]> Git Repo - linux.git/blob - mm/hugetlb.c
Merge tag 'sched_ext-for-6.14-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 #include <linux/page-isolation.h>
52
53 int hugetlb_max_hstate __read_mostly;
54 unsigned int default_hstate_idx;
55 struct hstate hstates[HUGE_MAX_HSTATE];
56
57 #ifdef CONFIG_CMA
58 static struct cma *hugetlb_cma[MAX_NUMNODES];
59 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
60 #endif
61 static unsigned long hugetlb_cma_size __initdata;
62
63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
64
65 /* for command line parsing */
66 static struct hstate * __initdata parsed_hstate;
67 static unsigned long __initdata default_hstate_max_huge_pages;
68 static bool __initdata parsed_valid_hugepagesz = true;
69 static bool __initdata parsed_default_hugepagesz;
70 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
71
72 /*
73  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
74  * free_huge_pages, and surplus_huge_pages.
75  */
76 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
77
78 /*
79  * Serializes faults on the same logical page.  This is used to
80  * prevent spurious OOMs when the hugepage pool is fully utilized.
81  */
82 static int num_fault_mutexes __ro_after_init;
83 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
84
85 /* Forward declaration */
86 static int hugetlb_acct_memory(struct hstate *h, long delta);
87 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
88 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
89 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
90 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
91                 unsigned long start, unsigned long end);
92 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
93
94 static void hugetlb_free_folio(struct folio *folio)
95 {
96 #ifdef CONFIG_CMA
97         int nid = folio_nid(folio);
98
99         if (cma_free_folio(hugetlb_cma[nid], folio))
100                 return;
101 #endif
102         folio_put(folio);
103 }
104
105 static inline bool subpool_is_free(struct hugepage_subpool *spool)
106 {
107         if (spool->count)
108                 return false;
109         if (spool->max_hpages != -1)
110                 return spool->used_hpages == 0;
111         if (spool->min_hpages != -1)
112                 return spool->rsv_hpages == spool->min_hpages;
113
114         return true;
115 }
116
117 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
118                                                 unsigned long irq_flags)
119 {
120         spin_unlock_irqrestore(&spool->lock, irq_flags);
121
122         /* If no pages are used, and no other handles to the subpool
123          * remain, give up any reservations based on minimum size and
124          * free the subpool */
125         if (subpool_is_free(spool)) {
126                 if (spool->min_hpages != -1)
127                         hugetlb_acct_memory(spool->hstate,
128                                                 -spool->min_hpages);
129                 kfree(spool);
130         }
131 }
132
133 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
134                                                 long min_hpages)
135 {
136         struct hugepage_subpool *spool;
137
138         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
139         if (!spool)
140                 return NULL;
141
142         spin_lock_init(&spool->lock);
143         spool->count = 1;
144         spool->max_hpages = max_hpages;
145         spool->hstate = h;
146         spool->min_hpages = min_hpages;
147
148         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
149                 kfree(spool);
150                 return NULL;
151         }
152         spool->rsv_hpages = min_hpages;
153
154         return spool;
155 }
156
157 void hugepage_put_subpool(struct hugepage_subpool *spool)
158 {
159         unsigned long flags;
160
161         spin_lock_irqsave(&spool->lock, flags);
162         BUG_ON(!spool->count);
163         spool->count--;
164         unlock_or_release_subpool(spool, flags);
165 }
166
167 /*
168  * Subpool accounting for allocating and reserving pages.
169  * Return -ENOMEM if there are not enough resources to satisfy the
170  * request.  Otherwise, return the number of pages by which the
171  * global pools must be adjusted (upward).  The returned value may
172  * only be different than the passed value (delta) in the case where
173  * a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176                                       long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return ret;
182
183         spin_lock_irq(&spool->lock);
184
185         if (spool->max_hpages != -1) {          /* maximum size accounting */
186                 if ((spool->used_hpages + delta) <= spool->max_hpages)
187                         spool->used_hpages += delta;
188                 else {
189                         ret = -ENOMEM;
190                         goto unlock_ret;
191                 }
192         }
193
194         /* minimum size accounting */
195         if (spool->min_hpages != -1 && spool->rsv_hpages) {
196                 if (delta > spool->rsv_hpages) {
197                         /*
198                          * Asking for more reserves than those already taken on
199                          * behalf of subpool.  Return difference.
200                          */
201                         ret = delta - spool->rsv_hpages;
202                         spool->rsv_hpages = 0;
203                 } else {
204                         ret = 0;        /* reserves already accounted for */
205                         spool->rsv_hpages -= delta;
206                 }
207         }
208
209 unlock_ret:
210         spin_unlock_irq(&spool->lock);
211         return ret;
212 }
213
214 /*
215  * Subpool accounting for freeing and unreserving pages.
216  * Return the number of global page reservations that must be dropped.
217  * The return value may only be different than the passed value (delta)
218  * in the case where a subpool minimum size must be maintained.
219  */
220 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
221                                        long delta)
222 {
223         long ret = delta;
224         unsigned long flags;
225
226         if (!spool)
227                 return delta;
228
229         spin_lock_irqsave(&spool->lock, flags);
230
231         if (spool->max_hpages != -1)            /* maximum size accounting */
232                 spool->used_hpages -= delta;
233
234          /* minimum size accounting */
235         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
236                 if (spool->rsv_hpages + delta <= spool->min_hpages)
237                         ret = 0;
238                 else
239                         ret = spool->rsv_hpages + delta - spool->min_hpages;
240
241                 spool->rsv_hpages += delta;
242                 if (spool->rsv_hpages > spool->min_hpages)
243                         spool->rsv_hpages = spool->min_hpages;
244         }
245
246         /*
247          * If hugetlbfs_put_super couldn't free spool due to an outstanding
248          * quota reference, free it now.
249          */
250         unlock_or_release_subpool(spool, flags);
251
252         return ret;
253 }
254
255 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
256 {
257         return HUGETLBFS_SB(inode->i_sb)->spool;
258 }
259
260 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
261 {
262         return subpool_inode(file_inode(vma->vm_file));
263 }
264
265 /*
266  * hugetlb vma_lock helper routines
267  */
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
269 {
270         if (__vma_shareable_lock(vma)) {
271                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
272
273                 down_read(&vma_lock->rw_sema);
274         } else if (__vma_private_lock(vma)) {
275                 struct resv_map *resv_map = vma_resv_map(vma);
276
277                 down_read(&resv_map->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 up_read(&vma_lock->rw_sema);
287         } else if (__vma_private_lock(vma)) {
288                 struct resv_map *resv_map = vma_resv_map(vma);
289
290                 up_read(&resv_map->rw_sema);
291         }
292 }
293
294 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
295 {
296         if (__vma_shareable_lock(vma)) {
297                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
298
299                 down_write(&vma_lock->rw_sema);
300         } else if (__vma_private_lock(vma)) {
301                 struct resv_map *resv_map = vma_resv_map(vma);
302
303                 down_write(&resv_map->rw_sema);
304         }
305 }
306
307 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
308 {
309         if (__vma_shareable_lock(vma)) {
310                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
311
312                 up_write(&vma_lock->rw_sema);
313         } else if (__vma_private_lock(vma)) {
314                 struct resv_map *resv_map = vma_resv_map(vma);
315
316                 up_write(&resv_map->rw_sema);
317         }
318 }
319
320 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
321 {
322
323         if (__vma_shareable_lock(vma)) {
324                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
325
326                 return down_write_trylock(&vma_lock->rw_sema);
327         } else if (__vma_private_lock(vma)) {
328                 struct resv_map *resv_map = vma_resv_map(vma);
329
330                 return down_write_trylock(&resv_map->rw_sema);
331         }
332
333         return 1;
334 }
335
336 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
337 {
338         if (__vma_shareable_lock(vma)) {
339                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
340
341                 lockdep_assert_held(&vma_lock->rw_sema);
342         } else if (__vma_private_lock(vma)) {
343                 struct resv_map *resv_map = vma_resv_map(vma);
344
345                 lockdep_assert_held(&resv_map->rw_sema);
346         }
347 }
348
349 void hugetlb_vma_lock_release(struct kref *kref)
350 {
351         struct hugetlb_vma_lock *vma_lock = container_of(kref,
352                         struct hugetlb_vma_lock, refs);
353
354         kfree(vma_lock);
355 }
356
357 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
358 {
359         struct vm_area_struct *vma = vma_lock->vma;
360
361         /*
362          * vma_lock structure may or not be released as a result of put,
363          * it certainly will no longer be attached to vma so clear pointer.
364          * Semaphore synchronizes access to vma_lock->vma field.
365          */
366         vma_lock->vma = NULL;
367         vma->vm_private_data = NULL;
368         up_write(&vma_lock->rw_sema);
369         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
370 }
371
372 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
373 {
374         if (__vma_shareable_lock(vma)) {
375                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
376
377                 __hugetlb_vma_unlock_write_put(vma_lock);
378         } else if (__vma_private_lock(vma)) {
379                 struct resv_map *resv_map = vma_resv_map(vma);
380
381                 /* no free for anon vmas, but still need to unlock */
382                 up_write(&resv_map->rw_sema);
383         }
384 }
385
386 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
387 {
388         /*
389          * Only present in sharable vmas.
390          */
391         if (!vma || !__vma_shareable_lock(vma))
392                 return;
393
394         if (vma->vm_private_data) {
395                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
396
397                 down_write(&vma_lock->rw_sema);
398                 __hugetlb_vma_unlock_write_put(vma_lock);
399         }
400 }
401
402 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
403 {
404         struct hugetlb_vma_lock *vma_lock;
405
406         /* Only establish in (flags) sharable vmas */
407         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
408                 return;
409
410         /* Should never get here with non-NULL vm_private_data */
411         if (vma->vm_private_data)
412                 return;
413
414         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
415         if (!vma_lock) {
416                 /*
417                  * If we can not allocate structure, then vma can not
418                  * participate in pmd sharing.  This is only a possible
419                  * performance enhancement and memory saving issue.
420                  * However, the lock is also used to synchronize page
421                  * faults with truncation.  If the lock is not present,
422                  * unlikely races could leave pages in a file past i_size
423                  * until the file is removed.  Warn in the unlikely case of
424                  * allocation failure.
425                  */
426                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
427                 return;
428         }
429
430         kref_init(&vma_lock->refs);
431         init_rwsem(&vma_lock->rw_sema);
432         vma_lock->vma = vma;
433         vma->vm_private_data = vma_lock;
434 }
435
436 /* Helper that removes a struct file_region from the resv_map cache and returns
437  * it for use.
438  */
439 static struct file_region *
440 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
441 {
442         struct file_region *nrg;
443
444         VM_BUG_ON(resv->region_cache_count <= 0);
445
446         resv->region_cache_count--;
447         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
448         list_del(&nrg->link);
449
450         nrg->from = from;
451         nrg->to = to;
452
453         return nrg;
454 }
455
456 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
457                                               struct file_region *rg)
458 {
459 #ifdef CONFIG_CGROUP_HUGETLB
460         nrg->reservation_counter = rg->reservation_counter;
461         nrg->css = rg->css;
462         if (rg->css)
463                 css_get(rg->css);
464 #endif
465 }
466
467 /* Helper that records hugetlb_cgroup uncharge info. */
468 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
469                                                 struct hstate *h,
470                                                 struct resv_map *resv,
471                                                 struct file_region *nrg)
472 {
473 #ifdef CONFIG_CGROUP_HUGETLB
474         if (h_cg) {
475                 nrg->reservation_counter =
476                         &h_cg->rsvd_hugepage[hstate_index(h)];
477                 nrg->css = &h_cg->css;
478                 /*
479                  * The caller will hold exactly one h_cg->css reference for the
480                  * whole contiguous reservation region. But this area might be
481                  * scattered when there are already some file_regions reside in
482                  * it. As a result, many file_regions may share only one css
483                  * reference. In order to ensure that one file_region must hold
484                  * exactly one h_cg->css reference, we should do css_get for
485                  * each file_region and leave the reference held by caller
486                  * untouched.
487                  */
488                 css_get(&h_cg->css);
489                 if (!resv->pages_per_hpage)
490                         resv->pages_per_hpage = pages_per_huge_page(h);
491                 /* pages_per_hpage should be the same for all entries in
492                  * a resv_map.
493                  */
494                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
495         } else {
496                 nrg->reservation_counter = NULL;
497                 nrg->css = NULL;
498         }
499 #endif
500 }
501
502 static void put_uncharge_info(struct file_region *rg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505         if (rg->css)
506                 css_put(rg->css);
507 #endif
508 }
509
510 static bool has_same_uncharge_info(struct file_region *rg,
511                                    struct file_region *org)
512 {
513 #ifdef CONFIG_CGROUP_HUGETLB
514         return rg->reservation_counter == org->reservation_counter &&
515                rg->css == org->css;
516
517 #else
518         return true;
519 #endif
520 }
521
522 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
523 {
524         struct file_region *nrg, *prg;
525
526         prg = list_prev_entry(rg, link);
527         if (&prg->link != &resv->regions && prg->to == rg->from &&
528             has_same_uncharge_info(prg, rg)) {
529                 prg->to = rg->to;
530
531                 list_del(&rg->link);
532                 put_uncharge_info(rg);
533                 kfree(rg);
534
535                 rg = prg;
536         }
537
538         nrg = list_next_entry(rg, link);
539         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
540             has_same_uncharge_info(nrg, rg)) {
541                 nrg->from = rg->from;
542
543                 list_del(&rg->link);
544                 put_uncharge_info(rg);
545                 kfree(rg);
546         }
547 }
548
549 static inline long
550 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
551                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
552                      long *regions_needed)
553 {
554         struct file_region *nrg;
555
556         if (!regions_needed) {
557                 nrg = get_file_region_entry_from_cache(map, from, to);
558                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
559                 list_add(&nrg->link, rg);
560                 coalesce_file_region(map, nrg);
561         } else
562                 *regions_needed += 1;
563
564         return to - from;
565 }
566
567 /*
568  * Must be called with resv->lock held.
569  *
570  * Calling this with regions_needed != NULL will count the number of pages
571  * to be added but will not modify the linked list. And regions_needed will
572  * indicate the number of file_regions needed in the cache to carry out to add
573  * the regions for this range.
574  */
575 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
576                                      struct hugetlb_cgroup *h_cg,
577                                      struct hstate *h, long *regions_needed)
578 {
579         long add = 0;
580         struct list_head *head = &resv->regions;
581         long last_accounted_offset = f;
582         struct file_region *iter, *trg = NULL;
583         struct list_head *rg = NULL;
584
585         if (regions_needed)
586                 *regions_needed = 0;
587
588         /* In this loop, we essentially handle an entry for the range
589          * [last_accounted_offset, iter->from), at every iteration, with some
590          * bounds checking.
591          */
592         list_for_each_entry_safe(iter, trg, head, link) {
593                 /* Skip irrelevant regions that start before our range. */
594                 if (iter->from < f) {
595                         /* If this region ends after the last accounted offset,
596                          * then we need to update last_accounted_offset.
597                          */
598                         if (iter->to > last_accounted_offset)
599                                 last_accounted_offset = iter->to;
600                         continue;
601                 }
602
603                 /* When we find a region that starts beyond our range, we've
604                  * finished.
605                  */
606                 if (iter->from >= t) {
607                         rg = iter->link.prev;
608                         break;
609                 }
610
611                 /* Add an entry for last_accounted_offset -> iter->from, and
612                  * update last_accounted_offset.
613                  */
614                 if (iter->from > last_accounted_offset)
615                         add += hugetlb_resv_map_add(resv, iter->link.prev,
616                                                     last_accounted_offset,
617                                                     iter->from, h, h_cg,
618                                                     regions_needed);
619
620                 last_accounted_offset = iter->to;
621         }
622
623         /* Handle the case where our range extends beyond
624          * last_accounted_offset.
625          */
626         if (!rg)
627                 rg = head->prev;
628         if (last_accounted_offset < t)
629                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
630                                             t, h, h_cg, regions_needed);
631
632         return add;
633 }
634
635 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
636  */
637 static int allocate_file_region_entries(struct resv_map *resv,
638                                         int regions_needed)
639         __must_hold(&resv->lock)
640 {
641         LIST_HEAD(allocated_regions);
642         int to_allocate = 0, i = 0;
643         struct file_region *trg = NULL, *rg = NULL;
644
645         VM_BUG_ON(regions_needed < 0);
646
647         /*
648          * Check for sufficient descriptors in the cache to accommodate
649          * the number of in progress add operations plus regions_needed.
650          *
651          * This is a while loop because when we drop the lock, some other call
652          * to region_add or region_del may have consumed some region_entries,
653          * so we keep looping here until we finally have enough entries for
654          * (adds_in_progress + regions_needed).
655          */
656         while (resv->region_cache_count <
657                (resv->adds_in_progress + regions_needed)) {
658                 to_allocate = resv->adds_in_progress + regions_needed -
659                               resv->region_cache_count;
660
661                 /* At this point, we should have enough entries in the cache
662                  * for all the existing adds_in_progress. We should only be
663                  * needing to allocate for regions_needed.
664                  */
665                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
666
667                 spin_unlock(&resv->lock);
668                 for (i = 0; i < to_allocate; i++) {
669                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
670                         if (!trg)
671                                 goto out_of_memory;
672                         list_add(&trg->link, &allocated_regions);
673                 }
674
675                 spin_lock(&resv->lock);
676
677                 list_splice(&allocated_regions, &resv->region_cache);
678                 resv->region_cache_count += to_allocate;
679         }
680
681         return 0;
682
683 out_of_memory:
684         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
685                 list_del(&rg->link);
686                 kfree(rg);
687         }
688         return -ENOMEM;
689 }
690
691 /*
692  * Add the huge page range represented by [f, t) to the reserve
693  * map.  Regions will be taken from the cache to fill in this range.
694  * Sufficient regions should exist in the cache due to the previous
695  * call to region_chg with the same range, but in some cases the cache will not
696  * have sufficient entries due to races with other code doing region_add or
697  * region_del.  The extra needed entries will be allocated.
698  *
699  * regions_needed is the out value provided by a previous call to region_chg.
700  *
701  * Return the number of new huge pages added to the map.  This number is greater
702  * than or equal to zero.  If file_region entries needed to be allocated for
703  * this operation and we were not able to allocate, it returns -ENOMEM.
704  * region_add of regions of length 1 never allocate file_regions and cannot
705  * fail; region_chg will always allocate at least 1 entry and a region_add for
706  * 1 page will only require at most 1 entry.
707  */
708 static long region_add(struct resv_map *resv, long f, long t,
709                        long in_regions_needed, struct hstate *h,
710                        struct hugetlb_cgroup *h_cg)
711 {
712         long add = 0, actual_regions_needed = 0;
713
714         spin_lock(&resv->lock);
715 retry:
716
717         /* Count how many regions are actually needed to execute this add. */
718         add_reservation_in_range(resv, f, t, NULL, NULL,
719                                  &actual_regions_needed);
720
721         /*
722          * Check for sufficient descriptors in the cache to accommodate
723          * this add operation. Note that actual_regions_needed may be greater
724          * than in_regions_needed, as the resv_map may have been modified since
725          * the region_chg call. In this case, we need to make sure that we
726          * allocate extra entries, such that we have enough for all the
727          * existing adds_in_progress, plus the excess needed for this
728          * operation.
729          */
730         if (actual_regions_needed > in_regions_needed &&
731             resv->region_cache_count <
732                     resv->adds_in_progress +
733                             (actual_regions_needed - in_regions_needed)) {
734                 /* region_add operation of range 1 should never need to
735                  * allocate file_region entries.
736                  */
737                 VM_BUG_ON(t - f <= 1);
738
739                 if (allocate_file_region_entries(
740                             resv, actual_regions_needed - in_regions_needed)) {
741                         return -ENOMEM;
742                 }
743
744                 goto retry;
745         }
746
747         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
748
749         resv->adds_in_progress -= in_regions_needed;
750
751         spin_unlock(&resv->lock);
752         return add;
753 }
754
755 /*
756  * Examine the existing reserve map and determine how many
757  * huge pages in the specified range [f, t) are NOT currently
758  * represented.  This routine is called before a subsequent
759  * call to region_add that will actually modify the reserve
760  * map to add the specified range [f, t).  region_chg does
761  * not change the number of huge pages represented by the
762  * map.  A number of new file_region structures is added to the cache as a
763  * placeholder, for the subsequent region_add call to use. At least 1
764  * file_region structure is added.
765  *
766  * out_regions_needed is the number of regions added to the
767  * resv->adds_in_progress.  This value needs to be provided to a follow up call
768  * to region_add or region_abort for proper accounting.
769  *
770  * Returns the number of huge pages that need to be added to the existing
771  * reservation map for the range [f, t).  This number is greater or equal to
772  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
773  * is needed and can not be allocated.
774  */
775 static long region_chg(struct resv_map *resv, long f, long t,
776                        long *out_regions_needed)
777 {
778         long chg = 0;
779
780         spin_lock(&resv->lock);
781
782         /* Count how many hugepages in this range are NOT represented. */
783         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
784                                        out_regions_needed);
785
786         if (*out_regions_needed == 0)
787                 *out_regions_needed = 1;
788
789         if (allocate_file_region_entries(resv, *out_regions_needed))
790                 return -ENOMEM;
791
792         resv->adds_in_progress += *out_regions_needed;
793
794         spin_unlock(&resv->lock);
795         return chg;
796 }
797
798 /*
799  * Abort the in progress add operation.  The adds_in_progress field
800  * of the resv_map keeps track of the operations in progress between
801  * calls to region_chg and region_add.  Operations are sometimes
802  * aborted after the call to region_chg.  In such cases, region_abort
803  * is called to decrement the adds_in_progress counter. regions_needed
804  * is the value returned by the region_chg call, it is used to decrement
805  * the adds_in_progress counter.
806  *
807  * NOTE: The range arguments [f, t) are not needed or used in this
808  * routine.  They are kept to make reading the calling code easier as
809  * arguments will match the associated region_chg call.
810  */
811 static void region_abort(struct resv_map *resv, long f, long t,
812                          long regions_needed)
813 {
814         spin_lock(&resv->lock);
815         VM_BUG_ON(!resv->region_cache_count);
816         resv->adds_in_progress -= regions_needed;
817         spin_unlock(&resv->lock);
818 }
819
820 /*
821  * Delete the specified range [f, t) from the reserve map.  If the
822  * t parameter is LONG_MAX, this indicates that ALL regions after f
823  * should be deleted.  Locate the regions which intersect [f, t)
824  * and either trim, delete or split the existing regions.
825  *
826  * Returns the number of huge pages deleted from the reserve map.
827  * In the normal case, the return value is zero or more.  In the
828  * case where a region must be split, a new region descriptor must
829  * be allocated.  If the allocation fails, -ENOMEM will be returned.
830  * NOTE: If the parameter t == LONG_MAX, then we will never split
831  * a region and possibly return -ENOMEM.  Callers specifying
832  * t == LONG_MAX do not need to check for -ENOMEM error.
833  */
834 static long region_del(struct resv_map *resv, long f, long t)
835 {
836         struct list_head *head = &resv->regions;
837         struct file_region *rg, *trg;
838         struct file_region *nrg = NULL;
839         long del = 0;
840
841 retry:
842         spin_lock(&resv->lock);
843         list_for_each_entry_safe(rg, trg, head, link) {
844                 /*
845                  * Skip regions before the range to be deleted.  file_region
846                  * ranges are normally of the form [from, to).  However, there
847                  * may be a "placeholder" entry in the map which is of the form
848                  * (from, to) with from == to.  Check for placeholder entries
849                  * at the beginning of the range to be deleted.
850                  */
851                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
852                         continue;
853
854                 if (rg->from >= t)
855                         break;
856
857                 if (f > rg->from && t < rg->to) { /* Must split region */
858                         /*
859                          * Check for an entry in the cache before dropping
860                          * lock and attempting allocation.
861                          */
862                         if (!nrg &&
863                             resv->region_cache_count > resv->adds_in_progress) {
864                                 nrg = list_first_entry(&resv->region_cache,
865                                                         struct file_region,
866                                                         link);
867                                 list_del(&nrg->link);
868                                 resv->region_cache_count--;
869                         }
870
871                         if (!nrg) {
872                                 spin_unlock(&resv->lock);
873                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
874                                 if (!nrg)
875                                         return -ENOMEM;
876                                 goto retry;
877                         }
878
879                         del += t - f;
880                         hugetlb_cgroup_uncharge_file_region(
881                                 resv, rg, t - f, false);
882
883                         /* New entry for end of split region */
884                         nrg->from = t;
885                         nrg->to = rg->to;
886
887                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
888
889                         INIT_LIST_HEAD(&nrg->link);
890
891                         /* Original entry is trimmed */
892                         rg->to = f;
893
894                         list_add(&nrg->link, &rg->link);
895                         nrg = NULL;
896                         break;
897                 }
898
899                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
900                         del += rg->to - rg->from;
901                         hugetlb_cgroup_uncharge_file_region(resv, rg,
902                                                             rg->to - rg->from, true);
903                         list_del(&rg->link);
904                         kfree(rg);
905                         continue;
906                 }
907
908                 if (f <= rg->from) {    /* Trim beginning of region */
909                         hugetlb_cgroup_uncharge_file_region(resv, rg,
910                                                             t - rg->from, false);
911
912                         del += t - rg->from;
913                         rg->from = t;
914                 } else {                /* Trim end of region */
915                         hugetlb_cgroup_uncharge_file_region(resv, rg,
916                                                             rg->to - f, false);
917
918                         del += rg->to - f;
919                         rg->to = f;
920                 }
921         }
922
923         spin_unlock(&resv->lock);
924         kfree(nrg);
925         return del;
926 }
927
928 /*
929  * A rare out of memory error was encountered which prevented removal of
930  * the reserve map region for a page.  The huge page itself was free'ed
931  * and removed from the page cache.  This routine will adjust the subpool
932  * usage count, and the global reserve count if needed.  By incrementing
933  * these counts, the reserve map entry which could not be deleted will
934  * appear as a "reserved" entry instead of simply dangling with incorrect
935  * counts.
936  */
937 void hugetlb_fix_reserve_counts(struct inode *inode)
938 {
939         struct hugepage_subpool *spool = subpool_inode(inode);
940         long rsv_adjust;
941         bool reserved = false;
942
943         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
944         if (rsv_adjust > 0) {
945                 struct hstate *h = hstate_inode(inode);
946
947                 if (!hugetlb_acct_memory(h, 1))
948                         reserved = true;
949         } else if (!rsv_adjust) {
950                 reserved = true;
951         }
952
953         if (!reserved)
954                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
955 }
956
957 /*
958  * Count and return the number of huge pages in the reserve map
959  * that intersect with the range [f, t).
960  */
961 static long region_count(struct resv_map *resv, long f, long t)
962 {
963         struct list_head *head = &resv->regions;
964         struct file_region *rg;
965         long chg = 0;
966
967         spin_lock(&resv->lock);
968         /* Locate each segment we overlap with, and count that overlap. */
969         list_for_each_entry(rg, head, link) {
970                 long seg_from;
971                 long seg_to;
972
973                 if (rg->to <= f)
974                         continue;
975                 if (rg->from >= t)
976                         break;
977
978                 seg_from = max(rg->from, f);
979                 seg_to = min(rg->to, t);
980
981                 chg += seg_to - seg_from;
982         }
983         spin_unlock(&resv->lock);
984
985         return chg;
986 }
987
988 /*
989  * Convert the address within this vma to the page offset within
990  * the mapping, huge page units here.
991  */
992 static pgoff_t vma_hugecache_offset(struct hstate *h,
993                         struct vm_area_struct *vma, unsigned long address)
994 {
995         return ((address - vma->vm_start) >> huge_page_shift(h)) +
996                         (vma->vm_pgoff >> huge_page_order(h));
997 }
998
999 /**
1000  * vma_kernel_pagesize - Page size granularity for this VMA.
1001  * @vma: The user mapping.
1002  *
1003  * Folios in this VMA will be aligned to, and at least the size of the
1004  * number of bytes returned by this function.
1005  *
1006  * Return: The default size of the folios allocated when backing a VMA.
1007  */
1008 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1009 {
1010         if (vma->vm_ops && vma->vm_ops->pagesize)
1011                 return vma->vm_ops->pagesize(vma);
1012         return PAGE_SIZE;
1013 }
1014 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1015
1016 /*
1017  * Return the page size being used by the MMU to back a VMA. In the majority
1018  * of cases, the page size used by the kernel matches the MMU size. On
1019  * architectures where it differs, an architecture-specific 'strong'
1020  * version of this symbol is required.
1021  */
1022 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1023 {
1024         return vma_kernel_pagesize(vma);
1025 }
1026
1027 /*
1028  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1029  * bits of the reservation map pointer, which are always clear due to
1030  * alignment.
1031  */
1032 #define HPAGE_RESV_OWNER    (1UL << 0)
1033 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1034 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1035
1036 /*
1037  * These helpers are used to track how many pages are reserved for
1038  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1039  * is guaranteed to have their future faults succeed.
1040  *
1041  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1042  * the reserve counters are updated with the hugetlb_lock held. It is safe
1043  * to reset the VMA at fork() time as it is not in use yet and there is no
1044  * chance of the global counters getting corrupted as a result of the values.
1045  *
1046  * The private mapping reservation is represented in a subtly different
1047  * manner to a shared mapping.  A shared mapping has a region map associated
1048  * with the underlying file, this region map represents the backing file
1049  * pages which have ever had a reservation assigned which this persists even
1050  * after the page is instantiated.  A private mapping has a region map
1051  * associated with the original mmap which is attached to all VMAs which
1052  * reference it, this region map represents those offsets which have consumed
1053  * reservation ie. where pages have been instantiated.
1054  */
1055 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1056 {
1057         return (unsigned long)vma->vm_private_data;
1058 }
1059
1060 static void set_vma_private_data(struct vm_area_struct *vma,
1061                                                         unsigned long value)
1062 {
1063         vma->vm_private_data = (void *)value;
1064 }
1065
1066 static void
1067 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1068                                           struct hugetlb_cgroup *h_cg,
1069                                           struct hstate *h)
1070 {
1071 #ifdef CONFIG_CGROUP_HUGETLB
1072         if (!h_cg || !h) {
1073                 resv_map->reservation_counter = NULL;
1074                 resv_map->pages_per_hpage = 0;
1075                 resv_map->css = NULL;
1076         } else {
1077                 resv_map->reservation_counter =
1078                         &h_cg->rsvd_hugepage[hstate_index(h)];
1079                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1080                 resv_map->css = &h_cg->css;
1081         }
1082 #endif
1083 }
1084
1085 struct resv_map *resv_map_alloc(void)
1086 {
1087         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1088         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1089
1090         if (!resv_map || !rg) {
1091                 kfree(resv_map);
1092                 kfree(rg);
1093                 return NULL;
1094         }
1095
1096         kref_init(&resv_map->refs);
1097         spin_lock_init(&resv_map->lock);
1098         INIT_LIST_HEAD(&resv_map->regions);
1099         init_rwsem(&resv_map->rw_sema);
1100
1101         resv_map->adds_in_progress = 0;
1102         /*
1103          * Initialize these to 0. On shared mappings, 0's here indicate these
1104          * fields don't do cgroup accounting. On private mappings, these will be
1105          * re-initialized to the proper values, to indicate that hugetlb cgroup
1106          * reservations are to be un-charged from here.
1107          */
1108         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1109
1110         INIT_LIST_HEAD(&resv_map->region_cache);
1111         list_add(&rg->link, &resv_map->region_cache);
1112         resv_map->region_cache_count = 1;
1113
1114         return resv_map;
1115 }
1116
1117 void resv_map_release(struct kref *ref)
1118 {
1119         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1120         struct list_head *head = &resv_map->region_cache;
1121         struct file_region *rg, *trg;
1122
1123         /* Clear out any active regions before we release the map. */
1124         region_del(resv_map, 0, LONG_MAX);
1125
1126         /* ... and any entries left in the cache */
1127         list_for_each_entry_safe(rg, trg, head, link) {
1128                 list_del(&rg->link);
1129                 kfree(rg);
1130         }
1131
1132         VM_BUG_ON(resv_map->adds_in_progress);
1133
1134         kfree(resv_map);
1135 }
1136
1137 static inline struct resv_map *inode_resv_map(struct inode *inode)
1138 {
1139         /*
1140          * At inode evict time, i_mapping may not point to the original
1141          * address space within the inode.  This original address space
1142          * contains the pointer to the resv_map.  So, always use the
1143          * address space embedded within the inode.
1144          * The VERY common case is inode->mapping == &inode->i_data but,
1145          * this may not be true for device special inodes.
1146          */
1147         return (struct resv_map *)(&inode->i_data)->i_private_data;
1148 }
1149
1150 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1151 {
1152         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1153         if (vma->vm_flags & VM_MAYSHARE) {
1154                 struct address_space *mapping = vma->vm_file->f_mapping;
1155                 struct inode *inode = mapping->host;
1156
1157                 return inode_resv_map(inode);
1158
1159         } else {
1160                 return (struct resv_map *)(get_vma_private_data(vma) &
1161                                                         ~HPAGE_RESV_MASK);
1162         }
1163 }
1164
1165 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1166 {
1167         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1168         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1169
1170         set_vma_private_data(vma, (unsigned long)map);
1171 }
1172
1173 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1174 {
1175         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1176         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1177
1178         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1179 }
1180
1181 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1182 {
1183         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184
1185         return (get_vma_private_data(vma) & flag) != 0;
1186 }
1187
1188 bool __vma_private_lock(struct vm_area_struct *vma)
1189 {
1190         return !(vma->vm_flags & VM_MAYSHARE) &&
1191                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1192                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1193 }
1194
1195 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1196 {
1197         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1198         /*
1199          * Clear vm_private_data
1200          * - For shared mappings this is a per-vma semaphore that may be
1201          *   allocated in a subsequent call to hugetlb_vm_op_open.
1202          *   Before clearing, make sure pointer is not associated with vma
1203          *   as this will leak the structure.  This is the case when called
1204          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1205          *   been called to allocate a new structure.
1206          * - For MAP_PRIVATE mappings, this is the reserve map which does
1207          *   not apply to children.  Faults generated by the children are
1208          *   not guaranteed to succeed, even if read-only.
1209          */
1210         if (vma->vm_flags & VM_MAYSHARE) {
1211                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1212
1213                 if (vma_lock && vma_lock->vma != vma)
1214                         vma->vm_private_data = NULL;
1215         } else
1216                 vma->vm_private_data = NULL;
1217 }
1218
1219 /*
1220  * Reset and decrement one ref on hugepage private reservation.
1221  * Called with mm->mmap_lock writer semaphore held.
1222  * This function should be only used by move_vma() and operate on
1223  * same sized vma. It should never come here with last ref on the
1224  * reservation.
1225  */
1226 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1227 {
1228         /*
1229          * Clear the old hugetlb private page reservation.
1230          * It has already been transferred to new_vma.
1231          *
1232          * During a mremap() operation of a hugetlb vma we call move_vma()
1233          * which copies vma into new_vma and unmaps vma. After the copy
1234          * operation both new_vma and vma share a reference to the resv_map
1235          * struct, and at that point vma is about to be unmapped. We don't
1236          * want to return the reservation to the pool at unmap of vma because
1237          * the reservation still lives on in new_vma, so simply decrement the
1238          * ref here and remove the resv_map reference from this vma.
1239          */
1240         struct resv_map *reservations = vma_resv_map(vma);
1241
1242         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1243                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1244                 kref_put(&reservations->refs, resv_map_release);
1245         }
1246
1247         hugetlb_dup_vma_private(vma);
1248 }
1249
1250 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1251 {
1252         int nid = folio_nid(folio);
1253
1254         lockdep_assert_held(&hugetlb_lock);
1255         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1256
1257         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1258         h->free_huge_pages++;
1259         h->free_huge_pages_node[nid]++;
1260         folio_set_hugetlb_freed(folio);
1261 }
1262
1263 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1264                                                                 int nid)
1265 {
1266         struct folio *folio;
1267         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1268
1269         lockdep_assert_held(&hugetlb_lock);
1270         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1271                 if (pin && !folio_is_longterm_pinnable(folio))
1272                         continue;
1273
1274                 if (folio_test_hwpoison(folio))
1275                         continue;
1276
1277                 if (is_migrate_isolate_page(&folio->page))
1278                         continue;
1279
1280                 list_move(&folio->lru, &h->hugepage_activelist);
1281                 folio_ref_unfreeze(folio, 1);
1282                 folio_clear_hugetlb_freed(folio);
1283                 h->free_huge_pages--;
1284                 h->free_huge_pages_node[nid]--;
1285                 return folio;
1286         }
1287
1288         return NULL;
1289 }
1290
1291 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1292                                                         int nid, nodemask_t *nmask)
1293 {
1294         unsigned int cpuset_mems_cookie;
1295         struct zonelist *zonelist;
1296         struct zone *zone;
1297         struct zoneref *z;
1298         int node = NUMA_NO_NODE;
1299
1300         /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1301         if (nid == NUMA_NO_NODE)
1302                 nid = numa_node_id();
1303
1304         zonelist = node_zonelist(nid, gfp_mask);
1305
1306 retry_cpuset:
1307         cpuset_mems_cookie = read_mems_allowed_begin();
1308         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1309                 struct folio *folio;
1310
1311                 if (!cpuset_zone_allowed(zone, gfp_mask))
1312                         continue;
1313                 /*
1314                  * no need to ask again on the same node. Pool is node rather than
1315                  * zone aware
1316                  */
1317                 if (zone_to_nid(zone) == node)
1318                         continue;
1319                 node = zone_to_nid(zone);
1320
1321                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1322                 if (folio)
1323                         return folio;
1324         }
1325         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1326                 goto retry_cpuset;
1327
1328         return NULL;
1329 }
1330
1331 static unsigned long available_huge_pages(struct hstate *h)
1332 {
1333         return h->free_huge_pages - h->resv_huge_pages;
1334 }
1335
1336 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1337                                 struct vm_area_struct *vma,
1338                                 unsigned long address, long gbl_chg)
1339 {
1340         struct folio *folio = NULL;
1341         struct mempolicy *mpol;
1342         gfp_t gfp_mask;
1343         nodemask_t *nodemask;
1344         int nid;
1345
1346         /*
1347          * gbl_chg==1 means the allocation requires a new page that was not
1348          * reserved before.  Making sure there's at least one free page.
1349          */
1350         if (gbl_chg && !available_huge_pages(h))
1351                 goto err;
1352
1353         gfp_mask = htlb_alloc_mask(h);
1354         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1355
1356         if (mpol_is_preferred_many(mpol)) {
1357                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1358                                                         nid, nodemask);
1359
1360                 /* Fallback to all nodes if page==NULL */
1361                 nodemask = NULL;
1362         }
1363
1364         if (!folio)
1365                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1366                                                         nid, nodemask);
1367
1368         mpol_cond_put(mpol);
1369         return folio;
1370
1371 err:
1372         return NULL;
1373 }
1374
1375 /*
1376  * common helper functions for hstate_next_node_to_{alloc|free}.
1377  * We may have allocated or freed a huge page based on a different
1378  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1379  * be outside of *nodes_allowed.  Ensure that we use an allowed
1380  * node for alloc or free.
1381  */
1382 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1383 {
1384         nid = next_node_in(nid, *nodes_allowed);
1385         VM_BUG_ON(nid >= MAX_NUMNODES);
1386
1387         return nid;
1388 }
1389
1390 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1391 {
1392         if (!node_isset(nid, *nodes_allowed))
1393                 nid = next_node_allowed(nid, nodes_allowed);
1394         return nid;
1395 }
1396
1397 /*
1398  * returns the previously saved node ["this node"] from which to
1399  * allocate a persistent huge page for the pool and advance the
1400  * next node from which to allocate, handling wrap at end of node
1401  * mask.
1402  */
1403 static int hstate_next_node_to_alloc(int *next_node,
1404                                         nodemask_t *nodes_allowed)
1405 {
1406         int nid;
1407
1408         VM_BUG_ON(!nodes_allowed);
1409
1410         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1411         *next_node = next_node_allowed(nid, nodes_allowed);
1412
1413         return nid;
1414 }
1415
1416 /*
1417  * helper for remove_pool_hugetlb_folio() - return the previously saved
1418  * node ["this node"] from which to free a huge page.  Advance the
1419  * next node id whether or not we find a free huge page to free so
1420  * that the next attempt to free addresses the next node.
1421  */
1422 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1423 {
1424         int nid;
1425
1426         VM_BUG_ON(!nodes_allowed);
1427
1428         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1429         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1430
1431         return nid;
1432 }
1433
1434 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1435         for (nr_nodes = nodes_weight(*mask);                            \
1436                 nr_nodes > 0 &&                                         \
1437                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1438                 nr_nodes--)
1439
1440 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1441         for (nr_nodes = nodes_weight(*mask);                            \
1442                 nr_nodes > 0 &&                                         \
1443                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1444                 nr_nodes--)
1445
1446 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1447 #ifdef CONFIG_CONTIG_ALLOC
1448 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1449                 int nid, nodemask_t *nodemask)
1450 {
1451         struct folio *folio;
1452         int order = huge_page_order(h);
1453         bool retried = false;
1454
1455         if (nid == NUMA_NO_NODE)
1456                 nid = numa_mem_id();
1457 retry:
1458         folio = NULL;
1459 #ifdef CONFIG_CMA
1460         {
1461                 int node;
1462
1463                 if (hugetlb_cma[nid])
1464                         folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1465
1466                 if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1467                         for_each_node_mask(node, *nodemask) {
1468                                 if (node == nid || !hugetlb_cma[node])
1469                                         continue;
1470
1471                                 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1472                                 if (folio)
1473                                         break;
1474                         }
1475                 }
1476         }
1477 #endif
1478         if (!folio) {
1479                 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1480                 if (!folio)
1481                         return NULL;
1482         }
1483
1484         if (folio_ref_freeze(folio, 1))
1485                 return folio;
1486
1487         pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1488         hugetlb_free_folio(folio);
1489         if (!retried) {
1490                 retried = true;
1491                 goto retry;
1492         }
1493         return NULL;
1494 }
1495
1496 #else /* !CONFIG_CONTIG_ALLOC */
1497 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1498                                         int nid, nodemask_t *nodemask)
1499 {
1500         return NULL;
1501 }
1502 #endif /* CONFIG_CONTIG_ALLOC */
1503
1504 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1505 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1506                                         int nid, nodemask_t *nodemask)
1507 {
1508         return NULL;
1509 }
1510 #endif
1511
1512 /*
1513  * Remove hugetlb folio from lists.
1514  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1515  * folio appears as just a compound page.  Otherwise, wait until after
1516  * allocating vmemmap to clear the flag.
1517  *
1518  * Must be called with hugetlb lock held.
1519  */
1520 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1521                                                         bool adjust_surplus)
1522 {
1523         int nid = folio_nid(folio);
1524
1525         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1526         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1527
1528         lockdep_assert_held(&hugetlb_lock);
1529         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1530                 return;
1531
1532         list_del(&folio->lru);
1533
1534         if (folio_test_hugetlb_freed(folio)) {
1535                 folio_clear_hugetlb_freed(folio);
1536                 h->free_huge_pages--;
1537                 h->free_huge_pages_node[nid]--;
1538         }
1539         if (adjust_surplus) {
1540                 h->surplus_huge_pages--;
1541                 h->surplus_huge_pages_node[nid]--;
1542         }
1543
1544         /*
1545          * We can only clear the hugetlb flag after allocating vmemmap
1546          * pages.  Otherwise, someone (memory error handling) may try to write
1547          * to tail struct pages.
1548          */
1549         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1550                 __folio_clear_hugetlb(folio);
1551
1552         h->nr_huge_pages--;
1553         h->nr_huge_pages_node[nid]--;
1554 }
1555
1556 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1557                              bool adjust_surplus)
1558 {
1559         int nid = folio_nid(folio);
1560
1561         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1562
1563         lockdep_assert_held(&hugetlb_lock);
1564
1565         INIT_LIST_HEAD(&folio->lru);
1566         h->nr_huge_pages++;
1567         h->nr_huge_pages_node[nid]++;
1568
1569         if (adjust_surplus) {
1570                 h->surplus_huge_pages++;
1571                 h->surplus_huge_pages_node[nid]++;
1572         }
1573
1574         __folio_set_hugetlb(folio);
1575         folio_change_private(folio, NULL);
1576         /*
1577          * We have to set hugetlb_vmemmap_optimized again as above
1578          * folio_change_private(folio, NULL) cleared it.
1579          */
1580         folio_set_hugetlb_vmemmap_optimized(folio);
1581
1582         arch_clear_hugetlb_flags(folio);
1583         enqueue_hugetlb_folio(h, folio);
1584 }
1585
1586 static void __update_and_free_hugetlb_folio(struct hstate *h,
1587                                                 struct folio *folio)
1588 {
1589         bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1590
1591         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1592                 return;
1593
1594         /*
1595          * If we don't know which subpages are hwpoisoned, we can't free
1596          * the hugepage, so it's leaked intentionally.
1597          */
1598         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1599                 return;
1600
1601         /*
1602          * If folio is not vmemmap optimized (!clear_flag), then the folio
1603          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1604          * can only be passed hugetlb pages and will BUG otherwise.
1605          */
1606         if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1607                 spin_lock_irq(&hugetlb_lock);
1608                 /*
1609                  * If we cannot allocate vmemmap pages, just refuse to free the
1610                  * page and put the page back on the hugetlb free list and treat
1611                  * as a surplus page.
1612                  */
1613                 add_hugetlb_folio(h, folio, true);
1614                 spin_unlock_irq(&hugetlb_lock);
1615                 return;
1616         }
1617
1618         /*
1619          * If vmemmap pages were allocated above, then we need to clear the
1620          * hugetlb flag under the hugetlb lock.
1621          */
1622         if (folio_test_hugetlb(folio)) {
1623                 spin_lock_irq(&hugetlb_lock);
1624                 __folio_clear_hugetlb(folio);
1625                 spin_unlock_irq(&hugetlb_lock);
1626         }
1627
1628         /*
1629          * Move PageHWPoison flag from head page to the raw error pages,
1630          * which makes any healthy subpages reusable.
1631          */
1632         if (unlikely(folio_test_hwpoison(folio)))
1633                 folio_clear_hugetlb_hwpoison(folio);
1634
1635         folio_ref_unfreeze(folio, 1);
1636
1637         INIT_LIST_HEAD(&folio->_deferred_list);
1638         hugetlb_free_folio(folio);
1639 }
1640
1641 /*
1642  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1643  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1644  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1645  * the vmemmap pages.
1646  *
1647  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1648  * freed and frees them one-by-one. As the page->mapping pointer is going
1649  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1650  * structure of a lockless linked list of huge pages to be freed.
1651  */
1652 static LLIST_HEAD(hpage_freelist);
1653
1654 static void free_hpage_workfn(struct work_struct *work)
1655 {
1656         struct llist_node *node;
1657
1658         node = llist_del_all(&hpage_freelist);
1659
1660         while (node) {
1661                 struct folio *folio;
1662                 struct hstate *h;
1663
1664                 folio = container_of((struct address_space **)node,
1665                                      struct folio, mapping);
1666                 node = node->next;
1667                 folio->mapping = NULL;
1668                 /*
1669                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1670                  * folio_hstate() is going to trigger because a previous call to
1671                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1672                  * not use folio_hstate() directly.
1673                  */
1674                 h = size_to_hstate(folio_size(folio));
1675
1676                 __update_and_free_hugetlb_folio(h, folio);
1677
1678                 cond_resched();
1679         }
1680 }
1681 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1682
1683 static inline void flush_free_hpage_work(struct hstate *h)
1684 {
1685         if (hugetlb_vmemmap_optimizable(h))
1686                 flush_work(&free_hpage_work);
1687 }
1688
1689 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1690                                  bool atomic)
1691 {
1692         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1693                 __update_and_free_hugetlb_folio(h, folio);
1694                 return;
1695         }
1696
1697         /*
1698          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1699          *
1700          * Only call schedule_work() if hpage_freelist is previously
1701          * empty. Otherwise, schedule_work() had been called but the workfn
1702          * hasn't retrieved the list yet.
1703          */
1704         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1705                 schedule_work(&free_hpage_work);
1706 }
1707
1708 static void bulk_vmemmap_restore_error(struct hstate *h,
1709                                         struct list_head *folio_list,
1710                                         struct list_head *non_hvo_folios)
1711 {
1712         struct folio *folio, *t_folio;
1713
1714         if (!list_empty(non_hvo_folios)) {
1715                 /*
1716                  * Free any restored hugetlb pages so that restore of the
1717                  * entire list can be retried.
1718                  * The idea is that in the common case of ENOMEM errors freeing
1719                  * hugetlb pages with vmemmap we will free up memory so that we
1720                  * can allocate vmemmap for more hugetlb pages.
1721                  */
1722                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1723                         list_del(&folio->lru);
1724                         spin_lock_irq(&hugetlb_lock);
1725                         __folio_clear_hugetlb(folio);
1726                         spin_unlock_irq(&hugetlb_lock);
1727                         update_and_free_hugetlb_folio(h, folio, false);
1728                         cond_resched();
1729                 }
1730         } else {
1731                 /*
1732                  * In the case where there are no folios which can be
1733                  * immediately freed, we loop through the list trying to restore
1734                  * vmemmap individually in the hope that someone elsewhere may
1735                  * have done something to cause success (such as freeing some
1736                  * memory).  If unable to restore a hugetlb page, the hugetlb
1737                  * page is made a surplus page and removed from the list.
1738                  * If are able to restore vmemmap and free one hugetlb page, we
1739                  * quit processing the list to retry the bulk operation.
1740                  */
1741                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1742                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1743                                 list_del(&folio->lru);
1744                                 spin_lock_irq(&hugetlb_lock);
1745                                 add_hugetlb_folio(h, folio, true);
1746                                 spin_unlock_irq(&hugetlb_lock);
1747                         } else {
1748                                 list_del(&folio->lru);
1749                                 spin_lock_irq(&hugetlb_lock);
1750                                 __folio_clear_hugetlb(folio);
1751                                 spin_unlock_irq(&hugetlb_lock);
1752                                 update_and_free_hugetlb_folio(h, folio, false);
1753                                 cond_resched();
1754                                 break;
1755                         }
1756         }
1757 }
1758
1759 static void update_and_free_pages_bulk(struct hstate *h,
1760                                                 struct list_head *folio_list)
1761 {
1762         long ret;
1763         struct folio *folio, *t_folio;
1764         LIST_HEAD(non_hvo_folios);
1765
1766         /*
1767          * First allocate required vmemmmap (if necessary) for all folios.
1768          * Carefully handle errors and free up any available hugetlb pages
1769          * in an effort to make forward progress.
1770          */
1771 retry:
1772         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1773         if (ret < 0) {
1774                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1775                 goto retry;
1776         }
1777
1778         /*
1779          * At this point, list should be empty, ret should be >= 0 and there
1780          * should only be pages on the non_hvo_folios list.
1781          * Do note that the non_hvo_folios list could be empty.
1782          * Without HVO enabled, ret will be 0 and there is no need to call
1783          * __folio_clear_hugetlb as this was done previously.
1784          */
1785         VM_WARN_ON(!list_empty(folio_list));
1786         VM_WARN_ON(ret < 0);
1787         if (!list_empty(&non_hvo_folios) && ret) {
1788                 spin_lock_irq(&hugetlb_lock);
1789                 list_for_each_entry(folio, &non_hvo_folios, lru)
1790                         __folio_clear_hugetlb(folio);
1791                 spin_unlock_irq(&hugetlb_lock);
1792         }
1793
1794         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1795                 update_and_free_hugetlb_folio(h, folio, false);
1796                 cond_resched();
1797         }
1798 }
1799
1800 struct hstate *size_to_hstate(unsigned long size)
1801 {
1802         struct hstate *h;
1803
1804         for_each_hstate(h) {
1805                 if (huge_page_size(h) == size)
1806                         return h;
1807         }
1808         return NULL;
1809 }
1810
1811 void free_huge_folio(struct folio *folio)
1812 {
1813         /*
1814          * Can't pass hstate in here because it is called from the
1815          * generic mm code.
1816          */
1817         struct hstate *h = folio_hstate(folio);
1818         int nid = folio_nid(folio);
1819         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1820         bool restore_reserve;
1821         unsigned long flags;
1822
1823         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1824         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1825
1826         hugetlb_set_folio_subpool(folio, NULL);
1827         if (folio_test_anon(folio))
1828                 __ClearPageAnonExclusive(&folio->page);
1829         folio->mapping = NULL;
1830         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1831         folio_clear_hugetlb_restore_reserve(folio);
1832
1833         /*
1834          * If HPageRestoreReserve was set on page, page allocation consumed a
1835          * reservation.  If the page was associated with a subpool, there
1836          * would have been a page reserved in the subpool before allocation
1837          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1838          * reservation, do not call hugepage_subpool_put_pages() as this will
1839          * remove the reserved page from the subpool.
1840          */
1841         if (!restore_reserve) {
1842                 /*
1843                  * A return code of zero implies that the subpool will be
1844                  * under its minimum size if the reservation is not restored
1845                  * after page is free.  Therefore, force restore_reserve
1846                  * operation.
1847                  */
1848                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1849                         restore_reserve = true;
1850         }
1851
1852         spin_lock_irqsave(&hugetlb_lock, flags);
1853         folio_clear_hugetlb_migratable(folio);
1854         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1855                                      pages_per_huge_page(h), folio);
1856         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1857                                           pages_per_huge_page(h), folio);
1858         lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1859         mem_cgroup_uncharge(folio);
1860         if (restore_reserve)
1861                 h->resv_huge_pages++;
1862
1863         if (folio_test_hugetlb_temporary(folio)) {
1864                 remove_hugetlb_folio(h, folio, false);
1865                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1866                 update_and_free_hugetlb_folio(h, folio, true);
1867         } else if (h->surplus_huge_pages_node[nid]) {
1868                 /* remove the page from active list */
1869                 remove_hugetlb_folio(h, folio, true);
1870                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1871                 update_and_free_hugetlb_folio(h, folio, true);
1872         } else {
1873                 arch_clear_hugetlb_flags(folio);
1874                 enqueue_hugetlb_folio(h, folio);
1875                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1876         }
1877 }
1878
1879 /*
1880  * Must be called with the hugetlb lock held
1881  */
1882 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1883 {
1884         lockdep_assert_held(&hugetlb_lock);
1885         h->nr_huge_pages++;
1886         h->nr_huge_pages_node[nid]++;
1887 }
1888
1889 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1890 {
1891         __folio_set_hugetlb(folio);
1892         INIT_LIST_HEAD(&folio->lru);
1893         hugetlb_set_folio_subpool(folio, NULL);
1894         set_hugetlb_cgroup(folio, NULL);
1895         set_hugetlb_cgroup_rsvd(folio, NULL);
1896 }
1897
1898 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1899 {
1900         init_new_hugetlb_folio(h, folio);
1901         hugetlb_vmemmap_optimize_folio(h, folio);
1902 }
1903
1904 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1905 {
1906         __prep_new_hugetlb_folio(h, folio);
1907         spin_lock_irq(&hugetlb_lock);
1908         __prep_account_new_huge_page(h, nid);
1909         spin_unlock_irq(&hugetlb_lock);
1910 }
1911
1912 /*
1913  * Find and lock address space (mapping) in write mode.
1914  *
1915  * Upon entry, the folio is locked which means that folio_mapping() is
1916  * stable.  Due to locking order, we can only trylock_write.  If we can
1917  * not get the lock, simply return NULL to caller.
1918  */
1919 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1920 {
1921         struct address_space *mapping = folio_mapping(folio);
1922
1923         if (!mapping)
1924                 return mapping;
1925
1926         if (i_mmap_trylock_write(mapping))
1927                 return mapping;
1928
1929         return NULL;
1930 }
1931
1932 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1933                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1934                 nodemask_t *node_alloc_noretry)
1935 {
1936         int order = huge_page_order(h);
1937         struct folio *folio;
1938         bool alloc_try_hard = true;
1939         bool retry = true;
1940
1941         /*
1942          * By default we always try hard to allocate the folio with
1943          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
1944          * a loop (to adjust global huge page counts) and previous allocation
1945          * failed, do not continue to try hard on the same node.  Use the
1946          * node_alloc_noretry bitmap to manage this state information.
1947          */
1948         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1949                 alloc_try_hard = false;
1950         if (alloc_try_hard)
1951                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1952         if (nid == NUMA_NO_NODE)
1953                 nid = numa_mem_id();
1954 retry:
1955         folio = __folio_alloc(gfp_mask, order, nid, nmask);
1956         /* Ensure hugetlb folio won't have large_rmappable flag set. */
1957         if (folio)
1958                 folio_clear_large_rmappable(folio);
1959
1960         if (folio && !folio_ref_freeze(folio, 1)) {
1961                 folio_put(folio);
1962                 if (retry) {    /* retry once */
1963                         retry = false;
1964                         goto retry;
1965                 }
1966                 /* WOW!  twice in a row. */
1967                 pr_warn("HugeTLB unexpected inflated folio ref count\n");
1968                 folio = NULL;
1969         }
1970
1971         /*
1972          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973          * folio this indicates an overall state change.  Clear bit so
1974          * that we resume normal 'try hard' allocations.
1975          */
1976         if (node_alloc_noretry && folio && !alloc_try_hard)
1977                 node_clear(nid, *node_alloc_noretry);
1978
1979         /*
1980          * If we tried hard to get a folio but failed, set bit so that
1981          * subsequent attempts will not try as hard until there is an
1982          * overall state change.
1983          */
1984         if (node_alloc_noretry && !folio && alloc_try_hard)
1985                 node_set(nid, *node_alloc_noretry);
1986
1987         if (!folio) {
1988                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989                 return NULL;
1990         }
1991
1992         __count_vm_event(HTLB_BUDDY_PGALLOC);
1993         return folio;
1994 }
1995
1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998                 nodemask_t *node_alloc_noretry)
1999 {
2000         struct folio *folio;
2001
2002         if (hstate_is_gigantic(h))
2003                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004         else
2005                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006         if (folio)
2007                 init_new_hugetlb_folio(h, folio);
2008         return folio;
2009 }
2010
2011 /*
2012  * Common helper to allocate a fresh hugetlb page. All specific allocators
2013  * should use this function to get new hugetlb pages
2014  *
2015  * Note that returned page is 'frozen':  ref count of head page and all tail
2016  * pages is zero.
2017  */
2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021         struct folio *folio;
2022
2023         if (hstate_is_gigantic(h))
2024                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025         else
2026                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027         if (!folio)
2028                 return NULL;
2029
2030         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031         return folio;
2032 }
2033
2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035                                         struct list_head *folio_list)
2036 {
2037         unsigned long flags;
2038         struct folio *folio, *tmp_f;
2039
2040         /* Send list for bulk vmemmap optimization processing */
2041         hugetlb_vmemmap_optimize_folios(h, folio_list);
2042
2043         /* Add all new pool pages to free lists in one lock cycle */
2044         spin_lock_irqsave(&hugetlb_lock, flags);
2045         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046                 __prep_account_new_huge_page(h, folio_nid(folio));
2047                 enqueue_hugetlb_folio(h, folio);
2048         }
2049         spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051
2052 /*
2053  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2054  * will later be added to the appropriate hugetlb pool.
2055  */
2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057                                         nodemask_t *nodes_allowed,
2058                                         nodemask_t *node_alloc_noretry,
2059                                         int *next_node)
2060 {
2061         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062         int nr_nodes, node;
2063
2064         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065                 struct folio *folio;
2066
2067                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068                                         nodes_allowed, node_alloc_noretry);
2069                 if (folio)
2070                         return folio;
2071         }
2072
2073         return NULL;
2074 }
2075
2076 /*
2077  * Remove huge page from pool from next node to free.  Attempt to keep
2078  * persistent huge pages more or less balanced over allowed nodes.
2079  * This routine only 'removes' the hugetlb page.  The caller must make
2080  * an additional call to free the page to low level allocators.
2081  * Called with hugetlb_lock locked.
2082  */
2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084                 nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086         int nr_nodes, node;
2087         struct folio *folio = NULL;
2088
2089         lockdep_assert_held(&hugetlb_lock);
2090         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091                 /*
2092                  * If we're returning unused surplus pages, only examine
2093                  * nodes with surplus pages.
2094                  */
2095                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096                     !list_empty(&h->hugepage_freelists[node])) {
2097                         folio = list_entry(h->hugepage_freelists[node].next,
2098                                           struct folio, lru);
2099                         remove_hugetlb_folio(h, folio, acct_surplus);
2100                         break;
2101                 }
2102         }
2103
2104         return folio;
2105 }
2106
2107 /*
2108  * Dissolve a given free hugetlb folio into free buddy pages. This function
2109  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110  * This function returns values like below:
2111  *
2112  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113  *           when the system is under memory pressure and the feature of
2114  *           freeing unused vmemmap pages associated with each hugetlb page
2115  *           is enabled.
2116  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2117  *           (allocated or reserved.)
2118  *       0:  successfully dissolved free hugepages or the page is not a
2119  *           hugepage (considered as already dissolved)
2120  */
2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123         int rc = -EBUSY;
2124
2125 retry:
2126         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2127         if (!folio_test_hugetlb(folio))
2128                 return 0;
2129
2130         spin_lock_irq(&hugetlb_lock);
2131         if (!folio_test_hugetlb(folio)) {
2132                 rc = 0;
2133                 goto out;
2134         }
2135
2136         if (!folio_ref_count(folio)) {
2137                 struct hstate *h = folio_hstate(folio);
2138                 if (!available_huge_pages(h))
2139                         goto out;
2140
2141                 /*
2142                  * We should make sure that the page is already on the free list
2143                  * when it is dissolved.
2144                  */
2145                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2146                         spin_unlock_irq(&hugetlb_lock);
2147                         cond_resched();
2148
2149                         /*
2150                          * Theoretically, we should return -EBUSY when we
2151                          * encounter this race. In fact, we have a chance
2152                          * to successfully dissolve the page if we do a
2153                          * retry. Because the race window is quite small.
2154                          * If we seize this opportunity, it is an optimization
2155                          * for increasing the success rate of dissolving page.
2156                          */
2157                         goto retry;
2158                 }
2159
2160                 remove_hugetlb_folio(h, folio, false);
2161                 h->max_huge_pages--;
2162                 spin_unlock_irq(&hugetlb_lock);
2163
2164                 /*
2165                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2166                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2167                  * free the page if it can not allocate required vmemmap.  We
2168                  * need to adjust max_huge_pages if the page is not freed.
2169                  * Attempt to allocate vmemmmap here so that we can take
2170                  * appropriate action on failure.
2171                  *
2172                  * The folio_test_hugetlb check here is because
2173                  * remove_hugetlb_folio will clear hugetlb folio flag for
2174                  * non-vmemmap optimized hugetlb folios.
2175                  */
2176                 if (folio_test_hugetlb(folio)) {
2177                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2178                         if (rc) {
2179                                 spin_lock_irq(&hugetlb_lock);
2180                                 add_hugetlb_folio(h, folio, false);
2181                                 h->max_huge_pages++;
2182                                 goto out;
2183                         }
2184                 } else
2185                         rc = 0;
2186
2187                 update_and_free_hugetlb_folio(h, folio, false);
2188                 return rc;
2189         }
2190 out:
2191         spin_unlock_irq(&hugetlb_lock);
2192         return rc;
2193 }
2194
2195 /*
2196  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2197  * make specified memory blocks removable from the system.
2198  * Note that this will dissolve a free gigantic hugepage completely, if any
2199  * part of it lies within the given range.
2200  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2201  * free hugetlb folios that were dissolved before that error are lost.
2202  */
2203 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2204 {
2205         unsigned long pfn;
2206         struct folio *folio;
2207         int rc = 0;
2208         unsigned int order;
2209         struct hstate *h;
2210
2211         if (!hugepages_supported())
2212                 return rc;
2213
2214         order = huge_page_order(&default_hstate);
2215         for_each_hstate(h)
2216                 order = min(order, huge_page_order(h));
2217
2218         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2219                 folio = pfn_folio(pfn);
2220                 rc = dissolve_free_hugetlb_folio(folio);
2221                 if (rc)
2222                         break;
2223         }
2224
2225         return rc;
2226 }
2227
2228 /*
2229  * Allocates a fresh surplus page from the page allocator.
2230  */
2231 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2232                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2233 {
2234         struct folio *folio = NULL;
2235
2236         if (hstate_is_gigantic(h))
2237                 return NULL;
2238
2239         spin_lock_irq(&hugetlb_lock);
2240         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2241                 goto out_unlock;
2242         spin_unlock_irq(&hugetlb_lock);
2243
2244         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2245         if (!folio)
2246                 return NULL;
2247
2248         spin_lock_irq(&hugetlb_lock);
2249         /*
2250          * We could have raced with the pool size change.
2251          * Double check that and simply deallocate the new page
2252          * if we would end up overcommiting the surpluses. Abuse
2253          * temporary page to workaround the nasty free_huge_folio
2254          * codeflow
2255          */
2256         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2257                 folio_set_hugetlb_temporary(folio);
2258                 spin_unlock_irq(&hugetlb_lock);
2259                 free_huge_folio(folio);
2260                 return NULL;
2261         }
2262
2263         h->surplus_huge_pages++;
2264         h->surplus_huge_pages_node[folio_nid(folio)]++;
2265
2266 out_unlock:
2267         spin_unlock_irq(&hugetlb_lock);
2268
2269         return folio;
2270 }
2271
2272 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2273                                      int nid, nodemask_t *nmask)
2274 {
2275         struct folio *folio;
2276
2277         if (hstate_is_gigantic(h))
2278                 return NULL;
2279
2280         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2281         if (!folio)
2282                 return NULL;
2283
2284         /* fresh huge pages are frozen */
2285         folio_ref_unfreeze(folio, 1);
2286         /*
2287          * We do not account these pages as surplus because they are only
2288          * temporary and will be released properly on the last reference
2289          */
2290         folio_set_hugetlb_temporary(folio);
2291
2292         return folio;
2293 }
2294
2295 /*
2296  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2297  */
2298 static
2299 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2300                 struct vm_area_struct *vma, unsigned long addr)
2301 {
2302         struct folio *folio = NULL;
2303         struct mempolicy *mpol;
2304         gfp_t gfp_mask = htlb_alloc_mask(h);
2305         int nid;
2306         nodemask_t *nodemask;
2307
2308         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2309         if (mpol_is_preferred_many(mpol)) {
2310                 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2311
2312                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2313
2314                 /* Fallback to all nodes if page==NULL */
2315                 nodemask = NULL;
2316         }
2317
2318         if (!folio)
2319                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2320         mpol_cond_put(mpol);
2321         return folio;
2322 }
2323
2324 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2325                 nodemask_t *nmask, gfp_t gfp_mask)
2326 {
2327         struct folio *folio;
2328
2329         spin_lock_irq(&hugetlb_lock);
2330         folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2331                                                nmask);
2332         if (folio) {
2333                 VM_BUG_ON(!h->resv_huge_pages);
2334                 h->resv_huge_pages--;
2335         }
2336
2337         spin_unlock_irq(&hugetlb_lock);
2338         return folio;
2339 }
2340
2341 /* folio migration callback function */
2342 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2343                 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2344 {
2345         spin_lock_irq(&hugetlb_lock);
2346         if (available_huge_pages(h)) {
2347                 struct folio *folio;
2348
2349                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2350                                                 preferred_nid, nmask);
2351                 if (folio) {
2352                         spin_unlock_irq(&hugetlb_lock);
2353                         return folio;
2354                 }
2355         }
2356         spin_unlock_irq(&hugetlb_lock);
2357
2358         /* We cannot fallback to other nodes, as we could break the per-node pool. */
2359         if (!allow_alloc_fallback)
2360                 gfp_mask |= __GFP_THISNODE;
2361
2362         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2363 }
2364
2365 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2366 {
2367 #ifdef CONFIG_NUMA
2368         struct mempolicy *mpol = get_task_policy(current);
2369
2370         /*
2371          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2372          * (from policy_nodemask) specifically for hugetlb case
2373          */
2374         if (mpol->mode == MPOL_BIND &&
2375                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2376                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2377                 return &mpol->nodes;
2378 #endif
2379         return NULL;
2380 }
2381
2382 /*
2383  * Increase the hugetlb pool such that it can accommodate a reservation
2384  * of size 'delta'.
2385  */
2386 static int gather_surplus_pages(struct hstate *h, long delta)
2387         __must_hold(&hugetlb_lock)
2388 {
2389         LIST_HEAD(surplus_list);
2390         struct folio *folio, *tmp;
2391         int ret;
2392         long i;
2393         long needed, allocated;
2394         bool alloc_ok = true;
2395         int node;
2396         nodemask_t *mbind_nodemask, alloc_nodemask;
2397
2398         mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2399         if (mbind_nodemask)
2400                 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2401         else
2402                 alloc_nodemask = cpuset_current_mems_allowed;
2403
2404         lockdep_assert_held(&hugetlb_lock);
2405         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2406         if (needed <= 0) {
2407                 h->resv_huge_pages += delta;
2408                 return 0;
2409         }
2410
2411         allocated = 0;
2412
2413         ret = -ENOMEM;
2414 retry:
2415         spin_unlock_irq(&hugetlb_lock);
2416         for (i = 0; i < needed; i++) {
2417                 folio = NULL;
2418
2419                 /* Prioritize current node */
2420                 if (node_isset(numa_mem_id(), alloc_nodemask))
2421                         folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2422                                         numa_mem_id(), NULL);
2423
2424                 if (!folio) {
2425                         for_each_node_mask(node, alloc_nodemask) {
2426                                 if (node == numa_mem_id())
2427                                         continue;
2428                                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2429                                                 node, NULL);
2430                                 if (folio)
2431                                         break;
2432                         }
2433                 }
2434                 if (!folio) {
2435                         alloc_ok = false;
2436                         break;
2437                 }
2438                 list_add(&folio->lru, &surplus_list);
2439                 cond_resched();
2440         }
2441         allocated += i;
2442
2443         /*
2444          * After retaking hugetlb_lock, we need to recalculate 'needed'
2445          * because either resv_huge_pages or free_huge_pages may have changed.
2446          */
2447         spin_lock_irq(&hugetlb_lock);
2448         needed = (h->resv_huge_pages + delta) -
2449                         (h->free_huge_pages + allocated);
2450         if (needed > 0) {
2451                 if (alloc_ok)
2452                         goto retry;
2453                 /*
2454                  * We were not able to allocate enough pages to
2455                  * satisfy the entire reservation so we free what
2456                  * we've allocated so far.
2457                  */
2458                 goto free;
2459         }
2460         /*
2461          * The surplus_list now contains _at_least_ the number of extra pages
2462          * needed to accommodate the reservation.  Add the appropriate number
2463          * of pages to the hugetlb pool and free the extras back to the buddy
2464          * allocator.  Commit the entire reservation here to prevent another
2465          * process from stealing the pages as they are added to the pool but
2466          * before they are reserved.
2467          */
2468         needed += allocated;
2469         h->resv_huge_pages += delta;
2470         ret = 0;
2471
2472         /* Free the needed pages to the hugetlb pool */
2473         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2474                 if ((--needed) < 0)
2475                         break;
2476                 /* Add the page to the hugetlb allocator */
2477                 enqueue_hugetlb_folio(h, folio);
2478         }
2479 free:
2480         spin_unlock_irq(&hugetlb_lock);
2481
2482         /*
2483          * Free unnecessary surplus pages to the buddy allocator.
2484          * Pages have no ref count, call free_huge_folio directly.
2485          */
2486         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2487                 free_huge_folio(folio);
2488         spin_lock_irq(&hugetlb_lock);
2489
2490         return ret;
2491 }
2492
2493 /*
2494  * This routine has two main purposes:
2495  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2496  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2497  *    to the associated reservation map.
2498  * 2) Free any unused surplus pages that may have been allocated to satisfy
2499  *    the reservation.  As many as unused_resv_pages may be freed.
2500  */
2501 static void return_unused_surplus_pages(struct hstate *h,
2502                                         unsigned long unused_resv_pages)
2503 {
2504         unsigned long nr_pages;
2505         LIST_HEAD(page_list);
2506
2507         lockdep_assert_held(&hugetlb_lock);
2508         /* Uncommit the reservation */
2509         h->resv_huge_pages -= unused_resv_pages;
2510
2511         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2512                 goto out;
2513
2514         /*
2515          * Part (or even all) of the reservation could have been backed
2516          * by pre-allocated pages. Only free surplus pages.
2517          */
2518         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2519
2520         /*
2521          * We want to release as many surplus pages as possible, spread
2522          * evenly across all nodes with memory. Iterate across these nodes
2523          * until we can no longer free unreserved surplus pages. This occurs
2524          * when the nodes with surplus pages have no free pages.
2525          * remove_pool_hugetlb_folio() will balance the freed pages across the
2526          * on-line nodes with memory and will handle the hstate accounting.
2527          */
2528         while (nr_pages--) {
2529                 struct folio *folio;
2530
2531                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2532                 if (!folio)
2533                         goto out;
2534
2535                 list_add(&folio->lru, &page_list);
2536         }
2537
2538 out:
2539         spin_unlock_irq(&hugetlb_lock);
2540         update_and_free_pages_bulk(h, &page_list);
2541         spin_lock_irq(&hugetlb_lock);
2542 }
2543
2544
2545 /*
2546  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2547  * are used by the huge page allocation routines to manage reservations.
2548  *
2549  * vma_needs_reservation is called to determine if the huge page at addr
2550  * within the vma has an associated reservation.  If a reservation is
2551  * needed, the value 1 is returned.  The caller is then responsible for
2552  * managing the global reservation and subpool usage counts.  After
2553  * the huge page has been allocated, vma_commit_reservation is called
2554  * to add the page to the reservation map.  If the page allocation fails,
2555  * the reservation must be ended instead of committed.  vma_end_reservation
2556  * is called in such cases.
2557  *
2558  * In the normal case, vma_commit_reservation returns the same value
2559  * as the preceding vma_needs_reservation call.  The only time this
2560  * is not the case is if a reserve map was changed between calls.  It
2561  * is the responsibility of the caller to notice the difference and
2562  * take appropriate action.
2563  *
2564  * vma_add_reservation is used in error paths where a reservation must
2565  * be restored when a newly allocated huge page must be freed.  It is
2566  * to be called after calling vma_needs_reservation to determine if a
2567  * reservation exists.
2568  *
2569  * vma_del_reservation is used in error paths where an entry in the reserve
2570  * map was created during huge page allocation and must be removed.  It is to
2571  * be called after calling vma_needs_reservation to determine if a reservation
2572  * exists.
2573  */
2574 enum vma_resv_mode {
2575         VMA_NEEDS_RESV,
2576         VMA_COMMIT_RESV,
2577         VMA_END_RESV,
2578         VMA_ADD_RESV,
2579         VMA_DEL_RESV,
2580 };
2581 static long __vma_reservation_common(struct hstate *h,
2582                                 struct vm_area_struct *vma, unsigned long addr,
2583                                 enum vma_resv_mode mode)
2584 {
2585         struct resv_map *resv;
2586         pgoff_t idx;
2587         long ret;
2588         long dummy_out_regions_needed;
2589
2590         resv = vma_resv_map(vma);
2591         if (!resv)
2592                 return 1;
2593
2594         idx = vma_hugecache_offset(h, vma, addr);
2595         switch (mode) {
2596         case VMA_NEEDS_RESV:
2597                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2598                 /* We assume that vma_reservation_* routines always operate on
2599                  * 1 page, and that adding to resv map a 1 page entry can only
2600                  * ever require 1 region.
2601                  */
2602                 VM_BUG_ON(dummy_out_regions_needed != 1);
2603                 break;
2604         case VMA_COMMIT_RESV:
2605                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2606                 /* region_add calls of range 1 should never fail. */
2607                 VM_BUG_ON(ret < 0);
2608                 break;
2609         case VMA_END_RESV:
2610                 region_abort(resv, idx, idx + 1, 1);
2611                 ret = 0;
2612                 break;
2613         case VMA_ADD_RESV:
2614                 if (vma->vm_flags & VM_MAYSHARE) {
2615                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2616                         /* region_add calls of range 1 should never fail. */
2617                         VM_BUG_ON(ret < 0);
2618                 } else {
2619                         region_abort(resv, idx, idx + 1, 1);
2620                         ret = region_del(resv, idx, idx + 1);
2621                 }
2622                 break;
2623         case VMA_DEL_RESV:
2624                 if (vma->vm_flags & VM_MAYSHARE) {
2625                         region_abort(resv, idx, idx + 1, 1);
2626                         ret = region_del(resv, idx, idx + 1);
2627                 } else {
2628                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2629                         /* region_add calls of range 1 should never fail. */
2630                         VM_BUG_ON(ret < 0);
2631                 }
2632                 break;
2633         default:
2634                 BUG();
2635         }
2636
2637         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2638                 return ret;
2639         /*
2640          * We know private mapping must have HPAGE_RESV_OWNER set.
2641          *
2642          * In most cases, reserves always exist for private mappings.
2643          * However, a file associated with mapping could have been
2644          * hole punched or truncated after reserves were consumed.
2645          * As subsequent fault on such a range will not use reserves.
2646          * Subtle - The reserve map for private mappings has the
2647          * opposite meaning than that of shared mappings.  If NO
2648          * entry is in the reserve map, it means a reservation exists.
2649          * If an entry exists in the reserve map, it means the
2650          * reservation has already been consumed.  As a result, the
2651          * return value of this routine is the opposite of the
2652          * value returned from reserve map manipulation routines above.
2653          */
2654         if (ret > 0)
2655                 return 0;
2656         if (ret == 0)
2657                 return 1;
2658         return ret;
2659 }
2660
2661 static long vma_needs_reservation(struct hstate *h,
2662                         struct vm_area_struct *vma, unsigned long addr)
2663 {
2664         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2665 }
2666
2667 static long vma_commit_reservation(struct hstate *h,
2668                         struct vm_area_struct *vma, unsigned long addr)
2669 {
2670         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2671 }
2672
2673 static void vma_end_reservation(struct hstate *h,
2674                         struct vm_area_struct *vma, unsigned long addr)
2675 {
2676         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2677 }
2678
2679 static long vma_add_reservation(struct hstate *h,
2680                         struct vm_area_struct *vma, unsigned long addr)
2681 {
2682         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2683 }
2684
2685 static long vma_del_reservation(struct hstate *h,
2686                         struct vm_area_struct *vma, unsigned long addr)
2687 {
2688         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2689 }
2690
2691 /*
2692  * This routine is called to restore reservation information on error paths.
2693  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2694  * and the hugetlb mutex should remain held when calling this routine.
2695  *
2696  * It handles two specific cases:
2697  * 1) A reservation was in place and the folio consumed the reservation.
2698  *    hugetlb_restore_reserve is set in the folio.
2699  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2700  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2701  *
2702  * In case 1, free_huge_folio later in the error path will increment the
2703  * global reserve count.  But, free_huge_folio does not have enough context
2704  * to adjust the reservation map.  This case deals primarily with private
2705  * mappings.  Adjust the reserve map here to be consistent with global
2706  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2707  * reserve map indicates there is a reservation present.
2708  *
2709  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2710  */
2711 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2712                         unsigned long address, struct folio *folio)
2713 {
2714         long rc = vma_needs_reservation(h, vma, address);
2715
2716         if (folio_test_hugetlb_restore_reserve(folio)) {
2717                 if (unlikely(rc < 0))
2718                         /*
2719                          * Rare out of memory condition in reserve map
2720                          * manipulation.  Clear hugetlb_restore_reserve so
2721                          * that global reserve count will not be incremented
2722                          * by free_huge_folio.  This will make it appear
2723                          * as though the reservation for this folio was
2724                          * consumed.  This may prevent the task from
2725                          * faulting in the folio at a later time.  This
2726                          * is better than inconsistent global huge page
2727                          * accounting of reserve counts.
2728                          */
2729                         folio_clear_hugetlb_restore_reserve(folio);
2730                 else if (rc)
2731                         (void)vma_add_reservation(h, vma, address);
2732                 else
2733                         vma_end_reservation(h, vma, address);
2734         } else {
2735                 if (!rc) {
2736                         /*
2737                          * This indicates there is an entry in the reserve map
2738                          * not added by alloc_hugetlb_folio.  We know it was added
2739                          * before the alloc_hugetlb_folio call, otherwise
2740                          * hugetlb_restore_reserve would be set on the folio.
2741                          * Remove the entry so that a subsequent allocation
2742                          * does not consume a reservation.
2743                          */
2744                         rc = vma_del_reservation(h, vma, address);
2745                         if (rc < 0)
2746                                 /*
2747                                  * VERY rare out of memory condition.  Since
2748                                  * we can not delete the entry, set
2749                                  * hugetlb_restore_reserve so that the reserve
2750                                  * count will be incremented when the folio
2751                                  * is freed.  This reserve will be consumed
2752                                  * on a subsequent allocation.
2753                                  */
2754                                 folio_set_hugetlb_restore_reserve(folio);
2755                 } else if (rc < 0) {
2756                         /*
2757                          * Rare out of memory condition from
2758                          * vma_needs_reservation call.  Memory allocation is
2759                          * only attempted if a new entry is needed.  Therefore,
2760                          * this implies there is not an entry in the
2761                          * reserve map.
2762                          *
2763                          * For shared mappings, no entry in the map indicates
2764                          * no reservation.  We are done.
2765                          */
2766                         if (!(vma->vm_flags & VM_MAYSHARE))
2767                                 /*
2768                                  * For private mappings, no entry indicates
2769                                  * a reservation is present.  Since we can
2770                                  * not add an entry, set hugetlb_restore_reserve
2771                                  * on the folio so reserve count will be
2772                                  * incremented when freed.  This reserve will
2773                                  * be consumed on a subsequent allocation.
2774                                  */
2775                                 folio_set_hugetlb_restore_reserve(folio);
2776                 } else
2777                         /*
2778                          * No reservation present, do nothing
2779                          */
2780                          vma_end_reservation(h, vma, address);
2781         }
2782 }
2783
2784 /*
2785  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2786  * the old one
2787  * @h: struct hstate old page belongs to
2788  * @old_folio: Old folio to dissolve
2789  * @list: List to isolate the page in case we need to
2790  * Returns 0 on success, otherwise negated error.
2791  */
2792 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2793                         struct folio *old_folio, struct list_head *list)
2794 {
2795         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2796         int nid = folio_nid(old_folio);
2797         struct folio *new_folio = NULL;
2798         int ret = 0;
2799
2800 retry:
2801         spin_lock_irq(&hugetlb_lock);
2802         if (!folio_test_hugetlb(old_folio)) {
2803                 /*
2804                  * Freed from under us. Drop new_folio too.
2805                  */
2806                 goto free_new;
2807         } else if (folio_ref_count(old_folio)) {
2808                 bool isolated;
2809
2810                 /*
2811                  * Someone has grabbed the folio, try to isolate it here.
2812                  * Fail with -EBUSY if not possible.
2813                  */
2814                 spin_unlock_irq(&hugetlb_lock);
2815                 isolated = folio_isolate_hugetlb(old_folio, list);
2816                 ret = isolated ? 0 : -EBUSY;
2817                 spin_lock_irq(&hugetlb_lock);
2818                 goto free_new;
2819         } else if (!folio_test_hugetlb_freed(old_folio)) {
2820                 /*
2821                  * Folio's refcount is 0 but it has not been enqueued in the
2822                  * freelist yet. Race window is small, so we can succeed here if
2823                  * we retry.
2824                  */
2825                 spin_unlock_irq(&hugetlb_lock);
2826                 cond_resched();
2827                 goto retry;
2828         } else {
2829                 if (!new_folio) {
2830                         spin_unlock_irq(&hugetlb_lock);
2831                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2832                                                               NULL, NULL);
2833                         if (!new_folio)
2834                                 return -ENOMEM;
2835                         __prep_new_hugetlb_folio(h, new_folio);
2836                         goto retry;
2837                 }
2838
2839                 /*
2840                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2841                  * the freelist and decrease the counters. These will be
2842                  * incremented again when calling __prep_account_new_huge_page()
2843                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2844                  * remain stable since this happens under the lock.
2845                  */
2846                 remove_hugetlb_folio(h, old_folio, false);
2847
2848                 /*
2849                  * Ref count on new_folio is already zero as it was dropped
2850                  * earlier.  It can be directly added to the pool free list.
2851                  */
2852                 __prep_account_new_huge_page(h, nid);
2853                 enqueue_hugetlb_folio(h, new_folio);
2854
2855                 /*
2856                  * Folio has been replaced, we can safely free the old one.
2857                  */
2858                 spin_unlock_irq(&hugetlb_lock);
2859                 update_and_free_hugetlb_folio(h, old_folio, false);
2860         }
2861
2862         return ret;
2863
2864 free_new:
2865         spin_unlock_irq(&hugetlb_lock);
2866         if (new_folio)
2867                 update_and_free_hugetlb_folio(h, new_folio, false);
2868
2869         return ret;
2870 }
2871
2872 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2873 {
2874         struct hstate *h;
2875         struct folio *folio = page_folio(page);
2876         int ret = -EBUSY;
2877
2878         /*
2879          * The page might have been dissolved from under our feet, so make sure
2880          * to carefully check the state under the lock.
2881          * Return success when racing as if we dissolved the page ourselves.
2882          */
2883         spin_lock_irq(&hugetlb_lock);
2884         if (folio_test_hugetlb(folio)) {
2885                 h = folio_hstate(folio);
2886         } else {
2887                 spin_unlock_irq(&hugetlb_lock);
2888                 return 0;
2889         }
2890         spin_unlock_irq(&hugetlb_lock);
2891
2892         /*
2893          * Fence off gigantic pages as there is a cyclic dependency between
2894          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2895          * of bailing out right away without further retrying.
2896          */
2897         if (hstate_is_gigantic(h))
2898                 return -ENOMEM;
2899
2900         if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2901                 ret = 0;
2902         else if (!folio_ref_count(folio))
2903                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2904
2905         return ret;
2906 }
2907
2908 /*
2909  *  replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2910  *  range with new folios.
2911  *  @start_pfn: start pfn of the given pfn range
2912  *  @end_pfn: end pfn of the given pfn range
2913  *  Returns 0 on success, otherwise negated error.
2914  */
2915 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2916 {
2917         struct hstate *h;
2918         struct folio *folio;
2919         int ret = 0;
2920
2921         LIST_HEAD(isolate_list);
2922
2923         while (start_pfn < end_pfn) {
2924                 folio = pfn_folio(start_pfn);
2925                 if (folio_test_hugetlb(folio)) {
2926                         h = folio_hstate(folio);
2927                 } else {
2928                         start_pfn++;
2929                         continue;
2930                 }
2931
2932                 if (!folio_ref_count(folio)) {
2933                         ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2934                                                                &isolate_list);
2935                         if (ret)
2936                                 break;
2937
2938                         putback_movable_pages(&isolate_list);
2939                 }
2940                 start_pfn++;
2941         }
2942
2943         return ret;
2944 }
2945
2946 typedef enum {
2947         /*
2948          * For either 0/1: we checked the per-vma resv map, and one resv
2949          * count either can be reused (0), or an extra needed (1).
2950          */
2951         MAP_CHG_REUSE = 0,
2952         MAP_CHG_NEEDED = 1,
2953         /*
2954          * Cannot use per-vma resv count can be used, hence a new resv
2955          * count is enforced.
2956          *
2957          * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2958          * that currently vma_needs_reservation() has an unwanted side
2959          * effect to either use end() or commit() to complete the
2960          * transaction.  Hence it needs to differenciate from NEEDED.
2961          */
2962         MAP_CHG_ENFORCED = 2,
2963 } map_chg_state;
2964
2965 /*
2966  * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2967  * faults of hugetlb private mappings on top of a non-page-cache folio (in
2968  * which case even if there's a private vma resv map it won't cover such
2969  * allocation).  New call sites should (probably) never set it to true!!
2970  * When it's set, the allocation will bypass all vma level reservations.
2971  */
2972 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2973                                     unsigned long addr, bool cow_from_owner)
2974 {
2975         struct hugepage_subpool *spool = subpool_vma(vma);
2976         struct hstate *h = hstate_vma(vma);
2977         struct folio *folio;
2978         long retval, gbl_chg;
2979         map_chg_state map_chg;
2980         int ret, idx;
2981         struct hugetlb_cgroup *h_cg = NULL;
2982         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2983
2984         idx = hstate_index(h);
2985
2986         /* Whether we need a separate per-vma reservation? */
2987         if (cow_from_owner) {
2988                 /*
2989                  * Special case!  Since it's a CoW on top of a reserved
2990                  * page, the private resv map doesn't count.  So it cannot
2991                  * consume the per-vma resv map even if it's reserved.
2992                  */
2993                 map_chg = MAP_CHG_ENFORCED;
2994         } else {
2995                 /*
2996                  * Examine the region/reserve map to determine if the process
2997                  * has a reservation for the page to be allocated.  A return
2998                  * code of zero indicates a reservation exists (no change).
2999                  */
3000                 retval = vma_needs_reservation(h, vma, addr);
3001                 if (retval < 0)
3002                         return ERR_PTR(-ENOMEM);
3003                 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3004         }
3005
3006         /*
3007          * Whether we need a separate global reservation?
3008          *
3009          * Processes that did not create the mapping will have no
3010          * reserves as indicated by the region/reserve map. Check
3011          * that the allocation will not exceed the subpool limit.
3012          * Or if it can get one from the pool reservation directly.
3013          */
3014         if (map_chg) {
3015                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3016                 if (gbl_chg < 0)
3017                         goto out_end_reservation;
3018         } else {
3019                 /*
3020                  * If we have the vma reservation ready, no need for extra
3021                  * global reservation.
3022                  */
3023                 gbl_chg = 0;
3024         }
3025
3026         /*
3027          * If this allocation is not consuming a per-vma reservation,
3028          * charge the hugetlb cgroup now.
3029          */
3030         if (map_chg) {
3031                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3032                         idx, pages_per_huge_page(h), &h_cg);
3033                 if (ret)
3034                         goto out_subpool_put;
3035         }
3036
3037         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3038         if (ret)
3039                 goto out_uncharge_cgroup_reservation;
3040
3041         spin_lock_irq(&hugetlb_lock);
3042         /*
3043          * glb_chg is passed to indicate whether or not a page must be taken
3044          * from the global free pool (global change).  gbl_chg == 0 indicates
3045          * a reservation exists for the allocation.
3046          */
3047         folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3048         if (!folio) {
3049                 spin_unlock_irq(&hugetlb_lock);
3050                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3051                 if (!folio)
3052                         goto out_uncharge_cgroup;
3053                 spin_lock_irq(&hugetlb_lock);
3054                 list_add(&folio->lru, &h->hugepage_activelist);
3055                 folio_ref_unfreeze(folio, 1);
3056                 /* Fall through */
3057         }
3058
3059         /*
3060          * Either dequeued or buddy-allocated folio needs to add special
3061          * mark to the folio when it consumes a global reservation.
3062          */
3063         if (!gbl_chg) {
3064                 folio_set_hugetlb_restore_reserve(folio);
3065                 h->resv_huge_pages--;
3066         }
3067
3068         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3069         /* If allocation is not consuming a reservation, also store the
3070          * hugetlb_cgroup pointer on the page.
3071          */
3072         if (map_chg) {
3073                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3074                                                   h_cg, folio);
3075         }
3076
3077         spin_unlock_irq(&hugetlb_lock);
3078
3079         hugetlb_set_folio_subpool(folio, spool);
3080
3081         if (map_chg != MAP_CHG_ENFORCED) {
3082                 /* commit() is only needed if the map_chg is not enforced */
3083                 retval = vma_commit_reservation(h, vma, addr);
3084                 /*
3085                  * Check for possible race conditions. When it happens..
3086                  * The page was added to the reservation map between
3087                  * vma_needs_reservation and vma_commit_reservation.
3088                  * This indicates a race with hugetlb_reserve_pages.
3089                  * Adjust for the subpool count incremented above AND
3090                  * in hugetlb_reserve_pages for the same page.  Also,
3091                  * the reservation count added in hugetlb_reserve_pages
3092                  * no longer applies.
3093                  */
3094                 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3095                         long rsv_adjust;
3096
3097                         rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3098                         hugetlb_acct_memory(h, -rsv_adjust);
3099                         if (map_chg) {
3100                                 spin_lock_irq(&hugetlb_lock);
3101                                 hugetlb_cgroup_uncharge_folio_rsvd(
3102                                     hstate_index(h), pages_per_huge_page(h),
3103                                     folio);
3104                                 spin_unlock_irq(&hugetlb_lock);
3105                         }
3106                 }
3107         }
3108
3109         ret = mem_cgroup_charge_hugetlb(folio, gfp);
3110         /*
3111          * Unconditionally increment NR_HUGETLB here. If it turns out that
3112          * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3113          * decrement NR_HUGETLB.
3114          */
3115         lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3116
3117         if (ret == -ENOMEM) {
3118                 free_huge_folio(folio);
3119                 return ERR_PTR(-ENOMEM);
3120         }
3121
3122         return folio;
3123
3124 out_uncharge_cgroup:
3125         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3126 out_uncharge_cgroup_reservation:
3127         if (map_chg)
3128                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3129                                                     h_cg);
3130 out_subpool_put:
3131         if (map_chg)
3132                 hugepage_subpool_put_pages(spool, 1);
3133 out_end_reservation:
3134         if (map_chg != MAP_CHG_ENFORCED)
3135                 vma_end_reservation(h, vma, addr);
3136         return ERR_PTR(-ENOSPC);
3137 }
3138
3139 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3140         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3141 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3142 {
3143         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3144         int nr_nodes, node = nid;
3145
3146         /* do node specific alloc */
3147         if (nid != NUMA_NO_NODE) {
3148                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3149                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3150                 if (!m)
3151                         return 0;
3152                 goto found;
3153         }
3154         /* allocate from next node when distributing huge pages */
3155         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3156                 m = memblock_alloc_try_nid_raw(
3157                                 huge_page_size(h), huge_page_size(h),
3158                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3159                 /*
3160                  * Use the beginning of the huge page to store the
3161                  * huge_bootmem_page struct (until gather_bootmem
3162                  * puts them into the mem_map).
3163                  */
3164                 if (!m)
3165                         return 0;
3166                 goto found;
3167         }
3168
3169 found:
3170
3171         /*
3172          * Only initialize the head struct page in memmap_init_reserved_pages,
3173          * rest of the struct pages will be initialized by the HugeTLB
3174          * subsystem itself.
3175          * The head struct page is used to get folio information by the HugeTLB
3176          * subsystem like zone id and node id.
3177          */
3178         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3179                 huge_page_size(h) - PAGE_SIZE);
3180         /* Put them into a private list first because mem_map is not up yet */
3181         INIT_LIST_HEAD(&m->list);
3182         list_add(&m->list, &huge_boot_pages[node]);
3183         m->hstate = h;
3184         return 1;
3185 }
3186
3187 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3188 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3189                                         unsigned long start_page_number,
3190                                         unsigned long end_page_number)
3191 {
3192         enum zone_type zone = zone_idx(folio_zone(folio));
3193         int nid = folio_nid(folio);
3194         unsigned long head_pfn = folio_pfn(folio);
3195         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3196         int ret;
3197
3198         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3199                 struct page *page = pfn_to_page(pfn);
3200
3201                 __ClearPageReserved(folio_page(folio, pfn - head_pfn));
3202                 __init_single_page(page, pfn, zone, nid);
3203                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3204                 ret = page_ref_freeze(page, 1);
3205                 VM_BUG_ON(!ret);
3206         }
3207 }
3208
3209 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3210                                               struct hstate *h,
3211                                               unsigned long nr_pages)
3212 {
3213         int ret;
3214
3215         /* Prepare folio head */
3216         __folio_clear_reserved(folio);
3217         __folio_set_head(folio);
3218         ret = folio_ref_freeze(folio, 1);
3219         VM_BUG_ON(!ret);
3220         /* Initialize the necessary tail struct pages */
3221         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3222         prep_compound_head((struct page *)folio, huge_page_order(h));
3223 }
3224
3225 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3226                                         struct list_head *folio_list)
3227 {
3228         unsigned long flags;
3229         struct folio *folio, *tmp_f;
3230
3231         /* Send list for bulk vmemmap optimization processing */
3232         hugetlb_vmemmap_optimize_folios(h, folio_list);
3233
3234         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3235                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3236                         /*
3237                          * If HVO fails, initialize all tail struct pages
3238                          * We do not worry about potential long lock hold
3239                          * time as this is early in boot and there should
3240                          * be no contention.
3241                          */
3242                         hugetlb_folio_init_tail_vmemmap(folio,
3243                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3244                                         pages_per_huge_page(h));
3245                 }
3246                 /* Subdivide locks to achieve better parallel performance */
3247                 spin_lock_irqsave(&hugetlb_lock, flags);
3248                 __prep_account_new_huge_page(h, folio_nid(folio));
3249                 enqueue_hugetlb_folio(h, folio);
3250                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3251         }
3252 }
3253
3254 /*
3255  * Put bootmem huge pages into the standard lists after mem_map is up.
3256  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3257  */
3258 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3259 {
3260         LIST_HEAD(folio_list);
3261         struct huge_bootmem_page *m;
3262         struct hstate *h = NULL, *prev_h = NULL;
3263
3264         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3265                 struct page *page = virt_to_page(m);
3266                 struct folio *folio = (void *)page;
3267
3268                 h = m->hstate;
3269                 /*
3270                  * It is possible to have multiple huge page sizes (hstates)
3271                  * in this list.  If so, process each size separately.
3272                  */
3273                 if (h != prev_h && prev_h != NULL)
3274                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3275                 prev_h = h;
3276
3277                 VM_BUG_ON(!hstate_is_gigantic(h));
3278                 WARN_ON(folio_ref_count(folio) != 1);
3279
3280                 hugetlb_folio_init_vmemmap(folio, h,
3281                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3282                 init_new_hugetlb_folio(h, folio);
3283                 list_add(&folio->lru, &folio_list);
3284
3285                 /*
3286                  * We need to restore the 'stolen' pages to totalram_pages
3287                  * in order to fix confusing memory reports from free(1) and
3288                  * other side-effects, like CommitLimit going negative.
3289                  */
3290                 adjust_managed_page_count(page, pages_per_huge_page(h));
3291                 cond_resched();
3292         }
3293
3294         prep_and_add_bootmem_folios(h, &folio_list);
3295 }
3296
3297 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3298                                                     unsigned long end, void *arg)
3299 {
3300         int nid;
3301
3302         for (nid = start; nid < end; nid++)
3303                 gather_bootmem_prealloc_node(nid);
3304 }
3305
3306 static void __init gather_bootmem_prealloc(void)
3307 {
3308         struct padata_mt_job job = {
3309                 .thread_fn      = gather_bootmem_prealloc_parallel,
3310                 .fn_arg         = NULL,
3311                 .start          = 0,
3312                 .size           = nr_node_ids,
3313                 .align          = 1,
3314                 .min_chunk      = 1,
3315                 .max_threads    = num_node_state(N_MEMORY),
3316                 .numa_aware     = true,
3317         };
3318
3319         padata_do_multithreaded(&job);
3320 }
3321
3322 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3323 {
3324         unsigned long i;
3325         char buf[32];
3326         LIST_HEAD(folio_list);
3327
3328         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3329                 if (hstate_is_gigantic(h)) {
3330                         if (!alloc_bootmem_huge_page(h, nid))
3331                                 break;
3332                 } else {
3333                         struct folio *folio;
3334                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3335
3336                         folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3337                                         &node_states[N_MEMORY], NULL);
3338                         if (!folio)
3339                                 break;
3340                         list_add(&folio->lru, &folio_list);
3341                 }
3342                 cond_resched();
3343         }
3344
3345         if (!list_empty(&folio_list))
3346                 prep_and_add_allocated_folios(h, &folio_list);
3347
3348         if (i == h->max_huge_pages_node[nid])
3349                 return;
3350
3351         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3352         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3353                 h->max_huge_pages_node[nid], buf, nid, i);
3354         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3355         h->max_huge_pages_node[nid] = i;
3356 }
3357
3358 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3359 {
3360         int i;
3361         bool node_specific_alloc = false;
3362
3363         for_each_online_node(i) {
3364                 if (h->max_huge_pages_node[i] > 0) {
3365                         hugetlb_hstate_alloc_pages_onenode(h, i);
3366                         node_specific_alloc = true;
3367                 }
3368         }
3369
3370         return node_specific_alloc;
3371 }
3372
3373 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3374 {
3375         if (allocated < h->max_huge_pages) {
3376                 char buf[32];
3377
3378                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3379                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3380                         h->max_huge_pages, buf, allocated);
3381                 h->max_huge_pages = allocated;
3382         }
3383 }
3384
3385 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3386 {
3387         struct hstate *h = (struct hstate *)arg;
3388         int i, num = end - start;
3389         nodemask_t node_alloc_noretry;
3390         LIST_HEAD(folio_list);
3391         int next_node = first_online_node;
3392
3393         /* Bit mask controlling how hard we retry per-node allocations.*/
3394         nodes_clear(node_alloc_noretry);
3395
3396         for (i = 0; i < num; ++i) {
3397                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3398                                                 &node_alloc_noretry, &next_node);
3399                 if (!folio)
3400                         break;
3401
3402                 list_move(&folio->lru, &folio_list);
3403                 cond_resched();
3404         }
3405
3406         prep_and_add_allocated_folios(h, &folio_list);
3407 }
3408
3409 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3410 {
3411         unsigned long i;
3412
3413         for (i = 0; i < h->max_huge_pages; ++i) {
3414                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3415                         break;
3416                 cond_resched();
3417         }
3418
3419         return i;
3420 }
3421
3422 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3423 {
3424         struct padata_mt_job job = {
3425                 .fn_arg         = h,
3426                 .align          = 1,
3427                 .numa_aware     = true
3428         };
3429
3430         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3431         job.start       = 0;
3432         job.size        = h->max_huge_pages;
3433
3434         /*
3435          * job.max_threads is twice the num_node_state(N_MEMORY),
3436          *
3437          * Tests below indicate that a multiplier of 2 significantly improves
3438          * performance, and although larger values also provide improvements,
3439          * the gains are marginal.
3440          *
3441          * Therefore, choosing 2 as the multiplier strikes a good balance between
3442          * enhancing parallel processing capabilities and maintaining efficient
3443          * resource management.
3444          *
3445          * +------------+-------+-------+-------+-------+-------+
3446          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3447          * +------------+-------+-------+-------+-------+-------+
3448          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3449          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3450          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3451          * +------------+-------+-------+-------+-------+-------+
3452          */
3453         job.max_threads = num_node_state(N_MEMORY) * 2;
3454         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3455         padata_do_multithreaded(&job);
3456
3457         return h->nr_huge_pages;
3458 }
3459
3460 /*
3461  * NOTE: this routine is called in different contexts for gigantic and
3462  * non-gigantic pages.
3463  * - For gigantic pages, this is called early in the boot process and
3464  *   pages are allocated from memblock allocated or something similar.
3465  *   Gigantic pages are actually added to pools later with the routine
3466  *   gather_bootmem_prealloc.
3467  * - For non-gigantic pages, this is called later in the boot process after
3468  *   all of mm is up and functional.  Pages are allocated from buddy and
3469  *   then added to hugetlb pools.
3470  */
3471 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3472 {
3473         unsigned long allocated;
3474         static bool initialized __initdata;
3475
3476         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3477         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3478                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3479                 return;
3480         }
3481
3482         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3483         if (!initialized) {
3484                 int i = 0;
3485
3486                 for (i = 0; i < MAX_NUMNODES; i++)
3487                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3488                 initialized = true;
3489         }
3490
3491         /* do node specific alloc */
3492         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3493                 return;
3494
3495         /* below will do all node balanced alloc */
3496         if (hstate_is_gigantic(h))
3497                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3498         else
3499                 allocated = hugetlb_pages_alloc_boot(h);
3500
3501         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3502 }
3503
3504 static void __init hugetlb_init_hstates(void)
3505 {
3506         struct hstate *h, *h2;
3507
3508         for_each_hstate(h) {
3509                 /* oversize hugepages were init'ed in early boot */
3510                 if (!hstate_is_gigantic(h))
3511                         hugetlb_hstate_alloc_pages(h);
3512
3513                 /*
3514                  * Set demote order for each hstate.  Note that
3515                  * h->demote_order is initially 0.
3516                  * - We can not demote gigantic pages if runtime freeing
3517                  *   is not supported, so skip this.
3518                  * - If CMA allocation is possible, we can not demote
3519                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3520                  */
3521                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3522                         continue;
3523                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3524                         continue;
3525                 for_each_hstate(h2) {
3526                         if (h2 == h)
3527                                 continue;
3528                         if (h2->order < h->order &&
3529                             h2->order > h->demote_order)
3530                                 h->demote_order = h2->order;
3531                 }
3532         }
3533 }
3534
3535 static void __init report_hugepages(void)
3536 {
3537         struct hstate *h;
3538
3539         for_each_hstate(h) {
3540                 char buf[32];
3541
3542                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3543                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3544                         buf, h->free_huge_pages);
3545                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3546                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3547         }
3548 }
3549
3550 #ifdef CONFIG_HIGHMEM
3551 static void try_to_free_low(struct hstate *h, unsigned long count,
3552                                                 nodemask_t *nodes_allowed)
3553 {
3554         int i;
3555         LIST_HEAD(page_list);
3556
3557         lockdep_assert_held(&hugetlb_lock);
3558         if (hstate_is_gigantic(h))
3559                 return;
3560
3561         /*
3562          * Collect pages to be freed on a list, and free after dropping lock
3563          */
3564         for_each_node_mask(i, *nodes_allowed) {
3565                 struct folio *folio, *next;
3566                 struct list_head *freel = &h->hugepage_freelists[i];
3567                 list_for_each_entry_safe(folio, next, freel, lru) {
3568                         if (count >= h->nr_huge_pages)
3569                                 goto out;
3570                         if (folio_test_highmem(folio))
3571                                 continue;
3572                         remove_hugetlb_folio(h, folio, false);
3573                         list_add(&folio->lru, &page_list);
3574                 }
3575         }
3576
3577 out:
3578         spin_unlock_irq(&hugetlb_lock);
3579         update_and_free_pages_bulk(h, &page_list);
3580         spin_lock_irq(&hugetlb_lock);
3581 }
3582 #else
3583 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3584                                                 nodemask_t *nodes_allowed)
3585 {
3586 }
3587 #endif
3588
3589 /*
3590  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3591  * balanced by operating on them in a round-robin fashion.
3592  * Returns 1 if an adjustment was made.
3593  */
3594 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3595                                 int delta)
3596 {
3597         int nr_nodes, node;
3598
3599         lockdep_assert_held(&hugetlb_lock);
3600         VM_BUG_ON(delta != -1 && delta != 1);
3601
3602         if (delta < 0) {
3603                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3604                         if (h->surplus_huge_pages_node[node])
3605                                 goto found;
3606                 }
3607         } else {
3608                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3609                         if (h->surplus_huge_pages_node[node] <
3610                                         h->nr_huge_pages_node[node])
3611                                 goto found;
3612                 }
3613         }
3614         return 0;
3615
3616 found:
3617         h->surplus_huge_pages += delta;
3618         h->surplus_huge_pages_node[node] += delta;
3619         return 1;
3620 }
3621
3622 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3623 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3624                               nodemask_t *nodes_allowed)
3625 {
3626         unsigned long min_count;
3627         unsigned long allocated;
3628         struct folio *folio;
3629         LIST_HEAD(page_list);
3630         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3631
3632         /*
3633          * Bit mask controlling how hard we retry per-node allocations.
3634          * If we can not allocate the bit mask, do not attempt to allocate
3635          * the requested huge pages.
3636          */
3637         if (node_alloc_noretry)
3638                 nodes_clear(*node_alloc_noretry);
3639         else
3640                 return -ENOMEM;
3641
3642         /*
3643          * resize_lock mutex prevents concurrent adjustments to number of
3644          * pages in hstate via the proc/sysfs interfaces.
3645          */
3646         mutex_lock(&h->resize_lock);
3647         flush_free_hpage_work(h);
3648         spin_lock_irq(&hugetlb_lock);
3649
3650         /*
3651          * Check for a node specific request.
3652          * Changing node specific huge page count may require a corresponding
3653          * change to the global count.  In any case, the passed node mask
3654          * (nodes_allowed) will restrict alloc/free to the specified node.
3655          */
3656         if (nid != NUMA_NO_NODE) {
3657                 unsigned long old_count = count;
3658
3659                 count += persistent_huge_pages(h) -
3660                          (h->nr_huge_pages_node[nid] -
3661                           h->surplus_huge_pages_node[nid]);
3662                 /*
3663                  * User may have specified a large count value which caused the
3664                  * above calculation to overflow.  In this case, they wanted
3665                  * to allocate as many huge pages as possible.  Set count to
3666                  * largest possible value to align with their intention.
3667                  */
3668                 if (count < old_count)
3669                         count = ULONG_MAX;
3670         }
3671
3672         /*
3673          * Gigantic pages runtime allocation depend on the capability for large
3674          * page range allocation.
3675          * If the system does not provide this feature, return an error when
3676          * the user tries to allocate gigantic pages but let the user free the
3677          * boottime allocated gigantic pages.
3678          */
3679         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3680                 if (count > persistent_huge_pages(h)) {
3681                         spin_unlock_irq(&hugetlb_lock);
3682                         mutex_unlock(&h->resize_lock);
3683                         NODEMASK_FREE(node_alloc_noretry);
3684                         return -EINVAL;
3685                 }
3686                 /* Fall through to decrease pool */
3687         }
3688
3689         /*
3690          * Increase the pool size
3691          * First take pages out of surplus state.  Then make up the
3692          * remaining difference by allocating fresh huge pages.
3693          *
3694          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3695          * to convert a surplus huge page to a normal huge page. That is
3696          * not critical, though, it just means the overall size of the
3697          * pool might be one hugepage larger than it needs to be, but
3698          * within all the constraints specified by the sysctls.
3699          */
3700         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3701                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3702                         break;
3703         }
3704
3705         allocated = 0;
3706         while (count > (persistent_huge_pages(h) + allocated)) {
3707                 /*
3708                  * If this allocation races such that we no longer need the
3709                  * page, free_huge_folio will handle it by freeing the page
3710                  * and reducing the surplus.
3711                  */
3712                 spin_unlock_irq(&hugetlb_lock);
3713
3714                 /* yield cpu to avoid soft lockup */
3715                 cond_resched();
3716
3717                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3718                                                 node_alloc_noretry,
3719                                                 &h->next_nid_to_alloc);
3720                 if (!folio) {
3721                         prep_and_add_allocated_folios(h, &page_list);
3722                         spin_lock_irq(&hugetlb_lock);
3723                         goto out;
3724                 }
3725
3726                 list_add(&folio->lru, &page_list);
3727                 allocated++;
3728
3729                 /* Bail for signals. Probably ctrl-c from user */
3730                 if (signal_pending(current)) {
3731                         prep_and_add_allocated_folios(h, &page_list);
3732                         spin_lock_irq(&hugetlb_lock);
3733                         goto out;
3734                 }
3735
3736                 spin_lock_irq(&hugetlb_lock);
3737         }
3738
3739         /* Add allocated pages to the pool */
3740         if (!list_empty(&page_list)) {
3741                 spin_unlock_irq(&hugetlb_lock);
3742                 prep_and_add_allocated_folios(h, &page_list);
3743                 spin_lock_irq(&hugetlb_lock);
3744         }
3745
3746         /*
3747          * Decrease the pool size
3748          * First return free pages to the buddy allocator (being careful
3749          * to keep enough around to satisfy reservations).  Then place
3750          * pages into surplus state as needed so the pool will shrink
3751          * to the desired size as pages become free.
3752          *
3753          * By placing pages into the surplus state independent of the
3754          * overcommit value, we are allowing the surplus pool size to
3755          * exceed overcommit. There are few sane options here. Since
3756          * alloc_surplus_hugetlb_folio() is checking the global counter,
3757          * though, we'll note that we're not allowed to exceed surplus
3758          * and won't grow the pool anywhere else. Not until one of the
3759          * sysctls are changed, or the surplus pages go out of use.
3760          */
3761         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3762         min_count = max(count, min_count);
3763         try_to_free_low(h, min_count, nodes_allowed);
3764
3765         /*
3766          * Collect pages to be removed on list without dropping lock
3767          */
3768         while (min_count < persistent_huge_pages(h)) {
3769                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3770                 if (!folio)
3771                         break;
3772
3773                 list_add(&folio->lru, &page_list);
3774         }
3775         /* free the pages after dropping lock */
3776         spin_unlock_irq(&hugetlb_lock);
3777         update_and_free_pages_bulk(h, &page_list);
3778         flush_free_hpage_work(h);
3779         spin_lock_irq(&hugetlb_lock);
3780
3781         while (count < persistent_huge_pages(h)) {
3782                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3783                         break;
3784         }
3785 out:
3786         h->max_huge_pages = persistent_huge_pages(h);
3787         spin_unlock_irq(&hugetlb_lock);
3788         mutex_unlock(&h->resize_lock);
3789
3790         NODEMASK_FREE(node_alloc_noretry);
3791
3792         return 0;
3793 }
3794
3795 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3796                                        struct list_head *src_list)
3797 {
3798         long rc;
3799         struct folio *folio, *next;
3800         LIST_HEAD(dst_list);
3801         LIST_HEAD(ret_list);
3802
3803         rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3804         list_splice_init(&ret_list, src_list);
3805
3806         /*
3807          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3808          * Without the mutex, pages added to target hstate could be marked
3809          * as surplus.
3810          *
3811          * Note that we already hold src->resize_lock.  To prevent deadlock,
3812          * use the convention of always taking larger size hstate mutex first.
3813          */
3814         mutex_lock(&dst->resize_lock);
3815
3816         list_for_each_entry_safe(folio, next, src_list, lru) {
3817                 int i;
3818
3819                 if (folio_test_hugetlb_vmemmap_optimized(folio))
3820                         continue;
3821
3822                 list_del(&folio->lru);
3823
3824                 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3825                 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3826
3827                 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3828                         struct page *page = folio_page(folio, i);
3829                         /* Careful: see __split_huge_page_tail() */
3830                         struct folio *new_folio = (struct folio *)page;
3831
3832                         clear_compound_head(page);
3833                         prep_compound_page(page, dst->order);
3834
3835                         new_folio->mapping = NULL;
3836                         init_new_hugetlb_folio(dst, new_folio);
3837                         list_add(&new_folio->lru, &dst_list);
3838                 }
3839         }
3840
3841         prep_and_add_allocated_folios(dst, &dst_list);
3842
3843         mutex_unlock(&dst->resize_lock);
3844
3845         return rc;
3846 }
3847
3848 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3849                                   unsigned long nr_to_demote)
3850         __must_hold(&hugetlb_lock)
3851 {
3852         int nr_nodes, node;
3853         struct hstate *dst;
3854         long rc = 0;
3855         long nr_demoted = 0;
3856
3857         lockdep_assert_held(&hugetlb_lock);
3858
3859         /* We should never get here if no demote order */
3860         if (!src->demote_order) {
3861                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3862                 return -EINVAL;         /* internal error */
3863         }
3864         dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3865
3866         for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3867                 LIST_HEAD(list);
3868                 struct folio *folio, *next;
3869
3870                 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3871                         if (folio_test_hwpoison(folio))
3872                                 continue;
3873
3874                         remove_hugetlb_folio(src, folio, false);
3875                         list_add(&folio->lru, &list);
3876
3877                         if (++nr_demoted == nr_to_demote)
3878                                 break;
3879                 }
3880
3881                 spin_unlock_irq(&hugetlb_lock);
3882
3883                 rc = demote_free_hugetlb_folios(src, dst, &list);
3884
3885                 spin_lock_irq(&hugetlb_lock);
3886
3887                 list_for_each_entry_safe(folio, next, &list, lru) {
3888                         list_del(&folio->lru);
3889                         add_hugetlb_folio(src, folio, false);
3890
3891                         nr_demoted--;
3892                 }
3893
3894                 if (rc < 0 || nr_demoted == nr_to_demote)
3895                         break;
3896         }
3897
3898         /*
3899          * Not absolutely necessary, but for consistency update max_huge_pages
3900          * based on pool changes for the demoted page.
3901          */
3902         src->max_huge_pages -= nr_demoted;
3903         dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3904
3905         if (rc < 0)
3906                 return rc;
3907
3908         if (nr_demoted)
3909                 return nr_demoted;
3910         /*
3911          * Only way to get here is if all pages on free lists are poisoned.
3912          * Return -EBUSY so that caller will not retry.
3913          */
3914         return -EBUSY;
3915 }
3916
3917 #define HSTATE_ATTR_RO(_name) \
3918         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3919
3920 #define HSTATE_ATTR_WO(_name) \
3921         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3922
3923 #define HSTATE_ATTR(_name) \
3924         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3925
3926 static struct kobject *hugepages_kobj;
3927 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3928
3929 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3930
3931 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3932 {
3933         int i;
3934
3935         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3936                 if (hstate_kobjs[i] == kobj) {
3937                         if (nidp)
3938                                 *nidp = NUMA_NO_NODE;
3939                         return &hstates[i];
3940                 }
3941
3942         return kobj_to_node_hstate(kobj, nidp);
3943 }
3944
3945 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3946                                         struct kobj_attribute *attr, char *buf)
3947 {
3948         struct hstate *h;
3949         unsigned long nr_huge_pages;
3950         int nid;
3951
3952         h = kobj_to_hstate(kobj, &nid);
3953         if (nid == NUMA_NO_NODE)
3954                 nr_huge_pages = h->nr_huge_pages;
3955         else
3956                 nr_huge_pages = h->nr_huge_pages_node[nid];
3957
3958         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3959 }
3960
3961 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3962                                            struct hstate *h, int nid,
3963                                            unsigned long count, size_t len)
3964 {
3965         int err;
3966         nodemask_t nodes_allowed, *n_mask;
3967
3968         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3969                 return -EINVAL;
3970
3971         if (nid == NUMA_NO_NODE) {
3972                 /*
3973                  * global hstate attribute
3974                  */
3975                 if (!(obey_mempolicy &&
3976                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3977                         n_mask = &node_states[N_MEMORY];
3978                 else
3979                         n_mask = &nodes_allowed;
3980         } else {
3981                 /*
3982                  * Node specific request.  count adjustment happens in
3983                  * set_max_huge_pages() after acquiring hugetlb_lock.
3984                  */
3985                 init_nodemask_of_node(&nodes_allowed, nid);
3986                 n_mask = &nodes_allowed;
3987         }
3988
3989         err = set_max_huge_pages(h, count, nid, n_mask);
3990
3991         return err ? err : len;
3992 }
3993
3994 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3995                                          struct kobject *kobj, const char *buf,
3996                                          size_t len)
3997 {
3998         struct hstate *h;
3999         unsigned long count;
4000         int nid;
4001         int err;
4002
4003         err = kstrtoul(buf, 10, &count);
4004         if (err)
4005                 return err;
4006
4007         h = kobj_to_hstate(kobj, &nid);
4008         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4009 }
4010
4011 static ssize_t nr_hugepages_show(struct kobject *kobj,
4012                                        struct kobj_attribute *attr, char *buf)
4013 {
4014         return nr_hugepages_show_common(kobj, attr, buf);
4015 }
4016
4017 static ssize_t nr_hugepages_store(struct kobject *kobj,
4018                struct kobj_attribute *attr, const char *buf, size_t len)
4019 {
4020         return nr_hugepages_store_common(false, kobj, buf, len);
4021 }
4022 HSTATE_ATTR(nr_hugepages);
4023
4024 #ifdef CONFIG_NUMA
4025
4026 /*
4027  * hstate attribute for optionally mempolicy-based constraint on persistent
4028  * huge page alloc/free.
4029  */
4030 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4031                                            struct kobj_attribute *attr,
4032                                            char *buf)
4033 {
4034         return nr_hugepages_show_common(kobj, attr, buf);
4035 }
4036
4037 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4038                struct kobj_attribute *attr, const char *buf, size_t len)
4039 {
4040         return nr_hugepages_store_common(true, kobj, buf, len);
4041 }
4042 HSTATE_ATTR(nr_hugepages_mempolicy);
4043 #endif
4044
4045
4046 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4047                                         struct kobj_attribute *attr, char *buf)
4048 {
4049         struct hstate *h = kobj_to_hstate(kobj, NULL);
4050         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4051 }
4052
4053 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4054                 struct kobj_attribute *attr, const char *buf, size_t count)
4055 {
4056         int err;
4057         unsigned long input;
4058         struct hstate *h = kobj_to_hstate(kobj, NULL);
4059
4060         if (hstate_is_gigantic(h))
4061                 return -EINVAL;
4062
4063         err = kstrtoul(buf, 10, &input);
4064         if (err)
4065                 return err;
4066
4067         spin_lock_irq(&hugetlb_lock);
4068         h->nr_overcommit_huge_pages = input;
4069         spin_unlock_irq(&hugetlb_lock);
4070
4071         return count;
4072 }
4073 HSTATE_ATTR(nr_overcommit_hugepages);
4074
4075 static ssize_t free_hugepages_show(struct kobject *kobj,
4076                                         struct kobj_attribute *attr, char *buf)
4077 {
4078         struct hstate *h;
4079         unsigned long free_huge_pages;
4080         int nid;
4081
4082         h = kobj_to_hstate(kobj, &nid);
4083         if (nid == NUMA_NO_NODE)
4084                 free_huge_pages = h->free_huge_pages;
4085         else
4086                 free_huge_pages = h->free_huge_pages_node[nid];
4087
4088         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4089 }
4090 HSTATE_ATTR_RO(free_hugepages);
4091
4092 static ssize_t resv_hugepages_show(struct kobject *kobj,
4093                                         struct kobj_attribute *attr, char *buf)
4094 {
4095         struct hstate *h = kobj_to_hstate(kobj, NULL);
4096         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4097 }
4098 HSTATE_ATTR_RO(resv_hugepages);
4099
4100 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4101                                         struct kobj_attribute *attr, char *buf)
4102 {
4103         struct hstate *h;
4104         unsigned long surplus_huge_pages;
4105         int nid;
4106
4107         h = kobj_to_hstate(kobj, &nid);
4108         if (nid == NUMA_NO_NODE)
4109                 surplus_huge_pages = h->surplus_huge_pages;
4110         else
4111                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4112
4113         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4114 }
4115 HSTATE_ATTR_RO(surplus_hugepages);
4116
4117 static ssize_t demote_store(struct kobject *kobj,
4118                struct kobj_attribute *attr, const char *buf, size_t len)
4119 {
4120         unsigned long nr_demote;
4121         unsigned long nr_available;
4122         nodemask_t nodes_allowed, *n_mask;
4123         struct hstate *h;
4124         int err;
4125         int nid;
4126
4127         err = kstrtoul(buf, 10, &nr_demote);
4128         if (err)
4129                 return err;
4130         h = kobj_to_hstate(kobj, &nid);
4131
4132         if (nid != NUMA_NO_NODE) {
4133                 init_nodemask_of_node(&nodes_allowed, nid);
4134                 n_mask = &nodes_allowed;
4135         } else {
4136                 n_mask = &node_states[N_MEMORY];
4137         }
4138
4139         /* Synchronize with other sysfs operations modifying huge pages */
4140         mutex_lock(&h->resize_lock);
4141         spin_lock_irq(&hugetlb_lock);
4142
4143         while (nr_demote) {
4144                 long rc;
4145
4146                 /*
4147                  * Check for available pages to demote each time thorough the
4148                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4149                  */
4150                 if (nid != NUMA_NO_NODE)
4151                         nr_available = h->free_huge_pages_node[nid];
4152                 else
4153                         nr_available = h->free_huge_pages;
4154                 nr_available -= h->resv_huge_pages;
4155                 if (!nr_available)
4156                         break;
4157
4158                 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4159                 if (rc < 0) {
4160                         err = rc;
4161                         break;
4162                 }
4163
4164                 nr_demote -= rc;
4165         }
4166
4167         spin_unlock_irq(&hugetlb_lock);
4168         mutex_unlock(&h->resize_lock);
4169
4170         if (err)
4171                 return err;
4172         return len;
4173 }
4174 HSTATE_ATTR_WO(demote);
4175
4176 static ssize_t demote_size_show(struct kobject *kobj,
4177                                         struct kobj_attribute *attr, char *buf)
4178 {
4179         struct hstate *h = kobj_to_hstate(kobj, NULL);
4180         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4181
4182         return sysfs_emit(buf, "%lukB\n", demote_size);
4183 }
4184
4185 static ssize_t demote_size_store(struct kobject *kobj,
4186                                         struct kobj_attribute *attr,
4187                                         const char *buf, size_t count)
4188 {
4189         struct hstate *h, *demote_hstate;
4190         unsigned long demote_size;
4191         unsigned int demote_order;
4192
4193         demote_size = (unsigned long)memparse(buf, NULL);
4194
4195         demote_hstate = size_to_hstate(demote_size);
4196         if (!demote_hstate)
4197                 return -EINVAL;
4198         demote_order = demote_hstate->order;
4199         if (demote_order < HUGETLB_PAGE_ORDER)
4200                 return -EINVAL;
4201
4202         /* demote order must be smaller than hstate order */
4203         h = kobj_to_hstate(kobj, NULL);
4204         if (demote_order >= h->order)
4205                 return -EINVAL;
4206
4207         /* resize_lock synchronizes access to demote size and writes */
4208         mutex_lock(&h->resize_lock);
4209         h->demote_order = demote_order;
4210         mutex_unlock(&h->resize_lock);
4211
4212         return count;
4213 }
4214 HSTATE_ATTR(demote_size);
4215
4216 static struct attribute *hstate_attrs[] = {
4217         &nr_hugepages_attr.attr,
4218         &nr_overcommit_hugepages_attr.attr,
4219         &free_hugepages_attr.attr,
4220         &resv_hugepages_attr.attr,
4221         &surplus_hugepages_attr.attr,
4222 #ifdef CONFIG_NUMA
4223         &nr_hugepages_mempolicy_attr.attr,
4224 #endif
4225         NULL,
4226 };
4227
4228 static const struct attribute_group hstate_attr_group = {
4229         .attrs = hstate_attrs,
4230 };
4231
4232 static struct attribute *hstate_demote_attrs[] = {
4233         &demote_size_attr.attr,
4234         &demote_attr.attr,
4235         NULL,
4236 };
4237
4238 static const struct attribute_group hstate_demote_attr_group = {
4239         .attrs = hstate_demote_attrs,
4240 };
4241
4242 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4243                                     struct kobject **hstate_kobjs,
4244                                     const struct attribute_group *hstate_attr_group)
4245 {
4246         int retval;
4247         int hi = hstate_index(h);
4248
4249         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4250         if (!hstate_kobjs[hi])
4251                 return -ENOMEM;
4252
4253         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4254         if (retval) {
4255                 kobject_put(hstate_kobjs[hi]);
4256                 hstate_kobjs[hi] = NULL;
4257                 return retval;
4258         }
4259
4260         if (h->demote_order) {
4261                 retval = sysfs_create_group(hstate_kobjs[hi],
4262                                             &hstate_demote_attr_group);
4263                 if (retval) {
4264                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4265                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4266                         kobject_put(hstate_kobjs[hi]);
4267                         hstate_kobjs[hi] = NULL;
4268                         return retval;
4269                 }
4270         }
4271
4272         return 0;
4273 }
4274
4275 #ifdef CONFIG_NUMA
4276 static bool hugetlb_sysfs_initialized __ro_after_init;
4277
4278 /*
4279  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4280  * with node devices in node_devices[] using a parallel array.  The array
4281  * index of a node device or _hstate == node id.
4282  * This is here to avoid any static dependency of the node device driver, in
4283  * the base kernel, on the hugetlb module.
4284  */
4285 struct node_hstate {
4286         struct kobject          *hugepages_kobj;
4287         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4288 };
4289 static struct node_hstate node_hstates[MAX_NUMNODES];
4290
4291 /*
4292  * A subset of global hstate attributes for node devices
4293  */
4294 static struct attribute *per_node_hstate_attrs[] = {
4295         &nr_hugepages_attr.attr,
4296         &free_hugepages_attr.attr,
4297         &surplus_hugepages_attr.attr,
4298         NULL,
4299 };
4300
4301 static const struct attribute_group per_node_hstate_attr_group = {
4302         .attrs = per_node_hstate_attrs,
4303 };
4304
4305 /*
4306  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4307  * Returns node id via non-NULL nidp.
4308  */
4309 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4310 {
4311         int nid;
4312
4313         for (nid = 0; nid < nr_node_ids; nid++) {
4314                 struct node_hstate *nhs = &node_hstates[nid];
4315                 int i;
4316                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4317                         if (nhs->hstate_kobjs[i] == kobj) {
4318                                 if (nidp)
4319                                         *nidp = nid;
4320                                 return &hstates[i];
4321                         }
4322         }
4323
4324         BUG();
4325         return NULL;
4326 }
4327
4328 /*
4329  * Unregister hstate attributes from a single node device.
4330  * No-op if no hstate attributes attached.
4331  */
4332 void hugetlb_unregister_node(struct node *node)
4333 {
4334         struct hstate *h;
4335         struct node_hstate *nhs = &node_hstates[node->dev.id];
4336
4337         if (!nhs->hugepages_kobj)
4338                 return;         /* no hstate attributes */
4339
4340         for_each_hstate(h) {
4341                 int idx = hstate_index(h);
4342                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4343
4344                 if (!hstate_kobj)
4345                         continue;
4346                 if (h->demote_order)
4347                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4348                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4349                 kobject_put(hstate_kobj);
4350                 nhs->hstate_kobjs[idx] = NULL;
4351         }
4352
4353         kobject_put(nhs->hugepages_kobj);
4354         nhs->hugepages_kobj = NULL;
4355 }
4356
4357
4358 /*
4359  * Register hstate attributes for a single node device.
4360  * No-op if attributes already registered.
4361  */
4362 void hugetlb_register_node(struct node *node)
4363 {
4364         struct hstate *h;
4365         struct node_hstate *nhs = &node_hstates[node->dev.id];
4366         int err;
4367
4368         if (!hugetlb_sysfs_initialized)
4369                 return;
4370
4371         if (nhs->hugepages_kobj)
4372                 return;         /* already allocated */
4373
4374         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4375                                                         &node->dev.kobj);
4376         if (!nhs->hugepages_kobj)
4377                 return;
4378
4379         for_each_hstate(h) {
4380                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4381                                                 nhs->hstate_kobjs,
4382                                                 &per_node_hstate_attr_group);
4383                 if (err) {
4384                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4385                                 h->name, node->dev.id);
4386                         hugetlb_unregister_node(node);
4387                         break;
4388                 }
4389         }
4390 }
4391
4392 /*
4393  * hugetlb init time:  register hstate attributes for all registered node
4394  * devices of nodes that have memory.  All on-line nodes should have
4395  * registered their associated device by this time.
4396  */
4397 static void __init hugetlb_register_all_nodes(void)
4398 {
4399         int nid;
4400
4401         for_each_online_node(nid)
4402                 hugetlb_register_node(node_devices[nid]);
4403 }
4404 #else   /* !CONFIG_NUMA */
4405
4406 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4407 {
4408         BUG();
4409         if (nidp)
4410                 *nidp = -1;
4411         return NULL;
4412 }
4413
4414 static void hugetlb_register_all_nodes(void) { }
4415
4416 #endif
4417
4418 #ifdef CONFIG_CMA
4419 static void __init hugetlb_cma_check(void);
4420 #else
4421 static inline __init void hugetlb_cma_check(void)
4422 {
4423 }
4424 #endif
4425
4426 static void __init hugetlb_sysfs_init(void)
4427 {
4428         struct hstate *h;
4429         int err;
4430
4431         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4432         if (!hugepages_kobj)
4433                 return;
4434
4435         for_each_hstate(h) {
4436                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4437                                          hstate_kobjs, &hstate_attr_group);
4438                 if (err)
4439                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4440         }
4441
4442 #ifdef CONFIG_NUMA
4443         hugetlb_sysfs_initialized = true;
4444 #endif
4445         hugetlb_register_all_nodes();
4446 }
4447
4448 #ifdef CONFIG_SYSCTL
4449 static void hugetlb_sysctl_init(void);
4450 #else
4451 static inline void hugetlb_sysctl_init(void) { }
4452 #endif
4453
4454 static int __init hugetlb_init(void)
4455 {
4456         int i;
4457
4458         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4459                         __NR_HPAGEFLAGS);
4460
4461         if (!hugepages_supported()) {
4462                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4463                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4464                 return 0;
4465         }
4466
4467         /*
4468          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4469          * architectures depend on setup being done here.
4470          */
4471         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4472         if (!parsed_default_hugepagesz) {
4473                 /*
4474                  * If we did not parse a default huge page size, set
4475                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4476                  * number of huge pages for this default size was implicitly
4477                  * specified, set that here as well.
4478                  * Note that the implicit setting will overwrite an explicit
4479                  * setting.  A warning will be printed in this case.
4480                  */
4481                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4482                 if (default_hstate_max_huge_pages) {
4483                         if (default_hstate.max_huge_pages) {
4484                                 char buf[32];
4485
4486                                 string_get_size(huge_page_size(&default_hstate),
4487                                         1, STRING_UNITS_2, buf, 32);
4488                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4489                                         default_hstate.max_huge_pages, buf);
4490                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4491                                         default_hstate_max_huge_pages);
4492                         }
4493                         default_hstate.max_huge_pages =
4494                                 default_hstate_max_huge_pages;
4495
4496                         for_each_online_node(i)
4497                                 default_hstate.max_huge_pages_node[i] =
4498                                         default_hugepages_in_node[i];
4499                 }
4500         }
4501
4502         hugetlb_cma_check();
4503         hugetlb_init_hstates();
4504         gather_bootmem_prealloc();
4505         report_hugepages();
4506
4507         hugetlb_sysfs_init();
4508         hugetlb_cgroup_file_init();
4509         hugetlb_sysctl_init();
4510
4511 #ifdef CONFIG_SMP
4512         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4513 #else
4514         num_fault_mutexes = 1;
4515 #endif
4516         hugetlb_fault_mutex_table =
4517                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4518                               GFP_KERNEL);
4519         BUG_ON(!hugetlb_fault_mutex_table);
4520
4521         for (i = 0; i < num_fault_mutexes; i++)
4522                 mutex_init(&hugetlb_fault_mutex_table[i]);
4523         return 0;
4524 }
4525 subsys_initcall(hugetlb_init);
4526
4527 /* Overwritten by architectures with more huge page sizes */
4528 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4529 {
4530         return size == HPAGE_SIZE;
4531 }
4532
4533 void __init hugetlb_add_hstate(unsigned int order)
4534 {
4535         struct hstate *h;
4536         unsigned long i;
4537
4538         if (size_to_hstate(PAGE_SIZE << order)) {
4539                 return;
4540         }
4541         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4542         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4543         h = &hstates[hugetlb_max_hstate++];
4544         __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4545         h->order = order;
4546         h->mask = ~(huge_page_size(h) - 1);
4547         for (i = 0; i < MAX_NUMNODES; ++i)
4548                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4549         INIT_LIST_HEAD(&h->hugepage_activelist);
4550         h->next_nid_to_alloc = first_memory_node;
4551         h->next_nid_to_free = first_memory_node;
4552         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4553                                         huge_page_size(h)/SZ_1K);
4554
4555         parsed_hstate = h;
4556 }
4557
4558 bool __init __weak hugetlb_node_alloc_supported(void)
4559 {
4560         return true;
4561 }
4562
4563 static void __init hugepages_clear_pages_in_node(void)
4564 {
4565         if (!hugetlb_max_hstate) {
4566                 default_hstate_max_huge_pages = 0;
4567                 memset(default_hugepages_in_node, 0,
4568                         sizeof(default_hugepages_in_node));
4569         } else {
4570                 parsed_hstate->max_huge_pages = 0;
4571                 memset(parsed_hstate->max_huge_pages_node, 0,
4572                         sizeof(parsed_hstate->max_huge_pages_node));
4573         }
4574 }
4575
4576 /*
4577  * hugepages command line processing
4578  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4579  * specification.  If not, ignore the hugepages value.  hugepages can also
4580  * be the first huge page command line  option in which case it implicitly
4581  * specifies the number of huge pages for the default size.
4582  */
4583 static int __init hugepages_setup(char *s)
4584 {
4585         unsigned long *mhp;
4586         static unsigned long *last_mhp;
4587         int node = NUMA_NO_NODE;
4588         int count;
4589         unsigned long tmp;
4590         char *p = s;
4591
4592         if (!parsed_valid_hugepagesz) {
4593                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4594                 parsed_valid_hugepagesz = true;
4595                 return 1;
4596         }
4597
4598         /*
4599          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4600          * yet, so this hugepages= parameter goes to the "default hstate".
4601          * Otherwise, it goes with the previously parsed hugepagesz or
4602          * default_hugepagesz.
4603          */
4604         else if (!hugetlb_max_hstate)
4605                 mhp = &default_hstate_max_huge_pages;
4606         else
4607                 mhp = &parsed_hstate->max_huge_pages;
4608
4609         if (mhp == last_mhp) {
4610                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4611                 return 1;
4612         }
4613
4614         while (*p) {
4615                 count = 0;
4616                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4617                         goto invalid;
4618                 /* Parameter is node format */
4619                 if (p[count] == ':') {
4620                         if (!hugetlb_node_alloc_supported()) {
4621                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4622                                 return 1;
4623                         }
4624                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4625                                 goto invalid;
4626                         node = array_index_nospec(tmp, MAX_NUMNODES);
4627                         p += count + 1;
4628                         /* Parse hugepages */
4629                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4630                                 goto invalid;
4631                         if (!hugetlb_max_hstate)
4632                                 default_hugepages_in_node[node] = tmp;
4633                         else
4634                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4635                         *mhp += tmp;
4636                         /* Go to parse next node*/
4637                         if (p[count] == ',')
4638                                 p += count + 1;
4639                         else
4640                                 break;
4641                 } else {
4642                         if (p != s)
4643                                 goto invalid;
4644                         *mhp = tmp;
4645                         break;
4646                 }
4647         }
4648
4649         /*
4650          * Global state is always initialized later in hugetlb_init.
4651          * But we need to allocate gigantic hstates here early to still
4652          * use the bootmem allocator.
4653          */
4654         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4655                 hugetlb_hstate_alloc_pages(parsed_hstate);
4656
4657         last_mhp = mhp;
4658
4659         return 1;
4660
4661 invalid:
4662         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4663         hugepages_clear_pages_in_node();
4664         return 1;
4665 }
4666 __setup("hugepages=", hugepages_setup);
4667
4668 /*
4669  * hugepagesz command line processing
4670  * A specific huge page size can only be specified once with hugepagesz.
4671  * hugepagesz is followed by hugepages on the command line.  The global
4672  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4673  * hugepagesz argument was valid.
4674  */
4675 static int __init hugepagesz_setup(char *s)
4676 {
4677         unsigned long size;
4678         struct hstate *h;
4679
4680         parsed_valid_hugepagesz = false;
4681         size = (unsigned long)memparse(s, NULL);
4682
4683         if (!arch_hugetlb_valid_size(size)) {
4684                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4685                 return 1;
4686         }
4687
4688         h = size_to_hstate(size);
4689         if (h) {
4690                 /*
4691                  * hstate for this size already exists.  This is normally
4692                  * an error, but is allowed if the existing hstate is the
4693                  * default hstate.  More specifically, it is only allowed if
4694                  * the number of huge pages for the default hstate was not
4695                  * previously specified.
4696                  */
4697                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4698                     default_hstate.max_huge_pages) {
4699                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4700                         return 1;
4701                 }
4702
4703                 /*
4704                  * No need to call hugetlb_add_hstate() as hstate already
4705                  * exists.  But, do set parsed_hstate so that a following
4706                  * hugepages= parameter will be applied to this hstate.
4707                  */
4708                 parsed_hstate = h;
4709                 parsed_valid_hugepagesz = true;
4710                 return 1;
4711         }
4712
4713         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4714         parsed_valid_hugepagesz = true;
4715         return 1;
4716 }
4717 __setup("hugepagesz=", hugepagesz_setup);
4718
4719 /*
4720  * default_hugepagesz command line input
4721  * Only one instance of default_hugepagesz allowed on command line.
4722  */
4723 static int __init default_hugepagesz_setup(char *s)
4724 {
4725         unsigned long size;
4726         int i;
4727
4728         parsed_valid_hugepagesz = false;
4729         if (parsed_default_hugepagesz) {
4730                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4731                 return 1;
4732         }
4733
4734         size = (unsigned long)memparse(s, NULL);
4735
4736         if (!arch_hugetlb_valid_size(size)) {
4737                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4738                 return 1;
4739         }
4740
4741         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4742         parsed_valid_hugepagesz = true;
4743         parsed_default_hugepagesz = true;
4744         default_hstate_idx = hstate_index(size_to_hstate(size));
4745
4746         /*
4747          * The number of default huge pages (for this size) could have been
4748          * specified as the first hugetlb parameter: hugepages=X.  If so,
4749          * then default_hstate_max_huge_pages is set.  If the default huge
4750          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4751          * allocated here from bootmem allocator.
4752          */
4753         if (default_hstate_max_huge_pages) {
4754                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4755                 for_each_online_node(i)
4756                         default_hstate.max_huge_pages_node[i] =
4757                                 default_hugepages_in_node[i];
4758                 if (hstate_is_gigantic(&default_hstate))
4759                         hugetlb_hstate_alloc_pages(&default_hstate);
4760                 default_hstate_max_huge_pages = 0;
4761         }
4762
4763         return 1;
4764 }
4765 __setup("default_hugepagesz=", default_hugepagesz_setup);
4766
4767 static unsigned int allowed_mems_nr(struct hstate *h)
4768 {
4769         int node;
4770         unsigned int nr = 0;
4771         nodemask_t *mbind_nodemask;
4772         unsigned int *array = h->free_huge_pages_node;
4773         gfp_t gfp_mask = htlb_alloc_mask(h);
4774
4775         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4776         for_each_node_mask(node, cpuset_current_mems_allowed) {
4777                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4778                         nr += array[node];
4779         }
4780
4781         return nr;
4782 }
4783
4784 #ifdef CONFIG_SYSCTL
4785 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4786                                           void *buffer, size_t *length,
4787                                           loff_t *ppos, unsigned long *out)
4788 {
4789         struct ctl_table dup_table;
4790
4791         /*
4792          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4793          * can duplicate the @table and alter the duplicate of it.
4794          */
4795         dup_table = *table;
4796         dup_table.data = out;
4797
4798         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4799 }
4800
4801 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4802                          const struct ctl_table *table, int write,
4803                          void *buffer, size_t *length, loff_t *ppos)
4804 {
4805         struct hstate *h = &default_hstate;
4806         unsigned long tmp = h->max_huge_pages;
4807         int ret;
4808
4809         if (!hugepages_supported())
4810                 return -EOPNOTSUPP;
4811
4812         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4813                                              &tmp);
4814         if (ret)
4815                 goto out;
4816
4817         if (write)
4818                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4819                                                   NUMA_NO_NODE, tmp, *length);
4820 out:
4821         return ret;
4822 }
4823
4824 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4825                           void *buffer, size_t *length, loff_t *ppos)
4826 {
4827
4828         return hugetlb_sysctl_handler_common(false, table, write,
4829                                                         buffer, length, ppos);
4830 }
4831
4832 #ifdef CONFIG_NUMA
4833 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4834                           void *buffer, size_t *length, loff_t *ppos)
4835 {
4836         return hugetlb_sysctl_handler_common(true, table, write,
4837                                                         buffer, length, ppos);
4838 }
4839 #endif /* CONFIG_NUMA */
4840
4841 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4842                 void *buffer, size_t *length, loff_t *ppos)
4843 {
4844         struct hstate *h = &default_hstate;
4845         unsigned long tmp;
4846         int ret;
4847
4848         if (!hugepages_supported())
4849                 return -EOPNOTSUPP;
4850
4851         tmp = h->nr_overcommit_huge_pages;
4852
4853         if (write && hstate_is_gigantic(h))
4854                 return -EINVAL;
4855
4856         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4857                                              &tmp);
4858         if (ret)
4859                 goto out;
4860
4861         if (write) {
4862                 spin_lock_irq(&hugetlb_lock);
4863                 h->nr_overcommit_huge_pages = tmp;
4864                 spin_unlock_irq(&hugetlb_lock);
4865         }
4866 out:
4867         return ret;
4868 }
4869
4870 static const struct ctl_table hugetlb_table[] = {
4871         {
4872                 .procname       = "nr_hugepages",
4873                 .data           = NULL,
4874                 .maxlen         = sizeof(unsigned long),
4875                 .mode           = 0644,
4876                 .proc_handler   = hugetlb_sysctl_handler,
4877         },
4878 #ifdef CONFIG_NUMA
4879         {
4880                 .procname       = "nr_hugepages_mempolicy",
4881                 .data           = NULL,
4882                 .maxlen         = sizeof(unsigned long),
4883                 .mode           = 0644,
4884                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4885         },
4886 #endif
4887         {
4888                 .procname       = "hugetlb_shm_group",
4889                 .data           = &sysctl_hugetlb_shm_group,
4890                 .maxlen         = sizeof(gid_t),
4891                 .mode           = 0644,
4892                 .proc_handler   = proc_dointvec,
4893         },
4894         {
4895                 .procname       = "nr_overcommit_hugepages",
4896                 .data           = NULL,
4897                 .maxlen         = sizeof(unsigned long),
4898                 .mode           = 0644,
4899                 .proc_handler   = hugetlb_overcommit_handler,
4900         },
4901 };
4902
4903 static void hugetlb_sysctl_init(void)
4904 {
4905         register_sysctl_init("vm", hugetlb_table);
4906 }
4907 #endif /* CONFIG_SYSCTL */
4908
4909 void hugetlb_report_meminfo(struct seq_file *m)
4910 {
4911         struct hstate *h;
4912         unsigned long total = 0;
4913
4914         if (!hugepages_supported())
4915                 return;
4916
4917         for_each_hstate(h) {
4918                 unsigned long count = h->nr_huge_pages;
4919
4920                 total += huge_page_size(h) * count;
4921
4922                 if (h == &default_hstate)
4923                         seq_printf(m,
4924                                    "HugePages_Total:   %5lu\n"
4925                                    "HugePages_Free:    %5lu\n"
4926                                    "HugePages_Rsvd:    %5lu\n"
4927                                    "HugePages_Surp:    %5lu\n"
4928                                    "Hugepagesize:   %8lu kB\n",
4929                                    count,
4930                                    h->free_huge_pages,
4931                                    h->resv_huge_pages,
4932                                    h->surplus_huge_pages,
4933                                    huge_page_size(h) / SZ_1K);
4934         }
4935
4936         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4937 }
4938
4939 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4940 {
4941         struct hstate *h = &default_hstate;
4942
4943         if (!hugepages_supported())
4944                 return 0;
4945
4946         return sysfs_emit_at(buf, len,
4947                              "Node %d HugePages_Total: %5u\n"
4948                              "Node %d HugePages_Free:  %5u\n"
4949                              "Node %d HugePages_Surp:  %5u\n",
4950                              nid, h->nr_huge_pages_node[nid],
4951                              nid, h->free_huge_pages_node[nid],
4952                              nid, h->surplus_huge_pages_node[nid]);
4953 }
4954
4955 void hugetlb_show_meminfo_node(int nid)
4956 {
4957         struct hstate *h;
4958
4959         if (!hugepages_supported())
4960                 return;
4961
4962         for_each_hstate(h)
4963                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4964                         nid,
4965                         h->nr_huge_pages_node[nid],
4966                         h->free_huge_pages_node[nid],
4967                         h->surplus_huge_pages_node[nid],
4968                         huge_page_size(h) / SZ_1K);
4969 }
4970
4971 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4972 {
4973         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4974                    K(atomic_long_read(&mm->hugetlb_usage)));
4975 }
4976
4977 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4978 unsigned long hugetlb_total_pages(void)
4979 {
4980         struct hstate *h;
4981         unsigned long nr_total_pages = 0;
4982
4983         for_each_hstate(h)
4984                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4985         return nr_total_pages;
4986 }
4987
4988 static int hugetlb_acct_memory(struct hstate *h, long delta)
4989 {
4990         int ret = -ENOMEM;
4991
4992         if (!delta)
4993                 return 0;
4994
4995         spin_lock_irq(&hugetlb_lock);
4996         /*
4997          * When cpuset is configured, it breaks the strict hugetlb page
4998          * reservation as the accounting is done on a global variable. Such
4999          * reservation is completely rubbish in the presence of cpuset because
5000          * the reservation is not checked against page availability for the
5001          * current cpuset. Application can still potentially OOM'ed by kernel
5002          * with lack of free htlb page in cpuset that the task is in.
5003          * Attempt to enforce strict accounting with cpuset is almost
5004          * impossible (or too ugly) because cpuset is too fluid that
5005          * task or memory node can be dynamically moved between cpusets.
5006          *
5007          * The change of semantics for shared hugetlb mapping with cpuset is
5008          * undesirable. However, in order to preserve some of the semantics,
5009          * we fall back to check against current free page availability as
5010          * a best attempt and hopefully to minimize the impact of changing
5011          * semantics that cpuset has.
5012          *
5013          * Apart from cpuset, we also have memory policy mechanism that
5014          * also determines from which node the kernel will allocate memory
5015          * in a NUMA system. So similar to cpuset, we also should consider
5016          * the memory policy of the current task. Similar to the description
5017          * above.
5018          */
5019         if (delta > 0) {
5020                 if (gather_surplus_pages(h, delta) < 0)
5021                         goto out;
5022
5023                 if (delta > allowed_mems_nr(h)) {
5024                         return_unused_surplus_pages(h, delta);
5025                         goto out;
5026                 }
5027         }
5028
5029         ret = 0;
5030         if (delta < 0)
5031                 return_unused_surplus_pages(h, (unsigned long) -delta);
5032
5033 out:
5034         spin_unlock_irq(&hugetlb_lock);
5035         return ret;
5036 }
5037
5038 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5039 {
5040         struct resv_map *resv = vma_resv_map(vma);
5041
5042         /*
5043          * HPAGE_RESV_OWNER indicates a private mapping.
5044          * This new VMA should share its siblings reservation map if present.
5045          * The VMA will only ever have a valid reservation map pointer where
5046          * it is being copied for another still existing VMA.  As that VMA
5047          * has a reference to the reservation map it cannot disappear until
5048          * after this open call completes.  It is therefore safe to take a
5049          * new reference here without additional locking.
5050          */
5051         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5052                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5053                 kref_get(&resv->refs);
5054         }
5055
5056         /*
5057          * vma_lock structure for sharable mappings is vma specific.
5058          * Clear old pointer (if copied via vm_area_dup) and allocate
5059          * new structure.  Before clearing, make sure vma_lock is not
5060          * for this vma.
5061          */
5062         if (vma->vm_flags & VM_MAYSHARE) {
5063                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5064
5065                 if (vma_lock) {
5066                         if (vma_lock->vma != vma) {
5067                                 vma->vm_private_data = NULL;
5068                                 hugetlb_vma_lock_alloc(vma);
5069                         } else
5070                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5071                 } else
5072                         hugetlb_vma_lock_alloc(vma);
5073         }
5074 }
5075
5076 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5077 {
5078         struct hstate *h = hstate_vma(vma);
5079         struct resv_map *resv;
5080         struct hugepage_subpool *spool = subpool_vma(vma);
5081         unsigned long reserve, start, end;
5082         long gbl_reserve;
5083
5084         hugetlb_vma_lock_free(vma);
5085
5086         resv = vma_resv_map(vma);
5087         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5088                 return;
5089
5090         start = vma_hugecache_offset(h, vma, vma->vm_start);
5091         end = vma_hugecache_offset(h, vma, vma->vm_end);
5092
5093         reserve = (end - start) - region_count(resv, start, end);
5094         hugetlb_cgroup_uncharge_counter(resv, start, end);
5095         if (reserve) {
5096                 /*
5097                  * Decrement reserve counts.  The global reserve count may be
5098                  * adjusted if the subpool has a minimum size.
5099                  */
5100                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5101                 hugetlb_acct_memory(h, -gbl_reserve);
5102         }
5103
5104         kref_put(&resv->refs, resv_map_release);
5105 }
5106
5107 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5108 {
5109         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5110                 return -EINVAL;
5111
5112         /*
5113          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5114          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5115          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5116          */
5117         if (addr & ~PUD_MASK) {
5118                 /*
5119                  * hugetlb_vm_op_split is called right before we attempt to
5120                  * split the VMA. We will need to unshare PMDs in the old and
5121                  * new VMAs, so let's unshare before we split.
5122                  */
5123                 unsigned long floor = addr & PUD_MASK;
5124                 unsigned long ceil = floor + PUD_SIZE;
5125
5126                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5127                         hugetlb_unshare_pmds(vma, floor, ceil);
5128         }
5129
5130         return 0;
5131 }
5132
5133 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5134 {
5135         return huge_page_size(hstate_vma(vma));
5136 }
5137
5138 /*
5139  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5140  * handle_mm_fault() to try to instantiate regular-sized pages in the
5141  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5142  * this far.
5143  */
5144 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5145 {
5146         BUG();
5147         return 0;
5148 }
5149
5150 /*
5151  * When a new function is introduced to vm_operations_struct and added
5152  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5153  * This is because under System V memory model, mappings created via
5154  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5155  * their original vm_ops are overwritten with shm_vm_ops.
5156  */
5157 const struct vm_operations_struct hugetlb_vm_ops = {
5158         .fault = hugetlb_vm_op_fault,
5159         .open = hugetlb_vm_op_open,
5160         .close = hugetlb_vm_op_close,
5161         .may_split = hugetlb_vm_op_split,
5162         .pagesize = hugetlb_vm_op_pagesize,
5163 };
5164
5165 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5166                 bool try_mkwrite)
5167 {
5168         pte_t entry;
5169         unsigned int shift = huge_page_shift(hstate_vma(vma));
5170
5171         if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5172                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5173                                          vma->vm_page_prot)));
5174         } else {
5175                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5176                                            vma->vm_page_prot));
5177         }
5178         entry = pte_mkyoung(entry);
5179         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5180
5181         return entry;
5182 }
5183
5184 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5185                                    unsigned long address, pte_t *ptep)
5186 {
5187         pte_t entry;
5188
5189         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5190         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5191                 update_mmu_cache(vma, address, ptep);
5192 }
5193
5194 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5195                                          unsigned long address, pte_t *ptep)
5196 {
5197         if (vma->vm_flags & VM_WRITE)
5198                 set_huge_ptep_writable(vma, address, ptep);
5199 }
5200
5201 bool is_hugetlb_entry_migration(pte_t pte)
5202 {
5203         swp_entry_t swp;
5204
5205         if (huge_pte_none(pte) || pte_present(pte))
5206                 return false;
5207         swp = pte_to_swp_entry(pte);
5208         if (is_migration_entry(swp))
5209                 return true;
5210         else
5211                 return false;
5212 }
5213
5214 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5215 {
5216         swp_entry_t swp;
5217
5218         if (huge_pte_none(pte) || pte_present(pte))
5219                 return false;
5220         swp = pte_to_swp_entry(pte);
5221         if (is_hwpoison_entry(swp))
5222                 return true;
5223         else
5224                 return false;
5225 }
5226
5227 static void
5228 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5229                       struct folio *new_folio, pte_t old, unsigned long sz)
5230 {
5231         pte_t newpte = make_huge_pte(vma, &new_folio->page, true);
5232
5233         __folio_mark_uptodate(new_folio);
5234         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5235         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5236                 newpte = huge_pte_mkuffd_wp(newpte);
5237         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5238         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5239         folio_set_hugetlb_migratable(new_folio);
5240 }
5241
5242 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5243                             struct vm_area_struct *dst_vma,
5244                             struct vm_area_struct *src_vma)
5245 {
5246         pte_t *src_pte, *dst_pte, entry;
5247         struct folio *pte_folio;
5248         unsigned long addr;
5249         bool cow = is_cow_mapping(src_vma->vm_flags);
5250         struct hstate *h = hstate_vma(src_vma);
5251         unsigned long sz = huge_page_size(h);
5252         unsigned long npages = pages_per_huge_page(h);
5253         struct mmu_notifier_range range;
5254         unsigned long last_addr_mask;
5255         int ret = 0;
5256
5257         if (cow) {
5258                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5259                                         src_vma->vm_start,
5260                                         src_vma->vm_end);
5261                 mmu_notifier_invalidate_range_start(&range);
5262                 vma_assert_write_locked(src_vma);
5263                 raw_write_seqcount_begin(&src->write_protect_seq);
5264         } else {
5265                 /*
5266                  * For shared mappings the vma lock must be held before
5267                  * calling hugetlb_walk() in the src vma. Otherwise, the
5268                  * returned ptep could go away if part of a shared pmd and
5269                  * another thread calls huge_pmd_unshare.
5270                  */
5271                 hugetlb_vma_lock_read(src_vma);
5272         }
5273
5274         last_addr_mask = hugetlb_mask_last_page(h);
5275         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5276                 spinlock_t *src_ptl, *dst_ptl;
5277                 src_pte = hugetlb_walk(src_vma, addr, sz);
5278                 if (!src_pte) {
5279                         addr |= last_addr_mask;
5280                         continue;
5281                 }
5282                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5283                 if (!dst_pte) {
5284                         ret = -ENOMEM;
5285                         break;
5286                 }
5287
5288                 /*
5289                  * If the pagetables are shared don't copy or take references.
5290                  *
5291                  * dst_pte == src_pte is the common case of src/dest sharing.
5292                  * However, src could have 'unshared' and dst shares with
5293                  * another vma. So page_count of ptep page is checked instead
5294                  * to reliably determine whether pte is shared.
5295                  */
5296                 if (page_count(virt_to_page(dst_pte)) > 1) {
5297                         addr |= last_addr_mask;
5298                         continue;
5299                 }
5300
5301                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5302                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5303                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5304                 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5305 again:
5306                 if (huge_pte_none(entry)) {
5307                         /*
5308                          * Skip if src entry none.
5309                          */
5310                         ;
5311                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5312                         if (!userfaultfd_wp(dst_vma))
5313                                 entry = huge_pte_clear_uffd_wp(entry);
5314                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5315                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5316                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5317                         bool uffd_wp = pte_swp_uffd_wp(entry);
5318
5319                         if (!is_readable_migration_entry(swp_entry) && cow) {
5320                                 /*
5321                                  * COW mappings require pages in both
5322                                  * parent and child to be set to read.
5323                                  */
5324                                 swp_entry = make_readable_migration_entry(
5325                                                         swp_offset(swp_entry));
5326                                 entry = swp_entry_to_pte(swp_entry);
5327                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5328                                         entry = pte_swp_mkuffd_wp(entry);
5329                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5330                         }
5331                         if (!userfaultfd_wp(dst_vma))
5332                                 entry = huge_pte_clear_uffd_wp(entry);
5333                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5334                 } else if (unlikely(is_pte_marker(entry))) {
5335                         pte_marker marker = copy_pte_marker(
5336                                 pte_to_swp_entry(entry), dst_vma);
5337
5338                         if (marker)
5339                                 set_huge_pte_at(dst, addr, dst_pte,
5340                                                 make_pte_marker(marker), sz);
5341                 } else {
5342                         entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5343                         pte_folio = page_folio(pte_page(entry));
5344                         folio_get(pte_folio);
5345
5346                         /*
5347                          * Failing to duplicate the anon rmap is a rare case
5348                          * where we see pinned hugetlb pages while they're
5349                          * prone to COW. We need to do the COW earlier during
5350                          * fork.
5351                          *
5352                          * When pre-allocating the page or copying data, we
5353                          * need to be without the pgtable locks since we could
5354                          * sleep during the process.
5355                          */
5356                         if (!folio_test_anon(pte_folio)) {
5357                                 hugetlb_add_file_rmap(pte_folio);
5358                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5359                                 pte_t src_pte_old = entry;
5360                                 struct folio *new_folio;
5361
5362                                 spin_unlock(src_ptl);
5363                                 spin_unlock(dst_ptl);
5364                                 /* Do not use reserve as it's private owned */
5365                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5366                                 if (IS_ERR(new_folio)) {
5367                                         folio_put(pte_folio);
5368                                         ret = PTR_ERR(new_folio);
5369                                         break;
5370                                 }
5371                                 ret = copy_user_large_folio(new_folio, pte_folio,
5372                                                             addr, dst_vma);
5373                                 folio_put(pte_folio);
5374                                 if (ret) {
5375                                         folio_put(new_folio);
5376                                         break;
5377                                 }
5378
5379                                 /* Install the new hugetlb folio if src pte stable */
5380                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5381                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5382                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5383                                 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5384                                 if (!pte_same(src_pte_old, entry)) {
5385                                         restore_reserve_on_error(h, dst_vma, addr,
5386                                                                 new_folio);
5387                                         folio_put(new_folio);
5388                                         /* huge_ptep of dst_pte won't change as in child */
5389                                         goto again;
5390                                 }
5391                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5392                                                       new_folio, src_pte_old, sz);
5393                                 spin_unlock(src_ptl);
5394                                 spin_unlock(dst_ptl);
5395                                 continue;
5396                         }
5397
5398                         if (cow) {
5399                                 /*
5400                                  * No need to notify as we are downgrading page
5401                                  * table protection not changing it to point
5402                                  * to a new page.
5403                                  *
5404                                  * See Documentation/mm/mmu_notifier.rst
5405                                  */
5406                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5407                                 entry = huge_pte_wrprotect(entry);
5408                         }
5409
5410                         if (!userfaultfd_wp(dst_vma))
5411                                 entry = huge_pte_clear_uffd_wp(entry);
5412
5413                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5414                         hugetlb_count_add(npages, dst);
5415                 }
5416                 spin_unlock(src_ptl);
5417                 spin_unlock(dst_ptl);
5418         }
5419
5420         if (cow) {
5421                 raw_write_seqcount_end(&src->write_protect_seq);
5422                 mmu_notifier_invalidate_range_end(&range);
5423         } else {
5424                 hugetlb_vma_unlock_read(src_vma);
5425         }
5426
5427         return ret;
5428 }
5429
5430 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5431                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5432                           unsigned long sz)
5433 {
5434         bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5435         struct hstate *h = hstate_vma(vma);
5436         struct mm_struct *mm = vma->vm_mm;
5437         spinlock_t *src_ptl, *dst_ptl;
5438         pte_t pte;
5439
5440         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5441         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5442
5443         /*
5444          * We don't have to worry about the ordering of src and dst ptlocks
5445          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5446          */
5447         if (src_ptl != dst_ptl)
5448                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5449
5450         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5451
5452         if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5453                 huge_pte_clear(mm, new_addr, dst_pte, sz);
5454         else {
5455                 if (need_clear_uffd_wp) {
5456                         if (pte_present(pte))
5457                                 pte = huge_pte_clear_uffd_wp(pte);
5458                         else if (is_swap_pte(pte))
5459                                 pte = pte_swp_clear_uffd_wp(pte);
5460                 }
5461                 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5462         }
5463
5464         if (src_ptl != dst_ptl)
5465                 spin_unlock(src_ptl);
5466         spin_unlock(dst_ptl);
5467 }
5468
5469 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5470                              struct vm_area_struct *new_vma,
5471                              unsigned long old_addr, unsigned long new_addr,
5472                              unsigned long len)
5473 {
5474         struct hstate *h = hstate_vma(vma);
5475         struct address_space *mapping = vma->vm_file->f_mapping;
5476         unsigned long sz = huge_page_size(h);
5477         struct mm_struct *mm = vma->vm_mm;
5478         unsigned long old_end = old_addr + len;
5479         unsigned long last_addr_mask;
5480         pte_t *src_pte, *dst_pte;
5481         struct mmu_notifier_range range;
5482         bool shared_pmd = false;
5483
5484         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5485                                 old_end);
5486         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5487         /*
5488          * In case of shared PMDs, we should cover the maximum possible
5489          * range.
5490          */
5491         flush_cache_range(vma, range.start, range.end);
5492
5493         mmu_notifier_invalidate_range_start(&range);
5494         last_addr_mask = hugetlb_mask_last_page(h);
5495         /* Prevent race with file truncation */
5496         hugetlb_vma_lock_write(vma);
5497         i_mmap_lock_write(mapping);
5498         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5499                 src_pte = hugetlb_walk(vma, old_addr, sz);
5500                 if (!src_pte) {
5501                         old_addr |= last_addr_mask;
5502                         new_addr |= last_addr_mask;
5503                         continue;
5504                 }
5505                 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5506                         continue;
5507
5508                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5509                         shared_pmd = true;
5510                         old_addr |= last_addr_mask;
5511                         new_addr |= last_addr_mask;
5512                         continue;
5513                 }
5514
5515                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5516                 if (!dst_pte)
5517                         break;
5518
5519                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5520         }
5521
5522         if (shared_pmd)
5523                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5524         else
5525                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5526         mmu_notifier_invalidate_range_end(&range);
5527         i_mmap_unlock_write(mapping);
5528         hugetlb_vma_unlock_write(vma);
5529
5530         return len + old_addr - old_end;
5531 }
5532
5533 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5534                             unsigned long start, unsigned long end,
5535                             struct page *ref_page, zap_flags_t zap_flags)
5536 {
5537         struct mm_struct *mm = vma->vm_mm;
5538         unsigned long address;
5539         pte_t *ptep;
5540         pte_t pte;
5541         spinlock_t *ptl;
5542         struct page *page;
5543         struct hstate *h = hstate_vma(vma);
5544         unsigned long sz = huge_page_size(h);
5545         bool adjust_reservation = false;
5546         unsigned long last_addr_mask;
5547         bool force_flush = false;
5548
5549         WARN_ON(!is_vm_hugetlb_page(vma));
5550         BUG_ON(start & ~huge_page_mask(h));
5551         BUG_ON(end & ~huge_page_mask(h));
5552
5553         /*
5554          * This is a hugetlb vma, all the pte entries should point
5555          * to huge page.
5556          */
5557         tlb_change_page_size(tlb, sz);
5558         tlb_start_vma(tlb, vma);
5559
5560         last_addr_mask = hugetlb_mask_last_page(h);
5561         address = start;
5562         for (; address < end; address += sz) {
5563                 ptep = hugetlb_walk(vma, address, sz);
5564                 if (!ptep) {
5565                         address |= last_addr_mask;
5566                         continue;
5567                 }
5568
5569                 ptl = huge_pte_lock(h, mm, ptep);
5570                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5571                         spin_unlock(ptl);
5572                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5573                         force_flush = true;
5574                         address |= last_addr_mask;
5575                         continue;
5576                 }
5577
5578                 pte = huge_ptep_get(mm, address, ptep);
5579                 if (huge_pte_none(pte)) {
5580                         spin_unlock(ptl);
5581                         continue;
5582                 }
5583
5584                 /*
5585                  * Migrating hugepage or HWPoisoned hugepage is already
5586                  * unmapped and its refcount is dropped, so just clear pte here.
5587                  */
5588                 if (unlikely(!pte_present(pte))) {
5589                         /*
5590                          * If the pte was wr-protected by uffd-wp in any of the
5591                          * swap forms, meanwhile the caller does not want to
5592                          * drop the uffd-wp bit in this zap, then replace the
5593                          * pte with a marker.
5594                          */
5595                         if (pte_swp_uffd_wp_any(pte) &&
5596                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5597                                 set_huge_pte_at(mm, address, ptep,
5598                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5599                                                 sz);
5600                         else
5601                                 huge_pte_clear(mm, address, ptep, sz);
5602                         spin_unlock(ptl);
5603                         continue;
5604                 }
5605
5606                 page = pte_page(pte);
5607                 /*
5608                  * If a reference page is supplied, it is because a specific
5609                  * page is being unmapped, not a range. Ensure the page we
5610                  * are about to unmap is the actual page of interest.
5611                  */
5612                 if (ref_page) {
5613                         if (page != ref_page) {
5614                                 spin_unlock(ptl);
5615                                 continue;
5616                         }
5617                         /*
5618                          * Mark the VMA as having unmapped its page so that
5619                          * future faults in this VMA will fail rather than
5620                          * looking like data was lost
5621                          */
5622                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5623                 }
5624
5625                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5626                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5627                 if (huge_pte_dirty(pte))
5628                         set_page_dirty(page);
5629                 /* Leave a uffd-wp pte marker if needed */
5630                 if (huge_pte_uffd_wp(pte) &&
5631                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5632                         set_huge_pte_at(mm, address, ptep,
5633                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5634                                         sz);
5635                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5636                 hugetlb_remove_rmap(page_folio(page));
5637
5638                 /*
5639                  * Restore the reservation for anonymous page, otherwise the
5640                  * backing page could be stolen by someone.
5641                  * If there we are freeing a surplus, do not set the restore
5642                  * reservation bit.
5643                  */
5644                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5645                     folio_test_anon(page_folio(page))) {
5646                         folio_set_hugetlb_restore_reserve(page_folio(page));
5647                         /* Reservation to be adjusted after the spin lock */
5648                         adjust_reservation = true;
5649                 }
5650
5651                 spin_unlock(ptl);
5652
5653                 /*
5654                  * Adjust the reservation for the region that will have the
5655                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5656                  * resv->adds_in_progress if it succeeds. If this is not done,
5657                  * do_exit() will not see it, and will keep the reservation
5658                  * forever.
5659                  */
5660                 if (adjust_reservation) {
5661                         int rc = vma_needs_reservation(h, vma, address);
5662
5663                         if (rc < 0)
5664                                 /* Pressumably allocate_file_region_entries failed
5665                                  * to allocate a file_region struct. Clear
5666                                  * hugetlb_restore_reserve so that global reserve
5667                                  * count will not be incremented by free_huge_folio.
5668                                  * Act as if we consumed the reservation.
5669                                  */
5670                                 folio_clear_hugetlb_restore_reserve(page_folio(page));
5671                         else if (rc)
5672                                 vma_add_reservation(h, vma, address);
5673                 }
5674
5675                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5676                 /*
5677                  * Bail out after unmapping reference page if supplied
5678                  */
5679                 if (ref_page)
5680                         break;
5681         }
5682         tlb_end_vma(tlb, vma);
5683
5684         /*
5685          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5686          * could defer the flush until now, since by holding i_mmap_rwsem we
5687          * guaranteed that the last refernece would not be dropped. But we must
5688          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5689          * dropped and the last reference to the shared PMDs page might be
5690          * dropped as well.
5691          *
5692          * In theory we could defer the freeing of the PMD pages as well, but
5693          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5694          * detect sharing, so we cannot defer the release of the page either.
5695          * Instead, do flush now.
5696          */
5697         if (force_flush)
5698                 tlb_flush_mmu_tlbonly(tlb);
5699 }
5700
5701 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5702                          unsigned long *start, unsigned long *end)
5703 {
5704         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5705                 return;
5706
5707         adjust_range_if_pmd_sharing_possible(vma, start, end);
5708         hugetlb_vma_lock_write(vma);
5709         if (vma->vm_file)
5710                 i_mmap_lock_write(vma->vm_file->f_mapping);
5711 }
5712
5713 void __hugetlb_zap_end(struct vm_area_struct *vma,
5714                        struct zap_details *details)
5715 {
5716         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5717
5718         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5719                 return;
5720
5721         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5722                 /*
5723                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5724                  * When the vma_lock is freed, this makes the vma ineligible
5725                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5726                  * pmd sharing.  This is important as page tables for this
5727                  * unmapped range will be asynchrously deleted.  If the page
5728                  * tables are shared, there will be issues when accessed by
5729                  * someone else.
5730                  */
5731                 __hugetlb_vma_unlock_write_free(vma);
5732         } else {
5733                 hugetlb_vma_unlock_write(vma);
5734         }
5735
5736         if (vma->vm_file)
5737                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5738 }
5739
5740 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5741                           unsigned long end, struct page *ref_page,
5742                           zap_flags_t zap_flags)
5743 {
5744         struct mmu_notifier_range range;
5745         struct mmu_gather tlb;
5746
5747         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5748                                 start, end);
5749         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5750         mmu_notifier_invalidate_range_start(&range);
5751         tlb_gather_mmu(&tlb, vma->vm_mm);
5752
5753         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5754
5755         mmu_notifier_invalidate_range_end(&range);
5756         tlb_finish_mmu(&tlb);
5757 }
5758
5759 /*
5760  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5761  * mapping it owns the reserve page for. The intention is to unmap the page
5762  * from other VMAs and let the children be SIGKILLed if they are faulting the
5763  * same region.
5764  */
5765 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5766                               struct page *page, unsigned long address)
5767 {
5768         struct hstate *h = hstate_vma(vma);
5769         struct vm_area_struct *iter_vma;
5770         struct address_space *mapping;
5771         pgoff_t pgoff;
5772
5773         /*
5774          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5775          * from page cache lookup which is in HPAGE_SIZE units.
5776          */
5777         address = address & huge_page_mask(h);
5778         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5779                         vma->vm_pgoff;
5780         mapping = vma->vm_file->f_mapping;
5781
5782         /*
5783          * Take the mapping lock for the duration of the table walk. As
5784          * this mapping should be shared between all the VMAs,
5785          * __unmap_hugepage_range() is called as the lock is already held
5786          */
5787         i_mmap_lock_write(mapping);
5788         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5789                 /* Do not unmap the current VMA */
5790                 if (iter_vma == vma)
5791                         continue;
5792
5793                 /*
5794                  * Shared VMAs have their own reserves and do not affect
5795                  * MAP_PRIVATE accounting but it is possible that a shared
5796                  * VMA is using the same page so check and skip such VMAs.
5797                  */
5798                 if (iter_vma->vm_flags & VM_MAYSHARE)
5799                         continue;
5800
5801                 /*
5802                  * Unmap the page from other VMAs without their own reserves.
5803                  * They get marked to be SIGKILLed if they fault in these
5804                  * areas. This is because a future no-page fault on this VMA
5805                  * could insert a zeroed page instead of the data existing
5806                  * from the time of fork. This would look like data corruption
5807                  */
5808                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5809                         unmap_hugepage_range(iter_vma, address,
5810                                              address + huge_page_size(h), page, 0);
5811         }
5812         i_mmap_unlock_write(mapping);
5813 }
5814
5815 /*
5816  * hugetlb_wp() should be called with page lock of the original hugepage held.
5817  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5818  * cannot race with other handlers or page migration.
5819  * Keep the pte_same checks anyway to make transition from the mutex easier.
5820  */
5821 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5822                        struct vm_fault *vmf)
5823 {
5824         struct vm_area_struct *vma = vmf->vma;
5825         struct mm_struct *mm = vma->vm_mm;
5826         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5827         pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5828         struct hstate *h = hstate_vma(vma);
5829         struct folio *old_folio;
5830         struct folio *new_folio;
5831         bool cow_from_owner = 0;
5832         vm_fault_t ret = 0;
5833         struct mmu_notifier_range range;
5834
5835         /*
5836          * Never handle CoW for uffd-wp protected pages.  It should be only
5837          * handled when the uffd-wp protection is removed.
5838          *
5839          * Note that only the CoW optimization path (in hugetlb_no_page())
5840          * can trigger this, because hugetlb_fault() will always resolve
5841          * uffd-wp bit first.
5842          */
5843         if (!unshare && huge_pte_uffd_wp(pte))
5844                 return 0;
5845
5846         /* Let's take out MAP_SHARED mappings first. */
5847         if (vma->vm_flags & VM_MAYSHARE) {
5848                 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5849                 return 0;
5850         }
5851
5852         old_folio = page_folio(pte_page(pte));
5853
5854         delayacct_wpcopy_start();
5855
5856 retry_avoidcopy:
5857         /*
5858          * If no-one else is actually using this page, we're the exclusive
5859          * owner and can reuse this page.
5860          *
5861          * Note that we don't rely on the (safer) folio refcount here, because
5862          * copying the hugetlb folio when there are unexpected (temporary)
5863          * folio references could harm simple fork()+exit() users when
5864          * we run out of free hugetlb folios: we would have to kill processes
5865          * in scenarios that used to work. As a side effect, there can still
5866          * be leaks between processes, for example, with FOLL_GET users.
5867          */
5868         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5869                 if (!PageAnonExclusive(&old_folio->page)) {
5870                         folio_move_anon_rmap(old_folio, vma);
5871                         SetPageAnonExclusive(&old_folio->page);
5872                 }
5873                 if (likely(!unshare))
5874                         set_huge_ptep_maybe_writable(vma, vmf->address,
5875                                                      vmf->pte);
5876
5877                 delayacct_wpcopy_end();
5878                 return 0;
5879         }
5880         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5881                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5882
5883         /*
5884          * If the process that created a MAP_PRIVATE mapping is about to
5885          * perform a COW due to a shared page count, attempt to satisfy
5886          * the allocation without using the existing reserves. The pagecache
5887          * page is used to determine if the reserve at this address was
5888          * consumed or not. If reserves were used, a partial faulted mapping
5889          * at the time of fork() could consume its reserves on COW instead
5890          * of the full address range.
5891          */
5892         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5893                         old_folio != pagecache_folio)
5894                 cow_from_owner = true;
5895
5896         folio_get(old_folio);
5897
5898         /*
5899          * Drop page table lock as buddy allocator may be called. It will
5900          * be acquired again before returning to the caller, as expected.
5901          */
5902         spin_unlock(vmf->ptl);
5903         new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
5904
5905         if (IS_ERR(new_folio)) {
5906                 /*
5907                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5908                  * it is due to references held by a child and an insufficient
5909                  * huge page pool. To guarantee the original mappers
5910                  * reliability, unmap the page from child processes. The child
5911                  * may get SIGKILLed if it later faults.
5912                  */
5913                 if (cow_from_owner) {
5914                         struct address_space *mapping = vma->vm_file->f_mapping;
5915                         pgoff_t idx;
5916                         u32 hash;
5917
5918                         folio_put(old_folio);
5919                         /*
5920                          * Drop hugetlb_fault_mutex and vma_lock before
5921                          * unmapping.  unmapping needs to hold vma_lock
5922                          * in write mode.  Dropping vma_lock in read mode
5923                          * here is OK as COW mappings do not interact with
5924                          * PMD sharing.
5925                          *
5926                          * Reacquire both after unmap operation.
5927                          */
5928                         idx = vma_hugecache_offset(h, vma, vmf->address);
5929                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5930                         hugetlb_vma_unlock_read(vma);
5931                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5932
5933                         unmap_ref_private(mm, vma, &old_folio->page,
5934                                         vmf->address);
5935
5936                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5937                         hugetlb_vma_lock_read(vma);
5938                         spin_lock(vmf->ptl);
5939                         vmf->pte = hugetlb_walk(vma, vmf->address,
5940                                         huge_page_size(h));
5941                         if (likely(vmf->pte &&
5942                                    pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5943                                 goto retry_avoidcopy;
5944                         /*
5945                          * race occurs while re-acquiring page table
5946                          * lock, and our job is done.
5947                          */
5948                         delayacct_wpcopy_end();
5949                         return 0;
5950                 }
5951
5952                 ret = vmf_error(PTR_ERR(new_folio));
5953                 goto out_release_old;
5954         }
5955
5956         /*
5957          * When the original hugepage is shared one, it does not have
5958          * anon_vma prepared.
5959          */
5960         ret = __vmf_anon_prepare(vmf);
5961         if (unlikely(ret))
5962                 goto out_release_all;
5963
5964         if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5965                 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5966                 goto out_release_all;
5967         }
5968         __folio_mark_uptodate(new_folio);
5969
5970         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5971                                 vmf->address + huge_page_size(h));
5972         mmu_notifier_invalidate_range_start(&range);
5973
5974         /*
5975          * Retake the page table lock to check for racing updates
5976          * before the page tables are altered
5977          */
5978         spin_lock(vmf->ptl);
5979         vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5980         if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5981                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5982
5983                 /* Break COW or unshare */
5984                 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5985                 hugetlb_remove_rmap(old_folio);
5986                 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5987                 if (huge_pte_uffd_wp(pte))
5988                         newpte = huge_pte_mkuffd_wp(newpte);
5989                 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5990                                 huge_page_size(h));
5991                 folio_set_hugetlb_migratable(new_folio);
5992                 /* Make the old page be freed below */
5993                 new_folio = old_folio;
5994         }
5995         spin_unlock(vmf->ptl);
5996         mmu_notifier_invalidate_range_end(&range);
5997 out_release_all:
5998         /*
5999          * No restore in case of successful pagetable update (Break COW or
6000          * unshare)
6001          */
6002         if (new_folio != old_folio)
6003                 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6004         folio_put(new_folio);
6005 out_release_old:
6006         folio_put(old_folio);
6007
6008         spin_lock(vmf->ptl); /* Caller expects lock to be held */
6009
6010         delayacct_wpcopy_end();
6011         return ret;
6012 }
6013
6014 /*
6015  * Return whether there is a pagecache page to back given address within VMA.
6016  */
6017 bool hugetlbfs_pagecache_present(struct hstate *h,
6018                                  struct vm_area_struct *vma, unsigned long address)
6019 {
6020         struct address_space *mapping = vma->vm_file->f_mapping;
6021         pgoff_t idx = linear_page_index(vma, address);
6022         struct folio *folio;
6023
6024         folio = filemap_get_folio(mapping, idx);
6025         if (IS_ERR(folio))
6026                 return false;
6027         folio_put(folio);
6028         return true;
6029 }
6030
6031 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6032                            pgoff_t idx)
6033 {
6034         struct inode *inode = mapping->host;
6035         struct hstate *h = hstate_inode(inode);
6036         int err;
6037
6038         idx <<= huge_page_order(h);
6039         __folio_set_locked(folio);
6040         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6041
6042         if (unlikely(err)) {
6043                 __folio_clear_locked(folio);
6044                 return err;
6045         }
6046         folio_clear_hugetlb_restore_reserve(folio);
6047
6048         /*
6049          * mark folio dirty so that it will not be removed from cache/file
6050          * by non-hugetlbfs specific code paths.
6051          */
6052         folio_mark_dirty(folio);
6053
6054         spin_lock(&inode->i_lock);
6055         inode->i_blocks += blocks_per_huge_page(h);
6056         spin_unlock(&inode->i_lock);
6057         return 0;
6058 }
6059
6060 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6061                                                   struct address_space *mapping,
6062                                                   unsigned long reason)
6063 {
6064         u32 hash;
6065
6066         /*
6067          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6068          * userfault. Also mmap_lock could be dropped due to handling
6069          * userfault, any vma operation should be careful from here.
6070          */
6071         hugetlb_vma_unlock_read(vmf->vma);
6072         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6073         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6074         return handle_userfault(vmf, reason);
6075 }
6076
6077 /*
6078  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6079  * false if pte changed or is changing.
6080  */
6081 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6082                                pte_t *ptep, pte_t old_pte)
6083 {
6084         spinlock_t *ptl;
6085         bool same;
6086
6087         ptl = huge_pte_lock(h, mm, ptep);
6088         same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6089         spin_unlock(ptl);
6090
6091         return same;
6092 }
6093
6094 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6095                         struct vm_fault *vmf)
6096 {
6097         struct vm_area_struct *vma = vmf->vma;
6098         struct mm_struct *mm = vma->vm_mm;
6099         struct hstate *h = hstate_vma(vma);
6100         vm_fault_t ret = VM_FAULT_SIGBUS;
6101         int anon_rmap = 0;
6102         unsigned long size;
6103         struct folio *folio;
6104         pte_t new_pte;
6105         bool new_folio, new_pagecache_folio = false;
6106         u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6107
6108         /*
6109          * Currently, we are forced to kill the process in the event the
6110          * original mapper has unmapped pages from the child due to a failed
6111          * COW/unsharing. Warn that such a situation has occurred as it may not
6112          * be obvious.
6113          */
6114         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6115                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6116                            current->pid);
6117                 goto out;
6118         }
6119
6120         /*
6121          * Use page lock to guard against racing truncation
6122          * before we get page_table_lock.
6123          */
6124         new_folio = false;
6125         folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6126         if (IS_ERR(folio)) {
6127                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6128                 if (vmf->pgoff >= size)
6129                         goto out;
6130                 /* Check for page in userfault range */
6131                 if (userfaultfd_missing(vma)) {
6132                         /*
6133                          * Since hugetlb_no_page() was examining pte
6134                          * without pgtable lock, we need to re-test under
6135                          * lock because the pte may not be stable and could
6136                          * have changed from under us.  Try to detect
6137                          * either changed or during-changing ptes and retry
6138                          * properly when needed.
6139                          *
6140                          * Note that userfaultfd is actually fine with
6141                          * false positives (e.g. caused by pte changed),
6142                          * but not wrong logical events (e.g. caused by
6143                          * reading a pte during changing).  The latter can
6144                          * confuse the userspace, so the strictness is very
6145                          * much preferred.  E.g., MISSING event should
6146                          * never happen on the page after UFFDIO_COPY has
6147                          * correctly installed the page and returned.
6148                          */
6149                         if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6150                                 ret = 0;
6151                                 goto out;
6152                         }
6153
6154                         return hugetlb_handle_userfault(vmf, mapping,
6155                                                         VM_UFFD_MISSING);
6156                 }
6157
6158                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6159                         ret = __vmf_anon_prepare(vmf);
6160                         if (unlikely(ret))
6161                                 goto out;
6162                 }
6163
6164                 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6165                 if (IS_ERR(folio)) {
6166                         /*
6167                          * Returning error will result in faulting task being
6168                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6169                          * tasks from racing to fault in the same page which
6170                          * could result in false unable to allocate errors.
6171                          * Page migration does not take the fault mutex, but
6172                          * does a clear then write of pte's under page table
6173                          * lock.  Page fault code could race with migration,
6174                          * notice the clear pte and try to allocate a page
6175                          * here.  Before returning error, get ptl and make
6176                          * sure there really is no pte entry.
6177                          */
6178                         if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6179                                 ret = vmf_error(PTR_ERR(folio));
6180                         else
6181                                 ret = 0;
6182                         goto out;
6183                 }
6184                 folio_zero_user(folio, vmf->real_address);
6185                 __folio_mark_uptodate(folio);
6186                 new_folio = true;
6187
6188                 if (vma->vm_flags & VM_MAYSHARE) {
6189                         int err = hugetlb_add_to_page_cache(folio, mapping,
6190                                                         vmf->pgoff);
6191                         if (err) {
6192                                 /*
6193                                  * err can't be -EEXIST which implies someone
6194                                  * else consumed the reservation since hugetlb
6195                                  * fault mutex is held when add a hugetlb page
6196                                  * to the page cache. So it's safe to call
6197                                  * restore_reserve_on_error() here.
6198                                  */
6199                                 restore_reserve_on_error(h, vma, vmf->address,
6200                                                         folio);
6201                                 folio_put(folio);
6202                                 ret = VM_FAULT_SIGBUS;
6203                                 goto out;
6204                         }
6205                         new_pagecache_folio = true;
6206                 } else {
6207                         folio_lock(folio);
6208                         anon_rmap = 1;
6209                 }
6210         } else {
6211                 /*
6212                  * If memory error occurs between mmap() and fault, some process
6213                  * don't have hwpoisoned swap entry for errored virtual address.
6214                  * So we need to block hugepage fault by PG_hwpoison bit check.
6215                  */
6216                 if (unlikely(folio_test_hwpoison(folio))) {
6217                         ret = VM_FAULT_HWPOISON_LARGE |
6218                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6219                         goto backout_unlocked;
6220                 }
6221
6222                 /* Check for page in userfault range. */
6223                 if (userfaultfd_minor(vma)) {
6224                         folio_unlock(folio);
6225                         folio_put(folio);
6226                         /* See comment in userfaultfd_missing() block above */
6227                         if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6228                                 ret = 0;
6229                                 goto out;
6230                         }
6231                         return hugetlb_handle_userfault(vmf, mapping,
6232                                                         VM_UFFD_MINOR);
6233                 }
6234         }
6235
6236         /*
6237          * If we are going to COW a private mapping later, we examine the
6238          * pending reservations for this page now. This will ensure that
6239          * any allocations necessary to record that reservation occur outside
6240          * the spinlock.
6241          */
6242         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6243                 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6244                         ret = VM_FAULT_OOM;
6245                         goto backout_unlocked;
6246                 }
6247                 /* Just decrements count, does not deallocate */
6248                 vma_end_reservation(h, vma, vmf->address);
6249         }
6250
6251         vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6252         ret = 0;
6253         /* If pte changed from under us, retry */
6254         if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6255                 goto backout;
6256
6257         if (anon_rmap)
6258                 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6259         else
6260                 hugetlb_add_file_rmap(folio);
6261         new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED);
6262         /*
6263          * If this pte was previously wr-protected, keep it wr-protected even
6264          * if populated.
6265          */
6266         if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6267                 new_pte = huge_pte_mkuffd_wp(new_pte);
6268         set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6269
6270         hugetlb_count_add(pages_per_huge_page(h), mm);
6271         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6272                 /* Optimization, do the COW without a second fault */
6273                 ret = hugetlb_wp(folio, vmf);
6274         }
6275
6276         spin_unlock(vmf->ptl);
6277
6278         /*
6279          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6280          * found in the pagecache may not have hugetlb_migratable if they have
6281          * been isolated for migration.
6282          */
6283         if (new_folio)
6284                 folio_set_hugetlb_migratable(folio);
6285
6286         folio_unlock(folio);
6287 out:
6288         hugetlb_vma_unlock_read(vma);
6289
6290         /*
6291          * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6292          * the only way ret can be set to VM_FAULT_RETRY.
6293          */
6294         if (unlikely(ret & VM_FAULT_RETRY))
6295                 vma_end_read(vma);
6296
6297         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6298         return ret;
6299
6300 backout:
6301         spin_unlock(vmf->ptl);
6302 backout_unlocked:
6303         if (new_folio && !new_pagecache_folio)
6304                 restore_reserve_on_error(h, vma, vmf->address, folio);
6305
6306         folio_unlock(folio);
6307         folio_put(folio);
6308         goto out;
6309 }
6310
6311 #ifdef CONFIG_SMP
6312 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6313 {
6314         unsigned long key[2];
6315         u32 hash;
6316
6317         key[0] = (unsigned long) mapping;
6318         key[1] = idx;
6319
6320         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6321
6322         return hash & (num_fault_mutexes - 1);
6323 }
6324 #else
6325 /*
6326  * For uniprocessor systems we always use a single mutex, so just
6327  * return 0 and avoid the hashing overhead.
6328  */
6329 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6330 {
6331         return 0;
6332 }
6333 #endif
6334
6335 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6336                         unsigned long address, unsigned int flags)
6337 {
6338         vm_fault_t ret;
6339         u32 hash;
6340         struct folio *folio = NULL;
6341         struct folio *pagecache_folio = NULL;
6342         struct hstate *h = hstate_vma(vma);
6343         struct address_space *mapping;
6344         int need_wait_lock = 0;
6345         struct vm_fault vmf = {
6346                 .vma = vma,
6347                 .address = address & huge_page_mask(h),
6348                 .real_address = address,
6349                 .flags = flags,
6350                 .pgoff = vma_hugecache_offset(h, vma,
6351                                 address & huge_page_mask(h)),
6352                 /* TODO: Track hugetlb faults using vm_fault */
6353
6354                 /*
6355                  * Some fields may not be initialized, be careful as it may
6356                  * be hard to debug if called functions make assumptions
6357                  */
6358         };
6359
6360         /*
6361          * Serialize hugepage allocation and instantiation, so that we don't
6362          * get spurious allocation failures if two CPUs race to instantiate
6363          * the same page in the page cache.
6364          */
6365         mapping = vma->vm_file->f_mapping;
6366         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6367         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6368
6369         /*
6370          * Acquire vma lock before calling huge_pte_alloc and hold
6371          * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6372          * being called elsewhere and making the vmf.pte no longer valid.
6373          */
6374         hugetlb_vma_lock_read(vma);
6375         vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6376         if (!vmf.pte) {
6377                 hugetlb_vma_unlock_read(vma);
6378                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6379                 return VM_FAULT_OOM;
6380         }
6381
6382         vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6383         if (huge_pte_none_mostly(vmf.orig_pte)) {
6384                 if (is_pte_marker(vmf.orig_pte)) {
6385                         pte_marker marker =
6386                                 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6387
6388                         if (marker & PTE_MARKER_POISONED) {
6389                                 ret = VM_FAULT_HWPOISON_LARGE |
6390                                       VM_FAULT_SET_HINDEX(hstate_index(h));
6391                                 goto out_mutex;
6392                         } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6393                                 /* This isn't supported in hugetlb. */
6394                                 ret = VM_FAULT_SIGSEGV;
6395                                 goto out_mutex;
6396                         }
6397                 }
6398
6399                 /*
6400                  * Other PTE markers should be handled the same way as none PTE.
6401                  *
6402                  * hugetlb_no_page will drop vma lock and hugetlb fault
6403                  * mutex internally, which make us return immediately.
6404                  */
6405                 return hugetlb_no_page(mapping, &vmf);
6406         }
6407
6408         ret = 0;
6409
6410         /*
6411          * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6412          * point, so this check prevents the kernel from going below assuming
6413          * that we have an active hugepage in pagecache. This goto expects
6414          * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6415          * check will properly handle it.
6416          */
6417         if (!pte_present(vmf.orig_pte)) {
6418                 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6419                         /*
6420                          * Release the hugetlb fault lock now, but retain
6421                          * the vma lock, because it is needed to guard the
6422                          * huge_pte_lockptr() later in
6423                          * migration_entry_wait_huge(). The vma lock will
6424                          * be released there.
6425                          */
6426                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6427                         migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6428                         return 0;
6429                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6430                         ret = VM_FAULT_HWPOISON_LARGE |
6431                             VM_FAULT_SET_HINDEX(hstate_index(h));
6432                 goto out_mutex;
6433         }
6434
6435         /*
6436          * If we are going to COW/unshare the mapping later, we examine the
6437          * pending reservations for this page now. This will ensure that any
6438          * allocations necessary to record that reservation occur outside the
6439          * spinlock. Also lookup the pagecache page now as it is used to
6440          * determine if a reservation has been consumed.
6441          */
6442         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6443             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6444                 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6445                         ret = VM_FAULT_OOM;
6446                         goto out_mutex;
6447                 }
6448                 /* Just decrements count, does not deallocate */
6449                 vma_end_reservation(h, vma, vmf.address);
6450
6451                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6452                                                              vmf.pgoff);
6453                 if (IS_ERR(pagecache_folio))
6454                         pagecache_folio = NULL;
6455         }
6456
6457         vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6458
6459         /* Check for a racing update before calling hugetlb_wp() */
6460         if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6461                 goto out_ptl;
6462
6463         /* Handle userfault-wp first, before trying to lock more pages */
6464         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6465             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6466                 if (!userfaultfd_wp_async(vma)) {
6467                         spin_unlock(vmf.ptl);
6468                         if (pagecache_folio) {
6469                                 folio_unlock(pagecache_folio);
6470                                 folio_put(pagecache_folio);
6471                         }
6472                         hugetlb_vma_unlock_read(vma);
6473                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6474                         return handle_userfault(&vmf, VM_UFFD_WP);
6475                 }
6476
6477                 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6478                 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6479                                 huge_page_size(hstate_vma(vma)));
6480                 /* Fallthrough to CoW */
6481         }
6482
6483         /*
6484          * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6485          * pagecache_folio, so here we need take the former one
6486          * when folio != pagecache_folio or !pagecache_folio.
6487          */
6488         folio = page_folio(pte_page(vmf.orig_pte));
6489         if (folio != pagecache_folio)
6490                 if (!folio_trylock(folio)) {
6491                         need_wait_lock = 1;
6492                         goto out_ptl;
6493                 }
6494
6495         folio_get(folio);
6496
6497         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6498                 if (!huge_pte_write(vmf.orig_pte)) {
6499                         ret = hugetlb_wp(pagecache_folio, &vmf);
6500                         goto out_put_page;
6501                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6502                         vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6503                 }
6504         }
6505         vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6506         if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6507                                                 flags & FAULT_FLAG_WRITE))
6508                 update_mmu_cache(vma, vmf.address, vmf.pte);
6509 out_put_page:
6510         if (folio != pagecache_folio)
6511                 folio_unlock(folio);
6512         folio_put(folio);
6513 out_ptl:
6514         spin_unlock(vmf.ptl);
6515
6516         if (pagecache_folio) {
6517                 folio_unlock(pagecache_folio);
6518                 folio_put(pagecache_folio);
6519         }
6520 out_mutex:
6521         hugetlb_vma_unlock_read(vma);
6522
6523         /*
6524          * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6525          * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6526          */
6527         if (unlikely(ret & VM_FAULT_RETRY))
6528                 vma_end_read(vma);
6529
6530         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6531         /*
6532          * Generally it's safe to hold refcount during waiting page lock. But
6533          * here we just wait to defer the next page fault to avoid busy loop and
6534          * the page is not used after unlocked before returning from the current
6535          * page fault. So we are safe from accessing freed page, even if we wait
6536          * here without taking refcount.
6537          */
6538         if (need_wait_lock)
6539                 folio_wait_locked(folio);
6540         return ret;
6541 }
6542
6543 #ifdef CONFIG_USERFAULTFD
6544 /*
6545  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6546  */
6547 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6548                 struct vm_area_struct *vma, unsigned long address)
6549 {
6550         struct mempolicy *mpol;
6551         nodemask_t *nodemask;
6552         struct folio *folio;
6553         gfp_t gfp_mask;
6554         int node;
6555
6556         gfp_mask = htlb_alloc_mask(h);
6557         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6558         /*
6559          * This is used to allocate a temporary hugetlb to hold the copied
6560          * content, which will then be copied again to the final hugetlb
6561          * consuming a reservation. Set the alloc_fallback to false to indicate
6562          * that breaking the per-node hugetlb pool is not allowed in this case.
6563          */
6564         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6565         mpol_cond_put(mpol);
6566
6567         return folio;
6568 }
6569
6570 /*
6571  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6572  * with modifications for hugetlb pages.
6573  */
6574 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6575                              struct vm_area_struct *dst_vma,
6576                              unsigned long dst_addr,
6577                              unsigned long src_addr,
6578                              uffd_flags_t flags,
6579                              struct folio **foliop)
6580 {
6581         struct mm_struct *dst_mm = dst_vma->vm_mm;
6582         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6583         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6584         struct hstate *h = hstate_vma(dst_vma);
6585         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6586         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6587         unsigned long size = huge_page_size(h);
6588         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6589         pte_t _dst_pte;
6590         spinlock_t *ptl;
6591         int ret = -ENOMEM;
6592         struct folio *folio;
6593         bool folio_in_pagecache = false;
6594
6595         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6596                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6597
6598                 /* Don't overwrite any existing PTEs (even markers) */
6599                 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6600                         spin_unlock(ptl);
6601                         return -EEXIST;
6602                 }
6603
6604                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6605                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6606
6607                 /* No need to invalidate - it was non-present before */
6608                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6609
6610                 spin_unlock(ptl);
6611                 return 0;
6612         }
6613
6614         if (is_continue) {
6615                 ret = -EFAULT;
6616                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6617                 if (IS_ERR(folio))
6618                         goto out;
6619                 folio_in_pagecache = true;
6620         } else if (!*foliop) {
6621                 /* If a folio already exists, then it's UFFDIO_COPY for
6622                  * a non-missing case. Return -EEXIST.
6623                  */
6624                 if (vm_shared &&
6625                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6626                         ret = -EEXIST;
6627                         goto out;
6628                 }
6629
6630                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6631                 if (IS_ERR(folio)) {
6632                         ret = -ENOMEM;
6633                         goto out;
6634                 }
6635
6636                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6637                                            false);
6638
6639                 /* fallback to copy_from_user outside mmap_lock */
6640                 if (unlikely(ret)) {
6641                         ret = -ENOENT;
6642                         /* Free the allocated folio which may have
6643                          * consumed a reservation.
6644                          */
6645                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6646                         folio_put(folio);
6647
6648                         /* Allocate a temporary folio to hold the copied
6649                          * contents.
6650                          */
6651                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6652                         if (!folio) {
6653                                 ret = -ENOMEM;
6654                                 goto out;
6655                         }
6656                         *foliop = folio;
6657                         /* Set the outparam foliop and return to the caller to
6658                          * copy the contents outside the lock. Don't free the
6659                          * folio.
6660                          */
6661                         goto out;
6662                 }
6663         } else {
6664                 if (vm_shared &&
6665                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6666                         folio_put(*foliop);
6667                         ret = -EEXIST;
6668                         *foliop = NULL;
6669                         goto out;
6670                 }
6671
6672                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6673                 if (IS_ERR(folio)) {
6674                         folio_put(*foliop);
6675                         ret = -ENOMEM;
6676                         *foliop = NULL;
6677                         goto out;
6678                 }
6679                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6680                 folio_put(*foliop);
6681                 *foliop = NULL;
6682                 if (ret) {
6683                         folio_put(folio);
6684                         goto out;
6685                 }
6686         }
6687
6688         /*
6689          * If we just allocated a new page, we need a memory barrier to ensure
6690          * that preceding stores to the page become visible before the
6691          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6692          * is what we need.
6693          *
6694          * In the case where we have not allocated a new page (is_continue),
6695          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6696          * an earlier smp_wmb() to ensure that prior stores will be visible
6697          * before the set_pte_at() write.
6698          */
6699         if (!is_continue)
6700                 __folio_mark_uptodate(folio);
6701         else
6702                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6703
6704         /* Add shared, newly allocated pages to the page cache. */
6705         if (vm_shared && !is_continue) {
6706                 ret = -EFAULT;
6707                 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6708                         goto out_release_nounlock;
6709
6710                 /*
6711                  * Serialization between remove_inode_hugepages() and
6712                  * hugetlb_add_to_page_cache() below happens through the
6713                  * hugetlb_fault_mutex_table that here must be hold by
6714                  * the caller.
6715                  */
6716                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6717                 if (ret)
6718                         goto out_release_nounlock;
6719                 folio_in_pagecache = true;
6720         }
6721
6722         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6723
6724         ret = -EIO;
6725         if (folio_test_hwpoison(folio))
6726                 goto out_release_unlock;
6727
6728         /*
6729          * We allow to overwrite a pte marker: consider when both MISSING|WP
6730          * registered, we firstly wr-protect a none pte which has no page cache
6731          * page backing it, then access the page.
6732          */
6733         ret = -EEXIST;
6734         if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6735                 goto out_release_unlock;
6736
6737         if (folio_in_pagecache)
6738                 hugetlb_add_file_rmap(folio);
6739         else
6740                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6741
6742         /*
6743          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6744          * with wp flag set, don't set pte write bit.
6745          */
6746         _dst_pte = make_huge_pte(dst_vma, &folio->page,
6747                                  !wp_enabled && !(is_continue && !vm_shared));
6748         /*
6749          * Always mark UFFDIO_COPY page dirty; note that this may not be
6750          * extremely important for hugetlbfs for now since swapping is not
6751          * supported, but we should still be clear in that this page cannot be
6752          * thrown away at will, even if write bit not set.
6753          */
6754         _dst_pte = huge_pte_mkdirty(_dst_pte);
6755         _dst_pte = pte_mkyoung(_dst_pte);
6756
6757         if (wp_enabled)
6758                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6759
6760         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6761
6762         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6763
6764         /* No need to invalidate - it was non-present before */
6765         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6766
6767         spin_unlock(ptl);
6768         if (!is_continue)
6769                 folio_set_hugetlb_migratable(folio);
6770         if (vm_shared || is_continue)
6771                 folio_unlock(folio);
6772         ret = 0;
6773 out:
6774         return ret;
6775 out_release_unlock:
6776         spin_unlock(ptl);
6777         if (vm_shared || is_continue)
6778                 folio_unlock(folio);
6779 out_release_nounlock:
6780         if (!folio_in_pagecache)
6781                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6782         folio_put(folio);
6783         goto out;
6784 }
6785 #endif /* CONFIG_USERFAULTFD */
6786
6787 long hugetlb_change_protection(struct vm_area_struct *vma,
6788                 unsigned long address, unsigned long end,
6789                 pgprot_t newprot, unsigned long cp_flags)
6790 {
6791         struct mm_struct *mm = vma->vm_mm;
6792         unsigned long start = address;
6793         pte_t *ptep;
6794         pte_t pte;
6795         struct hstate *h = hstate_vma(vma);
6796         long pages = 0, psize = huge_page_size(h);
6797         bool shared_pmd = false;
6798         struct mmu_notifier_range range;
6799         unsigned long last_addr_mask;
6800         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6801         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6802
6803         /*
6804          * In the case of shared PMDs, the area to flush could be beyond
6805          * start/end.  Set range.start/range.end to cover the maximum possible
6806          * range if PMD sharing is possible.
6807          */
6808         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6809                                 0, mm, start, end);
6810         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6811
6812         BUG_ON(address >= end);
6813         flush_cache_range(vma, range.start, range.end);
6814
6815         mmu_notifier_invalidate_range_start(&range);
6816         hugetlb_vma_lock_write(vma);
6817         i_mmap_lock_write(vma->vm_file->f_mapping);
6818         last_addr_mask = hugetlb_mask_last_page(h);
6819         for (; address < end; address += psize) {
6820                 spinlock_t *ptl;
6821                 ptep = hugetlb_walk(vma, address, psize);
6822                 if (!ptep) {
6823                         if (!uffd_wp) {
6824                                 address |= last_addr_mask;
6825                                 continue;
6826                         }
6827                         /*
6828                          * Userfaultfd wr-protect requires pgtable
6829                          * pre-allocations to install pte markers.
6830                          */
6831                         ptep = huge_pte_alloc(mm, vma, address, psize);
6832                         if (!ptep) {
6833                                 pages = -ENOMEM;
6834                                 break;
6835                         }
6836                 }
6837                 ptl = huge_pte_lock(h, mm, ptep);
6838                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6839                         /*
6840                          * When uffd-wp is enabled on the vma, unshare
6841                          * shouldn't happen at all.  Warn about it if it
6842                          * happened due to some reason.
6843                          */
6844                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6845                         pages++;
6846                         spin_unlock(ptl);
6847                         shared_pmd = true;
6848                         address |= last_addr_mask;
6849                         continue;
6850                 }
6851                 pte = huge_ptep_get(mm, address, ptep);
6852                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6853                         /* Nothing to do. */
6854                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6855                         swp_entry_t entry = pte_to_swp_entry(pte);
6856                         struct page *page = pfn_swap_entry_to_page(entry);
6857                         pte_t newpte = pte;
6858
6859                         if (is_writable_migration_entry(entry)) {
6860                                 if (PageAnon(page))
6861                                         entry = make_readable_exclusive_migration_entry(
6862                                                                 swp_offset(entry));
6863                                 else
6864                                         entry = make_readable_migration_entry(
6865                                                                 swp_offset(entry));
6866                                 newpte = swp_entry_to_pte(entry);
6867                                 pages++;
6868                         }
6869
6870                         if (uffd_wp)
6871                                 newpte = pte_swp_mkuffd_wp(newpte);
6872                         else if (uffd_wp_resolve)
6873                                 newpte = pte_swp_clear_uffd_wp(newpte);
6874                         if (!pte_same(pte, newpte))
6875                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6876                 } else if (unlikely(is_pte_marker(pte))) {
6877                         /*
6878                          * Do nothing on a poison marker; page is
6879                          * corrupted, permissons do not apply.  Here
6880                          * pte_marker_uffd_wp()==true implies !poison
6881                          * because they're mutual exclusive.
6882                          */
6883                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6884                                 /* Safe to modify directly (non-present->none). */
6885                                 huge_pte_clear(mm, address, ptep, psize);
6886                 } else if (!huge_pte_none(pte)) {
6887                         pte_t old_pte;
6888                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6889
6890                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6891                         pte = huge_pte_modify(old_pte, newprot);
6892                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6893                         if (uffd_wp)
6894                                 pte = huge_pte_mkuffd_wp(pte);
6895                         else if (uffd_wp_resolve)
6896                                 pte = huge_pte_clear_uffd_wp(pte);
6897                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6898                         pages++;
6899                 } else {
6900                         /* None pte */
6901                         if (unlikely(uffd_wp))
6902                                 /* Safe to modify directly (none->non-present). */
6903                                 set_huge_pte_at(mm, address, ptep,
6904                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6905                                                 psize);
6906                 }
6907                 spin_unlock(ptl);
6908         }
6909         /*
6910          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6911          * may have cleared our pud entry and done put_page on the page table:
6912          * once we release i_mmap_rwsem, another task can do the final put_page
6913          * and that page table be reused and filled with junk.  If we actually
6914          * did unshare a page of pmds, flush the range corresponding to the pud.
6915          */
6916         if (shared_pmd)
6917                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6918         else
6919                 flush_hugetlb_tlb_range(vma, start, end);
6920         /*
6921          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6922          * downgrading page table protection not changing it to point to a new
6923          * page.
6924          *
6925          * See Documentation/mm/mmu_notifier.rst
6926          */
6927         i_mmap_unlock_write(vma->vm_file->f_mapping);
6928         hugetlb_vma_unlock_write(vma);
6929         mmu_notifier_invalidate_range_end(&range);
6930
6931         return pages > 0 ? (pages << h->order) : pages;
6932 }
6933
6934 /* Return true if reservation was successful, false otherwise.  */
6935 bool hugetlb_reserve_pages(struct inode *inode,
6936                                         long from, long to,
6937                                         struct vm_area_struct *vma,
6938                                         vm_flags_t vm_flags)
6939 {
6940         long chg = -1, add = -1;
6941         struct hstate *h = hstate_inode(inode);
6942         struct hugepage_subpool *spool = subpool_inode(inode);
6943         struct resv_map *resv_map;
6944         struct hugetlb_cgroup *h_cg = NULL;
6945         long gbl_reserve, regions_needed = 0;
6946
6947         /* This should never happen */
6948         if (from > to) {
6949                 VM_WARN(1, "%s called with a negative range\n", __func__);
6950                 return false;
6951         }
6952
6953         /*
6954          * vma specific semaphore used for pmd sharing and fault/truncation
6955          * synchronization
6956          */
6957         hugetlb_vma_lock_alloc(vma);
6958
6959         /*
6960          * Only apply hugepage reservation if asked. At fault time, an
6961          * attempt will be made for VM_NORESERVE to allocate a page
6962          * without using reserves
6963          */
6964         if (vm_flags & VM_NORESERVE)
6965                 return true;
6966
6967         /*
6968          * Shared mappings base their reservation on the number of pages that
6969          * are already allocated on behalf of the file. Private mappings need
6970          * to reserve the full area even if read-only as mprotect() may be
6971          * called to make the mapping read-write. Assume !vma is a shm mapping
6972          */
6973         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6974                 /*
6975                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6976                  * called for inodes for which resv_maps were created (see
6977                  * hugetlbfs_get_inode).
6978                  */
6979                 resv_map = inode_resv_map(inode);
6980
6981                 chg = region_chg(resv_map, from, to, &regions_needed);
6982         } else {
6983                 /* Private mapping. */
6984                 resv_map = resv_map_alloc();
6985                 if (!resv_map)
6986                         goto out_err;
6987
6988                 chg = to - from;
6989
6990                 set_vma_resv_map(vma, resv_map);
6991                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6992         }
6993
6994         if (chg < 0)
6995                 goto out_err;
6996
6997         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6998                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6999                 goto out_err;
7000
7001         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7002                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7003                  * of the resv_map.
7004                  */
7005                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7006         }
7007
7008         /*
7009          * There must be enough pages in the subpool for the mapping. If
7010          * the subpool has a minimum size, there may be some global
7011          * reservations already in place (gbl_reserve).
7012          */
7013         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7014         if (gbl_reserve < 0)
7015                 goto out_uncharge_cgroup;
7016
7017         /*
7018          * Check enough hugepages are available for the reservation.
7019          * Hand the pages back to the subpool if there are not
7020          */
7021         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7022                 goto out_put_pages;
7023
7024         /*
7025          * Account for the reservations made. Shared mappings record regions
7026          * that have reservations as they are shared by multiple VMAs.
7027          * When the last VMA disappears, the region map says how much
7028          * the reservation was and the page cache tells how much of
7029          * the reservation was consumed. Private mappings are per-VMA and
7030          * only the consumed reservations are tracked. When the VMA
7031          * disappears, the original reservation is the VMA size and the
7032          * consumed reservations are stored in the map. Hence, nothing
7033          * else has to be done for private mappings here
7034          */
7035         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7036                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7037
7038                 if (unlikely(add < 0)) {
7039                         hugetlb_acct_memory(h, -gbl_reserve);
7040                         goto out_put_pages;
7041                 } else if (unlikely(chg > add)) {
7042                         /*
7043                          * pages in this range were added to the reserve
7044                          * map between region_chg and region_add.  This
7045                          * indicates a race with alloc_hugetlb_folio.  Adjust
7046                          * the subpool and reserve counts modified above
7047                          * based on the difference.
7048                          */
7049                         long rsv_adjust;
7050
7051                         /*
7052                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7053                          * reference to h_cg->css. See comment below for detail.
7054                          */
7055                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7056                                 hstate_index(h),
7057                                 (chg - add) * pages_per_huge_page(h), h_cg);
7058
7059                         rsv_adjust = hugepage_subpool_put_pages(spool,
7060                                                                 chg - add);
7061                         hugetlb_acct_memory(h, -rsv_adjust);
7062                 } else if (h_cg) {
7063                         /*
7064                          * The file_regions will hold their own reference to
7065                          * h_cg->css. So we should release the reference held
7066                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7067                          * done.
7068                          */
7069                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7070                 }
7071         }
7072         return true;
7073
7074 out_put_pages:
7075         /* put back original number of pages, chg */
7076         (void)hugepage_subpool_put_pages(spool, chg);
7077 out_uncharge_cgroup:
7078         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7079                                             chg * pages_per_huge_page(h), h_cg);
7080 out_err:
7081         hugetlb_vma_lock_free(vma);
7082         if (!vma || vma->vm_flags & VM_MAYSHARE)
7083                 /* Only call region_abort if the region_chg succeeded but the
7084                  * region_add failed or didn't run.
7085                  */
7086                 if (chg >= 0 && add < 0)
7087                         region_abort(resv_map, from, to, regions_needed);
7088         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7089                 kref_put(&resv_map->refs, resv_map_release);
7090                 set_vma_resv_map(vma, NULL);
7091         }
7092         return false;
7093 }
7094
7095 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7096                                                                 long freed)
7097 {
7098         struct hstate *h = hstate_inode(inode);
7099         struct resv_map *resv_map = inode_resv_map(inode);
7100         long chg = 0;
7101         struct hugepage_subpool *spool = subpool_inode(inode);
7102         long gbl_reserve;
7103
7104         /*
7105          * Since this routine can be called in the evict inode path for all
7106          * hugetlbfs inodes, resv_map could be NULL.
7107          */
7108         if (resv_map) {
7109                 chg = region_del(resv_map, start, end);
7110                 /*
7111                  * region_del() can fail in the rare case where a region
7112                  * must be split and another region descriptor can not be
7113                  * allocated.  If end == LONG_MAX, it will not fail.
7114                  */
7115                 if (chg < 0)
7116                         return chg;
7117         }
7118
7119         spin_lock(&inode->i_lock);
7120         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7121         spin_unlock(&inode->i_lock);
7122
7123         /*
7124          * If the subpool has a minimum size, the number of global
7125          * reservations to be released may be adjusted.
7126          *
7127          * Note that !resv_map implies freed == 0. So (chg - freed)
7128          * won't go negative.
7129          */
7130         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7131         hugetlb_acct_memory(h, -gbl_reserve);
7132
7133         return 0;
7134 }
7135
7136 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7137 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7138                                 struct vm_area_struct *vma,
7139                                 unsigned long addr, pgoff_t idx)
7140 {
7141         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7142                                 svma->vm_start;
7143         unsigned long sbase = saddr & PUD_MASK;
7144         unsigned long s_end = sbase + PUD_SIZE;
7145
7146         /* Allow segments to share if only one is marked locked */
7147         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7148         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7149
7150         /*
7151          * match the virtual addresses, permission and the alignment of the
7152          * page table page.
7153          *
7154          * Also, vma_lock (vm_private_data) is required for sharing.
7155          */
7156         if (pmd_index(addr) != pmd_index(saddr) ||
7157             vm_flags != svm_flags ||
7158             !range_in_vma(svma, sbase, s_end) ||
7159             !svma->vm_private_data)
7160                 return 0;
7161
7162         return saddr;
7163 }
7164
7165 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7166 {
7167         unsigned long start = addr & PUD_MASK;
7168         unsigned long end = start + PUD_SIZE;
7169
7170 #ifdef CONFIG_USERFAULTFD
7171         if (uffd_disable_huge_pmd_share(vma))
7172                 return false;
7173 #endif
7174         /*
7175          * check on proper vm_flags and page table alignment
7176          */
7177         if (!(vma->vm_flags & VM_MAYSHARE))
7178                 return false;
7179         if (!vma->vm_private_data)      /* vma lock required for sharing */
7180                 return false;
7181         if (!range_in_vma(vma, start, end))
7182                 return false;
7183         return true;
7184 }
7185
7186 /*
7187  * Determine if start,end range within vma could be mapped by shared pmd.
7188  * If yes, adjust start and end to cover range associated with possible
7189  * shared pmd mappings.
7190  */
7191 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7192                                 unsigned long *start, unsigned long *end)
7193 {
7194         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7195                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7196
7197         /*
7198          * vma needs to span at least one aligned PUD size, and the range
7199          * must be at least partially within in.
7200          */
7201         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7202                 (*end <= v_start) || (*start >= v_end))
7203                 return;
7204
7205         /* Extend the range to be PUD aligned for a worst case scenario */
7206         if (*start > v_start)
7207                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7208
7209         if (*end < v_end)
7210                 *end = ALIGN(*end, PUD_SIZE);
7211 }
7212
7213 /*
7214  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7215  * and returns the corresponding pte. While this is not necessary for the
7216  * !shared pmd case because we can allocate the pmd later as well, it makes the
7217  * code much cleaner. pmd allocation is essential for the shared case because
7218  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7219  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7220  * bad pmd for sharing.
7221  */
7222 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7223                       unsigned long addr, pud_t *pud)
7224 {
7225         struct address_space *mapping = vma->vm_file->f_mapping;
7226         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7227                         vma->vm_pgoff;
7228         struct vm_area_struct *svma;
7229         unsigned long saddr;
7230         pte_t *spte = NULL;
7231         pte_t *pte;
7232
7233         i_mmap_lock_read(mapping);
7234         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7235                 if (svma == vma)
7236                         continue;
7237
7238                 saddr = page_table_shareable(svma, vma, addr, idx);
7239                 if (saddr) {
7240                         spte = hugetlb_walk(svma, saddr,
7241                                             vma_mmu_pagesize(svma));
7242                         if (spte) {
7243                                 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7244                                 break;
7245                         }
7246                 }
7247         }
7248
7249         if (!spte)
7250                 goto out;
7251
7252         spin_lock(&mm->page_table_lock);
7253         if (pud_none(*pud)) {
7254                 pud_populate(mm, pud,
7255                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7256                 mm_inc_nr_pmds(mm);
7257         } else {
7258                 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7259         }
7260         spin_unlock(&mm->page_table_lock);
7261 out:
7262         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7263         i_mmap_unlock_read(mapping);
7264         return pte;
7265 }
7266
7267 /*
7268  * unmap huge page backed by shared pte.
7269  *
7270  * Called with page table lock held.
7271  *
7272  * returns: 1 successfully unmapped a shared pte page
7273  *          0 the underlying pte page is not shared, or it is the last user
7274  */
7275 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7276                                         unsigned long addr, pte_t *ptep)
7277 {
7278         unsigned long sz = huge_page_size(hstate_vma(vma));
7279         pgd_t *pgd = pgd_offset(mm, addr);
7280         p4d_t *p4d = p4d_offset(pgd, addr);
7281         pud_t *pud = pud_offset(p4d, addr);
7282
7283         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7284         hugetlb_vma_assert_locked(vma);
7285         if (sz != PMD_SIZE)
7286                 return 0;
7287         if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7288                 return 0;
7289
7290         pud_clear(pud);
7291         ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7292         mm_dec_nr_pmds(mm);
7293         return 1;
7294 }
7295
7296 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7297
7298 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7299                       unsigned long addr, pud_t *pud)
7300 {
7301         return NULL;
7302 }
7303
7304 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7305                                 unsigned long addr, pte_t *ptep)
7306 {
7307         return 0;
7308 }
7309
7310 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7311                                 unsigned long *start, unsigned long *end)
7312 {
7313 }
7314
7315 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7316 {
7317         return false;
7318 }
7319 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7320
7321 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7322 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7323                         unsigned long addr, unsigned long sz)
7324 {
7325         pgd_t *pgd;
7326         p4d_t *p4d;
7327         pud_t *pud;
7328         pte_t *pte = NULL;
7329
7330         pgd = pgd_offset(mm, addr);
7331         p4d = p4d_alloc(mm, pgd, addr);
7332         if (!p4d)
7333                 return NULL;
7334         pud = pud_alloc(mm, p4d, addr);
7335         if (pud) {
7336                 if (sz == PUD_SIZE) {
7337                         pte = (pte_t *)pud;
7338                 } else {
7339                         BUG_ON(sz != PMD_SIZE);
7340                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7341                                 pte = huge_pmd_share(mm, vma, addr, pud);
7342                         else
7343                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7344                 }
7345         }
7346
7347         if (pte) {
7348                 pte_t pteval = ptep_get_lockless(pte);
7349
7350                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7351         }
7352
7353         return pte;
7354 }
7355
7356 /*
7357  * huge_pte_offset() - Walk the page table to resolve the hugepage
7358  * entry at address @addr
7359  *
7360  * Return: Pointer to page table entry (PUD or PMD) for
7361  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7362  * size @sz doesn't match the hugepage size at this level of the page
7363  * table.
7364  */
7365 pte_t *huge_pte_offset(struct mm_struct *mm,
7366                        unsigned long addr, unsigned long sz)
7367 {
7368         pgd_t *pgd;
7369         p4d_t *p4d;
7370         pud_t *pud;
7371         pmd_t *pmd;
7372
7373         pgd = pgd_offset(mm, addr);
7374         if (!pgd_present(*pgd))
7375                 return NULL;
7376         p4d = p4d_offset(pgd, addr);
7377         if (!p4d_present(*p4d))
7378                 return NULL;
7379
7380         pud = pud_offset(p4d, addr);
7381         if (sz == PUD_SIZE)
7382                 /* must be pud huge, non-present or none */
7383                 return (pte_t *)pud;
7384         if (!pud_present(*pud))
7385                 return NULL;
7386         /* must have a valid entry and size to go further */
7387
7388         pmd = pmd_offset(pud, addr);
7389         /* must be pmd huge, non-present or none */
7390         return (pte_t *)pmd;
7391 }
7392
7393 /*
7394  * Return a mask that can be used to update an address to the last huge
7395  * page in a page table page mapping size.  Used to skip non-present
7396  * page table entries when linearly scanning address ranges.  Architectures
7397  * with unique huge page to page table relationships can define their own
7398  * version of this routine.
7399  */
7400 unsigned long hugetlb_mask_last_page(struct hstate *h)
7401 {
7402         unsigned long hp_size = huge_page_size(h);
7403
7404         if (hp_size == PUD_SIZE)
7405                 return P4D_SIZE - PUD_SIZE;
7406         else if (hp_size == PMD_SIZE)
7407                 return PUD_SIZE - PMD_SIZE;
7408         else
7409                 return 0UL;
7410 }
7411
7412 #else
7413
7414 /* See description above.  Architectures can provide their own version. */
7415 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7416 {
7417 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7418         if (huge_page_size(h) == PMD_SIZE)
7419                 return PUD_SIZE - PMD_SIZE;
7420 #endif
7421         return 0UL;
7422 }
7423
7424 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7425
7426 /**
7427  * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7428  * @folio: the folio to isolate
7429  * @list: the list to add the folio to on success
7430  *
7431  * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7432  * isolated/non-migratable, and moving it from the active list to the
7433  * given list.
7434  *
7435  * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7436  * it is already isolated/non-migratable.
7437  *
7438  * On success, an additional folio reference is taken that must be dropped
7439  * using folio_putback_hugetlb() to undo the isolation.
7440  *
7441  * Return: True if isolation worked, otherwise False.
7442  */
7443 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7444 {
7445         bool ret = true;
7446
7447         spin_lock_irq(&hugetlb_lock);
7448         if (!folio_test_hugetlb(folio) ||
7449             !folio_test_hugetlb_migratable(folio) ||
7450             !folio_try_get(folio)) {
7451                 ret = false;
7452                 goto unlock;
7453         }
7454         folio_clear_hugetlb_migratable(folio);
7455         list_move_tail(&folio->lru, list);
7456 unlock:
7457         spin_unlock_irq(&hugetlb_lock);
7458         return ret;
7459 }
7460
7461 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7462 {
7463         int ret = 0;
7464
7465         *hugetlb = false;
7466         spin_lock_irq(&hugetlb_lock);
7467         if (folio_test_hugetlb(folio)) {
7468                 *hugetlb = true;
7469                 if (folio_test_hugetlb_freed(folio))
7470                         ret = 0;
7471                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7472                         ret = folio_try_get(folio);
7473                 else
7474                         ret = -EBUSY;
7475         }
7476         spin_unlock_irq(&hugetlb_lock);
7477         return ret;
7478 }
7479
7480 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7481                                 bool *migratable_cleared)
7482 {
7483         int ret;
7484
7485         spin_lock_irq(&hugetlb_lock);
7486         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7487         spin_unlock_irq(&hugetlb_lock);
7488         return ret;
7489 }
7490
7491 /**
7492  * folio_putback_hugetlb - unisolate a hugetlb folio
7493  * @folio: the isolated hugetlb folio
7494  *
7495  * Putback/un-isolate the hugetlb folio that was previous isolated using
7496  * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7497  * back onto the active list.
7498  *
7499  * Will drop the additional folio reference obtained through
7500  * folio_isolate_hugetlb().
7501  */
7502 void folio_putback_hugetlb(struct folio *folio)
7503 {
7504         spin_lock_irq(&hugetlb_lock);
7505         folio_set_hugetlb_migratable(folio);
7506         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7507         spin_unlock_irq(&hugetlb_lock);
7508         folio_put(folio);
7509 }
7510
7511 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7512 {
7513         struct hstate *h = folio_hstate(old_folio);
7514
7515         hugetlb_cgroup_migrate(old_folio, new_folio);
7516         set_page_owner_migrate_reason(&new_folio->page, reason);
7517
7518         /*
7519          * transfer temporary state of the new hugetlb folio. This is
7520          * reverse to other transitions because the newpage is going to
7521          * be final while the old one will be freed so it takes over
7522          * the temporary status.
7523          *
7524          * Also note that we have to transfer the per-node surplus state
7525          * here as well otherwise the global surplus count will not match
7526          * the per-node's.
7527          */
7528         if (folio_test_hugetlb_temporary(new_folio)) {
7529                 int old_nid = folio_nid(old_folio);
7530                 int new_nid = folio_nid(new_folio);
7531
7532                 folio_set_hugetlb_temporary(old_folio);
7533                 folio_clear_hugetlb_temporary(new_folio);
7534
7535
7536                 /*
7537                  * There is no need to transfer the per-node surplus state
7538                  * when we do not cross the node.
7539                  */
7540                 if (new_nid == old_nid)
7541                         return;
7542                 spin_lock_irq(&hugetlb_lock);
7543                 if (h->surplus_huge_pages_node[old_nid]) {
7544                         h->surplus_huge_pages_node[old_nid]--;
7545                         h->surplus_huge_pages_node[new_nid]++;
7546                 }
7547                 spin_unlock_irq(&hugetlb_lock);
7548         }
7549
7550         /*
7551          * Our old folio is isolated and has "migratable" cleared until it
7552          * is putback. As migration succeeded, set the new folio "migratable"
7553          * and add it to the active list.
7554          */
7555         spin_lock_irq(&hugetlb_lock);
7556         folio_set_hugetlb_migratable(new_folio);
7557         list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7558         spin_unlock_irq(&hugetlb_lock);
7559 }
7560
7561 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7562                                    unsigned long start,
7563                                    unsigned long end)
7564 {
7565         struct hstate *h = hstate_vma(vma);
7566         unsigned long sz = huge_page_size(h);
7567         struct mm_struct *mm = vma->vm_mm;
7568         struct mmu_notifier_range range;
7569         unsigned long address;
7570         spinlock_t *ptl;
7571         pte_t *ptep;
7572
7573         if (!(vma->vm_flags & VM_MAYSHARE))
7574                 return;
7575
7576         if (start >= end)
7577                 return;
7578
7579         flush_cache_range(vma, start, end);
7580         /*
7581          * No need to call adjust_range_if_pmd_sharing_possible(), because
7582          * we have already done the PUD_SIZE alignment.
7583          */
7584         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7585                                 start, end);
7586         mmu_notifier_invalidate_range_start(&range);
7587         hugetlb_vma_lock_write(vma);
7588         i_mmap_lock_write(vma->vm_file->f_mapping);
7589         for (address = start; address < end; address += PUD_SIZE) {
7590                 ptep = hugetlb_walk(vma, address, sz);
7591                 if (!ptep)
7592                         continue;
7593                 ptl = huge_pte_lock(h, mm, ptep);
7594                 huge_pmd_unshare(mm, vma, address, ptep);
7595                 spin_unlock(ptl);
7596         }
7597         flush_hugetlb_tlb_range(vma, start, end);
7598         i_mmap_unlock_write(vma->vm_file->f_mapping);
7599         hugetlb_vma_unlock_write(vma);
7600         /*
7601          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7602          * Documentation/mm/mmu_notifier.rst.
7603          */
7604         mmu_notifier_invalidate_range_end(&range);
7605 }
7606
7607 /*
7608  * This function will unconditionally remove all the shared pmd pgtable entries
7609  * within the specific vma for a hugetlbfs memory range.
7610  */
7611 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7612 {
7613         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7614                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7615 }
7616
7617 #ifdef CONFIG_CMA
7618 static bool cma_reserve_called __initdata;
7619
7620 static int __init cmdline_parse_hugetlb_cma(char *p)
7621 {
7622         int nid, count = 0;
7623         unsigned long tmp;
7624         char *s = p;
7625
7626         while (*s) {
7627                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7628                         break;
7629
7630                 if (s[count] == ':') {
7631                         if (tmp >= MAX_NUMNODES)
7632                                 break;
7633                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7634
7635                         s += count + 1;
7636                         tmp = memparse(s, &s);
7637                         hugetlb_cma_size_in_node[nid] = tmp;
7638                         hugetlb_cma_size += tmp;
7639
7640                         /*
7641                          * Skip the separator if have one, otherwise
7642                          * break the parsing.
7643                          */
7644                         if (*s == ',')
7645                                 s++;
7646                         else
7647                                 break;
7648                 } else {
7649                         hugetlb_cma_size = memparse(p, &p);
7650                         break;
7651                 }
7652         }
7653
7654         return 0;
7655 }
7656
7657 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7658
7659 void __init hugetlb_cma_reserve(int order)
7660 {
7661         unsigned long size, reserved, per_node;
7662         bool node_specific_cma_alloc = false;
7663         int nid;
7664
7665         /*
7666          * HugeTLB CMA reservation is required for gigantic
7667          * huge pages which could not be allocated via the
7668          * page allocator. Just warn if there is any change
7669          * breaking this assumption.
7670          */
7671         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7672         cma_reserve_called = true;
7673
7674         if (!hugetlb_cma_size)
7675                 return;
7676
7677         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7678                 if (hugetlb_cma_size_in_node[nid] == 0)
7679                         continue;
7680
7681                 if (!node_online(nid)) {
7682                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7683                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7684                         hugetlb_cma_size_in_node[nid] = 0;
7685                         continue;
7686                 }
7687
7688                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7689                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7690                                 nid, (PAGE_SIZE << order) / SZ_1M);
7691                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7692                         hugetlb_cma_size_in_node[nid] = 0;
7693                 } else {
7694                         node_specific_cma_alloc = true;
7695                 }
7696         }
7697
7698         /* Validate the CMA size again in case some invalid nodes specified. */
7699         if (!hugetlb_cma_size)
7700                 return;
7701
7702         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7703                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7704                         (PAGE_SIZE << order) / SZ_1M);
7705                 hugetlb_cma_size = 0;
7706                 return;
7707         }
7708
7709         if (!node_specific_cma_alloc) {
7710                 /*
7711                  * If 3 GB area is requested on a machine with 4 numa nodes,
7712                  * let's allocate 1 GB on first three nodes and ignore the last one.
7713                  */
7714                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7715                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7716                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7717         }
7718
7719         reserved = 0;
7720         for_each_online_node(nid) {
7721                 int res;
7722                 char name[CMA_MAX_NAME];
7723
7724                 if (node_specific_cma_alloc) {
7725                         if (hugetlb_cma_size_in_node[nid] == 0)
7726                                 continue;
7727
7728                         size = hugetlb_cma_size_in_node[nid];
7729                 } else {
7730                         size = min(per_node, hugetlb_cma_size - reserved);
7731                 }
7732
7733                 size = round_up(size, PAGE_SIZE << order);
7734
7735                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7736                 /*
7737                  * Note that 'order per bit' is based on smallest size that
7738                  * may be returned to CMA allocator in the case of
7739                  * huge page demotion.
7740                  */
7741                 res = cma_declare_contiguous_nid(0, size, 0,
7742                                         PAGE_SIZE << order,
7743                                         HUGETLB_PAGE_ORDER, false, name,
7744                                         &hugetlb_cma[nid], nid);
7745                 if (res) {
7746                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7747                                 res, nid);
7748                         continue;
7749                 }
7750
7751                 reserved += size;
7752                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7753                         size / SZ_1M, nid);
7754
7755                 if (reserved >= hugetlb_cma_size)
7756                         break;
7757         }
7758
7759         if (!reserved)
7760                 /*
7761                  * hugetlb_cma_size is used to determine if allocations from
7762                  * cma are possible.  Set to zero if no cma regions are set up.
7763                  */
7764                 hugetlb_cma_size = 0;
7765 }
7766
7767 static void __init hugetlb_cma_check(void)
7768 {
7769         if (!hugetlb_cma_size || cma_reserve_called)
7770                 return;
7771
7772         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7773 }
7774
7775 #endif /* CONFIG_CMA */
This page took 0.473777 seconds and 4 git commands to generate.