]> Git Repo - linux.git/blob - fs/ext4/inode.c
net: wwan: iosm: Keep device at D0 for s2idle case
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      ([email protected])
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178         bool freeze_protected = false;
179
180         trace_ext4_evict_inode(inode);
181
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204                     inode->i_data.nrpages) {
205                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207
208                         jbd2_complete_transaction(journal, commit_tid);
209                         filemap_write_and_wait(&inode->i_data);
210                 }
211                 truncate_inode_pages_final(&inode->i_data);
212
213                 goto no_delete;
214         }
215
216         if (is_bad_inode(inode))
217                 goto no_delete;
218         dquot_initialize(inode);
219
220         if (ext4_should_order_data(inode))
221                 ext4_begin_ordered_truncate(inode, 0);
222         truncate_inode_pages_final(&inode->i_data);
223
224         /*
225          * For inodes with journalled data, transaction commit could have
226          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227          * flag but we still need to remove the inode from the writeback lists.
228          */
229         if (!list_empty_careful(&inode->i_io_list)) {
230                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231                 inode_io_list_del(inode);
232         }
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it. When we are in a running transaction though,
237          * we are already protected against freezing and we cannot grab further
238          * protection due to lock ordering constraints.
239          */
240         if (!ext4_journal_current_handle()) {
241                 sb_start_intwrite(inode->i_sb);
242                 freeze_protected = true;
243         }
244
245         if (!IS_NOQUOTA(inode))
246                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247
248         /*
249          * Block bitmap, group descriptor, and inode are accounted in both
250          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251          */
252         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
254         if (IS_ERR(handle)) {
255                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
256                 /*
257                  * If we're going to skip the normal cleanup, we still need to
258                  * make sure that the in-core orphan linked list is properly
259                  * cleaned up.
260                  */
261                 ext4_orphan_del(NULL, inode);
262                 if (freeze_protected)
263                         sb_end_intwrite(inode->i_sb);
264                 goto no_delete;
265         }
266
267         if (IS_SYNC(inode))
268                 ext4_handle_sync(handle);
269
270         /*
271          * Set inode->i_size to 0 before calling ext4_truncate(). We need
272          * special handling of symlinks here because i_size is used to
273          * determine whether ext4_inode_info->i_data contains symlink data or
274          * block mappings. Setting i_size to 0 will remove its fast symlink
275          * status. Erase i_data so that it becomes a valid empty block map.
276          */
277         if (ext4_inode_is_fast_symlink(inode))
278                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279         inode->i_size = 0;
280         err = ext4_mark_inode_dirty(handle, inode);
281         if (err) {
282                 ext4_warning(inode->i_sb,
283                              "couldn't mark inode dirty (err %d)", err);
284                 goto stop_handle;
285         }
286         if (inode->i_blocks) {
287                 err = ext4_truncate(inode);
288                 if (err) {
289                         ext4_error_err(inode->i_sb, -err,
290                                        "couldn't truncate inode %lu (err %d)",
291                                        inode->i_ino, err);
292                         goto stop_handle;
293                 }
294         }
295
296         /* Remove xattr references. */
297         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298                                       extra_credits);
299         if (err) {
300                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302                 ext4_journal_stop(handle);
303                 ext4_orphan_del(NULL, inode);
304                 if (freeze_protected)
305                         sb_end_intwrite(inode->i_sb);
306                 ext4_xattr_inode_array_free(ea_inode_array);
307                 goto no_delete;
308         }
309
310         /*
311          * Kill off the orphan record which ext4_truncate created.
312          * AKPM: I think this can be inside the above `if'.
313          * Note that ext4_orphan_del() has to be able to cope with the
314          * deletion of a non-existent orphan - this is because we don't
315          * know if ext4_truncate() actually created an orphan record.
316          * (Well, we could do this if we need to, but heck - it works)
317          */
318         ext4_orphan_del(handle, inode);
319         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
320
321         /*
322          * One subtle ordering requirement: if anything has gone wrong
323          * (transaction abort, IO errors, whatever), then we can still
324          * do these next steps (the fs will already have been marked as
325          * having errors), but we can't free the inode if the mark_dirty
326          * fails.
327          */
328         if (ext4_mark_inode_dirty(handle, inode))
329                 /* If that failed, just do the required in-core inode clear. */
330                 ext4_clear_inode(inode);
331         else
332                 ext4_free_inode(handle, inode);
333         ext4_journal_stop(handle);
334         if (freeze_protected)
335                 sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         if (!list_empty(&EXT4_I(inode)->i_fc_list))
340                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
342 }
343
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347         return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356                                         int used, int quota_claim)
357 {
358         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359         struct ext4_inode_info *ei = EXT4_I(inode);
360
361         spin_lock(&ei->i_block_reservation_lock);
362         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363         if (unlikely(used > ei->i_reserved_data_blocks)) {
364                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365                          "with only %d reserved data blocks",
366                          __func__, inode->i_ino, used,
367                          ei->i_reserved_data_blocks);
368                 WARN_ON(1);
369                 used = ei->i_reserved_data_blocks;
370         }
371
372         /* Update per-inode reservations */
373         ei->i_reserved_data_blocks -= used;
374         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375
376         spin_unlock(&ei->i_block_reservation_lock);
377
378         /* Update quota subsystem for data blocks */
379         if (quota_claim)
380                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381         else {
382                 /*
383                  * We did fallocate with an offset that is already delayed
384                  * allocated. So on delayed allocated writeback we should
385                  * not re-claim the quota for fallocated blocks.
386                  */
387                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388         }
389
390         /*
391          * If we have done all the pending block allocations and if
392          * there aren't any writers on the inode, we can discard the
393          * inode's preallocations.
394          */
395         if ((ei->i_reserved_data_blocks == 0) &&
396             !inode_is_open_for_write(inode))
397                 ext4_discard_preallocations(inode, 0);
398 }
399
400 static int __check_block_validity(struct inode *inode, const char *func,
401                                 unsigned int line,
402                                 struct ext4_map_blocks *map)
403 {
404         if (ext4_has_feature_journal(inode->i_sb) &&
405             (inode->i_ino ==
406              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407                 return 0;
408         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409                 ext4_error_inode(inode, func, line, map->m_pblk,
410                                  "lblock %lu mapped to illegal pblock %llu "
411                                  "(length %d)", (unsigned long) map->m_lblk,
412                                  map->m_pblk, map->m_len);
413                 return -EFSCORRUPTED;
414         }
415         return 0;
416 }
417
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419                        ext4_lblk_t len)
420 {
421         int ret;
422
423         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
425
426         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427         if (ret > 0)
428                 ret = 0;
429
430         return ret;
431 }
432
433 #define check_block_validity(inode, map)        \
434         __check_block_validity((inode), __func__, __LINE__, (map))
435
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438                                        struct inode *inode,
439                                        struct ext4_map_blocks *es_map,
440                                        struct ext4_map_blocks *map,
441                                        int flags)
442 {
443         int retval;
444
445         map->m_flags = 0;
446         /*
447          * There is a race window that the result is not the same.
448          * e.g. xfstests #223 when dioread_nolock enables.  The reason
449          * is that we lookup a block mapping in extent status tree with
450          * out taking i_data_sem.  So at the time the unwritten extent
451          * could be converted.
452          */
453         down_read(&EXT4_I(inode)->i_data_sem);
454         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
458         }
459         up_read((&EXT4_I(inode)->i_data_sem));
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506         int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515                   flags, map->m_len, (unsigned long) map->m_lblk);
516
517         /*
518          * ext4_map_blocks returns an int, and m_len is an unsigned int
519          */
520         if (unlikely(map->m_len > INT_MAX))
521                 map->m_len = INT_MAX;
522
523         /* We can handle the block number less than EXT_MAX_BLOCKS */
524         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525                 return -EFSCORRUPTED;
526
527         /* Lookup extent status tree firstly */
528         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531                         map->m_pblk = ext4_es_pblock(&es) +
532                                         map->m_lblk - es.es_lblk;
533                         map->m_flags |= ext4_es_is_written(&es) ?
534                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535                         retval = es.es_len - (map->m_lblk - es.es_lblk);
536                         if (retval > map->m_len)
537                                 retval = map->m_len;
538                         map->m_len = retval;
539                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540                         map->m_pblk = 0;
541                         retval = es.es_len - (map->m_lblk - es.es_lblk);
542                         if (retval > map->m_len)
543                                 retval = map->m_len;
544                         map->m_len = retval;
545                         retval = 0;
546                 } else {
547                         BUG();
548                 }
549 #ifdef ES_AGGRESSIVE_TEST
550                 ext4_map_blocks_es_recheck(handle, inode, map,
551                                            &orig_map, flags);
552 #endif
553                 goto found;
554         }
555
556         /*
557          * Try to see if we can get the block without requesting a new
558          * file system block.
559          */
560         down_read(&EXT4_I(inode)->i_data_sem);
561         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
563         } else {
564                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     !(status & EXTENT_STATUS_WRITTEN) &&
581                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582                                        map->m_lblk + map->m_len - 1))
583                         status |= EXTENT_STATUS_DELAYED;
584                 ret = ext4_es_insert_extent(inode, map->m_lblk,
585                                             map->m_len, map->m_pblk, status);
586                 if (ret < 0)
587                         retval = ret;
588         }
589         up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to unwritten extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_block()
628          * with create == 1 flag.
629          */
630         down_write(&EXT4_I(inode)->i_data_sem);
631
632         /*
633          * We need to check for EXT4 here because migrate
634          * could have changed the inode type in between
635          */
636         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638         } else {
639                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640
641                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642                         /*
643                          * We allocated new blocks which will result in
644                          * i_data's format changing.  Force the migrate
645                          * to fail by clearing migrate flags
646                          */
647                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648                 }
649
650                 /*
651                  * Update reserved blocks/metadata blocks after successful
652                  * block allocation which had been deferred till now. We don't
653                  * support fallocate for non extent files. So we can update
654                  * reserve space here.
655                  */
656                 if ((retval > 0) &&
657                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658                         ext4_da_update_reserve_space(inode, retval, 1);
659         }
660
661         if (retval > 0) {
662                 unsigned int status;
663
664                 if (unlikely(retval != map->m_len)) {
665                         ext4_warning(inode->i_sb,
666                                      "ES len assertion failed for inode "
667                                      "%lu: retval %d != map->m_len %d",
668                                      inode->i_ino, retval, map->m_len);
669                         WARN_ON(1);
670                 }
671
672                 /*
673                  * We have to zeroout blocks before inserting them into extent
674                  * status tree. Otherwise someone could look them up there and
675                  * use them before they are really zeroed. We also have to
676                  * unmap metadata before zeroing as otherwise writeback can
677                  * overwrite zeros with stale data from block device.
678                  */
679                 if (flags & EXT4_GET_BLOCKS_ZERO &&
680                     map->m_flags & EXT4_MAP_MAPPED &&
681                     map->m_flags & EXT4_MAP_NEW) {
682                         ret = ext4_issue_zeroout(inode, map->m_lblk,
683                                                  map->m_pblk, map->m_len);
684                         if (ret) {
685                                 retval = ret;
686                                 goto out_sem;
687                         }
688                 }
689
690                 /*
691                  * If the extent has been zeroed out, we don't need to update
692                  * extent status tree.
693                  */
694                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696                         if (ext4_es_is_written(&es))
697                                 goto out_sem;
698                 }
699                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702                     !(status & EXTENT_STATUS_WRITTEN) &&
703                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704                                        map->m_lblk + map->m_len - 1))
705                         status |= EXTENT_STATUS_DELAYED;
706                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707                                             map->m_pblk, status);
708                 if (ret < 0) {
709                         retval = ret;
710                         goto out_sem;
711                 }
712         }
713
714 out_sem:
715         up_write((&EXT4_I(inode)->i_data_sem));
716         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717                 ret = check_block_validity(inode, map);
718                 if (ret != 0)
719                         return ret;
720
721                 /*
722                  * Inodes with freshly allocated blocks where contents will be
723                  * visible after transaction commit must be on transaction's
724                  * ordered data list.
725                  */
726                 if (map->m_flags & EXT4_MAP_NEW &&
727                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
729                     !ext4_is_quota_file(inode) &&
730                     ext4_should_order_data(inode)) {
731                         loff_t start_byte =
732                                 (loff_t)map->m_lblk << inode->i_blkbits;
733                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734
735                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
737                                                 start_byte, length);
738                         else
739                                 ret = ext4_jbd2_inode_add_write(handle, inode,
740                                                 start_byte, length);
741                         if (ret)
742                                 return ret;
743                 }
744                 ext4_fc_track_range(handle, inode, map->m_lblk,
745                             map->m_lblk + map->m_len - 1);
746         }
747
748         if (retval < 0)
749                 ext_debug(inode, "failed with err %d\n", retval);
750         return retval;
751 }
752
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759         unsigned long old_state;
760         unsigned long new_state;
761
762         flags &= EXT4_MAP_FLAGS;
763
764         /* Dummy buffer_head? Set non-atomically. */
765         if (!bh->b_page) {
766                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767                 return;
768         }
769         /*
770          * Someone else may be modifying b_state. Be careful! This is ugly but
771          * once we get rid of using bh as a container for mapping information
772          * to pass to / from get_block functions, this can go away.
773          */
774         do {
775                 old_state = READ_ONCE(bh->b_state);
776                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777         } while (unlikely(
778                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782                            struct buffer_head *bh, int flags)
783 {
784         struct ext4_map_blocks map;
785         int ret = 0;
786
787         if (ext4_has_inline_data(inode))
788                 return -ERANGE;
789
790         map.m_lblk = iblock;
791         map.m_len = bh->b_size >> inode->i_blkbits;
792
793         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794                               flags);
795         if (ret > 0) {
796                 map_bh(bh, inode->i_sb, map.m_pblk);
797                 ext4_update_bh_state(bh, map.m_flags);
798                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799                 ret = 0;
800         } else if (ret == 0) {
801                 /* hole case, need to fill in bh->b_size */
802                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803         }
804         return ret;
805 }
806
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808                    struct buffer_head *bh, int create)
809 {
810         return _ext4_get_block(inode, iblock, bh,
811                                create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820                              struct buffer_head *bh_result, int create)
821 {
822         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823                    inode->i_ino, create);
824         return _ext4_get_block(inode, iblock, bh_result,
825                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         int err;
841
842         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843                     || handle != NULL || create == 0);
844
845         map.m_lblk = block;
846         map.m_len = 1;
847         err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849         if (err == 0)
850                 return create ? ERR_PTR(-ENOSPC) : NULL;
851         if (err < 0)
852                 return ERR_PTR(err);
853
854         bh = sb_getblk(inode->i_sb, map.m_pblk);
855         if (unlikely(!bh))
856                 return ERR_PTR(-ENOMEM);
857         if (map.m_flags & EXT4_MAP_NEW) {
858                 ASSERT(create != 0);
859                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860                             || (handle != NULL));
861
862                 /*
863                  * Now that we do not always journal data, we should
864                  * keep in mind whether this should always journal the
865                  * new buffer as metadata.  For now, regular file
866                  * writes use ext4_get_block instead, so it's not a
867                  * problem.
868                  */
869                 lock_buffer(bh);
870                 BUFFER_TRACE(bh, "call get_create_access");
871                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872                                                      EXT4_JTR_NONE);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle, struct inode *inode,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, inode, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032                                             EXT4_JTR_NONE);
1033         if (!ret && dirty)
1034                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035         return ret;
1036 }
1037
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040                                   get_block_t *get_block)
1041 {
1042         unsigned from = pos & (PAGE_SIZE - 1);
1043         unsigned to = from + len;
1044         struct inode *inode = page->mapping->host;
1045         unsigned block_start, block_end;
1046         sector_t block;
1047         int err = 0;
1048         unsigned blocksize = inode->i_sb->s_blocksize;
1049         unsigned bbits;
1050         struct buffer_head *bh, *head, *wait[2];
1051         int nr_wait = 0;
1052         int i;
1053
1054         BUG_ON(!PageLocked(page));
1055         BUG_ON(from > PAGE_SIZE);
1056         BUG_ON(to > PAGE_SIZE);
1057         BUG_ON(from > to);
1058
1059         if (!page_has_buffers(page))
1060                 create_empty_buffers(page, blocksize, 0);
1061         head = page_buffers(page);
1062         bbits = ilog2(blocksize);
1063         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065         for (bh = head, block_start = 0; bh != head || !block_start;
1066             block++, block_start = block_end, bh = bh->b_this_page) {
1067                 block_end = block_start + blocksize;
1068                 if (block_end <= from || block_start >= to) {
1069                         if (PageUptodate(page)) {
1070                                 set_buffer_uptodate(bh);
1071                         }
1072                         continue;
1073                 }
1074                 if (buffer_new(bh))
1075                         clear_buffer_new(bh);
1076                 if (!buffer_mapped(bh)) {
1077                         WARN_ON(bh->b_size != blocksize);
1078                         err = get_block(inode, block, bh, 1);
1079                         if (err)
1080                                 break;
1081                         if (buffer_new(bh)) {
1082                                 if (PageUptodate(page)) {
1083                                         clear_buffer_new(bh);
1084                                         set_buffer_uptodate(bh);
1085                                         mark_buffer_dirty(bh);
1086                                         continue;
1087                                 }
1088                                 if (block_end > to || block_start < from)
1089                                         zero_user_segments(page, to, block_end,
1090                                                            block_start, from);
1091                                 continue;
1092                         }
1093                 }
1094                 if (PageUptodate(page)) {
1095                         set_buffer_uptodate(bh);
1096                         continue;
1097                 }
1098                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                     !buffer_unwritten(bh) &&
1100                     (block_start < from || block_end > to)) {
1101                         ext4_read_bh_lock(bh, 0, false);
1102                         wait[nr_wait++] = bh;
1103                 }
1104         }
1105         /*
1106          * If we issued read requests, let them complete.
1107          */
1108         for (i = 0; i < nr_wait; i++) {
1109                 wait_on_buffer(wait[i]);
1110                 if (!buffer_uptodate(wait[i]))
1111                         err = -EIO;
1112         }
1113         if (unlikely(err)) {
1114                 page_zero_new_buffers(page, from, to);
1115         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                 for (i = 0; i < nr_wait; i++) {
1117                         int err2;
1118
1119                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                 bh_offset(wait[i]));
1121                         if (err2) {
1122                                 clear_buffer_uptodate(wait[i]);
1123                                 err = err2;
1124                         }
1125                 }
1126         }
1127
1128         return err;
1129 }
1130 #endif
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                             loff_t pos, unsigned len, unsigned flags,
1134                             struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks;
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                 return -EIO;
1146
1147         trace_ext4_write_begin(inode, pos, len, flags);
1148         /*
1149          * Reserve one block more for addition to orphan list in case
1150          * we allocate blocks but write fails for some reason
1151          */
1152         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153         index = pos >> PAGE_SHIFT;
1154         from = pos & (PAGE_SIZE - 1);
1155         to = from + len;
1156
1157         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                     flags, pagep);
1160                 if (ret < 0)
1161                         return ret;
1162                 if (ret == 1)
1163                         return 0;
1164         }
1165
1166         /*
1167          * grab_cache_page_write_begin() can take a long time if the
1168          * system is thrashing due to memory pressure, or if the page
1169          * is being written back.  So grab it first before we start
1170          * the transaction handle.  This also allows us to allocate
1171          * the page (if needed) without using GFP_NOFS.
1172          */
1173 retry_grab:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, inode,
1213                                              page_buffers(page), from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_mutex.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258                         struct buffer_head *bh)
1259 {
1260         int ret;
1261         if (!buffer_mapped(bh) || buffer_freed(bh))
1262                 return 0;
1263         set_buffer_uptodate(bh);
1264         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265         clear_buffer_meta(bh);
1266         clear_buffer_prio(bh);
1267         return ret;
1268 }
1269
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278                           struct address_space *mapping,
1279                           loff_t pos, unsigned len, unsigned copied,
1280                           struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = mapping->host;
1284         loff_t old_size = inode->i_size;
1285         int ret = 0, ret2;
1286         int i_size_changed = 0;
1287         bool verity = ext4_verity_in_progress(inode);
1288
1289         trace_ext4_write_end(inode, pos, len, copied);
1290
1291         if (ext4_has_inline_data(inode))
1292                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293
1294         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295         /*
1296          * it's important to update i_size while still holding page lock:
1297          * page writeout could otherwise come in and zero beyond i_size.
1298          *
1299          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300          * blocks are being written past EOF, so skip the i_size update.
1301          */
1302         if (!verity)
1303                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304         unlock_page(page);
1305         put_page(page);
1306
1307         if (old_size < pos && !verity)
1308                 pagecache_isize_extended(inode, old_size, pos);
1309         /*
1310          * Don't mark the inode dirty under page lock. First, it unnecessarily
1311          * makes the holding time of page lock longer. Second, it forces lock
1312          * ordering of page lock and transaction start for journaling
1313          * filesystems.
1314          */
1315         if (i_size_changed)
1316                 ret = ext4_mark_inode_dirty(handle, inode);
1317
1318         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319                 /* if we have allocated more blocks and copied
1320                  * less. We will have blocks allocated outside
1321                  * inode->i_size. So truncate them
1322                  */
1323                 ext4_orphan_add(handle, inode);
1324
1325         ret2 = ext4_journal_stop(handle);
1326         if (!ret)
1327                 ret = ret2;
1328
1329         if (pos + len > inode->i_size && !verity) {
1330                 ext4_truncate_failed_write(inode);
1331                 /*
1332                  * If truncate failed early the inode might still be
1333                  * on the orphan list; we need to make sure the inode
1334                  * is removed from the orphan list in that case.
1335                  */
1336                 if (inode->i_nlink)
1337                         ext4_orphan_del(NULL, inode);
1338         }
1339
1340         return ret ? ret : copied;
1341 }
1342
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349                                             struct inode *inode,
1350                                             struct page *page,
1351                                             unsigned from, unsigned to)
1352 {
1353         unsigned int block_start = 0, block_end;
1354         struct buffer_head *head, *bh;
1355
1356         bh = head = page_buffers(page);
1357         do {
1358                 block_end = block_start + bh->b_size;
1359                 if (buffer_new(bh)) {
1360                         if (block_end > from && block_start < to) {
1361                                 if (!PageUptodate(page)) {
1362                                         unsigned start, size;
1363
1364                                         start = max(from, block_start);
1365                                         size = min(to, block_end) - start;
1366
1367                                         zero_user(page, start, size);
1368                                         write_end_fn(handle, inode, bh);
1369                                 }
1370                                 clear_buffer_new(bh);
1371                         }
1372                 }
1373                 block_start = block_end;
1374                 bh = bh->b_this_page;
1375         } while (bh != head);
1376 }
1377
1378 static int ext4_journalled_write_end(struct file *file,
1379                                      struct address_space *mapping,
1380                                      loff_t pos, unsigned len, unsigned copied,
1381                                      struct page *page, void *fsdata)
1382 {
1383         handle_t *handle = ext4_journal_current_handle();
1384         struct inode *inode = mapping->host;
1385         loff_t old_size = inode->i_size;
1386         int ret = 0, ret2;
1387         int partial = 0;
1388         unsigned from, to;
1389         int size_changed = 0;
1390         bool verity = ext4_verity_in_progress(inode);
1391
1392         trace_ext4_journalled_write_end(inode, pos, len, copied);
1393         from = pos & (PAGE_SIZE - 1);
1394         to = from + len;
1395
1396         BUG_ON(!ext4_handle_valid(handle));
1397
1398         if (ext4_has_inline_data(inode))
1399                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400
1401         if (unlikely(copied < len) && !PageUptodate(page)) {
1402                 copied = 0;
1403                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404         } else {
1405                 if (unlikely(copied < len))
1406                         ext4_journalled_zero_new_buffers(handle, inode, page,
1407                                                          from + copied, to);
1408                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409                                              from, from + copied, &partial,
1410                                              write_end_fn);
1411                 if (!partial)
1412                         SetPageUptodate(page);
1413         }
1414         if (!verity)
1415                 size_changed = ext4_update_inode_size(inode, pos + copied);
1416         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418         unlock_page(page);
1419         put_page(page);
1420
1421         if (old_size < pos && !verity)
1422                 pagecache_isize_extended(inode, old_size, pos);
1423
1424         if (size_changed) {
1425                 ret2 = ext4_mark_inode_dirty(handle, inode);
1426                 if (!ret)
1427                         ret = ret2;
1428         }
1429
1430         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431                 /* if we have allocated more blocks and copied
1432                  * less. We will have blocks allocated outside
1433                  * inode->i_size. So truncate them
1434                  */
1435                 ext4_orphan_add(handle, inode);
1436
1437         ret2 = ext4_journal_stop(handle);
1438         if (!ret)
1439                 ret = ret2;
1440         if (pos + len > inode->i_size && !verity) {
1441                 ext4_truncate_failed_write(inode);
1442                 /*
1443                  * If truncate failed early the inode might still be
1444                  * on the orphan list; we need to make sure the inode
1445                  * is removed from the orphan list in that case.
1446                  */
1447                 if (inode->i_nlink)
1448                         ext4_orphan_del(NULL, inode);
1449         }
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460         struct ext4_inode_info *ei = EXT4_I(inode);
1461         int ret;
1462
1463         /*
1464          * We will charge metadata quota at writeout time; this saves
1465          * us from metadata over-estimation, though we may go over by
1466          * a small amount in the end.  Here we just reserve for data.
1467          */
1468         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469         if (ret)
1470                 return ret;
1471
1472         spin_lock(&ei->i_block_reservation_lock);
1473         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                 spin_unlock(&ei->i_block_reservation_lock);
1475                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                 return -ENOSPC;
1477         }
1478         ei->i_reserved_data_blocks++;
1479         trace_ext4_da_reserve_space(inode);
1480         spin_unlock(&ei->i_block_reservation_lock);
1481
1482         return 0;       /* success */
1483 }
1484
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         if (!to_free)
1491                 return;         /* Nothing to release, exit */
1492
1493         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495         trace_ext4_da_release_space(inode, to_free);
1496         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                 /*
1498                  * if there aren't enough reserved blocks, then the
1499                  * counter is messed up somewhere.  Since this
1500                  * function is called from invalidate page, it's
1501                  * harmless to return without any action.
1502                  */
1503                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                          "ino %lu, to_free %d with only %d reserved "
1505                          "data blocks", inode->i_ino, to_free,
1506                          ei->i_reserved_data_blocks);
1507                 WARN_ON(1);
1508                 to_free = ei->i_reserved_data_blocks;
1509         }
1510         ei->i_reserved_data_blocks -= to_free;
1511
1512         /* update fs dirty data blocks counter */
1513         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519
1520 /*
1521  * Delayed allocation stuff
1522  */
1523
1524 struct mpage_da_data {
1525         struct inode *inode;
1526         struct writeback_control *wbc;
1527
1528         pgoff_t first_page;     /* The first page to write */
1529         pgoff_t next_page;      /* Current page to examine */
1530         pgoff_t last_page;      /* Last page to examine */
1531         /*
1532          * Extent to map - this can be after first_page because that can be
1533          * fully mapped. We somewhat abuse m_flags to store whether the extent
1534          * is delalloc or unwritten.
1535          */
1536         struct ext4_map_blocks map;
1537         struct ext4_io_submit io_submit;        /* IO submission data */
1538         unsigned int do_map:1;
1539         unsigned int scanned_until_end:1;
1540 };
1541
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543                                        bool invalidate)
1544 {
1545         int nr_pages, i;
1546         pgoff_t index, end;
1547         struct pagevec pvec;
1548         struct inode *inode = mpd->inode;
1549         struct address_space *mapping = inode->i_mapping;
1550
1551         /* This is necessary when next_page == 0. */
1552         if (mpd->first_page >= mpd->next_page)
1553                 return;
1554
1555         mpd->scanned_until_end = 0;
1556         index = mpd->first_page;
1557         end   = mpd->next_page - 1;
1558         if (invalidate) {
1559                 ext4_lblk_t start, last;
1560                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562                 ext4_es_remove_extent(inode, start, last - start + 1);
1563         }
1564
1565         pagevec_init(&pvec);
1566         while (index <= end) {
1567                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568                 if (nr_pages == 0)
1569                         break;
1570                 for (i = 0; i < nr_pages; i++) {
1571                         struct page *page = pvec.pages[i];
1572
1573                         BUG_ON(!PageLocked(page));
1574                         BUG_ON(PageWriteback(page));
1575                         if (invalidate) {
1576                                 if (page_mapped(page))
1577                                         clear_page_dirty_for_io(page);
1578                                 block_invalidatepage(page, 0, PAGE_SIZE);
1579                                 ClearPageUptodate(page);
1580                         }
1581                         unlock_page(page);
1582                 }
1583                 pagevec_release(&pvec);
1584         }
1585 }
1586
1587 static void ext4_print_free_blocks(struct inode *inode)
1588 {
1589         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590         struct super_block *sb = inode->i_sb;
1591         struct ext4_inode_info *ei = EXT4_I(inode);
1592
1593         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594                EXT4_C2B(EXT4_SB(inode->i_sb),
1595                         ext4_count_free_clusters(sb)));
1596         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598                (long long) EXT4_C2B(EXT4_SB(sb),
1599                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601                (long long) EXT4_C2B(EXT4_SB(sb),
1602                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605                  ei->i_reserved_data_blocks);
1606         return;
1607 }
1608
1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1610                                       struct buffer_head *bh)
1611 {
1612         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1613 }
1614
1615 /*
1616  * ext4_insert_delayed_block - adds a delayed block to the extents status
1617  *                             tree, incrementing the reserved cluster/block
1618  *                             count or making a pending reservation
1619  *                             where needed
1620  *
1621  * @inode - file containing the newly added block
1622  * @lblk - logical block to be added
1623  *
1624  * Returns 0 on success, negative error code on failure.
1625  */
1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1627 {
1628         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629         int ret;
1630         bool allocated = false;
1631         bool reserved = false;
1632
1633         /*
1634          * If the cluster containing lblk is shared with a delayed,
1635          * written, or unwritten extent in a bigalloc file system, it's
1636          * already been accounted for and does not need to be reserved.
1637          * A pending reservation must be made for the cluster if it's
1638          * shared with a written or unwritten extent and doesn't already
1639          * have one.  Written and unwritten extents can be purged from the
1640          * extents status tree if the system is under memory pressure, so
1641          * it's necessary to examine the extent tree if a search of the
1642          * extents status tree doesn't get a match.
1643          */
1644         if (sbi->s_cluster_ratio == 1) {
1645                 ret = ext4_da_reserve_space(inode);
1646                 if (ret != 0)   /* ENOSPC */
1647                         goto errout;
1648                 reserved = true;
1649         } else {   /* bigalloc */
1650                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1651                         if (!ext4_es_scan_clu(inode,
1652                                               &ext4_es_is_mapped, lblk)) {
1653                                 ret = ext4_clu_mapped(inode,
1654                                                       EXT4_B2C(sbi, lblk));
1655                                 if (ret < 0)
1656                                         goto errout;
1657                                 if (ret == 0) {
1658                                         ret = ext4_da_reserve_space(inode);
1659                                         if (ret != 0)   /* ENOSPC */
1660                                                 goto errout;
1661                                         reserved = true;
1662                                 } else {
1663                                         allocated = true;
1664                                 }
1665                         } else {
1666                                 allocated = true;
1667                         }
1668                 }
1669         }
1670
1671         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1672         if (ret && reserved)
1673                 ext4_da_release_space(inode, 1);
1674
1675 errout:
1676         return ret;
1677 }
1678
1679 /*
1680  * This function is grabs code from the very beginning of
1681  * ext4_map_blocks, but assumes that the caller is from delayed write
1682  * time. This function looks up the requested blocks and sets the
1683  * buffer delay bit under the protection of i_data_sem.
1684  */
1685 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1686                               struct ext4_map_blocks *map,
1687                               struct buffer_head *bh)
1688 {
1689         struct extent_status es;
1690         int retval;
1691         sector_t invalid_block = ~((sector_t) 0xffff);
1692 #ifdef ES_AGGRESSIVE_TEST
1693         struct ext4_map_blocks orig_map;
1694
1695         memcpy(&orig_map, map, sizeof(*map));
1696 #endif
1697
1698         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1699                 invalid_block = ~0;
1700
1701         map->m_flags = 0;
1702         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1703                   (unsigned long) map->m_lblk);
1704
1705         /* Lookup extent status tree firstly */
1706         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1707                 if (ext4_es_is_hole(&es)) {
1708                         retval = 0;
1709                         down_read(&EXT4_I(inode)->i_data_sem);
1710                         goto add_delayed;
1711                 }
1712
1713                 /*
1714                  * Delayed extent could be allocated by fallocate.
1715                  * So we need to check it.
1716                  */
1717                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1718                         map_bh(bh, inode->i_sb, invalid_block);
1719                         set_buffer_new(bh);
1720                         set_buffer_delay(bh);
1721                         return 0;
1722                 }
1723
1724                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1725                 retval = es.es_len - (iblock - es.es_lblk);
1726                 if (retval > map->m_len)
1727                         retval = map->m_len;
1728                 map->m_len = retval;
1729                 if (ext4_es_is_written(&es))
1730                         map->m_flags |= EXT4_MAP_MAPPED;
1731                 else if (ext4_es_is_unwritten(&es))
1732                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1733                 else
1734                         BUG();
1735
1736 #ifdef ES_AGGRESSIVE_TEST
1737                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1738 #endif
1739                 return retval;
1740         }
1741
1742         /*
1743          * Try to see if we can get the block without requesting a new
1744          * file system block.
1745          */
1746         down_read(&EXT4_I(inode)->i_data_sem);
1747         if (ext4_has_inline_data(inode))
1748                 retval = 0;
1749         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1750                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1751         else
1752                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1753
1754 add_delayed:
1755         if (retval == 0) {
1756                 int ret;
1757
1758                 /*
1759                  * XXX: __block_prepare_write() unmaps passed block,
1760                  * is it OK?
1761                  */
1762
1763                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1764                 if (ret != 0) {
1765                         retval = ret;
1766                         goto out_unlock;
1767                 }
1768
1769                 map_bh(bh, inode->i_sb, invalid_block);
1770                 set_buffer_new(bh);
1771                 set_buffer_delay(bh);
1772         } else if (retval > 0) {
1773                 int ret;
1774                 unsigned int status;
1775
1776                 if (unlikely(retval != map->m_len)) {
1777                         ext4_warning(inode->i_sb,
1778                                      "ES len assertion failed for inode "
1779                                      "%lu: retval %d != map->m_len %d",
1780                                      inode->i_ino, retval, map->m_len);
1781                         WARN_ON(1);
1782                 }
1783
1784                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1785                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1786                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1787                                             map->m_pblk, status);
1788                 if (ret != 0)
1789                         retval = ret;
1790         }
1791
1792 out_unlock:
1793         up_read((&EXT4_I(inode)->i_data_sem));
1794
1795         return retval;
1796 }
1797
1798 /*
1799  * This is a special get_block_t callback which is used by
1800  * ext4_da_write_begin().  It will either return mapped block or
1801  * reserve space for a single block.
1802  *
1803  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1804  * We also have b_blocknr = -1 and b_bdev initialized properly
1805  *
1806  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1807  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1808  * initialized properly.
1809  */
1810 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1811                            struct buffer_head *bh, int create)
1812 {
1813         struct ext4_map_blocks map;
1814         int ret = 0;
1815
1816         BUG_ON(create == 0);
1817         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1818
1819         map.m_lblk = iblock;
1820         map.m_len = 1;
1821
1822         /*
1823          * first, we need to know whether the block is allocated already
1824          * preallocated blocks are unmapped but should treated
1825          * the same as allocated blocks.
1826          */
1827         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1828         if (ret <= 0)
1829                 return ret;
1830
1831         map_bh(bh, inode->i_sb, map.m_pblk);
1832         ext4_update_bh_state(bh, map.m_flags);
1833
1834         if (buffer_unwritten(bh)) {
1835                 /* A delayed write to unwritten bh should be marked
1836                  * new and mapped.  Mapped ensures that we don't do
1837                  * get_block multiple times when we write to the same
1838                  * offset and new ensures that we do proper zero out
1839                  * for partial write.
1840                  */
1841                 set_buffer_new(bh);
1842                 set_buffer_mapped(bh);
1843         }
1844         return 0;
1845 }
1846
1847 static int bget_one(handle_t *handle, struct inode *inode,
1848                     struct buffer_head *bh)
1849 {
1850         get_bh(bh);
1851         return 0;
1852 }
1853
1854 static int bput_one(handle_t *handle, struct inode *inode,
1855                     struct buffer_head *bh)
1856 {
1857         put_bh(bh);
1858         return 0;
1859 }
1860
1861 static int __ext4_journalled_writepage(struct page *page,
1862                                        unsigned int len)
1863 {
1864         struct address_space *mapping = page->mapping;
1865         struct inode *inode = mapping->host;
1866         struct buffer_head *page_bufs = NULL;
1867         handle_t *handle = NULL;
1868         int ret = 0, err = 0;
1869         int inline_data = ext4_has_inline_data(inode);
1870         struct buffer_head *inode_bh = NULL;
1871
1872         ClearPageChecked(page);
1873
1874         if (inline_data) {
1875                 BUG_ON(page->index != 0);
1876                 BUG_ON(len > ext4_get_max_inline_size(inode));
1877                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878                 if (inode_bh == NULL)
1879                         goto out;
1880         } else {
1881                 page_bufs = page_buffers(page);
1882                 if (!page_bufs) {
1883                         BUG();
1884                         goto out;
1885                 }
1886                 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1887                                        NULL, bget_one);
1888         }
1889         /*
1890          * We need to release the page lock before we start the
1891          * journal, so grab a reference so the page won't disappear
1892          * out from under us.
1893          */
1894         get_page(page);
1895         unlock_page(page);
1896
1897         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1898                                     ext4_writepage_trans_blocks(inode));
1899         if (IS_ERR(handle)) {
1900                 ret = PTR_ERR(handle);
1901                 put_page(page);
1902                 goto out_no_pagelock;
1903         }
1904         BUG_ON(!ext4_handle_valid(handle));
1905
1906         lock_page(page);
1907         put_page(page);
1908         if (page->mapping != mapping) {
1909                 /* The page got truncated from under us */
1910                 ext4_journal_stop(handle);
1911                 ret = 0;
1912                 goto out;
1913         }
1914
1915         if (inline_data) {
1916                 ret = ext4_mark_inode_dirty(handle, inode);
1917         } else {
1918                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919                                              NULL, do_journal_get_write_access);
1920
1921                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922                                              NULL, write_end_fn);
1923         }
1924         if (ret == 0)
1925                 ret = err;
1926         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1927         if (ret == 0)
1928                 ret = err;
1929         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930         err = ext4_journal_stop(handle);
1931         if (!ret)
1932                 ret = err;
1933
1934         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 out:
1936         unlock_page(page);
1937 out_no_pagelock:
1938         if (!inline_data && page_bufs)
1939                 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1940                                        NULL, bput_one);
1941         brelse(inode_bh);
1942         return ret;
1943 }
1944
1945 /*
1946  * Note that we don't need to start a transaction unless we're journaling data
1947  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1948  * need to file the inode to the transaction's list in ordered mode because if
1949  * we are writing back data added by write(), the inode is already there and if
1950  * we are writing back data modified via mmap(), no one guarantees in which
1951  * transaction the data will hit the disk. In case we are journaling data, we
1952  * cannot start transaction directly because transaction start ranks above page
1953  * lock so we have to do some magic.
1954  *
1955  * This function can get called via...
1956  *   - ext4_writepages after taking page lock (have journal handle)
1957  *   - journal_submit_inode_data_buffers (no journal handle)
1958  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1959  *   - grab_page_cache when doing write_begin (have journal handle)
1960  *
1961  * We don't do any block allocation in this function. If we have page with
1962  * multiple blocks we need to write those buffer_heads that are mapped. This
1963  * is important for mmaped based write. So if we do with blocksize 1K
1964  * truncate(f, 1024);
1965  * a = mmap(f, 0, 4096);
1966  * a[0] = 'a';
1967  * truncate(f, 4096);
1968  * we have in the page first buffer_head mapped via page_mkwrite call back
1969  * but other buffer_heads would be unmapped but dirty (dirty done via the
1970  * do_wp_page). So writepage should write the first block. If we modify
1971  * the mmap area beyond 1024 we will again get a page_fault and the
1972  * page_mkwrite callback will do the block allocation and mark the
1973  * buffer_heads mapped.
1974  *
1975  * We redirty the page if we have any buffer_heads that is either delay or
1976  * unwritten in the page.
1977  *
1978  * We can get recursively called as show below.
1979  *
1980  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1981  *              ext4_writepage()
1982  *
1983  * But since we don't do any block allocation we should not deadlock.
1984  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1985  */
1986 static int ext4_writepage(struct page *page,
1987                           struct writeback_control *wbc)
1988 {
1989         int ret = 0;
1990         loff_t size;
1991         unsigned int len;
1992         struct buffer_head *page_bufs = NULL;
1993         struct inode *inode = page->mapping->host;
1994         struct ext4_io_submit io_submit;
1995         bool keep_towrite = false;
1996
1997         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1998                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1999                 unlock_page(page);
2000                 return -EIO;
2001         }
2002
2003         trace_ext4_writepage(page);
2004         size = i_size_read(inode);
2005         if (page->index == size >> PAGE_SHIFT &&
2006             !ext4_verity_in_progress(inode))
2007                 len = size & ~PAGE_MASK;
2008         else
2009                 len = PAGE_SIZE;
2010
2011         page_bufs = page_buffers(page);
2012         /*
2013          * We cannot do block allocation or other extent handling in this
2014          * function. If there are buffers needing that, we have to redirty
2015          * the page. But we may reach here when we do a journal commit via
2016          * journal_submit_inode_data_buffers() and in that case we must write
2017          * allocated buffers to achieve data=ordered mode guarantees.
2018          *
2019          * Also, if there is only one buffer per page (the fs block
2020          * size == the page size), if one buffer needs block
2021          * allocation or needs to modify the extent tree to clear the
2022          * unwritten flag, we know that the page can't be written at
2023          * all, so we might as well refuse the write immediately.
2024          * Unfortunately if the block size != page size, we can't as
2025          * easily detect this case using ext4_walk_page_buffers(), but
2026          * for the extremely common case, this is an optimization that
2027          * skips a useless round trip through ext4_bio_write_page().
2028          */
2029         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2030                                    ext4_bh_delay_or_unwritten)) {
2031                 redirty_page_for_writepage(wbc, page);
2032                 if ((current->flags & PF_MEMALLOC) ||
2033                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2034                         /*
2035                          * For memory cleaning there's no point in writing only
2036                          * some buffers. So just bail out. Warn if we came here
2037                          * from direct reclaim.
2038                          */
2039                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2040                                                         == PF_MEMALLOC);
2041                         unlock_page(page);
2042                         return 0;
2043                 }
2044                 keep_towrite = true;
2045         }
2046
2047         if (PageChecked(page) && ext4_should_journal_data(inode))
2048                 /*
2049                  * It's mmapped pagecache.  Add buffers and journal it.  There
2050                  * doesn't seem much point in redirtying the page here.
2051                  */
2052                 return __ext4_journalled_writepage(page, len);
2053
2054         ext4_io_submit_init(&io_submit, wbc);
2055         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2056         if (!io_submit.io_end) {
2057                 redirty_page_for_writepage(wbc, page);
2058                 unlock_page(page);
2059                 return -ENOMEM;
2060         }
2061         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2062         ext4_io_submit(&io_submit);
2063         /* Drop io_end reference we got from init */
2064         ext4_put_io_end_defer(io_submit.io_end);
2065         return ret;
2066 }
2067
2068 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2069 {
2070         int len;
2071         loff_t size;
2072         int err;
2073
2074         BUG_ON(page->index != mpd->first_page);
2075         clear_page_dirty_for_io(page);
2076         /*
2077          * We have to be very careful here!  Nothing protects writeback path
2078          * against i_size changes and the page can be writeably mapped into
2079          * page tables. So an application can be growing i_size and writing
2080          * data through mmap while writeback runs. clear_page_dirty_for_io()
2081          * write-protects our page in page tables and the page cannot get
2082          * written to again until we release page lock. So only after
2083          * clear_page_dirty_for_io() we are safe to sample i_size for
2084          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2085          * on the barrier provided by TestClearPageDirty in
2086          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2087          * after page tables are updated.
2088          */
2089         size = i_size_read(mpd->inode);
2090         if (page->index == size >> PAGE_SHIFT &&
2091             !ext4_verity_in_progress(mpd->inode))
2092                 len = size & ~PAGE_MASK;
2093         else
2094                 len = PAGE_SIZE;
2095         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2096         if (!err)
2097                 mpd->wbc->nr_to_write--;
2098         mpd->first_page++;
2099
2100         return err;
2101 }
2102
2103 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2104
2105 /*
2106  * mballoc gives us at most this number of blocks...
2107  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2108  * The rest of mballoc seems to handle chunks up to full group size.
2109  */
2110 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2111
2112 /*
2113  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2114  *
2115  * @mpd - extent of blocks
2116  * @lblk - logical number of the block in the file
2117  * @bh - buffer head we want to add to the extent
2118  *
2119  * The function is used to collect contig. blocks in the same state. If the
2120  * buffer doesn't require mapping for writeback and we haven't started the
2121  * extent of buffers to map yet, the function returns 'true' immediately - the
2122  * caller can write the buffer right away. Otherwise the function returns true
2123  * if the block has been added to the extent, false if the block couldn't be
2124  * added.
2125  */
2126 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2127                                    struct buffer_head *bh)
2128 {
2129         struct ext4_map_blocks *map = &mpd->map;
2130
2131         /* Buffer that doesn't need mapping for writeback? */
2132         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2133             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2134                 /* So far no extent to map => we write the buffer right away */
2135                 if (map->m_len == 0)
2136                         return true;
2137                 return false;
2138         }
2139
2140         /* First block in the extent? */
2141         if (map->m_len == 0) {
2142                 /* We cannot map unless handle is started... */
2143                 if (!mpd->do_map)
2144                         return false;
2145                 map->m_lblk = lblk;
2146                 map->m_len = 1;
2147                 map->m_flags = bh->b_state & BH_FLAGS;
2148                 return true;
2149         }
2150
2151         /* Don't go larger than mballoc is willing to allocate */
2152         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2153                 return false;
2154
2155         /* Can we merge the block to our big extent? */
2156         if (lblk == map->m_lblk + map->m_len &&
2157             (bh->b_state & BH_FLAGS) == map->m_flags) {
2158                 map->m_len++;
2159                 return true;
2160         }
2161         return false;
2162 }
2163
2164 /*
2165  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2166  *
2167  * @mpd - extent of blocks for mapping
2168  * @head - the first buffer in the page
2169  * @bh - buffer we should start processing from
2170  * @lblk - logical number of the block in the file corresponding to @bh
2171  *
2172  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2173  * the page for IO if all buffers in this page were mapped and there's no
2174  * accumulated extent of buffers to map or add buffers in the page to the
2175  * extent of buffers to map. The function returns 1 if the caller can continue
2176  * by processing the next page, 0 if it should stop adding buffers to the
2177  * extent to map because we cannot extend it anymore. It can also return value
2178  * < 0 in case of error during IO submission.
2179  */
2180 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2181                                    struct buffer_head *head,
2182                                    struct buffer_head *bh,
2183                                    ext4_lblk_t lblk)
2184 {
2185         struct inode *inode = mpd->inode;
2186         int err;
2187         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2188                                                         >> inode->i_blkbits;
2189
2190         if (ext4_verity_in_progress(inode))
2191                 blocks = EXT_MAX_BLOCKS;
2192
2193         do {
2194                 BUG_ON(buffer_locked(bh));
2195
2196                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2197                         /* Found extent to map? */
2198                         if (mpd->map.m_len)
2199                                 return 0;
2200                         /* Buffer needs mapping and handle is not started? */
2201                         if (!mpd->do_map)
2202                                 return 0;
2203                         /* Everything mapped so far and we hit EOF */
2204                         break;
2205                 }
2206         } while (lblk++, (bh = bh->b_this_page) != head);
2207         /* So far everything mapped? Submit the page for IO. */
2208         if (mpd->map.m_len == 0) {
2209                 err = mpage_submit_page(mpd, head->b_page);
2210                 if (err < 0)
2211                         return err;
2212         }
2213         if (lblk >= blocks) {
2214                 mpd->scanned_until_end = 1;
2215                 return 0;
2216         }
2217         return 1;
2218 }
2219
2220 /*
2221  * mpage_process_page - update page buffers corresponding to changed extent and
2222  *                     may submit fully mapped page for IO
2223  *
2224  * @mpd         - description of extent to map, on return next extent to map
2225  * @m_lblk      - logical block mapping.
2226  * @m_pblk      - corresponding physical mapping.
2227  * @map_bh      - determines on return whether this page requires any further
2228  *                mapping or not.
2229  * Scan given page buffers corresponding to changed extent and update buffer
2230  * state according to new extent state.
2231  * We map delalloc buffers to their physical location, clear unwritten bits.
2232  * If the given page is not fully mapped, we update @map to the next extent in
2233  * the given page that needs mapping & return @map_bh as true.
2234  */
2235 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2236                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2237                               bool *map_bh)
2238 {
2239         struct buffer_head *head, *bh;
2240         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2241         ext4_lblk_t lblk = *m_lblk;
2242         ext4_fsblk_t pblock = *m_pblk;
2243         int err = 0;
2244         int blkbits = mpd->inode->i_blkbits;
2245         ssize_t io_end_size = 0;
2246         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2247
2248         bh = head = page_buffers(page);
2249         do {
2250                 if (lblk < mpd->map.m_lblk)
2251                         continue;
2252                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2253                         /*
2254                          * Buffer after end of mapped extent.
2255                          * Find next buffer in the page to map.
2256                          */
2257                         mpd->map.m_len = 0;
2258                         mpd->map.m_flags = 0;
2259                         io_end_vec->size += io_end_size;
2260                         io_end_size = 0;
2261
2262                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2263                         if (err > 0)
2264                                 err = 0;
2265                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2266                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2267                                 if (IS_ERR(io_end_vec)) {
2268                                         err = PTR_ERR(io_end_vec);
2269                                         goto out;
2270                                 }
2271                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2272                         }
2273                         *map_bh = true;
2274                         goto out;
2275                 }
2276                 if (buffer_delay(bh)) {
2277                         clear_buffer_delay(bh);
2278                         bh->b_blocknr = pblock++;
2279                 }
2280                 clear_buffer_unwritten(bh);
2281                 io_end_size += (1 << blkbits);
2282         } while (lblk++, (bh = bh->b_this_page) != head);
2283
2284         io_end_vec->size += io_end_size;
2285         io_end_size = 0;
2286         *map_bh = false;
2287 out:
2288         *m_lblk = lblk;
2289         *m_pblk = pblock;
2290         return err;
2291 }
2292
2293 /*
2294  * mpage_map_buffers - update buffers corresponding to changed extent and
2295  *                     submit fully mapped pages for IO
2296  *
2297  * @mpd - description of extent to map, on return next extent to map
2298  *
2299  * Scan buffers corresponding to changed extent (we expect corresponding pages
2300  * to be already locked) and update buffer state according to new extent state.
2301  * We map delalloc buffers to their physical location, clear unwritten bits,
2302  * and mark buffers as uninit when we perform writes to unwritten extents
2303  * and do extent conversion after IO is finished. If the last page is not fully
2304  * mapped, we update @map to the next extent in the last page that needs
2305  * mapping. Otherwise we submit the page for IO.
2306  */
2307 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2308 {
2309         struct pagevec pvec;
2310         int nr_pages, i;
2311         struct inode *inode = mpd->inode;
2312         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2313         pgoff_t start, end;
2314         ext4_lblk_t lblk;
2315         ext4_fsblk_t pblock;
2316         int err;
2317         bool map_bh = false;
2318
2319         start = mpd->map.m_lblk >> bpp_bits;
2320         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2321         lblk = start << bpp_bits;
2322         pblock = mpd->map.m_pblk;
2323
2324         pagevec_init(&pvec);
2325         while (start <= end) {
2326                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2327                                                 &start, end);
2328                 if (nr_pages == 0)
2329                         break;
2330                 for (i = 0; i < nr_pages; i++) {
2331                         struct page *page = pvec.pages[i];
2332
2333                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2334                                                  &map_bh);
2335                         /*
2336                          * If map_bh is true, means page may require further bh
2337                          * mapping, or maybe the page was submitted for IO.
2338                          * So we return to call further extent mapping.
2339                          */
2340                         if (err < 0 || map_bh)
2341                                 goto out;
2342                         /* Page fully mapped - let IO run! */
2343                         err = mpage_submit_page(mpd, page);
2344                         if (err < 0)
2345                                 goto out;
2346                 }
2347                 pagevec_release(&pvec);
2348         }
2349         /* Extent fully mapped and matches with page boundary. We are done. */
2350         mpd->map.m_len = 0;
2351         mpd->map.m_flags = 0;
2352         return 0;
2353 out:
2354         pagevec_release(&pvec);
2355         return err;
2356 }
2357
2358 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2359 {
2360         struct inode *inode = mpd->inode;
2361         struct ext4_map_blocks *map = &mpd->map;
2362         int get_blocks_flags;
2363         int err, dioread_nolock;
2364
2365         trace_ext4_da_write_pages_extent(inode, map);
2366         /*
2367          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2368          * to convert an unwritten extent to be initialized (in the case
2369          * where we have written into one or more preallocated blocks).  It is
2370          * possible that we're going to need more metadata blocks than
2371          * previously reserved. However we must not fail because we're in
2372          * writeback and there is nothing we can do about it so it might result
2373          * in data loss.  So use reserved blocks to allocate metadata if
2374          * possible.
2375          *
2376          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2377          * the blocks in question are delalloc blocks.  This indicates
2378          * that the blocks and quotas has already been checked when
2379          * the data was copied into the page cache.
2380          */
2381         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2382                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2383                            EXT4_GET_BLOCKS_IO_SUBMIT;
2384         dioread_nolock = ext4_should_dioread_nolock(inode);
2385         if (dioread_nolock)
2386                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2387         if (map->m_flags & BIT(BH_Delay))
2388                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2389
2390         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2391         if (err < 0)
2392                 return err;
2393         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2394                 if (!mpd->io_submit.io_end->handle &&
2395                     ext4_handle_valid(handle)) {
2396                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2397                         handle->h_rsv_handle = NULL;
2398                 }
2399                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2400         }
2401
2402         BUG_ON(map->m_len == 0);
2403         return 0;
2404 }
2405
2406 /*
2407  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2408  *                               mpd->len and submit pages underlying it for IO
2409  *
2410  * @handle - handle for journal operations
2411  * @mpd - extent to map
2412  * @give_up_on_write - we set this to true iff there is a fatal error and there
2413  *                     is no hope of writing the data. The caller should discard
2414  *                     dirty pages to avoid infinite loops.
2415  *
2416  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2417  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2418  * them to initialized or split the described range from larger unwritten
2419  * extent. Note that we need not map all the described range since allocation
2420  * can return less blocks or the range is covered by more unwritten extents. We
2421  * cannot map more because we are limited by reserved transaction credits. On
2422  * the other hand we always make sure that the last touched page is fully
2423  * mapped so that it can be written out (and thus forward progress is
2424  * guaranteed). After mapping we submit all mapped pages for IO.
2425  */
2426 static int mpage_map_and_submit_extent(handle_t *handle,
2427                                        struct mpage_da_data *mpd,
2428                                        bool *give_up_on_write)
2429 {
2430         struct inode *inode = mpd->inode;
2431         struct ext4_map_blocks *map = &mpd->map;
2432         int err;
2433         loff_t disksize;
2434         int progress = 0;
2435         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2436         struct ext4_io_end_vec *io_end_vec;
2437
2438         io_end_vec = ext4_alloc_io_end_vec(io_end);
2439         if (IS_ERR(io_end_vec))
2440                 return PTR_ERR(io_end_vec);
2441         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2442         do {
2443                 err = mpage_map_one_extent(handle, mpd);
2444                 if (err < 0) {
2445                         struct super_block *sb = inode->i_sb;
2446
2447                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2448                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2449                                 goto invalidate_dirty_pages;
2450                         /*
2451                          * Let the uper layers retry transient errors.
2452                          * In the case of ENOSPC, if ext4_count_free_blocks()
2453                          * is non-zero, a commit should free up blocks.
2454                          */
2455                         if ((err == -ENOMEM) ||
2456                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2457                                 if (progress)
2458                                         goto update_disksize;
2459                                 return err;
2460                         }
2461                         ext4_msg(sb, KERN_CRIT,
2462                                  "Delayed block allocation failed for "
2463                                  "inode %lu at logical offset %llu with"
2464                                  " max blocks %u with error %d",
2465                                  inode->i_ino,
2466                                  (unsigned long long)map->m_lblk,
2467                                  (unsigned)map->m_len, -err);
2468                         ext4_msg(sb, KERN_CRIT,
2469                                  "This should not happen!! Data will "
2470                                  "be lost\n");
2471                         if (err == -ENOSPC)
2472                                 ext4_print_free_blocks(inode);
2473                 invalidate_dirty_pages:
2474                         *give_up_on_write = true;
2475                         return err;
2476                 }
2477                 progress = 1;
2478                 /*
2479                  * Update buffer state, submit mapped pages, and get us new
2480                  * extent to map
2481                  */
2482                 err = mpage_map_and_submit_buffers(mpd);
2483                 if (err < 0)
2484                         goto update_disksize;
2485         } while (map->m_len);
2486
2487 update_disksize:
2488         /*
2489          * Update on-disk size after IO is submitted.  Races with
2490          * truncate are avoided by checking i_size under i_data_sem.
2491          */
2492         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2493         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2494                 int err2;
2495                 loff_t i_size;
2496
2497                 down_write(&EXT4_I(inode)->i_data_sem);
2498                 i_size = i_size_read(inode);
2499                 if (disksize > i_size)
2500                         disksize = i_size;
2501                 if (disksize > EXT4_I(inode)->i_disksize)
2502                         EXT4_I(inode)->i_disksize = disksize;
2503                 up_write(&EXT4_I(inode)->i_data_sem);
2504                 err2 = ext4_mark_inode_dirty(handle, inode);
2505                 if (err2) {
2506                         ext4_error_err(inode->i_sb, -err2,
2507                                        "Failed to mark inode %lu dirty",
2508                                        inode->i_ino);
2509                 }
2510                 if (!err)
2511                         err = err2;
2512         }
2513         return err;
2514 }
2515
2516 /*
2517  * Calculate the total number of credits to reserve for one writepages
2518  * iteration. This is called from ext4_writepages(). We map an extent of
2519  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2520  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2521  * bpp - 1 blocks in bpp different extents.
2522  */
2523 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2524 {
2525         int bpp = ext4_journal_blocks_per_page(inode);
2526
2527         return ext4_meta_trans_blocks(inode,
2528                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2529 }
2530
2531 /*
2532  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2533  *                               and underlying extent to map
2534  *
2535  * @mpd - where to look for pages
2536  *
2537  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2538  * IO immediately. When we find a page which isn't mapped we start accumulating
2539  * extent of buffers underlying these pages that needs mapping (formed by
2540  * either delayed or unwritten buffers). We also lock the pages containing
2541  * these buffers. The extent found is returned in @mpd structure (starting at
2542  * mpd->lblk with length mpd->len blocks).
2543  *
2544  * Note that this function can attach bios to one io_end structure which are
2545  * neither logically nor physically contiguous. Although it may seem as an
2546  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2547  * case as we need to track IO to all buffers underlying a page in one io_end.
2548  */
2549 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2550 {
2551         struct address_space *mapping = mpd->inode->i_mapping;
2552         struct pagevec pvec;
2553         unsigned int nr_pages;
2554         long left = mpd->wbc->nr_to_write;
2555         pgoff_t index = mpd->first_page;
2556         pgoff_t end = mpd->last_page;
2557         xa_mark_t tag;
2558         int i, err = 0;
2559         int blkbits = mpd->inode->i_blkbits;
2560         ext4_lblk_t lblk;
2561         struct buffer_head *head;
2562
2563         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2564                 tag = PAGECACHE_TAG_TOWRITE;
2565         else
2566                 tag = PAGECACHE_TAG_DIRTY;
2567
2568         pagevec_init(&pvec);
2569         mpd->map.m_len = 0;
2570         mpd->next_page = index;
2571         while (index <= end) {
2572                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2573                                 tag);
2574                 if (nr_pages == 0)
2575                         break;
2576
2577                 for (i = 0; i < nr_pages; i++) {
2578                         struct page *page = pvec.pages[i];
2579
2580                         /*
2581                          * Accumulated enough dirty pages? This doesn't apply
2582                          * to WB_SYNC_ALL mode. For integrity sync we have to
2583                          * keep going because someone may be concurrently
2584                          * dirtying pages, and we might have synced a lot of
2585                          * newly appeared dirty pages, but have not synced all
2586                          * of the old dirty pages.
2587                          */
2588                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2589                                 goto out;
2590
2591                         /* If we can't merge this page, we are done. */
2592                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2593                                 goto out;
2594
2595                         lock_page(page);
2596                         /*
2597                          * If the page is no longer dirty, or its mapping no
2598                          * longer corresponds to inode we are writing (which
2599                          * means it has been truncated or invalidated), or the
2600                          * page is already under writeback and we are not doing
2601                          * a data integrity writeback, skip the page
2602                          */
2603                         if (!PageDirty(page) ||
2604                             (PageWriteback(page) &&
2605                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2606                             unlikely(page->mapping != mapping)) {
2607                                 unlock_page(page);
2608                                 continue;
2609                         }
2610
2611                         wait_on_page_writeback(page);
2612                         BUG_ON(PageWriteback(page));
2613
2614                         if (mpd->map.m_len == 0)
2615                                 mpd->first_page = page->index;
2616                         mpd->next_page = page->index + 1;
2617                         /* Add all dirty buffers to mpd */
2618                         lblk = ((ext4_lblk_t)page->index) <<
2619                                 (PAGE_SHIFT - blkbits);
2620                         head = page_buffers(page);
2621                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2622                         if (err <= 0)
2623                                 goto out;
2624                         err = 0;
2625                         left--;
2626                 }
2627                 pagevec_release(&pvec);
2628                 cond_resched();
2629         }
2630         mpd->scanned_until_end = 1;
2631         return 0;
2632 out:
2633         pagevec_release(&pvec);
2634         return err;
2635 }
2636
2637 static int ext4_writepages(struct address_space *mapping,
2638                            struct writeback_control *wbc)
2639 {
2640         pgoff_t writeback_index = 0;
2641         long nr_to_write = wbc->nr_to_write;
2642         int range_whole = 0;
2643         int cycled = 1;
2644         handle_t *handle = NULL;
2645         struct mpage_da_data mpd;
2646         struct inode *inode = mapping->host;
2647         int needed_blocks, rsv_blocks = 0, ret = 0;
2648         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2649         struct blk_plug plug;
2650         bool give_up_on_write = false;
2651
2652         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2653                 return -EIO;
2654
2655         percpu_down_read(&sbi->s_writepages_rwsem);
2656         trace_ext4_writepages(inode, wbc);
2657
2658         /*
2659          * No pages to write? This is mainly a kludge to avoid starting
2660          * a transaction for special inodes like journal inode on last iput()
2661          * because that could violate lock ordering on umount
2662          */
2663         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2664                 goto out_writepages;
2665
2666         if (ext4_should_journal_data(inode)) {
2667                 ret = generic_writepages(mapping, wbc);
2668                 goto out_writepages;
2669         }
2670
2671         /*
2672          * If the filesystem has aborted, it is read-only, so return
2673          * right away instead of dumping stack traces later on that
2674          * will obscure the real source of the problem.  We test
2675          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2676          * the latter could be true if the filesystem is mounted
2677          * read-only, and in that case, ext4_writepages should
2678          * *never* be called, so if that ever happens, we would want
2679          * the stack trace.
2680          */
2681         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2682                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2683                 ret = -EROFS;
2684                 goto out_writepages;
2685         }
2686
2687         /*
2688          * If we have inline data and arrive here, it means that
2689          * we will soon create the block for the 1st page, so
2690          * we'd better clear the inline data here.
2691          */
2692         if (ext4_has_inline_data(inode)) {
2693                 /* Just inode will be modified... */
2694                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2695                 if (IS_ERR(handle)) {
2696                         ret = PTR_ERR(handle);
2697                         goto out_writepages;
2698                 }
2699                 BUG_ON(ext4_test_inode_state(inode,
2700                                 EXT4_STATE_MAY_INLINE_DATA));
2701                 ext4_destroy_inline_data(handle, inode);
2702                 ext4_journal_stop(handle);
2703         }
2704
2705         if (ext4_should_dioread_nolock(inode)) {
2706                 /*
2707                  * We may need to convert up to one extent per block in
2708                  * the page and we may dirty the inode.
2709                  */
2710                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2711                                                 PAGE_SIZE >> inode->i_blkbits);
2712         }
2713
2714         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715                 range_whole = 1;
2716
2717         if (wbc->range_cyclic) {
2718                 writeback_index = mapping->writeback_index;
2719                 if (writeback_index)
2720                         cycled = 0;
2721                 mpd.first_page = writeback_index;
2722                 mpd.last_page = -1;
2723         } else {
2724                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2726         }
2727
2728         mpd.inode = inode;
2729         mpd.wbc = wbc;
2730         ext4_io_submit_init(&mpd.io_submit, wbc);
2731 retry:
2732         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734         blk_start_plug(&plug);
2735
2736         /*
2737          * First writeback pages that don't need mapping - we can avoid
2738          * starting a transaction unnecessarily and also avoid being blocked
2739          * in the block layer on device congestion while having transaction
2740          * started.
2741          */
2742         mpd.do_map = 0;
2743         mpd.scanned_until_end = 0;
2744         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2745         if (!mpd.io_submit.io_end) {
2746                 ret = -ENOMEM;
2747                 goto unplug;
2748         }
2749         ret = mpage_prepare_extent_to_map(&mpd);
2750         /* Unlock pages we didn't use */
2751         mpage_release_unused_pages(&mpd, false);
2752         /* Submit prepared bio */
2753         ext4_io_submit(&mpd.io_submit);
2754         ext4_put_io_end_defer(mpd.io_submit.io_end);
2755         mpd.io_submit.io_end = NULL;
2756         if (ret < 0)
2757                 goto unplug;
2758
2759         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2760                 /* For each extent of pages we use new io_end */
2761                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2762                 if (!mpd.io_submit.io_end) {
2763                         ret = -ENOMEM;
2764                         break;
2765                 }
2766
2767                 /*
2768                  * We have two constraints: We find one extent to map and we
2769                  * must always write out whole page (makes a difference when
2770                  * blocksize < pagesize) so that we don't block on IO when we
2771                  * try to write out the rest of the page. Journalled mode is
2772                  * not supported by delalloc.
2773                  */
2774                 BUG_ON(ext4_should_journal_data(inode));
2775                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2776
2777                 /* start a new transaction */
2778                 handle = ext4_journal_start_with_reserve(inode,
2779                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2780                 if (IS_ERR(handle)) {
2781                         ret = PTR_ERR(handle);
2782                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2783                                "%ld pages, ino %lu; err %d", __func__,
2784                                 wbc->nr_to_write, inode->i_ino, ret);
2785                         /* Release allocated io_end */
2786                         ext4_put_io_end(mpd.io_submit.io_end);
2787                         mpd.io_submit.io_end = NULL;
2788                         break;
2789                 }
2790                 mpd.do_map = 1;
2791
2792                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2793                 ret = mpage_prepare_extent_to_map(&mpd);
2794                 if (!ret && mpd.map.m_len)
2795                         ret = mpage_map_and_submit_extent(handle, &mpd,
2796                                         &give_up_on_write);
2797                 /*
2798                  * Caution: If the handle is synchronous,
2799                  * ext4_journal_stop() can wait for transaction commit
2800                  * to finish which may depend on writeback of pages to
2801                  * complete or on page lock to be released.  In that
2802                  * case, we have to wait until after we have
2803                  * submitted all the IO, released page locks we hold,
2804                  * and dropped io_end reference (for extent conversion
2805                  * to be able to complete) before stopping the handle.
2806                  */
2807                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808                         ext4_journal_stop(handle);
2809                         handle = NULL;
2810                         mpd.do_map = 0;
2811                 }
2812                 /* Unlock pages we didn't use */
2813                 mpage_release_unused_pages(&mpd, give_up_on_write);
2814                 /* Submit prepared bio */
2815                 ext4_io_submit(&mpd.io_submit);
2816
2817                 /*
2818                  * Drop our io_end reference we got from init. We have
2819                  * to be careful and use deferred io_end finishing if
2820                  * we are still holding the transaction as we can
2821                  * release the last reference to io_end which may end
2822                  * up doing unwritten extent conversion.
2823                  */
2824                 if (handle) {
2825                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2826                         ext4_journal_stop(handle);
2827                 } else
2828                         ext4_put_io_end(mpd.io_submit.io_end);
2829                 mpd.io_submit.io_end = NULL;
2830
2831                 if (ret == -ENOSPC && sbi->s_journal) {
2832                         /*
2833                          * Commit the transaction which would
2834                          * free blocks released in the transaction
2835                          * and try again
2836                          */
2837                         jbd2_journal_force_commit_nested(sbi->s_journal);
2838                         ret = 0;
2839                         continue;
2840                 }
2841                 /* Fatal error - ENOMEM, EIO... */
2842                 if (ret)
2843                         break;
2844         }
2845 unplug:
2846         blk_finish_plug(&plug);
2847         if (!ret && !cycled && wbc->nr_to_write > 0) {
2848                 cycled = 1;
2849                 mpd.last_page = writeback_index - 1;
2850                 mpd.first_page = 0;
2851                 goto retry;
2852         }
2853
2854         /* Update index */
2855         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2856                 /*
2857                  * Set the writeback_index so that range_cyclic
2858                  * mode will write it back later
2859                  */
2860                 mapping->writeback_index = mpd.first_page;
2861
2862 out_writepages:
2863         trace_ext4_writepages_result(inode, wbc, ret,
2864                                      nr_to_write - wbc->nr_to_write);
2865         percpu_up_read(&sbi->s_writepages_rwsem);
2866         return ret;
2867 }
2868
2869 static int ext4_dax_writepages(struct address_space *mapping,
2870                                struct writeback_control *wbc)
2871 {
2872         int ret;
2873         long nr_to_write = wbc->nr_to_write;
2874         struct inode *inode = mapping->host;
2875         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2876
2877         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2878                 return -EIO;
2879
2880         percpu_down_read(&sbi->s_writepages_rwsem);
2881         trace_ext4_writepages(inode, wbc);
2882
2883         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2884         trace_ext4_writepages_result(inode, wbc, ret,
2885                                      nr_to_write - wbc->nr_to_write);
2886         percpu_up_read(&sbi->s_writepages_rwsem);
2887         return ret;
2888 }
2889
2890 static int ext4_nonda_switch(struct super_block *sb)
2891 {
2892         s64 free_clusters, dirty_clusters;
2893         struct ext4_sb_info *sbi = EXT4_SB(sb);
2894
2895         /*
2896          * switch to non delalloc mode if we are running low
2897          * on free block. The free block accounting via percpu
2898          * counters can get slightly wrong with percpu_counter_batch getting
2899          * accumulated on each CPU without updating global counters
2900          * Delalloc need an accurate free block accounting. So switch
2901          * to non delalloc when we are near to error range.
2902          */
2903         free_clusters =
2904                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2905         dirty_clusters =
2906                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2907         /*
2908          * Start pushing delalloc when 1/2 of free blocks are dirty.
2909          */
2910         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2911                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2912
2913         if (2 * free_clusters < 3 * dirty_clusters ||
2914             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2915                 /*
2916                  * free block count is less than 150% of dirty blocks
2917                  * or free blocks is less than watermark
2918                  */
2919                 return 1;
2920         }
2921         return 0;
2922 }
2923
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925                                loff_t pos, unsigned len, unsigned flags,
2926                                struct page **pagep, void **fsdata)
2927 {
2928         int ret, retries = 0;
2929         struct page *page;
2930         pgoff_t index;
2931         struct inode *inode = mapping->host;
2932
2933         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934                 return -EIO;
2935
2936         index = pos >> PAGE_SHIFT;
2937
2938         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939             ext4_verity_in_progress(inode)) {
2940                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941                 return ext4_write_begin(file, mapping, pos,
2942                                         len, flags, pagep, fsdata);
2943         }
2944         *fsdata = (void *)0;
2945         trace_ext4_da_write_begin(inode, pos, len, flags);
2946
2947         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2949                                                       pos, len, flags,
2950                                                       pagep, fsdata);
2951                 if (ret < 0)
2952                         return ret;
2953                 if (ret == 1)
2954                         return 0;
2955         }
2956
2957 retry:
2958         page = grab_cache_page_write_begin(mapping, index, flags);
2959         if (!page)
2960                 return -ENOMEM;
2961
2962         /* In case writeback began while the page was unlocked */
2963         wait_for_stable_page(page);
2964
2965 #ifdef CONFIG_FS_ENCRYPTION
2966         ret = ext4_block_write_begin(page, pos, len,
2967                                      ext4_da_get_block_prep);
2968 #else
2969         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2970 #endif
2971         if (ret < 0) {
2972                 unlock_page(page);
2973                 put_page(page);
2974                 /*
2975                  * block_write_begin may have instantiated a few blocks
2976                  * outside i_size.  Trim these off again. Don't need
2977                  * i_size_read because we hold inode lock.
2978                  */
2979                 if (pos + len > inode->i_size)
2980                         ext4_truncate_failed_write(inode);
2981
2982                 if (ret == -ENOSPC &&
2983                     ext4_should_retry_alloc(inode->i_sb, &retries))
2984                         goto retry;
2985                 return ret;
2986         }
2987
2988         *pagep = page;
2989         return ret;
2990 }
2991
2992 /*
2993  * Check if we should update i_disksize
2994  * when write to the end of file but not require block allocation
2995  */
2996 static int ext4_da_should_update_i_disksize(struct page *page,
2997                                             unsigned long offset)
2998 {
2999         struct buffer_head *bh;
3000         struct inode *inode = page->mapping->host;
3001         unsigned int idx;
3002         int i;
3003
3004         bh = page_buffers(page);
3005         idx = offset >> inode->i_blkbits;
3006
3007         for (i = 0; i < idx; i++)
3008                 bh = bh->b_this_page;
3009
3010         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3011                 return 0;
3012         return 1;
3013 }
3014
3015 static int ext4_da_write_end(struct file *file,
3016                              struct address_space *mapping,
3017                              loff_t pos, unsigned len, unsigned copied,
3018                              struct page *page, void *fsdata)
3019 {
3020         struct inode *inode = mapping->host;
3021         loff_t new_i_size;
3022         unsigned long start, end;
3023         int write_mode = (int)(unsigned long)fsdata;
3024
3025         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3026                 return ext4_write_end(file, mapping, pos,
3027                                       len, copied, page, fsdata);
3028
3029         trace_ext4_da_write_end(inode, pos, len, copied);
3030
3031         if (write_mode != CONVERT_INLINE_DATA &&
3032             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3033             ext4_has_inline_data(inode))
3034                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3035
3036         start = pos & (PAGE_SIZE - 1);
3037         end = start + copied - 1;
3038
3039         /*
3040          * Since we are holding inode lock, we are sure i_disksize <=
3041          * i_size. We also know that if i_disksize < i_size, there are
3042          * delalloc writes pending in the range upto i_size. If the end of
3043          * the current write is <= i_size, there's no need to touch
3044          * i_disksize since writeback will push i_disksize upto i_size
3045          * eventually. If the end of the current write is > i_size and
3046          * inside an allocated block (ext4_da_should_update_i_disksize()
3047          * check), we need to update i_disksize here as neither
3048          * ext4_writepage() nor certain ext4_writepages() paths not
3049          * allocating blocks update i_disksize.
3050          *
3051          * Note that we defer inode dirtying to generic_write_end() /
3052          * ext4_da_write_inline_data_end().
3053          */
3054         new_i_size = pos + copied;
3055         if (copied && new_i_size > inode->i_size &&
3056             ext4_da_should_update_i_disksize(page, end))
3057                 ext4_update_i_disksize(inode, new_i_size);
3058
3059         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3060 }
3061
3062 /*
3063  * Force all delayed allocation blocks to be allocated for a given inode.
3064  */
3065 int ext4_alloc_da_blocks(struct inode *inode)
3066 {
3067         trace_ext4_alloc_da_blocks(inode);
3068
3069         if (!EXT4_I(inode)->i_reserved_data_blocks)
3070                 return 0;
3071
3072         /*
3073          * We do something simple for now.  The filemap_flush() will
3074          * also start triggering a write of the data blocks, which is
3075          * not strictly speaking necessary (and for users of
3076          * laptop_mode, not even desirable).  However, to do otherwise
3077          * would require replicating code paths in:
3078          *
3079          * ext4_writepages() ->
3080          *    write_cache_pages() ---> (via passed in callback function)
3081          *        __mpage_da_writepage() -->
3082          *           mpage_add_bh_to_extent()
3083          *           mpage_da_map_blocks()
3084          *
3085          * The problem is that write_cache_pages(), located in
3086          * mm/page-writeback.c, marks pages clean in preparation for
3087          * doing I/O, which is not desirable if we're not planning on
3088          * doing I/O at all.
3089          *
3090          * We could call write_cache_pages(), and then redirty all of
3091          * the pages by calling redirty_page_for_writepage() but that
3092          * would be ugly in the extreme.  So instead we would need to
3093          * replicate parts of the code in the above functions,
3094          * simplifying them because we wouldn't actually intend to
3095          * write out the pages, but rather only collect contiguous
3096          * logical block extents, call the multi-block allocator, and
3097          * then update the buffer heads with the block allocations.
3098          *
3099          * For now, though, we'll cheat by calling filemap_flush(),
3100          * which will map the blocks, and start the I/O, but not
3101          * actually wait for the I/O to complete.
3102          */
3103         return filemap_flush(inode->i_mapping);
3104 }
3105
3106 /*
3107  * bmap() is special.  It gets used by applications such as lilo and by
3108  * the swapper to find the on-disk block of a specific piece of data.
3109  *
3110  * Naturally, this is dangerous if the block concerned is still in the
3111  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3112  * filesystem and enables swap, then they may get a nasty shock when the
3113  * data getting swapped to that swapfile suddenly gets overwritten by
3114  * the original zero's written out previously to the journal and
3115  * awaiting writeback in the kernel's buffer cache.
3116  *
3117  * So, if we see any bmap calls here on a modified, data-journaled file,
3118  * take extra steps to flush any blocks which might be in the cache.
3119  */
3120 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3121 {
3122         struct inode *inode = mapping->host;
3123         journal_t *journal;
3124         int err;
3125
3126         /*
3127          * We can get here for an inline file via the FIBMAP ioctl
3128          */
3129         if (ext4_has_inline_data(inode))
3130                 return 0;
3131
3132         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3133                         test_opt(inode->i_sb, DELALLOC)) {
3134                 /*
3135                  * With delalloc we want to sync the file
3136                  * so that we can make sure we allocate
3137                  * blocks for file
3138                  */
3139                 filemap_write_and_wait(mapping);
3140         }
3141
3142         if (EXT4_JOURNAL(inode) &&
3143             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3144                 /*
3145                  * This is a REALLY heavyweight approach, but the use of
3146                  * bmap on dirty files is expected to be extremely rare:
3147                  * only if we run lilo or swapon on a freshly made file
3148                  * do we expect this to happen.
3149                  *
3150                  * (bmap requires CAP_SYS_RAWIO so this does not
3151                  * represent an unprivileged user DOS attack --- we'd be
3152                  * in trouble if mortal users could trigger this path at
3153                  * will.)
3154                  *
3155                  * NB. EXT4_STATE_JDATA is not set on files other than
3156                  * regular files.  If somebody wants to bmap a directory
3157                  * or symlink and gets confused because the buffer
3158                  * hasn't yet been flushed to disk, they deserve
3159                  * everything they get.
3160                  */
3161
3162                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3163                 journal = EXT4_JOURNAL(inode);
3164                 jbd2_journal_lock_updates(journal);
3165                 err = jbd2_journal_flush(journal, 0);
3166                 jbd2_journal_unlock_updates(journal);
3167
3168                 if (err)
3169                         return 0;
3170         }
3171
3172         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3173 }
3174
3175 static int ext4_readpage(struct file *file, struct page *page)
3176 {
3177         int ret = -EAGAIN;
3178         struct inode *inode = page->mapping->host;
3179
3180         trace_ext4_readpage(page);
3181
3182         if (ext4_has_inline_data(inode))
3183                 ret = ext4_readpage_inline(inode, page);
3184
3185         if (ret == -EAGAIN)
3186                 return ext4_mpage_readpages(inode, NULL, page);
3187
3188         return ret;
3189 }
3190
3191 static void ext4_readahead(struct readahead_control *rac)
3192 {
3193         struct inode *inode = rac->mapping->host;
3194
3195         /* If the file has inline data, no need to do readahead. */
3196         if (ext4_has_inline_data(inode))
3197                 return;
3198
3199         ext4_mpage_readpages(inode, rac, NULL);
3200 }
3201
3202 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3203                                 unsigned int length)
3204 {
3205         trace_ext4_invalidatepage(page, offset, length);
3206
3207         /* No journalling happens on data buffers when this function is used */
3208         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3209
3210         block_invalidatepage(page, offset, length);
3211 }
3212
3213 static int __ext4_journalled_invalidatepage(struct page *page,
3214                                             unsigned int offset,
3215                                             unsigned int length)
3216 {
3217         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3218
3219         trace_ext4_journalled_invalidatepage(page, offset, length);
3220
3221         /*
3222          * If it's a full truncate we just forget about the pending dirtying
3223          */
3224         if (offset == 0 && length == PAGE_SIZE)
3225                 ClearPageChecked(page);
3226
3227         return jbd2_journal_invalidatepage(journal, page, offset, length);
3228 }
3229
3230 /* Wrapper for aops... */
3231 static void ext4_journalled_invalidatepage(struct page *page,
3232                                            unsigned int offset,
3233                                            unsigned int length)
3234 {
3235         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3236 }
3237
3238 static int ext4_releasepage(struct page *page, gfp_t wait)
3239 {
3240         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3241
3242         trace_ext4_releasepage(page);
3243
3244         /* Page has dirty journalled data -> cannot release */
3245         if (PageChecked(page))
3246                 return 0;
3247         if (journal)
3248                 return jbd2_journal_try_to_free_buffers(journal, page);
3249         else
3250                 return try_to_free_buffers(page);
3251 }
3252
3253 static bool ext4_inode_datasync_dirty(struct inode *inode)
3254 {
3255         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3256
3257         if (journal) {
3258                 if (jbd2_transaction_committed(journal,
3259                         EXT4_I(inode)->i_datasync_tid))
3260                         return false;
3261                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3262                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3263                 return true;
3264         }
3265
3266         /* Any metadata buffers to write? */
3267         if (!list_empty(&inode->i_mapping->private_list))
3268                 return true;
3269         return inode->i_state & I_DIRTY_DATASYNC;
3270 }
3271
3272 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3273                            struct ext4_map_blocks *map, loff_t offset,
3274                            loff_t length)
3275 {
3276         u8 blkbits = inode->i_blkbits;
3277
3278         /*
3279          * Writes that span EOF might trigger an I/O size update on completion,
3280          * so consider them to be dirty for the purpose of O_DSYNC, even if
3281          * there is no other metadata changes being made or are pending.
3282          */
3283         iomap->flags = 0;
3284         if (ext4_inode_datasync_dirty(inode) ||
3285             offset + length > i_size_read(inode))
3286                 iomap->flags |= IOMAP_F_DIRTY;
3287
3288         if (map->m_flags & EXT4_MAP_NEW)
3289                 iomap->flags |= IOMAP_F_NEW;
3290
3291         iomap->bdev = inode->i_sb->s_bdev;
3292         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3293         iomap->offset = (u64) map->m_lblk << blkbits;
3294         iomap->length = (u64) map->m_len << blkbits;
3295
3296         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3297             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3298                 iomap->flags |= IOMAP_F_MERGED;
3299
3300         /*
3301          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3302          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3303          * set. In order for any allocated unwritten extents to be converted
3304          * into written extents correctly within the ->end_io() handler, we
3305          * need to ensure that the iomap->type is set appropriately. Hence, the
3306          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3307          * been set first.
3308          */
3309         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3310                 iomap->type = IOMAP_UNWRITTEN;
3311                 iomap->addr = (u64) map->m_pblk << blkbits;
3312         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3313                 iomap->type = IOMAP_MAPPED;
3314                 iomap->addr = (u64) map->m_pblk << blkbits;
3315         } else {
3316                 iomap->type = IOMAP_HOLE;
3317                 iomap->addr = IOMAP_NULL_ADDR;
3318         }
3319 }
3320
3321 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3322                             unsigned int flags)
3323 {
3324         handle_t *handle;
3325         u8 blkbits = inode->i_blkbits;
3326         int ret, dio_credits, m_flags = 0, retries = 0;
3327
3328         /*
3329          * Trim the mapping request to the maximum value that we can map at
3330          * once for direct I/O.
3331          */
3332         if (map->m_len > DIO_MAX_BLOCKS)
3333                 map->m_len = DIO_MAX_BLOCKS;
3334         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3335
3336 retry:
3337         /*
3338          * Either we allocate blocks and then don't get an unwritten extent, so
3339          * in that case we have reserved enough credits. Or, the blocks are
3340          * already allocated and unwritten. In that case, the extent conversion
3341          * fits into the credits as well.
3342          */
3343         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3344         if (IS_ERR(handle))
3345                 return PTR_ERR(handle);
3346
3347         /*
3348          * DAX and direct I/O are the only two operations that are currently
3349          * supported with IOMAP_WRITE.
3350          */
3351         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3352         if (IS_DAX(inode))
3353                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3354         /*
3355          * We use i_size instead of i_disksize here because delalloc writeback
3356          * can complete at any point during the I/O and subsequently push the
3357          * i_disksize out to i_size. This could be beyond where direct I/O is
3358          * happening and thus expose allocated blocks to direct I/O reads.
3359          */
3360         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3361                 m_flags = EXT4_GET_BLOCKS_CREATE;
3362         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3363                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3364
3365         ret = ext4_map_blocks(handle, inode, map, m_flags);
3366
3367         /*
3368          * We cannot fill holes in indirect tree based inodes as that could
3369          * expose stale data in the case of a crash. Use the magic error code
3370          * to fallback to buffered I/O.
3371          */
3372         if (!m_flags && !ret)
3373                 ret = -ENOTBLK;
3374
3375         ext4_journal_stop(handle);
3376         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3377                 goto retry;
3378
3379         return ret;
3380 }
3381
3382
3383 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3384                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3385 {
3386         int ret;
3387         struct ext4_map_blocks map;
3388         u8 blkbits = inode->i_blkbits;
3389
3390         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3391                 return -EINVAL;
3392
3393         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3394                 return -ERANGE;
3395
3396         /*
3397          * Calculate the first and last logical blocks respectively.
3398          */
3399         map.m_lblk = offset >> blkbits;
3400         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3401                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3402
3403         if (flags & IOMAP_WRITE) {
3404                 /*
3405                  * We check here if the blocks are already allocated, then we
3406                  * don't need to start a journal txn and we can directly return
3407                  * the mapping information. This could boost performance
3408                  * especially in multi-threaded overwrite requests.
3409                  */
3410                 if (offset + length <= i_size_read(inode)) {
3411                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3412                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3413                                 goto out;
3414                 }
3415                 ret = ext4_iomap_alloc(inode, &map, flags);
3416         } else {
3417                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3418         }
3419
3420         if (ret < 0)
3421                 return ret;
3422 out:
3423         ext4_set_iomap(inode, iomap, &map, offset, length);
3424
3425         return 0;
3426 }
3427
3428 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3429                 loff_t length, unsigned flags, struct iomap *iomap,
3430                 struct iomap *srcmap)
3431 {
3432         int ret;
3433
3434         /*
3435          * Even for writes we don't need to allocate blocks, so just pretend
3436          * we are reading to save overhead of starting a transaction.
3437          */
3438         flags &= ~IOMAP_WRITE;
3439         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3440         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3441         return ret;
3442 }
3443
3444 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3445                           ssize_t written, unsigned flags, struct iomap *iomap)
3446 {
3447         /*
3448          * Check to see whether an error occurred while writing out the data to
3449          * the allocated blocks. If so, return the magic error code so that we
3450          * fallback to buffered I/O and attempt to complete the remainder of
3451          * the I/O. Any blocks that may have been allocated in preparation for
3452          * the direct I/O will be reused during buffered I/O.
3453          */
3454         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3455                 return -ENOTBLK;
3456
3457         return 0;
3458 }
3459
3460 const struct iomap_ops ext4_iomap_ops = {
3461         .iomap_begin            = ext4_iomap_begin,
3462         .iomap_end              = ext4_iomap_end,
3463 };
3464
3465 const struct iomap_ops ext4_iomap_overwrite_ops = {
3466         .iomap_begin            = ext4_iomap_overwrite_begin,
3467         .iomap_end              = ext4_iomap_end,
3468 };
3469
3470 static bool ext4_iomap_is_delalloc(struct inode *inode,
3471                                    struct ext4_map_blocks *map)
3472 {
3473         struct extent_status es;
3474         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3475
3476         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3477                                   map->m_lblk, end, &es);
3478
3479         if (!es.es_len || es.es_lblk > end)
3480                 return false;
3481
3482         if (es.es_lblk > map->m_lblk) {
3483                 map->m_len = es.es_lblk - map->m_lblk;
3484                 return false;
3485         }
3486
3487         offset = map->m_lblk - es.es_lblk;
3488         map->m_len = es.es_len - offset;
3489
3490         return true;
3491 }
3492
3493 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3494                                    loff_t length, unsigned int flags,
3495                                    struct iomap *iomap, struct iomap *srcmap)
3496 {
3497         int ret;
3498         bool delalloc = false;
3499         struct ext4_map_blocks map;
3500         u8 blkbits = inode->i_blkbits;
3501
3502         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3503                 return -EINVAL;
3504
3505         if (ext4_has_inline_data(inode)) {
3506                 ret = ext4_inline_data_iomap(inode, iomap);
3507                 if (ret != -EAGAIN) {
3508                         if (ret == 0 && offset >= iomap->length)
3509                                 ret = -ENOENT;
3510                         return ret;
3511                 }
3512         }
3513
3514         /*
3515          * Calculate the first and last logical block respectively.
3516          */
3517         map.m_lblk = offset >> blkbits;
3518         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3519                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3520
3521         /*
3522          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3523          * So handle it here itself instead of querying ext4_map_blocks().
3524          * Since ext4_map_blocks() will warn about it and will return
3525          * -EIO error.
3526          */
3527         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3528                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3529
3530                 if (offset >= sbi->s_bitmap_maxbytes) {
3531                         map.m_flags = 0;
3532                         goto set_iomap;
3533                 }
3534         }
3535
3536         ret = ext4_map_blocks(NULL, inode, &map, 0);
3537         if (ret < 0)
3538                 return ret;
3539         if (ret == 0)
3540                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3541
3542 set_iomap:
3543         ext4_set_iomap(inode, iomap, &map, offset, length);
3544         if (delalloc && iomap->type == IOMAP_HOLE)
3545                 iomap->type = IOMAP_DELALLOC;
3546
3547         return 0;
3548 }
3549
3550 const struct iomap_ops ext4_iomap_report_ops = {
3551         .iomap_begin = ext4_iomap_begin_report,
3552 };
3553
3554 /*
3555  * Pages can be marked dirty completely asynchronously from ext4's journalling
3556  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3557  * much here because ->set_page_dirty is called under VFS locks.  The page is
3558  * not necessarily locked.
3559  *
3560  * We cannot just dirty the page and leave attached buffers clean, because the
3561  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3562  * or jbddirty because all the journalling code will explode.
3563  *
3564  * So what we do is to mark the page "pending dirty" and next time writepage
3565  * is called, propagate that into the buffers appropriately.
3566  */
3567 static int ext4_journalled_set_page_dirty(struct page *page)
3568 {
3569         SetPageChecked(page);
3570         return __set_page_dirty_nobuffers(page);
3571 }
3572
3573 static int ext4_set_page_dirty(struct page *page)
3574 {
3575         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3576         WARN_ON_ONCE(!page_has_buffers(page));
3577         return __set_page_dirty_buffers(page);
3578 }
3579
3580 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3581                                     struct file *file, sector_t *span)
3582 {
3583         return iomap_swapfile_activate(sis, file, span,
3584                                        &ext4_iomap_report_ops);
3585 }
3586
3587 static const struct address_space_operations ext4_aops = {
3588         .readpage               = ext4_readpage,
3589         .readahead              = ext4_readahead,
3590         .writepage              = ext4_writepage,
3591         .writepages             = ext4_writepages,
3592         .write_begin            = ext4_write_begin,
3593         .write_end              = ext4_write_end,
3594         .set_page_dirty         = ext4_set_page_dirty,
3595         .bmap                   = ext4_bmap,
3596         .invalidatepage         = ext4_invalidatepage,
3597         .releasepage            = ext4_releasepage,
3598         .direct_IO              = noop_direct_IO,
3599         .migratepage            = buffer_migrate_page,
3600         .is_partially_uptodate  = block_is_partially_uptodate,
3601         .error_remove_page      = generic_error_remove_page,
3602         .swap_activate          = ext4_iomap_swap_activate,
3603 };
3604
3605 static const struct address_space_operations ext4_journalled_aops = {
3606         .readpage               = ext4_readpage,
3607         .readahead              = ext4_readahead,
3608         .writepage              = ext4_writepage,
3609         .writepages             = ext4_writepages,
3610         .write_begin            = ext4_write_begin,
3611         .write_end              = ext4_journalled_write_end,
3612         .set_page_dirty         = ext4_journalled_set_page_dirty,
3613         .bmap                   = ext4_bmap,
3614         .invalidatepage         = ext4_journalled_invalidatepage,
3615         .releasepage            = ext4_releasepage,
3616         .direct_IO              = noop_direct_IO,
3617         .is_partially_uptodate  = block_is_partially_uptodate,
3618         .error_remove_page      = generic_error_remove_page,
3619         .swap_activate          = ext4_iomap_swap_activate,
3620 };
3621
3622 static const struct address_space_operations ext4_da_aops = {
3623         .readpage               = ext4_readpage,
3624         .readahead              = ext4_readahead,
3625         .writepage              = ext4_writepage,
3626         .writepages             = ext4_writepages,
3627         .write_begin            = ext4_da_write_begin,
3628         .write_end              = ext4_da_write_end,
3629         .set_page_dirty         = ext4_set_page_dirty,
3630         .bmap                   = ext4_bmap,
3631         .invalidatepage         = ext4_invalidatepage,
3632         .releasepage            = ext4_releasepage,
3633         .direct_IO              = noop_direct_IO,
3634         .migratepage            = buffer_migrate_page,
3635         .is_partially_uptodate  = block_is_partially_uptodate,
3636         .error_remove_page      = generic_error_remove_page,
3637         .swap_activate          = ext4_iomap_swap_activate,
3638 };
3639
3640 static const struct address_space_operations ext4_dax_aops = {
3641         .writepages             = ext4_dax_writepages,
3642         .direct_IO              = noop_direct_IO,
3643         .set_page_dirty         = __set_page_dirty_no_writeback,
3644         .bmap                   = ext4_bmap,
3645         .invalidatepage         = noop_invalidatepage,
3646         .swap_activate          = ext4_iomap_swap_activate,
3647 };
3648
3649 void ext4_set_aops(struct inode *inode)
3650 {
3651         switch (ext4_inode_journal_mode(inode)) {
3652         case EXT4_INODE_ORDERED_DATA_MODE:
3653         case EXT4_INODE_WRITEBACK_DATA_MODE:
3654                 break;
3655         case EXT4_INODE_JOURNAL_DATA_MODE:
3656                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3657                 return;
3658         default:
3659                 BUG();
3660         }
3661         if (IS_DAX(inode))
3662                 inode->i_mapping->a_ops = &ext4_dax_aops;
3663         else if (test_opt(inode->i_sb, DELALLOC))
3664                 inode->i_mapping->a_ops = &ext4_da_aops;
3665         else
3666                 inode->i_mapping->a_ops = &ext4_aops;
3667 }
3668
3669 static int __ext4_block_zero_page_range(handle_t *handle,
3670                 struct address_space *mapping, loff_t from, loff_t length)
3671 {
3672         ext4_fsblk_t index = from >> PAGE_SHIFT;
3673         unsigned offset = from & (PAGE_SIZE-1);
3674         unsigned blocksize, pos;
3675         ext4_lblk_t iblock;
3676         struct inode *inode = mapping->host;
3677         struct buffer_head *bh;
3678         struct page *page;
3679         int err = 0;
3680
3681         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3682                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3683         if (!page)
3684                 return -ENOMEM;
3685
3686         blocksize = inode->i_sb->s_blocksize;
3687
3688         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3689
3690         if (!page_has_buffers(page))
3691                 create_empty_buffers(page, blocksize, 0);
3692
3693         /* Find the buffer that contains "offset" */
3694         bh = page_buffers(page);
3695         pos = blocksize;
3696         while (offset >= pos) {
3697                 bh = bh->b_this_page;
3698                 iblock++;
3699                 pos += blocksize;
3700         }
3701         if (buffer_freed(bh)) {
3702                 BUFFER_TRACE(bh, "freed: skip");
3703                 goto unlock;
3704         }
3705         if (!buffer_mapped(bh)) {
3706                 BUFFER_TRACE(bh, "unmapped");
3707                 ext4_get_block(inode, iblock, bh, 0);
3708                 /* unmapped? It's a hole - nothing to do */
3709                 if (!buffer_mapped(bh)) {
3710                         BUFFER_TRACE(bh, "still unmapped");
3711                         goto unlock;
3712                 }
3713         }
3714
3715         /* Ok, it's mapped. Make sure it's up-to-date */
3716         if (PageUptodate(page))
3717                 set_buffer_uptodate(bh);
3718
3719         if (!buffer_uptodate(bh)) {
3720                 err = ext4_read_bh_lock(bh, 0, true);
3721                 if (err)
3722                         goto unlock;
3723                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3724                         /* We expect the key to be set. */
3725                         BUG_ON(!fscrypt_has_encryption_key(inode));
3726                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3727                                                                bh_offset(bh));
3728                         if (err) {
3729                                 clear_buffer_uptodate(bh);
3730                                 goto unlock;
3731                         }
3732                 }
3733         }
3734         if (ext4_should_journal_data(inode)) {
3735                 BUFFER_TRACE(bh, "get write access");
3736                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3737                                                     EXT4_JTR_NONE);
3738                 if (err)
3739                         goto unlock;
3740         }
3741         zero_user(page, offset, length);
3742         BUFFER_TRACE(bh, "zeroed end of block");
3743
3744         if (ext4_should_journal_data(inode)) {
3745                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3746         } else {
3747                 err = 0;
3748                 mark_buffer_dirty(bh);
3749                 if (ext4_should_order_data(inode))
3750                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3751                                         length);
3752         }
3753
3754 unlock:
3755         unlock_page(page);
3756         put_page(page);
3757         return err;
3758 }
3759
3760 /*
3761  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3762  * starting from file offset 'from'.  The range to be zero'd must
3763  * be contained with in one block.  If the specified range exceeds
3764  * the end of the block it will be shortened to end of the block
3765  * that corresponds to 'from'
3766  */
3767 static int ext4_block_zero_page_range(handle_t *handle,
3768                 struct address_space *mapping, loff_t from, loff_t length)
3769 {
3770         struct inode *inode = mapping->host;
3771         unsigned offset = from & (PAGE_SIZE-1);
3772         unsigned blocksize = inode->i_sb->s_blocksize;
3773         unsigned max = blocksize - (offset & (blocksize - 1));
3774
3775         /*
3776          * correct length if it does not fall between
3777          * 'from' and the end of the block
3778          */
3779         if (length > max || length < 0)
3780                 length = max;
3781
3782         if (IS_DAX(inode)) {
3783                 return iomap_zero_range(inode, from, length, NULL,
3784                                         &ext4_iomap_ops);
3785         }
3786         return __ext4_block_zero_page_range(handle, mapping, from, length);
3787 }
3788
3789 /*
3790  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3791  * up to the end of the block which corresponds to `from'.
3792  * This required during truncate. We need to physically zero the tail end
3793  * of that block so it doesn't yield old data if the file is later grown.
3794  */
3795 static int ext4_block_truncate_page(handle_t *handle,
3796                 struct address_space *mapping, loff_t from)
3797 {
3798         unsigned offset = from & (PAGE_SIZE-1);
3799         unsigned length;
3800         unsigned blocksize;
3801         struct inode *inode = mapping->host;
3802
3803         /* If we are processing an encrypted inode during orphan list handling */
3804         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3805                 return 0;
3806
3807         blocksize = inode->i_sb->s_blocksize;
3808         length = blocksize - (offset & (blocksize - 1));
3809
3810         return ext4_block_zero_page_range(handle, mapping, from, length);
3811 }
3812
3813 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3814                              loff_t lstart, loff_t length)
3815 {
3816         struct super_block *sb = inode->i_sb;
3817         struct address_space *mapping = inode->i_mapping;
3818         unsigned partial_start, partial_end;
3819         ext4_fsblk_t start, end;
3820         loff_t byte_end = (lstart + length - 1);
3821         int err = 0;
3822
3823         partial_start = lstart & (sb->s_blocksize - 1);
3824         partial_end = byte_end & (sb->s_blocksize - 1);
3825
3826         start = lstart >> sb->s_blocksize_bits;
3827         end = byte_end >> sb->s_blocksize_bits;
3828
3829         /* Handle partial zero within the single block */
3830         if (start == end &&
3831             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3832                 err = ext4_block_zero_page_range(handle, mapping,
3833                                                  lstart, length);
3834                 return err;
3835         }
3836         /* Handle partial zero out on the start of the range */
3837         if (partial_start) {
3838                 err = ext4_block_zero_page_range(handle, mapping,
3839                                                  lstart, sb->s_blocksize);
3840                 if (err)
3841                         return err;
3842         }
3843         /* Handle partial zero out on the end of the range */
3844         if (partial_end != sb->s_blocksize - 1)
3845                 err = ext4_block_zero_page_range(handle, mapping,
3846                                                  byte_end - partial_end,
3847                                                  partial_end + 1);
3848         return err;
3849 }
3850
3851 int ext4_can_truncate(struct inode *inode)
3852 {
3853         if (S_ISREG(inode->i_mode))
3854                 return 1;
3855         if (S_ISDIR(inode->i_mode))
3856                 return 1;
3857         if (S_ISLNK(inode->i_mode))
3858                 return !ext4_inode_is_fast_symlink(inode);
3859         return 0;
3860 }
3861
3862 /*
3863  * We have to make sure i_disksize gets properly updated before we truncate
3864  * page cache due to hole punching or zero range. Otherwise i_disksize update
3865  * can get lost as it may have been postponed to submission of writeback but
3866  * that will never happen after we truncate page cache.
3867  */
3868 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3869                                       loff_t len)
3870 {
3871         handle_t *handle;
3872         int ret;
3873
3874         loff_t size = i_size_read(inode);
3875
3876         WARN_ON(!inode_is_locked(inode));
3877         if (offset > size || offset + len < size)
3878                 return 0;
3879
3880         if (EXT4_I(inode)->i_disksize >= size)
3881                 return 0;
3882
3883         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3884         if (IS_ERR(handle))
3885                 return PTR_ERR(handle);
3886         ext4_update_i_disksize(inode, size);
3887         ret = ext4_mark_inode_dirty(handle, inode);
3888         ext4_journal_stop(handle);
3889
3890         return ret;
3891 }
3892
3893 static void ext4_wait_dax_page(struct inode *inode)
3894 {
3895         filemap_invalidate_unlock(inode->i_mapping);
3896         schedule();
3897         filemap_invalidate_lock(inode->i_mapping);
3898 }
3899
3900 int ext4_break_layouts(struct inode *inode)
3901 {
3902         struct page *page;
3903         int error;
3904
3905         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3906                 return -EINVAL;
3907
3908         do {
3909                 page = dax_layout_busy_page(inode->i_mapping);
3910                 if (!page)
3911                         return 0;
3912
3913                 error = ___wait_var_event(&page->_refcount,
3914                                 atomic_read(&page->_refcount) == 1,
3915                                 TASK_INTERRUPTIBLE, 0, 0,
3916                                 ext4_wait_dax_page(inode));
3917         } while (error == 0);
3918
3919         return error;
3920 }
3921
3922 /*
3923  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3924  * associated with the given offset and length
3925  *
3926  * @inode:  File inode
3927  * @offset: The offset where the hole will begin
3928  * @len:    The length of the hole
3929  *
3930  * Returns: 0 on success or negative on failure
3931  */
3932
3933 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3934 {
3935         struct super_block *sb = inode->i_sb;
3936         ext4_lblk_t first_block, stop_block;
3937         struct address_space *mapping = inode->i_mapping;
3938         loff_t first_block_offset, last_block_offset;
3939         handle_t *handle;
3940         unsigned int credits;
3941         int ret = 0, ret2 = 0;
3942
3943         trace_ext4_punch_hole(inode, offset, length, 0);
3944
3945         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3946         if (ext4_has_inline_data(inode)) {
3947                 filemap_invalidate_lock(mapping);
3948                 ret = ext4_convert_inline_data(inode);
3949                 filemap_invalidate_unlock(mapping);
3950                 if (ret)
3951                         return ret;
3952         }
3953
3954         /*
3955          * Write out all dirty pages to avoid race conditions
3956          * Then release them.
3957          */
3958         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3959                 ret = filemap_write_and_wait_range(mapping, offset,
3960                                                    offset + length - 1);
3961                 if (ret)
3962                         return ret;
3963         }
3964
3965         inode_lock(inode);
3966
3967         /* No need to punch hole beyond i_size */
3968         if (offset >= inode->i_size)
3969                 goto out_mutex;
3970
3971         /*
3972          * If the hole extends beyond i_size, set the hole
3973          * to end after the page that contains i_size
3974          */
3975         if (offset + length > inode->i_size) {
3976                 length = inode->i_size +
3977                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3978                    offset;
3979         }
3980
3981         if (offset & (sb->s_blocksize - 1) ||
3982             (offset + length) & (sb->s_blocksize - 1)) {
3983                 /*
3984                  * Attach jinode to inode for jbd2 if we do any zeroing of
3985                  * partial block
3986                  */
3987                 ret = ext4_inode_attach_jinode(inode);
3988                 if (ret < 0)
3989                         goto out_mutex;
3990
3991         }
3992
3993         /* Wait all existing dio workers, newcomers will block on i_mutex */
3994         inode_dio_wait(inode);
3995
3996         /*
3997          * Prevent page faults from reinstantiating pages we have released from
3998          * page cache.
3999          */
4000         filemap_invalidate_lock(mapping);
4001
4002         ret = ext4_break_layouts(inode);
4003         if (ret)
4004                 goto out_dio;
4005
4006         first_block_offset = round_up(offset, sb->s_blocksize);
4007         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4008
4009         /* Now release the pages and zero block aligned part of pages*/
4010         if (last_block_offset > first_block_offset) {
4011                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4012                 if (ret)
4013                         goto out_dio;
4014                 truncate_pagecache_range(inode, first_block_offset,
4015                                          last_block_offset);
4016         }
4017
4018         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4019                 credits = ext4_writepage_trans_blocks(inode);
4020         else
4021                 credits = ext4_blocks_for_truncate(inode);
4022         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4023         if (IS_ERR(handle)) {
4024                 ret = PTR_ERR(handle);
4025                 ext4_std_error(sb, ret);
4026                 goto out_dio;
4027         }
4028
4029         ret = ext4_zero_partial_blocks(handle, inode, offset,
4030                                        length);
4031         if (ret)
4032                 goto out_stop;
4033
4034         first_block = (offset + sb->s_blocksize - 1) >>
4035                 EXT4_BLOCK_SIZE_BITS(sb);
4036         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4037
4038         /* If there are blocks to remove, do it */
4039         if (stop_block > first_block) {
4040
4041                 down_write(&EXT4_I(inode)->i_data_sem);
4042                 ext4_discard_preallocations(inode, 0);
4043
4044                 ret = ext4_es_remove_extent(inode, first_block,
4045                                             stop_block - first_block);
4046                 if (ret) {
4047                         up_write(&EXT4_I(inode)->i_data_sem);
4048                         goto out_stop;
4049                 }
4050
4051                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4052                         ret = ext4_ext_remove_space(inode, first_block,
4053                                                     stop_block - 1);
4054                 else
4055                         ret = ext4_ind_remove_space(handle, inode, first_block,
4056                                                     stop_block);
4057
4058                 up_write(&EXT4_I(inode)->i_data_sem);
4059         }
4060         ext4_fc_track_range(handle, inode, first_block, stop_block);
4061         if (IS_SYNC(inode))
4062                 ext4_handle_sync(handle);
4063
4064         inode->i_mtime = inode->i_ctime = current_time(inode);
4065         ret2 = ext4_mark_inode_dirty(handle, inode);
4066         if (unlikely(ret2))
4067                 ret = ret2;
4068         if (ret >= 0)
4069                 ext4_update_inode_fsync_trans(handle, inode, 1);
4070 out_stop:
4071         ext4_journal_stop(handle);
4072 out_dio:
4073         filemap_invalidate_unlock(mapping);
4074 out_mutex:
4075         inode_unlock(inode);
4076         return ret;
4077 }
4078
4079 int ext4_inode_attach_jinode(struct inode *inode)
4080 {
4081         struct ext4_inode_info *ei = EXT4_I(inode);
4082         struct jbd2_inode *jinode;
4083
4084         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4085                 return 0;
4086
4087         jinode = jbd2_alloc_inode(GFP_KERNEL);
4088         spin_lock(&inode->i_lock);
4089         if (!ei->jinode) {
4090                 if (!jinode) {
4091                         spin_unlock(&inode->i_lock);
4092                         return -ENOMEM;
4093                 }
4094                 ei->jinode = jinode;
4095                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4096                 jinode = NULL;
4097         }
4098         spin_unlock(&inode->i_lock);
4099         if (unlikely(jinode != NULL))
4100                 jbd2_free_inode(jinode);
4101         return 0;
4102 }
4103
4104 /*
4105  * ext4_truncate()
4106  *
4107  * We block out ext4_get_block() block instantiations across the entire
4108  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4109  * simultaneously on behalf of the same inode.
4110  *
4111  * As we work through the truncate and commit bits of it to the journal there
4112  * is one core, guiding principle: the file's tree must always be consistent on
4113  * disk.  We must be able to restart the truncate after a crash.
4114  *
4115  * The file's tree may be transiently inconsistent in memory (although it
4116  * probably isn't), but whenever we close off and commit a journal transaction,
4117  * the contents of (the filesystem + the journal) must be consistent and
4118  * restartable.  It's pretty simple, really: bottom up, right to left (although
4119  * left-to-right works OK too).
4120  *
4121  * Note that at recovery time, journal replay occurs *before* the restart of
4122  * truncate against the orphan inode list.
4123  *
4124  * The committed inode has the new, desired i_size (which is the same as
4125  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4126  * that this inode's truncate did not complete and it will again call
4127  * ext4_truncate() to have another go.  So there will be instantiated blocks
4128  * to the right of the truncation point in a crashed ext4 filesystem.  But
4129  * that's fine - as long as they are linked from the inode, the post-crash
4130  * ext4_truncate() run will find them and release them.
4131  */
4132 int ext4_truncate(struct inode *inode)
4133 {
4134         struct ext4_inode_info *ei = EXT4_I(inode);
4135         unsigned int credits;
4136         int err = 0, err2;
4137         handle_t *handle;
4138         struct address_space *mapping = inode->i_mapping;
4139
4140         /*
4141          * There is a possibility that we're either freeing the inode
4142          * or it's a completely new inode. In those cases we might not
4143          * have i_mutex locked because it's not necessary.
4144          */
4145         if (!(inode->i_state & (I_NEW|I_FREEING)))
4146                 WARN_ON(!inode_is_locked(inode));
4147         trace_ext4_truncate_enter(inode);
4148
4149         if (!ext4_can_truncate(inode))
4150                 goto out_trace;
4151
4152         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4153                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4154
4155         if (ext4_has_inline_data(inode)) {
4156                 int has_inline = 1;
4157
4158                 err = ext4_inline_data_truncate(inode, &has_inline);
4159                 if (err || has_inline)
4160                         goto out_trace;
4161         }
4162
4163         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4164         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4165                 if (ext4_inode_attach_jinode(inode) < 0)
4166                         goto out_trace;
4167         }
4168
4169         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4170                 credits = ext4_writepage_trans_blocks(inode);
4171         else
4172                 credits = ext4_blocks_for_truncate(inode);
4173
4174         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4175         if (IS_ERR(handle)) {
4176                 err = PTR_ERR(handle);
4177                 goto out_trace;
4178         }
4179
4180         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4181                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4182
4183         /*
4184          * We add the inode to the orphan list, so that if this
4185          * truncate spans multiple transactions, and we crash, we will
4186          * resume the truncate when the filesystem recovers.  It also
4187          * marks the inode dirty, to catch the new size.
4188          *
4189          * Implication: the file must always be in a sane, consistent
4190          * truncatable state while each transaction commits.
4191          */
4192         err = ext4_orphan_add(handle, inode);
4193         if (err)
4194                 goto out_stop;
4195
4196         down_write(&EXT4_I(inode)->i_data_sem);
4197
4198         ext4_discard_preallocations(inode, 0);
4199
4200         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4201                 err = ext4_ext_truncate(handle, inode);
4202         else
4203                 ext4_ind_truncate(handle, inode);
4204
4205         up_write(&ei->i_data_sem);
4206         if (err)
4207                 goto out_stop;
4208
4209         if (IS_SYNC(inode))
4210                 ext4_handle_sync(handle);
4211
4212 out_stop:
4213         /*
4214          * If this was a simple ftruncate() and the file will remain alive,
4215          * then we need to clear up the orphan record which we created above.
4216          * However, if this was a real unlink then we were called by
4217          * ext4_evict_inode(), and we allow that function to clean up the
4218          * orphan info for us.
4219          */
4220         if (inode->i_nlink)
4221                 ext4_orphan_del(handle, inode);
4222
4223         inode->i_mtime = inode->i_ctime = current_time(inode);
4224         err2 = ext4_mark_inode_dirty(handle, inode);
4225         if (unlikely(err2 && !err))
4226                 err = err2;
4227         ext4_journal_stop(handle);
4228
4229 out_trace:
4230         trace_ext4_truncate_exit(inode);
4231         return err;
4232 }
4233
4234 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4235 {
4236         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4237                 return inode_peek_iversion_raw(inode);
4238         else
4239                 return inode_peek_iversion(inode);
4240 }
4241
4242 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4243                                  struct ext4_inode_info *ei)
4244 {
4245         struct inode *inode = &(ei->vfs_inode);
4246         u64 i_blocks = READ_ONCE(inode->i_blocks);
4247         struct super_block *sb = inode->i_sb;
4248
4249         if (i_blocks <= ~0U) {
4250                 /*
4251                  * i_blocks can be represented in a 32 bit variable
4252                  * as multiple of 512 bytes
4253                  */
4254                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4255                 raw_inode->i_blocks_high = 0;
4256                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4257                 return 0;
4258         }
4259
4260         /*
4261          * This should never happen since sb->s_maxbytes should not have
4262          * allowed this, sb->s_maxbytes was set according to the huge_file
4263          * feature in ext4_fill_super().
4264          */
4265         if (!ext4_has_feature_huge_file(sb))
4266                 return -EFSCORRUPTED;
4267
4268         if (i_blocks <= 0xffffffffffffULL) {
4269                 /*
4270                  * i_blocks can be represented in a 48 bit variable
4271                  * as multiple of 512 bytes
4272                  */
4273                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4274                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4275                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276         } else {
4277                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4278                 /* i_block is stored in file system block size */
4279                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4280                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282         }
4283         return 0;
4284 }
4285
4286 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4287 {
4288         struct ext4_inode_info *ei = EXT4_I(inode);
4289         uid_t i_uid;
4290         gid_t i_gid;
4291         projid_t i_projid;
4292         int block;
4293         int err;
4294
4295         err = ext4_inode_blocks_set(raw_inode, ei);
4296
4297         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4298         i_uid = i_uid_read(inode);
4299         i_gid = i_gid_read(inode);
4300         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4301         if (!(test_opt(inode->i_sb, NO_UID32))) {
4302                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4303                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4304                 /*
4305                  * Fix up interoperability with old kernels. Otherwise,
4306                  * old inodes get re-used with the upper 16 bits of the
4307                  * uid/gid intact.
4308                  */
4309                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4310                         raw_inode->i_uid_high = 0;
4311                         raw_inode->i_gid_high = 0;
4312                 } else {
4313                         raw_inode->i_uid_high =
4314                                 cpu_to_le16(high_16_bits(i_uid));
4315                         raw_inode->i_gid_high =
4316                                 cpu_to_le16(high_16_bits(i_gid));
4317                 }
4318         } else {
4319                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4320                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4321                 raw_inode->i_uid_high = 0;
4322                 raw_inode->i_gid_high = 0;
4323         }
4324         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4325
4326         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4327         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4328         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4329         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4330
4331         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4332         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4333         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4334                 raw_inode->i_file_acl_high =
4335                         cpu_to_le16(ei->i_file_acl >> 32);
4336         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4337         ext4_isize_set(raw_inode, ei->i_disksize);
4338
4339         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4340         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4341                 if (old_valid_dev(inode->i_rdev)) {
4342                         raw_inode->i_block[0] =
4343                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4344                         raw_inode->i_block[1] = 0;
4345                 } else {
4346                         raw_inode->i_block[0] = 0;
4347                         raw_inode->i_block[1] =
4348                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4349                         raw_inode->i_block[2] = 0;
4350                 }
4351         } else if (!ext4_has_inline_data(inode)) {
4352                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4353                         raw_inode->i_block[block] = ei->i_data[block];
4354         }
4355
4356         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4357                 u64 ivers = ext4_inode_peek_iversion(inode);
4358
4359                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4360                 if (ei->i_extra_isize) {
4361                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4362                                 raw_inode->i_version_hi =
4363                                         cpu_to_le32(ivers >> 32);
4364                         raw_inode->i_extra_isize =
4365                                 cpu_to_le16(ei->i_extra_isize);
4366                 }
4367         }
4368
4369         if (i_projid != EXT4_DEF_PROJID &&
4370             !ext4_has_feature_project(inode->i_sb))
4371                 err = err ?: -EFSCORRUPTED;
4372
4373         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4374             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4375                 raw_inode->i_projid = cpu_to_le32(i_projid);
4376
4377         ext4_inode_csum_set(inode, raw_inode, ei);
4378         return err;
4379 }
4380
4381 /*
4382  * ext4_get_inode_loc returns with an extra refcount against the inode's
4383  * underlying buffer_head on success. If we pass 'inode' and it does not
4384  * have in-inode xattr, we have all inode data in memory that is needed
4385  * to recreate the on-disk version of this inode.
4386  */
4387 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4388                                 struct inode *inode, struct ext4_iloc *iloc,
4389                                 ext4_fsblk_t *ret_block)
4390 {
4391         struct ext4_group_desc  *gdp;
4392         struct buffer_head      *bh;
4393         ext4_fsblk_t            block;
4394         struct blk_plug         plug;
4395         int                     inodes_per_block, inode_offset;
4396
4397         iloc->bh = NULL;
4398         if (ino < EXT4_ROOT_INO ||
4399             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4400                 return -EFSCORRUPTED;
4401
4402         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4403         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4404         if (!gdp)
4405                 return -EIO;
4406
4407         /*
4408          * Figure out the offset within the block group inode table
4409          */
4410         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4411         inode_offset = ((ino - 1) %
4412                         EXT4_INODES_PER_GROUP(sb));
4413         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4414         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4415
4416         bh = sb_getblk(sb, block);
4417         if (unlikely(!bh))
4418                 return -ENOMEM;
4419         if (ext4_buffer_uptodate(bh))
4420                 goto has_buffer;
4421
4422         lock_buffer(bh);
4423         if (ext4_buffer_uptodate(bh)) {
4424                 /* Someone brought it uptodate while we waited */
4425                 unlock_buffer(bh);
4426                 goto has_buffer;
4427         }
4428
4429         /*
4430          * If we have all information of the inode in memory and this
4431          * is the only valid inode in the block, we need not read the
4432          * block.
4433          */
4434         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4435                 struct buffer_head *bitmap_bh;
4436                 int i, start;
4437
4438                 start = inode_offset & ~(inodes_per_block - 1);
4439
4440                 /* Is the inode bitmap in cache? */
4441                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4442                 if (unlikely(!bitmap_bh))
4443                         goto make_io;
4444
4445                 /*
4446                  * If the inode bitmap isn't in cache then the
4447                  * optimisation may end up performing two reads instead
4448                  * of one, so skip it.
4449                  */
4450                 if (!buffer_uptodate(bitmap_bh)) {
4451                         brelse(bitmap_bh);
4452                         goto make_io;
4453                 }
4454                 for (i = start; i < start + inodes_per_block; i++) {
4455                         if (i == inode_offset)
4456                                 continue;
4457                         if (ext4_test_bit(i, bitmap_bh->b_data))
4458                                 break;
4459                 }
4460                 brelse(bitmap_bh);
4461                 if (i == start + inodes_per_block) {
4462                         struct ext4_inode *raw_inode =
4463                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4464
4465                         /* all other inodes are free, so skip I/O */
4466                         memset(bh->b_data, 0, bh->b_size);
4467                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4468                                 ext4_fill_raw_inode(inode, raw_inode);
4469                         set_buffer_uptodate(bh);
4470                         unlock_buffer(bh);
4471                         goto has_buffer;
4472                 }
4473         }
4474
4475 make_io:
4476         /*
4477          * If we need to do any I/O, try to pre-readahead extra
4478          * blocks from the inode table.
4479          */
4480         blk_start_plug(&plug);
4481         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4482                 ext4_fsblk_t b, end, table;
4483                 unsigned num;
4484                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4485
4486                 table = ext4_inode_table(sb, gdp);
4487                 /* s_inode_readahead_blks is always a power of 2 */
4488                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4489                 if (table > b)
4490                         b = table;
4491                 end = b + ra_blks;
4492                 num = EXT4_INODES_PER_GROUP(sb);
4493                 if (ext4_has_group_desc_csum(sb))
4494                         num -= ext4_itable_unused_count(sb, gdp);
4495                 table += num / inodes_per_block;
4496                 if (end > table)
4497                         end = table;
4498                 while (b <= end)
4499                         ext4_sb_breadahead_unmovable(sb, b++);
4500         }
4501
4502         /*
4503          * There are other valid inodes in the buffer, this inode
4504          * has in-inode xattrs, or we don't have this inode in memory.
4505          * Read the block from disk.
4506          */
4507         trace_ext4_load_inode(sb, ino);
4508         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4509         blk_finish_plug(&plug);
4510         wait_on_buffer(bh);
4511         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4512         if (!buffer_uptodate(bh)) {
4513                 if (ret_block)
4514                         *ret_block = block;
4515                 brelse(bh);
4516                 return -EIO;
4517         }
4518 has_buffer:
4519         iloc->bh = bh;
4520         return 0;
4521 }
4522
4523 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4524                                         struct ext4_iloc *iloc)
4525 {
4526         ext4_fsblk_t err_blk;
4527         int ret;
4528
4529         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4530                                         &err_blk);
4531
4532         if (ret == -EIO)
4533                 ext4_error_inode_block(inode, err_blk, EIO,
4534                                         "unable to read itable block");
4535
4536         return ret;
4537 }
4538
4539 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4540 {
4541         ext4_fsblk_t err_blk;
4542         int ret;
4543
4544         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4545                                         &err_blk);
4546
4547         if (ret == -EIO)
4548                 ext4_error_inode_block(inode, err_blk, EIO,
4549                                         "unable to read itable block");
4550
4551         return ret;
4552 }
4553
4554
4555 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4556                           struct ext4_iloc *iloc)
4557 {
4558         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4559 }
4560
4561 static bool ext4_should_enable_dax(struct inode *inode)
4562 {
4563         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4564
4565         if (test_opt2(inode->i_sb, DAX_NEVER))
4566                 return false;
4567         if (!S_ISREG(inode->i_mode))
4568                 return false;
4569         if (ext4_should_journal_data(inode))
4570                 return false;
4571         if (ext4_has_inline_data(inode))
4572                 return false;
4573         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4574                 return false;
4575         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4576                 return false;
4577         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4578                 return false;
4579         if (test_opt(inode->i_sb, DAX_ALWAYS))
4580                 return true;
4581
4582         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4583 }
4584
4585 void ext4_set_inode_flags(struct inode *inode, bool init)
4586 {
4587         unsigned int flags = EXT4_I(inode)->i_flags;
4588         unsigned int new_fl = 0;
4589
4590         WARN_ON_ONCE(IS_DAX(inode) && init);
4591
4592         if (flags & EXT4_SYNC_FL)
4593                 new_fl |= S_SYNC;
4594         if (flags & EXT4_APPEND_FL)
4595                 new_fl |= S_APPEND;
4596         if (flags & EXT4_IMMUTABLE_FL)
4597                 new_fl |= S_IMMUTABLE;
4598         if (flags & EXT4_NOATIME_FL)
4599                 new_fl |= S_NOATIME;
4600         if (flags & EXT4_DIRSYNC_FL)
4601                 new_fl |= S_DIRSYNC;
4602
4603         /* Because of the way inode_set_flags() works we must preserve S_DAX
4604          * here if already set. */
4605         new_fl |= (inode->i_flags & S_DAX);
4606         if (init && ext4_should_enable_dax(inode))
4607                 new_fl |= S_DAX;
4608
4609         if (flags & EXT4_ENCRYPT_FL)
4610                 new_fl |= S_ENCRYPTED;
4611         if (flags & EXT4_CASEFOLD_FL)
4612                 new_fl |= S_CASEFOLD;
4613         if (flags & EXT4_VERITY_FL)
4614                 new_fl |= S_VERITY;
4615         inode_set_flags(inode, new_fl,
4616                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4617                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4618 }
4619
4620 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4621                                   struct ext4_inode_info *ei)
4622 {
4623         blkcnt_t i_blocks ;
4624         struct inode *inode = &(ei->vfs_inode);
4625         struct super_block *sb = inode->i_sb;
4626
4627         if (ext4_has_feature_huge_file(sb)) {
4628                 /* we are using combined 48 bit field */
4629                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4630                                         le32_to_cpu(raw_inode->i_blocks_lo);
4631                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4632                         /* i_blocks represent file system block size */
4633                         return i_blocks  << (inode->i_blkbits - 9);
4634                 } else {
4635                         return i_blocks;
4636                 }
4637         } else {
4638                 return le32_to_cpu(raw_inode->i_blocks_lo);
4639         }
4640 }
4641
4642 static inline int ext4_iget_extra_inode(struct inode *inode,
4643                                          struct ext4_inode *raw_inode,
4644                                          struct ext4_inode_info *ei)
4645 {
4646         __le32 *magic = (void *)raw_inode +
4647                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4648
4649         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4650             EXT4_INODE_SIZE(inode->i_sb) &&
4651             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4652                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4653                 return ext4_find_inline_data_nolock(inode);
4654         } else
4655                 EXT4_I(inode)->i_inline_off = 0;
4656         return 0;
4657 }
4658
4659 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4660 {
4661         if (!ext4_has_feature_project(inode->i_sb))
4662                 return -EOPNOTSUPP;
4663         *projid = EXT4_I(inode)->i_projid;
4664         return 0;
4665 }
4666
4667 /*
4668  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4669  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4670  * set.
4671  */
4672 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4673 {
4674         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4675                 inode_set_iversion_raw(inode, val);
4676         else
4677                 inode_set_iversion_queried(inode, val);
4678 }
4679
4680 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4681                           ext4_iget_flags flags, const char *function,
4682                           unsigned int line)
4683 {
4684         struct ext4_iloc iloc;
4685         struct ext4_inode *raw_inode;
4686         struct ext4_inode_info *ei;
4687         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4688         struct inode *inode;
4689         journal_t *journal = EXT4_SB(sb)->s_journal;
4690         long ret;
4691         loff_t size;
4692         int block;
4693         uid_t i_uid;
4694         gid_t i_gid;
4695         projid_t i_projid;
4696
4697         if ((!(flags & EXT4_IGET_SPECIAL) &&
4698              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4699               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4700               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4701               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4702               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4703             (ino < EXT4_ROOT_INO) ||
4704             (ino > le32_to_cpu(es->s_inodes_count))) {
4705                 if (flags & EXT4_IGET_HANDLE)
4706                         return ERR_PTR(-ESTALE);
4707                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4708                              "inode #%lu: comm %s: iget: illegal inode #",
4709                              ino, current->comm);
4710                 return ERR_PTR(-EFSCORRUPTED);
4711         }
4712
4713         inode = iget_locked(sb, ino);
4714         if (!inode)
4715                 return ERR_PTR(-ENOMEM);
4716         if (!(inode->i_state & I_NEW))
4717                 return inode;
4718
4719         ei = EXT4_I(inode);
4720         iloc.bh = NULL;
4721
4722         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4723         if (ret < 0)
4724                 goto bad_inode;
4725         raw_inode = ext4_raw_inode(&iloc);
4726
4727         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4728                 ext4_error_inode(inode, function, line, 0,
4729                                  "iget: root inode unallocated");
4730                 ret = -EFSCORRUPTED;
4731                 goto bad_inode;
4732         }
4733
4734         if ((flags & EXT4_IGET_HANDLE) &&
4735             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4736                 ret = -ESTALE;
4737                 goto bad_inode;
4738         }
4739
4740         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4741                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4742                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4743                         EXT4_INODE_SIZE(inode->i_sb) ||
4744                     (ei->i_extra_isize & 3)) {
4745                         ext4_error_inode(inode, function, line, 0,
4746                                          "iget: bad extra_isize %u "
4747                                          "(inode size %u)",
4748                                          ei->i_extra_isize,
4749                                          EXT4_INODE_SIZE(inode->i_sb));
4750                         ret = -EFSCORRUPTED;
4751                         goto bad_inode;
4752                 }
4753         } else
4754                 ei->i_extra_isize = 0;
4755
4756         /* Precompute checksum seed for inode metadata */
4757         if (ext4_has_metadata_csum(sb)) {
4758                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4759                 __u32 csum;
4760                 __le32 inum = cpu_to_le32(inode->i_ino);
4761                 __le32 gen = raw_inode->i_generation;
4762                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4763                                    sizeof(inum));
4764                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4765                                               sizeof(gen));
4766         }
4767
4768         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4769             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4770              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4771                 ext4_error_inode_err(inode, function, line, 0,
4772                                 EFSBADCRC, "iget: checksum invalid");
4773                 ret = -EFSBADCRC;
4774                 goto bad_inode;
4775         }
4776
4777         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4778         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4779         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4780         if (ext4_has_feature_project(sb) &&
4781             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4782             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4783                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4784         else
4785                 i_projid = EXT4_DEF_PROJID;
4786
4787         if (!(test_opt(inode->i_sb, NO_UID32))) {
4788                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4789                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4790         }
4791         i_uid_write(inode, i_uid);
4792         i_gid_write(inode, i_gid);
4793         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4794         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4795
4796         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4797         ei->i_inline_off = 0;
4798         ei->i_dir_start_lookup = 0;
4799         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4800         /* We now have enough fields to check if the inode was active or not.
4801          * This is needed because nfsd might try to access dead inodes
4802          * the test is that same one that e2fsck uses
4803          * NeilBrown 1999oct15
4804          */
4805         if (inode->i_nlink == 0) {
4806                 if ((inode->i_mode == 0 ||
4807                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4808                     ino != EXT4_BOOT_LOADER_INO) {
4809                         /* this inode is deleted */
4810                         ret = -ESTALE;
4811                         goto bad_inode;
4812                 }
4813                 /* The only unlinked inodes we let through here have
4814                  * valid i_mode and are being read by the orphan
4815                  * recovery code: that's fine, we're about to complete
4816                  * the process of deleting those.
4817                  * OR it is the EXT4_BOOT_LOADER_INO which is
4818                  * not initialized on a new filesystem. */
4819         }
4820         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4821         ext4_set_inode_flags(inode, true);
4822         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4823         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4824         if (ext4_has_feature_64bit(sb))
4825                 ei->i_file_acl |=
4826                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4827         inode->i_size = ext4_isize(sb, raw_inode);
4828         if ((size = i_size_read(inode)) < 0) {
4829                 ext4_error_inode(inode, function, line, 0,
4830                                  "iget: bad i_size value: %lld", size);
4831                 ret = -EFSCORRUPTED;
4832                 goto bad_inode;
4833         }
4834         /*
4835          * If dir_index is not enabled but there's dir with INDEX flag set,
4836          * we'd normally treat htree data as empty space. But with metadata
4837          * checksumming that corrupts checksums so forbid that.
4838          */
4839         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4840             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4841                 ext4_error_inode(inode, function, line, 0,
4842                          "iget: Dir with htree data on filesystem without dir_index feature.");
4843                 ret = -EFSCORRUPTED;
4844                 goto bad_inode;
4845         }
4846         ei->i_disksize = inode->i_size;
4847 #ifdef CONFIG_QUOTA
4848         ei->i_reserved_quota = 0;
4849 #endif
4850         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4851         ei->i_block_group = iloc.block_group;
4852         ei->i_last_alloc_group = ~0;
4853         /*
4854          * NOTE! The in-memory inode i_data array is in little-endian order
4855          * even on big-endian machines: we do NOT byteswap the block numbers!
4856          */
4857         for (block = 0; block < EXT4_N_BLOCKS; block++)
4858                 ei->i_data[block] = raw_inode->i_block[block];
4859         INIT_LIST_HEAD(&ei->i_orphan);
4860         ext4_fc_init_inode(&ei->vfs_inode);
4861
4862         /*
4863          * Set transaction id's of transactions that have to be committed
4864          * to finish f[data]sync. We set them to currently running transaction
4865          * as we cannot be sure that the inode or some of its metadata isn't
4866          * part of the transaction - the inode could have been reclaimed and
4867          * now it is reread from disk.
4868          */
4869         if (journal) {
4870                 transaction_t *transaction;
4871                 tid_t tid;
4872
4873                 read_lock(&journal->j_state_lock);
4874                 if (journal->j_running_transaction)
4875                         transaction = journal->j_running_transaction;
4876                 else
4877                         transaction = journal->j_committing_transaction;
4878                 if (transaction)
4879                         tid = transaction->t_tid;
4880                 else
4881                         tid = journal->j_commit_sequence;
4882                 read_unlock(&journal->j_state_lock);
4883                 ei->i_sync_tid = tid;
4884                 ei->i_datasync_tid = tid;
4885         }
4886
4887         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4888                 if (ei->i_extra_isize == 0) {
4889                         /* The extra space is currently unused. Use it. */
4890                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4891                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4892                                             EXT4_GOOD_OLD_INODE_SIZE;
4893                 } else {
4894                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4895                         if (ret)
4896                                 goto bad_inode;
4897                 }
4898         }
4899
4900         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910                                 ivers |=
4911                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912                 }
4913                 ext4_inode_set_iversion_queried(inode, ivers);
4914         }
4915
4916         ret = 0;
4917         if (ei->i_file_acl &&
4918             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4919                 ext4_error_inode(inode, function, line, 0,
4920                                  "iget: bad extended attribute block %llu",
4921                                  ei->i_file_acl);
4922                 ret = -EFSCORRUPTED;
4923                 goto bad_inode;
4924         } else if (!ext4_has_inline_data(inode)) {
4925                 /* validate the block references in the inode */
4926                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4927                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4928                         (S_ISLNK(inode->i_mode) &&
4929                         !ext4_inode_is_fast_symlink(inode)))) {
4930                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4931                                 ret = ext4_ext_check_inode(inode);
4932                         else
4933                                 ret = ext4_ind_check_inode(inode);
4934                 }
4935         }
4936         if (ret)
4937                 goto bad_inode;
4938
4939         if (S_ISREG(inode->i_mode)) {
4940                 inode->i_op = &ext4_file_inode_operations;
4941                 inode->i_fop = &ext4_file_operations;
4942                 ext4_set_aops(inode);
4943         } else if (S_ISDIR(inode->i_mode)) {
4944                 inode->i_op = &ext4_dir_inode_operations;
4945                 inode->i_fop = &ext4_dir_operations;
4946         } else if (S_ISLNK(inode->i_mode)) {
4947                 /* VFS does not allow setting these so must be corruption */
4948                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4949                         ext4_error_inode(inode, function, line, 0,
4950                                          "iget: immutable or append flags "
4951                                          "not allowed on symlinks");
4952                         ret = -EFSCORRUPTED;
4953                         goto bad_inode;
4954                 }
4955                 if (IS_ENCRYPTED(inode)) {
4956                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4957                         ext4_set_aops(inode);
4958                 } else if (ext4_inode_is_fast_symlink(inode)) {
4959                         inode->i_link = (char *)ei->i_data;
4960                         inode->i_op = &ext4_fast_symlink_inode_operations;
4961                         nd_terminate_link(ei->i_data, inode->i_size,
4962                                 sizeof(ei->i_data) - 1);
4963                 } else {
4964                         inode->i_op = &ext4_symlink_inode_operations;
4965                         ext4_set_aops(inode);
4966                 }
4967                 inode_nohighmem(inode);
4968         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4969               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4970                 inode->i_op = &ext4_special_inode_operations;
4971                 if (raw_inode->i_block[0])
4972                         init_special_inode(inode, inode->i_mode,
4973                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4974                 else
4975                         init_special_inode(inode, inode->i_mode,
4976                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4977         } else if (ino == EXT4_BOOT_LOADER_INO) {
4978                 make_bad_inode(inode);
4979         } else {
4980                 ret = -EFSCORRUPTED;
4981                 ext4_error_inode(inode, function, line, 0,
4982                                  "iget: bogus i_mode (%o)", inode->i_mode);
4983                 goto bad_inode;
4984         }
4985         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4986                 ext4_error_inode(inode, function, line, 0,
4987                                  "casefold flag without casefold feature");
4988         brelse(iloc.bh);
4989
4990         unlock_new_inode(inode);
4991         return inode;
4992
4993 bad_inode:
4994         brelse(iloc.bh);
4995         iget_failed(inode);
4996         return ERR_PTR(ret);
4997 }
4998
4999 static void __ext4_update_other_inode_time(struct super_block *sb,
5000                                            unsigned long orig_ino,
5001                                            unsigned long ino,
5002                                            struct ext4_inode *raw_inode)
5003 {
5004         struct inode *inode;
5005
5006         inode = find_inode_by_ino_rcu(sb, ino);
5007         if (!inode)
5008                 return;
5009
5010         if (!inode_is_dirtytime_only(inode))
5011                 return;
5012
5013         spin_lock(&inode->i_lock);
5014         if (inode_is_dirtytime_only(inode)) {
5015                 struct ext4_inode_info  *ei = EXT4_I(inode);
5016
5017                 inode->i_state &= ~I_DIRTY_TIME;
5018                 spin_unlock(&inode->i_lock);
5019
5020                 spin_lock(&ei->i_raw_lock);
5021                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5022                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5023                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5024                 ext4_inode_csum_set(inode, raw_inode, ei);
5025                 spin_unlock(&ei->i_raw_lock);
5026                 trace_ext4_other_inode_update_time(inode, orig_ino);
5027                 return;
5028         }
5029         spin_unlock(&inode->i_lock);
5030 }
5031
5032 /*
5033  * Opportunistically update the other time fields for other inodes in
5034  * the same inode table block.
5035  */
5036 static void ext4_update_other_inodes_time(struct super_block *sb,
5037                                           unsigned long orig_ino, char *buf)
5038 {
5039         unsigned long ino;
5040         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5041         int inode_size = EXT4_INODE_SIZE(sb);
5042
5043         /*
5044          * Calculate the first inode in the inode table block.  Inode
5045          * numbers are one-based.  That is, the first inode in a block
5046          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5047          */
5048         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5049         rcu_read_lock();
5050         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5051                 if (ino == orig_ino)
5052                         continue;
5053                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5054                                                (struct ext4_inode *)buf);
5055         }
5056         rcu_read_unlock();
5057 }
5058
5059 /*
5060  * Post the struct inode info into an on-disk inode location in the
5061  * buffer-cache.  This gobbles the caller's reference to the
5062  * buffer_head in the inode location struct.
5063  *
5064  * The caller must have write access to iloc->bh.
5065  */
5066 static int ext4_do_update_inode(handle_t *handle,
5067                                 struct inode *inode,
5068                                 struct ext4_iloc *iloc)
5069 {
5070         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5071         struct ext4_inode_info *ei = EXT4_I(inode);
5072         struct buffer_head *bh = iloc->bh;
5073         struct super_block *sb = inode->i_sb;
5074         int err;
5075         int need_datasync = 0, set_large_file = 0;
5076
5077         spin_lock(&ei->i_raw_lock);
5078
5079         /*
5080          * For fields not tracked in the in-memory inode, initialise them
5081          * to zero for new inodes.
5082          */
5083         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5085
5086         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5087                 need_datasync = 1;
5088         if (ei->i_disksize > 0x7fffffffULL) {
5089                 if (!ext4_has_feature_large_file(sb) ||
5090                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5091                         set_large_file = 1;
5092         }
5093
5094         err = ext4_fill_raw_inode(inode, raw_inode);
5095         spin_unlock(&ei->i_raw_lock);
5096         if (err) {
5097                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5098                 goto out_brelse;
5099         }
5100
5101         if (inode->i_sb->s_flags & SB_LAZYTIME)
5102                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5103                                               bh->b_data);
5104
5105         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5107         if (err)
5108                 goto out_error;
5109         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5110         if (set_large_file) {
5111                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5112                 err = ext4_journal_get_write_access(handle, sb,
5113                                                     EXT4_SB(sb)->s_sbh,
5114                                                     EXT4_JTR_NONE);
5115                 if (err)
5116                         goto out_error;
5117                 lock_buffer(EXT4_SB(sb)->s_sbh);
5118                 ext4_set_feature_large_file(sb);
5119                 ext4_superblock_csum_set(sb);
5120                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5121                 ext4_handle_sync(handle);
5122                 err = ext4_handle_dirty_metadata(handle, NULL,
5123                                                  EXT4_SB(sb)->s_sbh);
5124         }
5125         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5126 out_error:
5127         ext4_std_error(inode->i_sb, err);
5128 out_brelse:
5129         brelse(bh);
5130         return err;
5131 }
5132
5133 /*
5134  * ext4_write_inode()
5135  *
5136  * We are called from a few places:
5137  *
5138  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5139  *   Here, there will be no transaction running. We wait for any running
5140  *   transaction to commit.
5141  *
5142  * - Within flush work (sys_sync(), kupdate and such).
5143  *   We wait on commit, if told to.
5144  *
5145  * - Within iput_final() -> write_inode_now()
5146  *   We wait on commit, if told to.
5147  *
5148  * In all cases it is actually safe for us to return without doing anything,
5149  * because the inode has been copied into a raw inode buffer in
5150  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5151  * writeback.
5152  *
5153  * Note that we are absolutely dependent upon all inode dirtiers doing the
5154  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5155  * which we are interested.
5156  *
5157  * It would be a bug for them to not do this.  The code:
5158  *
5159  *      mark_inode_dirty(inode)
5160  *      stuff();
5161  *      inode->i_size = expr;
5162  *
5163  * is in error because write_inode() could occur while `stuff()' is running,
5164  * and the new i_size will be lost.  Plus the inode will no longer be on the
5165  * superblock's dirty inode list.
5166  */
5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5168 {
5169         int err;
5170
5171         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5172             sb_rdonly(inode->i_sb))
5173                 return 0;
5174
5175         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5176                 return -EIO;
5177
5178         if (EXT4_SB(inode->i_sb)->s_journal) {
5179                 if (ext4_journal_current_handle()) {
5180                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5181                         dump_stack();
5182                         return -EIO;
5183                 }
5184
5185                 /*
5186                  * No need to force transaction in WB_SYNC_NONE mode. Also
5187                  * ext4_sync_fs() will force the commit after everything is
5188                  * written.
5189                  */
5190                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5191                         return 0;
5192
5193                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5194                                                 EXT4_I(inode)->i_sync_tid);
5195         } else {
5196                 struct ext4_iloc iloc;
5197
5198                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5199                 if (err)
5200                         return err;
5201                 /*
5202                  * sync(2) will flush the whole buffer cache. No need to do
5203                  * it here separately for each inode.
5204                  */
5205                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5206                         sync_dirty_buffer(iloc.bh);
5207                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5208                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5209                                                "IO error syncing inode");
5210                         err = -EIO;
5211                 }
5212                 brelse(iloc.bh);
5213         }
5214         return err;
5215 }
5216
5217 /*
5218  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5219  * buffers that are attached to a page stradding i_size and are undergoing
5220  * commit. In that case we have to wait for commit to finish and try again.
5221  */
5222 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5223 {
5224         struct page *page;
5225         unsigned offset;
5226         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5227         tid_t commit_tid = 0;
5228         int ret;
5229
5230         offset = inode->i_size & (PAGE_SIZE - 1);
5231         /*
5232          * If the page is fully truncated, we don't need to wait for any commit
5233          * (and we even should not as __ext4_journalled_invalidatepage() may
5234          * strip all buffers from the page but keep the page dirty which can then
5235          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5236          * buffers). Also we don't need to wait for any commit if all buffers in
5237          * the page remain valid. This is most beneficial for the common case of
5238          * blocksize == PAGESIZE.
5239          */
5240         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5241                 return;
5242         while (1) {
5243                 page = find_lock_page(inode->i_mapping,
5244                                       inode->i_size >> PAGE_SHIFT);
5245                 if (!page)
5246                         return;
5247                 ret = __ext4_journalled_invalidatepage(page, offset,
5248                                                 PAGE_SIZE - offset);
5249                 unlock_page(page);
5250                 put_page(page);
5251                 if (ret != -EBUSY)
5252                         return;
5253                 commit_tid = 0;
5254                 read_lock(&journal->j_state_lock);
5255                 if (journal->j_committing_transaction)
5256                         commit_tid = journal->j_committing_transaction->t_tid;
5257                 read_unlock(&journal->j_state_lock);
5258                 if (commit_tid)
5259                         jbd2_log_wait_commit(journal, commit_tid);
5260         }
5261 }
5262
5263 /*
5264  * ext4_setattr()
5265  *
5266  * Called from notify_change.
5267  *
5268  * We want to trap VFS attempts to truncate the file as soon as
5269  * possible.  In particular, we want to make sure that when the VFS
5270  * shrinks i_size, we put the inode on the orphan list and modify
5271  * i_disksize immediately, so that during the subsequent flushing of
5272  * dirty pages and freeing of disk blocks, we can guarantee that any
5273  * commit will leave the blocks being flushed in an unused state on
5274  * disk.  (On recovery, the inode will get truncated and the blocks will
5275  * be freed, so we have a strong guarantee that no future commit will
5276  * leave these blocks visible to the user.)
5277  *
5278  * Another thing we have to assure is that if we are in ordered mode
5279  * and inode is still attached to the committing transaction, we must
5280  * we start writeout of all the dirty pages which are being truncated.
5281  * This way we are sure that all the data written in the previous
5282  * transaction are already on disk (truncate waits for pages under
5283  * writeback).
5284  *
5285  * Called with inode->i_mutex down.
5286  */
5287 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5288                  struct iattr *attr)
5289 {
5290         struct inode *inode = d_inode(dentry);
5291         int error, rc = 0;
5292         int orphan = 0;
5293         const unsigned int ia_valid = attr->ia_valid;
5294
5295         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5296                 return -EIO;
5297
5298         if (unlikely(IS_IMMUTABLE(inode)))
5299                 return -EPERM;
5300
5301         if (unlikely(IS_APPEND(inode) &&
5302                      (ia_valid & (ATTR_MODE | ATTR_UID |
5303                                   ATTR_GID | ATTR_TIMES_SET))))
5304                 return -EPERM;
5305
5306         error = setattr_prepare(mnt_userns, dentry, attr);
5307         if (error)
5308                 return error;
5309
5310         error = fscrypt_prepare_setattr(dentry, attr);
5311         if (error)
5312                 return error;
5313
5314         error = fsverity_prepare_setattr(dentry, attr);
5315         if (error)
5316                 return error;
5317
5318         if (is_quota_modification(inode, attr)) {
5319                 error = dquot_initialize(inode);
5320                 if (error)
5321                         return error;
5322         }
5323         ext4_fc_start_update(inode);
5324         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5325             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5326                 handle_t *handle;
5327
5328                 /* (user+group)*(old+new) structure, inode write (sb,
5329                  * inode block, ? - but truncate inode update has it) */
5330                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5331                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5332                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5333                 if (IS_ERR(handle)) {
5334                         error = PTR_ERR(handle);
5335                         goto err_out;
5336                 }
5337
5338                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5339                  * counts xattr inode references.
5340                  */
5341                 down_read(&EXT4_I(inode)->xattr_sem);
5342                 error = dquot_transfer(inode, attr);
5343                 up_read(&EXT4_I(inode)->xattr_sem);
5344
5345                 if (error) {
5346                         ext4_journal_stop(handle);
5347                         ext4_fc_stop_update(inode);
5348                         return error;
5349                 }
5350                 /* Update corresponding info in inode so that everything is in
5351                  * one transaction */
5352                 if (attr->ia_valid & ATTR_UID)
5353                         inode->i_uid = attr->ia_uid;
5354                 if (attr->ia_valid & ATTR_GID)
5355                         inode->i_gid = attr->ia_gid;
5356                 error = ext4_mark_inode_dirty(handle, inode);
5357                 ext4_journal_stop(handle);
5358                 if (unlikely(error)) {
5359                         ext4_fc_stop_update(inode);
5360                         return error;
5361                 }
5362         }
5363
5364         if (attr->ia_valid & ATTR_SIZE) {
5365                 handle_t *handle;
5366                 loff_t oldsize = inode->i_size;
5367                 int shrink = (attr->ia_size < inode->i_size);
5368
5369                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5370                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5371
5372                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5373                                 ext4_fc_stop_update(inode);
5374                                 return -EFBIG;
5375                         }
5376                 }
5377                 if (!S_ISREG(inode->i_mode)) {
5378                         ext4_fc_stop_update(inode);
5379                         return -EINVAL;
5380                 }
5381
5382                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5383                         inode_inc_iversion(inode);
5384
5385                 if (shrink) {
5386                         if (ext4_should_order_data(inode)) {
5387                                 error = ext4_begin_ordered_truncate(inode,
5388                                                             attr->ia_size);
5389                                 if (error)
5390                                         goto err_out;
5391                         }
5392                         /*
5393                          * Blocks are going to be removed from the inode. Wait
5394                          * for dio in flight.
5395                          */
5396                         inode_dio_wait(inode);
5397                 }
5398
5399                 filemap_invalidate_lock(inode->i_mapping);
5400
5401                 rc = ext4_break_layouts(inode);
5402                 if (rc) {
5403                         filemap_invalidate_unlock(inode->i_mapping);
5404                         goto err_out;
5405                 }
5406
5407                 if (attr->ia_size != inode->i_size) {
5408                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5409                         if (IS_ERR(handle)) {
5410                                 error = PTR_ERR(handle);
5411                                 goto out_mmap_sem;
5412                         }
5413                         if (ext4_handle_valid(handle) && shrink) {
5414                                 error = ext4_orphan_add(handle, inode);
5415                                 orphan = 1;
5416                         }
5417                         /*
5418                          * Update c/mtime on truncate up, ext4_truncate() will
5419                          * update c/mtime in shrink case below
5420                          */
5421                         if (!shrink) {
5422                                 inode->i_mtime = current_time(inode);
5423                                 inode->i_ctime = inode->i_mtime;
5424                         }
5425
5426                         if (shrink)
5427                                 ext4_fc_track_range(handle, inode,
5428                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5429                                         inode->i_sb->s_blocksize_bits,
5430                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5431                                         inode->i_sb->s_blocksize_bits);
5432                         else
5433                                 ext4_fc_track_range(
5434                                         handle, inode,
5435                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5436                                         inode->i_sb->s_blocksize_bits,
5437                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5438                                         inode->i_sb->s_blocksize_bits);
5439
5440                         down_write(&EXT4_I(inode)->i_data_sem);
5441                         EXT4_I(inode)->i_disksize = attr->ia_size;
5442                         rc = ext4_mark_inode_dirty(handle, inode);
5443                         if (!error)
5444                                 error = rc;
5445                         /*
5446                          * We have to update i_size under i_data_sem together
5447                          * with i_disksize to avoid races with writeback code
5448                          * running ext4_wb_update_i_disksize().
5449                          */
5450                         if (!error)
5451                                 i_size_write(inode, attr->ia_size);
5452                         up_write(&EXT4_I(inode)->i_data_sem);
5453                         ext4_journal_stop(handle);
5454                         if (error)
5455                                 goto out_mmap_sem;
5456                         if (!shrink) {
5457                                 pagecache_isize_extended(inode, oldsize,
5458                                                          inode->i_size);
5459                         } else if (ext4_should_journal_data(inode)) {
5460                                 ext4_wait_for_tail_page_commit(inode);
5461                         }
5462                 }
5463
5464                 /*
5465                  * Truncate pagecache after we've waited for commit
5466                  * in data=journal mode to make pages freeable.
5467                  */
5468                 truncate_pagecache(inode, inode->i_size);
5469                 /*
5470                  * Call ext4_truncate() even if i_size didn't change to
5471                  * truncate possible preallocated blocks.
5472                  */
5473                 if (attr->ia_size <= oldsize) {
5474                         rc = ext4_truncate(inode);
5475                         if (rc)
5476                                 error = rc;
5477                 }
5478 out_mmap_sem:
5479                 filemap_invalidate_unlock(inode->i_mapping);
5480         }
5481
5482         if (!error) {
5483                 setattr_copy(mnt_userns, inode, attr);
5484                 mark_inode_dirty(inode);
5485         }
5486
5487         /*
5488          * If the call to ext4_truncate failed to get a transaction handle at
5489          * all, we need to clean up the in-core orphan list manually.
5490          */
5491         if (orphan && inode->i_nlink)
5492                 ext4_orphan_del(NULL, inode);
5493
5494         if (!error && (ia_valid & ATTR_MODE))
5495                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5496
5497 err_out:
5498         if  (error)
5499                 ext4_std_error(inode->i_sb, error);
5500         if (!error)
5501                 error = rc;
5502         ext4_fc_stop_update(inode);
5503         return error;
5504 }
5505
5506 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5507                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5508 {
5509         struct inode *inode = d_inode(path->dentry);
5510         struct ext4_inode *raw_inode;
5511         struct ext4_inode_info *ei = EXT4_I(inode);
5512         unsigned int flags;
5513
5514         if ((request_mask & STATX_BTIME) &&
5515             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5516                 stat->result_mask |= STATX_BTIME;
5517                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5518                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5519         }
5520
5521         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5522         if (flags & EXT4_APPEND_FL)
5523                 stat->attributes |= STATX_ATTR_APPEND;
5524         if (flags & EXT4_COMPR_FL)
5525                 stat->attributes |= STATX_ATTR_COMPRESSED;
5526         if (flags & EXT4_ENCRYPT_FL)
5527                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5528         if (flags & EXT4_IMMUTABLE_FL)
5529                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5530         if (flags & EXT4_NODUMP_FL)
5531                 stat->attributes |= STATX_ATTR_NODUMP;
5532         if (flags & EXT4_VERITY_FL)
5533                 stat->attributes |= STATX_ATTR_VERITY;
5534
5535         stat->attributes_mask |= (STATX_ATTR_APPEND |
5536                                   STATX_ATTR_COMPRESSED |
5537                                   STATX_ATTR_ENCRYPTED |
5538                                   STATX_ATTR_IMMUTABLE |
5539                                   STATX_ATTR_NODUMP |
5540                                   STATX_ATTR_VERITY);
5541
5542         generic_fillattr(mnt_userns, inode, stat);
5543         return 0;
5544 }
5545
5546 int ext4_file_getattr(struct user_namespace *mnt_userns,
5547                       const struct path *path, struct kstat *stat,
5548                       u32 request_mask, unsigned int query_flags)
5549 {
5550         struct inode *inode = d_inode(path->dentry);
5551         u64 delalloc_blocks;
5552
5553         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5554
5555         /*
5556          * If there is inline data in the inode, the inode will normally not
5557          * have data blocks allocated (it may have an external xattr block).
5558          * Report at least one sector for such files, so tools like tar, rsync,
5559          * others don't incorrectly think the file is completely sparse.
5560          */
5561         if (unlikely(ext4_has_inline_data(inode)))
5562                 stat->blocks += (stat->size + 511) >> 9;
5563
5564         /*
5565          * We can't update i_blocks if the block allocation is delayed
5566          * otherwise in the case of system crash before the real block
5567          * allocation is done, we will have i_blocks inconsistent with
5568          * on-disk file blocks.
5569          * We always keep i_blocks updated together with real
5570          * allocation. But to not confuse with user, stat
5571          * will return the blocks that include the delayed allocation
5572          * blocks for this file.
5573          */
5574         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5575                                    EXT4_I(inode)->i_reserved_data_blocks);
5576         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5577         return 0;
5578 }
5579
5580 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5581                                    int pextents)
5582 {
5583         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5584                 return ext4_ind_trans_blocks(inode, lblocks);
5585         return ext4_ext_index_trans_blocks(inode, pextents);
5586 }
5587
5588 /*
5589  * Account for index blocks, block groups bitmaps and block group
5590  * descriptor blocks if modify datablocks and index blocks
5591  * worse case, the indexs blocks spread over different block groups
5592  *
5593  * If datablocks are discontiguous, they are possible to spread over
5594  * different block groups too. If they are contiguous, with flexbg,
5595  * they could still across block group boundary.
5596  *
5597  * Also account for superblock, inode, quota and xattr blocks
5598  */
5599 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5600                                   int pextents)
5601 {
5602         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5603         int gdpblocks;
5604         int idxblocks;
5605         int ret = 0;
5606
5607         /*
5608          * How many index blocks need to touch to map @lblocks logical blocks
5609          * to @pextents physical extents?
5610          */
5611         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5612
5613         ret = idxblocks;
5614
5615         /*
5616          * Now let's see how many group bitmaps and group descriptors need
5617          * to account
5618          */
5619         groups = idxblocks + pextents;
5620         gdpblocks = groups;
5621         if (groups > ngroups)
5622                 groups = ngroups;
5623         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5624                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5625
5626         /* bitmaps and block group descriptor blocks */
5627         ret += groups + gdpblocks;
5628
5629         /* Blocks for super block, inode, quota and xattr blocks */
5630         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5631
5632         return ret;
5633 }
5634
5635 /*
5636  * Calculate the total number of credits to reserve to fit
5637  * the modification of a single pages into a single transaction,
5638  * which may include multiple chunks of block allocations.
5639  *
5640  * This could be called via ext4_write_begin()
5641  *
5642  * We need to consider the worse case, when
5643  * one new block per extent.
5644  */
5645 int ext4_writepage_trans_blocks(struct inode *inode)
5646 {
5647         int bpp = ext4_journal_blocks_per_page(inode);
5648         int ret;
5649
5650         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5651
5652         /* Account for data blocks for journalled mode */
5653         if (ext4_should_journal_data(inode))
5654                 ret += bpp;
5655         return ret;
5656 }
5657
5658 /*
5659  * Calculate the journal credits for a chunk of data modification.
5660  *
5661  * This is called from DIO, fallocate or whoever calling
5662  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5663  *
5664  * journal buffers for data blocks are not included here, as DIO
5665  * and fallocate do no need to journal data buffers.
5666  */
5667 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5668 {
5669         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5670 }
5671
5672 /*
5673  * The caller must have previously called ext4_reserve_inode_write().
5674  * Give this, we know that the caller already has write access to iloc->bh.
5675  */
5676 int ext4_mark_iloc_dirty(handle_t *handle,
5677                          struct inode *inode, struct ext4_iloc *iloc)
5678 {
5679         int err = 0;
5680
5681         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5682                 put_bh(iloc->bh);
5683                 return -EIO;
5684         }
5685         ext4_fc_track_inode(handle, inode);
5686
5687         if (IS_I_VERSION(inode))
5688                 inode_inc_iversion(inode);
5689
5690         /* the do_update_inode consumes one bh->b_count */
5691         get_bh(iloc->bh);
5692
5693         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5694         err = ext4_do_update_inode(handle, inode, iloc);
5695         put_bh(iloc->bh);
5696         return err;
5697 }
5698
5699 /*
5700  * On success, We end up with an outstanding reference count against
5701  * iloc->bh.  This _must_ be cleaned up later.
5702  */
5703
5704 int
5705 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5706                          struct ext4_iloc *iloc)
5707 {
5708         int err;
5709
5710         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5711                 return -EIO;
5712
5713         err = ext4_get_inode_loc(inode, iloc);
5714         if (!err) {
5715                 BUFFER_TRACE(iloc->bh, "get_write_access");
5716                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5717                                                     iloc->bh, EXT4_JTR_NONE);
5718                 if (err) {
5719                         brelse(iloc->bh);
5720                         iloc->bh = NULL;
5721                 }
5722         }
5723         ext4_std_error(inode->i_sb, err);
5724         return err;
5725 }
5726
5727 static int __ext4_expand_extra_isize(struct inode *inode,
5728                                      unsigned int new_extra_isize,
5729                                      struct ext4_iloc *iloc,
5730                                      handle_t *handle, int *no_expand)
5731 {
5732         struct ext4_inode *raw_inode;
5733         struct ext4_xattr_ibody_header *header;
5734         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5735         struct ext4_inode_info *ei = EXT4_I(inode);
5736         int error;
5737
5738         /* this was checked at iget time, but double check for good measure */
5739         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5740             (ei->i_extra_isize & 3)) {
5741                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5742                                  ei->i_extra_isize,
5743                                  EXT4_INODE_SIZE(inode->i_sb));
5744                 return -EFSCORRUPTED;
5745         }
5746         if ((new_extra_isize < ei->i_extra_isize) ||
5747             (new_extra_isize < 4) ||
5748             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5749                 return -EINVAL; /* Should never happen */
5750
5751         raw_inode = ext4_raw_inode(iloc);
5752
5753         header = IHDR(inode, raw_inode);
5754
5755         /* No extended attributes present */
5756         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5757             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5758                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5759                        EXT4_I(inode)->i_extra_isize, 0,
5760                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5761                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5762                 return 0;
5763         }
5764
5765         /* try to expand with EAs present */
5766         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5767                                            raw_inode, handle);
5768         if (error) {
5769                 /*
5770                  * Inode size expansion failed; don't try again
5771                  */
5772                 *no_expand = 1;
5773         }
5774
5775         return error;
5776 }
5777
5778 /*
5779  * Expand an inode by new_extra_isize bytes.
5780  * Returns 0 on success or negative error number on failure.
5781  */
5782 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5783                                           unsigned int new_extra_isize,
5784                                           struct ext4_iloc iloc,
5785                                           handle_t *handle)
5786 {
5787         int no_expand;
5788         int error;
5789
5790         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5791                 return -EOVERFLOW;
5792
5793         /*
5794          * In nojournal mode, we can immediately attempt to expand
5795          * the inode.  When journaled, we first need to obtain extra
5796          * buffer credits since we may write into the EA block
5797          * with this same handle. If journal_extend fails, then it will
5798          * only result in a minor loss of functionality for that inode.
5799          * If this is felt to be critical, then e2fsck should be run to
5800          * force a large enough s_min_extra_isize.
5801          */
5802         if (ext4_journal_extend(handle,
5803                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5804                 return -ENOSPC;
5805
5806         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5807                 return -EBUSY;
5808
5809         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5810                                           handle, &no_expand);
5811         ext4_write_unlock_xattr(inode, &no_expand);
5812
5813         return error;
5814 }
5815
5816 int ext4_expand_extra_isize(struct inode *inode,
5817                             unsigned int new_extra_isize,
5818                             struct ext4_iloc *iloc)
5819 {
5820         handle_t *handle;
5821         int no_expand;
5822         int error, rc;
5823
5824         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5825                 brelse(iloc->bh);
5826                 return -EOVERFLOW;
5827         }
5828
5829         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5830                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5831         if (IS_ERR(handle)) {
5832                 error = PTR_ERR(handle);
5833                 brelse(iloc->bh);
5834                 return error;
5835         }
5836
5837         ext4_write_lock_xattr(inode, &no_expand);
5838
5839         BUFFER_TRACE(iloc->bh, "get_write_access");
5840         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5841                                               EXT4_JTR_NONE);
5842         if (error) {
5843                 brelse(iloc->bh);
5844                 goto out_unlock;
5845         }
5846
5847         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5848                                           handle, &no_expand);
5849
5850         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5851         if (!error)
5852                 error = rc;
5853
5854 out_unlock:
5855         ext4_write_unlock_xattr(inode, &no_expand);
5856         ext4_journal_stop(handle);
5857         return error;
5858 }
5859
5860 /*
5861  * What we do here is to mark the in-core inode as clean with respect to inode
5862  * dirtiness (it may still be data-dirty).
5863  * This means that the in-core inode may be reaped by prune_icache
5864  * without having to perform any I/O.  This is a very good thing,
5865  * because *any* task may call prune_icache - even ones which
5866  * have a transaction open against a different journal.
5867  *
5868  * Is this cheating?  Not really.  Sure, we haven't written the
5869  * inode out, but prune_icache isn't a user-visible syncing function.
5870  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5871  * we start and wait on commits.
5872  */
5873 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5874                                 const char *func, unsigned int line)
5875 {
5876         struct ext4_iloc iloc;
5877         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5878         int err;
5879
5880         might_sleep();
5881         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5882         err = ext4_reserve_inode_write(handle, inode, &iloc);
5883         if (err)
5884                 goto out;
5885
5886         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5887                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5888                                                iloc, handle);
5889
5890         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5891 out:
5892         if (unlikely(err))
5893                 ext4_error_inode_err(inode, func, line, 0, err,
5894                                         "mark_inode_dirty error");
5895         return err;
5896 }
5897
5898 /*
5899  * ext4_dirty_inode() is called from __mark_inode_dirty()
5900  *
5901  * We're really interested in the case where a file is being extended.
5902  * i_size has been changed by generic_commit_write() and we thus need
5903  * to include the updated inode in the current transaction.
5904  *
5905  * Also, dquot_alloc_block() will always dirty the inode when blocks
5906  * are allocated to the file.
5907  *
5908  * If the inode is marked synchronous, we don't honour that here - doing
5909  * so would cause a commit on atime updates, which we don't bother doing.
5910  * We handle synchronous inodes at the highest possible level.
5911  */
5912 void ext4_dirty_inode(struct inode *inode, int flags)
5913 {
5914         handle_t *handle;
5915
5916         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5917         if (IS_ERR(handle))
5918                 return;
5919         ext4_mark_inode_dirty(handle, inode);
5920         ext4_journal_stop(handle);
5921 }
5922
5923 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5924 {
5925         journal_t *journal;
5926         handle_t *handle;
5927         int err;
5928         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5929
5930         /*
5931          * We have to be very careful here: changing a data block's
5932          * journaling status dynamically is dangerous.  If we write a
5933          * data block to the journal, change the status and then delete
5934          * that block, we risk forgetting to revoke the old log record
5935          * from the journal and so a subsequent replay can corrupt data.
5936          * So, first we make sure that the journal is empty and that
5937          * nobody is changing anything.
5938          */
5939
5940         journal = EXT4_JOURNAL(inode);
5941         if (!journal)
5942                 return 0;
5943         if (is_journal_aborted(journal))
5944                 return -EROFS;
5945
5946         /* Wait for all existing dio workers */
5947         inode_dio_wait(inode);
5948
5949         /*
5950          * Before flushing the journal and switching inode's aops, we have
5951          * to flush all dirty data the inode has. There can be outstanding
5952          * delayed allocations, there can be unwritten extents created by
5953          * fallocate or buffered writes in dioread_nolock mode covered by
5954          * dirty data which can be converted only after flushing the dirty
5955          * data (and journalled aops don't know how to handle these cases).
5956          */
5957         if (val) {
5958                 filemap_invalidate_lock(inode->i_mapping);
5959                 err = filemap_write_and_wait(inode->i_mapping);
5960                 if (err < 0) {
5961                         filemap_invalidate_unlock(inode->i_mapping);
5962                         return err;
5963                 }
5964         }
5965
5966         percpu_down_write(&sbi->s_writepages_rwsem);
5967         jbd2_journal_lock_updates(journal);
5968
5969         /*
5970          * OK, there are no updates running now, and all cached data is
5971          * synced to disk.  We are now in a completely consistent state
5972          * which doesn't have anything in the journal, and we know that
5973          * no filesystem updates are running, so it is safe to modify
5974          * the inode's in-core data-journaling state flag now.
5975          */
5976
5977         if (val)
5978                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5979         else {
5980                 err = jbd2_journal_flush(journal, 0);
5981                 if (err < 0) {
5982                         jbd2_journal_unlock_updates(journal);
5983                         percpu_up_write(&sbi->s_writepages_rwsem);
5984                         return err;
5985                 }
5986                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5987         }
5988         ext4_set_aops(inode);
5989
5990         jbd2_journal_unlock_updates(journal);
5991         percpu_up_write(&sbi->s_writepages_rwsem);
5992
5993         if (val)
5994                 filemap_invalidate_unlock(inode->i_mapping);
5995
5996         /* Finally we can mark the inode as dirty. */
5997
5998         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5999         if (IS_ERR(handle))
6000                 return PTR_ERR(handle);
6001
6002         ext4_fc_mark_ineligible(inode->i_sb,
6003                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6004         err = ext4_mark_inode_dirty(handle, inode);
6005         ext4_handle_sync(handle);
6006         ext4_journal_stop(handle);
6007         ext4_std_error(inode->i_sb, err);
6008
6009         return err;
6010 }
6011
6012 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6013                             struct buffer_head *bh)
6014 {
6015         return !buffer_mapped(bh);
6016 }
6017
6018 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6019 {
6020         struct vm_area_struct *vma = vmf->vma;
6021         struct page *page = vmf->page;
6022         loff_t size;
6023         unsigned long len;
6024         int err;
6025         vm_fault_t ret;
6026         struct file *file = vma->vm_file;
6027         struct inode *inode = file_inode(file);
6028         struct address_space *mapping = inode->i_mapping;
6029         handle_t *handle;
6030         get_block_t *get_block;
6031         int retries = 0;
6032
6033         if (unlikely(IS_IMMUTABLE(inode)))
6034                 return VM_FAULT_SIGBUS;
6035
6036         sb_start_pagefault(inode->i_sb);
6037         file_update_time(vma->vm_file);
6038
6039         filemap_invalidate_lock_shared(mapping);
6040
6041         err = ext4_convert_inline_data(inode);
6042         if (err)
6043                 goto out_ret;
6044
6045         /*
6046          * On data journalling we skip straight to the transaction handle:
6047          * there's no delalloc; page truncated will be checked later; the
6048          * early return w/ all buffers mapped (calculates size/len) can't
6049          * be used; and there's no dioread_nolock, so only ext4_get_block.
6050          */
6051         if (ext4_should_journal_data(inode))
6052                 goto retry_alloc;
6053
6054         /* Delalloc case is easy... */
6055         if (test_opt(inode->i_sb, DELALLOC) &&
6056             !ext4_nonda_switch(inode->i_sb)) {
6057                 do {
6058                         err = block_page_mkwrite(vma, vmf,
6059                                                    ext4_da_get_block_prep);
6060                 } while (err == -ENOSPC &&
6061                        ext4_should_retry_alloc(inode->i_sb, &retries));
6062                 goto out_ret;
6063         }
6064
6065         lock_page(page);
6066         size = i_size_read(inode);
6067         /* Page got truncated from under us? */
6068         if (page->mapping != mapping || page_offset(page) > size) {
6069                 unlock_page(page);
6070                 ret = VM_FAULT_NOPAGE;
6071                 goto out;
6072         }
6073
6074         if (page->index == size >> PAGE_SHIFT)
6075                 len = size & ~PAGE_MASK;
6076         else
6077                 len = PAGE_SIZE;
6078         /*
6079          * Return if we have all the buffers mapped. This avoids the need to do
6080          * journal_start/journal_stop which can block and take a long time
6081          *
6082          * This cannot be done for data journalling, as we have to add the
6083          * inode to the transaction's list to writeprotect pages on commit.
6084          */
6085         if (page_has_buffers(page)) {
6086                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6087                                             0, len, NULL,
6088                                             ext4_bh_unmapped)) {
6089                         /* Wait so that we don't change page under IO */
6090                         wait_for_stable_page(page);
6091                         ret = VM_FAULT_LOCKED;
6092                         goto out;
6093                 }
6094         }
6095         unlock_page(page);
6096         /* OK, we need to fill the hole... */
6097         if (ext4_should_dioread_nolock(inode))
6098                 get_block = ext4_get_block_unwritten;
6099         else
6100                 get_block = ext4_get_block;
6101 retry_alloc:
6102         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6103                                     ext4_writepage_trans_blocks(inode));
6104         if (IS_ERR(handle)) {
6105                 ret = VM_FAULT_SIGBUS;
6106                 goto out;
6107         }
6108         /*
6109          * Data journalling can't use block_page_mkwrite() because it
6110          * will set_buffer_dirty() before do_journal_get_write_access()
6111          * thus might hit warning messages for dirty metadata buffers.
6112          */
6113         if (!ext4_should_journal_data(inode)) {
6114                 err = block_page_mkwrite(vma, vmf, get_block);
6115         } else {
6116                 lock_page(page);
6117                 size = i_size_read(inode);
6118                 /* Page got truncated from under us? */
6119                 if (page->mapping != mapping || page_offset(page) > size) {
6120                         ret = VM_FAULT_NOPAGE;
6121                         goto out_error;
6122                 }
6123
6124                 if (page->index == size >> PAGE_SHIFT)
6125                         len = size & ~PAGE_MASK;
6126                 else
6127                         len = PAGE_SIZE;
6128
6129                 err = __block_write_begin(page, 0, len, ext4_get_block);
6130                 if (!err) {
6131                         ret = VM_FAULT_SIGBUS;
6132                         if (ext4_walk_page_buffers(handle, inode,
6133                                         page_buffers(page), 0, len, NULL,
6134                                         do_journal_get_write_access))
6135                                 goto out_error;
6136                         if (ext4_walk_page_buffers(handle, inode,
6137                                         page_buffers(page), 0, len, NULL,
6138                                         write_end_fn))
6139                                 goto out_error;
6140                         if (ext4_jbd2_inode_add_write(handle, inode,
6141                                                       page_offset(page), len))
6142                                 goto out_error;
6143                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6144                 } else {
6145                         unlock_page(page);
6146                 }
6147         }
6148         ext4_journal_stop(handle);
6149         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6150                 goto retry_alloc;
6151 out_ret:
6152         ret = block_page_mkwrite_return(err);
6153 out:
6154         filemap_invalidate_unlock_shared(mapping);
6155         sb_end_pagefault(inode->i_sb);
6156         return ret;
6157 out_error:
6158         unlock_page(page);
6159         ext4_journal_stop(handle);
6160         goto out;
6161 }
This page took 0.375526 seconds and 4 git commands to generate.