]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
drm/nouveau/kms: Don't change EDID when it hasn't actually changed
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef CONFIG_DRM_AMDGPU_CIK
43 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
44 #endif
45 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
46 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
47 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
48 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
50
51 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
52 #ifdef KFD_SUPPORT_IOMMU_V2
53 #ifdef CONFIG_DRM_AMDGPU_CIK
54         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
55 #endif
56         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
57         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
58 #endif
59 #ifdef CONFIG_DRM_AMDGPU_CIK
60         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
61 #endif
62         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
63         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
64         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
65         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
66         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
67         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
68         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
69         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
70         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
71         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
72         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
73         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
74         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
75         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
76         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
77         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
78 };
79
80 #ifdef KFD_SUPPORT_IOMMU_V2
81 static const struct kfd_device_info kaveri_device_info = {
82         .asic_family = CHIP_KAVERI,
83         .asic_name = "kaveri",
84         .max_pasid_bits = 16,
85         /* max num of queues for KV.TODO should be a dynamic value */
86         .max_no_of_hqd  = 24,
87         .doorbell_size  = 4,
88         .ih_ring_entry_size = 4 * sizeof(uint32_t),
89         .event_interrupt_class = &event_interrupt_class_cik,
90         .num_of_watch_points = 4,
91         .mqd_size_aligned = MQD_SIZE_ALIGNED,
92         .supports_cwsr = false,
93         .needs_iommu_device = true,
94         .needs_pci_atomics = false,
95         .num_sdma_engines = 2,
96         .num_xgmi_sdma_engines = 0,
97         .num_sdma_queues_per_engine = 2,
98 };
99
100 static const struct kfd_device_info carrizo_device_info = {
101         .asic_family = CHIP_CARRIZO,
102         .asic_name = "carrizo",
103         .max_pasid_bits = 16,
104         /* max num of queues for CZ.TODO should be a dynamic value */
105         .max_no_of_hqd  = 24,
106         .doorbell_size  = 4,
107         .ih_ring_entry_size = 4 * sizeof(uint32_t),
108         .event_interrupt_class = &event_interrupt_class_cik,
109         .num_of_watch_points = 4,
110         .mqd_size_aligned = MQD_SIZE_ALIGNED,
111         .supports_cwsr = true,
112         .needs_iommu_device = true,
113         .needs_pci_atomics = false,
114         .num_sdma_engines = 2,
115         .num_xgmi_sdma_engines = 0,
116         .num_sdma_queues_per_engine = 2,
117 };
118
119 static const struct kfd_device_info raven_device_info = {
120         .asic_family = CHIP_RAVEN,
121         .asic_name = "raven",
122         .max_pasid_bits = 16,
123         .max_no_of_hqd  = 24,
124         .doorbell_size  = 8,
125         .ih_ring_entry_size = 8 * sizeof(uint32_t),
126         .event_interrupt_class = &event_interrupt_class_v9,
127         .num_of_watch_points = 4,
128         .mqd_size_aligned = MQD_SIZE_ALIGNED,
129         .supports_cwsr = true,
130         .needs_iommu_device = true,
131         .needs_pci_atomics = true,
132         .num_sdma_engines = 1,
133         .num_xgmi_sdma_engines = 0,
134         .num_sdma_queues_per_engine = 2,
135 };
136 #endif
137
138 static const struct kfd_device_info hawaii_device_info = {
139         .asic_family = CHIP_HAWAII,
140         .asic_name = "hawaii",
141         .max_pasid_bits = 16,
142         /* max num of queues for KV.TODO should be a dynamic value */
143         .max_no_of_hqd  = 24,
144         .doorbell_size  = 4,
145         .ih_ring_entry_size = 4 * sizeof(uint32_t),
146         .event_interrupt_class = &event_interrupt_class_cik,
147         .num_of_watch_points = 4,
148         .mqd_size_aligned = MQD_SIZE_ALIGNED,
149         .supports_cwsr = false,
150         .needs_iommu_device = false,
151         .needs_pci_atomics = false,
152         .num_sdma_engines = 2,
153         .num_xgmi_sdma_engines = 0,
154         .num_sdma_queues_per_engine = 2,
155 };
156
157 static const struct kfd_device_info tonga_device_info = {
158         .asic_family = CHIP_TONGA,
159         .asic_name = "tonga",
160         .max_pasid_bits = 16,
161         .max_no_of_hqd  = 24,
162         .doorbell_size  = 4,
163         .ih_ring_entry_size = 4 * sizeof(uint32_t),
164         .event_interrupt_class = &event_interrupt_class_cik,
165         .num_of_watch_points = 4,
166         .mqd_size_aligned = MQD_SIZE_ALIGNED,
167         .supports_cwsr = false,
168         .needs_iommu_device = false,
169         .needs_pci_atomics = true,
170         .num_sdma_engines = 2,
171         .num_xgmi_sdma_engines = 0,
172         .num_sdma_queues_per_engine = 2,
173 };
174
175 static const struct kfd_device_info fiji_device_info = {
176         .asic_family = CHIP_FIJI,
177         .asic_name = "fiji",
178         .max_pasid_bits = 16,
179         .max_no_of_hqd  = 24,
180         .doorbell_size  = 4,
181         .ih_ring_entry_size = 4 * sizeof(uint32_t),
182         .event_interrupt_class = &event_interrupt_class_cik,
183         .num_of_watch_points = 4,
184         .mqd_size_aligned = MQD_SIZE_ALIGNED,
185         .supports_cwsr = true,
186         .needs_iommu_device = false,
187         .needs_pci_atomics = true,
188         .num_sdma_engines = 2,
189         .num_xgmi_sdma_engines = 0,
190         .num_sdma_queues_per_engine = 2,
191 };
192
193 static const struct kfd_device_info fiji_vf_device_info = {
194         .asic_family = CHIP_FIJI,
195         .asic_name = "fiji",
196         .max_pasid_bits = 16,
197         .max_no_of_hqd  = 24,
198         .doorbell_size  = 4,
199         .ih_ring_entry_size = 4 * sizeof(uint32_t),
200         .event_interrupt_class = &event_interrupt_class_cik,
201         .num_of_watch_points = 4,
202         .mqd_size_aligned = MQD_SIZE_ALIGNED,
203         .supports_cwsr = true,
204         .needs_iommu_device = false,
205         .needs_pci_atomics = false,
206         .num_sdma_engines = 2,
207         .num_xgmi_sdma_engines = 0,
208         .num_sdma_queues_per_engine = 2,
209 };
210
211
212 static const struct kfd_device_info polaris10_device_info = {
213         .asic_family = CHIP_POLARIS10,
214         .asic_name = "polaris10",
215         .max_pasid_bits = 16,
216         .max_no_of_hqd  = 24,
217         .doorbell_size  = 4,
218         .ih_ring_entry_size = 4 * sizeof(uint32_t),
219         .event_interrupt_class = &event_interrupt_class_cik,
220         .num_of_watch_points = 4,
221         .mqd_size_aligned = MQD_SIZE_ALIGNED,
222         .supports_cwsr = true,
223         .needs_iommu_device = false,
224         .needs_pci_atomics = true,
225         .num_sdma_engines = 2,
226         .num_xgmi_sdma_engines = 0,
227         .num_sdma_queues_per_engine = 2,
228 };
229
230 static const struct kfd_device_info polaris10_vf_device_info = {
231         .asic_family = CHIP_POLARIS10,
232         .asic_name = "polaris10",
233         .max_pasid_bits = 16,
234         .max_no_of_hqd  = 24,
235         .doorbell_size  = 4,
236         .ih_ring_entry_size = 4 * sizeof(uint32_t),
237         .event_interrupt_class = &event_interrupt_class_cik,
238         .num_of_watch_points = 4,
239         .mqd_size_aligned = MQD_SIZE_ALIGNED,
240         .supports_cwsr = true,
241         .needs_iommu_device = false,
242         .needs_pci_atomics = false,
243         .num_sdma_engines = 2,
244         .num_xgmi_sdma_engines = 0,
245         .num_sdma_queues_per_engine = 2,
246 };
247
248 static const struct kfd_device_info polaris11_device_info = {
249         .asic_family = CHIP_POLARIS11,
250         .asic_name = "polaris11",
251         .max_pasid_bits = 16,
252         .max_no_of_hqd  = 24,
253         .doorbell_size  = 4,
254         .ih_ring_entry_size = 4 * sizeof(uint32_t),
255         .event_interrupt_class = &event_interrupt_class_cik,
256         .num_of_watch_points = 4,
257         .mqd_size_aligned = MQD_SIZE_ALIGNED,
258         .supports_cwsr = true,
259         .needs_iommu_device = false,
260         .needs_pci_atomics = true,
261         .num_sdma_engines = 2,
262         .num_xgmi_sdma_engines = 0,
263         .num_sdma_queues_per_engine = 2,
264 };
265
266 static const struct kfd_device_info polaris12_device_info = {
267         .asic_family = CHIP_POLARIS12,
268         .asic_name = "polaris12",
269         .max_pasid_bits = 16,
270         .max_no_of_hqd  = 24,
271         .doorbell_size  = 4,
272         .ih_ring_entry_size = 4 * sizeof(uint32_t),
273         .event_interrupt_class = &event_interrupt_class_cik,
274         .num_of_watch_points = 4,
275         .mqd_size_aligned = MQD_SIZE_ALIGNED,
276         .supports_cwsr = true,
277         .needs_iommu_device = false,
278         .needs_pci_atomics = true,
279         .num_sdma_engines = 2,
280         .num_xgmi_sdma_engines = 0,
281         .num_sdma_queues_per_engine = 2,
282 };
283
284 static const struct kfd_device_info vegam_device_info = {
285         .asic_family = CHIP_VEGAM,
286         .asic_name = "vegam",
287         .max_pasid_bits = 16,
288         .max_no_of_hqd  = 24,
289         .doorbell_size  = 4,
290         .ih_ring_entry_size = 4 * sizeof(uint32_t),
291         .event_interrupt_class = &event_interrupt_class_cik,
292         .num_of_watch_points = 4,
293         .mqd_size_aligned = MQD_SIZE_ALIGNED,
294         .supports_cwsr = true,
295         .needs_iommu_device = false,
296         .needs_pci_atomics = true,
297         .num_sdma_engines = 2,
298         .num_xgmi_sdma_engines = 0,
299         .num_sdma_queues_per_engine = 2,
300 };
301
302 static const struct kfd_device_info vega10_device_info = {
303         .asic_family = CHIP_VEGA10,
304         .asic_name = "vega10",
305         .max_pasid_bits = 16,
306         .max_no_of_hqd  = 24,
307         .doorbell_size  = 8,
308         .ih_ring_entry_size = 8 * sizeof(uint32_t),
309         .event_interrupt_class = &event_interrupt_class_v9,
310         .num_of_watch_points = 4,
311         .mqd_size_aligned = MQD_SIZE_ALIGNED,
312         .supports_cwsr = true,
313         .needs_iommu_device = false,
314         .needs_pci_atomics = false,
315         .num_sdma_engines = 2,
316         .num_xgmi_sdma_engines = 0,
317         .num_sdma_queues_per_engine = 2,
318 };
319
320 static const struct kfd_device_info vega10_vf_device_info = {
321         .asic_family = CHIP_VEGA10,
322         .asic_name = "vega10",
323         .max_pasid_bits = 16,
324         .max_no_of_hqd  = 24,
325         .doorbell_size  = 8,
326         .ih_ring_entry_size = 8 * sizeof(uint32_t),
327         .event_interrupt_class = &event_interrupt_class_v9,
328         .num_of_watch_points = 4,
329         .mqd_size_aligned = MQD_SIZE_ALIGNED,
330         .supports_cwsr = true,
331         .needs_iommu_device = false,
332         .needs_pci_atomics = false,
333         .num_sdma_engines = 2,
334         .num_xgmi_sdma_engines = 0,
335         .num_sdma_queues_per_engine = 2,
336 };
337
338 static const struct kfd_device_info vega12_device_info = {
339         .asic_family = CHIP_VEGA12,
340         .asic_name = "vega12",
341         .max_pasid_bits = 16,
342         .max_no_of_hqd  = 24,
343         .doorbell_size  = 8,
344         .ih_ring_entry_size = 8 * sizeof(uint32_t),
345         .event_interrupt_class = &event_interrupt_class_v9,
346         .num_of_watch_points = 4,
347         .mqd_size_aligned = MQD_SIZE_ALIGNED,
348         .supports_cwsr = true,
349         .needs_iommu_device = false,
350         .needs_pci_atomics = false,
351         .num_sdma_engines = 2,
352         .num_xgmi_sdma_engines = 0,
353         .num_sdma_queues_per_engine = 2,
354 };
355
356 static const struct kfd_device_info vega20_device_info = {
357         .asic_family = CHIP_VEGA20,
358         .asic_name = "vega20",
359         .max_pasid_bits = 16,
360         .max_no_of_hqd  = 24,
361         .doorbell_size  = 8,
362         .ih_ring_entry_size = 8 * sizeof(uint32_t),
363         .event_interrupt_class = &event_interrupt_class_v9,
364         .num_of_watch_points = 4,
365         .mqd_size_aligned = MQD_SIZE_ALIGNED,
366         .supports_cwsr = true,
367         .needs_iommu_device = false,
368         .needs_pci_atomics = false,
369         .num_sdma_engines = 2,
370         .num_xgmi_sdma_engines = 0,
371         .num_sdma_queues_per_engine = 8,
372 };
373
374 static const struct kfd_device_info arcturus_device_info = {
375         .asic_family = CHIP_ARCTURUS,
376         .asic_name = "arcturus",
377         .max_pasid_bits = 16,
378         .max_no_of_hqd  = 24,
379         .doorbell_size  = 8,
380         .ih_ring_entry_size = 8 * sizeof(uint32_t),
381         .event_interrupt_class = &event_interrupt_class_v9,
382         .num_of_watch_points = 4,
383         .mqd_size_aligned = MQD_SIZE_ALIGNED,
384         .supports_cwsr = true,
385         .needs_iommu_device = false,
386         .needs_pci_atomics = false,
387         .num_sdma_engines = 2,
388         .num_xgmi_sdma_engines = 6,
389         .num_sdma_queues_per_engine = 8,
390 };
391
392 static const struct kfd_device_info renoir_device_info = {
393         .asic_family = CHIP_RENOIR,
394         .asic_name = "renoir",
395         .max_pasid_bits = 16,
396         .max_no_of_hqd  = 24,
397         .doorbell_size  = 8,
398         .ih_ring_entry_size = 8 * sizeof(uint32_t),
399         .event_interrupt_class = &event_interrupt_class_v9,
400         .num_of_watch_points = 4,
401         .mqd_size_aligned = MQD_SIZE_ALIGNED,
402         .supports_cwsr = true,
403         .needs_iommu_device = false,
404         .needs_pci_atomics = false,
405         .num_sdma_engines = 1,
406         .num_xgmi_sdma_engines = 0,
407         .num_sdma_queues_per_engine = 2,
408 };
409
410 static const struct kfd_device_info navi10_device_info = {
411         .asic_family = CHIP_NAVI10,
412         .asic_name = "navi10",
413         .max_pasid_bits = 16,
414         .max_no_of_hqd  = 24,
415         .doorbell_size  = 8,
416         .ih_ring_entry_size = 8 * sizeof(uint32_t),
417         .event_interrupt_class = &event_interrupt_class_v9,
418         .num_of_watch_points = 4,
419         .mqd_size_aligned = MQD_SIZE_ALIGNED,
420         .needs_iommu_device = false,
421         .supports_cwsr = true,
422         .needs_pci_atomics = false,
423         .num_sdma_engines = 2,
424         .num_xgmi_sdma_engines = 0,
425         .num_sdma_queues_per_engine = 8,
426 };
427
428 static const struct kfd_device_info navi12_device_info = {
429         .asic_family = CHIP_NAVI12,
430         .asic_name = "navi12",
431         .max_pasid_bits = 16,
432         .max_no_of_hqd  = 24,
433         .doorbell_size  = 8,
434         .ih_ring_entry_size = 8 * sizeof(uint32_t),
435         .event_interrupt_class = &event_interrupt_class_v9,
436         .num_of_watch_points = 4,
437         .mqd_size_aligned = MQD_SIZE_ALIGNED,
438         .needs_iommu_device = false,
439         .supports_cwsr = true,
440         .needs_pci_atomics = false,
441         .num_sdma_engines = 2,
442         .num_xgmi_sdma_engines = 0,
443         .num_sdma_queues_per_engine = 8,
444 };
445
446 static const struct kfd_device_info navi14_device_info = {
447         .asic_family = CHIP_NAVI14,
448         .asic_name = "navi14",
449         .max_pasid_bits = 16,
450         .max_no_of_hqd  = 24,
451         .doorbell_size  = 8,
452         .ih_ring_entry_size = 8 * sizeof(uint32_t),
453         .event_interrupt_class = &event_interrupt_class_v9,
454         .num_of_watch_points = 4,
455         .mqd_size_aligned = MQD_SIZE_ALIGNED,
456         .needs_iommu_device = false,
457         .supports_cwsr = true,
458         .needs_pci_atomics = false,
459         .num_sdma_engines = 2,
460         .num_xgmi_sdma_engines = 0,
461         .num_sdma_queues_per_engine = 8,
462 };
463
464 static const struct kfd_device_info sienna_cichlid_device_info = {
465         .asic_family = CHIP_SIENNA_CICHLID,
466         .asic_name = "sienna_cichlid",
467         .max_pasid_bits = 16,
468         .max_no_of_hqd  = 24,
469         .doorbell_size  = 8,
470         .ih_ring_entry_size = 8 * sizeof(uint32_t),
471         .event_interrupt_class = &event_interrupt_class_v9,
472         .num_of_watch_points = 4,
473         .mqd_size_aligned = MQD_SIZE_ALIGNED,
474         .needs_iommu_device = false,
475         .supports_cwsr = true,
476         .needs_pci_atomics = false,
477         .num_sdma_engines = 4,
478         .num_xgmi_sdma_engines = 0,
479         .num_sdma_queues_per_engine = 8,
480 };
481
482 static const struct kfd_device_info navy_flounder_device_info = {
483         .asic_family = CHIP_NAVY_FLOUNDER,
484         .asic_name = "navy_flounder",
485         .max_pasid_bits = 16,
486         .max_no_of_hqd  = 24,
487         .doorbell_size  = 8,
488         .ih_ring_entry_size = 8 * sizeof(uint32_t),
489         .event_interrupt_class = &event_interrupt_class_v9,
490         .num_of_watch_points = 4,
491         .mqd_size_aligned = MQD_SIZE_ALIGNED,
492         .needs_iommu_device = false,
493         .supports_cwsr = true,
494         .needs_pci_atomics = false,
495         .num_sdma_engines = 2,
496         .num_xgmi_sdma_engines = 0,
497         .num_sdma_queues_per_engine = 8,
498 };
499
500 /* For each entry, [0] is regular and [1] is virtualisation device. */
501 static const struct kfd_device_info *kfd_supported_devices[][2] = {
502 #ifdef KFD_SUPPORT_IOMMU_V2
503         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
504         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
505         [CHIP_RAVEN] = {&raven_device_info, NULL},
506 #endif
507         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
508         [CHIP_TONGA] = {&tonga_device_info, NULL},
509         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
510         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
511         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
512         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
513         [CHIP_VEGAM] = {&vegam_device_info, NULL},
514         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
515         [CHIP_VEGA12] = {&vega12_device_info, NULL},
516         [CHIP_VEGA20] = {&vega20_device_info, NULL},
517         [CHIP_RENOIR] = {&renoir_device_info, NULL},
518         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
519         [CHIP_NAVI10] = {&navi10_device_info, NULL},
520         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
521         [CHIP_NAVI14] = {&navi14_device_info, NULL},
522         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
523         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
524 };
525
526 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
527                                 unsigned int chunk_size);
528 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
529
530 static int kfd_resume(struct kfd_dev *kfd);
531
532 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
533         struct pci_dev *pdev, unsigned int asic_type, bool vf)
534 {
535         struct kfd_dev *kfd;
536         const struct kfd_device_info *device_info;
537         const struct kfd2kgd_calls *f2g;
538
539         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
540                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
541                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
542                 return NULL; /* asic_type out of range */
543         }
544
545         device_info = kfd_supported_devices[asic_type][vf];
546         f2g = kfd2kgd_funcs[asic_type];
547
548         if (!device_info || !f2g) {
549                 dev_err(kfd_device, "%s %s not supported in kfd\n",
550                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
551                 return NULL;
552         }
553
554         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
555         if (!kfd)
556                 return NULL;
557
558         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
559          * 32 and 64-bit requests are possible and must be
560          * supported.
561          */
562         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
563         if (device_info->needs_pci_atomics &&
564             !kfd->pci_atomic_requested) {
565                 dev_info(kfd_device,
566                          "skipped device %x:%x, PCI rejects atomics\n",
567                          pdev->vendor, pdev->device);
568                 kfree(kfd);
569                 return NULL;
570         }
571
572         kfd->kgd = kgd;
573         kfd->device_info = device_info;
574         kfd->pdev = pdev;
575         kfd->init_complete = false;
576         kfd->kfd2kgd = f2g;
577         atomic_set(&kfd->compute_profile, 0);
578
579         mutex_init(&kfd->doorbell_mutex);
580         memset(&kfd->doorbell_available_index, 0,
581                 sizeof(kfd->doorbell_available_index));
582
583         atomic_set(&kfd->sram_ecc_flag, 0);
584
585         return kfd;
586 }
587
588 static void kfd_cwsr_init(struct kfd_dev *kfd)
589 {
590         if (cwsr_enable && kfd->device_info->supports_cwsr) {
591                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
592                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
593                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
594                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
595                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
596                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
597                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
598                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
599                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
600                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
601                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
602                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
603                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
604                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
605                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
606                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
607                 } else {
608                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
609                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
610                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
611                 }
612
613                 kfd->cwsr_enabled = true;
614         }
615 }
616
617 static int kfd_gws_init(struct kfd_dev *kfd)
618 {
619         int ret = 0;
620
621         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
622                 return 0;
623
624         if (hws_gws_support
625                 || (kfd->device_info->asic_family == CHIP_VEGA10
626                         && kfd->mec2_fw_version >= 0x81b3)
627                 || (kfd->device_info->asic_family >= CHIP_VEGA12
628                         && kfd->device_info->asic_family <= CHIP_RAVEN
629                         && kfd->mec2_fw_version >= 0x1b3)
630                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
631                         && kfd->mec2_fw_version >= 0x30))
632                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
633                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
634
635         return ret;
636 }
637
638 static void kfd_smi_init(struct kfd_dev *dev) {
639         INIT_LIST_HEAD(&dev->smi_clients);
640         spin_lock_init(&dev->smi_lock);
641 }
642
643 bool kgd2kfd_device_init(struct kfd_dev *kfd,
644                          struct drm_device *ddev,
645                          const struct kgd2kfd_shared_resources *gpu_resources)
646 {
647         unsigned int size;
648
649         kfd->ddev = ddev;
650         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
651                         KGD_ENGINE_MEC1);
652         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
653                         KGD_ENGINE_MEC2);
654         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
655                         KGD_ENGINE_SDMA1);
656         kfd->shared_resources = *gpu_resources;
657
658         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
659         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
660         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
661                         - kfd->vm_info.first_vmid_kfd + 1;
662
663         /* Verify module parameters regarding mapped process number*/
664         if ((hws_max_conc_proc < 0)
665                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
666                 dev_err(kfd_device,
667                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
668                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
669                         kfd->vm_info.vmid_num_kfd);
670                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
671         } else
672                 kfd->max_proc_per_quantum = hws_max_conc_proc;
673
674         /* calculate max size of mqds needed for queues */
675         size = max_num_of_queues_per_device *
676                         kfd->device_info->mqd_size_aligned;
677
678         /*
679          * calculate max size of runlist packet.
680          * There can be only 2 packets at once
681          */
682         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
683                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
684                 + sizeof(struct pm4_mes_runlist)) * 2;
685
686         /* Add size of HIQ & DIQ */
687         size += KFD_KERNEL_QUEUE_SIZE * 2;
688
689         /* add another 512KB for all other allocations on gart (HPD, fences) */
690         size += 512 * 1024;
691
692         if (amdgpu_amdkfd_alloc_gtt_mem(
693                         kfd->kgd, size, &kfd->gtt_mem,
694                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
695                         false)) {
696                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
697                 goto alloc_gtt_mem_failure;
698         }
699
700         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
701
702         /* Initialize GTT sa with 512 byte chunk size */
703         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
704                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
705                 goto kfd_gtt_sa_init_error;
706         }
707
708         if (kfd_doorbell_init(kfd)) {
709                 dev_err(kfd_device,
710                         "Error initializing doorbell aperture\n");
711                 goto kfd_doorbell_error;
712         }
713
714         if (kfd->kfd2kgd->get_hive_id)
715                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
716
717         if (kfd->kfd2kgd->get_unique_id)
718                 kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd);
719
720         if (kfd_interrupt_init(kfd)) {
721                 dev_err(kfd_device, "Error initializing interrupts\n");
722                 goto kfd_interrupt_error;
723         }
724
725         kfd->dqm = device_queue_manager_init(kfd);
726         if (!kfd->dqm) {
727                 dev_err(kfd_device, "Error initializing queue manager\n");
728                 goto device_queue_manager_error;
729         }
730
731         /* If supported on this device, allocate global GWS that is shared
732          * by all KFD processes
733          */
734         if (kfd_gws_init(kfd)) {
735                 dev_err(kfd_device, "Could not allocate %d gws\n",
736                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
737                 goto gws_error;
738         }
739
740         if (kfd_iommu_device_init(kfd)) {
741                 dev_err(kfd_device, "Error initializing iommuv2\n");
742                 goto device_iommu_error;
743         }
744
745         kfd_cwsr_init(kfd);
746
747         if (kfd_resume(kfd))
748                 goto kfd_resume_error;
749
750         kfd->dbgmgr = NULL;
751
752         if (kfd_topology_add_device(kfd)) {
753                 dev_err(kfd_device, "Error adding device to topology\n");
754                 goto kfd_topology_add_device_error;
755         }
756
757         kfd_smi_init(kfd);
758
759         kfd->init_complete = true;
760         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
761                  kfd->pdev->device);
762
763         pr_debug("Starting kfd with the following scheduling policy %d\n",
764                 kfd->dqm->sched_policy);
765
766         goto out;
767
768 kfd_topology_add_device_error:
769 kfd_resume_error:
770 device_iommu_error:
771 gws_error:
772         device_queue_manager_uninit(kfd->dqm);
773 device_queue_manager_error:
774         kfd_interrupt_exit(kfd);
775 kfd_interrupt_error:
776         kfd_doorbell_fini(kfd);
777 kfd_doorbell_error:
778         kfd_gtt_sa_fini(kfd);
779 kfd_gtt_sa_init_error:
780         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
781 alloc_gtt_mem_failure:
782         if (kfd->gws)
783                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
784         dev_err(kfd_device,
785                 "device %x:%x NOT added due to errors\n",
786                 kfd->pdev->vendor, kfd->pdev->device);
787 out:
788         return kfd->init_complete;
789 }
790
791 void kgd2kfd_device_exit(struct kfd_dev *kfd)
792 {
793         if (kfd->init_complete) {
794                 kgd2kfd_suspend(kfd, false);
795                 device_queue_manager_uninit(kfd->dqm);
796                 kfd_interrupt_exit(kfd);
797                 kfd_topology_remove_device(kfd);
798                 kfd_doorbell_fini(kfd);
799                 kfd_gtt_sa_fini(kfd);
800                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
801                 if (kfd->gws)
802                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
803         }
804
805         kfree(kfd);
806 }
807
808 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
809 {
810         if (!kfd->init_complete)
811                 return 0;
812
813         kfd->dqm->ops.pre_reset(kfd->dqm);
814
815         kgd2kfd_suspend(kfd, false);
816
817         kfd_signal_reset_event(kfd);
818         return 0;
819 }
820
821 /*
822  * Fix me. KFD won't be able to resume existing process for now.
823  * We will keep all existing process in a evicted state and
824  * wait the process to be terminated.
825  */
826
827 int kgd2kfd_post_reset(struct kfd_dev *kfd)
828 {
829         int ret;
830
831         if (!kfd->init_complete)
832                 return 0;
833
834         ret = kfd_resume(kfd);
835         if (ret)
836                 return ret;
837         atomic_dec(&kfd_locked);
838
839         atomic_set(&kfd->sram_ecc_flag, 0);
840
841         return 0;
842 }
843
844 bool kfd_is_locked(void)
845 {
846         return  (atomic_read(&kfd_locked) > 0);
847 }
848
849 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
850 {
851         if (!kfd->init_complete)
852                 return;
853
854         /* for runtime suspend, skip locking kfd */
855         if (!run_pm) {
856                 /* For first KFD device suspend all the KFD processes */
857                 if (atomic_inc_return(&kfd_locked) == 1)
858                         kfd_suspend_all_processes();
859         }
860
861         kfd->dqm->ops.stop(kfd->dqm);
862         kfd_iommu_suspend(kfd);
863 }
864
865 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
866 {
867         int ret, count;
868
869         if (!kfd->init_complete)
870                 return 0;
871
872         ret = kfd_resume(kfd);
873         if (ret)
874                 return ret;
875
876         /* for runtime resume, skip unlocking kfd */
877         if (!run_pm) {
878                 count = atomic_dec_return(&kfd_locked);
879                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
880                 if (count == 0)
881                         ret = kfd_resume_all_processes();
882         }
883
884         return ret;
885 }
886
887 static int kfd_resume(struct kfd_dev *kfd)
888 {
889         int err = 0;
890
891         err = kfd_iommu_resume(kfd);
892         if (err) {
893                 dev_err(kfd_device,
894                         "Failed to resume IOMMU for device %x:%x\n",
895                         kfd->pdev->vendor, kfd->pdev->device);
896                 return err;
897         }
898
899         err = kfd->dqm->ops.start(kfd->dqm);
900         if (err) {
901                 dev_err(kfd_device,
902                         "Error starting queue manager for device %x:%x\n",
903                         kfd->pdev->vendor, kfd->pdev->device);
904                 goto dqm_start_error;
905         }
906
907         return err;
908
909 dqm_start_error:
910         kfd_iommu_suspend(kfd);
911         return err;
912 }
913
914 static inline void kfd_queue_work(struct workqueue_struct *wq,
915                                   struct work_struct *work)
916 {
917         int cpu, new_cpu;
918
919         cpu = new_cpu = smp_processor_id();
920         do {
921                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
922                 if (cpu_to_node(new_cpu) == numa_node_id())
923                         break;
924         } while (cpu != new_cpu);
925
926         queue_work_on(new_cpu, wq, work);
927 }
928
929 /* This is called directly from KGD at ISR. */
930 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
931 {
932         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
933         bool is_patched = false;
934         unsigned long flags;
935
936         if (!kfd->init_complete)
937                 return;
938
939         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
940                 dev_err_once(kfd_device, "Ring entry too small\n");
941                 return;
942         }
943
944         spin_lock_irqsave(&kfd->interrupt_lock, flags);
945
946         if (kfd->interrupts_active
947             && interrupt_is_wanted(kfd, ih_ring_entry,
948                                    patched_ihre, &is_patched)
949             && enqueue_ih_ring_entry(kfd,
950                                      is_patched ? patched_ihre : ih_ring_entry))
951                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
952
953         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
954 }
955
956 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
957 {
958         struct kfd_process *p;
959         int r;
960
961         /* Because we are called from arbitrary context (workqueue) as opposed
962          * to process context, kfd_process could attempt to exit while we are
963          * running so the lookup function increments the process ref count.
964          */
965         p = kfd_lookup_process_by_mm(mm);
966         if (!p)
967                 return -ESRCH;
968
969         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
970         r = kfd_process_evict_queues(p);
971
972         kfd_unref_process(p);
973         return r;
974 }
975
976 int kgd2kfd_resume_mm(struct mm_struct *mm)
977 {
978         struct kfd_process *p;
979         int r;
980
981         /* Because we are called from arbitrary context (workqueue) as opposed
982          * to process context, kfd_process could attempt to exit while we are
983          * running so the lookup function increments the process ref count.
984          */
985         p = kfd_lookup_process_by_mm(mm);
986         if (!p)
987                 return -ESRCH;
988
989         r = kfd_process_restore_queues(p);
990
991         kfd_unref_process(p);
992         return r;
993 }
994
995 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
996  *   prepare for safe eviction of KFD BOs that belong to the specified
997  *   process.
998  *
999  * @mm: mm_struct that identifies the specified KFD process
1000  * @fence: eviction fence attached to KFD process BOs
1001  *
1002  */
1003 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1004                                                struct dma_fence *fence)
1005 {
1006         struct kfd_process *p;
1007         unsigned long active_time;
1008         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1009
1010         if (!fence)
1011                 return -EINVAL;
1012
1013         if (dma_fence_is_signaled(fence))
1014                 return 0;
1015
1016         p = kfd_lookup_process_by_mm(mm);
1017         if (!p)
1018                 return -ENODEV;
1019
1020         if (fence->seqno == p->last_eviction_seqno)
1021                 goto out;
1022
1023         p->last_eviction_seqno = fence->seqno;
1024
1025         /* Avoid KFD process starvation. Wait for at least
1026          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1027          */
1028         active_time = get_jiffies_64() - p->last_restore_timestamp;
1029         if (delay_jiffies > active_time)
1030                 delay_jiffies -= active_time;
1031         else
1032                 delay_jiffies = 0;
1033
1034         /* During process initialization eviction_work.dwork is initialized
1035          * to kfd_evict_bo_worker
1036          */
1037         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1038              p->lead_thread->pid, delay_jiffies);
1039         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1040 out:
1041         kfd_unref_process(p);
1042         return 0;
1043 }
1044
1045 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1046                                 unsigned int chunk_size)
1047 {
1048         unsigned int num_of_longs;
1049
1050         if (WARN_ON(buf_size < chunk_size))
1051                 return -EINVAL;
1052         if (WARN_ON(buf_size == 0))
1053                 return -EINVAL;
1054         if (WARN_ON(chunk_size == 0))
1055                 return -EINVAL;
1056
1057         kfd->gtt_sa_chunk_size = chunk_size;
1058         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1059
1060         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1061                 BITS_PER_LONG;
1062
1063         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1064
1065         if (!kfd->gtt_sa_bitmap)
1066                 return -ENOMEM;
1067
1068         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1069                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1070
1071         mutex_init(&kfd->gtt_sa_lock);
1072
1073         return 0;
1074
1075 }
1076
1077 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1078 {
1079         mutex_destroy(&kfd->gtt_sa_lock);
1080         kfree(kfd->gtt_sa_bitmap);
1081 }
1082
1083 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1084                                                 unsigned int bit_num,
1085                                                 unsigned int chunk_size)
1086 {
1087         return start_addr + bit_num * chunk_size;
1088 }
1089
1090 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1091                                                 unsigned int bit_num,
1092                                                 unsigned int chunk_size)
1093 {
1094         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1095 }
1096
1097 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1098                         struct kfd_mem_obj **mem_obj)
1099 {
1100         unsigned int found, start_search, cur_size;
1101
1102         if (size == 0)
1103                 return -EINVAL;
1104
1105         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1106                 return -ENOMEM;
1107
1108         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1109         if (!(*mem_obj))
1110                 return -ENOMEM;
1111
1112         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1113
1114         start_search = 0;
1115
1116         mutex_lock(&kfd->gtt_sa_lock);
1117
1118 kfd_gtt_restart_search:
1119         /* Find the first chunk that is free */
1120         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1121                                         kfd->gtt_sa_num_of_chunks,
1122                                         start_search);
1123
1124         pr_debug("Found = %d\n", found);
1125
1126         /* If there wasn't any free chunk, bail out */
1127         if (found == kfd->gtt_sa_num_of_chunks)
1128                 goto kfd_gtt_no_free_chunk;
1129
1130         /* Update fields of mem_obj */
1131         (*mem_obj)->range_start = found;
1132         (*mem_obj)->range_end = found;
1133         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1134                                         kfd->gtt_start_gpu_addr,
1135                                         found,
1136                                         kfd->gtt_sa_chunk_size);
1137         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1138                                         kfd->gtt_start_cpu_ptr,
1139                                         found,
1140                                         kfd->gtt_sa_chunk_size);
1141
1142         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1143                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1144
1145         /* If we need only one chunk, mark it as allocated and get out */
1146         if (size <= kfd->gtt_sa_chunk_size) {
1147                 pr_debug("Single bit\n");
1148                 set_bit(found, kfd->gtt_sa_bitmap);
1149                 goto kfd_gtt_out;
1150         }
1151
1152         /* Otherwise, try to see if we have enough contiguous chunks */
1153         cur_size = size - kfd->gtt_sa_chunk_size;
1154         do {
1155                 (*mem_obj)->range_end =
1156                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1157                                         kfd->gtt_sa_num_of_chunks, ++found);
1158                 /*
1159                  * If next free chunk is not contiguous than we need to
1160                  * restart our search from the last free chunk we found (which
1161                  * wasn't contiguous to the previous ones
1162                  */
1163                 if ((*mem_obj)->range_end != found) {
1164                         start_search = found;
1165                         goto kfd_gtt_restart_search;
1166                 }
1167
1168                 /*
1169                  * If we reached end of buffer, bail out with error
1170                  */
1171                 if (found == kfd->gtt_sa_num_of_chunks)
1172                         goto kfd_gtt_no_free_chunk;
1173
1174                 /* Check if we don't need another chunk */
1175                 if (cur_size <= kfd->gtt_sa_chunk_size)
1176                         cur_size = 0;
1177                 else
1178                         cur_size -= kfd->gtt_sa_chunk_size;
1179
1180         } while (cur_size > 0);
1181
1182         pr_debug("range_start = %d, range_end = %d\n",
1183                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1184
1185         /* Mark the chunks as allocated */
1186         for (found = (*mem_obj)->range_start;
1187                 found <= (*mem_obj)->range_end;
1188                 found++)
1189                 set_bit(found, kfd->gtt_sa_bitmap);
1190
1191 kfd_gtt_out:
1192         mutex_unlock(&kfd->gtt_sa_lock);
1193         return 0;
1194
1195 kfd_gtt_no_free_chunk:
1196         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1197         mutex_unlock(&kfd->gtt_sa_lock);
1198         kfree(*mem_obj);
1199         return -ENOMEM;
1200 }
1201
1202 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1203 {
1204         unsigned int bit;
1205
1206         /* Act like kfree when trying to free a NULL object */
1207         if (!mem_obj)
1208                 return 0;
1209
1210         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1211                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1212
1213         mutex_lock(&kfd->gtt_sa_lock);
1214
1215         /* Mark the chunks as free */
1216         for (bit = mem_obj->range_start;
1217                 bit <= mem_obj->range_end;
1218                 bit++)
1219                 clear_bit(bit, kfd->gtt_sa_bitmap);
1220
1221         mutex_unlock(&kfd->gtt_sa_lock);
1222
1223         kfree(mem_obj);
1224         return 0;
1225 }
1226
1227 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1228 {
1229         if (kfd)
1230                 atomic_inc(&kfd->sram_ecc_flag);
1231 }
1232
1233 void kfd_inc_compute_active(struct kfd_dev *kfd)
1234 {
1235         if (atomic_inc_return(&kfd->compute_profile) == 1)
1236                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1237 }
1238
1239 void kfd_dec_compute_active(struct kfd_dev *kfd)
1240 {
1241         int count = atomic_dec_return(&kfd->compute_profile);
1242
1243         if (count == 0)
1244                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1245         WARN_ONCE(count < 0, "Compute profile ref. count error");
1246 }
1247
1248 #if defined(CONFIG_DEBUG_FS)
1249
1250 /* This function will send a package to HIQ to hang the HWS
1251  * which will trigger a GPU reset and bring the HWS back to normal state
1252  */
1253 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1254 {
1255         int r = 0;
1256
1257         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1258                 pr_err("HWS is not enabled");
1259                 return -EINVAL;
1260         }
1261
1262         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1263         if (!r)
1264                 r = dqm_debugfs_execute_queues(dev->dqm);
1265
1266         return r;
1267 }
1268
1269 #endif
This page took 0.098871 seconds and 4 git commands to generate.