1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
45 #include "ext4_jbd2.h"
50 #include <trace/events/ext4.h>
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
87 __u32 provided, calculated;
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 calculated &= 0xFFFF;
102 return provided == calculated;
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 trace_ext4_begin_ordered_truncate(inode, new_size);
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
132 if (!EXT4_I(inode)->jinode)
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 if (ext4_has_inline_data(inode))
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
165 * Called at the last iput() if i_nlink is zero.
167 void ext4_evict_inode(struct inode *inode)
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 bool freeze_protected = false;
180 trace_ext4_evict_inode(inode);
182 if (inode->i_nlink) {
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
198 * Note that directories do not have this problem because they
199 * don't use page cache.
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 inode->i_data.nrpages) {
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 jbd2_complete_transaction(journal, commit_tid);
209 filemap_write_and_wait(&inode->i_data);
211 truncate_inode_pages_final(&inode->i_data);
216 if (is_bad_inode(inode))
218 dquot_initialize(inode);
220 if (ext4_should_order_data(inode))
221 ext4_begin_ordered_truncate(inode, 0);
222 truncate_inode_pages_final(&inode->i_data);
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
229 if (!list_empty_careful(&inode->i_io_list)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 inode_io_list_del(inode);
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode->i_sb);
242 freeze_protected = true;
245 if (!IS_NOQUOTA(inode))
246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 if (IS_ERR(handle)) {
255 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
261 ext4_orphan_del(NULL, inode);
262 if (freeze_protected)
263 sb_end_intwrite(inode->i_sb);
268 ext4_handle_sync(handle);
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
277 if (ext4_inode_is_fast_symlink(inode))
278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 err = ext4_mark_inode_dirty(handle, inode);
282 ext4_warning(inode->i_sb,
283 "couldn't mark inode dirty (err %d)", err);
286 if (inode->i_blocks) {
287 err = ext4_truncate(inode);
289 ext4_error_err(inode->i_sb, -err,
290 "couldn't truncate inode %lu (err %d)",
296 /* Remove xattr references. */
297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 ext4_journal_stop(handle);
303 ext4_orphan_del(NULL, inode);
304 if (freeze_protected)
305 sb_end_intwrite(inode->i_sb);
306 ext4_xattr_inode_array_free(ea_inode_array);
311 * Kill off the orphan record which ext4_truncate created.
312 * AKPM: I think this can be inside the above `if'.
313 * Note that ext4_orphan_del() has to be able to cope with the
314 * deletion of a non-existent orphan - this is because we don't
315 * know if ext4_truncate() actually created an orphan record.
316 * (Well, we could do this if we need to, but heck - it works)
318 ext4_orphan_del(handle, inode);
319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
328 if (ext4_mark_inode_dirty(handle, inode))
329 /* If that failed, just do the required in-core inode clear. */
330 ext4_clear_inode(inode);
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
334 if (freeze_protected)
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
339 if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 return &EXT4_I(inode)->i_reserved_quota;
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
355 void ext4_da_update_reserve_space(struct inode *inode,
356 int used, int quota_claim)
358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 struct ext4_inode_info *ei = EXT4_I(inode);
361 spin_lock(&ei->i_block_reservation_lock);
362 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 if (unlikely(used > ei->i_reserved_data_blocks)) {
364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 "with only %d reserved data blocks",
366 __func__, inode->i_ino, used,
367 ei->i_reserved_data_blocks);
369 used = ei->i_reserved_data_blocks;
372 /* Update per-inode reservations */
373 ei->i_reserved_data_blocks -= used;
374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 spin_unlock(&ei->i_block_reservation_lock);
378 /* Update quota subsystem for data blocks */
380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
385 * not re-claim the quota for fallocated blocks.
387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
395 if ((ei->i_reserved_data_blocks == 0) &&
396 !inode_is_open_for_write(inode))
397 ext4_discard_preallocations(inode, 0);
400 static int __check_block_validity(struct inode *inode, const char *func,
402 struct ext4_map_blocks *map)
404 if (ext4_has_feature_journal(inode->i_sb) &&
406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 ext4_error_inode(inode, func, line, map->m_pblk,
410 "lblock %lu mapped to illegal pblock %llu "
411 "(length %d)", (unsigned long) map->m_lblk,
412 map->m_pblk, map->m_len);
413 return -EFSCORRUPTED;
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
433 #define check_block_validity(inode, map) \
434 __check_block_validity((inode), __func__, __LINE__, (map))
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct ext4_map_blocks *es_map,
440 struct ext4_map_blocks *map,
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
453 down_read(&EXT4_I(inode)->i_data_sem);
454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 up_read((&EXT4_I(inode)->i_data_sem));
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
507 #ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
510 memcpy(&orig_map, map, sizeof(*map));
514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags, map->m_len, (unsigned long) map->m_lblk);
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 return -EFSCORRUPTED;
527 /* Lookup extent status tree firstly */
528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 map->m_pblk = ext4_es_pblock(&es) +
532 map->m_lblk - es.es_lblk;
533 map->m_flags |= ext4_es_is_written(&es) ?
534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 retval = es.es_len - (map->m_lblk - es.es_lblk);
536 if (retval > map->m_len)
539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
549 #ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
557 * Try to see if we can get the block without requesting a new
560 down_read(&EXT4_I(inode)->i_data_sem);
561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 retval = ext4_ind_map_blocks(handle, inode, map, 0);
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 !(status & EXTENT_STATUS_WRITTEN) &&
581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 map->m_lblk + map->m_len - 1))
583 status |= EXTENT_STATUS_DELAYED;
584 ret = ext4_es_insert_extent(inode, map->m_lblk,
585 map->m_len, map->m_pblk, status);
589 up_read((&EXT4_I(inode)->i_data_sem));
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 ret = check_block_validity(inode, map);
598 /* If it is only a block(s) look up */
599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 * Returns if the blocks have already allocated
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
622 map->m_flags &= ~EXT4_MAP_FLAGS;
625 * New blocks allocate and/or writing to unwritten extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_block()
628 * with create == 1 flag.
630 down_write(&EXT4_I(inode)->i_data_sem);
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 ext4_da_update_reserve_space(inode, retval, 1);
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
679 if (flags & EXT4_GET_BLOCKS_ZERO &&
680 map->m_flags & EXT4_MAP_MAPPED &&
681 map->m_flags & EXT4_MAP_NEW) {
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 if (ext4_es_is_written(&es))
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 !(status & EXTENT_STATUS_WRITTEN) &&
703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
715 up_write((&EXT4_I(inode)->i_data_sem));
716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 ret = check_block_validity(inode, map);
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 !ext4_is_quota_file(inode) &&
730 ext4_should_order_data(inode)) {
732 (loff_t)map->m_lblk << inode->i_blkbits;
733 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 ret = ext4_jbd2_inode_add_wait(handle, inode,
739 ret = ext4_jbd2_inode_add_write(handle, inode,
744 ext4_fc_track_range(handle, inode, map->m_lblk,
745 map->m_lblk + map->m_len - 1);
749 ext_debug(inode, "failed with err %d\n", retval);
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 unsigned long old_state;
760 unsigned long new_state;
762 flags &= EXT4_MAP_FLAGS;
764 /* Dummy buffer_head? Set non-atomically. */
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
784 struct ext4_map_blocks map;
787 if (ext4_has_inline_data(inode))
791 map.m_len = bh->b_size >> inode->i_blkbits;
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 map_bh(bh, inode->i_sb, map.m_pblk);
797 ext4_update_bh_state(bh, map.m_flags);
798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
832 * `handle' can be NULL if create is zero
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
847 err = ext4_map_blocks(handle, inode, &map, map_flags);
850 return create ? ERR_PTR(-ENOSPC) : NULL;
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
856 return ERR_PTR(-ENOMEM);
857 if (map.m_flags & EXT4_MAP_NEW) {
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
870 BUFFER_TRACE(bh, "call get_create_access");
871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
887 BUFFER_TRACE(bh, "not a new buffer");
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
897 struct buffer_head *bh;
900 bh = ext4_getblk(handle, inode, block, map_flags);
903 if (!bh || ext4_buffer_uptodate(bh))
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
937 for (i = 0; i < bh_count; i++)
939 wait_on_buffer(bhs[i]);
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
950 for (i = 0; i < bh_count; i++) {
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 struct buffer_head *head,
962 int (*fn)(handle_t *handle, struct inode *inode,
963 struct buffer_head *bh))
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
969 struct buffer_head *next;
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
981 err = (*fn)(handle, inode, bh);
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1015 int dirty = buffer_dirty(bh);
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 get_block_t *get_block)
1042 unsigned from = pos & (PAGE_SIZE - 1);
1043 unsigned to = from + len;
1044 struct inode *inode = page->mapping->host;
1045 unsigned block_start, block_end;
1048 unsigned blocksize = inode->i_sb->s_blocksize;
1050 struct buffer_head *bh, *head, *wait[2];
1054 BUG_ON(!PageLocked(page));
1055 BUG_ON(from > PAGE_SIZE);
1056 BUG_ON(to > PAGE_SIZE);
1059 if (!page_has_buffers(page))
1060 create_empty_buffers(page, blocksize, 0);
1061 head = page_buffers(page);
1062 bbits = ilog2(blocksize);
1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1065 for (bh = head, block_start = 0; bh != head || !block_start;
1066 block++, block_start = block_end, bh = bh->b_this_page) {
1067 block_end = block_start + blocksize;
1068 if (block_end <= from || block_start >= to) {
1069 if (PageUptodate(page)) {
1070 set_buffer_uptodate(bh);
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1081 if (buffer_new(bh)) {
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1094 if (PageUptodate(page)) {
1095 set_buffer_uptodate(bh);
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
1101 ext4_read_bh_lock(bh, 0, false);
1102 wait[nr_wait++] = bh;
1106 * If we issued read requests, let them complete.
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
1113 if (unlikely(err)) {
1114 page_zero_new_buffers(page, from, to);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 for (i = 0; i < nr_wait; i++) {
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1122 clear_buffer_uptodate(wait[i]);
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
1136 struct inode *inode = mapping->host;
1137 int ret, needed_blocks;
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147 trace_ext4_write_begin(inode, pos, len, flags);
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 index = pos >> PAGE_SHIFT;
1154 from = pos & (PAGE_SIZE - 1);
1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1174 page = grab_cache_page_write_begin(mapping, index, flags);
1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 if (IS_ERR(handle)) {
1183 return PTR_ERR(handle);
1187 if (page->mapping != mapping) {
1188 /* The page got truncated from under us */
1191 ext4_journal_stop(handle);
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page);
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 if (ext4_should_dioread_nolock(inode))
1199 ret = ext4_block_write_begin(page, pos, len,
1200 ext4_get_block_unwritten);
1202 ret = ext4_block_write_begin(page, pos, len,
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = __block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1209 ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 if (!ret && ext4_should_journal_data(inode)) {
1212 ret = ext4_walk_page_buffers(handle, inode,
1213 page_buffers(page), from, to, NULL,
1214 do_journal_get_write_access);
1218 bool extended = (pos + len > inode->i_size) &&
1219 !ext4_verity_in_progress(inode);
1223 * __block_write_begin may have instantiated a few blocks
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_mutex.
1227 * Add inode to orphan list in case we crash before
1230 if (extended && ext4_can_truncate(inode))
1231 ext4_orphan_add(handle, inode);
1233 ext4_journal_stop(handle);
1235 ext4_truncate_failed_write(inode);
1237 * If truncate failed early the inode might
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1243 ext4_orphan_del(NULL, inode);
1246 if (ret == -ENOSPC &&
1247 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 struct buffer_head *bh)
1261 if (!buffer_mapped(bh) || buffer_freed(bh))
1263 set_buffer_uptodate(bh);
1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 clear_buffer_meta(bh);
1266 clear_buffer_prio(bh);
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1277 static int ext4_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
1282 handle_t *handle = ext4_journal_current_handle();
1283 struct inode *inode = mapping->host;
1284 loff_t old_size = inode->i_size;
1286 int i_size_changed = 0;
1287 bool verity = ext4_verity_in_progress(inode);
1289 trace_ext4_write_end(inode, pos, len, copied);
1291 if (ext4_has_inline_data(inode))
1292 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1294 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1296 * it's important to update i_size while still holding page lock:
1297 * page writeout could otherwise come in and zero beyond i_size.
1299 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300 * blocks are being written past EOF, so skip the i_size update.
1303 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1307 if (old_size < pos && !verity)
1308 pagecache_isize_extended(inode, old_size, pos);
1310 * Don't mark the inode dirty under page lock. First, it unnecessarily
1311 * makes the holding time of page lock longer. Second, it forces lock
1312 * ordering of page lock and transaction start for journaling
1316 ret = ext4_mark_inode_dirty(handle, inode);
1318 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319 /* if we have allocated more blocks and copied
1320 * less. We will have blocks allocated outside
1321 * inode->i_size. So truncate them
1323 ext4_orphan_add(handle, inode);
1325 ret2 = ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size && !verity) {
1330 ext4_truncate_failed_write(inode);
1332 * If truncate failed early the inode might still be
1333 * on the orphan list; we need to make sure the inode
1334 * is removed from the orphan list in that case.
1337 ext4_orphan_del(NULL, inode);
1340 return ret ? ret : copied;
1344 * This is a private version of page_zero_new_buffers() which doesn't
1345 * set the buffer to be dirty, since in data=journalled mode we need
1346 * to call ext4_handle_dirty_metadata() instead.
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349 struct inode *inode,
1351 unsigned from, unsigned to)
1353 unsigned int block_start = 0, block_end;
1354 struct buffer_head *head, *bh;
1356 bh = head = page_buffers(page);
1358 block_end = block_start + bh->b_size;
1359 if (buffer_new(bh)) {
1360 if (block_end > from && block_start < to) {
1361 if (!PageUptodate(page)) {
1362 unsigned start, size;
1364 start = max(from, block_start);
1365 size = min(to, block_end) - start;
1367 zero_user(page, start, size);
1368 write_end_fn(handle, inode, bh);
1370 clear_buffer_new(bh);
1373 block_start = block_end;
1374 bh = bh->b_this_page;
1375 } while (bh != head);
1378 static int ext4_journalled_write_end(struct file *file,
1379 struct address_space *mapping,
1380 loff_t pos, unsigned len, unsigned copied,
1381 struct page *page, void *fsdata)
1383 handle_t *handle = ext4_journal_current_handle();
1384 struct inode *inode = mapping->host;
1385 loff_t old_size = inode->i_size;
1389 int size_changed = 0;
1390 bool verity = ext4_verity_in_progress(inode);
1392 trace_ext4_journalled_write_end(inode, pos, len, copied);
1393 from = pos & (PAGE_SIZE - 1);
1396 BUG_ON(!ext4_handle_valid(handle));
1398 if (ext4_has_inline_data(inode))
1399 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1401 if (unlikely(copied < len) && !PageUptodate(page)) {
1403 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1405 if (unlikely(copied < len))
1406 ext4_journalled_zero_new_buffers(handle, inode, page,
1408 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409 from, from + copied, &partial,
1412 SetPageUptodate(page);
1415 size_changed = ext4_update_inode_size(inode, pos + copied);
1416 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1421 if (old_size < pos && !verity)
1422 pagecache_isize_extended(inode, old_size, pos);
1425 ret2 = ext4_mark_inode_dirty(handle, inode);
1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431 /* if we have allocated more blocks and copied
1432 * less. We will have blocks allocated outside
1433 * inode->i_size. So truncate them
1435 ext4_orphan_add(handle, inode);
1437 ret2 = ext4_journal_stop(handle);
1440 if (pos + len > inode->i_size && !verity) {
1441 ext4_truncate_failed_write(inode);
1443 * If truncate failed early the inode might still be
1444 * on the orphan list; we need to make sure the inode
1445 * is removed from the orphan list in that case.
1448 ext4_orphan_del(NULL, inode);
1451 return ret ? ret : copied;
1455 * Reserve space for a single cluster
1457 static int ext4_da_reserve_space(struct inode *inode)
1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460 struct ext4_inode_info *ei = EXT4_I(inode);
1464 * We will charge metadata quota at writeout time; this saves
1465 * us from metadata over-estimation, though we may go over by
1466 * a small amount in the end. Here we just reserve for data.
1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1472 spin_lock(&ei->i_block_reservation_lock);
1473 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474 spin_unlock(&ei->i_block_reservation_lock);
1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1478 ei->i_reserved_data_blocks++;
1479 trace_ext4_da_reserve_space(inode);
1480 spin_unlock(&ei->i_block_reservation_lock);
1482 return 0; /* success */
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1491 return; /* Nothing to release, exit */
1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1495 trace_ext4_da_release_space(inode, to_free);
1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1498 * if there aren't enough reserved blocks, then the
1499 * counter is messed up somewhere. Since this
1500 * function is called from invalidate page, it's
1501 * harmless to return without any action.
1503 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504 "ino %lu, to_free %d with only %d reserved "
1505 "data blocks", inode->i_ino, to_free,
1506 ei->i_reserved_data_blocks);
1508 to_free = ei->i_reserved_data_blocks;
1510 ei->i_reserved_data_blocks -= to_free;
1512 /* update fs dirty data blocks counter */
1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1521 * Delayed allocation stuff
1524 struct mpage_da_data {
1525 struct inode *inode;
1526 struct writeback_control *wbc;
1528 pgoff_t first_page; /* The first page to write */
1529 pgoff_t next_page; /* Current page to examine */
1530 pgoff_t last_page; /* Last page to examine */
1532 * Extent to map - this can be after first_page because that can be
1533 * fully mapped. We somewhat abuse m_flags to store whether the extent
1534 * is delalloc or unwritten.
1536 struct ext4_map_blocks map;
1537 struct ext4_io_submit io_submit; /* IO submission data */
1538 unsigned int do_map:1;
1539 unsigned int scanned_until_end:1;
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1547 struct pagevec pvec;
1548 struct inode *inode = mpd->inode;
1549 struct address_space *mapping = inode->i_mapping;
1551 /* This is necessary when next_page == 0. */
1552 if (mpd->first_page >= mpd->next_page)
1555 mpd->scanned_until_end = 0;
1556 index = mpd->first_page;
1557 end = mpd->next_page - 1;
1559 ext4_lblk_t start, last;
1560 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562 ext4_es_remove_extent(inode, start, last - start + 1);
1565 pagevec_init(&pvec);
1566 while (index <= end) {
1567 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1570 for (i = 0; i < nr_pages; i++) {
1571 struct page *page = pvec.pages[i];
1573 BUG_ON(!PageLocked(page));
1574 BUG_ON(PageWriteback(page));
1576 if (page_mapped(page))
1577 clear_page_dirty_for_io(page);
1578 block_invalidatepage(page, 0, PAGE_SIZE);
1579 ClearPageUptodate(page);
1583 pagevec_release(&pvec);
1587 static void ext4_print_free_blocks(struct inode *inode)
1589 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590 struct super_block *sb = inode->i_sb;
1591 struct ext4_inode_info *ei = EXT4_I(inode);
1593 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594 EXT4_C2B(EXT4_SB(inode->i_sb),
1595 ext4_count_free_clusters(sb)));
1596 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598 (long long) EXT4_C2B(EXT4_SB(sb),
1599 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601 (long long) EXT4_C2B(EXT4_SB(sb),
1602 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605 ei->i_reserved_data_blocks);
1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1610 struct buffer_head *bh)
1612 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1616 * ext4_insert_delayed_block - adds a delayed block to the extents status
1617 * tree, incrementing the reserved cluster/block
1618 * count or making a pending reservation
1621 * @inode - file containing the newly added block
1622 * @lblk - logical block to be added
1624 * Returns 0 on success, negative error code on failure.
1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630 bool allocated = false;
1631 bool reserved = false;
1634 * If the cluster containing lblk is shared with a delayed,
1635 * written, or unwritten extent in a bigalloc file system, it's
1636 * already been accounted for and does not need to be reserved.
1637 * A pending reservation must be made for the cluster if it's
1638 * shared with a written or unwritten extent and doesn't already
1639 * have one. Written and unwritten extents can be purged from the
1640 * extents status tree if the system is under memory pressure, so
1641 * it's necessary to examine the extent tree if a search of the
1642 * extents status tree doesn't get a match.
1644 if (sbi->s_cluster_ratio == 1) {
1645 ret = ext4_da_reserve_space(inode);
1646 if (ret != 0) /* ENOSPC */
1649 } else { /* bigalloc */
1650 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1651 if (!ext4_es_scan_clu(inode,
1652 &ext4_es_is_mapped, lblk)) {
1653 ret = ext4_clu_mapped(inode,
1654 EXT4_B2C(sbi, lblk));
1658 ret = ext4_da_reserve_space(inode);
1659 if (ret != 0) /* ENOSPC */
1671 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1672 if (ret && reserved)
1673 ext4_da_release_space(inode, 1);
1680 * This function is grabs code from the very beginning of
1681 * ext4_map_blocks, but assumes that the caller is from delayed write
1682 * time. This function looks up the requested blocks and sets the
1683 * buffer delay bit under the protection of i_data_sem.
1685 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1686 struct ext4_map_blocks *map,
1687 struct buffer_head *bh)
1689 struct extent_status es;
1691 sector_t invalid_block = ~((sector_t) 0xffff);
1692 #ifdef ES_AGGRESSIVE_TEST
1693 struct ext4_map_blocks orig_map;
1695 memcpy(&orig_map, map, sizeof(*map));
1698 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1702 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1703 (unsigned long) map->m_lblk);
1705 /* Lookup extent status tree firstly */
1706 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1707 if (ext4_es_is_hole(&es)) {
1709 down_read(&EXT4_I(inode)->i_data_sem);
1714 * Delayed extent could be allocated by fallocate.
1715 * So we need to check it.
1717 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1718 map_bh(bh, inode->i_sb, invalid_block);
1720 set_buffer_delay(bh);
1724 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1725 retval = es.es_len - (iblock - es.es_lblk);
1726 if (retval > map->m_len)
1727 retval = map->m_len;
1728 map->m_len = retval;
1729 if (ext4_es_is_written(&es))
1730 map->m_flags |= EXT4_MAP_MAPPED;
1731 else if (ext4_es_is_unwritten(&es))
1732 map->m_flags |= EXT4_MAP_UNWRITTEN;
1736 #ifdef ES_AGGRESSIVE_TEST
1737 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1743 * Try to see if we can get the block without requesting a new
1744 * file system block.
1746 down_read(&EXT4_I(inode)->i_data_sem);
1747 if (ext4_has_inline_data(inode))
1749 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1750 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1752 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1759 * XXX: __block_prepare_write() unmaps passed block,
1763 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1769 map_bh(bh, inode->i_sb, invalid_block);
1771 set_buffer_delay(bh);
1772 } else if (retval > 0) {
1774 unsigned int status;
1776 if (unlikely(retval != map->m_len)) {
1777 ext4_warning(inode->i_sb,
1778 "ES len assertion failed for inode "
1779 "%lu: retval %d != map->m_len %d",
1780 inode->i_ino, retval, map->m_len);
1784 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1785 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1786 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1787 map->m_pblk, status);
1793 up_read((&EXT4_I(inode)->i_data_sem));
1799 * This is a special get_block_t callback which is used by
1800 * ext4_da_write_begin(). It will either return mapped block or
1801 * reserve space for a single block.
1803 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1804 * We also have b_blocknr = -1 and b_bdev initialized properly
1806 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1807 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1808 * initialized properly.
1810 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1811 struct buffer_head *bh, int create)
1813 struct ext4_map_blocks map;
1816 BUG_ON(create == 0);
1817 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1819 map.m_lblk = iblock;
1823 * first, we need to know whether the block is allocated already
1824 * preallocated blocks are unmapped but should treated
1825 * the same as allocated blocks.
1827 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1831 map_bh(bh, inode->i_sb, map.m_pblk);
1832 ext4_update_bh_state(bh, map.m_flags);
1834 if (buffer_unwritten(bh)) {
1835 /* A delayed write to unwritten bh should be marked
1836 * new and mapped. Mapped ensures that we don't do
1837 * get_block multiple times when we write to the same
1838 * offset and new ensures that we do proper zero out
1839 * for partial write.
1842 set_buffer_mapped(bh);
1847 static int bget_one(handle_t *handle, struct inode *inode,
1848 struct buffer_head *bh)
1854 static int bput_one(handle_t *handle, struct inode *inode,
1855 struct buffer_head *bh)
1861 static int __ext4_journalled_writepage(struct page *page,
1864 struct address_space *mapping = page->mapping;
1865 struct inode *inode = mapping->host;
1866 struct buffer_head *page_bufs = NULL;
1867 handle_t *handle = NULL;
1868 int ret = 0, err = 0;
1869 int inline_data = ext4_has_inline_data(inode);
1870 struct buffer_head *inode_bh = NULL;
1872 ClearPageChecked(page);
1875 BUG_ON(page->index != 0);
1876 BUG_ON(len > ext4_get_max_inline_size(inode));
1877 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878 if (inode_bh == NULL)
1881 page_bufs = page_buffers(page);
1886 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1890 * We need to release the page lock before we start the
1891 * journal, so grab a reference so the page won't disappear
1892 * out from under us.
1897 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1898 ext4_writepage_trans_blocks(inode));
1899 if (IS_ERR(handle)) {
1900 ret = PTR_ERR(handle);
1902 goto out_no_pagelock;
1904 BUG_ON(!ext4_handle_valid(handle));
1908 if (page->mapping != mapping) {
1909 /* The page got truncated from under us */
1910 ext4_journal_stop(handle);
1916 ret = ext4_mark_inode_dirty(handle, inode);
1918 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919 NULL, do_journal_get_write_access);
1921 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922 NULL, write_end_fn);
1926 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1929 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930 err = ext4_journal_stop(handle);
1934 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1938 if (!inline_data && page_bufs)
1939 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1946 * Note that we don't need to start a transaction unless we're journaling data
1947 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1948 * need to file the inode to the transaction's list in ordered mode because if
1949 * we are writing back data added by write(), the inode is already there and if
1950 * we are writing back data modified via mmap(), no one guarantees in which
1951 * transaction the data will hit the disk. In case we are journaling data, we
1952 * cannot start transaction directly because transaction start ranks above page
1953 * lock so we have to do some magic.
1955 * This function can get called via...
1956 * - ext4_writepages after taking page lock (have journal handle)
1957 * - journal_submit_inode_data_buffers (no journal handle)
1958 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1959 * - grab_page_cache when doing write_begin (have journal handle)
1961 * We don't do any block allocation in this function. If we have page with
1962 * multiple blocks we need to write those buffer_heads that are mapped. This
1963 * is important for mmaped based write. So if we do with blocksize 1K
1964 * truncate(f, 1024);
1965 * a = mmap(f, 0, 4096);
1967 * truncate(f, 4096);
1968 * we have in the page first buffer_head mapped via page_mkwrite call back
1969 * but other buffer_heads would be unmapped but dirty (dirty done via the
1970 * do_wp_page). So writepage should write the first block. If we modify
1971 * the mmap area beyond 1024 we will again get a page_fault and the
1972 * page_mkwrite callback will do the block allocation and mark the
1973 * buffer_heads mapped.
1975 * We redirty the page if we have any buffer_heads that is either delay or
1976 * unwritten in the page.
1978 * We can get recursively called as show below.
1980 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1983 * But since we don't do any block allocation we should not deadlock.
1984 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1986 static int ext4_writepage(struct page *page,
1987 struct writeback_control *wbc)
1992 struct buffer_head *page_bufs = NULL;
1993 struct inode *inode = page->mapping->host;
1994 struct ext4_io_submit io_submit;
1995 bool keep_towrite = false;
1997 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1998 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2003 trace_ext4_writepage(page);
2004 size = i_size_read(inode);
2005 if (page->index == size >> PAGE_SHIFT &&
2006 !ext4_verity_in_progress(inode))
2007 len = size & ~PAGE_MASK;
2011 page_bufs = page_buffers(page);
2013 * We cannot do block allocation or other extent handling in this
2014 * function. If there are buffers needing that, we have to redirty
2015 * the page. But we may reach here when we do a journal commit via
2016 * journal_submit_inode_data_buffers() and in that case we must write
2017 * allocated buffers to achieve data=ordered mode guarantees.
2019 * Also, if there is only one buffer per page (the fs block
2020 * size == the page size), if one buffer needs block
2021 * allocation or needs to modify the extent tree to clear the
2022 * unwritten flag, we know that the page can't be written at
2023 * all, so we might as well refuse the write immediately.
2024 * Unfortunately if the block size != page size, we can't as
2025 * easily detect this case using ext4_walk_page_buffers(), but
2026 * for the extremely common case, this is an optimization that
2027 * skips a useless round trip through ext4_bio_write_page().
2029 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2030 ext4_bh_delay_or_unwritten)) {
2031 redirty_page_for_writepage(wbc, page);
2032 if ((current->flags & PF_MEMALLOC) ||
2033 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2035 * For memory cleaning there's no point in writing only
2036 * some buffers. So just bail out. Warn if we came here
2037 * from direct reclaim.
2039 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2044 keep_towrite = true;
2047 if (PageChecked(page) && ext4_should_journal_data(inode))
2049 * It's mmapped pagecache. Add buffers and journal it. There
2050 * doesn't seem much point in redirtying the page here.
2052 return __ext4_journalled_writepage(page, len);
2054 ext4_io_submit_init(&io_submit, wbc);
2055 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2056 if (!io_submit.io_end) {
2057 redirty_page_for_writepage(wbc, page);
2061 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2062 ext4_io_submit(&io_submit);
2063 /* Drop io_end reference we got from init */
2064 ext4_put_io_end_defer(io_submit.io_end);
2068 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2074 BUG_ON(page->index != mpd->first_page);
2075 clear_page_dirty_for_io(page);
2077 * We have to be very careful here! Nothing protects writeback path
2078 * against i_size changes and the page can be writeably mapped into
2079 * page tables. So an application can be growing i_size and writing
2080 * data through mmap while writeback runs. clear_page_dirty_for_io()
2081 * write-protects our page in page tables and the page cannot get
2082 * written to again until we release page lock. So only after
2083 * clear_page_dirty_for_io() we are safe to sample i_size for
2084 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2085 * on the barrier provided by TestClearPageDirty in
2086 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2087 * after page tables are updated.
2089 size = i_size_read(mpd->inode);
2090 if (page->index == size >> PAGE_SHIFT &&
2091 !ext4_verity_in_progress(mpd->inode))
2092 len = size & ~PAGE_MASK;
2095 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2097 mpd->wbc->nr_to_write--;
2103 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2106 * mballoc gives us at most this number of blocks...
2107 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2108 * The rest of mballoc seems to handle chunks up to full group size.
2110 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2113 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2115 * @mpd - extent of blocks
2116 * @lblk - logical number of the block in the file
2117 * @bh - buffer head we want to add to the extent
2119 * The function is used to collect contig. blocks in the same state. If the
2120 * buffer doesn't require mapping for writeback and we haven't started the
2121 * extent of buffers to map yet, the function returns 'true' immediately - the
2122 * caller can write the buffer right away. Otherwise the function returns true
2123 * if the block has been added to the extent, false if the block couldn't be
2126 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2127 struct buffer_head *bh)
2129 struct ext4_map_blocks *map = &mpd->map;
2131 /* Buffer that doesn't need mapping for writeback? */
2132 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2133 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2134 /* So far no extent to map => we write the buffer right away */
2135 if (map->m_len == 0)
2140 /* First block in the extent? */
2141 if (map->m_len == 0) {
2142 /* We cannot map unless handle is started... */
2147 map->m_flags = bh->b_state & BH_FLAGS;
2151 /* Don't go larger than mballoc is willing to allocate */
2152 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2155 /* Can we merge the block to our big extent? */
2156 if (lblk == map->m_lblk + map->m_len &&
2157 (bh->b_state & BH_FLAGS) == map->m_flags) {
2165 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2167 * @mpd - extent of blocks for mapping
2168 * @head - the first buffer in the page
2169 * @bh - buffer we should start processing from
2170 * @lblk - logical number of the block in the file corresponding to @bh
2172 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2173 * the page for IO if all buffers in this page were mapped and there's no
2174 * accumulated extent of buffers to map or add buffers in the page to the
2175 * extent of buffers to map. The function returns 1 if the caller can continue
2176 * by processing the next page, 0 if it should stop adding buffers to the
2177 * extent to map because we cannot extend it anymore. It can also return value
2178 * < 0 in case of error during IO submission.
2180 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2181 struct buffer_head *head,
2182 struct buffer_head *bh,
2185 struct inode *inode = mpd->inode;
2187 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2188 >> inode->i_blkbits;
2190 if (ext4_verity_in_progress(inode))
2191 blocks = EXT_MAX_BLOCKS;
2194 BUG_ON(buffer_locked(bh));
2196 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2197 /* Found extent to map? */
2200 /* Buffer needs mapping and handle is not started? */
2203 /* Everything mapped so far and we hit EOF */
2206 } while (lblk++, (bh = bh->b_this_page) != head);
2207 /* So far everything mapped? Submit the page for IO. */
2208 if (mpd->map.m_len == 0) {
2209 err = mpage_submit_page(mpd, head->b_page);
2213 if (lblk >= blocks) {
2214 mpd->scanned_until_end = 1;
2221 * mpage_process_page - update page buffers corresponding to changed extent and
2222 * may submit fully mapped page for IO
2224 * @mpd - description of extent to map, on return next extent to map
2225 * @m_lblk - logical block mapping.
2226 * @m_pblk - corresponding physical mapping.
2227 * @map_bh - determines on return whether this page requires any further
2229 * Scan given page buffers corresponding to changed extent and update buffer
2230 * state according to new extent state.
2231 * We map delalloc buffers to their physical location, clear unwritten bits.
2232 * If the given page is not fully mapped, we update @map to the next extent in
2233 * the given page that needs mapping & return @map_bh as true.
2235 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2236 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2239 struct buffer_head *head, *bh;
2240 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2241 ext4_lblk_t lblk = *m_lblk;
2242 ext4_fsblk_t pblock = *m_pblk;
2244 int blkbits = mpd->inode->i_blkbits;
2245 ssize_t io_end_size = 0;
2246 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2248 bh = head = page_buffers(page);
2250 if (lblk < mpd->map.m_lblk)
2252 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2254 * Buffer after end of mapped extent.
2255 * Find next buffer in the page to map.
2258 mpd->map.m_flags = 0;
2259 io_end_vec->size += io_end_size;
2262 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2265 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2266 io_end_vec = ext4_alloc_io_end_vec(io_end);
2267 if (IS_ERR(io_end_vec)) {
2268 err = PTR_ERR(io_end_vec);
2271 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2276 if (buffer_delay(bh)) {
2277 clear_buffer_delay(bh);
2278 bh->b_blocknr = pblock++;
2280 clear_buffer_unwritten(bh);
2281 io_end_size += (1 << blkbits);
2282 } while (lblk++, (bh = bh->b_this_page) != head);
2284 io_end_vec->size += io_end_size;
2294 * mpage_map_buffers - update buffers corresponding to changed extent and
2295 * submit fully mapped pages for IO
2297 * @mpd - description of extent to map, on return next extent to map
2299 * Scan buffers corresponding to changed extent (we expect corresponding pages
2300 * to be already locked) and update buffer state according to new extent state.
2301 * We map delalloc buffers to their physical location, clear unwritten bits,
2302 * and mark buffers as uninit when we perform writes to unwritten extents
2303 * and do extent conversion after IO is finished. If the last page is not fully
2304 * mapped, we update @map to the next extent in the last page that needs
2305 * mapping. Otherwise we submit the page for IO.
2307 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2309 struct pagevec pvec;
2311 struct inode *inode = mpd->inode;
2312 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2315 ext4_fsblk_t pblock;
2317 bool map_bh = false;
2319 start = mpd->map.m_lblk >> bpp_bits;
2320 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2321 lblk = start << bpp_bits;
2322 pblock = mpd->map.m_pblk;
2324 pagevec_init(&pvec);
2325 while (start <= end) {
2326 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2330 for (i = 0; i < nr_pages; i++) {
2331 struct page *page = pvec.pages[i];
2333 err = mpage_process_page(mpd, page, &lblk, &pblock,
2336 * If map_bh is true, means page may require further bh
2337 * mapping, or maybe the page was submitted for IO.
2338 * So we return to call further extent mapping.
2340 if (err < 0 || map_bh)
2342 /* Page fully mapped - let IO run! */
2343 err = mpage_submit_page(mpd, page);
2347 pagevec_release(&pvec);
2349 /* Extent fully mapped and matches with page boundary. We are done. */
2351 mpd->map.m_flags = 0;
2354 pagevec_release(&pvec);
2358 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2360 struct inode *inode = mpd->inode;
2361 struct ext4_map_blocks *map = &mpd->map;
2362 int get_blocks_flags;
2363 int err, dioread_nolock;
2365 trace_ext4_da_write_pages_extent(inode, map);
2367 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2368 * to convert an unwritten extent to be initialized (in the case
2369 * where we have written into one or more preallocated blocks). It is
2370 * possible that we're going to need more metadata blocks than
2371 * previously reserved. However we must not fail because we're in
2372 * writeback and there is nothing we can do about it so it might result
2373 * in data loss. So use reserved blocks to allocate metadata if
2376 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2377 * the blocks in question are delalloc blocks. This indicates
2378 * that the blocks and quotas has already been checked when
2379 * the data was copied into the page cache.
2381 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2382 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2383 EXT4_GET_BLOCKS_IO_SUBMIT;
2384 dioread_nolock = ext4_should_dioread_nolock(inode);
2386 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2387 if (map->m_flags & BIT(BH_Delay))
2388 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2390 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2393 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2394 if (!mpd->io_submit.io_end->handle &&
2395 ext4_handle_valid(handle)) {
2396 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2397 handle->h_rsv_handle = NULL;
2399 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2402 BUG_ON(map->m_len == 0);
2407 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2408 * mpd->len and submit pages underlying it for IO
2410 * @handle - handle for journal operations
2411 * @mpd - extent to map
2412 * @give_up_on_write - we set this to true iff there is a fatal error and there
2413 * is no hope of writing the data. The caller should discard
2414 * dirty pages to avoid infinite loops.
2416 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2417 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2418 * them to initialized or split the described range from larger unwritten
2419 * extent. Note that we need not map all the described range since allocation
2420 * can return less blocks or the range is covered by more unwritten extents. We
2421 * cannot map more because we are limited by reserved transaction credits. On
2422 * the other hand we always make sure that the last touched page is fully
2423 * mapped so that it can be written out (and thus forward progress is
2424 * guaranteed). After mapping we submit all mapped pages for IO.
2426 static int mpage_map_and_submit_extent(handle_t *handle,
2427 struct mpage_da_data *mpd,
2428 bool *give_up_on_write)
2430 struct inode *inode = mpd->inode;
2431 struct ext4_map_blocks *map = &mpd->map;
2435 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2436 struct ext4_io_end_vec *io_end_vec;
2438 io_end_vec = ext4_alloc_io_end_vec(io_end);
2439 if (IS_ERR(io_end_vec))
2440 return PTR_ERR(io_end_vec);
2441 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2443 err = mpage_map_one_extent(handle, mpd);
2445 struct super_block *sb = inode->i_sb;
2447 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2448 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2449 goto invalidate_dirty_pages;
2451 * Let the uper layers retry transient errors.
2452 * In the case of ENOSPC, if ext4_count_free_blocks()
2453 * is non-zero, a commit should free up blocks.
2455 if ((err == -ENOMEM) ||
2456 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2458 goto update_disksize;
2461 ext4_msg(sb, KERN_CRIT,
2462 "Delayed block allocation failed for "
2463 "inode %lu at logical offset %llu with"
2464 " max blocks %u with error %d",
2466 (unsigned long long)map->m_lblk,
2467 (unsigned)map->m_len, -err);
2468 ext4_msg(sb, KERN_CRIT,
2469 "This should not happen!! Data will "
2472 ext4_print_free_blocks(inode);
2473 invalidate_dirty_pages:
2474 *give_up_on_write = true;
2479 * Update buffer state, submit mapped pages, and get us new
2482 err = mpage_map_and_submit_buffers(mpd);
2484 goto update_disksize;
2485 } while (map->m_len);
2489 * Update on-disk size after IO is submitted. Races with
2490 * truncate are avoided by checking i_size under i_data_sem.
2492 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2493 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2497 down_write(&EXT4_I(inode)->i_data_sem);
2498 i_size = i_size_read(inode);
2499 if (disksize > i_size)
2501 if (disksize > EXT4_I(inode)->i_disksize)
2502 EXT4_I(inode)->i_disksize = disksize;
2503 up_write(&EXT4_I(inode)->i_data_sem);
2504 err2 = ext4_mark_inode_dirty(handle, inode);
2506 ext4_error_err(inode->i_sb, -err2,
2507 "Failed to mark inode %lu dirty",
2517 * Calculate the total number of credits to reserve for one writepages
2518 * iteration. This is called from ext4_writepages(). We map an extent of
2519 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2520 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2521 * bpp - 1 blocks in bpp different extents.
2523 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2525 int bpp = ext4_journal_blocks_per_page(inode);
2527 return ext4_meta_trans_blocks(inode,
2528 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2532 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2533 * and underlying extent to map
2535 * @mpd - where to look for pages
2537 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2538 * IO immediately. When we find a page which isn't mapped we start accumulating
2539 * extent of buffers underlying these pages that needs mapping (formed by
2540 * either delayed or unwritten buffers). We also lock the pages containing
2541 * these buffers. The extent found is returned in @mpd structure (starting at
2542 * mpd->lblk with length mpd->len blocks).
2544 * Note that this function can attach bios to one io_end structure which are
2545 * neither logically nor physically contiguous. Although it may seem as an
2546 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2547 * case as we need to track IO to all buffers underlying a page in one io_end.
2549 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2551 struct address_space *mapping = mpd->inode->i_mapping;
2552 struct pagevec pvec;
2553 unsigned int nr_pages;
2554 long left = mpd->wbc->nr_to_write;
2555 pgoff_t index = mpd->first_page;
2556 pgoff_t end = mpd->last_page;
2559 int blkbits = mpd->inode->i_blkbits;
2561 struct buffer_head *head;
2563 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2564 tag = PAGECACHE_TAG_TOWRITE;
2566 tag = PAGECACHE_TAG_DIRTY;
2568 pagevec_init(&pvec);
2570 mpd->next_page = index;
2571 while (index <= end) {
2572 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2577 for (i = 0; i < nr_pages; i++) {
2578 struct page *page = pvec.pages[i];
2581 * Accumulated enough dirty pages? This doesn't apply
2582 * to WB_SYNC_ALL mode. For integrity sync we have to
2583 * keep going because someone may be concurrently
2584 * dirtying pages, and we might have synced a lot of
2585 * newly appeared dirty pages, but have not synced all
2586 * of the old dirty pages.
2588 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2591 /* If we can't merge this page, we are done. */
2592 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2597 * If the page is no longer dirty, or its mapping no
2598 * longer corresponds to inode we are writing (which
2599 * means it has been truncated or invalidated), or the
2600 * page is already under writeback and we are not doing
2601 * a data integrity writeback, skip the page
2603 if (!PageDirty(page) ||
2604 (PageWriteback(page) &&
2605 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2606 unlikely(page->mapping != mapping)) {
2611 wait_on_page_writeback(page);
2612 BUG_ON(PageWriteback(page));
2614 if (mpd->map.m_len == 0)
2615 mpd->first_page = page->index;
2616 mpd->next_page = page->index + 1;
2617 /* Add all dirty buffers to mpd */
2618 lblk = ((ext4_lblk_t)page->index) <<
2619 (PAGE_SHIFT - blkbits);
2620 head = page_buffers(page);
2621 err = mpage_process_page_bufs(mpd, head, head, lblk);
2627 pagevec_release(&pvec);
2630 mpd->scanned_until_end = 1;
2633 pagevec_release(&pvec);
2637 static int ext4_writepages(struct address_space *mapping,
2638 struct writeback_control *wbc)
2640 pgoff_t writeback_index = 0;
2641 long nr_to_write = wbc->nr_to_write;
2642 int range_whole = 0;
2644 handle_t *handle = NULL;
2645 struct mpage_da_data mpd;
2646 struct inode *inode = mapping->host;
2647 int needed_blocks, rsv_blocks = 0, ret = 0;
2648 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2649 struct blk_plug plug;
2650 bool give_up_on_write = false;
2652 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2655 percpu_down_read(&sbi->s_writepages_rwsem);
2656 trace_ext4_writepages(inode, wbc);
2659 * No pages to write? This is mainly a kludge to avoid starting
2660 * a transaction for special inodes like journal inode on last iput()
2661 * because that could violate lock ordering on umount
2663 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2664 goto out_writepages;
2666 if (ext4_should_journal_data(inode)) {
2667 ret = generic_writepages(mapping, wbc);
2668 goto out_writepages;
2672 * If the filesystem has aborted, it is read-only, so return
2673 * right away instead of dumping stack traces later on that
2674 * will obscure the real source of the problem. We test
2675 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2676 * the latter could be true if the filesystem is mounted
2677 * read-only, and in that case, ext4_writepages should
2678 * *never* be called, so if that ever happens, we would want
2681 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2682 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2684 goto out_writepages;
2688 * If we have inline data and arrive here, it means that
2689 * we will soon create the block for the 1st page, so
2690 * we'd better clear the inline data here.
2692 if (ext4_has_inline_data(inode)) {
2693 /* Just inode will be modified... */
2694 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2695 if (IS_ERR(handle)) {
2696 ret = PTR_ERR(handle);
2697 goto out_writepages;
2699 BUG_ON(ext4_test_inode_state(inode,
2700 EXT4_STATE_MAY_INLINE_DATA));
2701 ext4_destroy_inline_data(handle, inode);
2702 ext4_journal_stop(handle);
2705 if (ext4_should_dioread_nolock(inode)) {
2707 * We may need to convert up to one extent per block in
2708 * the page and we may dirty the inode.
2710 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2711 PAGE_SIZE >> inode->i_blkbits);
2714 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2717 if (wbc->range_cyclic) {
2718 writeback_index = mapping->writeback_index;
2719 if (writeback_index)
2721 mpd.first_page = writeback_index;
2724 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2730 ext4_io_submit_init(&mpd.io_submit, wbc);
2732 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734 blk_start_plug(&plug);
2737 * First writeback pages that don't need mapping - we can avoid
2738 * starting a transaction unnecessarily and also avoid being blocked
2739 * in the block layer on device congestion while having transaction
2743 mpd.scanned_until_end = 0;
2744 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2745 if (!mpd.io_submit.io_end) {
2749 ret = mpage_prepare_extent_to_map(&mpd);
2750 /* Unlock pages we didn't use */
2751 mpage_release_unused_pages(&mpd, false);
2752 /* Submit prepared bio */
2753 ext4_io_submit(&mpd.io_submit);
2754 ext4_put_io_end_defer(mpd.io_submit.io_end);
2755 mpd.io_submit.io_end = NULL;
2759 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2760 /* For each extent of pages we use new io_end */
2761 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2762 if (!mpd.io_submit.io_end) {
2768 * We have two constraints: We find one extent to map and we
2769 * must always write out whole page (makes a difference when
2770 * blocksize < pagesize) so that we don't block on IO when we
2771 * try to write out the rest of the page. Journalled mode is
2772 * not supported by delalloc.
2774 BUG_ON(ext4_should_journal_data(inode));
2775 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2777 /* start a new transaction */
2778 handle = ext4_journal_start_with_reserve(inode,
2779 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2780 if (IS_ERR(handle)) {
2781 ret = PTR_ERR(handle);
2782 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2783 "%ld pages, ino %lu; err %d", __func__,
2784 wbc->nr_to_write, inode->i_ino, ret);
2785 /* Release allocated io_end */
2786 ext4_put_io_end(mpd.io_submit.io_end);
2787 mpd.io_submit.io_end = NULL;
2792 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2793 ret = mpage_prepare_extent_to_map(&mpd);
2794 if (!ret && mpd.map.m_len)
2795 ret = mpage_map_and_submit_extent(handle, &mpd,
2798 * Caution: If the handle is synchronous,
2799 * ext4_journal_stop() can wait for transaction commit
2800 * to finish which may depend on writeback of pages to
2801 * complete or on page lock to be released. In that
2802 * case, we have to wait until after we have
2803 * submitted all the IO, released page locks we hold,
2804 * and dropped io_end reference (for extent conversion
2805 * to be able to complete) before stopping the handle.
2807 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808 ext4_journal_stop(handle);
2812 /* Unlock pages we didn't use */
2813 mpage_release_unused_pages(&mpd, give_up_on_write);
2814 /* Submit prepared bio */
2815 ext4_io_submit(&mpd.io_submit);
2818 * Drop our io_end reference we got from init. We have
2819 * to be careful and use deferred io_end finishing if
2820 * we are still holding the transaction as we can
2821 * release the last reference to io_end which may end
2822 * up doing unwritten extent conversion.
2825 ext4_put_io_end_defer(mpd.io_submit.io_end);
2826 ext4_journal_stop(handle);
2828 ext4_put_io_end(mpd.io_submit.io_end);
2829 mpd.io_submit.io_end = NULL;
2831 if (ret == -ENOSPC && sbi->s_journal) {
2833 * Commit the transaction which would
2834 * free blocks released in the transaction
2837 jbd2_journal_force_commit_nested(sbi->s_journal);
2841 /* Fatal error - ENOMEM, EIO... */
2846 blk_finish_plug(&plug);
2847 if (!ret && !cycled && wbc->nr_to_write > 0) {
2849 mpd.last_page = writeback_index - 1;
2855 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2857 * Set the writeback_index so that range_cyclic
2858 * mode will write it back later
2860 mapping->writeback_index = mpd.first_page;
2863 trace_ext4_writepages_result(inode, wbc, ret,
2864 nr_to_write - wbc->nr_to_write);
2865 percpu_up_read(&sbi->s_writepages_rwsem);
2869 static int ext4_dax_writepages(struct address_space *mapping,
2870 struct writeback_control *wbc)
2873 long nr_to_write = wbc->nr_to_write;
2874 struct inode *inode = mapping->host;
2875 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2877 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2880 percpu_down_read(&sbi->s_writepages_rwsem);
2881 trace_ext4_writepages(inode, wbc);
2883 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2884 trace_ext4_writepages_result(inode, wbc, ret,
2885 nr_to_write - wbc->nr_to_write);
2886 percpu_up_read(&sbi->s_writepages_rwsem);
2890 static int ext4_nonda_switch(struct super_block *sb)
2892 s64 free_clusters, dirty_clusters;
2893 struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 * switch to non delalloc mode if we are running low
2897 * on free block. The free block accounting via percpu
2898 * counters can get slightly wrong with percpu_counter_batch getting
2899 * accumulated on each CPU without updating global counters
2900 * Delalloc need an accurate free block accounting. So switch
2901 * to non delalloc when we are near to error range.
2904 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2906 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2908 * Start pushing delalloc when 1/2 of free blocks are dirty.
2910 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2911 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2913 if (2 * free_clusters < 3 * dirty_clusters ||
2914 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2916 * free block count is less than 150% of dirty blocks
2917 * or free blocks is less than watermark
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925 loff_t pos, unsigned len, unsigned flags,
2926 struct page **pagep, void **fsdata)
2928 int ret, retries = 0;
2931 struct inode *inode = mapping->host;
2933 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2936 index = pos >> PAGE_SHIFT;
2938 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939 ext4_verity_in_progress(inode)) {
2940 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941 return ext4_write_begin(file, mapping, pos,
2942 len, flags, pagep, fsdata);
2944 *fsdata = (void *)0;
2945 trace_ext4_da_write_begin(inode, pos, len, flags);
2947 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948 ret = ext4_da_write_inline_data_begin(mapping, inode,
2958 page = grab_cache_page_write_begin(mapping, index, flags);
2962 /* In case writeback began while the page was unlocked */
2963 wait_for_stable_page(page);
2965 #ifdef CONFIG_FS_ENCRYPTION
2966 ret = ext4_block_write_begin(page, pos, len,
2967 ext4_da_get_block_prep);
2969 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2975 * block_write_begin may have instantiated a few blocks
2976 * outside i_size. Trim these off again. Don't need
2977 * i_size_read because we hold inode lock.
2979 if (pos + len > inode->i_size)
2980 ext4_truncate_failed_write(inode);
2982 if (ret == -ENOSPC &&
2983 ext4_should_retry_alloc(inode->i_sb, &retries))
2993 * Check if we should update i_disksize
2994 * when write to the end of file but not require block allocation
2996 static int ext4_da_should_update_i_disksize(struct page *page,
2997 unsigned long offset)
2999 struct buffer_head *bh;
3000 struct inode *inode = page->mapping->host;
3004 bh = page_buffers(page);
3005 idx = offset >> inode->i_blkbits;
3007 for (i = 0; i < idx; i++)
3008 bh = bh->b_this_page;
3010 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3015 static int ext4_da_write_end(struct file *file,
3016 struct address_space *mapping,
3017 loff_t pos, unsigned len, unsigned copied,
3018 struct page *page, void *fsdata)
3020 struct inode *inode = mapping->host;
3022 unsigned long start, end;
3023 int write_mode = (int)(unsigned long)fsdata;
3025 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3026 return ext4_write_end(file, mapping, pos,
3027 len, copied, page, fsdata);
3029 trace_ext4_da_write_end(inode, pos, len, copied);
3031 if (write_mode != CONVERT_INLINE_DATA &&
3032 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3033 ext4_has_inline_data(inode))
3034 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3036 start = pos & (PAGE_SIZE - 1);
3037 end = start + copied - 1;
3040 * Since we are holding inode lock, we are sure i_disksize <=
3041 * i_size. We also know that if i_disksize < i_size, there are
3042 * delalloc writes pending in the range upto i_size. If the end of
3043 * the current write is <= i_size, there's no need to touch
3044 * i_disksize since writeback will push i_disksize upto i_size
3045 * eventually. If the end of the current write is > i_size and
3046 * inside an allocated block (ext4_da_should_update_i_disksize()
3047 * check), we need to update i_disksize here as neither
3048 * ext4_writepage() nor certain ext4_writepages() paths not
3049 * allocating blocks update i_disksize.
3051 * Note that we defer inode dirtying to generic_write_end() /
3052 * ext4_da_write_inline_data_end().
3054 new_i_size = pos + copied;
3055 if (copied && new_i_size > inode->i_size &&
3056 ext4_da_should_update_i_disksize(page, end))
3057 ext4_update_i_disksize(inode, new_i_size);
3059 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3063 * Force all delayed allocation blocks to be allocated for a given inode.
3065 int ext4_alloc_da_blocks(struct inode *inode)
3067 trace_ext4_alloc_da_blocks(inode);
3069 if (!EXT4_I(inode)->i_reserved_data_blocks)
3073 * We do something simple for now. The filemap_flush() will
3074 * also start triggering a write of the data blocks, which is
3075 * not strictly speaking necessary (and for users of
3076 * laptop_mode, not even desirable). However, to do otherwise
3077 * would require replicating code paths in:
3079 * ext4_writepages() ->
3080 * write_cache_pages() ---> (via passed in callback function)
3081 * __mpage_da_writepage() -->
3082 * mpage_add_bh_to_extent()
3083 * mpage_da_map_blocks()
3085 * The problem is that write_cache_pages(), located in
3086 * mm/page-writeback.c, marks pages clean in preparation for
3087 * doing I/O, which is not desirable if we're not planning on
3090 * We could call write_cache_pages(), and then redirty all of
3091 * the pages by calling redirty_page_for_writepage() but that
3092 * would be ugly in the extreme. So instead we would need to
3093 * replicate parts of the code in the above functions,
3094 * simplifying them because we wouldn't actually intend to
3095 * write out the pages, but rather only collect contiguous
3096 * logical block extents, call the multi-block allocator, and
3097 * then update the buffer heads with the block allocations.
3099 * For now, though, we'll cheat by calling filemap_flush(),
3100 * which will map the blocks, and start the I/O, but not
3101 * actually wait for the I/O to complete.
3103 return filemap_flush(inode->i_mapping);
3107 * bmap() is special. It gets used by applications such as lilo and by
3108 * the swapper to find the on-disk block of a specific piece of data.
3110 * Naturally, this is dangerous if the block concerned is still in the
3111 * journal. If somebody makes a swapfile on an ext4 data-journaling
3112 * filesystem and enables swap, then they may get a nasty shock when the
3113 * data getting swapped to that swapfile suddenly gets overwritten by
3114 * the original zero's written out previously to the journal and
3115 * awaiting writeback in the kernel's buffer cache.
3117 * So, if we see any bmap calls here on a modified, data-journaled file,
3118 * take extra steps to flush any blocks which might be in the cache.
3120 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3122 struct inode *inode = mapping->host;
3127 * We can get here for an inline file via the FIBMAP ioctl
3129 if (ext4_has_inline_data(inode))
3132 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3133 test_opt(inode->i_sb, DELALLOC)) {
3135 * With delalloc we want to sync the file
3136 * so that we can make sure we allocate
3139 filemap_write_and_wait(mapping);
3142 if (EXT4_JOURNAL(inode) &&
3143 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3145 * This is a REALLY heavyweight approach, but the use of
3146 * bmap on dirty files is expected to be extremely rare:
3147 * only if we run lilo or swapon on a freshly made file
3148 * do we expect this to happen.
3150 * (bmap requires CAP_SYS_RAWIO so this does not
3151 * represent an unprivileged user DOS attack --- we'd be
3152 * in trouble if mortal users could trigger this path at
3155 * NB. EXT4_STATE_JDATA is not set on files other than
3156 * regular files. If somebody wants to bmap a directory
3157 * or symlink and gets confused because the buffer
3158 * hasn't yet been flushed to disk, they deserve
3159 * everything they get.
3162 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3163 journal = EXT4_JOURNAL(inode);
3164 jbd2_journal_lock_updates(journal);
3165 err = jbd2_journal_flush(journal, 0);
3166 jbd2_journal_unlock_updates(journal);
3172 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3175 static int ext4_readpage(struct file *file, struct page *page)
3178 struct inode *inode = page->mapping->host;
3180 trace_ext4_readpage(page);
3182 if (ext4_has_inline_data(inode))
3183 ret = ext4_readpage_inline(inode, page);
3186 return ext4_mpage_readpages(inode, NULL, page);
3191 static void ext4_readahead(struct readahead_control *rac)
3193 struct inode *inode = rac->mapping->host;
3195 /* If the file has inline data, no need to do readahead. */
3196 if (ext4_has_inline_data(inode))
3199 ext4_mpage_readpages(inode, rac, NULL);
3202 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3203 unsigned int length)
3205 trace_ext4_invalidatepage(page, offset, length);
3207 /* No journalling happens on data buffers when this function is used */
3208 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3210 block_invalidatepage(page, offset, length);
3213 static int __ext4_journalled_invalidatepage(struct page *page,
3214 unsigned int offset,
3215 unsigned int length)
3217 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3219 trace_ext4_journalled_invalidatepage(page, offset, length);
3222 * If it's a full truncate we just forget about the pending dirtying
3224 if (offset == 0 && length == PAGE_SIZE)
3225 ClearPageChecked(page);
3227 return jbd2_journal_invalidatepage(journal, page, offset, length);
3230 /* Wrapper for aops... */
3231 static void ext4_journalled_invalidatepage(struct page *page,
3232 unsigned int offset,
3233 unsigned int length)
3235 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3238 static int ext4_releasepage(struct page *page, gfp_t wait)
3240 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3242 trace_ext4_releasepage(page);
3244 /* Page has dirty journalled data -> cannot release */
3245 if (PageChecked(page))
3248 return jbd2_journal_try_to_free_buffers(journal, page);
3250 return try_to_free_buffers(page);
3253 static bool ext4_inode_datasync_dirty(struct inode *inode)
3255 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258 if (jbd2_transaction_committed(journal,
3259 EXT4_I(inode)->i_datasync_tid))
3261 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3262 return !list_empty(&EXT4_I(inode)->i_fc_list);
3266 /* Any metadata buffers to write? */
3267 if (!list_empty(&inode->i_mapping->private_list))
3269 return inode->i_state & I_DIRTY_DATASYNC;
3272 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3273 struct ext4_map_blocks *map, loff_t offset,
3276 u8 blkbits = inode->i_blkbits;
3279 * Writes that span EOF might trigger an I/O size update on completion,
3280 * so consider them to be dirty for the purpose of O_DSYNC, even if
3281 * there is no other metadata changes being made or are pending.
3284 if (ext4_inode_datasync_dirty(inode) ||
3285 offset + length > i_size_read(inode))
3286 iomap->flags |= IOMAP_F_DIRTY;
3288 if (map->m_flags & EXT4_MAP_NEW)
3289 iomap->flags |= IOMAP_F_NEW;
3291 iomap->bdev = inode->i_sb->s_bdev;
3292 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3293 iomap->offset = (u64) map->m_lblk << blkbits;
3294 iomap->length = (u64) map->m_len << blkbits;
3296 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3297 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3298 iomap->flags |= IOMAP_F_MERGED;
3301 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3302 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3303 * set. In order for any allocated unwritten extents to be converted
3304 * into written extents correctly within the ->end_io() handler, we
3305 * need to ensure that the iomap->type is set appropriately. Hence, the
3306 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3309 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3310 iomap->type = IOMAP_UNWRITTEN;
3311 iomap->addr = (u64) map->m_pblk << blkbits;
3312 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3313 iomap->type = IOMAP_MAPPED;
3314 iomap->addr = (u64) map->m_pblk << blkbits;
3316 iomap->type = IOMAP_HOLE;
3317 iomap->addr = IOMAP_NULL_ADDR;
3321 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3325 u8 blkbits = inode->i_blkbits;
3326 int ret, dio_credits, m_flags = 0, retries = 0;
3329 * Trim the mapping request to the maximum value that we can map at
3330 * once for direct I/O.
3332 if (map->m_len > DIO_MAX_BLOCKS)
3333 map->m_len = DIO_MAX_BLOCKS;
3334 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3338 * Either we allocate blocks and then don't get an unwritten extent, so
3339 * in that case we have reserved enough credits. Or, the blocks are
3340 * already allocated and unwritten. In that case, the extent conversion
3341 * fits into the credits as well.
3343 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3345 return PTR_ERR(handle);
3348 * DAX and direct I/O are the only two operations that are currently
3349 * supported with IOMAP_WRITE.
3351 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3353 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3355 * We use i_size instead of i_disksize here because delalloc writeback
3356 * can complete at any point during the I/O and subsequently push the
3357 * i_disksize out to i_size. This could be beyond where direct I/O is
3358 * happening and thus expose allocated blocks to direct I/O reads.
3360 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3361 m_flags = EXT4_GET_BLOCKS_CREATE;
3362 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3363 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3365 ret = ext4_map_blocks(handle, inode, map, m_flags);
3368 * We cannot fill holes in indirect tree based inodes as that could
3369 * expose stale data in the case of a crash. Use the magic error code
3370 * to fallback to buffered I/O.
3372 if (!m_flags && !ret)
3375 ext4_journal_stop(handle);
3376 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3383 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3384 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3387 struct ext4_map_blocks map;
3388 u8 blkbits = inode->i_blkbits;
3390 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3393 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3397 * Calculate the first and last logical blocks respectively.
3399 map.m_lblk = offset >> blkbits;
3400 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3401 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3403 if (flags & IOMAP_WRITE) {
3405 * We check here if the blocks are already allocated, then we
3406 * don't need to start a journal txn and we can directly return
3407 * the mapping information. This could boost performance
3408 * especially in multi-threaded overwrite requests.
3410 if (offset + length <= i_size_read(inode)) {
3411 ret = ext4_map_blocks(NULL, inode, &map, 0);
3412 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3415 ret = ext4_iomap_alloc(inode, &map, flags);
3417 ret = ext4_map_blocks(NULL, inode, &map, 0);
3423 ext4_set_iomap(inode, iomap, &map, offset, length);
3428 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3429 loff_t length, unsigned flags, struct iomap *iomap,
3430 struct iomap *srcmap)
3435 * Even for writes we don't need to allocate blocks, so just pretend
3436 * we are reading to save overhead of starting a transaction.
3438 flags &= ~IOMAP_WRITE;
3439 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3440 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3444 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3445 ssize_t written, unsigned flags, struct iomap *iomap)
3448 * Check to see whether an error occurred while writing out the data to
3449 * the allocated blocks. If so, return the magic error code so that we
3450 * fallback to buffered I/O and attempt to complete the remainder of
3451 * the I/O. Any blocks that may have been allocated in preparation for
3452 * the direct I/O will be reused during buffered I/O.
3454 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3460 const struct iomap_ops ext4_iomap_ops = {
3461 .iomap_begin = ext4_iomap_begin,
3462 .iomap_end = ext4_iomap_end,
3465 const struct iomap_ops ext4_iomap_overwrite_ops = {
3466 .iomap_begin = ext4_iomap_overwrite_begin,
3467 .iomap_end = ext4_iomap_end,
3470 static bool ext4_iomap_is_delalloc(struct inode *inode,
3471 struct ext4_map_blocks *map)
3473 struct extent_status es;
3474 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3476 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3477 map->m_lblk, end, &es);
3479 if (!es.es_len || es.es_lblk > end)
3482 if (es.es_lblk > map->m_lblk) {
3483 map->m_len = es.es_lblk - map->m_lblk;
3487 offset = map->m_lblk - es.es_lblk;
3488 map->m_len = es.es_len - offset;
3493 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3494 loff_t length, unsigned int flags,
3495 struct iomap *iomap, struct iomap *srcmap)
3498 bool delalloc = false;
3499 struct ext4_map_blocks map;
3500 u8 blkbits = inode->i_blkbits;
3502 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3505 if (ext4_has_inline_data(inode)) {
3506 ret = ext4_inline_data_iomap(inode, iomap);
3507 if (ret != -EAGAIN) {
3508 if (ret == 0 && offset >= iomap->length)
3515 * Calculate the first and last logical block respectively.
3517 map.m_lblk = offset >> blkbits;
3518 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3519 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3522 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3523 * So handle it here itself instead of querying ext4_map_blocks().
3524 * Since ext4_map_blocks() will warn about it and will return
3527 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3530 if (offset >= sbi->s_bitmap_maxbytes) {
3536 ret = ext4_map_blocks(NULL, inode, &map, 0);
3540 delalloc = ext4_iomap_is_delalloc(inode, &map);
3543 ext4_set_iomap(inode, iomap, &map, offset, length);
3544 if (delalloc && iomap->type == IOMAP_HOLE)
3545 iomap->type = IOMAP_DELALLOC;
3550 const struct iomap_ops ext4_iomap_report_ops = {
3551 .iomap_begin = ext4_iomap_begin_report,
3555 * Pages can be marked dirty completely asynchronously from ext4's journalling
3556 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3557 * much here because ->set_page_dirty is called under VFS locks. The page is
3558 * not necessarily locked.
3560 * We cannot just dirty the page and leave attached buffers clean, because the
3561 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3562 * or jbddirty because all the journalling code will explode.
3564 * So what we do is to mark the page "pending dirty" and next time writepage
3565 * is called, propagate that into the buffers appropriately.
3567 static int ext4_journalled_set_page_dirty(struct page *page)
3569 SetPageChecked(page);
3570 return __set_page_dirty_nobuffers(page);
3573 static int ext4_set_page_dirty(struct page *page)
3575 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3576 WARN_ON_ONCE(!page_has_buffers(page));
3577 return __set_page_dirty_buffers(page);
3580 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3581 struct file *file, sector_t *span)
3583 return iomap_swapfile_activate(sis, file, span,
3584 &ext4_iomap_report_ops);
3587 static const struct address_space_operations ext4_aops = {
3588 .readpage = ext4_readpage,
3589 .readahead = ext4_readahead,
3590 .writepage = ext4_writepage,
3591 .writepages = ext4_writepages,
3592 .write_begin = ext4_write_begin,
3593 .write_end = ext4_write_end,
3594 .set_page_dirty = ext4_set_page_dirty,
3596 .invalidatepage = ext4_invalidatepage,
3597 .releasepage = ext4_releasepage,
3598 .direct_IO = noop_direct_IO,
3599 .migratepage = buffer_migrate_page,
3600 .is_partially_uptodate = block_is_partially_uptodate,
3601 .error_remove_page = generic_error_remove_page,
3602 .swap_activate = ext4_iomap_swap_activate,
3605 static const struct address_space_operations ext4_journalled_aops = {
3606 .readpage = ext4_readpage,
3607 .readahead = ext4_readahead,
3608 .writepage = ext4_writepage,
3609 .writepages = ext4_writepages,
3610 .write_begin = ext4_write_begin,
3611 .write_end = ext4_journalled_write_end,
3612 .set_page_dirty = ext4_journalled_set_page_dirty,
3614 .invalidatepage = ext4_journalled_invalidatepage,
3615 .releasepage = ext4_releasepage,
3616 .direct_IO = noop_direct_IO,
3617 .is_partially_uptodate = block_is_partially_uptodate,
3618 .error_remove_page = generic_error_remove_page,
3619 .swap_activate = ext4_iomap_swap_activate,
3622 static const struct address_space_operations ext4_da_aops = {
3623 .readpage = ext4_readpage,
3624 .readahead = ext4_readahead,
3625 .writepage = ext4_writepage,
3626 .writepages = ext4_writepages,
3627 .write_begin = ext4_da_write_begin,
3628 .write_end = ext4_da_write_end,
3629 .set_page_dirty = ext4_set_page_dirty,
3631 .invalidatepage = ext4_invalidatepage,
3632 .releasepage = ext4_releasepage,
3633 .direct_IO = noop_direct_IO,
3634 .migratepage = buffer_migrate_page,
3635 .is_partially_uptodate = block_is_partially_uptodate,
3636 .error_remove_page = generic_error_remove_page,
3637 .swap_activate = ext4_iomap_swap_activate,
3640 static const struct address_space_operations ext4_dax_aops = {
3641 .writepages = ext4_dax_writepages,
3642 .direct_IO = noop_direct_IO,
3643 .set_page_dirty = __set_page_dirty_no_writeback,
3645 .invalidatepage = noop_invalidatepage,
3646 .swap_activate = ext4_iomap_swap_activate,
3649 void ext4_set_aops(struct inode *inode)
3651 switch (ext4_inode_journal_mode(inode)) {
3652 case EXT4_INODE_ORDERED_DATA_MODE:
3653 case EXT4_INODE_WRITEBACK_DATA_MODE:
3655 case EXT4_INODE_JOURNAL_DATA_MODE:
3656 inode->i_mapping->a_ops = &ext4_journalled_aops;
3662 inode->i_mapping->a_ops = &ext4_dax_aops;
3663 else if (test_opt(inode->i_sb, DELALLOC))
3664 inode->i_mapping->a_ops = &ext4_da_aops;
3666 inode->i_mapping->a_ops = &ext4_aops;
3669 static int __ext4_block_zero_page_range(handle_t *handle,
3670 struct address_space *mapping, loff_t from, loff_t length)
3672 ext4_fsblk_t index = from >> PAGE_SHIFT;
3673 unsigned offset = from & (PAGE_SIZE-1);
3674 unsigned blocksize, pos;
3676 struct inode *inode = mapping->host;
3677 struct buffer_head *bh;
3681 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3682 mapping_gfp_constraint(mapping, ~__GFP_FS));
3686 blocksize = inode->i_sb->s_blocksize;
3688 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3690 if (!page_has_buffers(page))
3691 create_empty_buffers(page, blocksize, 0);
3693 /* Find the buffer that contains "offset" */
3694 bh = page_buffers(page);
3696 while (offset >= pos) {
3697 bh = bh->b_this_page;
3701 if (buffer_freed(bh)) {
3702 BUFFER_TRACE(bh, "freed: skip");
3705 if (!buffer_mapped(bh)) {
3706 BUFFER_TRACE(bh, "unmapped");
3707 ext4_get_block(inode, iblock, bh, 0);
3708 /* unmapped? It's a hole - nothing to do */
3709 if (!buffer_mapped(bh)) {
3710 BUFFER_TRACE(bh, "still unmapped");
3715 /* Ok, it's mapped. Make sure it's up-to-date */
3716 if (PageUptodate(page))
3717 set_buffer_uptodate(bh);
3719 if (!buffer_uptodate(bh)) {
3720 err = ext4_read_bh_lock(bh, 0, true);
3723 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3724 /* We expect the key to be set. */
3725 BUG_ON(!fscrypt_has_encryption_key(inode));
3726 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3729 clear_buffer_uptodate(bh);
3734 if (ext4_should_journal_data(inode)) {
3735 BUFFER_TRACE(bh, "get write access");
3736 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3741 zero_user(page, offset, length);
3742 BUFFER_TRACE(bh, "zeroed end of block");
3744 if (ext4_should_journal_data(inode)) {
3745 err = ext4_handle_dirty_metadata(handle, inode, bh);
3748 mark_buffer_dirty(bh);
3749 if (ext4_should_order_data(inode))
3750 err = ext4_jbd2_inode_add_write(handle, inode, from,
3761 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3762 * starting from file offset 'from'. The range to be zero'd must
3763 * be contained with in one block. If the specified range exceeds
3764 * the end of the block it will be shortened to end of the block
3765 * that corresponds to 'from'
3767 static int ext4_block_zero_page_range(handle_t *handle,
3768 struct address_space *mapping, loff_t from, loff_t length)
3770 struct inode *inode = mapping->host;
3771 unsigned offset = from & (PAGE_SIZE-1);
3772 unsigned blocksize = inode->i_sb->s_blocksize;
3773 unsigned max = blocksize - (offset & (blocksize - 1));
3776 * correct length if it does not fall between
3777 * 'from' and the end of the block
3779 if (length > max || length < 0)
3782 if (IS_DAX(inode)) {
3783 return iomap_zero_range(inode, from, length, NULL,
3786 return __ext4_block_zero_page_range(handle, mapping, from, length);
3790 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3791 * up to the end of the block which corresponds to `from'.
3792 * This required during truncate. We need to physically zero the tail end
3793 * of that block so it doesn't yield old data if the file is later grown.
3795 static int ext4_block_truncate_page(handle_t *handle,
3796 struct address_space *mapping, loff_t from)
3798 unsigned offset = from & (PAGE_SIZE-1);
3801 struct inode *inode = mapping->host;
3803 /* If we are processing an encrypted inode during orphan list handling */
3804 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3807 blocksize = inode->i_sb->s_blocksize;
3808 length = blocksize - (offset & (blocksize - 1));
3810 return ext4_block_zero_page_range(handle, mapping, from, length);
3813 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3814 loff_t lstart, loff_t length)
3816 struct super_block *sb = inode->i_sb;
3817 struct address_space *mapping = inode->i_mapping;
3818 unsigned partial_start, partial_end;
3819 ext4_fsblk_t start, end;
3820 loff_t byte_end = (lstart + length - 1);
3823 partial_start = lstart & (sb->s_blocksize - 1);
3824 partial_end = byte_end & (sb->s_blocksize - 1);
3826 start = lstart >> sb->s_blocksize_bits;
3827 end = byte_end >> sb->s_blocksize_bits;
3829 /* Handle partial zero within the single block */
3831 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3832 err = ext4_block_zero_page_range(handle, mapping,
3836 /* Handle partial zero out on the start of the range */
3837 if (partial_start) {
3838 err = ext4_block_zero_page_range(handle, mapping,
3839 lstart, sb->s_blocksize);
3843 /* Handle partial zero out on the end of the range */
3844 if (partial_end != sb->s_blocksize - 1)
3845 err = ext4_block_zero_page_range(handle, mapping,
3846 byte_end - partial_end,
3851 int ext4_can_truncate(struct inode *inode)
3853 if (S_ISREG(inode->i_mode))
3855 if (S_ISDIR(inode->i_mode))
3857 if (S_ISLNK(inode->i_mode))
3858 return !ext4_inode_is_fast_symlink(inode);
3863 * We have to make sure i_disksize gets properly updated before we truncate
3864 * page cache due to hole punching or zero range. Otherwise i_disksize update
3865 * can get lost as it may have been postponed to submission of writeback but
3866 * that will never happen after we truncate page cache.
3868 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3874 loff_t size = i_size_read(inode);
3876 WARN_ON(!inode_is_locked(inode));
3877 if (offset > size || offset + len < size)
3880 if (EXT4_I(inode)->i_disksize >= size)
3883 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3885 return PTR_ERR(handle);
3886 ext4_update_i_disksize(inode, size);
3887 ret = ext4_mark_inode_dirty(handle, inode);
3888 ext4_journal_stop(handle);
3893 static void ext4_wait_dax_page(struct inode *inode)
3895 filemap_invalidate_unlock(inode->i_mapping);
3897 filemap_invalidate_lock(inode->i_mapping);
3900 int ext4_break_layouts(struct inode *inode)
3905 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3909 page = dax_layout_busy_page(inode->i_mapping);
3913 error = ___wait_var_event(&page->_refcount,
3914 atomic_read(&page->_refcount) == 1,
3915 TASK_INTERRUPTIBLE, 0, 0,
3916 ext4_wait_dax_page(inode));
3917 } while (error == 0);
3923 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3924 * associated with the given offset and length
3926 * @inode: File inode
3927 * @offset: The offset where the hole will begin
3928 * @len: The length of the hole
3930 * Returns: 0 on success or negative on failure
3933 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3935 struct super_block *sb = inode->i_sb;
3936 ext4_lblk_t first_block, stop_block;
3937 struct address_space *mapping = inode->i_mapping;
3938 loff_t first_block_offset, last_block_offset;
3940 unsigned int credits;
3941 int ret = 0, ret2 = 0;
3943 trace_ext4_punch_hole(inode, offset, length, 0);
3945 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3946 if (ext4_has_inline_data(inode)) {
3947 filemap_invalidate_lock(mapping);
3948 ret = ext4_convert_inline_data(inode);
3949 filemap_invalidate_unlock(mapping);
3955 * Write out all dirty pages to avoid race conditions
3956 * Then release them.
3958 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3959 ret = filemap_write_and_wait_range(mapping, offset,
3960 offset + length - 1);
3967 /* No need to punch hole beyond i_size */
3968 if (offset >= inode->i_size)
3972 * If the hole extends beyond i_size, set the hole
3973 * to end after the page that contains i_size
3975 if (offset + length > inode->i_size) {
3976 length = inode->i_size +
3977 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3981 if (offset & (sb->s_blocksize - 1) ||
3982 (offset + length) & (sb->s_blocksize - 1)) {
3984 * Attach jinode to inode for jbd2 if we do any zeroing of
3987 ret = ext4_inode_attach_jinode(inode);
3993 /* Wait all existing dio workers, newcomers will block on i_mutex */
3994 inode_dio_wait(inode);
3997 * Prevent page faults from reinstantiating pages we have released from
4000 filemap_invalidate_lock(mapping);
4002 ret = ext4_break_layouts(inode);
4006 first_block_offset = round_up(offset, sb->s_blocksize);
4007 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4009 /* Now release the pages and zero block aligned part of pages*/
4010 if (last_block_offset > first_block_offset) {
4011 ret = ext4_update_disksize_before_punch(inode, offset, length);
4014 truncate_pagecache_range(inode, first_block_offset,
4018 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4019 credits = ext4_writepage_trans_blocks(inode);
4021 credits = ext4_blocks_for_truncate(inode);
4022 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4023 if (IS_ERR(handle)) {
4024 ret = PTR_ERR(handle);
4025 ext4_std_error(sb, ret);
4029 ret = ext4_zero_partial_blocks(handle, inode, offset,
4034 first_block = (offset + sb->s_blocksize - 1) >>
4035 EXT4_BLOCK_SIZE_BITS(sb);
4036 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4038 /* If there are blocks to remove, do it */
4039 if (stop_block > first_block) {
4041 down_write(&EXT4_I(inode)->i_data_sem);
4042 ext4_discard_preallocations(inode, 0);
4044 ret = ext4_es_remove_extent(inode, first_block,
4045 stop_block - first_block);
4047 up_write(&EXT4_I(inode)->i_data_sem);
4051 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4052 ret = ext4_ext_remove_space(inode, first_block,
4055 ret = ext4_ind_remove_space(handle, inode, first_block,
4058 up_write(&EXT4_I(inode)->i_data_sem);
4060 ext4_fc_track_range(handle, inode, first_block, stop_block);
4062 ext4_handle_sync(handle);
4064 inode->i_mtime = inode->i_ctime = current_time(inode);
4065 ret2 = ext4_mark_inode_dirty(handle, inode);
4069 ext4_update_inode_fsync_trans(handle, inode, 1);
4071 ext4_journal_stop(handle);
4073 filemap_invalidate_unlock(mapping);
4075 inode_unlock(inode);
4079 int ext4_inode_attach_jinode(struct inode *inode)
4081 struct ext4_inode_info *ei = EXT4_I(inode);
4082 struct jbd2_inode *jinode;
4084 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4087 jinode = jbd2_alloc_inode(GFP_KERNEL);
4088 spin_lock(&inode->i_lock);
4091 spin_unlock(&inode->i_lock);
4094 ei->jinode = jinode;
4095 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4098 spin_unlock(&inode->i_lock);
4099 if (unlikely(jinode != NULL))
4100 jbd2_free_inode(jinode);
4107 * We block out ext4_get_block() block instantiations across the entire
4108 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4109 * simultaneously on behalf of the same inode.
4111 * As we work through the truncate and commit bits of it to the journal there
4112 * is one core, guiding principle: the file's tree must always be consistent on
4113 * disk. We must be able to restart the truncate after a crash.
4115 * The file's tree may be transiently inconsistent in memory (although it
4116 * probably isn't), but whenever we close off and commit a journal transaction,
4117 * the contents of (the filesystem + the journal) must be consistent and
4118 * restartable. It's pretty simple, really: bottom up, right to left (although
4119 * left-to-right works OK too).
4121 * Note that at recovery time, journal replay occurs *before* the restart of
4122 * truncate against the orphan inode list.
4124 * The committed inode has the new, desired i_size (which is the same as
4125 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4126 * that this inode's truncate did not complete and it will again call
4127 * ext4_truncate() to have another go. So there will be instantiated blocks
4128 * to the right of the truncation point in a crashed ext4 filesystem. But
4129 * that's fine - as long as they are linked from the inode, the post-crash
4130 * ext4_truncate() run will find them and release them.
4132 int ext4_truncate(struct inode *inode)
4134 struct ext4_inode_info *ei = EXT4_I(inode);
4135 unsigned int credits;
4138 struct address_space *mapping = inode->i_mapping;
4141 * There is a possibility that we're either freeing the inode
4142 * or it's a completely new inode. In those cases we might not
4143 * have i_mutex locked because it's not necessary.
4145 if (!(inode->i_state & (I_NEW|I_FREEING)))
4146 WARN_ON(!inode_is_locked(inode));
4147 trace_ext4_truncate_enter(inode);
4149 if (!ext4_can_truncate(inode))
4152 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4153 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4155 if (ext4_has_inline_data(inode)) {
4158 err = ext4_inline_data_truncate(inode, &has_inline);
4159 if (err || has_inline)
4163 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4164 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4165 if (ext4_inode_attach_jinode(inode) < 0)
4169 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4170 credits = ext4_writepage_trans_blocks(inode);
4172 credits = ext4_blocks_for_truncate(inode);
4174 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4175 if (IS_ERR(handle)) {
4176 err = PTR_ERR(handle);
4180 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4181 ext4_block_truncate_page(handle, mapping, inode->i_size);
4184 * We add the inode to the orphan list, so that if this
4185 * truncate spans multiple transactions, and we crash, we will
4186 * resume the truncate when the filesystem recovers. It also
4187 * marks the inode dirty, to catch the new size.
4189 * Implication: the file must always be in a sane, consistent
4190 * truncatable state while each transaction commits.
4192 err = ext4_orphan_add(handle, inode);
4196 down_write(&EXT4_I(inode)->i_data_sem);
4198 ext4_discard_preallocations(inode, 0);
4200 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4201 err = ext4_ext_truncate(handle, inode);
4203 ext4_ind_truncate(handle, inode);
4205 up_write(&ei->i_data_sem);
4210 ext4_handle_sync(handle);
4214 * If this was a simple ftruncate() and the file will remain alive,
4215 * then we need to clear up the orphan record which we created above.
4216 * However, if this was a real unlink then we were called by
4217 * ext4_evict_inode(), and we allow that function to clean up the
4218 * orphan info for us.
4221 ext4_orphan_del(handle, inode);
4223 inode->i_mtime = inode->i_ctime = current_time(inode);
4224 err2 = ext4_mark_inode_dirty(handle, inode);
4225 if (unlikely(err2 && !err))
4227 ext4_journal_stop(handle);
4230 trace_ext4_truncate_exit(inode);
4234 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4236 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4237 return inode_peek_iversion_raw(inode);
4239 return inode_peek_iversion(inode);
4242 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4243 struct ext4_inode_info *ei)
4245 struct inode *inode = &(ei->vfs_inode);
4246 u64 i_blocks = READ_ONCE(inode->i_blocks);
4247 struct super_block *sb = inode->i_sb;
4249 if (i_blocks <= ~0U) {
4251 * i_blocks can be represented in a 32 bit variable
4252 * as multiple of 512 bytes
4254 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4255 raw_inode->i_blocks_high = 0;
4256 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4261 * This should never happen since sb->s_maxbytes should not have
4262 * allowed this, sb->s_maxbytes was set according to the huge_file
4263 * feature in ext4_fill_super().
4265 if (!ext4_has_feature_huge_file(sb))
4266 return -EFSCORRUPTED;
4268 if (i_blocks <= 0xffffffffffffULL) {
4270 * i_blocks can be represented in a 48 bit variable
4271 * as multiple of 512 bytes
4273 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4274 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4275 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4277 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4278 /* i_block is stored in file system block size */
4279 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4281 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4286 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4288 struct ext4_inode_info *ei = EXT4_I(inode);
4295 err = ext4_inode_blocks_set(raw_inode, ei);
4297 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4298 i_uid = i_uid_read(inode);
4299 i_gid = i_gid_read(inode);
4300 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4301 if (!(test_opt(inode->i_sb, NO_UID32))) {
4302 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4303 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4305 * Fix up interoperability with old kernels. Otherwise,
4306 * old inodes get re-used with the upper 16 bits of the
4309 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4310 raw_inode->i_uid_high = 0;
4311 raw_inode->i_gid_high = 0;
4313 raw_inode->i_uid_high =
4314 cpu_to_le16(high_16_bits(i_uid));
4315 raw_inode->i_gid_high =
4316 cpu_to_le16(high_16_bits(i_gid));
4319 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4320 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4321 raw_inode->i_uid_high = 0;
4322 raw_inode->i_gid_high = 0;
4324 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4326 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4327 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4328 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4329 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4331 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4332 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4333 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4334 raw_inode->i_file_acl_high =
4335 cpu_to_le16(ei->i_file_acl >> 32);
4336 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4337 ext4_isize_set(raw_inode, ei->i_disksize);
4339 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4340 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4341 if (old_valid_dev(inode->i_rdev)) {
4342 raw_inode->i_block[0] =
4343 cpu_to_le32(old_encode_dev(inode->i_rdev));
4344 raw_inode->i_block[1] = 0;
4346 raw_inode->i_block[0] = 0;
4347 raw_inode->i_block[1] =
4348 cpu_to_le32(new_encode_dev(inode->i_rdev));
4349 raw_inode->i_block[2] = 0;
4351 } else if (!ext4_has_inline_data(inode)) {
4352 for (block = 0; block < EXT4_N_BLOCKS; block++)
4353 raw_inode->i_block[block] = ei->i_data[block];
4356 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4357 u64 ivers = ext4_inode_peek_iversion(inode);
4359 raw_inode->i_disk_version = cpu_to_le32(ivers);
4360 if (ei->i_extra_isize) {
4361 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4362 raw_inode->i_version_hi =
4363 cpu_to_le32(ivers >> 32);
4364 raw_inode->i_extra_isize =
4365 cpu_to_le16(ei->i_extra_isize);
4369 if (i_projid != EXT4_DEF_PROJID &&
4370 !ext4_has_feature_project(inode->i_sb))
4371 err = err ?: -EFSCORRUPTED;
4373 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4374 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4375 raw_inode->i_projid = cpu_to_le32(i_projid);
4377 ext4_inode_csum_set(inode, raw_inode, ei);
4382 * ext4_get_inode_loc returns with an extra refcount against the inode's
4383 * underlying buffer_head on success. If we pass 'inode' and it does not
4384 * have in-inode xattr, we have all inode data in memory that is needed
4385 * to recreate the on-disk version of this inode.
4387 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4388 struct inode *inode, struct ext4_iloc *iloc,
4389 ext4_fsblk_t *ret_block)
4391 struct ext4_group_desc *gdp;
4392 struct buffer_head *bh;
4394 struct blk_plug plug;
4395 int inodes_per_block, inode_offset;
4398 if (ino < EXT4_ROOT_INO ||
4399 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4400 return -EFSCORRUPTED;
4402 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4403 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4408 * Figure out the offset within the block group inode table
4410 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4411 inode_offset = ((ino - 1) %
4412 EXT4_INODES_PER_GROUP(sb));
4413 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4414 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4416 bh = sb_getblk(sb, block);
4419 if (ext4_buffer_uptodate(bh))
4423 if (ext4_buffer_uptodate(bh)) {
4424 /* Someone brought it uptodate while we waited */
4430 * If we have all information of the inode in memory and this
4431 * is the only valid inode in the block, we need not read the
4434 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4435 struct buffer_head *bitmap_bh;
4438 start = inode_offset & ~(inodes_per_block - 1);
4440 /* Is the inode bitmap in cache? */
4441 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4442 if (unlikely(!bitmap_bh))
4446 * If the inode bitmap isn't in cache then the
4447 * optimisation may end up performing two reads instead
4448 * of one, so skip it.
4450 if (!buffer_uptodate(bitmap_bh)) {
4454 for (i = start; i < start + inodes_per_block; i++) {
4455 if (i == inode_offset)
4457 if (ext4_test_bit(i, bitmap_bh->b_data))
4461 if (i == start + inodes_per_block) {
4462 struct ext4_inode *raw_inode =
4463 (struct ext4_inode *) (bh->b_data + iloc->offset);
4465 /* all other inodes are free, so skip I/O */
4466 memset(bh->b_data, 0, bh->b_size);
4467 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4468 ext4_fill_raw_inode(inode, raw_inode);
4469 set_buffer_uptodate(bh);
4477 * If we need to do any I/O, try to pre-readahead extra
4478 * blocks from the inode table.
4480 blk_start_plug(&plug);
4481 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4482 ext4_fsblk_t b, end, table;
4484 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4486 table = ext4_inode_table(sb, gdp);
4487 /* s_inode_readahead_blks is always a power of 2 */
4488 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4492 num = EXT4_INODES_PER_GROUP(sb);
4493 if (ext4_has_group_desc_csum(sb))
4494 num -= ext4_itable_unused_count(sb, gdp);
4495 table += num / inodes_per_block;
4499 ext4_sb_breadahead_unmovable(sb, b++);
4503 * There are other valid inodes in the buffer, this inode
4504 * has in-inode xattrs, or we don't have this inode in memory.
4505 * Read the block from disk.
4507 trace_ext4_load_inode(sb, ino);
4508 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4509 blk_finish_plug(&plug);
4511 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4512 if (!buffer_uptodate(bh)) {
4523 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4524 struct ext4_iloc *iloc)
4526 ext4_fsblk_t err_blk;
4529 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4533 ext4_error_inode_block(inode, err_blk, EIO,
4534 "unable to read itable block");
4539 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4541 ext4_fsblk_t err_blk;
4544 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4548 ext4_error_inode_block(inode, err_blk, EIO,
4549 "unable to read itable block");
4555 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4556 struct ext4_iloc *iloc)
4558 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4561 static bool ext4_should_enable_dax(struct inode *inode)
4563 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4565 if (test_opt2(inode->i_sb, DAX_NEVER))
4567 if (!S_ISREG(inode->i_mode))
4569 if (ext4_should_journal_data(inode))
4571 if (ext4_has_inline_data(inode))
4573 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4575 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4577 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4579 if (test_opt(inode->i_sb, DAX_ALWAYS))
4582 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4585 void ext4_set_inode_flags(struct inode *inode, bool init)
4587 unsigned int flags = EXT4_I(inode)->i_flags;
4588 unsigned int new_fl = 0;
4590 WARN_ON_ONCE(IS_DAX(inode) && init);
4592 if (flags & EXT4_SYNC_FL)
4594 if (flags & EXT4_APPEND_FL)
4596 if (flags & EXT4_IMMUTABLE_FL)
4597 new_fl |= S_IMMUTABLE;
4598 if (flags & EXT4_NOATIME_FL)
4599 new_fl |= S_NOATIME;
4600 if (flags & EXT4_DIRSYNC_FL)
4601 new_fl |= S_DIRSYNC;
4603 /* Because of the way inode_set_flags() works we must preserve S_DAX
4604 * here if already set. */
4605 new_fl |= (inode->i_flags & S_DAX);
4606 if (init && ext4_should_enable_dax(inode))
4609 if (flags & EXT4_ENCRYPT_FL)
4610 new_fl |= S_ENCRYPTED;
4611 if (flags & EXT4_CASEFOLD_FL)
4612 new_fl |= S_CASEFOLD;
4613 if (flags & EXT4_VERITY_FL)
4615 inode_set_flags(inode, new_fl,
4616 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4617 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4620 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4621 struct ext4_inode_info *ei)
4624 struct inode *inode = &(ei->vfs_inode);
4625 struct super_block *sb = inode->i_sb;
4627 if (ext4_has_feature_huge_file(sb)) {
4628 /* we are using combined 48 bit field */
4629 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4630 le32_to_cpu(raw_inode->i_blocks_lo);
4631 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4632 /* i_blocks represent file system block size */
4633 return i_blocks << (inode->i_blkbits - 9);
4638 return le32_to_cpu(raw_inode->i_blocks_lo);
4642 static inline int ext4_iget_extra_inode(struct inode *inode,
4643 struct ext4_inode *raw_inode,
4644 struct ext4_inode_info *ei)
4646 __le32 *magic = (void *)raw_inode +
4647 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4649 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4650 EXT4_INODE_SIZE(inode->i_sb) &&
4651 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4652 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4653 return ext4_find_inline_data_nolock(inode);
4655 EXT4_I(inode)->i_inline_off = 0;
4659 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4661 if (!ext4_has_feature_project(inode->i_sb))
4663 *projid = EXT4_I(inode)->i_projid;
4668 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4669 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4672 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4674 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4675 inode_set_iversion_raw(inode, val);
4677 inode_set_iversion_queried(inode, val);
4680 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4681 ext4_iget_flags flags, const char *function,
4684 struct ext4_iloc iloc;
4685 struct ext4_inode *raw_inode;
4686 struct ext4_inode_info *ei;
4687 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4688 struct inode *inode;
4689 journal_t *journal = EXT4_SB(sb)->s_journal;
4697 if ((!(flags & EXT4_IGET_SPECIAL) &&
4698 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4699 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4700 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4701 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4702 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4703 (ino < EXT4_ROOT_INO) ||
4704 (ino > le32_to_cpu(es->s_inodes_count))) {
4705 if (flags & EXT4_IGET_HANDLE)
4706 return ERR_PTR(-ESTALE);
4707 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4708 "inode #%lu: comm %s: iget: illegal inode #",
4709 ino, current->comm);
4710 return ERR_PTR(-EFSCORRUPTED);
4713 inode = iget_locked(sb, ino);
4715 return ERR_PTR(-ENOMEM);
4716 if (!(inode->i_state & I_NEW))
4722 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4725 raw_inode = ext4_raw_inode(&iloc);
4727 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4728 ext4_error_inode(inode, function, line, 0,
4729 "iget: root inode unallocated");
4730 ret = -EFSCORRUPTED;
4734 if ((flags & EXT4_IGET_HANDLE) &&
4735 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4740 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4741 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4742 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4743 EXT4_INODE_SIZE(inode->i_sb) ||
4744 (ei->i_extra_isize & 3)) {
4745 ext4_error_inode(inode, function, line, 0,
4746 "iget: bad extra_isize %u "
4749 EXT4_INODE_SIZE(inode->i_sb));
4750 ret = -EFSCORRUPTED;
4754 ei->i_extra_isize = 0;
4756 /* Precompute checksum seed for inode metadata */
4757 if (ext4_has_metadata_csum(sb)) {
4758 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4760 __le32 inum = cpu_to_le32(inode->i_ino);
4761 __le32 gen = raw_inode->i_generation;
4762 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4764 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4768 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4769 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4770 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4771 ext4_error_inode_err(inode, function, line, 0,
4772 EFSBADCRC, "iget: checksum invalid");
4777 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4778 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4779 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4780 if (ext4_has_feature_project(sb) &&
4781 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4782 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4783 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4785 i_projid = EXT4_DEF_PROJID;
4787 if (!(test_opt(inode->i_sb, NO_UID32))) {
4788 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4789 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4791 i_uid_write(inode, i_uid);
4792 i_gid_write(inode, i_gid);
4793 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4794 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4796 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4797 ei->i_inline_off = 0;
4798 ei->i_dir_start_lookup = 0;
4799 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4800 /* We now have enough fields to check if the inode was active or not.
4801 * This is needed because nfsd might try to access dead inodes
4802 * the test is that same one that e2fsck uses
4803 * NeilBrown 1999oct15
4805 if (inode->i_nlink == 0) {
4806 if ((inode->i_mode == 0 ||
4807 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4808 ino != EXT4_BOOT_LOADER_INO) {
4809 /* this inode is deleted */
4813 /* The only unlinked inodes we let through here have
4814 * valid i_mode and are being read by the orphan
4815 * recovery code: that's fine, we're about to complete
4816 * the process of deleting those.
4817 * OR it is the EXT4_BOOT_LOADER_INO which is
4818 * not initialized on a new filesystem. */
4820 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4821 ext4_set_inode_flags(inode, true);
4822 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4823 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4824 if (ext4_has_feature_64bit(sb))
4826 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4827 inode->i_size = ext4_isize(sb, raw_inode);
4828 if ((size = i_size_read(inode)) < 0) {
4829 ext4_error_inode(inode, function, line, 0,
4830 "iget: bad i_size value: %lld", size);
4831 ret = -EFSCORRUPTED;
4835 * If dir_index is not enabled but there's dir with INDEX flag set,
4836 * we'd normally treat htree data as empty space. But with metadata
4837 * checksumming that corrupts checksums so forbid that.
4839 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4840 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4841 ext4_error_inode(inode, function, line, 0,
4842 "iget: Dir with htree data on filesystem without dir_index feature.");
4843 ret = -EFSCORRUPTED;
4846 ei->i_disksize = inode->i_size;
4848 ei->i_reserved_quota = 0;
4850 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4851 ei->i_block_group = iloc.block_group;
4852 ei->i_last_alloc_group = ~0;
4854 * NOTE! The in-memory inode i_data array is in little-endian order
4855 * even on big-endian machines: we do NOT byteswap the block numbers!
4857 for (block = 0; block < EXT4_N_BLOCKS; block++)
4858 ei->i_data[block] = raw_inode->i_block[block];
4859 INIT_LIST_HEAD(&ei->i_orphan);
4860 ext4_fc_init_inode(&ei->vfs_inode);
4863 * Set transaction id's of transactions that have to be committed
4864 * to finish f[data]sync. We set them to currently running transaction
4865 * as we cannot be sure that the inode or some of its metadata isn't
4866 * part of the transaction - the inode could have been reclaimed and
4867 * now it is reread from disk.
4870 transaction_t *transaction;
4873 read_lock(&journal->j_state_lock);
4874 if (journal->j_running_transaction)
4875 transaction = journal->j_running_transaction;
4877 transaction = journal->j_committing_transaction;
4879 tid = transaction->t_tid;
4881 tid = journal->j_commit_sequence;
4882 read_unlock(&journal->j_state_lock);
4883 ei->i_sync_tid = tid;
4884 ei->i_datasync_tid = tid;
4887 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4888 if (ei->i_extra_isize == 0) {
4889 /* The extra space is currently unused. Use it. */
4890 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4891 ei->i_extra_isize = sizeof(struct ext4_inode) -
4892 EXT4_GOOD_OLD_INODE_SIZE;
4894 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4900 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4905 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4908 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4911 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4913 ext4_inode_set_iversion_queried(inode, ivers);
4917 if (ei->i_file_acl &&
4918 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4919 ext4_error_inode(inode, function, line, 0,
4920 "iget: bad extended attribute block %llu",
4922 ret = -EFSCORRUPTED;
4924 } else if (!ext4_has_inline_data(inode)) {
4925 /* validate the block references in the inode */
4926 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4927 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4928 (S_ISLNK(inode->i_mode) &&
4929 !ext4_inode_is_fast_symlink(inode)))) {
4930 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4931 ret = ext4_ext_check_inode(inode);
4933 ret = ext4_ind_check_inode(inode);
4939 if (S_ISREG(inode->i_mode)) {
4940 inode->i_op = &ext4_file_inode_operations;
4941 inode->i_fop = &ext4_file_operations;
4942 ext4_set_aops(inode);
4943 } else if (S_ISDIR(inode->i_mode)) {
4944 inode->i_op = &ext4_dir_inode_operations;
4945 inode->i_fop = &ext4_dir_operations;
4946 } else if (S_ISLNK(inode->i_mode)) {
4947 /* VFS does not allow setting these so must be corruption */
4948 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4949 ext4_error_inode(inode, function, line, 0,
4950 "iget: immutable or append flags "
4951 "not allowed on symlinks");
4952 ret = -EFSCORRUPTED;
4955 if (IS_ENCRYPTED(inode)) {
4956 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4957 ext4_set_aops(inode);
4958 } else if (ext4_inode_is_fast_symlink(inode)) {
4959 inode->i_link = (char *)ei->i_data;
4960 inode->i_op = &ext4_fast_symlink_inode_operations;
4961 nd_terminate_link(ei->i_data, inode->i_size,
4962 sizeof(ei->i_data) - 1);
4964 inode->i_op = &ext4_symlink_inode_operations;
4965 ext4_set_aops(inode);
4967 inode_nohighmem(inode);
4968 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4969 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4970 inode->i_op = &ext4_special_inode_operations;
4971 if (raw_inode->i_block[0])
4972 init_special_inode(inode, inode->i_mode,
4973 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4975 init_special_inode(inode, inode->i_mode,
4976 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4977 } else if (ino == EXT4_BOOT_LOADER_INO) {
4978 make_bad_inode(inode);
4980 ret = -EFSCORRUPTED;
4981 ext4_error_inode(inode, function, line, 0,
4982 "iget: bogus i_mode (%o)", inode->i_mode);
4985 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4986 ext4_error_inode(inode, function, line, 0,
4987 "casefold flag without casefold feature");
4990 unlock_new_inode(inode);
4996 return ERR_PTR(ret);
4999 static void __ext4_update_other_inode_time(struct super_block *sb,
5000 unsigned long orig_ino,
5002 struct ext4_inode *raw_inode)
5004 struct inode *inode;
5006 inode = find_inode_by_ino_rcu(sb, ino);
5010 if (!inode_is_dirtytime_only(inode))
5013 spin_lock(&inode->i_lock);
5014 if (inode_is_dirtytime_only(inode)) {
5015 struct ext4_inode_info *ei = EXT4_I(inode);
5017 inode->i_state &= ~I_DIRTY_TIME;
5018 spin_unlock(&inode->i_lock);
5020 spin_lock(&ei->i_raw_lock);
5021 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5022 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5023 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5024 ext4_inode_csum_set(inode, raw_inode, ei);
5025 spin_unlock(&ei->i_raw_lock);
5026 trace_ext4_other_inode_update_time(inode, orig_ino);
5029 spin_unlock(&inode->i_lock);
5033 * Opportunistically update the other time fields for other inodes in
5034 * the same inode table block.
5036 static void ext4_update_other_inodes_time(struct super_block *sb,
5037 unsigned long orig_ino, char *buf)
5040 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5041 int inode_size = EXT4_INODE_SIZE(sb);
5044 * Calculate the first inode in the inode table block. Inode
5045 * numbers are one-based. That is, the first inode in a block
5046 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5048 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5050 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5051 if (ino == orig_ino)
5053 __ext4_update_other_inode_time(sb, orig_ino, ino,
5054 (struct ext4_inode *)buf);
5060 * Post the struct inode info into an on-disk inode location in the
5061 * buffer-cache. This gobbles the caller's reference to the
5062 * buffer_head in the inode location struct.
5064 * The caller must have write access to iloc->bh.
5066 static int ext4_do_update_inode(handle_t *handle,
5067 struct inode *inode,
5068 struct ext4_iloc *iloc)
5070 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5071 struct ext4_inode_info *ei = EXT4_I(inode);
5072 struct buffer_head *bh = iloc->bh;
5073 struct super_block *sb = inode->i_sb;
5075 int need_datasync = 0, set_large_file = 0;
5077 spin_lock(&ei->i_raw_lock);
5080 * For fields not tracked in the in-memory inode, initialise them
5081 * to zero for new inodes.
5083 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5086 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5088 if (ei->i_disksize > 0x7fffffffULL) {
5089 if (!ext4_has_feature_large_file(sb) ||
5090 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5094 err = ext4_fill_raw_inode(inode, raw_inode);
5095 spin_unlock(&ei->i_raw_lock);
5097 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5101 if (inode->i_sb->s_flags & SB_LAZYTIME)
5102 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5105 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5109 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5110 if (set_large_file) {
5111 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5112 err = ext4_journal_get_write_access(handle, sb,
5117 lock_buffer(EXT4_SB(sb)->s_sbh);
5118 ext4_set_feature_large_file(sb);
5119 ext4_superblock_csum_set(sb);
5120 unlock_buffer(EXT4_SB(sb)->s_sbh);
5121 ext4_handle_sync(handle);
5122 err = ext4_handle_dirty_metadata(handle, NULL,
5123 EXT4_SB(sb)->s_sbh);
5125 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5127 ext4_std_error(inode->i_sb, err);
5134 * ext4_write_inode()
5136 * We are called from a few places:
5138 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5139 * Here, there will be no transaction running. We wait for any running
5140 * transaction to commit.
5142 * - Within flush work (sys_sync(), kupdate and such).
5143 * We wait on commit, if told to.
5145 * - Within iput_final() -> write_inode_now()
5146 * We wait on commit, if told to.
5148 * In all cases it is actually safe for us to return without doing anything,
5149 * because the inode has been copied into a raw inode buffer in
5150 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5153 * Note that we are absolutely dependent upon all inode dirtiers doing the
5154 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5155 * which we are interested.
5157 * It would be a bug for them to not do this. The code:
5159 * mark_inode_dirty(inode)
5161 * inode->i_size = expr;
5163 * is in error because write_inode() could occur while `stuff()' is running,
5164 * and the new i_size will be lost. Plus the inode will no longer be on the
5165 * superblock's dirty inode list.
5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5171 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5172 sb_rdonly(inode->i_sb))
5175 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5178 if (EXT4_SB(inode->i_sb)->s_journal) {
5179 if (ext4_journal_current_handle()) {
5180 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5186 * No need to force transaction in WB_SYNC_NONE mode. Also
5187 * ext4_sync_fs() will force the commit after everything is
5190 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5193 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5194 EXT4_I(inode)->i_sync_tid);
5196 struct ext4_iloc iloc;
5198 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5202 * sync(2) will flush the whole buffer cache. No need to do
5203 * it here separately for each inode.
5205 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5206 sync_dirty_buffer(iloc.bh);
5207 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5208 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5209 "IO error syncing inode");
5218 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5219 * buffers that are attached to a page stradding i_size and are undergoing
5220 * commit. In that case we have to wait for commit to finish and try again.
5222 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5226 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5227 tid_t commit_tid = 0;
5230 offset = inode->i_size & (PAGE_SIZE - 1);
5232 * If the page is fully truncated, we don't need to wait for any commit
5233 * (and we even should not as __ext4_journalled_invalidatepage() may
5234 * strip all buffers from the page but keep the page dirty which can then
5235 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5236 * buffers). Also we don't need to wait for any commit if all buffers in
5237 * the page remain valid. This is most beneficial for the common case of
5238 * blocksize == PAGESIZE.
5240 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5243 page = find_lock_page(inode->i_mapping,
5244 inode->i_size >> PAGE_SHIFT);
5247 ret = __ext4_journalled_invalidatepage(page, offset,
5248 PAGE_SIZE - offset);
5254 read_lock(&journal->j_state_lock);
5255 if (journal->j_committing_transaction)
5256 commit_tid = journal->j_committing_transaction->t_tid;
5257 read_unlock(&journal->j_state_lock);
5259 jbd2_log_wait_commit(journal, commit_tid);
5266 * Called from notify_change.
5268 * We want to trap VFS attempts to truncate the file as soon as
5269 * possible. In particular, we want to make sure that when the VFS
5270 * shrinks i_size, we put the inode on the orphan list and modify
5271 * i_disksize immediately, so that during the subsequent flushing of
5272 * dirty pages and freeing of disk blocks, we can guarantee that any
5273 * commit will leave the blocks being flushed in an unused state on
5274 * disk. (On recovery, the inode will get truncated and the blocks will
5275 * be freed, so we have a strong guarantee that no future commit will
5276 * leave these blocks visible to the user.)
5278 * Another thing we have to assure is that if we are in ordered mode
5279 * and inode is still attached to the committing transaction, we must
5280 * we start writeout of all the dirty pages which are being truncated.
5281 * This way we are sure that all the data written in the previous
5282 * transaction are already on disk (truncate waits for pages under
5285 * Called with inode->i_mutex down.
5287 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5290 struct inode *inode = d_inode(dentry);
5293 const unsigned int ia_valid = attr->ia_valid;
5295 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5298 if (unlikely(IS_IMMUTABLE(inode)))
5301 if (unlikely(IS_APPEND(inode) &&
5302 (ia_valid & (ATTR_MODE | ATTR_UID |
5303 ATTR_GID | ATTR_TIMES_SET))))
5306 error = setattr_prepare(mnt_userns, dentry, attr);
5310 error = fscrypt_prepare_setattr(dentry, attr);
5314 error = fsverity_prepare_setattr(dentry, attr);
5318 if (is_quota_modification(inode, attr)) {
5319 error = dquot_initialize(inode);
5323 ext4_fc_start_update(inode);
5324 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5325 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5328 /* (user+group)*(old+new) structure, inode write (sb,
5329 * inode block, ? - but truncate inode update has it) */
5330 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5331 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5332 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5333 if (IS_ERR(handle)) {
5334 error = PTR_ERR(handle);
5338 /* dquot_transfer() calls back ext4_get_inode_usage() which
5339 * counts xattr inode references.
5341 down_read(&EXT4_I(inode)->xattr_sem);
5342 error = dquot_transfer(inode, attr);
5343 up_read(&EXT4_I(inode)->xattr_sem);
5346 ext4_journal_stop(handle);
5347 ext4_fc_stop_update(inode);
5350 /* Update corresponding info in inode so that everything is in
5351 * one transaction */
5352 if (attr->ia_valid & ATTR_UID)
5353 inode->i_uid = attr->ia_uid;
5354 if (attr->ia_valid & ATTR_GID)
5355 inode->i_gid = attr->ia_gid;
5356 error = ext4_mark_inode_dirty(handle, inode);
5357 ext4_journal_stop(handle);
5358 if (unlikely(error)) {
5359 ext4_fc_stop_update(inode);
5364 if (attr->ia_valid & ATTR_SIZE) {
5366 loff_t oldsize = inode->i_size;
5367 int shrink = (attr->ia_size < inode->i_size);
5369 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5372 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5373 ext4_fc_stop_update(inode);
5377 if (!S_ISREG(inode->i_mode)) {
5378 ext4_fc_stop_update(inode);
5382 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5383 inode_inc_iversion(inode);
5386 if (ext4_should_order_data(inode)) {
5387 error = ext4_begin_ordered_truncate(inode,
5393 * Blocks are going to be removed from the inode. Wait
5394 * for dio in flight.
5396 inode_dio_wait(inode);
5399 filemap_invalidate_lock(inode->i_mapping);
5401 rc = ext4_break_layouts(inode);
5403 filemap_invalidate_unlock(inode->i_mapping);
5407 if (attr->ia_size != inode->i_size) {
5408 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5409 if (IS_ERR(handle)) {
5410 error = PTR_ERR(handle);
5413 if (ext4_handle_valid(handle) && shrink) {
5414 error = ext4_orphan_add(handle, inode);
5418 * Update c/mtime on truncate up, ext4_truncate() will
5419 * update c/mtime in shrink case below
5422 inode->i_mtime = current_time(inode);
5423 inode->i_ctime = inode->i_mtime;
5427 ext4_fc_track_range(handle, inode,
5428 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5429 inode->i_sb->s_blocksize_bits,
5430 (oldsize > 0 ? oldsize - 1 : 0) >>
5431 inode->i_sb->s_blocksize_bits);
5433 ext4_fc_track_range(
5435 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5436 inode->i_sb->s_blocksize_bits,
5437 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5438 inode->i_sb->s_blocksize_bits);
5440 down_write(&EXT4_I(inode)->i_data_sem);
5441 EXT4_I(inode)->i_disksize = attr->ia_size;
5442 rc = ext4_mark_inode_dirty(handle, inode);
5446 * We have to update i_size under i_data_sem together
5447 * with i_disksize to avoid races with writeback code
5448 * running ext4_wb_update_i_disksize().
5451 i_size_write(inode, attr->ia_size);
5452 up_write(&EXT4_I(inode)->i_data_sem);
5453 ext4_journal_stop(handle);
5457 pagecache_isize_extended(inode, oldsize,
5459 } else if (ext4_should_journal_data(inode)) {
5460 ext4_wait_for_tail_page_commit(inode);
5465 * Truncate pagecache after we've waited for commit
5466 * in data=journal mode to make pages freeable.
5468 truncate_pagecache(inode, inode->i_size);
5470 * Call ext4_truncate() even if i_size didn't change to
5471 * truncate possible preallocated blocks.
5473 if (attr->ia_size <= oldsize) {
5474 rc = ext4_truncate(inode);
5479 filemap_invalidate_unlock(inode->i_mapping);
5483 setattr_copy(mnt_userns, inode, attr);
5484 mark_inode_dirty(inode);
5488 * If the call to ext4_truncate failed to get a transaction handle at
5489 * all, we need to clean up the in-core orphan list manually.
5491 if (orphan && inode->i_nlink)
5492 ext4_orphan_del(NULL, inode);
5494 if (!error && (ia_valid & ATTR_MODE))
5495 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5499 ext4_std_error(inode->i_sb, error);
5502 ext4_fc_stop_update(inode);
5506 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5507 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5509 struct inode *inode = d_inode(path->dentry);
5510 struct ext4_inode *raw_inode;
5511 struct ext4_inode_info *ei = EXT4_I(inode);
5514 if ((request_mask & STATX_BTIME) &&
5515 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5516 stat->result_mask |= STATX_BTIME;
5517 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5518 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5521 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5522 if (flags & EXT4_APPEND_FL)
5523 stat->attributes |= STATX_ATTR_APPEND;
5524 if (flags & EXT4_COMPR_FL)
5525 stat->attributes |= STATX_ATTR_COMPRESSED;
5526 if (flags & EXT4_ENCRYPT_FL)
5527 stat->attributes |= STATX_ATTR_ENCRYPTED;
5528 if (flags & EXT4_IMMUTABLE_FL)
5529 stat->attributes |= STATX_ATTR_IMMUTABLE;
5530 if (flags & EXT4_NODUMP_FL)
5531 stat->attributes |= STATX_ATTR_NODUMP;
5532 if (flags & EXT4_VERITY_FL)
5533 stat->attributes |= STATX_ATTR_VERITY;
5535 stat->attributes_mask |= (STATX_ATTR_APPEND |
5536 STATX_ATTR_COMPRESSED |
5537 STATX_ATTR_ENCRYPTED |
5538 STATX_ATTR_IMMUTABLE |
5542 generic_fillattr(mnt_userns, inode, stat);
5546 int ext4_file_getattr(struct user_namespace *mnt_userns,
5547 const struct path *path, struct kstat *stat,
5548 u32 request_mask, unsigned int query_flags)
5550 struct inode *inode = d_inode(path->dentry);
5551 u64 delalloc_blocks;
5553 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5556 * If there is inline data in the inode, the inode will normally not
5557 * have data blocks allocated (it may have an external xattr block).
5558 * Report at least one sector for such files, so tools like tar, rsync,
5559 * others don't incorrectly think the file is completely sparse.
5561 if (unlikely(ext4_has_inline_data(inode)))
5562 stat->blocks += (stat->size + 511) >> 9;
5565 * We can't update i_blocks if the block allocation is delayed
5566 * otherwise in the case of system crash before the real block
5567 * allocation is done, we will have i_blocks inconsistent with
5568 * on-disk file blocks.
5569 * We always keep i_blocks updated together with real
5570 * allocation. But to not confuse with user, stat
5571 * will return the blocks that include the delayed allocation
5572 * blocks for this file.
5574 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5575 EXT4_I(inode)->i_reserved_data_blocks);
5576 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5580 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5583 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5584 return ext4_ind_trans_blocks(inode, lblocks);
5585 return ext4_ext_index_trans_blocks(inode, pextents);
5589 * Account for index blocks, block groups bitmaps and block group
5590 * descriptor blocks if modify datablocks and index blocks
5591 * worse case, the indexs blocks spread over different block groups
5593 * If datablocks are discontiguous, they are possible to spread over
5594 * different block groups too. If they are contiguous, with flexbg,
5595 * they could still across block group boundary.
5597 * Also account for superblock, inode, quota and xattr blocks
5599 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5602 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5608 * How many index blocks need to touch to map @lblocks logical blocks
5609 * to @pextents physical extents?
5611 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5616 * Now let's see how many group bitmaps and group descriptors need
5619 groups = idxblocks + pextents;
5621 if (groups > ngroups)
5623 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5624 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5626 /* bitmaps and block group descriptor blocks */
5627 ret += groups + gdpblocks;
5629 /* Blocks for super block, inode, quota and xattr blocks */
5630 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5636 * Calculate the total number of credits to reserve to fit
5637 * the modification of a single pages into a single transaction,
5638 * which may include multiple chunks of block allocations.
5640 * This could be called via ext4_write_begin()
5642 * We need to consider the worse case, when
5643 * one new block per extent.
5645 int ext4_writepage_trans_blocks(struct inode *inode)
5647 int bpp = ext4_journal_blocks_per_page(inode);
5650 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5652 /* Account for data blocks for journalled mode */
5653 if (ext4_should_journal_data(inode))
5659 * Calculate the journal credits for a chunk of data modification.
5661 * This is called from DIO, fallocate or whoever calling
5662 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5664 * journal buffers for data blocks are not included here, as DIO
5665 * and fallocate do no need to journal data buffers.
5667 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5669 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5673 * The caller must have previously called ext4_reserve_inode_write().
5674 * Give this, we know that the caller already has write access to iloc->bh.
5676 int ext4_mark_iloc_dirty(handle_t *handle,
5677 struct inode *inode, struct ext4_iloc *iloc)
5681 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5685 ext4_fc_track_inode(handle, inode);
5687 if (IS_I_VERSION(inode))
5688 inode_inc_iversion(inode);
5690 /* the do_update_inode consumes one bh->b_count */
5693 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5694 err = ext4_do_update_inode(handle, inode, iloc);
5700 * On success, We end up with an outstanding reference count against
5701 * iloc->bh. This _must_ be cleaned up later.
5705 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5706 struct ext4_iloc *iloc)
5710 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5713 err = ext4_get_inode_loc(inode, iloc);
5715 BUFFER_TRACE(iloc->bh, "get_write_access");
5716 err = ext4_journal_get_write_access(handle, inode->i_sb,
5717 iloc->bh, EXT4_JTR_NONE);
5723 ext4_std_error(inode->i_sb, err);
5727 static int __ext4_expand_extra_isize(struct inode *inode,
5728 unsigned int new_extra_isize,
5729 struct ext4_iloc *iloc,
5730 handle_t *handle, int *no_expand)
5732 struct ext4_inode *raw_inode;
5733 struct ext4_xattr_ibody_header *header;
5734 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5735 struct ext4_inode_info *ei = EXT4_I(inode);
5738 /* this was checked at iget time, but double check for good measure */
5739 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5740 (ei->i_extra_isize & 3)) {
5741 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5743 EXT4_INODE_SIZE(inode->i_sb));
5744 return -EFSCORRUPTED;
5746 if ((new_extra_isize < ei->i_extra_isize) ||
5747 (new_extra_isize < 4) ||
5748 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5749 return -EINVAL; /* Should never happen */
5751 raw_inode = ext4_raw_inode(iloc);
5753 header = IHDR(inode, raw_inode);
5755 /* No extended attributes present */
5756 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5757 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5758 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5759 EXT4_I(inode)->i_extra_isize, 0,
5760 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5761 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5765 /* try to expand with EAs present */
5766 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5770 * Inode size expansion failed; don't try again
5779 * Expand an inode by new_extra_isize bytes.
5780 * Returns 0 on success or negative error number on failure.
5782 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5783 unsigned int new_extra_isize,
5784 struct ext4_iloc iloc,
5790 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5794 * In nojournal mode, we can immediately attempt to expand
5795 * the inode. When journaled, we first need to obtain extra
5796 * buffer credits since we may write into the EA block
5797 * with this same handle. If journal_extend fails, then it will
5798 * only result in a minor loss of functionality for that inode.
5799 * If this is felt to be critical, then e2fsck should be run to
5800 * force a large enough s_min_extra_isize.
5802 if (ext4_journal_extend(handle,
5803 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5806 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5809 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5810 handle, &no_expand);
5811 ext4_write_unlock_xattr(inode, &no_expand);
5816 int ext4_expand_extra_isize(struct inode *inode,
5817 unsigned int new_extra_isize,
5818 struct ext4_iloc *iloc)
5824 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5829 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5830 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5831 if (IS_ERR(handle)) {
5832 error = PTR_ERR(handle);
5837 ext4_write_lock_xattr(inode, &no_expand);
5839 BUFFER_TRACE(iloc->bh, "get_write_access");
5840 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5847 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5848 handle, &no_expand);
5850 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5855 ext4_write_unlock_xattr(inode, &no_expand);
5856 ext4_journal_stop(handle);
5861 * What we do here is to mark the in-core inode as clean with respect to inode
5862 * dirtiness (it may still be data-dirty).
5863 * This means that the in-core inode may be reaped by prune_icache
5864 * without having to perform any I/O. This is a very good thing,
5865 * because *any* task may call prune_icache - even ones which
5866 * have a transaction open against a different journal.
5868 * Is this cheating? Not really. Sure, we haven't written the
5869 * inode out, but prune_icache isn't a user-visible syncing function.
5870 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5871 * we start and wait on commits.
5873 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5874 const char *func, unsigned int line)
5876 struct ext4_iloc iloc;
5877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5881 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5882 err = ext4_reserve_inode_write(handle, inode, &iloc);
5886 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5887 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5890 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5893 ext4_error_inode_err(inode, func, line, 0, err,
5894 "mark_inode_dirty error");
5899 * ext4_dirty_inode() is called from __mark_inode_dirty()
5901 * We're really interested in the case where a file is being extended.
5902 * i_size has been changed by generic_commit_write() and we thus need
5903 * to include the updated inode in the current transaction.
5905 * Also, dquot_alloc_block() will always dirty the inode when blocks
5906 * are allocated to the file.
5908 * If the inode is marked synchronous, we don't honour that here - doing
5909 * so would cause a commit on atime updates, which we don't bother doing.
5910 * We handle synchronous inodes at the highest possible level.
5912 void ext4_dirty_inode(struct inode *inode, int flags)
5916 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5919 ext4_mark_inode_dirty(handle, inode);
5920 ext4_journal_stop(handle);
5923 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5931 * We have to be very careful here: changing a data block's
5932 * journaling status dynamically is dangerous. If we write a
5933 * data block to the journal, change the status and then delete
5934 * that block, we risk forgetting to revoke the old log record
5935 * from the journal and so a subsequent replay can corrupt data.
5936 * So, first we make sure that the journal is empty and that
5937 * nobody is changing anything.
5940 journal = EXT4_JOURNAL(inode);
5943 if (is_journal_aborted(journal))
5946 /* Wait for all existing dio workers */
5947 inode_dio_wait(inode);
5950 * Before flushing the journal and switching inode's aops, we have
5951 * to flush all dirty data the inode has. There can be outstanding
5952 * delayed allocations, there can be unwritten extents created by
5953 * fallocate or buffered writes in dioread_nolock mode covered by
5954 * dirty data which can be converted only after flushing the dirty
5955 * data (and journalled aops don't know how to handle these cases).
5958 filemap_invalidate_lock(inode->i_mapping);
5959 err = filemap_write_and_wait(inode->i_mapping);
5961 filemap_invalidate_unlock(inode->i_mapping);
5966 percpu_down_write(&sbi->s_writepages_rwsem);
5967 jbd2_journal_lock_updates(journal);
5970 * OK, there are no updates running now, and all cached data is
5971 * synced to disk. We are now in a completely consistent state
5972 * which doesn't have anything in the journal, and we know that
5973 * no filesystem updates are running, so it is safe to modify
5974 * the inode's in-core data-journaling state flag now.
5978 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5980 err = jbd2_journal_flush(journal, 0);
5982 jbd2_journal_unlock_updates(journal);
5983 percpu_up_write(&sbi->s_writepages_rwsem);
5986 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5988 ext4_set_aops(inode);
5990 jbd2_journal_unlock_updates(journal);
5991 percpu_up_write(&sbi->s_writepages_rwsem);
5994 filemap_invalidate_unlock(inode->i_mapping);
5996 /* Finally we can mark the inode as dirty. */
5998 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6000 return PTR_ERR(handle);
6002 ext4_fc_mark_ineligible(inode->i_sb,
6003 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6004 err = ext4_mark_inode_dirty(handle, inode);
6005 ext4_handle_sync(handle);
6006 ext4_journal_stop(handle);
6007 ext4_std_error(inode->i_sb, err);
6012 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6013 struct buffer_head *bh)
6015 return !buffer_mapped(bh);
6018 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6020 struct vm_area_struct *vma = vmf->vma;
6021 struct page *page = vmf->page;
6026 struct file *file = vma->vm_file;
6027 struct inode *inode = file_inode(file);
6028 struct address_space *mapping = inode->i_mapping;
6030 get_block_t *get_block;
6033 if (unlikely(IS_IMMUTABLE(inode)))
6034 return VM_FAULT_SIGBUS;
6036 sb_start_pagefault(inode->i_sb);
6037 file_update_time(vma->vm_file);
6039 filemap_invalidate_lock_shared(mapping);
6041 err = ext4_convert_inline_data(inode);
6046 * On data journalling we skip straight to the transaction handle:
6047 * there's no delalloc; page truncated will be checked later; the
6048 * early return w/ all buffers mapped (calculates size/len) can't
6049 * be used; and there's no dioread_nolock, so only ext4_get_block.
6051 if (ext4_should_journal_data(inode))
6054 /* Delalloc case is easy... */
6055 if (test_opt(inode->i_sb, DELALLOC) &&
6056 !ext4_nonda_switch(inode->i_sb)) {
6058 err = block_page_mkwrite(vma, vmf,
6059 ext4_da_get_block_prep);
6060 } while (err == -ENOSPC &&
6061 ext4_should_retry_alloc(inode->i_sb, &retries));
6066 size = i_size_read(inode);
6067 /* Page got truncated from under us? */
6068 if (page->mapping != mapping || page_offset(page) > size) {
6070 ret = VM_FAULT_NOPAGE;
6074 if (page->index == size >> PAGE_SHIFT)
6075 len = size & ~PAGE_MASK;
6079 * Return if we have all the buffers mapped. This avoids the need to do
6080 * journal_start/journal_stop which can block and take a long time
6082 * This cannot be done for data journalling, as we have to add the
6083 * inode to the transaction's list to writeprotect pages on commit.
6085 if (page_has_buffers(page)) {
6086 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6088 ext4_bh_unmapped)) {
6089 /* Wait so that we don't change page under IO */
6090 wait_for_stable_page(page);
6091 ret = VM_FAULT_LOCKED;
6096 /* OK, we need to fill the hole... */
6097 if (ext4_should_dioread_nolock(inode))
6098 get_block = ext4_get_block_unwritten;
6100 get_block = ext4_get_block;
6102 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6103 ext4_writepage_trans_blocks(inode));
6104 if (IS_ERR(handle)) {
6105 ret = VM_FAULT_SIGBUS;
6109 * Data journalling can't use block_page_mkwrite() because it
6110 * will set_buffer_dirty() before do_journal_get_write_access()
6111 * thus might hit warning messages for dirty metadata buffers.
6113 if (!ext4_should_journal_data(inode)) {
6114 err = block_page_mkwrite(vma, vmf, get_block);
6117 size = i_size_read(inode);
6118 /* Page got truncated from under us? */
6119 if (page->mapping != mapping || page_offset(page) > size) {
6120 ret = VM_FAULT_NOPAGE;
6124 if (page->index == size >> PAGE_SHIFT)
6125 len = size & ~PAGE_MASK;
6129 err = __block_write_begin(page, 0, len, ext4_get_block);
6131 ret = VM_FAULT_SIGBUS;
6132 if (ext4_walk_page_buffers(handle, inode,
6133 page_buffers(page), 0, len, NULL,
6134 do_journal_get_write_access))
6136 if (ext4_walk_page_buffers(handle, inode,
6137 page_buffers(page), 0, len, NULL,
6140 if (ext4_jbd2_inode_add_write(handle, inode,
6141 page_offset(page), len))
6143 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6148 ext4_journal_stop(handle);
6149 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6152 ret = block_page_mkwrite_return(err);
6154 filemap_invalidate_unlock_shared(mapping);
6155 sb_end_pagefault(inode->i_sb);
6159 ext4_journal_stop(handle);