_gigantic(h)) {
3064                         if (!alloc_bootmem_huge_page(h, nid))
3065                                 break;
3066                 } else {
3067                         struct page *page;
3068                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3069
3070                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3071                                         &node_states[N_MEMORY], NULL);
3072                         if (!page)
3073                                 break;
3074                         put_page(page); /* free it into the hugepage allocator */
3075                 }
3076                 cond_resched();
3077         }
3078         if (i == h->max_huge_pages_node[nid])
3079                 return;
3080
3081         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3082         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3083                 h->max_huge_pages_node[nid], buf, nid, i);
3084         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3085         h->max_huge_pages_node[nid] = i;
3086 }
3087
3088 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3089 {
3090         unsigned long i;
3091         nodemask_t *node_alloc_noretry;
3092         bool node_specific_alloc = false;
3093
3094         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3095         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3096                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3097                 return;
3098         }
3099
3100         /* do node specific alloc */
3101         for_each_online_node(i) {
3102                 if (h->max_huge_pages_node[i] > 0) {
3103                         hugetlb_hstate_alloc_pages_onenode(h, i);
3104                         node_specific_alloc = true;
3105                 }
3106         }
3107
3108         if (node_specific_alloc)
3109                 return;
3110
3111         /* below will do all node balanced alloc */
3112         if (!hstate_is_gigantic(h)) {
3113                 /*
3114                  * Bit mask controlling how hard we retry per-node allocations.
3115                  * Ignore errors as lower level routines can deal with
3116                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3117                  * time, we are likely in bigger trouble.
3118                  */
3119                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3120                                                 GFP_KERNEL);
3121         } else {
3122                 /* allocations done at boot time */
3123                 node_alloc_noretry = NULL;
3124         }
3125
3126         /* bit mask controlling how hard we retry per-node allocations */
3127         if (node_alloc_noretry)
3128                 nodes_clear(*node_alloc_noretry);
3129
3130         for (i = 0; i < h->max_huge_pages; ++i) {
3131                 if (hstate_is_gigantic(h)) {
3132                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3133                                 break;
3134                 } else if (!alloc_pool_huge_page(h,
3135                                          &node_states[N_MEMORY],
3136                                          node_alloc_noretry))
3137                         break;
3138                 cond_resched();
3139         }
3140         if (i < h->max_huge_pages) {
3141                 char buf[32];
3142
3143                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3144                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3145                         h->max_huge_pages, buf, i);
3146                 h->max_huge_pages = i;
3147         }
3148         kfree(node_alloc_noretry);
3149 }
3150
3151 static void __init hugetlb_init_hstates(void)
3152 {
3153         struct hstate *h, *h2;
3154
3155         for_each_hstate(h) {
3156                 /* oversize hugepages were init'ed in early boot */
3157                 if (!hstate_is_gigantic(h))
3158                         hugetlb_hstate_alloc_pages(h);
3159
3160                 /*
3161                  * Set demote order for each hstate.  Note that
3162                  * h->demote_order is initially 0.
3163                  * - We can not demote gigantic pages if runtime freeing
3164                  *   is not supported, so skip this.
3165                  * - If CMA allocation is possible, we can not demote
3166                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3167                  */
3168                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3169                         continue;
3170                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3171                         continue;
3172                 for_each_hstate(h2) {
3173                         if (h2 == h)
3174                                 continue;
3175                         if (h2->order < h->order &&
3176                             h2->order > h->demote_order)
3177                                 h->demote_order = h2->order;
3178                 }
3179         }
3180 }
3181
3182 static void __init report_hugepages(void)
3183 {
3184         struct hstate *h;
3185
3186         for_each_hstate(h) {
3187                 char buf[32];
3188
3189                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3190                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3191                         buf, h->free_huge_pages);
3192                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3193                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3194         }
3195 }
3196
3197 #ifdef CONFIG_HIGHMEM
3198 static void try_to_free_low(struct hstate *h, unsigned long count,
3199                                                 nodemask_t *nodes_allowed)
3200 {
3201         int i;
3202         LIST_HEAD(page_list);
3203
3204         lockdep_assert_held(&hugetlb_lock);
3205         if (hstate_is_gigantic(h))
3206                 return;
3207
3208         /*
3209          * Collect pages to be freed on a list, and free after dropping lock
3210          */
3211         for_each_node_mask(i, *nodes_allowed) {
3212                 struct page *page, *next;
3213                 struct list_head *freel = &h->hugepage_freelists[i];
3214                 list_for_each_entry_safe(page, next, freel, lru) {
3215                         if (count >= h->nr_huge_pages)
3216                                 goto out;
3217                         if (PageHighMem(page))
3218                                 continue;
3219                         remove_hugetlb_page(h, page, false);
3220                         list_add(&page->lru, &page_list);
3221                 }
3222         }
3223
3224 out:
3225         spin_unlock_irq(&hugetlb_lock);
3226         update_and_free_pages_bulk(h, &page_list);
3227         spin_lock_irq(&hugetlb_lock);
3228 }
3229 #else
3230 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3231                                                 nodemask_t *nodes_allowed)
3232 {
3233 }
3234 #endif
3235
3236 /*
3237  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3238  * balanced by operating on them in a round-robin fashion.
3239  * Returns 1 if an adjustment was made.
3240  */
3241 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3242                                 int delta)
3243 {
3244         int nr_nodes, node;
3245
3246         lockdep_assert_held(&hugetlb_lock);
3247         VM_BUG_ON(delta != -1 && delta != 1);
3248
3249         if (delta < 0) {
3250                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3251                         if (h->surplus_huge_pages_node[node])
3252                                 goto found;
3253                 }
3254         } else {
3255                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3256                         if (h->surplus_huge_pages_node[node] <
3257                                         h->nr_huge_pages_node[node])
3258                                 goto found;
3259                 }
3260         }
3261         return 0;
3262
3263 found:
3264         h->surplus_huge_pages += delta;
3265         h->surplus_huge_pages_node[node] += delta;
3266         return 1;
3267 }
3268
3269 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3270 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3271                               nodemask_t *nodes_allowed)
3272 {
3273         unsigned long min_count, ret;
3274         struct page *page;
3275         LIST_HEAD(page_list);
3276         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3277
3278         /*
3279          * Bit mask controlling how hard we retry per-node allocations.
3280          * If we can not allocate the bit mask, do not attempt to allocate
3281          * the requested huge pages.
3282          */
3283         if (node_alloc_noretry)
3284                 nodes_clear(*node_alloc_noretry);
3285         else
3286                 return -ENOMEM;
3287
3288         /*
3289          * resize_lock mutex prevents concurrent adjustments to number of
3290          * pages in hstate via the proc/sysfs interfaces.
3291          */
3292         mutex_lock(&h->resize_lock);
3293         flush_free_hpage_work(h);
3294         spin_lock_irq(&hugetlb_lock);
3295
3296         /*
3297          * Check for a node specific request.
3298          * Changing node specific huge page count may require a corresponding
3299          * change to the global count.  In any case, the passed node mask
3300          * (nodes_allowed) will restrict alloc/free to the specified node.
3301          */
3302         if (nid != NUMA_NO_NODE) {
3303                 unsigned long old_count = count;
3304
3305                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3306                 /*
3307                  * User may have specified a large count value which caused the
3308                  * above calculation to overflow.  In this case, they wanted
3309                  * to allocate as many huge pages as possible.  Set count to
3310                  * largest possible value to align with their intention.
3311                  */
3312                 if (count < old_count)
3313                         count = ULONG_MAX;
3314         }
3315
3316         /*
3317          * Gigantic pages runtime allocation depend on the capability for large
3318          * page range allocation.
3319          * If the system does not provide this feature, return an error when
3320          * the user tries to allocate gigantic pages but let the user free the
3321          * boottime allocated gigantic pages.
3322          */
3323         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3324                 if (count > persistent_huge_pages(h)) {
3325                         spin_unlock_irq(&hugetlb_lock);
3326                         mutex_unlock(&h->resize_lock);
3327                         NODEMASK_FREE(node_alloc_noretry);
3328                         return -EINVAL;
3329                 }
3330                 /* Fall through to decrease pool */
3331         }
3332
3333         /*
3334          * Increase the pool size
3335          * First take pages out of surplus state.  Then make up the
3336          * remaining difference by allocating fresh huge pages.
3337          *
3338          * We might race with alloc_surplus_huge_page() here and be unable
3339          * to convert a surplus huge page to a normal huge page. That is
3340          * not critical, though, it just means the overall size of the
3341          * pool might be one hugepage larger than it needs to be, but
3342          * within all the constraints specified by the sysctls.
3343          */
3344         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3345                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3346                         break;
3347         }
3348
3349         while (count > persistent_huge_pages(h)) {
3350                 /*
3351                  * If this allocation races such that we no longer need the
3352                  * page, free_huge_page will handle it by freeing the page
3353                  * and reducing the surplus.
3354                  */
3355                 spin_unlock_irq(&hugetlb_lock);
3356
3357                 /* yield cpu to avoid soft lockup */
3358                 cond_resched();
3359
3360                 ret = alloc_pool_huge_page(h, nodes_allowed,
3361                                                 node_alloc_noretry);
3362                 spin_lock_irq(&hugetlb_lock);
3363                 if (!ret)
3364                         goto out;
3365
3366                 /* Bail for signals. Probably ctrl-c from user */
3367                 if (signal_pending(current))
3368                         goto out;
3369         }
3370
3371         /*
3372          * Decrease the pool size
3373          * First return free pages to the buddy allocator (being careful
3374          * to keep enough around to satisfy reservations).  Then place
3375          * pages into surplus state as needed so the pool will shrink
3376          * to the desired size as pages become free.
3377          *
3378          * By placing pages into the surplus state independent of the
3379          * overcommit value, we are allowing the surplus pool size to
3380          * exceed overcommit. There are few sane options here. Since
3381          * alloc_surplus_huge_page() is checking the global counter,
3382          * though, we'll note that we're not allowed to exceed surplus
3383          * and won't grow the pool anywhere else. Not until one of the
3384          * sysctls are changed, or the surplus pages go out of use.
3385          */
3386         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3387         min_count = max(count, min_count);
3388         try_to_free_low(h, min_count, nodes_allowed);
3389
3390         /*
3391          * Collect pages to be removed on list without dropping lock
3392          */
3393         while (min_count < persistent_huge_pages(h)) {
3394                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3395                 if (!page)
3396                         break;
3397
3398                 list_add(&page->lru, &page_list);
3399         }
3400         /* free the pages after dropping lock */
3401         spin_unlock_irq(&hugetlb_lock);
3402         update_and_free_pages_bulk(h, &page_list);
3403         flush_free_hpage_work(h);
3404         spin_lock_irq(&hugetlb_lock);
3405
3406         while (count < persistent_huge_pages(h)) {
3407                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3408                         break;
3409         }
3410 out:
3411         h->max_huge_pages = persistent_huge_pages(h);
3412         spin_unlock_irq(&hugetlb_lock);
3413         mutex_unlock(&h->resize_lock);
3414
3415         NODEMASK_FREE(node_alloc_noretry);
3416
3417         return 0;
3418 }
3419
3420 static int demote_free_huge_page(struct hstate *h, struct page *page)
3421 {
3422         int i, nid = page_to_nid(page);
3423         struct hstate *target_hstate;
3424         struct page *subpage;
3425         int rc = 0;
3426
3427         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3428
3429         remove_hugetlb_page_for_demote(h, page, false);
3430         spin_unlock_irq(&hugetlb_lock);
3431
3432         rc = hugetlb_vmemmap_restore(h, page);
3433         if (rc) {
3434                 /* Allocation of vmemmmap failed, we can not demote page */
3435                 spin_lock_irq(&hugetlb_lock);
3436                 set_page_refcounted(page);
3437                 add_hugetlb_page(h, page, false);
3438                 return rc;
3439         }
3440
3441         /*
3442          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3443          * sizes as it will not ref count pages.
3444          */
3445         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3446
3447         /*
3448          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3449          * Without the mutex, pages added to target hstate could be marked
3450          * as surplus.
3451          *
3452          * Note that we already hold h->resize_lock.  To prevent deadlock,
3453          * use the convention of always taking larger size hstate mutex first.
3454          */
3455         mutex_lock(&target_hstate->resize_lock);
3456         for (i = 0; i < pages_per_huge_page(h);
3457                                 i += pages_per_huge_page(target_hstate)) {
3458                 subpage = nth_page(page, i);
3459                 if (hstate_is_gigantic(target_hstate))
3460                         prep_compound_gigantic_page_for_demote(subpage,
3461                                                         target_hstate->order);
3462                 else
3463                         prep_compound_page(subpage, target_hstate->order);
3464                 set_page_private(subpage, 0);
3465                 set_page_refcounted(subpage);
3466                 prep_new_huge_page(target_hstate, subpage, nid);
3467                 put_page(subpage);
3468         }
3469         mutex_unlock(&target_hstate->resize_lock);
3470
3471         spin_lock_irq(&hugetlb_lock);
3472
3473         /*
3474          * Not absolutely necessary, but for consistency update max_huge_pages
3475          * based on pool changes for the demoted page.
3476          */
3477         h->max_huge_pages--;
3478         target_hstate->max_huge_pages +=
3479                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3480
3481         return rc;
3482 }
3483
3484 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3485         __must_hold(&hugetlb_lock)
3486 {
3487         int nr_nodes, node;
3488         struct page *page;
3489
3490         lockdep_assert_held(&hugetlb_lock);
3491
3492         /* We should never get here if no demote order */
3493         if (!h->demote_order) {
3494                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3495                 return -EINVAL;         /* internal error */
3496         }
3497
3498         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3499                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3500                         if (PageHWPoison(page))
3501                                 continue;
3502
3503                         return demote_free_huge_page(h, page);
3504                 }
3505         }
3506
3507         /*
3508          * Only way to get here is if all pages on free lists are poisoned.
3509          * Return -EBUSY so that caller will not retry.
3510          */
3511         return -EBUSY;
3512 }
3513
3514 #define HSTATE_ATTR_RO(_name) \
3515         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3516
3517 #define HSTATE_ATTR_WO(_name) \
3518         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3519
3520 #define HSTATE_ATTR(_name) \
3521         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3522
3523 static struct kobject *hugepages_kobj;
3524 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3525
3526 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3527
3528 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3529 {
3530         int i;
3531
3532         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3533                 if (hstate_kobjs[i] == kobj) {
3534                         if (nidp)
3535                                 *nidp = NUMA_NO_NODE;
3536                         return &hstates[i];
3537                 }
3538
3539         return kobj_to_node_hstate(kobj, nidp);
3540 }
3541
3542 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3543                                         struct kobj_attribute *attr, char *buf)
3544 {
3545         struct hstate *h;
3546         unsigned long nr_huge_pages;
3547         int nid;
3548
3549         h = kobj_to_hstate(kobj, &nid);
3550         if (nid == NUMA_NO_NODE)
3551                 nr_huge_pages = h->nr_huge_pages;
3552         else
3553                 nr_huge_pages = h->nr_huge_pages_node[nid];
3554
3555         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3556 }
3557
3558 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3559                                            struct hstate *h, int nid,
3560                                            unsigned long count, size_t len)
3561 {
3562         int err;
3563         nodemask_t nodes_allowed, *n_mask;
3564
3565         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3566                 return -EINVAL;
3567
3568         if (nid == NUMA_NO_NODE) {
3569                 /*
3570                  * global hstate attribute
3571                  */
3572                 if (!(obey_mempolicy &&
3573                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3574                         n_mask = &node_states[N_MEMORY];
3575                 else
3576                         n_mask = &nodes_allowed;
3577         } else {
3578                 /*
3579                  * Node specific request.  count adjustment happens in
3580                  * set_max_huge_pages() after acquiring hugetlb_lock.
3581                  */
3582                 init_nodemask_of_node(&nodes_allowed, nid);
3583                 n_mask = &nodes_allowed;
3584         }
3585
3586         err = set_max_huge_pages(h, count, nid, n_mask);
3587
3588         return err ? err : len;
3589 }
3590
3591 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3592                                          struct kobject *kobj, const char *buf,
3593                                          size_t len)
3594 {
3595         struct hstate *h;
3596         unsigned long count;
3597         int nid;
3598         int err;
3599
3600         err = kstrtoul(buf, 10, &count);
3601         if (err)
3602                 return err;
3603
3604         h = kobj_to_hstate(kobj, &nid);
3605         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3606 }
3607
3608 static ssize_t nr_hugepages_show(struct kobject *kobj,
3609                                        struct kobj_attribute *attr, char *buf)
3610 {
3611         return nr_hugepages_show_common(kobj, attr, buf);
3612 }
3613
3614 static ssize_t nr_hugepages_store(struct kobject *kobj,
3615                struct kobj_attribute *attr, const char *buf, size_t len)
3616 {
3617         return nr_hugepages_store_common(false, kobj, buf, len);
3618 }
3619 HSTATE_ATTR(nr_hugepages);
3620
3621 #ifdef CONFIG_NUMA
3622
3623 /*
3624  * hstate attribute for optionally mempolicy-based constraint on persistent
3625  * huge page alloc/free.
3626  */
3627 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3628                                            struct kobj_attribute *attr,
3629                                            char *buf)
3630 {
3631         return nr_hugepages_show_common(kobj, attr, buf);
3632 }
3633
3634 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3635                struct kobj_attribute *attr, const char *buf, size_t len)
3636 {
3637         return nr_hugepages_store_common(true, kobj, buf, len);
3638 }
3639 HSTATE_ATTR(nr_hugepages_mempolicy);
3640 #endif
3641
3642
3643 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3644                                         struct kobj_attribute *attr, char *buf)
3645 {
3646         struct hstate *h = kobj_to_hstate(kobj, NULL);
3647         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3648 }
3649
3650 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3651                 struct kobj_attribute *attr, const char *buf, size_t count)
3652 {
3653         int err;
3654         unsigned long input;
3655         struct hstate *h = kobj_to_hstate(kobj, NULL);
3656
3657         if (hstate_is_gigantic(h))
3658                 return -EINVAL;
3659
3660         err = kstrtoul(buf, 10, &input);
3661         if (err)
3662                 return err;
3663
3664         spin_lock_irq(&hugetlb_lock);
3665         h->nr_overcommit_huge_pages = input;
3666         spin_unlock_irq(&hugetlb_lock);
3667
3668         return count;
3669 }
3670 HSTATE_ATTR(nr_overcommit_hugepages);
3671
3672 static ssize_t free_hugepages_show(struct kobject *kobj,
3673                                         struct kobj_attribute *attr, char *buf)
3674 {
3675         struct hstate *h;
3676         unsigned long free_huge_pages;
3677         int nid;
3678
3679         h = kobj_to_hstate(kobj, &nid);
3680         if (nid == NUMA_NO_NODE)
3681                 free_huge_pages = h->free_huge_pages;
3682         else
3683                 free_huge_pages = h->free_huge_pages_node[nid];
3684
3685         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3686 }
3687 HSTATE_ATTR_RO(free_hugepages);
3688
3689 static ssize_t resv_hugepages_show(struct kobject *kobj,
3690                                         struct kobj_attribute *attr, char *buf)
3691 {
3692         struct hstate *h = kobj_to_hstate(kobj, NULL);
3693         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3694 }
3695 HSTATE_ATTR_RO(resv_hugepages);
3696
3697 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3698                                         struct kobj_attribute *attr, char *buf)
3699 {
3700         struct hstate *h;
3701         unsigned long surplus_huge_pages;
3702         int nid;
3703
3704         h = kobj_to_hstate(kobj, &nid);
3705         if (nid == NUMA_NO_NODE)
3706                 surplus_huge_pages = h->surplus_huge_pages;
3707         else
3708                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3709
3710         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3711 }
3712 HSTATE_ATTR_RO(surplus_hugepages);
3713
3714 static ssize_t demote_store(struct kobject *kobj,
3715                struct kobj_attribute *attr, const char *buf, size_t len)
3716 {
3717         unsigned long nr_demote;
3718         unsigned long nr_available;
3719         nodemask_t nodes_allowed, *n_mask;
3720         struct hstate *h;
3721         int err;
3722         int nid;
3723
3724         err = kstrtoul(buf, 10, &nr_demote);
3725         if (err)
3726                 return err;
3727         h = kobj_to_hstate(kobj, &nid);
3728
3729         if (nid != NUMA_NO_NODE) {
3730                 init_nodemask_of_node(&nodes_allowed, nid);
3731                 n_mask = &nodes_allowed;
3732         } else {
3733                 n_mask = &node_states[N_MEMORY];
3734         }
3735
3736         /* Synchronize with other sysfs operations modifying huge pages */
3737         mutex_lock(&h->resize_lock);
3738         spin_lock_irq(&hugetlb_lock);
3739
3740         while (nr_demote) {
3741                 /*
3742                  * Check for available pages to demote each time thorough the
3743                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3744                  */
3745                 if (nid != NUMA_NO_NODE)
3746                         nr_available = h->free_huge_pages_node[nid];
3747                 else
3748                         nr_available = h->free_huge_pages;
3749                 nr_available -= h->resv_huge_pages;
3750                 if (!nr_available)
3751                         break;
3752
3753                 err = demote_pool_huge_page(h, n_mask);
3754                 if (err)
3755                         break;
3756
3757                 nr_demote--;
3758         }
3759
3760         spin_unlock_irq(&hugetlb_lock);
3761         mutex_unlock(&h->resize_lock);
3762
3763         if (err)
3764                 return err;
3765         return len;
3766 }
3767 HSTATE_ATTR_WO(demote);
3768
3769 static ssize_t demote_size_show(struct kobject *kobj,
3770                                         struct kobj_attribute *attr, char *buf)
3771 {
3772         struct hstate *h = kobj_to_hstate(kobj, NULL);
3773         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3774
3775         return sysfs_emit(buf, "%lukB\n", demote_size);
3776 }
3777
3778 static ssize_t demote_size_store(struct kobject *kobj,
3779                                         struct kobj_attribute *attr,
3780                                         const char *buf, size_t count)
3781 {
3782         struct hstate *h, *demote_hstate;
3783         unsigned long demote_size;
3784         unsigned int demote_order;
3785
3786         demote_size = (unsigned long)memparse(buf, NULL);
3787
3788         demote_hstate = size_to_hstate(demote_size);
3789         if (!demote_hstate)
3790                 return -EINVAL;
3791         demote_order = demote_hstate->order;
3792         if (demote_order < HUGETLB_PAGE_ORDER)
3793                 return -EINVAL;
3794
3795         /* demote order must be smaller than hstate order */
3796         h = kobj_to_hstate(kobj, NULL);
3797         if (demote_order >= h->order)
3798                 return -EINVAL;
3799
3800         /* resize_lock synchronizes access to demote size and writes */
3801         mutex_lock(&h->resize_lock);
3802         h->demote_order = demote_order;
3803         mutex_unlock(&h->resize_lock);
3804
3805         return count;
3806 }
3807 HSTATE_ATTR(demote_size);
3808
3809 static struct attribute *hstate_attrs[] = {
3810         &nr_hugepages_attr.attr,
3811         &nr_overcommit_hugepages_attr.attr,
3812         &free_hugepages_attr.attr,
3813         &resv_hugepages_attr.attr,
3814         &surplus_hugepages_attr.attr,
3815 #ifdef CONFIG_NUMA
3816         &nr_hugepages_mempolicy_attr.attr,
3817 #endif
3818         NULL,
3819 };
3820
3821 static const struct attribute_group hstate_attr_group = {
3822         .attrs = hstate_attrs,
3823 };
3824
3825 static struct attribute *hstate_demote_attrs[] = {
3826         &demote_size_attr.attr,
3827         &demote_attr.attr,
3828         NULL,
3829 };
3830
3831 static const struct attribute_group hstate_demote_attr_group = {
3832         .attrs = hstate_demote_attrs,
3833 };
3834
3835 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3836                                     struct kobject **hstate_kobjs,
3837                                     const struct attribute_group *hstate_attr_group)
3838 {
3839         int retval;
3840         int hi = hstate_index(h);
3841
3842         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3843         if (!hstate_kobjs[hi])
3844                 return -ENOMEM;
3845
3846         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3847         if (retval) {
3848                 kobject_put(hstate_kobjs[hi]);
3849                 hstate_kobjs[hi] = NULL;
3850                 return retval;
3851         }
3852
3853         if (h->demote_order) {
3854                 retval = sysfs_create_group(hstate_kobjs[hi],
3855                                             &hstate_demote_attr_group);
3856                 if (retval) {
3857                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3858                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3859                         kobject_put(hstate_kobjs[hi]);
3860                         hstate_kobjs[hi] = NULL;
3861                         return retval;
3862                 }
3863         }
3864
3865         return 0;
3866 }
3867
3868 static void __init hugetlb_sysfs_init(void)
3869 {
3870         struct hstate *h;
3871         int err;
3872
3873         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3874         if (!hugepages_kobj)
3875                 return;
3876
3877         for_each_hstate(h) {
3878                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3879                                          hstate_kobjs, &hstate_attr_group);
3880                 if (err)
3881                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3882         }
3883 }
3884
3885 #ifdef CONFIG_NUMA
3886
3887 /*
3888  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3889  * with node devices in node_devices[] using a parallel array.  The array
3890  * index of a node device or _hstate == node id.
3891  * This is here to avoid any static dependency of the node device driver, in
3892  * the base kernel, on the hugetlb module.
3893  */
3894 struct node_hstate {
3895         struct kobject          *hugepages_kobj;
3896         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3897 };
3898 static struct node_hstate node_hstates[MAX_NUMNODES];
3899
3900 /*
3901  * A subset of global hstate attributes for node devices
3902  */
3903 static struct attribute *per_node_hstate_attrs[] = {
3904         &nr_hugepages_attr.attr,
3905         &free_hugepages_attr.attr,
3906         &surplus_hugepages_attr.attr,
3907         NULL,
3908 };
3909
3910 static const struct attribute_group per_node_hstate_attr_group = {
3911         .attrs = per_node_hstate_attrs,
3912 };
3913
3914 /*
3915  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3916  * Returns node id via non-NULL nidp.
3917  */
3918 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3919 {
3920         int nid;
3921
3922         for (nid = 0; nid < nr_node_ids; nid++) {
3923                 struct node_hstate *nhs = &node_hstates[nid];
3924                 int i;
3925                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3926                         if (nhs->hstate_kobjs[i] == kobj) {
3927                                 if (nidp)
3928                                         *nidp = nid;
3929                                 return &hstates[i];
3930                         }
3931         }
3932
3933         BUG();
3934         return NULL;
3935 }
3936
3937 /*
3938  * Unregister hstate attributes from a single node device.
3939  * No-op if no hstate attributes attached.
3940  */
3941 static void hugetlb_unregister_node(struct node *node)
3942 {
3943         struct hstate *h;
3944         struct node_hstate *nhs = &node_hstates[node->dev.id];
3945
3946         if (!nhs->hugepages_kobj)
3947                 return;         /* no hstate attributes */
3948
3949         for_each_hstate(h) {
3950                 int idx = hstate_index(h);
3951                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3952
3953                 if (!hstate_kobj)
3954                         continue;
3955                 if (h->demote_order)
3956                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3957                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3958                 kobject_put(hstate_kobj);
3959                 nhs->hstate_kobjs[idx] = NULL;
3960         }
3961
3962         kobject_put(nhs->hugepages_kobj);
3963         nhs->hugepages_kobj = NULL;
3964 }
3965
3966
3967 /*
3968  * Register hstate attributes for a single node device.
3969  * No-op if attributes already registered.
3970  */
3971 static void hugetlb_register_node(struct node *node)
3972 {
3973         struct hstate *h;
3974         struct node_hstate *nhs = &node_hstates[node->dev.id];
3975         int err;
3976
3977         if (nhs->hugepages_kobj)
3978                 return;         /* already allocated */
3979
3980         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3981                                                         &node->dev.kobj);
3982         if (!nhs->hugepages_kobj)
3983                 return;
3984
3985         for_each_hstate(h) {
3986                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3987                                                 nhs->hstate_kobjs,
3988                                                 &per_node_hstate_attr_group);
3989                 if (err) {
3990                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3991                                 h->name, node->dev.id);
3992                         hugetlb_unregister_node(node);
3993                         break;
3994                 }
3995         }
3996 }
3997
3998 /*
3999  * hugetlb init time:  register hstate attributes for all registered node
4000  * devices of nodes that have memory.  All on-line nodes should have
4001  * registered their associated device by this time.
4002  */
4003 static void __init hugetlb_register_all_nodes(void)
4004 {
4005         int nid;
4006
4007         for_each_node_state(nid, N_MEMORY) {
4008                 struct node *node = node_devices[nid];
4009                 if (node->dev.id == nid)
4010                         hugetlb_register_node(node);
4011         }
4012
4013         /*
4014          * Let the node device driver know we're here so it can
4015          * [un]register hstate attributes on node hotplug.
4016          */
4017         register_hugetlbfs_with_node(hugetlb_register_node,
4018                                      hugetlb_unregister_node);
4019 }
4020 #else   /* !CONFIG_NUMA */
4021
4022 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4023 {
4024         BUG();
4025         if (nidp)
4026                 *nidp = -1;
4027         return NULL;
4028 }
4029
4030 static void hugetlb_register_all_nodes(void) { }
4031
4032 #endif
4033
4034 #ifdef CONFIG_CMA
4035 static void __init hugetlb_cma_check(void);
4036 #else
4037 static inline __init void hugetlb_cma_check(void)
4038 {
4039 }
4040 #endif
4041
4042 static int __init hugetlb_init(void)
4043 {
4044         int i;
4045
4046         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4047                         __NR_HPAGEFLAGS);
4048
4049         if (!hugepages_supported()) {
4050                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4051                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4052                 return 0;
4053         }
4054
4055         /*
4056          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4057          * architectures depend on setup being done here.
4058          */
4059         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4060         if (!parsed_default_hugepagesz) {
4061                 /*
4062                  * If we did not parse a default huge page size, set
4063                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4064                  * number of huge pages for this default size was implicitly
4065                  * specified, set that here as well.
4066                  * Note that the implicit setting will overwrite an explicit
4067                  * setting.  A warning will be printed in this case.
4068                  */
4069                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4070                 if (default_hstate_max_huge_pages) {
4071                         if (default_hstate.max_huge_pages) {
4072                                 char buf[32];
4073
4074                                 string_get_size(huge_page_size(&default_hstate),
4075                                         1, STRING_UNITS_2, buf, 32);
4076                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4077                                         default_hstate.max_huge_pages, buf);
4078                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4079                                         default_hstate_max_huge_pages);
4080                         }
4081                         default_hstate.max_huge_pages =
4082                                 default_hstate_max_huge_pages;
4083
4084                         for_each_online_node(i)
4085                                 default_hstate.max_huge_pages_node[i] =
4086                                         default_hugepages_in_node[i];
4087                 }
4088         }
4089
4090         hugetlb_cma_check();
4091         hugetlb_init_hstates();
4092         gather_bootmem_prealloc();
4093         report_hugepages();
4094
4095         hugetlb_sysfs_init();
4096         hugetlb_register_all_nodes();
4097         hugetlb_cgroup_file_init();
4098
4099 #ifdef CONFIG_SMP
4100         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4101 #else
4102         num_fault_mutexes = 1;
4103 #endif
4104         hugetlb_fault_mutex_table =
4105                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4106                               GFP_KERNEL);
4107         BUG_ON(!hugetlb_fault_mutex_table);
4108
4109         for (i = 0; i < num_fault_mutexes; i++)
4110                 mutex_init(&hugetlb_fault_mutex_table[i]);
4111         return 0;
4112 }
4113 subsys_initcall(hugetlb_init);
4114
4115 /* Overwritten by architectures with more huge page sizes */
4116 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4117 {
4118         return size == HPAGE_SIZE;
4119 }
4120
4121 void __init hugetlb_add_hstate(unsigned int order)
4122 {
4123         struct hstate *h;
4124         unsigned long i;
4125
4126         if (size_to_hstate(PAGE_SIZE << order)) {
4127                 return;
4128         }
4129         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4130         BUG_ON(order == 0);
4131         h = &hstates[hugetlb_max_hstate++];
4132         mutex_init(&h->resize_lock);
4133         h->order = order;
4134         h->mask = ~(huge_page_size(h) - 1);
4135         for (i = 0; i < MAX_NUMNODES; ++i)
4136                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4137         INIT_LIST_HEAD(&h->hugepage_activelist);
4138         h->next_nid_to_alloc = first_memory_node;
4139         h->next_nid_to_free = first_memory_node;
4140         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4141                                         huge_page_size(h)/SZ_1K);
4142
4143         parsed_hstate = h;
4144 }
4145
4146 bool __init __weak hugetlb_node_alloc_supported(void)
4147 {
4148         return true;
4149 }
4150
4151 static void __init hugepages_clear_pages_in_node(void)
4152 {
4153         if (!hugetlb_max_hstate) {
4154                 default_hstate_max_huge_pages = 0;
4155                 memset(default_hugepages_in_node, 0,
4156                         sizeof(default_hugepages_in_node));
4157         } else {
4158                 parsed_hstate->max_huge_pages = 0;
4159                 memset(parsed_hstate->max_huge_pages_node, 0,
4160                         sizeof(parsed_hstate->max_huge_pages_node));
4161         }
4162 }
4163
4164 /*
4165  * hugepages command line processing
4166  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4167  * specification.  If not, ignore the hugepages value.  hugepages can also
4168  * be the first huge page command line  option in which case it implicitly
4169  * specifies the number of huge pages for the default size.
4170  */
4171 static int __init hugepages_setup(char *s)
4172 {
4173         unsigned long *mhp;
4174         static unsigned long *last_mhp;
4175         int node = NUMA_NO_NODE;
4176         int count;
4177         unsigned long tmp;
4178         char *p = s;
4179
4180         if (!parsed_valid_hugepagesz) {
4181                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4182                 parsed_valid_hugepagesz = true;
4183                 return 1;
4184         }
4185
4186         /*
4187          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4188          * yet, so this hugepages= parameter goes to the "default hstate".
4189          * Otherwise, it goes with the previously parsed hugepagesz or
4190          * default_hugepagesz.
4191          */
4192         else if (!hugetlb_max_hstate)
4193                 mhp = &default_hstate_max_huge_pages;
4194         else
4195                 mhp = &parsed_hstate->max_huge_pages;
4196
4197         if (mhp == last_mhp) {
4198                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4199                 return 1;
4200         }
4201
4202         while (*p) {
4203                 count = 0;
4204                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4205                         goto invalid;
4206                 /* Parameter is node format */
4207                 if (p[count] == ':') {
4208                         if (!hugetlb_node_alloc_supported()) {
4209                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4210                                 return 1;
4211                         }
4212                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4213                                 goto invalid;
4214                         node = array_index_nospec(tmp, MAX_NUMNODES);
4215                         p += count + 1;
4216                         /* Parse hugepages */
4217                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4218                                 goto invalid;
4219                         if (!hugetlb_max_hstate)
4220                                 default_hugepages_in_node[node] = tmp;
4221                         else
4222                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4223                         *mhp += tmp;
4224                         /* Go to parse next node*/
4225                         if (p[count] == ',')
4226                                 p += count + 1;
4227                         else
4228                                 break;
4229                 } else {
4230                         if (p != s)
4231                                 goto invalid;
4232                         *mhp = tmp;
4233                         break;
4234                 }
4235         }
4236
4237         /*
4238          * Global state is always initialized later in hugetlb_init.
4239          * But we need to allocate gigantic hstates here early to still
4240          * use the bootmem allocator.
4241          */
4242         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4243                 hugetlb_hstate_alloc_pages(parsed_hstate);
4244
4245         last_mhp = mhp;
4246
4247         return 1;
4248
4249 invalid:
4250         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4251         hugepages_clear_pages_in_node();
4252         return 1;
4253 }
4254 __setup("hugepages=", hugepages_setup);
4255
4256 /*
4257  * hugepagesz command line processing
4258  * A specific huge page size can only be specified once with hugepagesz.
4259  * hugepagesz is followed by hugepages on the command line.  The global
4260  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4261  * hugepagesz argument was valid.
4262  */
4263 static int __init hugepagesz_setup(char *s)
4264 {
4265         unsigned long size;
4266         struct hstate *h;
4267
4268         parsed_valid_hugepagesz = false;
4269         size = (unsigned long)memparse(s, NULL);
4270
4271         if (!arch_hugetlb_valid_size(size)) {
4272                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4273                 return 1;
4274         }
4275
4276         h = size_to_hstate(size);
4277         if (h) {
4278                 /*
4279                  * hstate for this size already exists.  This is normally
4280                  * an error, but is allowed if the existing hstate is the
4281                  * default hstate.  More specifically, it is only allowed if
4282                  * the number of huge pages for the default hstate was not
4283                  * previously specified.
4284                  */
4285                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4286                     default_hstate.max_huge_pages) {
4287                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4288                         return 1;
4289                 }
4290
4291                 /*
4292                  * No need to call hugetlb_add_hstate() as hstate already
4293                  * exists.  But, do set parsed_hstate so that a following
4294                  * hugepages= parameter will be applied to this hstate.
4295                  */
4296                 parsed_hstate = h;
4297                 parsed_valid_hugepagesz = true;
4298                 return 1;
4299         }
4300
4301         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4302         parsed_valid_hugepagesz = true;
4303         return 1;
4304 }
4305 __setup("hugepagesz=", hugepagesz_setup);
4306
4307 /*
4308  * default_hugepagesz command line input
4309  * Only one instance of default_hugepagesz allowed on command line.
4310  */
4311 static int __init default_hugepagesz_setup(char *s)
4312 {
4313         unsigned long size;
4314         int i;
4315
4316         parsed_valid_hugepagesz = false;
4317         if (parsed_default_hugepagesz) {
4318                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4319                 return 1;
4320         }
4321
4322         size = (unsigned long)memparse(s, NULL);
4323
4324         if (!arch_hugetlb_valid_size(size)) {
4325                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4326                 return 1;
4327         }
4328
4329         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4330         parsed_valid_hugepagesz = true;
4331         parsed_default_hugepagesz = true;
4332         default_hstate_idx = hstate_index(size_to_hstate(size));
4333
4334         /*
4335          * The number of default huge pages (for this size) could have been
4336          * specified as the first hugetlb parameter: hugepages=X.  If so,
4337          * then default_hstate_max_huge_pages is set.  If the default huge
4338          * page size is gigantic (>= MAX_ORDER), then the pages must be
4339          * allocated here from bootmem allocator.
4340          */
4341         if (default_hstate_max_huge_pages) {
4342                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4343                 for_each_online_node(i)
4344                         default_hstate.max_huge_pages_node[i] =
4345                                 default_hugepages_in_node[i];
4346                 if (hstate_is_gigantic(&default_hstate))
4347                         hugetlb_hstate_alloc_pages(&default_hstate);
4348                 default_hstate_max_huge_pages = 0;
4349         }
4350
4351         return 1;
4352 }
4353 __setup("default_hugepagesz=", default_hugepagesz_setup);
4354
4355 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4356 {
4357 #ifdef CONFIG_NUMA
4358         struct mempolicy *mpol = get_task_policy(current);
4359
4360         /*
4361          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4362          * (from policy_nodemask) specifically for hugetlb case
4363          */
4364         if (mpol->mode == MPOL_BIND &&
4365                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4366                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4367                 return &mpol->nodes;
4368 #endif
4369         return NULL;
4370 }
4371
4372 static unsigned int allowed_mems_nr(struct hstate *h)
4373 {
4374         int node;
4375         unsigned int nr = 0;
4376         nodemask_t *mbind_nodemask;
4377         unsigned int *array = h->free_huge_pages_node;
4378         gfp_t gfp_mask = htlb_alloc_mask(h);
4379
4380         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4381         for_each_node_mask(node, cpuset_current_mems_allowed) {
4382                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4383                         nr += array[node];
4384         }
4385
4386         return nr;
4387 }
4388
4389 #ifdef CONFIG_SYSCTL
4390 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4391                                           void *buffer, size_t *length,
4392                                           loff_t *ppos, unsigned long *out)
4393 {
4394         struct ctl_table dup_table;
4395
4396         /*
4397          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4398          * can duplicate the @table and alter the duplicate of it.
4399          */
4400         dup_table = *table;
4401         dup_table.data = out;
4402
4403         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4404 }
4405
4406 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4407                          struct ctl_table *table, int write,
4408                          void *buffer, size_t *length, loff_t *ppos)
4409 {
4410         struct hstate *h = &default_hstate;
4411         unsigned long tmp = h->max_huge_pages;
4412         int ret;
4413
4414         if (!hugepages_supported())
4415                 return -EOPNOTSUPP;
4416
4417         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4418                                              &tmp);
4419         if (ret)
4420                 goto out;
4421
4422         if (write)
4423                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4424                                                   NUMA_NO_NODE, tmp, *length);
4425 out:
4426         return ret;
4427 }
4428
4429 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4430                           void *buffer, size_t *length, loff_t *ppos)
4431 {
4432
4433         return hugetlb_sysctl_handler_common(false, table, write,
4434                                                         buffer, length, ppos);
4435 }
4436
4437 #ifdef CONFIG_NUMA
4438 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4439                           void *buffer, size_t *length, loff_t *ppos)
4440 {
4441         return hugetlb_sysctl_handler_common(true, table, write,
4442                                                         buffer, length, ppos);
4443 }
4444 #endif /* CONFIG_NUMA */
4445
4446 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4447                 void *buffer, size_t *length, loff_t *ppos)
4448 {
4449         struct hstate *h = &default_hstate;
4450         unsigned long tmp;
4451         int ret;
4452
4453         if (!hugepages_supported())
4454                 return -EOPNOTSUPP;
4455
4456         tmp = h->nr_overcommit_huge_pages;
4457
4458         if (write && hstate_is_gigantic(h))
4459                 return -EINVAL;
4460
4461         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4462                                              &tmp);
4463         if (ret)
4464                 goto out;
4465
4466         if (write) {
4467                 spin_lock_irq(&hugetlb_lock);
4468                 h->nr_overcommit_huge_pages = tmp;
4469                 spin_unlock_irq(&hugetlb_lock);
4470         }
4471 out:
4472         return ret;
4473 }
4474
4475 #endif /* CONFIG_SYSCTL */
4476
4477 void hugetlb_report_meminfo(struct seq_file *m)
4478 {
4479         struct hstate *h;
4480         unsigned long total = 0;
4481
4482         if (!hugepages_supported())
4483                 return;
4484
4485         for_each_hstate(h) {
4486                 unsigned long count = h->nr_huge_pages;
4487
4488                 total += huge_page_size(h) * count;
4489
4490                 if (h == &default_hstate)
4491                         seq_printf(m,
4492                                    "HugePages_Total:   %5lu\n"
4493                                    "HugePages_Free:    %5lu\n"
4494                                    "HugePages_Rsvd:    %5lu\n"
4495                                    "HugePages_Surp:    %5lu\n"
4496                                    "Hugepagesize:   %8lu kB\n",
4497                                    count,
4498                                    h->free_huge_pages,
4499                                    h->resv_huge_pages,
4500                                    h->surplus_huge_pages,
4501                                    huge_page_size(h) / SZ_1K);
4502         }
4503
4504         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4505 }
4506
4507 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4508 {
4509         struct hstate *h = &default_hstate;
4510
4511         if (!hugepages_supported())
4512                 return 0;
4513
4514         return sysfs_emit_at(buf, len,
4515                              "Node %d HugePages_Total: %5u\n"
4516                              "Node %d HugePages_Free:  %5u\n"
4517                              "Node %d HugePages_Surp:  %5u\n",
4518                              nid, h->nr_huge_pages_node[nid],
4519                              nid, h->free_huge_pages_node[nid],
4520                              nid, h->surplus_huge_pages_node[nid]);
4521 }
4522
4523 void hugetlb_show_meminfo_node(int nid)
4524 {
4525         struct hstate *h;
4526
4527         if (!hugepages_supported())
4528                 return;
4529
4530         for_each_hstate(h)
4531                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4532                         nid,
4533                         h->nr_huge_pages_node[nid],
4534                         h->free_huge_pages_node[nid],
4535                         h->surplus_huge_pages_node[nid],
4536                         huge_page_size(h) / SZ_1K);
4537 }
4538
4539 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4540 {
4541         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4542                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4543 }
4544
4545 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4546 unsigned long hugetlb_total_pages(void)
4547 {
4548         struct hstate *h;
4549         unsigned long nr_total_pages = 0;
4550
4551         for_each_hstate(h)
4552                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4553         return nr_total_pages;
4554 }
4555
4556 static int hugetlb_acct_memory(struct hstate *h, long delta)
4557 {
4558         int ret = -ENOMEM;
4559
4560         if (!delta)
4561                 return 0;
4562
4563         spin_lock_irq(&hugetlb_lock);
4564         /*
4565          * When cpuset is configured, it breaks the strict hugetlb page
4566          * reservation as the accounting is done on a global variable. Such
4567          * reservation is completely rubbish in the presence of cpuset because
4568          * the reservation is not checked against page availability for the
4569          * current cpuset. Application can still potentially OOM'ed by kernel
4570          * with lack of free htlb page in cpuset that the task is in.
4571          * Attempt to enforce strict accounting with cpuset is almost
4572          * impossible (or too ugly) because cpuset is too fluid that
4573          * task or memory node can be dynamically moved between cpusets.
4574          *
4575          * The change of semantics for shared hugetlb mapping with cpuset is
4576          * undesirable. However, in order to preserve some of the semantics,
4577          * we fall back to check against current free page availability as
4578          * a best attempt and hopefully to minimize the impact of changing
4579          * semantics that cpuset has.
4580          *
4581          * Apart from cpuset, we also have memory policy mechanism that
4582          * also determines from which node the kernel will allocate memory
4583          * in a NUMA system. So similar to cpuset, we also should consider
4584          * the memory policy of the current task. Similar to the description
4585          * above.
4586          */
4587         if (delta > 0) {
4588                 if (gather_surplus_pages(h, delta) < 0)
4589                         goto out;
4590
4591                 if (delta > allowed_mems_nr(h)) {
4592                         return_unused_surplus_pages(h, delta);
4593                         goto out;
4594                 }
4595         }
4596
4597         ret = 0;
4598         if (delta < 0)
4599                 return_unused_surplus_pages(h, (unsigned long) -delta);
4600
4601 out:
4602         spin_unlock_irq(&hugetlb_lock);
4603         return ret;
4604 }
4605
4606 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4607 {
4608         struct resv_map *resv = vma_resv_map(vma);
4609
4610         /*
4611          * This new VMA should share its siblings reservation map if present.
4612          * The VMA will only ever have a valid reservation map pointer where
4613          * it is being copied for another still existing VMA.  As that VMA
4614          * has a reference to the reservation map it cannot disappear until
4615          * after this open call completes.  It is therefore safe to take a
4616          * new reference here without additional locking.
4617          */
4618         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4619                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4620                 kref_get(&resv->refs);
4621         }
4622 }
4623
4624 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4625 {
4626         struct hstate *h = hstate_vma(vma);
4627         struct resv_map *resv = vma_resv_map(vma);
4628         struct hugepage_subpool *spool = subpool_vma(vma);
4629         unsigned long reserve, start, end;
4630         long gbl_reserve;
4631
4632         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4633                 return;
4634
4635         start = vma_hugecache_offset(h, vma, vma->vm_start);
4636         end = vma_hugecache_offset(h, vma, vma->vm_end);
4637
4638         reserve = (end - start) - region_count(resv, start, end);
4639         hugetlb_cgroup_uncharge_counter(resv, start, end);
4640         if (reserve) {
4641                 /*
4642                  * Decrement reserve counts.  The global reserve count may be
4643                  * adjusted if the subpool has a minimum size.
4644                  */
4645                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4646                 hugetlb_acct_memory(h, -gbl_reserve);
4647         }
4648
4649         kref_put(&resv->refs, resv_map_release);
4650 }
4651
4652 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4653 {
4654         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4655                 return -EINVAL;
4656         return 0;
4657 }
4658
4659 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4660 {
4661         return huge_page_size(hstate_vma(vma));
4662 }
4663
4664 /*
4665  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4666  * handle_mm_fault() to try to instantiate regular-sized pages in the
4667  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4668  * this far.
4669  */
4670 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4671 {
4672         BUG();
4673         return 0;
4674 }
4675
4676 /*
4677  * When a new function is introduced to vm_operations_struct and added
4678  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4679  * This is because under System V memory model, mappings created via
4680  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4681  * their original vm_ops are overwritten with shm_vm_ops.
4682  */
4683 const struct vm_operations_struct hugetlb_vm_ops = {
4684         .fault = hugetlb_vm_op_fault,
4685         .open = hugetlb_vm_op_open,
4686         .close = hugetlb_vm_op_close,
4687         .may_split = hugetlb_vm_op_split,
4688         .pagesize = hugetlb_vm_op_pagesize,
4689 };
4690
4691 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4692                                 int writable)
4693 {
4694         pte_t entry;
4695         unsigned int shift = huge_page_shift(hstate_vma(vma));
4696
4697         if (writable) {
4698                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4699                                          vma->vm_page_prot)));
4700         } else {
4701                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4702                                            vma->vm_page_prot));
4703         }
4704         entry = pte_mkyoung(entry);
4705         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4706
4707         return entry;
4708 }
4709
4710 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4711                                    unsigned long address, pte_t *ptep)
4712 {
4713         pte_t entry;
4714
4715         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4716         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4717                 update_mmu_cache(vma, address, ptep);
4718 }
4719
4720 bool is_hugetlb_entry_migration(pte_t pte)
4721 {
4722         swp_entry_t swp;
4723
4724         if (huge_pte_none(pte) || pte_present(pte))
4725                 return false;
4726         swp = pte_to_swp_entry(pte);
4727         if (is_migration_entry(swp))
4728                 return true;
4729         else
4730                 return false;
4731 }
4732
4733 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4734 {
4735         swp_entry_t swp;
4736
4737         if (huge_pte_none(pte) || pte_present(pte))
4738                 return false;
4739         swp = pte_to_swp_entry(pte);
4740         if (is_hwpoison_entry(swp))
4741                 return true;
4742         else
4743                 return false;
4744 }
4745
4746 static void
4747 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4748                      struct page *new_page)
4749 {
4750         __SetPageUptodate(new_page);
4751         hugepage_add_new_anon_rmap(new_page, vma, addr);
4752         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4753         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4754         ClearHPageRestoreReserve(new_page);
4755         SetHPageMigratable(new_page);
4756 }
4757
4758 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4759                             struct vm_area_struct *dst_vma,
4760                             struct vm_area_struct *src_vma)
4761 {
4762         pte_t *src_pte, *dst_pte, entry;
4763         struct page *ptepage;
4764         unsigned long addr;
4765         bool cow = is_cow_mapping(src_vma->vm_flags);
4766         struct hstate *h = hstate_vma(src_vma);
4767         unsigned long sz = huge_page_size(h);
4768         unsigned long npages = pages_per_huge_page(h);
4769         struct address_space *mapping = src_vma->vm_file->f_mapping;
4770         struct mmu_notifier_range range;
4771         unsigned long last_addr_mask;
4772         int ret = 0;
4773
4774         if (cow) {
4775                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4776                                         src_vma->vm_start,
4777                                         src_vma->vm_end);
4778                 mmu_notifier_invalidate_range_start(&range);
4779                 mmap_assert_write_locked(src);
4780                 raw_write_seqcount_begin(&src->write_protect_seq);
4781         } else {
4782                 /*
4783                  * For shared mappings i_mmap_rwsem must be held to call
4784                  * huge_pte_alloc, otherwise the returned ptep could go
4785                  * away if part of a shared pmd and another thread calls
4786                  * huge_pmd_unshare.
4787                  */
4788                 i_mmap_lock_read(mapping);
4789         }
4790
4791         last_addr_mask = hugetlb_mask_last_page(h);
4792         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4793                 spinlock_t *src_ptl, *dst_ptl;
4794                 src_pte = huge_pte_offset(src, addr, sz);
4795                 if (!src_pte) {
4796                         addr |= last_addr_mask;
4797                         continue;
4798                 }
4799                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4800                 if (!dst_pte) {
4801                         ret = -ENOMEM;
4802                         break;
4803                 }
4804
4805                 /*
4806                  * If the pagetables are shared don't copy or take references.
4807                  *
4808                  * dst_pte == src_pte is the common case of src/dest sharing.
4809                  * However, src could have 'unshared' and dst shares with
4810                  * another vma. So page_count of ptep page is checked instead
4811                  * to reliably determine whether pte is shared.
4812                  */
4813                 if (page_count(virt_to_page(dst_pte)) > 1) {
4814                         addr |= last_addr_mask;
4815                         continue;
4816                 }
4817
4818                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4819                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4820                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4821                 entry = huge_ptep_get(src_pte);
4822 again:
4823                 if (huge_pte_none(entry)) {
4824                         /*
4825                          * Skip if src entry none.
4826                          */
4827                         ;
4828                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4829                         bool uffd_wp = huge_pte_uffd_wp(entry);
4830
4831                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4832                                 entry = huge_pte_clear_uffd_wp(entry);
4833                         set_huge_pte_at(dst, addr, dst_pte, entry);
4834                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4835                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4836                         bool uffd_wp = huge_pte_uffd_wp(entry);
4837
4838                         if (!is_readable_migration_entry(swp_entry) && cow) {
4839                                 /*
4840                                  * COW mappings require pages in both
4841                                  * parent and child to be set to read.
4842                                  */
4843                                 swp_entry = make_readable_migration_entry(
4844                                                         swp_offset(swp_entry));
4845                                 entry = swp_entry_to_pte(swp_entry);
4846                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4847                                         entry = huge_pte_mkuffd_wp(entry);
4848                                 set_huge_pte_at(src, addr, src_pte, entry);
4849                         }
4850                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4851                                 entry = huge_pte_clear_uffd_wp(entry);
4852                         set_huge_pte_at(dst, addr, dst_pte, entry);
4853                 } else if (unlikely(is_pte_marker(entry))) {
4854                         /*
4855                          * We copy the pte marker only if the dst vma has
4856                          * uffd-wp enabled.
4857                          */
4858                         if (userfaultfd_wp(dst_vma))
4859                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4860                 } else {
4861                         entry = huge_ptep_get(src_pte);
4862                         ptepage = pte_page(entry);
4863                         get_page(ptepage);
4864
4865                         /*
4866                          * Failing to duplicate the anon rmap is a rare case
4867                          * where we see pinned hugetlb pages while they're
4868                          * prone to COW. We need to do the COW earlier during
4869                          * fork.
4870                          *
4871                          * When pre-allocating the page or copying data, we
4872                          * need to be without the pgtable locks since we could
4873                          * sleep during the process.
4874                          */
4875                         if (!PageAnon(ptepage)) {
4876                                 page_dup_file_rmap(ptepage, true);
4877                         } else if (page_try_dup_anon_rmap(ptepage, true,
4878                                                           src_vma)) {
4879                                 pte_t src_pte_old = entry;
4880                                 struct page *new;
4881
4882                                 spin_unlock(src_ptl);
4883                                 spin_unlock(dst_ptl);
4884                                 /* Do not use reserve as it's private owned */
4885                                 new = alloc_huge_page(dst_vma, addr, 1);
4886                                 if (IS_ERR(new)) {
4887                                         put_page(ptepage);
4888                                         ret = PTR_ERR(new);
4889                                         break;
4890                                 }
4891                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4892                                                     npages);
4893                                 put_page(ptepage);
4894
4895                                 /* Install the new huge page if src pte stable */
4896                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4897                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4898                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4899                                 entry = huge_ptep_get(src_pte);
4900                                 if (!pte_same(src_pte_old, entry)) {
4901                                         restore_reserve_on_error(h, dst_vma, addr,
4902                                                                 new);
4903                                         put_page(new);
4904                                         /* huge_ptep of dst_pte won't change as in child */
4905                                         goto again;
4906                                 }
4907                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4908                                 spin_unlock(src_ptl);
4909                                 spin_unlock(dst_ptl);
4910                                 continue;
4911                         }
4912
4913                         if (cow) {
4914                                 /*
4915                                  * No need to notify as we are downgrading page
4916                                  * table protection not changing it to point
4917                                  * to a new page.
4918                                  *
4919                                  * See Documentation/mm/mmu_notifier.rst
4920                                  */
4921                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4922                                 entry = huge_pte_wrprotect(entry);
4923                         }
4924
4925                         set_huge_pte_at(dst, addr, dst_pte, entry);
4926                         hugetlb_count_add(npages, dst);
4927                 }
4928                 spin_unlock(src_ptl);
4929                 spin_unlock(dst_ptl);
4930         }
4931
4932         if (cow) {
4933                 raw_write_seqcount_end(&src->write_protect_seq);
4934                 mmu_notifier_invalidate_range_end(&range);
4935         } else {
4936                 i_mmap_unlock_read(mapping);
4937         }
4938
4939         return ret;
4940 }
4941
4942 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4943                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4944 {
4945         struct hstate *h = hstate_vma(vma);
4946         struct mm_struct *mm = vma->vm_mm;
4947         spinlock_t *src_ptl, *dst_ptl;
4948         pte_t pte;
4949
4950         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4951         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4952
4953         /*
4954          * We don't have to worry about the ordering of src and dst ptlocks
4955          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4956          */
4957         if (src_ptl != dst_ptl)
4958                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4959
4960         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4961         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4962
4963         if (src_ptl != dst_ptl)
4964                 spin_unlock(src_ptl);
4965         spin_unlock(dst_ptl);
4966 }
4967
4968 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4969                              struct vm_area_struct *new_vma,
4970                              unsigned long old_addr, unsigned long new_addr,
4971                              unsigned long len)
4972 {
4973         struct hstate *h = hstate_vma(vma);
4974         struct address_space *mapping = vma->vm_file->f_mapping;
4975         unsigned long sz = huge_page_size(h);
4976         struct mm_struct *mm = vma->vm_mm;
4977         unsigned long old_end = old_addr + len;
4978         unsigned long last_addr_mask;
4979         pte_t *src_pte, *dst_pte;
4980         struct mmu_notifier_range range;
4981         bool shared_pmd = false;
4982
4983         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4984                                 old_end);
4985         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4986         /*
4987          * In case of shared PMDs, we should cover the maximum possible
4988          * range.
4989          */
4990         flush_cache_range(vma, range.start, range.end);
4991
4992         mmu_notifier_invalidate_range_start(&range);
4993         last_addr_mask = hugetlb_mask_last_page(h);
4994         /* Prevent race with file truncation */
4995         i_mmap_lock_write(mapping);
4996         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4997                 src_pte = huge_pte_offset(mm, old_addr, sz);
4998                 if (!src_pte) {
4999                         old_addr |= last_addr_mask;
5000                         new_addr |= last_addr_mask;
5001                         continue;
5002                 }
5003                 if (huge_pte_none(huge_ptep_get(src_pte)))
5004                         continue;
5005
5006                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5007                         shared_pmd = true;
5008                         old_addr |= last_addr_mask;
5009                         new_addr |= last_addr_mask;
5010                         continue;
5011                 }
5012
5013                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5014                 if (!dst_pte)
5015                         break;
5016
5017                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5018         }
5019
5020         if (shared_pmd)
5021                 flush_tlb_range(vma, range.start, range.end);
5022         else
5023                 flush_tlb_range(vma, old_end - len, old_end);
5024         mmu_notifier_invalidate_range_end(&range);
5025         i_mmap_unlock_write(mapping);
5026
5027         return len + old_addr - old_end;
5028 }
5029
5030 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5031                                    unsigned long start, unsigned long end,
5032                                    struct page *ref_page, zap_flags_t zap_flags)
5033 {
5034         struct mm_struct *mm = vma->vm_mm;
5035         unsigned long address;
5036         pte_t *ptep;
5037         pte_t pte;
5038         spinlock_t *ptl;
5039         struct page *page;
5040         struct hstate *h = hstate_vma(vma);
5041         unsigned long sz = huge_page_size(h);
5042         struct mmu_notifier_range range;
5043         unsigned long last_addr_mask;
5044         bool force_flush = false;
5045
5046         WARN_ON(!is_vm_hugetlb_page(vma));
5047         BUG_ON(start & ~huge_page_mask(h));
5048         BUG_ON(end & ~huge_page_mask(h));
5049
5050         /*
5051          * This is a hugetlb vma, all the pte entries should point
5052          * to huge page.
5053          */
5054         tlb_change_page_size(tlb, sz);
5055         tlb_start_vma(tlb, vma);
5056
5057         /*
5058          * If sharing possible, alert mmu notifiers of worst case.
5059          */
5060         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5061                                 end);
5062         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5063         mmu_notifier_invalidate_range_start(&range);
5064         last_addr_mask = hugetlb_mask_last_page(h);
5065         address = start;
5066         for (; address < end; address += sz) {
5067                 ptep = huge_pte_offset(mm, address, sz);
5068                 if (!ptep) {
5069                         address |= last_addr_mask;
5070                         continue;
5071                 }
5072
5073                 ptl = huge_pte_lock(h, mm, ptep);
5074                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5075                         spin_unlock(ptl);
5076                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5077                         force_flush = true;
5078                         address |= last_addr_mask;
5079                         continue;
5080                 }
5081
5082                 pte = huge_ptep_get(ptep);
5083                 if (huge_pte_none(pte)) {
5084                         spin_unlock(ptl);
5085                         continue;
5086                 }
5087
5088                 /*
5089                  * Migrating hugepage or HWPoisoned hugepage is already
5090                  * unmapped and its refcount is dropped, so just clear pte here.
5091                  */
5092                 if (unlikely(!pte_present(pte))) {
5093                         /*
5094                          * If the pte was wr-protected by uffd-wp in any of the
5095                          * swap forms, meanwhile the caller does not want to
5096                          * drop the uffd-wp bit in this zap, then replace the
5097                          * pte with a marker.
5098                          */
5099                         if (pte_swp_uffd_wp_any(pte) &&
5100                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5101                                 set_huge_pte_at(mm, address, ptep,
5102                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5103                         else
5104                                 huge_pte_clear(mm, address, ptep, sz);
5105                         spin_unlock(ptl);
5106                         continue;
5107                 }
5108
5109                 page = pte_page(pte);
5110                 /*
5111                  * If a reference page is supplied, it is because a specific
5112                  * page is being unmapped, not a range. Ensure the page we
5113                  * are about to unmap is the actual page of interest.
5114                  */
5115                 if (ref_page) {
5116                         if (page != ref_page) {
5117                                 spin_unlock(ptl);
5118                                 continue;
5119                         }
5120                         /*
5121                          * Mark the VMA as having unmapped its page so that
5122                          * future faults in this VMA will fail rather than
5123                          * looking like data was lost
5124                          */
5125                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5126                 }
5127
5128                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5129                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5130                 if (huge_pte_dirty(pte))
5131                         set_page_dirty(page);
5132                 /* Leave a uffd-wp pte marker if needed */
5133                 if (huge_pte_uffd_wp(pte) &&
5134                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5135                         set_huge_pte_at(mm, address, ptep,
5136                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5137                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5138                 page_remove_rmap(page, vma, true);
5139
5140                 spin_unlock(ptl);
5141                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5142                 /*
5143                  * Bail out after unmapping reference page if supplied
5144                  */
5145                 if (ref_page)
5146                         break;
5147         }
5148         mmu_notifier_invalidate_range_end(&range);
5149         tlb_end_vma(tlb, vma);
5150
5151         /*
5152          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5153          * could defer the flush until now, since by holding i_mmap_rwsem we
5154          * guaranteed that the last refernece would not be dropped. But we must
5155          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5156          * dropped and the last reference to the shared PMDs page might be
5157          * dropped as well.
5158          *
5159          * In theory we could defer the freeing of the PMD pages as well, but
5160          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5161          * detect sharing, so we cannot defer the release of the page either.
5162          * Instead, do flush now.
5163          */
5164         if (force_flush)
5165                 tlb_flush_mmu_tlbonly(tlb);
5166 }
5167
5168 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5169                           struct vm_area_struct *vma, unsigned long start,
5170                           unsigned long end, struct page *ref_page,
5171                           zap_flags_t zap_flags)
5172 {
5173         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5174
5175         /*
5176          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5177          * test will fail on a vma being torn down, and not grab a page table
5178          * on its way out.  We're lucky that the flag has such an appropriate
5179          * name, and can in fact be safely cleared here. We could clear it
5180          * before the __unmap_hugepage_range above, but all that's necessary
5181          * is to clear it before releasing the i_mmap_rwsem. This works
5182          * because in the context this is called, the VMA is about to be
5183          * destroyed and the i_mmap_rwsem is held.
5184          */
5185         vma->vm_flags &= ~VM_MAYSHARE;
5186 }
5187
5188 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5189                           unsigned long end, struct page *ref_page,
5190                           zap_flags_t zap_flags)
5191 {
5192         struct mmu_gather tlb;
5193
5194         tlb_gather_mmu(&tlb, vma->vm_mm);
5195         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5196         tlb_finish_mmu(&tlb);
5197 }
5198
5199 /*
5200  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5201  * mapping it owns the reserve page for. The intention is to unmap the page
5202  * from other VMAs and let the children be SIGKILLed if they are faulting the
5203  * same region.
5204  */
5205 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5206                               struct page *page, unsigned long address)
5207 {
5208         struct hstate *h = hstate_vma(vma);
5209         struct vm_area_struct *iter_vma;
5210         struct address_space *mapping;
5211         pgoff_t pgoff;
5212
5213         /*
5214          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5215          * from page cache lookup which is in HPAGE_SIZE units.
5216          */
5217         address = address & huge_page_mask(h);
5218         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5219                         vma->vm_pgoff;
5220         mapping = vma->vm_file->f_mapping;
5221
5222         /*
5223          * Take the mapping lock for the duration of the table walk. As
5224          * this mapping should be shared between all the VMAs,
5225          * __unmap_hugepage_range() is called as the lock is already held
5226          */
5227         i_mmap_lock_write(mapping);
5228         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5229                 /* Do not unmap the current VMA */
5230                 if (iter_vma == vma)
5231                         continue;
5232
5233                 /*
5234                  * Shared VMAs have their own reserves and do not affect
5235                  * MAP_PRIVATE accounting but it is possible that a shared
5236                  * VMA is using the same page so check and skip such VMAs.
5237                  */
5238                 if (iter_vma->vm_flags & VM_MAYSHARE)
5239                         continue;
5240
5241                 /*
5242                  * Unmap the page from other VMAs without their own reserves.
5243                  * They get marked to be SIGKILLed if they fault in these
5244                  * areas. This is because a future no-page fault on this VMA
5245                  * could insert a zeroed page instead of the data existing
5246                  * from the time of fork. This would look like data corruption
5247                  */
5248                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5249                         unmap_hugepage_range(iter_vma, address,
5250                                              address + huge_page_size(h), page, 0);
5251         }
5252         i_mmap_unlock_write(mapping);
5253 }
5254
5255 /*
5256  * hugetlb_wp() should be called with page lock of the original hugepage held.
5257  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5258  * cannot race with other handlers or page migration.
5259  * Keep the pte_same checks anyway to make transition from the mutex easier.
5260  */
5261 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5262                        unsigned long address, pte_t *ptep, unsigned int flags,
5263                        struct page *pagecache_page, spinlock_t *ptl)
5264 {
5265         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5266         pte_t pte;
5267         struct hstate *h = hstate_vma(vma);
5268         struct page *old_page, *new_page;
5269         int outside_reserve = 0;
5270         vm_fault_t ret = 0;
5271         unsigned long haddr = address & huge_page_mask(h);
5272         struct mmu_notifier_range range;
5273
5274         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5275         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5276
5277         /*
5278          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5279          * PTE mapped R/O such as maybe_mkwrite() would do.
5280          */
5281         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5282                 return VM_FAULT_SIGSEGV;
5283
5284         /* Let's take out MAP_SHARED mappings first. */
5285         if (vma->vm_flags & VM_MAYSHARE) {
5286                 if (unlikely(unshare))
5287                         return 0;
5288                 set_huge_ptep_writable(vma, haddr, ptep);
5289                 return 0;
5290         }
5291
5292         pte = huge_ptep_get(ptep);
5293         old_page = pte_page(pte);
5294
5295         delayacct_wpcopy_start();
5296
5297 retry_avoidcopy:
5298         /*
5299          * If no-one else is actually using this page, we're the exclusive
5300          * owner and can reuse this page.
5301          */
5302         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5303                 if (!PageAnonExclusive(old_page))
5304                         page_move_anon_rmap(old_page, vma);
5305                 if (likely(!unshare))
5306                         set_huge_ptep_writable(vma, haddr, ptep);
5307
5308                 delayacct_wpcopy_end();
5309                 return 0;
5310         }
5311         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5312                        old_page);
5313
5314         /*
5315          * If the process that created a MAP_PRIVATE mapping is about to
5316          * perform a COW due to a shared page count, attempt to satisfy
5317          * the allocation without using the existing reserves. The pagecache
5318          * page is used to determine if the reserve at this address was
5319          * consumed or not. If reserves were used, a partial faulted mapping
5320          * at the time of fork() could consume its reserves on COW instead
5321          * of the full address range.
5322          */
5323         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5324                         old_page != pagecache_page)
5325                 outside_reserve = 1;
5326
5327         get_page(old_page);
5328
5329         /*
5330          * Drop page table lock as buddy allocator may be called. It will
5331          * be acquired again before returning to the caller, as expected.
5332          */
5333         spin_unlock(ptl);
5334         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5335
5336         if (IS_ERR(new_page)) {
5337                 /*
5338                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5339                  * it is due to references held by a child and an insufficient
5340                  * huge page pool. To guarantee the original mappers
5341                  * reliability, unmap the page from child processes. The child
5342                  * may get SIGKILLed if it later faults.
5343                  */
5344                 if (outside_reserve) {
5345                         struct address_space *mapping = vma->vm_file->f_mapping;
5346                         pgoff_t idx;
5347                         u32 hash;
5348
5349                         put_page(old_page);
5350                         /*
5351                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5352                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5353                          * in write mode.  Dropping i_mmap_rwsem in read mode
5354                          * here is OK as COW mappings do not interact with
5355                          * PMD sharing.
5356                          *
5357                          * Reacquire both after unmap operation.
5358                          */
5359                         idx = vma_hugecache_offset(h, vma, haddr);
5360                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5361                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5362                         i_mmap_unlock_read(mapping);
5363
5364                         unmap_ref_private(mm, vma, old_page, haddr);
5365
5366                         i_mmap_lock_read(mapping);
5367                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5368                         spin_lock(ptl);
5369                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5370                         if (likely(ptep &&
5371                                    pte_same(huge_ptep_get(ptep), pte)))
5372                                 goto retry_avoidcopy;
5373                         /*
5374                          * race occurs while re-acquiring page table
5375                          * lock, and our job is done.
5376                          */
5377                         delayacct_wpcopy_end();
5378                         return 0;
5379                 }
5380
5381                 ret = vmf_error(PTR_ERR(new_page));
5382                 goto out_release_old;
5383         }
5384
5385         /*
5386          * When the original hugepage is shared one, it does not have
5387          * anon_vma prepared.
5388          */
5389         if (unlikely(anon_vma_prepare(vma))) {
5390                 ret = VM_FAULT_OOM;
5391                 goto out_release_all;
5392         }
5393
5394         copy_user_huge_page(new_page, old_page, address, vma,
5395                             pages_per_huge_page(h));
5396         __SetPageUptodate(new_page);
5397
5398         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5399                                 haddr + huge_page_size(h));
5400         mmu_notifier_invalidate_range_start(&range);
5401
5402         /*
5403          * Retake the page table lock to check for racing updates
5404          * before the page tables are altered
5405          */
5406         spin_lock(ptl);
5407         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5408         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5409                 ClearHPageRestoreReserve(new_page);
5410
5411                 /* Break COW or unshare */
5412                 huge_ptep_clear_flush(vma, haddr, ptep);
5413                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5414                 page_remove_rmap(old_page, vma, true);
5415                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5416                 set_huge_pte_at(mm, haddr, ptep,
5417                                 make_huge_pte(vma, new_page, !unshare));
5418                 SetHPageMigratable(new_page);
5419                 /* Make the old page be freed below */
5420                 new_page = old_page;
5421         }
5422         spin_unlock(ptl);
5423         mmu_notifier_invalidate_range_end(&range);
5424 out_release_all:
5425         /*
5426          * No restore in case of successful pagetable update (Break COW or
5427          * unshare)
5428          */
5429         if (new_page != old_page)
5430                 restore_reserve_on_error(h, vma, haddr, new_page);
5431         put_page(new_page);
5432 out_release_old:
5433         put_page(old_page);
5434
5435         spin_lock(ptl); /* Caller expects lock to be held */
5436
5437         delayacct_wpcopy_end();
5438         return ret;
5439 }
5440
5441 /*
5442  * Return whether there is a pagecache page to back given address within VMA.
5443  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5444  */
5445 static bool hugetlbfs_pagecache_present(struct hstate *h,
5446                         struct vm_area_struct *vma, unsigned long address)
5447 {
5448         struct address_space *mapping;
5449         pgoff_t idx;
5450         struct page *page;
5451
5452         mapping = vma->vm_file->f_mapping;
5453         idx = vma_hugecache_offset(h, vma, address);
5454
5455         page = find_get_page(mapping, idx);
5456         if (page)
5457                 put_page(page);
5458         return page != NULL;
5459 }
5460
5461 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5462                            pgoff_t idx)
5463 {
5464         struct folio *folio = page_folio(page);
5465         struct inode *inode = mapping->host;
5466         struct hstate *h = hstate_inode(inode);
5467         int err;
5468
5469         __folio_set_locked(folio);
5470         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5471
5472         if (unlikely(err)) {
5473                 __folio_clear_locked(folio);
5474                 return err;
5475         }
5476         ClearHPageRestoreReserve(page);
5477
5478         /*
5479          * mark folio dirty so that it will not be removed from cache/file
5480          * by non-hugetlbfs specific code paths.
5481          */
5482         folio_mark_dirty(folio);
5483
5484         spin_lock(&inode->i_lock);
5485         inode->i_blocks += blocks_per_huge_page(h);
5486         spin_unlock(&inode->i_lock);
5487         return 0;
5488 }
5489
5490 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5491                                                   struct address_space *mapping,
5492                                                   pgoff_t idx,
5493                                                   unsigned int flags,
5494                                                   unsigned long haddr,
5495                                                   unsigned long addr,
5496                                                   unsigned long reason)
5497 {
5498         vm_fault_t ret;
5499         u32 hash;
5500         struct vm_fault vmf = {
5501                 .vma = vma,
5502                 .address = haddr,
5503                 .real_address = addr,
5504                 .flags = flags,
5505
5506                 /*
5507                  * Hard to debug if it ends up being
5508                  * used by a callee that assumes
5509                  * something about the other
5510                  * uninitialized fields... same as in
5511                  * memory.c
5512                  */
5513         };
5514
5515         /*
5516          * hugetlb_fault_mutex and i_mmap_rwsem must be
5517          * dropped before handling userfault.  Reacquire
5518          * after handling fault to make calling code simpler.
5519          */
5520         hash = hugetlb_fault_mutex_hash(mapping, idx);
5521         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5522         i_mmap_unlock_read(mapping);
5523         ret = handle_userfault(&vmf, reason);
5524         i_mmap_lock_read(mapping);
5525         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5526
5527         return ret;
5528 }
5529
5530 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5531                         struct vm_area_struct *vma,
5532                         struct address_space *mapping, pgoff_t idx,
5533                         unsigned long address, pte_t *ptep,
5534                         pte_t old_pte, unsigned int flags)
5535 {
5536         struct hstate *h = hstate_vma(vma);
5537         vm_fault_t ret = VM_FAULT_SIGBUS;
5538         int anon_rmap = 0;
5539         unsigned long size;
5540         struct page *page;
5541         pte_t new_pte;
5542         spinlock_t *ptl;
5543         unsigned long haddr = address & huge_page_mask(h);
5544         bool new_page, new_pagecache_page = false;
5545
5546         /*
5547          * Currently, we are forced to kill the process in the event the
5548          * original mapper has unmapped pages from the child due to a failed
5549          * COW/unsharing. Warn that such a situation has occurred as it may not
5550          * be obvious.
5551          */
5552         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5553                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5554                            current->pid);
5555                 return ret;
5556         }
5557
5558         /*
5559          * We can not race with truncation due to holding i_mmap_rwsem.
5560          * i_size is modified when holding i_mmap_rwsem, so check here
5561          * once for faults beyond end of file.
5562          */
5563         size = i_size_read(mapping->host) >> huge_page_shift(h);
5564         if (idx >= size)
5565                 goto out;
5566
5567         new_page = false;
5568         page = find_lock_page(mapping, idx);
5569         if (!page) {
5570                 /* Check for page in userfault range */
5571                 if (userfaultfd_missing(vma)) {
5572                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5573                                                        flags, haddr, address,
5574                                                        VM_UFFD_MISSING);
5575                         goto out;
5576                 }
5577
5578                 page = alloc_huge_page(vma, haddr, 0);
5579                 if (IS_ERR(page)) {
5580                         /*
5581                          * Returning error will result in faulting task being
5582                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5583                          * tasks from racing to fault in the same page which
5584                          * could result in false unable to allocate errors.
5585                          * Page migration does not take the fault mutex, but
5586                          * does a clear then write of pte's under page table
5587                          * lock.  Page fault code could race with migration,
5588                          * notice the clear pte and try to allocate a page
5589                          * here.  Before returning error, get ptl and make
5590                          * sure there really is no pte entry.
5591                          */
5592                         ptl = huge_pte_lock(h, mm, ptep);
5593                         ret = 0;
5594                         if (huge_pte_none(huge_ptep_get(ptep)))
5595                                 ret = vmf_error(PTR_ERR(page));
5596                         spin_unlock(ptl);
5597                         goto out;
5598                 }
5599                 clear_huge_page(page, address, pages_per_huge_page(h));
5600                 __SetPageUptodate(page);
5601                 new_page = true;
5602
5603                 if (vma->vm_flags & VM_MAYSHARE) {
5604                         int err = huge_add_to_page_cache(page, mapping, idx);
5605                         if (err) {
5606                                 /*
5607                                  * err can't be -EEXIST which implies someone
5608                                  * else consumed the reservation since hugetlb
5609                                  * fault mutex is held when add a hugetlb page
5610                                  * to the page cache. So it's safe to call
5611                                  * restore_reserve_on_error() here.
5612                                  */
5613                                 restore_reserve_on_error(h, vma, haddr, page);
5614                                 put_page(page);
5615                                 goto out;
5616                         }
5617                         new_pagecache_page = true;
5618                 } else {
5619                         lock_page(page);
5620                         if (unlikely(anon_vma_prepare(vma))) {
5621                                 ret = VM_FAULT_OOM;
5622                                 goto backout_unlocked;
5623                         }
5624                         anon_rmap = 1;
5625                 }
5626         } else {
5627                 /*
5628                  * If memory error occurs between mmap() and fault, some process
5629                  * don't have hwpoisoned swap entry for errored virtual address.
5630                  * So we need to block hugepage fault by PG_hwpoison bit check.
5631                  */
5632                 if (unlikely(PageHWPoison(page))) {
5633                         ret = VM_FAULT_HWPOISON_LARGE |
5634                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5635                         goto backout_unlocked;
5636                 }
5637
5638                 /* Check for page in userfault range. */
5639                 if (userfaultfd_minor(vma)) {
5640                         unlock_page(page);
5641                         put_page(page);
5642                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5643                                                        flags, haddr, address,
5644                                                        VM_UFFD_MINOR);
5645                         goto out;
5646                 }
5647         }
5648
5649         /*
5650          * If we are going to COW a private mapping later, we examine the
5651          * pending reservations for this page now. This will ensure that
5652          * any allocations necessary to record that reservation occur outside
5653          * the spinlock.
5654          */
5655         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5656                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5657                         ret = VM_FAULT_OOM;
5658                         goto backout_unlocked;
5659                 }
5660                 /* Just decrements count, does not deallocate */
5661                 vma_end_reservation(h, vma, haddr);
5662         }
5663
5664         ptl = huge_pte_lock(h, mm, ptep);
5665         ret = 0;
5666         /* If pte changed from under us, retry */
5667         if (!pte_same(huge_ptep_get(ptep), old_pte))
5668                 goto backout;
5669
5670         if (anon_rmap) {
5671                 ClearHPageRestoreReserve(page);
5672                 hugepage_add_new_anon_rmap(page, vma, haddr);
5673         } else
5674                 page_dup_file_rmap(page, true);
5675         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5676                                 && (vma->vm_flags & VM_SHARED)));
5677         /*
5678          * If this pte was previously wr-protected, keep it wr-protected even
5679          * if populated.
5680          */
5681         if (unlikely(pte_marker_uffd_wp(old_pte)))
5682                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5683         set_huge_pte_at(mm, haddr, ptep, new_pte);
5684
5685         hugetlb_count_add(pages_per_huge_page(h), mm);
5686         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5687                 /* Optimization, do the COW without a second fault */
5688                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5689         }
5690
5691         spin_unlock(ptl);
5692
5693         /*
5694          * Only set HPageMigratable in newly allocated pages.  Existing pages
5695          * found in the pagecache may not have HPageMigratableset if they have
5696          * been isolated for migration.
5697          */
5698         if (new_page)
5699                 SetHPageMigratable(page);
5700
5701         unlock_page(page);
5702 out:
5703         return ret;
5704
5705 backout:
5706         spin_unlock(ptl);
5707 backout_unlocked:
5708         unlock_page(page);
5709         /* restore reserve for newly allocated pages not in page cache */
5710         if (new_page && !new_pagecache_page)
5711                 restore_reserve_on_error(h, vma, haddr, page);
5712         put_page(page);
5713         goto out;
5714 }
5715
5716 #ifdef CONFIG_SMP
5717 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5718 {
5719         unsigned long key[2];
5720         u32 hash;
5721
5722         key[0] = (unsigned long) mapping;
5723         key[1] = idx;
5724
5725         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5726
5727         return hash & (num_fault_mutexes - 1);
5728 }
5729 #else
5730 /*
5731  * For uniprocessor systems we always use a single mutex, so just
5732  * return 0 and avoid the hashing overhead.
5733  */
5734 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5735 {
5736         return 0;
5737 }
5738 #endif
5739
5740 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5741                         unsigned long address, unsigned int flags)
5742 {
5743         pte_t *ptep, entry;
5744         spinlock_t *ptl;
5745         vm_fault_t ret;
5746         u32 hash;
5747         pgoff_t idx;
5748         struct page *page = NULL;
5749         struct page *pagecache_page = NULL;
5750         struct hstate *h = hstate_vma(vma);
5751         struct address_space *mapping;
5752         int need_wait_lock = 0;
5753         unsigned long haddr = address & huge_page_mask(h);
5754
5755         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5756         if (ptep) {
5757                 /*
5758                  * Since we hold no locks, ptep could be stale.  That is
5759                  * OK as we are only making decisions based on content and
5760                  * not actually modifying content here.
5761                  */
5762                 entry = huge_ptep_get(ptep);
5763                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5764                         migration_entry_wait_huge(vma, ptep);
5765                         return 0;
5766                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5767                         return VM_FAULT_HWPOISON_LARGE |
5768                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5769         }
5770
5771         /*
5772          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5773          * until finished with ptep.  This serves two purposes:
5774          * 1) It prevents huge_pmd_unshare from being called elsewhere
5775          *    and making the ptep no longer valid.
5776          * 2) It synchronizes us with i_size modifications during truncation.
5777          *
5778          * ptep could have already be assigned via huge_pte_offset.  That
5779          * is OK, as huge_pte_alloc will return the same value unless
5780          * something has changed.
5781          */
5782         mapping = vma->vm_file->f_mapping;
5783         i_mmap_lock_read(mapping);
5784         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5785         if (!ptep) {
5786                 i_mmap_unlock_read(mapping);
5787                 return VM_FAULT_OOM;
5788         }
5789
5790         /*
5791          * Serialize hugepage allocation and instantiation, so that we don't
5792          * get spurious allocation failures if two CPUs race to instantiate
5793          * the same page in the page cache.
5794          */
5795         idx = vma_hugecache_offset(h, vma, haddr);
5796         hash = hugetlb_fault_mutex_hash(mapping, idx);
5797         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5798
5799         entry = huge_ptep_get(ptep);
5800         /* PTE markers should be handled the same way as none pte */
5801         if (huge_pte_none_mostly(entry)) {
5802                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5803                                       entry, flags);
5804                 goto out_mutex;
5805         }
5806
5807         ret = 0;
5808
5809         /*
5810          * entry could be a migration/hwpoison entry at this point, so this
5811          * check prevents the kernel from going below assuming that we have
5812          * an active hugepage in pagecache. This goto expects the 2nd page
5813          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5814          * properly handle it.
5815          */
5816         if (!pte_present(entry))
5817                 goto out_mutex;
5818
5819         /*
5820          * If we are going to COW/unshare the mapping later, we examine the
5821          * pending reservations for this page now. This will ensure that any
5822          * allocations necessary to record that reservation occur outside the
5823          * spinlock. Also lookup the pagecache page now as it is used to
5824          * determine if a reservation has been consumed.
5825          */
5826         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5827             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5828                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5829                         ret = VM_FAULT_OOM;
5830                         goto out_mutex;
5831                 }
5832                 /* Just decrements count, does not deallocate */
5833                 vma_end_reservation(h, vma, haddr);
5834
5835                 pagecache_page = find_lock_page(mapping, idx);
5836         }
5837
5838         ptl = huge_pte_lock(h, mm, ptep);
5839
5840         /* Check for a racing update before calling hugetlb_wp() */
5841         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5842                 goto out_ptl;
5843
5844         /* Handle userfault-wp first, before trying to lock more pages */
5845         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5846             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5847                 struct vm_fault vmf = {
5848                         .vma = vma,
5849                         .address = haddr,
5850                         .real_address = address,
5851                         .flags = flags,
5852                 };
5853
5854                 spin_unlock(ptl);
5855                 if (pagecache_page) {
5856                         unlock_page(pagecache_page);
5857                         put_page(pagecache_page);
5858                 }
5859                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5860                 i_mmap_unlock_read(mapping);
5861                 return handle_userfault(&vmf, VM_UFFD_WP);
5862         }
5863
5864         /*
5865          * hugetlb_wp() requires page locks of pte_page(entry) and
5866          * pagecache_page, so here we need take the former one
5867          * when page != pagecache_page or !pagecache_page.
5868          */
5869         page = pte_page(entry);
5870         if (page != pagecache_page)
5871                 if (!trylock_page(page)) {
5872                         need_wait_lock = 1;
5873                         goto out_ptl;
5874                 }
5875
5876         get_page(page);
5877
5878         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5879                 if (!huge_pte_write(entry)) {
5880                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5881                                          pagecache_page, ptl);
5882                         goto out_put_page;
5883                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5884                         entry = huge_pte_mkdirty(entry);
5885                 }
5886         }
5887         entry = pte_mkyoung(entry);
5888         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5889                                                 flags & FAULT_FLAG_WRITE))
5890                 update_mmu_cache(vma, haddr, ptep);
5891 out_put_page:
5892         if (page != pagecache_page)
5893                 unlock_page(page);
5894         put_page(page);
5895 out_ptl:
5896         spin_unlock(ptl);
5897
5898         if (pagecache_page) {
5899                 unlock_page(pagecache_page);
5900                 put_page(pagecache_page);
5901         }
5902 out_mutex:
5903         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5904         i_mmap_unlock_read(mapping);
5905         /*
5906          * Generally it's safe to hold refcount during waiting page lock. But
5907          * here we just wait to defer the next page fault to avoid busy loop and
5908          * the page is not used after unlocked before returning from the current
5909          * page fault. So we are safe from accessing freed page, even if we wait
5910          * here without taking refcount.
5911          */
5912         if (need_wait_lock)
5913                 wait_on_page_locked(page);
5914         return ret;
5915 }
5916
5917 #ifdef CONFIG_USERFAULTFD
5918 /*
5919  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5920  * modifications for huge pages.
5921  */
5922 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5923                             pte_t *dst_pte,
5924                             struct vm_area_struct *dst_vma,
5925                             unsigned long dst_addr,
5926                             unsigned long src_addr,
5927                             enum mcopy_atomic_mode mode,
5928                             struct page **pagep,
5929                             bool wp_copy)
5930 {
5931         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5932         struct hstate *h = hstate_vma(dst_vma);
5933         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5934         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5935         unsigned long size;
5936         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5937         pte_t _dst_pte;
5938         spinlock_t *ptl;
5939         int ret = -ENOMEM;
5940         struct page *page;
5941         int writable;
5942         bool page_in_pagecache = false;
5943
5944         if (is_continue) {
5945                 ret = -EFAULT;
5946                 page = find_lock_page(mapping, idx);
5947                 if (!page)
5948                         goto out;
5949                 page_in_pagecache = true;
5950         } else if (!*pagep) {
5951                 /* If a page already exists, then it's UFFDIO_COPY for
5952                  * a non-missing case. Return -EEXIST.
5953                  */
5954                 if (vm_shared &&
5955                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5956                         ret = -EEXIST;
5957                         goto out;
5958                 }
5959
5960                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5961                 if (IS_ERR(page)) {
5962                         ret = -ENOMEM;
5963                         goto out;
5964                 }
5965
5966                 ret = copy_huge_page_from_user(page,
5967                                                 (const void __user *) src_addr,
5968                                                 pages_per_huge_page(h), false);
5969
5970                 /* fallback to copy_from_user outside mmap_lock */
5971                 if (unlikely(ret)) {
5972                         ret = -ENOENT;
5973                         /* Free the allocated page which may have
5974                          * consumed a reservation.
5975                          */
5976                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5977                         put_page(page);
5978
5979                         /* Allocate a temporary page to hold the copied
5980                          * contents.
5981                          */
5982                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5983                         if (!page) {
5984                                 ret = -ENOMEM;
5985                                 goto out;
5986                         }
5987                         *pagep = page;
5988                         /* Set the outparam pagep and return to the caller to
5989                          * copy the contents outside the lock. Don't free the
5990                          * page.
5991                          */
5992                         goto out;
5993                 }
5994         } else {
5995                 if (vm_shared &&
5996                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5997                         put_page(*pagep);
5998                         ret = -EEXIST;
5999                         *pagep = NULL;
6000                         goto out;
6001                 }
6002
6003                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6004                 if (IS_ERR(page)) {
6005                         put_page(*pagep);
6006                         ret = -ENOMEM;
6007                         *pagep = NULL;
6008                         goto out;
6009                 }
6010                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6011                                     pages_per_huge_page(h));
6012                 put_page(*pagep);
6013                 *pagep = NULL;
6014         }
6015
6016         /*
6017          * The memory barrier inside __SetPageUptodate makes sure that
6018          * preceding stores to the page contents become visible before
6019          * the set_pte_at() write.
6020          */
6021         __SetPageUptodate(page);
6022
6023         /* Add shared, newly allocated pages to the page cache. */
6024         if (vm_shared && !is_continue) {
6025                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6026                 ret = -EFAULT;
6027                 if (idx >= size)
6028                         goto out_release_nounlock;
6029
6030                 /*
6031                  * Serialization between remove_inode_hugepages() and
6032                  * huge_add_to_page_cache() below happens through the
6033                  * hugetlb_fault_mutex_table that here must be hold by
6034                  * the caller.
6035                  */
6036                 ret = huge_add_to_page_cache(page, mapping, idx);
6037                 if (ret)
6038                         goto out_release_nounlock;
6039                 page_in_pagecache = true;
6040         }
6041
6042         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6043
6044         /*
6045          * Recheck the i_size after holding PT lock to make sure not
6046          * to leave any page mapped (as page_mapped()) beyond the end
6047          * of the i_size (remove_inode_hugepages() is strict about
6048          * enforcing that). If we bail out here, we'll also leave a
6049          * page in the radix tree in the vm_shared case beyond the end
6050          * of the i_size, but remove_inode_hugepages() will take care
6051          * of it as soon as we drop the hugetlb_fault_mutex_table.
6052          */
6053         size = i_size_read(mapping->host) >> huge_page_shift(h);
6054         ret = -EFAULT;
6055         if (idx >= size)
6056                 goto out_release_unlock;
6057
6058         ret = -EEXIST;
6059         /*
6060          * We allow to overwrite a pte marker: consider when both MISSING|WP
6061          * registered, we firstly wr-protect a none pte which has no page cache
6062          * page backing it, then access the page.
6063          */
6064         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6065                 goto out_release_unlock;
6066
6067         if (page_in_pagecache) {
6068                 page_dup_file_rmap(page, true);
6069         } else {
6070                 ClearHPageRestoreReserve(page);
6071                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6072         }
6073
6074         /*
6075          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6076          * with wp flag set, don't set pte write bit.
6077          */
6078         if (wp_copy || (is_continue && !vm_shared))
6079                 writable = 0;
6080         else
6081                 writable = dst_vma->vm_flags & VM_WRITE;
6082
6083         _dst_pte = make_huge_pte(dst_vma, page, writable);
6084         /*
6085          * Always mark UFFDIO_COPY page dirty; note that this may not be
6086          * extremely important for hugetlbfs for now since swapping is not
6087          * supported, but we should still be clear in that this page cannot be
6088          * thrown away at will, even if write bit not set.
6089          */
6090         _dst_pte = huge_pte_mkdirty(_dst_pte);
6091         _dst_pte = pte_mkyoung(_dst_pte);
6092
6093         if (wp_copy)
6094                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6095
6096         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6097
6098         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6099
6100         /* No need to invalidate - it was non-present before */
6101         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6102
6103         spin_unlock(ptl);
6104         if (!is_continue)
6105                 SetHPageMigratable(page);
6106         if (vm_shared || is_continue)
6107                 unlock_page(page);
6108         ret = 0;
6109 out:
6110         return ret;
6111 out_release_unlock:
6112         spin_unlock(ptl);
6113         if (vm_shared || is_continue)
6114                 unlock_page(page);
6115 out_release_nounlock:
6116         if (!page_in_pagecache)
6117                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6118         put_page(page);
6119         goto out;
6120 }
6121 #endif /* CONFIG_USERFAULTFD */
6122
6123 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6124                                  int refs, struct page **pages,
6125                                  struct vm_area_struct **vmas)
6126 {
6127         int nr;
6128
6129         for (nr = 0; nr < refs; nr++) {
6130                 if (likely(pages))
6131                         pages[nr] = mem_map_offset(page, nr);
6132                 if (vmas)
6133                         vmas[nr] = vma;
6134         }
6135 }
6136
6137 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6138                                                bool *unshare)
6139 {
6140         pte_t pteval = huge_ptep_get(pte);
6141
6142         *unshare = false;
6143         if (is_swap_pte(pteval))
6144                 return true;
6145         if (huge_pte_write(pteval))
6146                 return false;
6147         if (flags & FOLL_WRITE)
6148                 return true;
6149         if (gup_must_unshare(flags, pte_page(pteval))) {
6150                 *unshare = true;
6151                 return true;
6152         }
6153         return false;
6154 }
6155
6156 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6157                          struct page **pages, struct vm_area_struct **vmas,
6158                          unsigned long *position, unsigned long *nr_pages,
6159                          long i, unsigned int flags, int *locked)
6160 {
6161         unsigned long pfn_offset;
6162         unsigned long vaddr = *position;
6163         unsigned long remainder = *nr_pages;
6164         struct hstate *h = hstate_vma(vma);
6165         int err = -EFAULT, refs;
6166
6167         while (vaddr < vma->vm_end && remainder) {
6168                 pte_t *pte;
6169                 spinlock_t *ptl = NULL;
6170                 bool unshare = false;
6171                 int absent;
6172                 struct page *page;
6173
6174                 /*
6175                  * If we have a pending SIGKILL, don't keep faulting pages and
6176                  * potentially allocating memory.
6177                  */
6178                 if (fatal_signal_pending(current)) {
6179                         remainder = 0;
6180                         break;
6181                 }
6182
6183                 /*
6184                  * Some archs (sparc64, sh*) have multiple pte_ts to
6185                  * each hugepage.  We have to make sure we get the
6186                  * first, for the page indexing below to work.
6187                  *
6188                  * Note that page table lock is not held when pte is null.
6189                  */
6190                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6191                                       huge_page_size(h));
6192                 if (pte)
6193                         ptl = huge_pte_lock(h, mm, pte);
6194                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6195
6196                 /*
6197                  * When coredumping, it suits get_dump_page if we just return
6198                  * an error where there's an empty slot with no huge pagecache
6199                  * to back it.  This way, we avoid allocating a hugepage, and
6200                  * the sparse dumpfile avoids allocating disk blocks, but its
6201                  * huge holes still show up with zeroes where they need to be.
6202                  */
6203                 if (absent && (flags & FOLL_DUMP) &&
6204                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6205                         if (pte)
6206                                 spin_unlock(ptl);
6207                         remainder = 0;
6208                         break;
6209                 }
6210
6211                 /*
6212                  * We need call hugetlb_fault for both hugepages under migration
6213                  * (in which case hugetlb_fault waits for the migration,) and
6214                  * hwpoisoned hugepages (in which case we need to prevent the
6215                  * caller from accessing to them.) In order to do this, we use
6216                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6217                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6218                  * both cases, and because we can't follow correct pages
6219                  * directly from any kind of swap entries.
6220                  */
6221                 if (absent ||
6222                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6223                         vm_fault_t ret;
6224                         unsigned int fault_flags = 0;
6225
6226                         if (pte)
6227                                 spin_unlock(ptl);
6228                         if (flags & FOLL_WRITE)
6229                                 fault_flags |= FAULT_FLAG_WRITE;
6230                         else if (unshare)
6231                                 fault_flags |= FAULT_FLAG_UNSHARE;
6232                         if (locked)
6233                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6234                                         FAULT_FLAG_KILLABLE;
6235                         if (flags & FOLL_NOWAIT)
6236                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6237                                         FAULT_FLAG_RETRY_NOWAIT;
6238                         if (flags & FOLL_TRIED) {
6239                                 /*
6240                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6241                                  * FAULT_FLAG_TRIED can co-exist
6242                                  */
6243                                 fault_flags |= FAULT_FLAG_TRIED;
6244                         }
6245                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6246                         if (ret & VM_FAULT_ERROR) {
6247                                 err = vm_fault_to_errno(ret, flags);
6248                                 remainder = 0;
6249                                 break;
6250                         }
6251                         if (ret & VM_FAULT_RETRY) {
6252                                 if (locked &&
6253                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6254                                         *locked = 0;
6255                                 *nr_pages = 0;
6256                                 /*
6257                                  * VM_FAULT_RETRY must not return an
6258                                  * error, it will return zero
6259                                  * instead.
6260                                  *
6261                                  * No need to update "position" as the
6262                                  * caller will not check it after
6263                                  * *nr_pages is set to 0.
6264                                  */
6265                                 return i;
6266                         }
6267                         continue;
6268                 }
6269
6270                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6271                 page = pte_page(huge_ptep_get(pte));
6272
6273                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6274                                !PageAnonExclusive(page), page);
6275
6276                 /*
6277                  * If subpage information not requested, update counters
6278                  * and skip the same_page loop below.
6279                  */
6280                 if (!pages && !vmas && !pfn_offset &&
6281                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6282                     (remainder >= pages_per_huge_page(h))) {
6283                         vaddr += huge_page_size(h);
6284                         remainder -= pages_per_huge_page(h);
6285                         i += pages_per_huge_page(h);
6286                         spin_unlock(ptl);
6287                         continue;
6288                 }
6289
6290                 /* vaddr may not be aligned to PAGE_SIZE */
6291                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6292                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6293
6294                 if (pages || vmas)
6295                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6296                                              vma, refs,
6297                                              likely(pages) ? pages + i : NULL,
6298                                              vmas ? vmas + i : NULL);
6299
6300                 if (pages) {
6301                         /*
6302                          * try_grab_folio() should always succeed here,
6303                          * because: a) we hold the ptl lock, and b) we've just
6304                          * checked that the huge page is present in the page
6305                          * tables. If the huge page is present, then the tail
6306                          * pages must also be present. The ptl prevents the
6307                          * head page and tail pages from being rearranged in
6308                          * any way. So this page must be available at this
6309                          * point, unless the page refcount overflowed:
6310                          */
6311                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6312                                                          flags))) {
6313                                 spin_unlock(ptl);
6314                                 remainder = 0;
6315                                 err = -ENOMEM;
6316                                 break;
6317                         }
6318                 }
6319
6320                 vaddr += (refs << PAGE_SHIFT);
6321                 remainder -= refs;
6322                 i += refs;
6323
6324                 spin_unlock(ptl);
6325         }
6326         *nr_pages = remainder;
6327         /*
6328          * setting position is actually required only if remainder is
6329          * not zero but it's faster not to add a "if (remainder)"
6330          * branch.
6331          */
6332         *position = vaddr;
6333
6334         return i ? i : err;
6335 }
6336
6337 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6338                 unsigned long address, unsigned long end,
6339                 pgprot_t newprot, unsigned long cp_flags)
6340 {
6341         struct mm_struct *mm = vma->vm_mm;
6342         unsigned long start = address;
6343         pte_t *ptep;
6344         pte_t pte;
6345         struct hstate *h = hstate_vma(vma);
6346         unsigned long pages = 0, psize = huge_page_size(h);
6347         bool shared_pmd = false;
6348         struct mmu_notifier_range range;
6349         unsigned long last_addr_mask;
6350         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6351         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6352
6353         /*
6354          * In the case of shared PMDs, the area to flush could be beyond
6355          * start/end.  Set range.start/range.end to cover the maximum possible
6356          * range if PMD sharing is possible.
6357          */
6358         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6359                                 0, vma, mm, start, end);
6360         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6361
6362         BUG_ON(address >= end);
6363         flush_cache_range(vma, range.start, range.end);
6364
6365         mmu_notifier_invalidate_range_start(&range);
6366         last_addr_mask = hugetlb_mask_last_page(h);
6367         i_mmap_lock_write(vma->vm_file->f_mapping);
6368         for (; address < end; address += psize) {
6369                 spinlock_t *ptl;
6370                 ptep = huge_pte_offset(mm, address, psize);
6371                 if (!ptep) {
6372                         address |= last_addr_mask;
6373                         continue;
6374                 }
6375                 ptl = huge_pte_lock(h, mm, ptep);
6376                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6377                         /*
6378                          * When uffd-wp is enabled on the vma, unshare
6379                          * shouldn't happen at all.  Warn about it if it
6380                          * happened due to some reason.
6381                          */
6382                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6383                         pages++;
6384                         spin_unlock(ptl);
6385                         shared_pmd = true;
6386                         address |= last_addr_mask;
6387                         continue;
6388                 }
6389                 pte = huge_ptep_get(ptep);
6390                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6391                         spin_unlock(ptl);
6392                         continue;
6393                 }
6394                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6395                         swp_entry_t entry = pte_to_swp_entry(pte);
6396                         struct page *page = pfn_swap_entry_to_page(entry);
6397
6398                         if (!is_readable_migration_entry(entry)) {
6399                                 pte_t newpte;
6400
6401                                 if (PageAnon(page))
6402                                         entry = make_readable_exclusive_migration_entry(
6403                                                                 swp_offset(entry));
6404                                 else
6405                                         entry = make_readable_migration_entry(
6406                                                                 swp_offset(entry));
6407                                 newpte = swp_entry_to_pte(entry);
6408                                 if (uffd_wp)
6409                                         newpte = pte_swp_mkuffd_wp(newpte);
6410                                 else if (uffd_wp_resolve)
6411                                         newpte = pte_swp_clear_uffd_wp(newpte);
6412                                 set_huge_pte_at(mm, address, ptep, newpte);
6413                                 pages++;
6414                         }
6415                         spin_unlock(ptl);
6416                         continue;
6417                 }
6418                 if (unlikely(pte_marker_uffd_wp(pte))) {
6419                         /*
6420                          * This is changing a non-present pte into a none pte,
6421                          * no need for huge_ptep_modify_prot_start/commit().
6422                          */
6423                         if (uffd_wp_resolve)
6424                                 huge_pte_clear(mm, address, ptep, psize);
6425                 }
6426                 if (!huge_pte_none(pte)) {
6427                         pte_t old_pte;
6428                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6429
6430                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6431                         pte = huge_pte_modify(old_pte, newprot);
6432                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6433                         if (uffd_wp)
6434                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6435                         else if (uffd_wp_resolve)
6436                                 pte = huge_pte_clear_uffd_wp(pte);
6437                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6438                         pages++;
6439                 } else {
6440                         /* None pte */
6441                         if (unlikely(uffd_wp))
6442                                 /* Safe to modify directly (none->non-present). */
6443                                 set_huge_pte_at(mm, address, ptep,
6444                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6445                 }
6446                 spin_unlock(ptl);
6447         }
6448         /*
6449          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6450          * may have cleared our pud entry and done put_page on the page table:
6451          * once we release i_mmap_rwsem, another task can do the final put_page
6452          * and that page table be reused and filled with junk.  If we actually
6453          * did unshare a page of pmds, flush the range corresponding to the pud.
6454          */
6455         if (shared_pmd)
6456                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6457         else
6458                 flush_hugetlb_tlb_range(vma, start, end);
6459         /*
6460          * No need to call mmu_notifier_invalidate_range() we are downgrading
6461          * page table protection not changing it to point to a new page.
6462          *
6463          * See Documentation/mm/mmu_notifier.rst
6464          */
6465         i_mmap_unlock_write(vma->vm_file->f_mapping);
6466         mmu_notifier_invalidate_range_end(&range);
6467
6468         return pages << h->order;
6469 }
6470
6471 /* Return true if reservation was successful, false otherwise.  */
6472 bool hugetlb_reserve_pages(struct inode *inode,
6473                                         long from, long to,
6474                                         struct vm_area_struct *vma,
6475                                         vm_flags_t vm_flags)
6476 {
6477         long chg, add = -1;
6478         struct hstate *h = hstate_inode(inode);
6479         struct hugepage_subpool *spool = subpool_inode(inode);
6480         struct resv_map *resv_map;
6481         struct hugetlb_cgroup *h_cg = NULL;
6482         long gbl_reserve, regions_needed = 0;
6483
6484         /* This should never happen */
6485         if (from > to) {
6486                 VM_WARN(1, "%s called with a negative range\n", __func__);
6487                 return false;
6488         }
6489
6490         /*
6491          * Only apply hugepage reservation if asked. At fault time, an
6492          * attempt will be made for VM_NORESERVE to allocate a page
6493          * without using reserves
6494          */
6495         if (vm_flags & VM_NORESERVE)
6496                 return true;
6497
6498         /*
6499          * Shared mappings base their reservation on the number of pages that
6500          * are already allocated on behalf of the file. Private mappings need
6501          * to reserve the full area even if read-only as mprotect() may be
6502          * called to make the mapping read-write. Assume !vma is a shm mapping
6503          */
6504         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6505                 /*
6506                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6507                  * called for inodes for which resv_maps were created (see
6508                  * hugetlbfs_get_inode).
6509                  */
6510                 resv_map = inode_resv_map(inode);
6511
6512                 chg = region_chg(resv_map, from, to, &regions_needed);
6513
6514         } else {
6515                 /* Private mapping. */
6516                 resv_map = resv_map_alloc();
6517                 if (!resv_map)
6518                         return false;
6519
6520                 chg = to - from;
6521
6522                 set_vma_resv_map(vma, resv_map);
6523                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6524         }
6525
6526         if (chg < 0)
6527                 goto out_err;
6528
6529         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6530                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6531                 goto out_err;
6532
6533         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6534                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6535                  * of the resv_map.
6536                  */
6537                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6538         }
6539
6540         /*
6541          * There must be enough pages in the subpool for the mapping. If
6542          * the subpool has a minimum size, there may be some global
6543          * reservations already in place (gbl_reserve).
6544          */
6545         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6546         if (gbl_reserve < 0)
6547                 goto out_uncharge_cgroup;
6548
6549         /*
6550          * Check enough hugepages are available for the reservation.
6551          * Hand the pages back to the subpool if there are not
6552          */
6553         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6554                 goto out_put_pages;
6555
6556         /*
6557          * Account for the reservations made. Shared mappings record regions
6558          * that have reservations as they are shared by multiple VMAs.
6559          * When the last VMA disappears, the region map says how much
6560          * the reservation was and the page cache tells how much of
6561          * the reservation was consumed. Private mappings are per-VMA and
6562          * only the consumed reservations are tracked. When the VMA
6563          * disappears, the original reservation is the VMA size and the
6564          * consumed reservations are stored in the map. Hence, nothing
6565          * else has to be done for private mappings here
6566          */
6567         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6568                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6569
6570                 if (unlikely(add < 0)) {
6571                         hugetlb_acct_memory(h, -gbl_reserve);
6572                         goto out_put_pages;
6573                 } else if (unlikely(chg > add)) {
6574                         /*
6575                          * pages in this range were added to the reserve
6576                          * map between region_chg and region_add.  This
6577                          * indicates a race with alloc_huge_page.  Adjust
6578                          * the subpool and reserve counts modified above
6579                          * based on the difference.
6580                          */
6581                         long rsv_adjust;
6582
6583                         /*
6584                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6585                          * reference to h_cg->css. See comment below for detail.
6586                          */
6587                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6588                                 hstate_index(h),
6589                                 (chg - add) * pages_per_huge_page(h), h_cg);
6590
6591                         rsv_adjust = hugepage_subpool_put_pages(spool,
6592                                                                 chg - add);
6593                         hugetlb_acct_memory(h, -rsv_adjust);
6594                 } else if (h_cg) {
6595                         /*
6596                          * The file_regions will hold their own reference to
6597                          * h_cg->css. So we should release the reference held
6598                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6599                          * done.
6600                          */
6601                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6602                 }
6603         }
6604         return true;
6605
6606 out_put_pages:
6607         /* put back original number of pages, chg */
6608         (void)hugepage_subpool_put_pages(spool, chg);
6609 out_uncharge_cgroup:
6610         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6611                                             chg * pages_per_huge_page(h), h_cg);
6612 out_err:
6613         if (!vma || vma->vm_flags & VM_MAYSHARE)
6614                 /* Only call region_abort if the region_chg succeeded but the
6615                  * region_add failed or didn't run.
6616                  */
6617                 if (chg >= 0 && add < 0)
6618                         region_abort(resv_map, from, to, regions_needed);
6619         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6620                 kref_put(&resv_map->refs, resv_map_release);
6621         return false;
6622 }
6623
6624 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6625                                                                 long freed)
6626 {
6627         struct hstate *h = hstate_inode(inode);
6628         struct resv_map *resv_map = inode_resv_map(inode);
6629         long chg = 0;
6630         struct hugepage_subpool *spool = subpool_inode(inode);
6631         long gbl_reserve;
6632
6633         /*
6634          * Since this routine can be called in the evict inode path for all
6635          * hugetlbfs inodes, resv_map could be NULL.
6636          */
6637         if (resv_map) {
6638                 chg = region_del(resv_map, start, end);
6639                 /*
6640                  * region_del() can fail in the rare case where a region
6641                  * must be split and another region descriptor can not be
6642                  * allocated.  If end == LONG_MAX, it will not fail.
6643                  */
6644                 if (chg < 0)
6645                         return chg;
6646         }
6647
6648         spin_lock(&inode->i_lock);
6649         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6650         spin_unlock(&inode->i_lock);
6651
6652         /*
6653          * If the subpool has a minimum size, the number of global
6654          * reservations to be released may be adjusted.
6655          *
6656          * Note that !resv_map implies freed == 0. So (chg - freed)
6657          * won't go negative.
6658          */
6659         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6660         hugetlb_acct_memory(h, -gbl_reserve);
6661
6662         return 0;
6663 }
6664
6665 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6666 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6667                                 struct vm_area_struct *vma,
6668                                 unsigned long addr, pgoff_t idx)
6669 {
6670         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6671                                 svma->vm_start;
6672         unsigned long sbase = saddr & PUD_MASK;
6673         unsigned long s_end = sbase + PUD_SIZE;
6674
6675         /* Allow segments to share if only one is marked locked */
6676         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6677         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6678
6679         /*
6680          * match the virtual addresses, permission and the alignment of the
6681          * page table page.
6682          */
6683         if (pmd_index(addr) != pmd_index(saddr) ||
6684             vm_flags != svm_flags ||
6685             !range_in_vma(svma, sbase, s_end))
6686                 return 0;
6687
6688         return saddr;
6689 }
6690
6691 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6692 {
6693         unsigned long base = addr & PUD_MASK;
6694         unsigned long end = base + PUD_SIZE;
6695
6696         /*
6697          * check on proper vm_flags and page table alignment
6698          */
6699         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6700                 return true;
6701         return false;
6702 }
6703
6704 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6705 {
6706 #ifdef CONFIG_USERFAULTFD
6707         if (uffd_disable_huge_pmd_share(vma))
6708                 return false;
6709 #endif
6710         return vma_shareable(vma, addr);
6711 }
6712
6713 /*
6714  * Determine if start,end range within vma could be mapped by shared pmd.
6715  * If yes, adjust start and end to cover range associated with possible
6716  * shared pmd mappings.
6717  */
6718 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6719                                 unsigned long *start, unsigned long *end)
6720 {
6721         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6722                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6723
6724         /*
6725          * vma needs to span at least one aligned PUD size, and the range
6726          * must be at least partially within in.
6727          */
6728         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6729                 (*end <= v_start) || (*start >= v_end))
6730                 return;
6731
6732         /* Extend the range to be PUD aligned for a worst case scenario */
6733         if (*start > v_start)
6734                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6735
6736         if (*end < v_end)
6737                 *end = ALIGN(*end, PUD_SIZE);
6738 }
6739
6740 /*
6741  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6742  * and returns the corresponding pte. While this is not necessary for the
6743  * !shared pmd case because we can allocate the pmd later as well, it makes the
6744  * code much cleaner.
6745  *
6746  * This routine must be called with i_mmap_rwsem held in at least read mode if
6747  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6748  * table entries associated with the address space.  This is important as we
6749  * are setting up sharing based on existing page table entries (mappings).
6750  */
6751 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6752                       unsigned long addr, pud_t *pud)
6753 {
6754         struct address_space *mapping = vma->vm_file->f_mapping;
6755         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6756                         vma->vm_pgoff;
6757         struct vm_area_struct *svma;
6758         unsigned long saddr;
6759         pte_t *spte = NULL;
6760         pte_t *pte;
6761         spinlock_t *ptl;
6762
6763         i_mmap_assert_locked(mapping);
6764         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6765                 if (svma == vma)
6766                         continue;
6767
6768                 saddr = page_table_shareable(svma, vma, addr, idx);
6769                 if (saddr) {
6770                         spte = huge_pte_offset(svma->vm_mm, saddr,
6771                                                vma_mmu_pagesize(svma));
6772                         if (spte) {
6773                                 get_page(virt_to_page(spte));
6774                                 break;
6775                         }
6776                 }
6777         }
6778
6779         if (!spte)
6780                 goto out;
6781
6782         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6783         if (pud_none(*pud)) {
6784                 pud_populate(mm, pud,
6785                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6786                 mm_inc_nr_pmds(mm);
6787         } else {
6788                 put_page(virt_to_page(spte));
6789         }
6790         spin_unlock(ptl);
6791 out:
6792         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6793         return pte;
6794 }
6795
6796 /*
6797  * unmap huge page backed by shared pte.
6798  *
6799  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6800  * indicated by page_count > 1, unmap is achieved by clearing pud and
6801  * decrementing the ref count. If count == 1, the pte page is not shared.
6802  *
6803  * Called with page table lock held and i_mmap_rwsem held in write mode.
6804  *
6805  * returns: 1 successfully unmapped a shared pte page
6806  *          0 the underlying pte page is not shared, or it is the last user
6807  */
6808 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6809                                         unsigned long addr, pte_t *ptep)
6810 {
6811         pgd_t *pgd = pgd_offset(mm, addr);
6812         p4d_t *p4d = p4d_offset(pgd, addr);
6813         pud_t *pud = pud_offset(p4d, addr);
6814
6815         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6816         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6817         if (page_count(virt_to_page(ptep)) == 1)
6818                 return 0;
6819
6820         pud_clear(pud);
6821         put_page(virt_to_page(ptep));
6822         mm_dec_nr_pmds(mm);
6823         return 1;
6824 }
6825
6826 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6827 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6828                       unsigned long addr, pud_t *pud)
6829 {
6830         return NULL;
6831 }
6832
6833 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6834                                 unsigned long addr, pte_t *ptep)
6835 {
6836         return 0;
6837 }
6838
6839 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6840                                 unsigned long *start, unsigned long *end)
6841 {
6842 }
6843
6844 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6845 {
6846         return false;
6847 }
6848 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6849
6850 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6851 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6852                         unsigned long addr, unsigned long sz)
6853 {
6854         pgd_t *pgd;
6855         p4d_t *p4d;
6856         pud_t *pud;
6857         pte_t *pte = NULL;
6858
6859         pgd = pgd_offset(mm, addr);
6860         p4d = p4d_alloc(mm, pgd, addr);
6861         if (!p4d)
6862                 return NULL;
6863         pud = pud_alloc(mm, p4d, addr);
6864         if (pud) {
6865                 if (sz == PUD_SIZE) {
6866                         pte = (pte_t *)pud;
6867                 } else {
6868                         BUG_ON(sz != PMD_SIZE);
6869                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6870                                 pte = huge_pmd_share(mm, vma, addr, pud);
6871                         else
6872                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6873                 }
6874         }
6875         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6876
6877         return pte;
6878 }
6879
6880 /*
6881  * huge_pte_offset() - Walk the page table to resolve the hugepage
6882  * entry at address @addr
6883  *
6884  * Return: Pointer to page table entry (PUD or PMD) for
6885  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6886  * size @sz doesn't match the hugepage size at this level of the page
6887  * table.
6888  */
6889 pte_t *huge_pte_offset(struct mm_struct *mm,
6890                        unsigned long addr, unsigned long sz)
6891 {
6892         pgd_t *pgd;
6893         p4d_t *p4d;
6894         pud_t *pud;
6895         pmd_t *pmd;
6896
6897         pgd = pgd_offset(mm, addr);
6898         if (!pgd_present(*pgd))
6899                 return NULL;
6900         p4d = p4d_offset(pgd, addr);
6901         if (!p4d_present(*p4d))
6902                 return NULL;
6903
6904         pud = pud_offset(p4d, addr);
6905         if (sz == PUD_SIZE)
6906                 /* must be pud huge, non-present or none */
6907                 return (pte_t *)pud;
6908         if (!pud_present(*pud))
6909                 return NULL;
6910         /* must have a valid entry and size to go further */
6911
6912         pmd = pmd_offset(pud, addr);
6913         /* must be pmd huge, non-present or none */
6914         return (pte_t *)pmd;
6915 }
6916
6917 /*
6918  * Return a mask that can be used to update an address to the last huge
6919  * page in a page table page mapping size.  Used to skip non-present
6920  * page table entries when linearly scanning address ranges.  Architectures
6921  * with unique huge page to page table relationships can define their own
6922  * version of this routine.
6923  */
6924 unsigned long hugetlb_mask_last_page(struct hstate *h)
6925 {
6926         unsigned long hp_size = huge_page_size(h);
6927
6928         if (hp_size == PUD_SIZE)
6929                 return P4D_SIZE - PUD_SIZE;
6930         else if (hp_size == PMD_SIZE)
6931                 return PUD_SIZE - PMD_SIZE;
6932         else
6933                 return 0UL;
6934 }
6935
6936 #else
6937
6938 /* See description above.  Architectures can provide their own version. */
6939 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6940 {
6941 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6942         if (huge_page_size(h) == PMD_SIZE)
6943                 return PUD_SIZE - PMD_SIZE;
6944 #endif
6945         return 0UL;
6946 }
6947
6948 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6949
6950 /*
6951  * These functions are overwritable if your architecture needs its own
6952  * behavior.
6953  */
6954 struct page * __weak
6955 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6956                               int write)
6957 {
6958         return ERR_PTR(-EINVAL);
6959 }
6960
6961 struct page * __weak
6962 follow_huge_pd(struct vm_area_struct *vma,
6963                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6964 {
6965         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6966         return NULL;
6967 }
6968
6969 struct page * __weak
6970 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6971                 pmd_t *pmd, int flags)
6972 {
6973         struct page *page = NULL;
6974         spinlock_t *ptl;
6975         pte_t pte;
6976
6977         /*
6978          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6979          * follow_hugetlb_page().
6980          */
6981         if (WARN_ON_ONCE(flags & FOLL_PIN))
6982                 return NULL;
6983
6984 retry:
6985         ptl = pmd_lockptr(mm, pmd);
6986         spin_lock(ptl);
6987         /*
6988          * make sure that the address range covered by this pmd is not
6989          * unmapped from other threads.
6990          */
6991         if (!pmd_huge(*pmd))
6992                 goto out;
6993         pte = huge_ptep_get((pte_t *)pmd);
6994         if (pte_present(pte)) {
6995                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6996                 /*
6997                  * try_grab_page() should always succeed here, because: a) we
6998                  * hold the pmd (ptl) lock, and b) we've just checked that the
6999                  * huge pmd (head) page is present in the page tables. The ptl
7000                  * prevents the head page and tail pages from being rearranged
7001                  * in any way. So this page must be available at this point,
7002                  * unless the page refcount overflowed:
7003                  */
7004                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7005                         page = NULL;
7006                         goto out;
7007                 }
7008         } else {
7009                 if (is_hugetlb_entry_migration(pte)) {
7010                         spin_unlock(ptl);
7011                         __migration_entry_wait_huge((pte_t *)pmd, ptl);
7012                         goto retry;
7013                 }
7014                 /*
7015                  * hwpoisoned entry is treated as no_page_table in
7016                  * follow_page_mask().
7017                  */
7018         }
7019 out:
7020         spin_unlock(ptl);
7021         return page;
7022 }
7023
7024 struct page * __weak
7025 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7026                 pud_t *pud, int flags)
7027 {
7028         struct page *page = NULL;
7029         spinlock_t *ptl;
7030         pte_t pte;
7031
7032         if (WARN_ON_ONCE(flags & FOLL_PIN))
7033                 return NULL;
7034
7035 retry:
7036         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7037         if (!pud_huge(*pud))
7038                 goto out;
7039         pte = huge_ptep_get((pte_t *)pud);
7040         if (pte_present(pte)) {
7041                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7042                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7043                         page = NULL;
7044                         goto out;
7045                 }
7046         } else {
7047                 if (is_hugetlb_entry_migration(pte)) {
7048                         spin_unlock(ptl);
7049                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7050                         goto retry;
7051                 }
7052                 /*
7053                  * hwpoisoned entry is treated as no_page_table in
7054                  * follow_page_mask().
7055                  */
7056         }
7057 out:
7058         spin_unlock(ptl);
7059         return page;
7060 }
7061
7062 struct page * __weak
7063 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7064 {
7065         if (flags & (FOLL_GET | FOLL_PIN))
7066                 return NULL;
7067
7068         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7069 }
7070
7071 int isolate_hugetlb(struct page *page, struct list_head *list)
7072 {
7073         int ret = 0;
7074
7075         spin_lock_irq(&hugetlb_lock);
7076         if (!PageHeadHuge(page) ||
7077             !HPageMigratable(page) ||
7078             !get_page_unless_zero(page)) {
7079                 ret = -EBUSY;
7080                 goto unlock;
7081         }
7082         ClearHPageMigratable(page);
7083         list_move_tail(&page->lru, list);
7084 unlock:
7085         spin_unlock_irq(&hugetlb_lock);
7086         return ret;
7087 }
7088
7089 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7090 {
7091         int ret = 0;
7092
7093         *hugetlb = false;
7094         spin_lock_irq(&hugetlb_lock);
7095         if (PageHeadHuge(page)) {
7096                 *hugetlb = true;
7097                 if (HPageFreed(page))
7098                         ret = 0;
7099                 else if (HPageMigratable(page))
7100                         ret = get_page_unless_zero(page);
7101                 else
7102                         ret = -EBUSY;
7103         }
7104         spin_unlock_irq(&hugetlb_lock);
7105         return ret;
7106 }
7107
7108 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7109 {
7110         int ret;
7111
7112         spin_lock_irq(&hugetlb_lock);
7113         ret = __get_huge_page_for_hwpoison(pfn, flags);
7114         spin_unlock_irq(&hugetlb_lock);
7115         return ret;
7116 }
7117
7118 void putback_active_hugepage(struct page *page)
7119 {
7120         spin_lock_irq(&hugetlb_lock);
7121         SetHPageMigratable(page);
7122         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7123         spin_unlock_irq(&hugetlb_lock);
7124         put_page(page);
7125 }
7126
7127 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7128 {
7129         struct hstate *h = page_hstate(oldpage);
7130
7131         hugetlb_cgroup_migrate(oldpage, newpage);
7132         set_page_owner_migrate_reason(newpage, reason);
7133
7134         /*
7135          * transfer temporary state of the new huge page. This is
7136          * reverse to other transitions because the newpage is going to
7137          * be final while the old one will be freed so it takes over
7138          * the temporary status.
7139          *
7140          * Also note that we have to transfer the per-node surplus state
7141          * here as well otherwise the global surplus count will not match
7142          * the per-node's.
7143          */
7144         if (HPageTemporary(newpage)) {
7145                 int old_nid = page_to_nid(oldpage);
7146                 int new_nid = page_to_nid(newpage);
7147
7148                 SetHPageTemporary(oldpage);
7149                 ClearHPageTemporary(newpage);
7150
7151                 /*
7152                  * There is no need to transfer the per-node surplus state
7153                  * when we do not cross the node.
7154                  */
7155                 if (new_nid == old_nid)
7156                         return;
7157                 spin_lock_irq(&hugetlb_lock);
7158                 if (h->surplus_huge_pages_node[old_nid]) {
7159                         h->surplus_huge_pages_node[old_nid]--;
7160                         h->surplus_huge_pages_node[new_nid]++;
7161                 }
7162                 spin_unlock_irq(&hugetlb_lock);
7163         }
7164 }
7165
7166 /*
7167  * This function will unconditionally remove all the shared pmd pgtable entries
7168  * within the specific vma for a hugetlbfs memory range.
7169  */
7170 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7171 {
7172         struct hstate *h = hstate_vma(vma);
7173         unsigned long sz = huge_page_size(h);
7174         struct mm_struct *mm = vma->vm_mm;
7175         struct mmu_notifier_range range;
7176         unsigned long address, start, end;
7177         spinlock_t *ptl;
7178         pte_t *ptep;
7179
7180         if (!(vma->vm_flags & VM_MAYSHARE))
7181                 return;
7182
7183         start = ALIGN(vma->vm_start, PUD_SIZE);
7184         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7185
7186         if (start >= end)
7187                 return;
7188
7189         flush_cache_range(vma, start, end);
7190         /*
7191          * No need to call adjust_range_if_pmd_sharing_possible(), because
7192          * we have already done the PUD_SIZE alignment.
7193          */
7194         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7195                                 start, end);
7196         mmu_notifier_invalidate_range_start(&range);
7197         i_mmap_lock_write(vma->vm_file->f_mapping);
7198         for (address = start; address < end; address += PUD_SIZE) {
7199                 ptep = huge_pte_offset(mm, address, sz);
7200                 if (!ptep)
7201                         continue;
7202                 ptl = huge_pte_lock(h, mm, ptep);
7203                 huge_pmd_unshare(mm, vma, address, ptep);
7204                 spin_unlock(ptl);
7205         }
7206         flush_hugetlb_tlb_range(vma, start, end);
7207         i_mmap_unlock_write(vma->vm_file->f_mapping);
7208         /*
7209          * No need to call mmu_notifier_invalidate_range(), see
7210          * Documentation/mm/mmu_notifier.rst.
7211          */
7212         mmu_notifier_invalidate_range_end(&range);
7213 }
7214
7215 #ifdef CONFIG_CMA
7216 static bool cma_reserve_called __initdata;
7217
7218 static int __init cmdline_parse_hugetlb_cma(char *p)
7219 {
7220         int nid, count = 0;
7221         unsigned long tmp;
7222         char *s = p;
7223
7224         while (*s) {
7225                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7226                         break;
7227
7228                 if (s[count] == ':') {
7229                         if (tmp >= MAX_NUMNODES)
7230                                 break;
7231                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7232
7233                         s += count + 1;
7234                         tmp = memparse(s, &s);
7235                         hugetlb_cma_size_in_node[nid] = tmp;
7236                         hugetlb_cma_size += tmp;
7237
7238                         /*
7239                          * Skip the separator if have one, otherwise
7240                          * break the parsing.
7241                          */
7242                         if (*s == ',')
7243                                 s++;
7244                         else
7245                                 break;
7246                 } else {
7247                         hugetlb_cma_size = memparse(p, &p);
7248                         break;
7249                 }
7250         }
7251
7252         return 0;
7253 }
7254
7255 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7256
7257 void __init hugetlb_cma_reserve(int order)
7258 {
7259         unsigned long size, reserved, per_node;
7260         bool node_specific_cma_alloc = false;
7261         int nid;
7262
7263         cma_reserve_called = true;
7264
7265         if (!hugetlb_cma_size)
7266                 return;
7267
7268         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7269                 if (hugetlb_cma_size_in_node[nid] == 0)
7270                         continue;
7271
7272                 if (!node_online(nid)) {
7273                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7274                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7275                         hugetlb_cma_size_in_node[nid] = 0;
7276                         continue;
7277                 }
7278
7279                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7280                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7281                                 nid, (PAGE_SIZE << order) / SZ_1M);
7282                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7283                         hugetlb_cma_size_in_node[nid] = 0;
7284                 } else {
7285                         node_specific_cma_alloc = true;
7286                 }
7287         }
7288
7289         /* Validate the CMA size again in case some invalid nodes specified. */
7290         if (!hugetlb_cma_size)
7291                 return;
7292
7293         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7294                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7295                         (PAGE_SIZE << order) / SZ_1M);
7296                 hugetlb_cma_size = 0;
7297                 return;
7298         }
7299
7300         if (!node_specific_cma_alloc) {
7301                 /*
7302                  * If 3 GB area is requested on a machine with 4 numa nodes,
7303                  * let's allocate 1 GB on first three nodes and ignore the last one.
7304                  */
7305                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7306                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7307                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7308         }
7309
7310         reserved = 0;
7311         for_each_online_node(nid) {
7312                 int res;
7313                 char name[CMA_MAX_NAME];
7314
7315                 if (node_specific_cma_alloc) {
7316                         if (hugetlb_cma_size_in_node[nid] == 0)
7317                                 continue;
7318
7319                         size = hugetlb_cma_size_in_node[nid];
7320                 } else {
7321                         size = min(per_node, hugetlb_cma_size - reserved);
7322                 }
7323
7324                 size = round_up(size, PAGE_SIZE << order);
7325
7326                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7327                 /*
7328                  * Note that 'order per bit' is based on smallest size that
7329                  * may be returned to CMA allocator in the case of
7330                  * huge page demotion.
7331                  */
7332                 res = cma_declare_contiguous_nid(0, size, 0,
7333                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7334                                                  0, false, name,
7335                                                  &hugetlb_cma[nid], nid);
7336                 if (res) {
7337                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7338                                 res, nid);
7339                         continue;
7340                 }
7341
7342                 reserved += size;
7343                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7344                         size / SZ_1M, nid);
7345
7346                 if (reserved >= hugetlb_cma_size)
7347                         break;
7348         }
7349
7350         if (!reserved)
7351                 /*
7352                  * hugetlb_cma_size is used to determine if allocations from
7353                  * cma are possible.  Set to zero if no cma regions are set up.
7354                  */
7355                 hugetlb_cma_size = 0;
7356 }
7357
7358 static void __init hugetlb_cma_check(void)
7359 {
7360         if (!hugetlb_cma_size || cma_reserve_called)
7361                 return;
7362
7363         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7364 }
7365
7366 #endif /* CONFIG_CMA */
This page took 0.43491 seconds and 4 git commands to generate.