1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
4 * Copyright (C) 2015 Renesas Electronics Corp.
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
9 * - Classical CAN (CAN 2.0) only mode
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/netdevice.h>
31 #include <linux/platform_device.h>
32 #include <linux/can/led.h>
33 #include <linux/can/dev.h>
34 #include <linux/clk.h>
36 #include <linux/of_device.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 #include <linux/iopoll.h>
40 #include <linux/reset.h>
42 #define RCANFD_DRV_NAME "rcar_canfd"
45 RENESAS_RCAR_GEN3 = 0,
49 /* Global register bits */
52 #define RCANFD_GRMCFG_RCMC BIT(0)
54 /* RSCFDnCFDGCFG / RSCFDnGCFG */
55 #define RCANFD_GCFG_EEFE BIT(6)
56 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
57 #define RCANFD_GCFG_DCS BIT(4)
58 #define RCANFD_GCFG_DCE BIT(1)
59 #define RCANFD_GCFG_TPRI BIT(0)
61 /* RSCFDnCFDGCTR / RSCFDnGCTR */
62 #define RCANFD_GCTR_TSRST BIT(16)
63 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
64 #define RCANFD_GCTR_THLEIE BIT(10)
65 #define RCANFD_GCTR_MEIE BIT(9)
66 #define RCANFD_GCTR_DEIE BIT(8)
67 #define RCANFD_GCTR_GSLPR BIT(2)
68 #define RCANFD_GCTR_GMDC_MASK (0x3)
69 #define RCANFD_GCTR_GMDC_GOPM (0x0)
70 #define RCANFD_GCTR_GMDC_GRESET (0x1)
71 #define RCANFD_GCTR_GMDC_GTEST (0x2)
73 /* RSCFDnCFDGSTS / RSCFDnGSTS */
74 #define RCANFD_GSTS_GRAMINIT BIT(3)
75 #define RCANFD_GSTS_GSLPSTS BIT(2)
76 #define RCANFD_GSTS_GHLTSTS BIT(1)
77 #define RCANFD_GSTS_GRSTSTS BIT(0)
78 /* Non-operational status */
79 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
81 /* RSCFDnCFDGERFL / RSCFDnGERFL */
82 #define RCANFD_GERFL_EEF1 BIT(17)
83 #define RCANFD_GERFL_EEF0 BIT(16)
84 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
85 #define RCANFD_GERFL_THLES BIT(2)
86 #define RCANFD_GERFL_MES BIT(1)
87 #define RCANFD_GERFL_DEF BIT(0)
89 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\
90 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
92 RCANFD_GERFL_CMPOF : 0)))
94 /* AFL Rx rules registers */
96 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
97 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8))
98 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff)
100 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
101 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
102 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f)
104 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
105 #define RCANFD_GAFLID_GAFLLB BIT(29)
107 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
108 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
110 /* Channel register bits */
112 /* RSCFDnCmCFG - Classical CAN only */
113 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
114 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
115 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
116 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
118 /* RSCFDnCFDCmNCFG - CAN FD only */
119 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24)
120 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16)
121 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11)
122 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
124 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
125 #define RCANFD_CCTR_CTME BIT(24)
126 #define RCANFD_CCTR_ERRD BIT(23)
127 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
128 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
129 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
130 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
131 #define RCANFD_CCTR_TDCVFIE BIT(19)
132 #define RCANFD_CCTR_SOCOIE BIT(18)
133 #define RCANFD_CCTR_EOCOIE BIT(17)
134 #define RCANFD_CCTR_TAIE BIT(16)
135 #define RCANFD_CCTR_ALIE BIT(15)
136 #define RCANFD_CCTR_BLIE BIT(14)
137 #define RCANFD_CCTR_OLIE BIT(13)
138 #define RCANFD_CCTR_BORIE BIT(12)
139 #define RCANFD_CCTR_BOEIE BIT(11)
140 #define RCANFD_CCTR_EPIE BIT(10)
141 #define RCANFD_CCTR_EWIE BIT(9)
142 #define RCANFD_CCTR_BEIE BIT(8)
143 #define RCANFD_CCTR_CSLPR BIT(2)
144 #define RCANFD_CCTR_CHMDC_MASK (0x3)
145 #define RCANFD_CCTR_CHDMC_COPM (0x0)
146 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
147 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
149 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
150 #define RCANFD_CSTS_COMSTS BIT(7)
151 #define RCANFD_CSTS_RECSTS BIT(6)
152 #define RCANFD_CSTS_TRMSTS BIT(5)
153 #define RCANFD_CSTS_BOSTS BIT(4)
154 #define RCANFD_CSTS_EPSTS BIT(3)
155 #define RCANFD_CSTS_SLPSTS BIT(2)
156 #define RCANFD_CSTS_HLTSTS BIT(1)
157 #define RCANFD_CSTS_CRSTSTS BIT(0)
159 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
160 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
162 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
163 #define RCANFD_CERFL_ADERR BIT(14)
164 #define RCANFD_CERFL_B0ERR BIT(13)
165 #define RCANFD_CERFL_B1ERR BIT(12)
166 #define RCANFD_CERFL_CERR BIT(11)
167 #define RCANFD_CERFL_AERR BIT(10)
168 #define RCANFD_CERFL_FERR BIT(9)
169 #define RCANFD_CERFL_SERR BIT(8)
170 #define RCANFD_CERFL_ALF BIT(7)
171 #define RCANFD_CERFL_BLF BIT(6)
172 #define RCANFD_CERFL_OVLF BIT(5)
173 #define RCANFD_CERFL_BORF BIT(4)
174 #define RCANFD_CERFL_BOEF BIT(3)
175 #define RCANFD_CERFL_EPF BIT(2)
176 #define RCANFD_CERFL_EWF BIT(1)
177 #define RCANFD_CERFL_BEF BIT(0)
179 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
181 /* RSCFDnCFDCmDCFG */
182 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24)
183 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20)
184 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16)
185 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
187 /* RSCFDnCFDCmFDCFG */
188 #define RCANFD_FDCFG_TDCE BIT(9)
189 #define RCANFD_FDCFG_TDCOC BIT(8)
190 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
193 #define RCANFD_RFCC_RFIM BIT(12)
194 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
195 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
196 #define RCANFD_RFCC_RFIE BIT(1)
197 #define RCANFD_RFCC_RFE BIT(0)
199 /* RSCFDnCFDRFSTSx */
200 #define RCANFD_RFSTS_RFIF BIT(3)
201 #define RCANFD_RFSTS_RFMLT BIT(2)
202 #define RCANFD_RFSTS_RFFLL BIT(1)
203 #define RCANFD_RFSTS_RFEMP BIT(0)
206 #define RCANFD_RFID_RFIDE BIT(31)
207 #define RCANFD_RFID_RFRTR BIT(30)
209 /* RSCFDnCFDRFPTRx */
210 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
211 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
212 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
214 /* RSCFDnCFDRFFDSTSx */
215 #define RCANFD_RFFDSTS_RFFDF BIT(2)
216 #define RCANFD_RFFDSTS_RFBRS BIT(1)
217 #define RCANFD_RFFDSTS_RFESI BIT(0)
219 /* Common FIFO bits */
222 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20)
223 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16)
224 #define RCANFD_CFCC_CFIM BIT(12)
225 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8)
226 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
227 #define RCANFD_CFCC_CFTXIE BIT(2)
228 #define RCANFD_CFCC_CFE BIT(0)
230 /* RSCFDnCFDCFSTSk */
231 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
232 #define RCANFD_CFSTS_CFTXIF BIT(4)
233 #define RCANFD_CFSTS_CFMLT BIT(2)
234 #define RCANFD_CFSTS_CFFLL BIT(1)
235 #define RCANFD_CFSTS_CFEMP BIT(0)
238 #define RCANFD_CFID_CFIDE BIT(31)
239 #define RCANFD_CFID_CFRTR BIT(30)
240 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
242 /* RSCFDnCFDCFPTRk */
243 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
244 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
245 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
247 /* RSCFDnCFDCFFDCSTSk */
248 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
249 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
250 #define RCANFD_CFFDCSTS_CFESI BIT(0)
252 /* This controller supports either Classical CAN only mode or CAN FD only mode.
253 * These modes are supported in two separate set of register maps & names.
254 * However, some of the register offsets are common for both modes. Those
255 * offsets are listed below as Common registers.
257 * The CAN FD only mode specific registers & Classical CAN only mode specific
258 * registers are listed separately. Their register names starts with
259 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
262 /* Common registers */
264 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
265 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
266 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
267 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
268 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
269 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
270 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
271 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
273 /* RSCFDnCFDGCFG / RSCFDnGCFG */
274 #define RCANFD_GCFG (0x0084)
275 /* RSCFDnCFDGCTR / RSCFDnGCTR */
276 #define RCANFD_GCTR (0x0088)
277 /* RSCFDnCFDGCTS / RSCFDnGCTS */
278 #define RCANFD_GSTS (0x008c)
279 /* RSCFDnCFDGERFL / RSCFDnGERFL */
280 #define RCANFD_GERFL (0x0090)
281 /* RSCFDnCFDGTSC / RSCFDnGTSC */
282 #define RCANFD_GTSC (0x0094)
283 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
284 #define RCANFD_GAFLECTR (0x0098)
285 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
286 #define RCANFD_GAFLCFG0 (0x009c)
287 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
288 #define RCANFD_GAFLCFG1 (0x00a0)
289 /* RSCFDnCFDRMNB / RSCFDnRMNB */
290 #define RCANFD_RMNB (0x00a4)
291 /* RSCFDnCFDRMND / RSCFDnRMND */
292 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
294 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
295 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x)))
296 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
297 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x)))
298 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
299 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x)))
301 /* Common FIFO Control registers */
303 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
304 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \
306 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
307 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \
309 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
310 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \
313 /* RSCFDnCFDFESTS / RSCFDnFESTS */
314 #define RCANFD_FESTS (0x0238)
315 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
316 #define RCANFD_FFSTS (0x023c)
317 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
318 #define RCANFD_FMSTS (0x0240)
319 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
320 #define RCANFD_RFISTS (0x0244)
321 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
322 #define RCANFD_CFRISTS (0x0248)
323 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
324 #define RCANFD_CFTISTS (0x024c)
326 /* RSCFDnCFDTMCp / RSCFDnTMCp */
327 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
328 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
329 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
331 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
332 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
333 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
334 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
335 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
336 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
337 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
338 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
339 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
340 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
342 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
343 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
344 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
345 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
346 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
347 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
349 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
350 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
351 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
352 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
353 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
354 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
356 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
357 #define RCANFD_GTINTSTS0 (0x0460)
358 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
359 #define RCANFD_GTINTSTS1 (0x0464)
360 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
361 #define RCANFD_GTSTCFG (0x0468)
362 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
363 #define RCANFD_GTSTCTR (0x046c)
364 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
365 #define RCANFD_GLOCKK (0x047c)
366 /* RSCFDnCFDGRMCFG */
367 #define RCANFD_GRMCFG (0x04fc)
369 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
370 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
371 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
372 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
373 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
374 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
375 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
376 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
378 /* Classical CAN only mode register map */
380 /* RSCFDnGAFLXXXj offset */
381 #define RCANFD_C_GAFL_OFFSET (0x0500)
383 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
384 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
385 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
386 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
387 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
389 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
390 #define RCANFD_C_RFOFFSET (0x0e00)
391 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
392 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \
394 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \
395 (0x10 * (x)) + (0x04 * (df)))
397 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
398 #define RCANFD_C_CFOFFSET (0x0e80)
399 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
401 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \
402 (0x30 * (ch)) + (0x10 * (idx)))
403 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \
404 (0x30 * (ch)) + (0x10 * (idx)) + \
407 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
408 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
409 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
410 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
411 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
414 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
416 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
418 /* CAN FD mode specific register map */
420 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
421 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m)))
422 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
423 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
424 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
425 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
427 /* RSCFDnCFDGAFLXXXj offset */
428 #define RCANFD_F_GAFL_OFFSET (0x1000)
430 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
431 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
432 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
433 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
434 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
436 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
437 #define RCANFD_F_RFOFFSET (0x3000)
438 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x)))
439 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \
441 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \
443 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \
444 (0x80 * (x)) + (0x04 * (df)))
446 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
447 #define RCANFD_F_CFOFFSET (0x3400)
448 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
450 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \
451 (0x180 * (ch)) + (0x80 * (idx)))
452 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \
453 (0x180 * (ch)) + (0x80 * (idx)))
454 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \
455 (0x180 * (ch)) + (0x80 * (idx)) + \
458 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
459 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
460 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
461 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
462 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
464 /* RSCFDnCFDTHLACCm */
465 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
466 /* RSCFDnCFDRPGACCr */
467 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
470 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
471 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
473 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */
474 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
476 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
477 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
479 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
480 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
481 * number is added to RFFIFO index.
483 #define RCANFD_RFFIFO_IDX 0
485 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
486 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
488 #define RCANFD_CFFIFO_IDX 0
490 /* fCAN clock select register settings */
491 enum rcar_canfd_fcanclk {
492 RCANFD_CANFDCLK = 0, /* CANFD clock */
493 RCANFD_EXTCLK, /* Externally input clock */
496 struct rcar_canfd_global;
498 /* Channel priv data */
499 struct rcar_canfd_channel {
500 struct can_priv can; /* Must be the first member */
501 struct net_device *ndev;
502 struct rcar_canfd_global *gpriv; /* Controller reference */
503 void __iomem *base; /* Register base address */
504 struct napi_struct napi;
505 u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */
506 u32 tx_head; /* Incremented on xmit */
507 u32 tx_tail; /* Incremented on xmit done */
508 u32 channel; /* Channel number */
509 spinlock_t tx_lock; /* To protect tx path */
512 /* Global priv data */
513 struct rcar_canfd_global {
514 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
515 void __iomem *base; /* Register base address */
516 struct platform_device *pdev; /* Respective platform device */
517 struct clk *clkp; /* Peripheral clock */
518 struct clk *can_clk; /* fCAN clock */
519 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */
520 unsigned long channels_mask; /* Enabled channels mask */
521 bool fdmode; /* CAN FD or Classical CAN only mode */
522 struct reset_control *rstc1;
523 struct reset_control *rstc2;
524 enum rcanfd_chip_id chip_id;
527 /* CAN FD mode nominal rate constants */
528 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
529 .name = RCANFD_DRV_NAME,
540 /* CAN FD mode data rate constants */
541 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
542 .name = RCANFD_DRV_NAME,
553 /* Classical CAN mode bitrate constants */
554 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
555 .name = RCANFD_DRV_NAME,
566 /* Helper functions */
567 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
569 u32 data = readl(reg);
572 data |= (val & mask);
576 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
578 return readl(base + (offset));
581 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
583 writel(val, base + (offset));
586 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
588 rcar_canfd_update(val, val, base + (reg));
591 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
593 rcar_canfd_update(val, 0, base + (reg));
596 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
599 rcar_canfd_update(mask, val, base + (reg));
602 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
603 struct canfd_frame *cf, u32 off)
607 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
608 for (i = 0; i < lwords; i++)
609 *((u32 *)cf->data + i) =
610 rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
613 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
614 struct canfd_frame *cf, u32 off)
618 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
619 for (i = 0; i < lwords; i++)
620 rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
621 *((u32 *)cf->data + i));
624 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
628 for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
629 can_free_echo_skb(ndev, i, NULL);
632 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
637 /* Check RAMINIT flag as CAN RAM initialization takes place
638 * after the MCU reset
640 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
641 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
643 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
647 /* Transition to Global Reset mode */
648 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
649 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
650 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
652 /* Ensure Global reset mode */
653 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
654 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
656 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
660 /* Reset Global error flags */
661 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
663 /* Set the controller into appropriate mode */
665 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
668 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
671 /* Transition all Channels to reset mode */
672 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
673 rcar_canfd_clear_bit(gpriv->base,
674 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
676 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
677 RCANFD_CCTR_CHMDC_MASK,
678 RCANFD_CCTR_CHDMC_CRESET);
680 /* Ensure Channel reset mode */
681 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
682 (sts & RCANFD_CSTS_CRSTSTS),
685 dev_dbg(&gpriv->pdev->dev,
686 "channel %u reset failed\n", ch);
693 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
697 /* Global configuration settings */
699 /* ECC Error flag Enable */
700 cfg = RCANFD_GCFG_EEFE;
703 /* Truncate payload to configured message size RFPLS */
704 cfg |= RCANFD_GCFG_CMPOC;
706 /* Set External Clock if selected */
707 if (gpriv->fcan != RCANFD_CANFDCLK)
708 cfg |= RCANFD_GCFG_DCS;
710 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
712 /* Channel configuration settings */
713 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
714 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
716 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
717 RCANFD_CCTR_BOM_MASK,
718 RCANFD_CCTR_BOM_BENTRY);
722 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
726 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
727 u32 ridx = ch + RCANFD_RFFIFO_IDX;
730 start = 0; /* Channel 0 always starts from 0th rule */
732 /* Get number of Channel 0 rules and adjust */
733 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
734 start = RCANFD_GAFLCFG_GETRNC(0, cfg);
737 /* Enable write access to entry */
738 page = RCANFD_GAFL_PAGENUM(start);
739 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
740 (RCANFD_GAFLECTR_AFLPN(page) |
741 RCANFD_GAFLECTR_AFLDAE));
743 /* Write number of rules for channel */
744 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
745 RCANFD_GAFLCFG_SETRNC(ch, num_rules));
747 offset = RCANFD_F_GAFL_OFFSET;
749 offset = RCANFD_C_GAFL_OFFSET;
752 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
753 /* IDE or RTR is not considered for matching */
754 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
755 /* Any data length accepted */
756 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
757 /* Place the msg in corresponding Rx FIFO entry */
758 rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
759 RCANFD_GAFLP1_GAFLFDP(ridx));
761 /* Disable write access to page */
762 rcar_canfd_clear_bit(gpriv->base,
763 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
766 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
768 /* Rx FIFO is used for reception */
772 /* Select Rx FIFO based on channel */
773 u32 ridx = ch + RCANFD_RFFIFO_IDX;
775 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
777 rfpls = 7; /* b111 - Max 64 bytes payload */
779 rfpls = 0; /* b000 - Max 8 bytes payload */
781 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
782 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
783 rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
786 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
788 /* Tx/Rx(Common) FIFO configured in Tx mode is
789 * used for transmission
791 * Each channel has 3 Common FIFO dedicated to them.
792 * Use the 1st (index 0) out of 3
795 u16 cftml, cfm, cfdc, cfpls;
797 cftml = 0; /* 0th buffer */
798 cfm = 1; /* b01 - Transmit mode */
799 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
801 cfpls = 7; /* b111 - Max 64 bytes payload */
803 cfpls = 0; /* b000 - Max 8 bytes payload */
805 cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
806 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
807 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
808 rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
811 /* Clear FD mode specific control/status register */
812 rcar_canfd_write(gpriv->base,
813 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
816 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
820 /* Clear any stray error interrupt flags */
821 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
823 /* Global interrupts setup */
824 ctr = RCANFD_GCTR_MEIE;
826 ctr |= RCANFD_GCTR_CFMPOFIE;
828 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
831 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
834 /* Disable all interrupts */
835 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
837 /* Clear any stray error interrupt flags */
838 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
841 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
844 u32 ctr, ch = priv->channel;
846 /* Clear any stray error flags */
847 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
849 /* Channel interrupts setup */
850 ctr = (RCANFD_CCTR_TAIE |
851 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
852 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
853 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
854 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
855 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
858 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
861 u32 ctr, ch = priv->channel;
863 ctr = (RCANFD_CCTR_TAIE |
864 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
865 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
866 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
867 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
868 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
870 /* Clear any stray error flags */
871 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
874 static void rcar_canfd_global_error(struct net_device *ndev)
876 struct rcar_canfd_channel *priv = netdev_priv(ndev);
877 struct rcar_canfd_global *gpriv = priv->gpriv;
878 struct net_device_stats *stats = &ndev->stats;
879 u32 ch = priv->channel;
881 u32 ridx = ch + RCANFD_RFFIFO_IDX;
883 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
884 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
885 netdev_dbg(ndev, "Ch0: ECC Error flag\n");
888 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
889 netdev_dbg(ndev, "Ch1: ECC Error flag\n");
892 if (gerfl & RCANFD_GERFL_MES) {
893 sts = rcar_canfd_read(priv->base,
894 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
895 if (sts & RCANFD_CFSTS_CFMLT) {
896 netdev_dbg(ndev, "Tx Message Lost flag\n");
898 rcar_canfd_write(priv->base,
899 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
900 sts & ~RCANFD_CFSTS_CFMLT);
903 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
904 if (sts & RCANFD_RFSTS_RFMLT) {
905 netdev_dbg(ndev, "Rx Message Lost flag\n");
907 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
908 sts & ~RCANFD_RFSTS_RFMLT);
911 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
912 /* Message Lost flag will be set for respective channel
913 * when this condition happens with counters and flags
916 netdev_dbg(ndev, "global payload overflow interrupt\n");
919 /* Clear all global error interrupts. Only affected channels bits
922 rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
925 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
926 u16 txerr, u16 rxerr)
928 struct rcar_canfd_channel *priv = netdev_priv(ndev);
929 struct net_device_stats *stats = &ndev->stats;
930 struct can_frame *cf;
932 u32 ch = priv->channel;
934 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
936 /* Propagate the error condition to the CAN stack */
937 skb = alloc_can_err_skb(ndev, &cf);
943 /* Channel error interrupts */
944 if (cerfl & RCANFD_CERFL_BEF) {
945 netdev_dbg(ndev, "Bus error\n");
946 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
947 cf->data[2] = CAN_ERR_PROT_UNSPEC;
948 priv->can.can_stats.bus_error++;
950 if (cerfl & RCANFD_CERFL_ADERR) {
951 netdev_dbg(ndev, "ACK Delimiter Error\n");
953 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
955 if (cerfl & RCANFD_CERFL_B0ERR) {
956 netdev_dbg(ndev, "Bit Error (dominant)\n");
958 cf->data[2] |= CAN_ERR_PROT_BIT0;
960 if (cerfl & RCANFD_CERFL_B1ERR) {
961 netdev_dbg(ndev, "Bit Error (recessive)\n");
963 cf->data[2] |= CAN_ERR_PROT_BIT1;
965 if (cerfl & RCANFD_CERFL_CERR) {
966 netdev_dbg(ndev, "CRC Error\n");
968 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
970 if (cerfl & RCANFD_CERFL_AERR) {
971 netdev_dbg(ndev, "ACK Error\n");
973 cf->can_id |= CAN_ERR_ACK;
974 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
976 if (cerfl & RCANFD_CERFL_FERR) {
977 netdev_dbg(ndev, "Form Error\n");
979 cf->data[2] |= CAN_ERR_PROT_FORM;
981 if (cerfl & RCANFD_CERFL_SERR) {
982 netdev_dbg(ndev, "Stuff Error\n");
984 cf->data[2] |= CAN_ERR_PROT_STUFF;
986 if (cerfl & RCANFD_CERFL_ALF) {
987 netdev_dbg(ndev, "Arbitration lost Error\n");
988 priv->can.can_stats.arbitration_lost++;
989 cf->can_id |= CAN_ERR_LOSTARB;
990 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
992 if (cerfl & RCANFD_CERFL_BLF) {
993 netdev_dbg(ndev, "Bus Lock Error\n");
995 cf->can_id |= CAN_ERR_BUSERROR;
997 if (cerfl & RCANFD_CERFL_EWF) {
998 netdev_dbg(ndev, "Error warning interrupt\n");
999 priv->can.state = CAN_STATE_ERROR_WARNING;
1000 priv->can.can_stats.error_warning++;
1001 cf->can_id |= CAN_ERR_CRTL;
1002 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1003 CAN_ERR_CRTL_RX_WARNING;
1004 cf->data[6] = txerr;
1005 cf->data[7] = rxerr;
1007 if (cerfl & RCANFD_CERFL_EPF) {
1008 netdev_dbg(ndev, "Error passive interrupt\n");
1009 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1010 priv->can.can_stats.error_passive++;
1011 cf->can_id |= CAN_ERR_CRTL;
1012 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1013 CAN_ERR_CRTL_RX_PASSIVE;
1014 cf->data[6] = txerr;
1015 cf->data[7] = rxerr;
1017 if (cerfl & RCANFD_CERFL_BOEF) {
1018 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1019 rcar_canfd_tx_failure_cleanup(ndev);
1020 priv->can.state = CAN_STATE_BUS_OFF;
1021 priv->can.can_stats.bus_off++;
1023 cf->can_id |= CAN_ERR_BUSOFF;
1025 if (cerfl & RCANFD_CERFL_OVLF) {
1027 "Overload Frame Transmission error interrupt\n");
1029 cf->can_id |= CAN_ERR_PROT;
1030 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1033 /* Clear channel error interrupts that are handled */
1034 rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1035 RCANFD_CERFL_ERR(~cerfl));
1036 stats->rx_packets++;
1037 stats->rx_bytes += cf->len;
1041 static void rcar_canfd_tx_done(struct net_device *ndev)
1043 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1044 struct net_device_stats *stats = &ndev->stats;
1046 unsigned long flags;
1047 u32 ch = priv->channel;
1052 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1053 stats->tx_packets++;
1054 stats->tx_bytes += priv->tx_len[sent];
1055 priv->tx_len[sent] = 0;
1056 can_get_echo_skb(ndev, sent, NULL);
1058 spin_lock_irqsave(&priv->tx_lock, flags);
1060 sts = rcar_canfd_read(priv->base,
1061 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1062 unsent = RCANFD_CFSTS_CFMC(sts);
1064 /* Wake producer only when there is room */
1065 if (unsent != RCANFD_FIFO_DEPTH)
1066 netif_wake_queue(ndev);
1068 if (priv->tx_head - priv->tx_tail <= unsent) {
1069 spin_unlock_irqrestore(&priv->tx_lock, flags);
1072 spin_unlock_irqrestore(&priv->tx_lock, flags);
1076 /* Clear interrupt */
1077 rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
1078 sts & ~RCANFD_CFSTS_CFTXIF);
1079 can_led_event(ndev, CAN_LED_EVENT_TX);
1082 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1084 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1085 struct net_device *ndev = priv->ndev;
1088 /* Handle global error interrupts */
1089 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1090 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1091 rcar_canfd_global_error(ndev);
1094 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1096 struct rcar_canfd_global *gpriv = dev_id;
1099 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1100 rcar_canfd_handle_global_err(gpriv, ch);
1105 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1107 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1108 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1111 /* Handle Rx interrupts */
1112 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1113 if (likely(sts & RCANFD_RFSTS_RFIF)) {
1114 if (napi_schedule_prep(&priv->napi)) {
1115 /* Disable Rx FIFO interrupts */
1116 rcar_canfd_clear_bit(priv->base,
1119 __napi_schedule(&priv->napi);
1124 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1126 struct rcar_canfd_global *gpriv = dev_id;
1129 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1130 rcar_canfd_handle_global_receive(gpriv, ch);
1135 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1137 struct rcar_canfd_global *gpriv = dev_id;
1140 /* Global error interrupts still indicate a condition specific
1141 * to a channel. RxFIFO interrupt is a global interrupt.
1143 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1144 rcar_canfd_handle_global_err(gpriv, ch);
1145 rcar_canfd_handle_global_receive(gpriv, ch);
1150 static void rcar_canfd_state_change(struct net_device *ndev,
1151 u16 txerr, u16 rxerr)
1153 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1154 struct net_device_stats *stats = &ndev->stats;
1155 enum can_state rx_state, tx_state, state = priv->can.state;
1156 struct can_frame *cf;
1157 struct sk_buff *skb;
1159 /* Handle transition from error to normal states */
1160 if (txerr < 96 && rxerr < 96)
1161 state = CAN_STATE_ERROR_ACTIVE;
1162 else if (txerr < 128 && rxerr < 128)
1163 state = CAN_STATE_ERROR_WARNING;
1165 if (state != priv->can.state) {
1166 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1167 state, priv->can.state, txerr, rxerr);
1168 skb = alloc_can_err_skb(ndev, &cf);
1170 stats->rx_dropped++;
1173 tx_state = txerr >= rxerr ? state : 0;
1174 rx_state = txerr <= rxerr ? state : 0;
1176 can_change_state(ndev, cf, tx_state, rx_state);
1177 stats->rx_packets++;
1178 stats->rx_bytes += cf->len;
1183 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1185 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1186 struct net_device *ndev = priv->ndev;
1189 /* Handle Tx interrupts */
1190 sts = rcar_canfd_read(priv->base,
1191 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1192 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1193 rcar_canfd_tx_done(ndev);
1196 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1198 struct rcar_canfd_global *gpriv = dev_id;
1201 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1202 rcar_canfd_handle_channel_tx(gpriv, ch);
1207 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1209 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1210 struct net_device *ndev = priv->ndev;
1214 /* Handle channel error interrupts */
1215 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1216 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1217 txerr = RCANFD_CSTS_TECCNT(sts);
1218 rxerr = RCANFD_CSTS_RECCNT(sts);
1219 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1220 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1222 /* Handle state change to lower states */
1223 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1224 priv->can.state != CAN_STATE_BUS_OFF))
1225 rcar_canfd_state_change(ndev, txerr, rxerr);
1228 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1230 struct rcar_canfd_global *gpriv = dev_id;
1233 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1234 rcar_canfd_handle_channel_err(gpriv, ch);
1239 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1241 struct rcar_canfd_global *gpriv = dev_id;
1244 /* Common FIFO is a per channel resource */
1245 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1246 rcar_canfd_handle_channel_err(gpriv, ch);
1247 rcar_canfd_handle_channel_tx(gpriv, ch);
1253 static void rcar_canfd_set_bittiming(struct net_device *dev)
1255 struct rcar_canfd_channel *priv = netdev_priv(dev);
1256 const struct can_bittiming *bt = &priv->can.bittiming;
1257 const struct can_bittiming *dbt = &priv->can.data_bittiming;
1258 u16 brp, sjw, tseg1, tseg2;
1260 u32 ch = priv->channel;
1262 /* Nominal bit timing settings */
1265 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1266 tseg2 = bt->phase_seg2 - 1;
1268 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1269 /* CAN FD only mode */
1270 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
1271 RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
1273 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1274 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1275 brp, sjw, tseg1, tseg2);
1277 /* Data bit timing settings */
1280 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1281 tseg2 = dbt->phase_seg2 - 1;
1283 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
1284 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
1286 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1287 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1288 brp, sjw, tseg1, tseg2);
1290 /* Classical CAN only mode */
1291 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1292 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1294 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1295 netdev_dbg(priv->ndev,
1296 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1297 brp, sjw, tseg1, tseg2);
1301 static int rcar_canfd_start(struct net_device *ndev)
1303 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1304 int err = -EOPNOTSUPP;
1305 u32 sts, ch = priv->channel;
1306 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1308 rcar_canfd_set_bittiming(ndev);
1310 rcar_canfd_enable_channel_interrupts(priv);
1312 /* Set channel to Operational mode */
1313 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1314 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1316 /* Verify channel mode change */
1317 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1318 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1320 netdev_err(ndev, "channel %u communication state failed\n", ch);
1321 goto fail_mode_change;
1324 /* Enable Common & Rx FIFO */
1325 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1327 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1329 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1333 rcar_canfd_disable_channel_interrupts(priv);
1337 static int rcar_canfd_open(struct net_device *ndev)
1339 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1340 struct rcar_canfd_global *gpriv = priv->gpriv;
1343 /* Peripheral clock is already enabled in probe */
1344 err = clk_prepare_enable(gpriv->can_clk);
1346 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1350 err = open_candev(ndev);
1352 netdev_err(ndev, "open_candev() failed, error %d\n", err);
1356 napi_enable(&priv->napi);
1357 err = rcar_canfd_start(ndev);
1360 netif_start_queue(ndev);
1361 can_led_event(ndev, CAN_LED_EVENT_OPEN);
1364 napi_disable(&priv->napi);
1367 clk_disable_unprepare(gpriv->can_clk);
1372 static void rcar_canfd_stop(struct net_device *ndev)
1374 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1376 u32 sts, ch = priv->channel;
1377 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1379 /* Transition to channel reset mode */
1380 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1381 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1383 /* Check Channel reset mode */
1384 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1385 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1387 netdev_err(ndev, "channel %u reset failed\n", ch);
1389 rcar_canfd_disable_channel_interrupts(priv);
1391 /* Disable Common & Rx FIFO */
1392 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1394 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1396 /* Set the state as STOPPED */
1397 priv->can.state = CAN_STATE_STOPPED;
1400 static int rcar_canfd_close(struct net_device *ndev)
1402 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1403 struct rcar_canfd_global *gpriv = priv->gpriv;
1405 netif_stop_queue(ndev);
1406 rcar_canfd_stop(ndev);
1407 napi_disable(&priv->napi);
1408 clk_disable_unprepare(gpriv->can_clk);
1410 can_led_event(ndev, CAN_LED_EVENT_STOP);
1414 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1415 struct net_device *ndev)
1417 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1418 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1419 u32 sts = 0, id, dlc;
1420 unsigned long flags;
1421 u32 ch = priv->channel;
1423 if (can_dropped_invalid_skb(ndev, skb))
1424 return NETDEV_TX_OK;
1426 if (cf->can_id & CAN_EFF_FLAG) {
1427 id = cf->can_id & CAN_EFF_MASK;
1428 id |= RCANFD_CFID_CFIDE;
1430 id = cf->can_id & CAN_SFF_MASK;
1433 if (cf->can_id & CAN_RTR_FLAG)
1434 id |= RCANFD_CFID_CFRTR;
1436 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1438 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1439 rcar_canfd_write(priv->base,
1440 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
1441 rcar_canfd_write(priv->base,
1442 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1444 if (can_is_canfd_skb(skb)) {
1445 /* CAN FD frame format */
1446 sts |= RCANFD_CFFDCSTS_CFFDF;
1447 if (cf->flags & CANFD_BRS)
1448 sts |= RCANFD_CFFDCSTS_CFBRS;
1450 if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1451 sts |= RCANFD_CFFDCSTS_CFESI;
1454 rcar_canfd_write(priv->base,
1455 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
1457 rcar_canfd_put_data(priv, cf,
1458 RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1460 rcar_canfd_write(priv->base,
1461 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1462 rcar_canfd_write(priv->base,
1463 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1464 rcar_canfd_put_data(priv, cf,
1465 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1468 priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
1469 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1471 spin_lock_irqsave(&priv->tx_lock, flags);
1474 /* Stop the queue if we've filled all FIFO entries */
1475 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1476 netif_stop_queue(ndev);
1478 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1479 * pointer for the Common FIFO
1481 rcar_canfd_write(priv->base,
1482 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
1484 spin_unlock_irqrestore(&priv->tx_lock, flags);
1485 return NETDEV_TX_OK;
1488 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1490 struct net_device_stats *stats = &priv->ndev->stats;
1491 struct canfd_frame *cf;
1492 struct sk_buff *skb;
1493 u32 sts = 0, id, dlc;
1494 u32 ch = priv->channel;
1495 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1497 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1498 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
1499 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
1501 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
1502 if (sts & RCANFD_RFFDSTS_RFFDF)
1503 skb = alloc_canfd_skb(priv->ndev, &cf);
1505 skb = alloc_can_skb(priv->ndev,
1506 (struct can_frame **)&cf);
1508 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1509 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1510 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1514 stats->rx_dropped++;
1518 if (id & RCANFD_RFID_RFIDE)
1519 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1521 cf->can_id = id & CAN_SFF_MASK;
1523 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1524 if (sts & RCANFD_RFFDSTS_RFFDF)
1525 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1527 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1529 if (sts & RCANFD_RFFDSTS_RFESI) {
1530 cf->flags |= CANFD_ESI;
1531 netdev_dbg(priv->ndev, "ESI Error\n");
1534 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1535 cf->can_id |= CAN_RTR_FLAG;
1537 if (sts & RCANFD_RFFDSTS_RFBRS)
1538 cf->flags |= CANFD_BRS;
1540 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
1543 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1544 if (id & RCANFD_RFID_RFRTR)
1545 cf->can_id |= CAN_RTR_FLAG;
1547 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1550 /* Write 0xff to RFPC to increment the CPU-side
1551 * pointer of the Rx FIFO
1553 rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
1555 can_led_event(priv->ndev, CAN_LED_EVENT_RX);
1557 stats->rx_bytes += cf->len;
1558 stats->rx_packets++;
1559 netif_receive_skb(skb);
1562 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1564 struct rcar_canfd_channel *priv =
1565 container_of(napi, struct rcar_canfd_channel, napi);
1568 u32 ch = priv->channel;
1569 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1571 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1572 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1573 /* Check FIFO empty condition */
1574 if (sts & RCANFD_RFSTS_RFEMP)
1577 rcar_canfd_rx_pkt(priv);
1579 /* Clear interrupt bit */
1580 if (sts & RCANFD_RFSTS_RFIF)
1581 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
1582 sts & ~RCANFD_RFSTS_RFIF);
1585 /* All packets processed */
1586 if (num_pkts < quota) {
1587 if (napi_complete_done(napi, num_pkts)) {
1588 /* Enable Rx FIFO interrupts */
1589 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
1596 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1601 case CAN_MODE_START:
1602 err = rcar_canfd_start(ndev);
1605 netif_wake_queue(ndev);
1612 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1613 struct can_berr_counter *bec)
1615 struct rcar_canfd_channel *priv = netdev_priv(dev);
1616 u32 val, ch = priv->channel;
1618 /* Peripheral clock is already enabled in probe */
1619 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1620 bec->txerr = RCANFD_CSTS_TECCNT(val);
1621 bec->rxerr = RCANFD_CSTS_RECCNT(val);
1625 static const struct net_device_ops rcar_canfd_netdev_ops = {
1626 .ndo_open = rcar_canfd_open,
1627 .ndo_stop = rcar_canfd_close,
1628 .ndo_start_xmit = rcar_canfd_start_xmit,
1629 .ndo_change_mtu = can_change_mtu,
1632 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1635 struct platform_device *pdev = gpriv->pdev;
1636 struct rcar_canfd_channel *priv;
1637 struct net_device *ndev;
1640 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1642 dev_err(&pdev->dev, "alloc_candev() failed\n");
1646 priv = netdev_priv(ndev);
1648 ndev->netdev_ops = &rcar_canfd_netdev_ops;
1649 ndev->flags |= IFF_ECHO;
1651 priv->base = gpriv->base;
1653 priv->can.clock.freq = fcan_freq;
1654 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1656 if (gpriv->chip_id == RENESAS_RZG2L) {
1661 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1667 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1673 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1674 "canfd.ch%d_err", ch);
1679 err = devm_request_irq(&pdev->dev, err_irq,
1680 rcar_canfd_channel_err_interrupt, 0,
1683 dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1687 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1688 "canfd.ch%d_trx", ch);
1693 err = devm_request_irq(&pdev->dev, tx_irq,
1694 rcar_canfd_channel_tx_interrupt, 0,
1697 dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1703 if (gpriv->fdmode) {
1704 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1705 priv->can.data_bittiming_const =
1706 &rcar_canfd_data_bittiming_const;
1708 /* Controller starts in CAN FD only mode */
1709 can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1710 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1712 /* Controller starts in Classical CAN only mode */
1713 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1714 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1717 priv->can.do_set_mode = rcar_canfd_do_set_mode;
1718 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1719 priv->gpriv = gpriv;
1720 SET_NETDEV_DEV(ndev, &pdev->dev);
1722 netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
1723 RCANFD_NAPI_WEIGHT);
1724 err = register_candev(ndev);
1727 "register_candev() failed, error %d\n", err);
1730 spin_lock_init(&priv->tx_lock);
1731 devm_can_led_init(ndev);
1732 gpriv->ch[priv->channel] = priv;
1733 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1737 netif_napi_del(&priv->napi);
1743 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1745 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1748 unregister_candev(priv->ndev);
1749 netif_napi_del(&priv->napi);
1750 free_candev(priv->ndev);
1754 static int rcar_canfd_probe(struct platform_device *pdev)
1757 u32 sts, ch, fcan_freq;
1758 struct rcar_canfd_global *gpriv;
1759 struct device_node *of_child;
1760 unsigned long channels_mask = 0;
1761 int err, ch_irq, g_irq;
1762 int g_err_irq, g_recc_irq;
1763 bool fdmode = true; /* CAN FD only mode - default */
1764 enum rcanfd_chip_id chip_id;
1766 chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
1768 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1769 fdmode = false; /* Classical CAN only mode */
1771 of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
1772 if (of_child && of_device_is_available(of_child))
1773 channels_mask |= BIT(0); /* Channel 0 */
1775 of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
1776 if (of_child && of_device_is_available(of_child))
1777 channels_mask |= BIT(1); /* Channel 1 */
1779 if (chip_id == RENESAS_RCAR_GEN3) {
1780 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1782 /* For backward compatibility get irq by index */
1783 ch_irq = platform_get_irq(pdev, 0);
1788 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1790 /* For backward compatibility get irq by index */
1791 g_irq = platform_get_irq(pdev, 1);
1796 g_err_irq = platform_get_irq_byname(pdev, "g_err");
1800 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1805 /* Global controller context */
1806 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1812 gpriv->channels_mask = channels_mask;
1813 gpriv->fdmode = fdmode;
1814 gpriv->chip_id = chip_id;
1816 if (gpriv->chip_id == RENESAS_RZG2L) {
1817 gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
1818 if (IS_ERR(gpriv->rstc1))
1819 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1820 "failed to get rstp_n\n");
1822 gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
1823 if (IS_ERR(gpriv->rstc2))
1824 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1825 "failed to get rstc_n\n");
1828 /* Peripheral clock */
1829 gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1830 if (IS_ERR(gpriv->clkp)) {
1831 err = PTR_ERR(gpriv->clkp);
1832 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1837 /* fCAN clock: Pick External clock. If not available fallback to
1840 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1841 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1842 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1843 if (IS_ERR(gpriv->can_clk)) {
1844 err = PTR_ERR(gpriv->can_clk);
1846 "cannot get canfd clock, error %d\n", err);
1849 gpriv->fcan = RCANFD_CANFDCLK;
1852 gpriv->fcan = RCANFD_EXTCLK;
1854 fcan_freq = clk_get_rate(gpriv->can_clk);
1856 if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id == RENESAS_RCAR_GEN3)
1857 /* CANFD clock is further divided by (1/2) within the IP */
1860 addr = devm_platform_ioremap_resource(pdev, 0);
1862 err = PTR_ERR(addr);
1867 /* Request IRQ that's common for both channels */
1868 if (gpriv->chip_id == RENESAS_RCAR_GEN3) {
1869 err = devm_request_irq(&pdev->dev, ch_irq,
1870 rcar_canfd_channel_interrupt, 0,
1871 "canfd.ch_int", gpriv);
1873 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1878 err = devm_request_irq(&pdev->dev, g_irq,
1879 rcar_canfd_global_interrupt, 0,
1880 "canfd.g_int", gpriv);
1882 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1887 err = devm_request_irq(&pdev->dev, g_recc_irq,
1888 rcar_canfd_global_receive_fifo_interrupt, 0,
1889 "canfd.g_recc", gpriv);
1892 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1897 err = devm_request_irq(&pdev->dev, g_err_irq,
1898 rcar_canfd_global_err_interrupt, 0,
1899 "canfd.g_err", gpriv);
1901 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1907 err = reset_control_reset(gpriv->rstc1);
1910 err = reset_control_reset(gpriv->rstc2);
1912 reset_control_assert(gpriv->rstc1);
1916 /* Enable peripheral clock for register access */
1917 err = clk_prepare_enable(gpriv->clkp);
1920 "failed to enable peripheral clock, error %d\n", err);
1924 err = rcar_canfd_reset_controller(gpriv);
1926 dev_err(&pdev->dev, "reset controller failed\n");
1930 /* Controller in Global reset & Channel reset mode */
1931 rcar_canfd_configure_controller(gpriv);
1933 /* Configure per channel attributes */
1934 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1935 /* Configure Channel's Rx fifo */
1936 rcar_canfd_configure_rx(gpriv, ch);
1938 /* Configure Channel's Tx (Common) fifo */
1939 rcar_canfd_configure_tx(gpriv, ch);
1941 /* Configure receive rules */
1942 rcar_canfd_configure_afl_rules(gpriv, ch);
1945 /* Configure common interrupts */
1946 rcar_canfd_enable_global_interrupts(gpriv);
1948 /* Start Global operation mode */
1949 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
1950 RCANFD_GCTR_GMDC_GOPM);
1952 /* Verify mode change */
1953 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
1954 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
1956 dev_err(&pdev->dev, "global operational mode failed\n");
1960 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1961 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
1966 platform_set_drvdata(pdev, gpriv);
1967 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
1968 gpriv->fcan, gpriv->fdmode);
1972 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1973 rcar_canfd_channel_remove(gpriv, ch);
1975 rcar_canfd_disable_global_interrupts(gpriv);
1977 clk_disable_unprepare(gpriv->clkp);
1979 reset_control_assert(gpriv->rstc1);
1980 reset_control_assert(gpriv->rstc2);
1985 static int rcar_canfd_remove(struct platform_device *pdev)
1987 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
1990 rcar_canfd_reset_controller(gpriv);
1991 rcar_canfd_disable_global_interrupts(gpriv);
1993 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1994 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
1995 rcar_canfd_channel_remove(gpriv, ch);
1998 /* Enter global sleep mode */
1999 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2000 clk_disable_unprepare(gpriv->clkp);
2001 reset_control_assert(gpriv->rstc1);
2002 reset_control_assert(gpriv->rstc2);
2007 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2012 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2017 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2020 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2021 { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
2022 { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
2026 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2028 static struct platform_driver rcar_canfd_driver = {
2030 .name = RCANFD_DRV_NAME,
2031 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2032 .pm = &rcar_canfd_pm_ops,
2034 .probe = rcar_canfd_probe,
2035 .remove = rcar_canfd_remove,
2038 module_platform_driver(rcar_canfd_driver);
2041 MODULE_LICENSE("GPL");
2042 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2043 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);