]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
Linux 6.14-rc3
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38
39 #define MQD_SIZE_ALIGNED 768
40
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62                                 unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64
65 static int kfd_resume(struct kfd_node *kfd);
66
67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69         uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70
71         switch (sdma_version) {
72         case IP_VERSION(4, 0, 0):/* VEGA10 */
73         case IP_VERSION(4, 0, 1):/* VEGA12 */
74         case IP_VERSION(4, 1, 0):/* RAVEN */
75         case IP_VERSION(4, 1, 1):/* RAVEN */
76         case IP_VERSION(4, 1, 2):/* RENOIR */
77         case IP_VERSION(5, 2, 1):/* VANGOGH */
78         case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79         case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80         case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81                 kfd->device_info.num_sdma_queues_per_engine = 2;
82                 break;
83         case IP_VERSION(4, 2, 0):/* VEGA20 */
84         case IP_VERSION(4, 2, 2):/* ARCTURUS */
85         case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86         case IP_VERSION(4, 4, 2):
87         case IP_VERSION(4, 4, 5):
88         case IP_VERSION(4, 4, 4):
89         case IP_VERSION(5, 0, 0):/* NAVI10 */
90         case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
91         case IP_VERSION(5, 0, 2):/* NAVI14 */
92         case IP_VERSION(5, 0, 5):/* NAVI12 */
93         case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
94         case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
95         case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
96         case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
97         case IP_VERSION(6, 0, 0):
98         case IP_VERSION(6, 0, 1):
99         case IP_VERSION(6, 0, 2):
100         case IP_VERSION(6, 0, 3):
101         case IP_VERSION(6, 1, 0):
102         case IP_VERSION(6, 1, 1):
103         case IP_VERSION(6, 1, 2):
104         case IP_VERSION(7, 0, 0):
105         case IP_VERSION(7, 0, 1):
106                 kfd->device_info.num_sdma_queues_per_engine = 8;
107                 break;
108         default:
109                 dev_warn(kfd_device,
110                         "Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
111                         sdma_version);
112                 kfd->device_info.num_sdma_queues_per_engine = 8;
113         }
114
115         bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
116
117         switch (sdma_version) {
118         case IP_VERSION(6, 0, 0):
119         case IP_VERSION(6, 0, 1):
120         case IP_VERSION(6, 0, 2):
121         case IP_VERSION(6, 0, 3):
122         case IP_VERSION(6, 1, 0):
123         case IP_VERSION(6, 1, 1):
124         case IP_VERSION(6, 1, 2):
125         case IP_VERSION(7, 0, 0):
126         case IP_VERSION(7, 0, 1):
127                 /* Reserve 1 for paging and 1 for gfx */
128                 kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
129                 /* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
130                 bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
131                            kfd->adev->sdma.num_instances *
132                            kfd->device_info.num_reserved_sdma_queues_per_engine);
133                 break;
134         default:
135                 break;
136         }
137 }
138
139 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
140 {
141         uint32_t gc_version = KFD_GC_VERSION(kfd);
142
143         switch (gc_version) {
144         case IP_VERSION(9, 0, 1): /* VEGA10 */
145         case IP_VERSION(9, 1, 0): /* RAVEN */
146         case IP_VERSION(9, 2, 1): /* VEGA12 */
147         case IP_VERSION(9, 2, 2): /* RAVEN */
148         case IP_VERSION(9, 3, 0): /* RENOIR */
149         case IP_VERSION(9, 4, 0): /* VEGA20 */
150         case IP_VERSION(9, 4, 1): /* ARCTURUS */
151         case IP_VERSION(9, 4, 2): /* ALDEBARAN */
152                 kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
153                 break;
154         case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
155         case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
156         case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
157                 kfd->device_info.event_interrupt_class =
158                                                 &event_interrupt_class_v9_4_3;
159                 break;
160         case IP_VERSION(10, 3, 1): /* VANGOGH */
161         case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
162         case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
163         case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
164         case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
165         case IP_VERSION(10, 1, 4):
166         case IP_VERSION(10, 1, 10): /* NAVI10 */
167         case IP_VERSION(10, 1, 2): /* NAVI12 */
168         case IP_VERSION(10, 1, 1): /* NAVI14 */
169         case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
170         case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
171         case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
172         case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
173                 kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
174                 break;
175         case IP_VERSION(11, 0, 0):
176         case IP_VERSION(11, 0, 1):
177         case IP_VERSION(11, 0, 2):
178         case IP_VERSION(11, 0, 3):
179         case IP_VERSION(11, 0, 4):
180         case IP_VERSION(11, 5, 0):
181         case IP_VERSION(11, 5, 1):
182         case IP_VERSION(11, 5, 2):
183                 kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
184                 break;
185         case IP_VERSION(12, 0, 0):
186         case IP_VERSION(12, 0, 1):
187                 /* GFX12_TODO: Change to v12 version. */
188                 kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
189                 break;
190         default:
191                 dev_warn(kfd_device, "v9 event interrupt handler is set due to "
192                         "mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
193                 kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
194         }
195 }
196
197 static void kfd_device_info_init(struct kfd_dev *kfd,
198                                  bool vf, uint32_t gfx_target_version)
199 {
200         uint32_t gc_version = KFD_GC_VERSION(kfd);
201         uint32_t asic_type = kfd->adev->asic_type;
202
203         kfd->device_info.max_pasid_bits = 16;
204         kfd->device_info.max_no_of_hqd = 24;
205         kfd->device_info.num_of_watch_points = 4;
206         kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
207         kfd->device_info.gfx_target_version = gfx_target_version;
208
209         if (KFD_IS_SOC15(kfd)) {
210                 kfd->device_info.doorbell_size = 8;
211                 kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
212                 kfd->device_info.supports_cwsr = true;
213
214                 kfd_device_info_set_sdma_info(kfd);
215
216                 kfd_device_info_set_event_interrupt_class(kfd);
217
218                 if (gc_version < IP_VERSION(11, 0, 0)) {
219                         /* Navi2x+, Navi1x+ */
220                         if (gc_version == IP_VERSION(10, 3, 6))
221                                 kfd->device_info.no_atomic_fw_version = 14;
222                         else if (gc_version == IP_VERSION(10, 3, 7))
223                                 kfd->device_info.no_atomic_fw_version = 3;
224                         else if (gc_version >= IP_VERSION(10, 3, 0))
225                                 kfd->device_info.no_atomic_fw_version = 92;
226                         else if (gc_version >= IP_VERSION(10, 1, 1))
227                                 kfd->device_info.no_atomic_fw_version = 145;
228
229                         /* Navi1x+ */
230                         if (gc_version >= IP_VERSION(10, 1, 1))
231                                 kfd->device_info.needs_pci_atomics = true;
232                 } else if (gc_version < IP_VERSION(12, 0, 0)) {
233                         /*
234                          * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
235                          * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
236                          * PCIe atomics support.
237                          */
238                         kfd->device_info.needs_pci_atomics = true;
239                         kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
240                 } else if (gc_version < IP_VERSION(13, 0, 0)) {
241                         kfd->device_info.needs_pci_atomics = true;
242                         kfd->device_info.no_atomic_fw_version = 2090;
243                 } else {
244                         kfd->device_info.needs_pci_atomics = true;
245                 }
246         } else {
247                 kfd->device_info.doorbell_size = 4;
248                 kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
249                 kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
250                 kfd->device_info.num_sdma_queues_per_engine = 2;
251
252                 if (asic_type != CHIP_KAVERI &&
253                     asic_type != CHIP_HAWAII &&
254                     asic_type != CHIP_TONGA)
255                         kfd->device_info.supports_cwsr = true;
256
257                 if (asic_type != CHIP_HAWAII && !vf)
258                         kfd->device_info.needs_pci_atomics = true;
259         }
260 }
261
262 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
263 {
264         struct kfd_dev *kfd = NULL;
265         const struct kfd2kgd_calls *f2g = NULL;
266         uint32_t gfx_target_version = 0;
267
268         switch (adev->asic_type) {
269 #ifdef CONFIG_DRM_AMDGPU_CIK
270         case CHIP_KAVERI:
271                 gfx_target_version = 70000;
272                 if (!vf)
273                         f2g = &gfx_v7_kfd2kgd;
274                 break;
275 #endif
276         case CHIP_CARRIZO:
277                 gfx_target_version = 80001;
278                 if (!vf)
279                         f2g = &gfx_v8_kfd2kgd;
280                 break;
281 #ifdef CONFIG_DRM_AMDGPU_CIK
282         case CHIP_HAWAII:
283                 gfx_target_version = 70001;
284                 if (!amdgpu_exp_hw_support)
285                         pr_info(
286         "KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
287                                 );
288                 else if (!vf)
289                         f2g = &gfx_v7_kfd2kgd;
290                 break;
291 #endif
292         case CHIP_TONGA:
293                 gfx_target_version = 80002;
294                 if (!vf)
295                         f2g = &gfx_v8_kfd2kgd;
296                 break;
297         case CHIP_FIJI:
298         case CHIP_POLARIS10:
299                 gfx_target_version = 80003;
300                 f2g = &gfx_v8_kfd2kgd;
301                 break;
302         case CHIP_POLARIS11:
303         case CHIP_POLARIS12:
304         case CHIP_VEGAM:
305                 gfx_target_version = 80003;
306                 if (!vf)
307                         f2g = &gfx_v8_kfd2kgd;
308                 break;
309         default:
310                 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
311                 /* Vega 10 */
312                 case IP_VERSION(9, 0, 1):
313                         gfx_target_version = 90000;
314                         f2g = &gfx_v9_kfd2kgd;
315                         break;
316                 /* Raven */
317                 case IP_VERSION(9, 1, 0):
318                 case IP_VERSION(9, 2, 2):
319                         gfx_target_version = 90002;
320                         if (!vf)
321                                 f2g = &gfx_v9_kfd2kgd;
322                         break;
323                 /* Vega12 */
324                 case IP_VERSION(9, 2, 1):
325                         gfx_target_version = 90004;
326                         if (!vf)
327                                 f2g = &gfx_v9_kfd2kgd;
328                         break;
329                 /* Renoir */
330                 case IP_VERSION(9, 3, 0):
331                         gfx_target_version = 90012;
332                         if (!vf)
333                                 f2g = &gfx_v9_kfd2kgd;
334                         break;
335                 /* Vega20 */
336                 case IP_VERSION(9, 4, 0):
337                         gfx_target_version = 90006;
338                         if (!vf)
339                                 f2g = &gfx_v9_kfd2kgd;
340                         break;
341                 /* Arcturus */
342                 case IP_VERSION(9, 4, 1):
343                         gfx_target_version = 90008;
344                         f2g = &arcturus_kfd2kgd;
345                         break;
346                 /* Aldebaran */
347                 case IP_VERSION(9, 4, 2):
348                         gfx_target_version = 90010;
349                         f2g = &aldebaran_kfd2kgd;
350                         break;
351                 case IP_VERSION(9, 4, 3):
352                         gfx_target_version = adev->rev_id >= 1 ? 90402
353                                            : adev->flags & AMD_IS_APU ? 90400
354                                            : 90401;
355                         f2g = &gc_9_4_3_kfd2kgd;
356                         break;
357                 case IP_VERSION(9, 4, 4):
358                         gfx_target_version = 90402;
359                         f2g = &gc_9_4_3_kfd2kgd;
360                         break;
361                 case IP_VERSION(9, 5, 0):
362                         gfx_target_version = 90500;
363                         f2g = &gc_9_4_3_kfd2kgd;
364                         break;
365                 /* Navi10 */
366                 case IP_VERSION(10, 1, 10):
367                         gfx_target_version = 100100;
368                         if (!vf)
369                                 f2g = &gfx_v10_kfd2kgd;
370                         break;
371                 /* Navi12 */
372                 case IP_VERSION(10, 1, 2):
373                         gfx_target_version = 100101;
374                         f2g = &gfx_v10_kfd2kgd;
375                         break;
376                 /* Navi14 */
377                 case IP_VERSION(10, 1, 1):
378                         gfx_target_version = 100102;
379                         if (!vf)
380                                 f2g = &gfx_v10_kfd2kgd;
381                         break;
382                 /* Cyan Skillfish */
383                 case IP_VERSION(10, 1, 3):
384                 case IP_VERSION(10, 1, 4):
385                         gfx_target_version = 100103;
386                         if (!vf)
387                                 f2g = &gfx_v10_kfd2kgd;
388                         break;
389                 /* Sienna Cichlid */
390                 case IP_VERSION(10, 3, 0):
391                         gfx_target_version = 100300;
392                         f2g = &gfx_v10_3_kfd2kgd;
393                         break;
394                 /* Navy Flounder */
395                 case IP_VERSION(10, 3, 2):
396                         gfx_target_version = 100301;
397                         f2g = &gfx_v10_3_kfd2kgd;
398                         break;
399                 /* Van Gogh */
400                 case IP_VERSION(10, 3, 1):
401                         gfx_target_version = 100303;
402                         if (!vf)
403                                 f2g = &gfx_v10_3_kfd2kgd;
404                         break;
405                 /* Dimgrey Cavefish */
406                 case IP_VERSION(10, 3, 4):
407                         gfx_target_version = 100302;
408                         f2g = &gfx_v10_3_kfd2kgd;
409                         break;
410                 /* Beige Goby */
411                 case IP_VERSION(10, 3, 5):
412                         gfx_target_version = 100304;
413                         f2g = &gfx_v10_3_kfd2kgd;
414                         break;
415                 /* Yellow Carp */
416                 case IP_VERSION(10, 3, 3):
417                         gfx_target_version = 100305;
418                         if (!vf)
419                                 f2g = &gfx_v10_3_kfd2kgd;
420                         break;
421                 case IP_VERSION(10, 3, 6):
422                 case IP_VERSION(10, 3, 7):
423                         gfx_target_version = 100306;
424                         if (!vf)
425                                 f2g = &gfx_v10_3_kfd2kgd;
426                         break;
427                 case IP_VERSION(11, 0, 0):
428                         gfx_target_version = 110000;
429                         f2g = &gfx_v11_kfd2kgd;
430                         break;
431                 case IP_VERSION(11, 0, 1):
432                 case IP_VERSION(11, 0, 4):
433                         gfx_target_version = 110003;
434                         f2g = &gfx_v11_kfd2kgd;
435                         break;
436                 case IP_VERSION(11, 0, 2):
437                         gfx_target_version = 110002;
438                         f2g = &gfx_v11_kfd2kgd;
439                         break;
440                 case IP_VERSION(11, 0, 3):
441                         /* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
442                         gfx_target_version = 110001;
443                         f2g = &gfx_v11_kfd2kgd;
444                         break;
445                 case IP_VERSION(11, 5, 0):
446                         gfx_target_version = 110500;
447                         f2g = &gfx_v11_kfd2kgd;
448                         break;
449                 case IP_VERSION(11, 5, 1):
450                         gfx_target_version = 110501;
451                         f2g = &gfx_v11_kfd2kgd;
452                         break;
453                 case IP_VERSION(11, 5, 2):
454                         gfx_target_version = 110502;
455                         f2g = &gfx_v11_kfd2kgd;
456                         break;
457                 case IP_VERSION(12, 0, 0):
458                         gfx_target_version = 120000;
459                         f2g = &gfx_v12_kfd2kgd;
460                         break;
461                 case IP_VERSION(12, 0, 1):
462                         gfx_target_version = 120001;
463                         f2g = &gfx_v12_kfd2kgd;
464                         break;
465                 default:
466                         break;
467                 }
468                 break;
469         }
470
471         if (!f2g) {
472                 if (amdgpu_ip_version(adev, GC_HWIP, 0))
473                         dev_info(kfd_device,
474                                 "GC IP %06x %s not supported in kfd\n",
475                                 amdgpu_ip_version(adev, GC_HWIP, 0),
476                                 vf ? "VF" : "");
477                 else
478                         dev_info(kfd_device, "%s %s not supported in kfd\n",
479                                 amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
480                 return NULL;
481         }
482
483         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
484         if (!kfd)
485                 return NULL;
486
487         kfd->adev = adev;
488         kfd_device_info_init(kfd, vf, gfx_target_version);
489         kfd->init_complete = false;
490         kfd->kfd2kgd = f2g;
491         atomic_set(&kfd->compute_profile, 0);
492
493         mutex_init(&kfd->doorbell_mutex);
494
495         ida_init(&kfd->doorbell_ida);
496
497         return kfd;
498 }
499
500 static void kfd_cwsr_init(struct kfd_dev *kfd)
501 {
502         if (cwsr_enable && kfd->device_info.supports_cwsr) {
503                 if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
504                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
505                                              > KFD_CWSR_TMA_OFFSET);
506                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
507                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
508                 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
509                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
510                                              > KFD_CWSR_TMA_OFFSET);
511                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
512                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
513                 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
514                         BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
515                                              > KFD_CWSR_TMA_OFFSET);
516                         kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
517                         kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
518                 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
519                            KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
520                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
521                                              > KFD_CWSR_TMA_OFFSET);
522                         kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
523                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
524                 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
525                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
526                         kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
527                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
528                 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
529                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
530                                              > KFD_CWSR_TMA_OFFSET);
531                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
532                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
533                 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
534                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
535                                              > KFD_CWSR_TMA_OFFSET);
536                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
537                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
538                 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
539                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
540                                              > KFD_CWSR_TMA_OFFSET);
541                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
542                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
543                 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
544                         /* The gfx11 cwsr trap handler must fit inside a single
545                            page. */
546                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
547                         kfd->cwsr_isa = cwsr_trap_gfx11_hex;
548                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
549                 } else {
550                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
551                                              > KFD_CWSR_TMA_OFFSET);
552                         kfd->cwsr_isa = cwsr_trap_gfx12_hex;
553                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
554                 }
555
556                 kfd->cwsr_enabled = true;
557         }
558 }
559
560 static int kfd_gws_init(struct kfd_node *node)
561 {
562         int ret = 0;
563         struct kfd_dev *kfd = node->kfd;
564         uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
565
566         if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
567                 return 0;
568
569         if (hws_gws_support || (KFD_IS_SOC15(node) &&
570                 ((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
571                         && kfd->mec2_fw_version >= 0x81b3) ||
572                 (KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
573                         && kfd->mec2_fw_version >= 0x1b3)  ||
574                 (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
575                         && kfd->mec2_fw_version >= 0x30)   ||
576                 (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
577                         && kfd->mec2_fw_version >= 0x28) ||
578                 (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
579                  KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
580                 (KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
581                 (KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
582                         && KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
583                         && kfd->mec2_fw_version >= 0x6b) ||
584                 (KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
585                         && KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
586                         && mes_rev >= 68))))
587                 ret = amdgpu_amdkfd_alloc_gws(node->adev,
588                                 node->adev->gds.gws_size, &node->gws);
589
590         return ret;
591 }
592
593 static void kfd_smi_init(struct kfd_node *dev)
594 {
595         INIT_LIST_HEAD(&dev->smi_clients);
596         spin_lock_init(&dev->smi_lock);
597 }
598
599 static int kfd_init_node(struct kfd_node *node)
600 {
601         int err = -1;
602
603         if (kfd_interrupt_init(node)) {
604                 dev_err(kfd_device, "Error initializing interrupts\n");
605                 goto kfd_interrupt_error;
606         }
607
608         node->dqm = device_queue_manager_init(node);
609         if (!node->dqm) {
610                 dev_err(kfd_device, "Error initializing queue manager\n");
611                 goto device_queue_manager_error;
612         }
613
614         if (kfd_gws_init(node)) {
615                 dev_err(kfd_device, "Could not allocate %d gws\n",
616                         node->adev->gds.gws_size);
617                 goto gws_error;
618         }
619
620         if (kfd_resume(node))
621                 goto kfd_resume_error;
622
623         if (kfd_topology_add_device(node)) {
624                 dev_err(kfd_device, "Error adding device to topology\n");
625                 goto kfd_topology_add_device_error;
626         }
627
628         kfd_smi_init(node);
629
630         return 0;
631
632 kfd_topology_add_device_error:
633 kfd_resume_error:
634 gws_error:
635         device_queue_manager_uninit(node->dqm);
636 device_queue_manager_error:
637         kfd_interrupt_exit(node);
638 kfd_interrupt_error:
639         if (node->gws)
640                 amdgpu_amdkfd_free_gws(node->adev, node->gws);
641
642         /* Cleanup the node memory here */
643         kfree(node);
644         return err;
645 }
646
647 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
648 {
649         struct kfd_node *knode;
650         unsigned int i;
651
652         /*
653          * flush_work ensures that there are no outstanding
654          * work-queue items that will access interrupt_ring. New work items
655          * can't be created because we stopped interrupt handling above.
656          */
657         flush_workqueue(kfd->ih_wq);
658         destroy_workqueue(kfd->ih_wq);
659
660         for (i = 0; i < num_nodes; i++) {
661                 knode = kfd->nodes[i];
662                 device_queue_manager_uninit(knode->dqm);
663                 kfd_interrupt_exit(knode);
664                 kfd_topology_remove_device(knode);
665                 if (knode->gws)
666                         amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
667                 kfree(knode);
668                 kfd->nodes[i] = NULL;
669         }
670 }
671
672 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
673                                        unsigned int kfd_node_idx)
674 {
675         struct amdgpu_device *adev = node->adev;
676         uint32_t xcc_mask = node->xcc_mask;
677         uint32_t xcc, mapped_xcc;
678         /*
679          * Interrupt bitmap is setup for processing interrupts from
680          * different XCDs and AIDs.
681          * Interrupt bitmap is defined as follows:
682          * 1. Bits 0-15 - correspond to the NodeId field.
683          *    Each bit corresponds to NodeId number. For example, if
684          *    a KFD node has interrupt bitmap set to 0x7, then this
685          *    KFD node will process interrupts with NodeId = 0, 1 and 2
686          *    in the IH cookie.
687          * 2. Bits 16-31 - unused.
688          *
689          * Please note that the kfd_node_idx argument passed to this
690          * function is not related to NodeId field received in the
691          * IH cookie.
692          *
693          * In CPX mode, a KFD node will process an interrupt if:
694          * - the Node Id matches the corresponding bit set in
695          *   Bits 0-15.
696          * - AND VMID reported in the interrupt lies within the
697          *   VMID range of the node.
698          */
699         for_each_inst(xcc, xcc_mask) {
700                 mapped_xcc = GET_INST(GC, xcc);
701                 node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
702         }
703         dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
704                                                         node->interrupt_bitmap);
705 }
706
707 bool kgd2kfd_device_init(struct kfd_dev *kfd,
708                          const struct kgd2kfd_shared_resources *gpu_resources)
709 {
710         unsigned int size, map_process_packet_size, i;
711         struct kfd_node *node;
712         uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
713         unsigned int max_proc_per_quantum;
714         int partition_mode;
715         int xcp_idx;
716
717         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
718                         KGD_ENGINE_MEC1);
719         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
720                         KGD_ENGINE_MEC2);
721         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
722                         KGD_ENGINE_SDMA1);
723         kfd->shared_resources = *gpu_resources;
724
725         kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
726
727         if (kfd->num_nodes == 0) {
728                 dev_err(kfd_device,
729                         "KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
730                         kfd->adev->gfx.num_xcc_per_xcp);
731                 goto out;
732         }
733
734         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
735          * 32 and 64-bit requests are possible and must be
736          * supported.
737          */
738         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
739         if (!kfd->pci_atomic_requested &&
740             kfd->device_info.needs_pci_atomics &&
741             (!kfd->device_info.no_atomic_fw_version ||
742              kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
743                 dev_info(kfd_device,
744                          "skipped device %x:%x, PCI rejects atomics %d<%d\n",
745                          kfd->adev->pdev->vendor, kfd->adev->pdev->device,
746                          kfd->mec_fw_version,
747                          kfd->device_info.no_atomic_fw_version);
748                 return false;
749         }
750
751         first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
752         last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
753         vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
754
755         /* For multi-partition capable GPUs, we need special handling for VMIDs
756          * depending on partition mode.
757          * In CPX mode, the VMID range needs to be shared between XCDs.
758          * Additionally, there are 13 VMIDs (3-15) available for KFD. To
759          * divide them equally, we change starting VMID to 4 and not use
760          * VMID 3.
761          * If the VMID range changes for multi-partition capable GPUs, then
762          * this code MUST be revisited.
763          */
764         if (kfd->adev->xcp_mgr) {
765                 partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
766                                                                  AMDGPU_XCP_FL_LOCKED);
767                 if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
768                     kfd->num_nodes != 1) {
769                         vmid_num_kfd /= 2;
770                         first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
771                 }
772         }
773
774         /* Verify module parameters regarding mapped process number*/
775         if (hws_max_conc_proc >= 0)
776                 max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
777         else
778                 max_proc_per_quantum = vmid_num_kfd;
779
780         /* calculate max size of mqds needed for queues */
781         size = max_num_of_queues_per_device *
782                         kfd->device_info.mqd_size_aligned;
783
784         /*
785          * calculate max size of runlist packet.
786          * There can be only 2 packets at once
787          */
788         map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
789                                 sizeof(struct pm4_mes_map_process_aldebaran) :
790                                 sizeof(struct pm4_mes_map_process);
791         size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
792                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
793                 + sizeof(struct pm4_mes_runlist)) * 2;
794
795         /* Add size of HIQ & DIQ */
796         size += KFD_KERNEL_QUEUE_SIZE * 2;
797
798         /* add another 512KB for all other allocations on gart (HPD, fences) */
799         size += 512 * 1024;
800
801         if (amdgpu_amdkfd_alloc_gtt_mem(
802                         kfd->adev, size, &kfd->gtt_mem,
803                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
804                         false)) {
805                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
806                 goto alloc_gtt_mem_failure;
807         }
808
809         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
810
811         /* Initialize GTT sa with 512 byte chunk size */
812         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
813                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
814                 goto kfd_gtt_sa_init_error;
815         }
816
817         if (kfd_doorbell_init(kfd)) {
818                 dev_err(kfd_device,
819                         "Error initializing doorbell aperture\n");
820                 goto kfd_doorbell_error;
821         }
822
823         if (amdgpu_use_xgmi_p2p)
824                 kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
825
826         /*
827          * For multi-partition capable GPUs, the KFD abstracts all partitions
828          * within a socket as xGMI connected in the topology so assign a unique
829          * hive id per device based on the pci device location if device is in
830          * PCIe mode.
831          */
832         if (!kfd->hive_id && kfd->num_nodes > 1)
833                 kfd->hive_id = pci_dev_id(kfd->adev->pdev);
834
835         kfd->noretry = kfd->adev->gmc.noretry;
836
837         kfd_cwsr_init(kfd);
838
839         dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
840                                 kfd->num_nodes);
841
842         /* Allocate the KFD nodes */
843         for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
844                 node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
845                 if (!node)
846                         goto node_alloc_error;
847
848                 node->node_id = i;
849                 node->adev = kfd->adev;
850                 node->kfd = kfd;
851                 node->kfd2kgd = kfd->kfd2kgd;
852                 node->vm_info.vmid_num_kfd = vmid_num_kfd;
853                 node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
854                 /* TODO : Check if error handling is needed */
855                 if (node->xcp) {
856                         amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
857                                                     &node->xcc_mask);
858                         ++xcp_idx;
859                 } else {
860                         node->xcc_mask =
861                                 (1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
862                 }
863
864                 if (node->xcp) {
865                         dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
866                                 node->node_id, node->xcp->mem_id,
867                                 KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
868                 }
869
870                 if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
871                     kfd->num_nodes != 1) {
872                         /* For multi-partition capable GPUs and CPX mode, first
873                          * XCD gets VMID range 4-9 and second XCD gets VMID
874                          * range 10-15.
875                          */
876
877                         node->vm_info.first_vmid_kfd = (i%2 == 0) ?
878                                                 first_vmid_kfd :
879                                                 first_vmid_kfd+vmid_num_kfd;
880                         node->vm_info.last_vmid_kfd = (i%2 == 0) ?
881                                                 last_vmid_kfd-vmid_num_kfd :
882                                                 last_vmid_kfd;
883                         node->compute_vmid_bitmap =
884                                 ((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
885                                 ((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
886                 } else {
887                         node->vm_info.first_vmid_kfd = first_vmid_kfd;
888                         node->vm_info.last_vmid_kfd = last_vmid_kfd;
889                         node->compute_vmid_bitmap =
890                                 gpu_resources->compute_vmid_bitmap;
891                 }
892                 node->max_proc_per_quantum = max_proc_per_quantum;
893                 atomic_set(&node->sram_ecc_flag, 0);
894
895                 amdgpu_amdkfd_get_local_mem_info(kfd->adev,
896                                         &node->local_mem_info, node->xcp);
897
898                 if (kfd->adev->xcp_mgr)
899                         kfd_setup_interrupt_bitmap(node, i);
900
901                 /* Initialize the KFD node */
902                 if (kfd_init_node(node)) {
903                         dev_err(kfd_device, "Error initializing KFD node\n");
904                         goto node_init_error;
905                 }
906
907                 spin_lock_init(&node->watch_points_lock);
908
909                 kfd->nodes[i] = node;
910         }
911
912         svm_range_set_max_pages(kfd->adev);
913
914         kfd->init_complete = true;
915         dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
916                  kfd->adev->pdev->device);
917
918         pr_debug("Starting kfd with the following scheduling policy %d\n",
919                 node->dqm->sched_policy);
920
921         goto out;
922
923 node_init_error:
924 node_alloc_error:
925         kfd_cleanup_nodes(kfd, i);
926         kfd_doorbell_fini(kfd);
927 kfd_doorbell_error:
928         kfd_gtt_sa_fini(kfd);
929 kfd_gtt_sa_init_error:
930         amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
931 alloc_gtt_mem_failure:
932         dev_err(kfd_device,
933                 "device %x:%x NOT added due to errors\n",
934                 kfd->adev->pdev->vendor, kfd->adev->pdev->device);
935 out:
936         return kfd->init_complete;
937 }
938
939 void kgd2kfd_device_exit(struct kfd_dev *kfd)
940 {
941         if (kfd->init_complete) {
942                 /* Cleanup KFD nodes */
943                 kfd_cleanup_nodes(kfd, kfd->num_nodes);
944                 /* Cleanup common/shared resources */
945                 kfd_doorbell_fini(kfd);
946                 ida_destroy(&kfd->doorbell_ida);
947                 kfd_gtt_sa_fini(kfd);
948                 amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
949         }
950
951         kfree(kfd);
952 }
953
954 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
955                       struct amdgpu_reset_context *reset_context)
956 {
957         struct kfd_node *node;
958         int i;
959
960         if (!kfd->init_complete)
961                 return 0;
962
963         for (i = 0; i < kfd->num_nodes; i++) {
964                 node = kfd->nodes[i];
965                 kfd_smi_event_update_gpu_reset(node, false, reset_context);
966         }
967
968         kgd2kfd_suspend(kfd, false);
969
970         for (i = 0; i < kfd->num_nodes; i++)
971                 kfd_signal_reset_event(kfd->nodes[i]);
972
973         return 0;
974 }
975
976 /*
977  * Fix me. KFD won't be able to resume existing process for now.
978  * We will keep all existing process in a evicted state and
979  * wait the process to be terminated.
980  */
981
982 int kgd2kfd_post_reset(struct kfd_dev *kfd)
983 {
984         int ret;
985         struct kfd_node *node;
986         int i;
987
988         if (!kfd->init_complete)
989                 return 0;
990
991         for (i = 0; i < kfd->num_nodes; i++) {
992                 ret = kfd_resume(kfd->nodes[i]);
993                 if (ret)
994                         return ret;
995         }
996
997         mutex_lock(&kfd_processes_mutex);
998         --kfd_locked;
999         mutex_unlock(&kfd_processes_mutex);
1000
1001         for (i = 0; i < kfd->num_nodes; i++) {
1002                 node = kfd->nodes[i];
1003                 atomic_set(&node->sram_ecc_flag, 0);
1004                 kfd_smi_event_update_gpu_reset(node, true, NULL);
1005         }
1006
1007         return 0;
1008 }
1009
1010 bool kfd_is_locked(void)
1011 {
1012         lockdep_assert_held(&kfd_processes_mutex);
1013         return  (kfd_locked > 0);
1014 }
1015
1016 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1017 {
1018         struct kfd_node *node;
1019         int i;
1020
1021         if (!kfd->init_complete)
1022                 return;
1023
1024         /* for runtime suspend, skip locking kfd */
1025         if (!run_pm) {
1026                 mutex_lock(&kfd_processes_mutex);
1027                 /* For first KFD device suspend all the KFD processes */
1028                 if (++kfd_locked == 1)
1029                         kfd_suspend_all_processes();
1030                 mutex_unlock(&kfd_processes_mutex);
1031         }
1032
1033         for (i = 0; i < kfd->num_nodes; i++) {
1034                 node = kfd->nodes[i];
1035                 node->dqm->ops.stop(node->dqm);
1036         }
1037 }
1038
1039 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1040 {
1041         int ret, i;
1042
1043         if (!kfd->init_complete)
1044                 return 0;
1045
1046         for (i = 0; i < kfd->num_nodes; i++) {
1047                 ret = kfd_resume(kfd->nodes[i]);
1048                 if (ret)
1049                         return ret;
1050         }
1051
1052         /* for runtime resume, skip unlocking kfd */
1053         if (!run_pm) {
1054                 mutex_lock(&kfd_processes_mutex);
1055                 if (--kfd_locked == 0)
1056                         ret = kfd_resume_all_processes();
1057                 WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1058                 mutex_unlock(&kfd_processes_mutex);
1059         }
1060
1061         return ret;
1062 }
1063
1064 static int kfd_resume(struct kfd_node *node)
1065 {
1066         int err = 0;
1067
1068         err = node->dqm->ops.start(node->dqm);
1069         if (err)
1070                 dev_err(kfd_device,
1071                         "Error starting queue manager for device %x:%x\n",
1072                         node->adev->pdev->vendor, node->adev->pdev->device);
1073
1074         return err;
1075 }
1076
1077 /* This is called directly from KGD at ISR. */
1078 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1079 {
1080         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1081         bool is_patched = false;
1082         unsigned long flags;
1083         struct kfd_node *node;
1084
1085         if (!kfd->init_complete)
1086                 return;
1087
1088         if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1089                 dev_err_once(kfd_device, "Ring entry too small\n");
1090                 return;
1091         }
1092
1093         for (i = 0; i < kfd->num_nodes; i++) {
1094                 node = kfd->nodes[i];
1095                 spin_lock_irqsave(&node->interrupt_lock, flags);
1096
1097                 if (node->interrupts_active
1098                     && interrupt_is_wanted(node, ih_ring_entry,
1099                                 patched_ihre, &is_patched)
1100                     && enqueue_ih_ring_entry(node,
1101                                 is_patched ? patched_ihre : ih_ring_entry)) {
1102                         queue_work(node->kfd->ih_wq, &node->interrupt_work);
1103                         spin_unlock_irqrestore(&node->interrupt_lock, flags);
1104                         return;
1105                 }
1106                 spin_unlock_irqrestore(&node->interrupt_lock, flags);
1107         }
1108
1109 }
1110
1111 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1112 {
1113         struct kfd_process *p;
1114         int r;
1115
1116         /* Because we are called from arbitrary context (workqueue) as opposed
1117          * to process context, kfd_process could attempt to exit while we are
1118          * running so the lookup function increments the process ref count.
1119          */
1120         p = kfd_lookup_process_by_mm(mm);
1121         if (!p)
1122                 return -ESRCH;
1123
1124         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1125         r = kfd_process_evict_queues(p, trigger);
1126
1127         kfd_unref_process(p);
1128         return r;
1129 }
1130
1131 int kgd2kfd_resume_mm(struct mm_struct *mm)
1132 {
1133         struct kfd_process *p;
1134         int r;
1135
1136         /* Because we are called from arbitrary context (workqueue) as opposed
1137          * to process context, kfd_process could attempt to exit while we are
1138          * running so the lookup function increments the process ref count.
1139          */
1140         p = kfd_lookup_process_by_mm(mm);
1141         if (!p)
1142                 return -ESRCH;
1143
1144         r = kfd_process_restore_queues(p);
1145
1146         kfd_unref_process(p);
1147         return r;
1148 }
1149
1150 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1151  *   prepare for safe eviction of KFD BOs that belong to the specified
1152  *   process.
1153  *
1154  * @mm: mm_struct that identifies the specified KFD process
1155  * @fence: eviction fence attached to KFD process BOs
1156  *
1157  */
1158 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1159                                                struct dma_fence *fence)
1160 {
1161         struct kfd_process *p;
1162         unsigned long active_time;
1163         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1164
1165         if (!fence)
1166                 return -EINVAL;
1167
1168         if (dma_fence_is_signaled(fence))
1169                 return 0;
1170
1171         p = kfd_lookup_process_by_mm(mm);
1172         if (!p)
1173                 return -ENODEV;
1174
1175         if (fence->seqno == p->last_eviction_seqno)
1176                 goto out;
1177
1178         p->last_eviction_seqno = fence->seqno;
1179
1180         /* Avoid KFD process starvation. Wait for at least
1181          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1182          */
1183         active_time = get_jiffies_64() - p->last_restore_timestamp;
1184         if (delay_jiffies > active_time)
1185                 delay_jiffies -= active_time;
1186         else
1187                 delay_jiffies = 0;
1188
1189         /* During process initialization eviction_work.dwork is initialized
1190          * to kfd_evict_bo_worker
1191          */
1192         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1193              p->lead_thread->pid, delay_jiffies);
1194         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1195 out:
1196         kfd_unref_process(p);
1197         return 0;
1198 }
1199
1200 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1201                                 unsigned int chunk_size)
1202 {
1203         if (WARN_ON(buf_size < chunk_size))
1204                 return -EINVAL;
1205         if (WARN_ON(buf_size == 0))
1206                 return -EINVAL;
1207         if (WARN_ON(chunk_size == 0))
1208                 return -EINVAL;
1209
1210         kfd->gtt_sa_chunk_size = chunk_size;
1211         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1212
1213         kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1214                                            GFP_KERNEL);
1215         if (!kfd->gtt_sa_bitmap)
1216                 return -ENOMEM;
1217
1218         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1219                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1220
1221         mutex_init(&kfd->gtt_sa_lock);
1222
1223         return 0;
1224 }
1225
1226 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1227 {
1228         mutex_destroy(&kfd->gtt_sa_lock);
1229         bitmap_free(kfd->gtt_sa_bitmap);
1230 }
1231
1232 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1233                                                 unsigned int bit_num,
1234                                                 unsigned int chunk_size)
1235 {
1236         return start_addr + bit_num * chunk_size;
1237 }
1238
1239 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1240                                                 unsigned int bit_num,
1241                                                 unsigned int chunk_size)
1242 {
1243         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1244 }
1245
1246 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1247                         struct kfd_mem_obj **mem_obj)
1248 {
1249         unsigned int found, start_search, cur_size;
1250         struct kfd_dev *kfd = node->kfd;
1251
1252         if (size == 0)
1253                 return -EINVAL;
1254
1255         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1256                 return -ENOMEM;
1257
1258         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1259         if (!(*mem_obj))
1260                 return -ENOMEM;
1261
1262         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1263
1264         start_search = 0;
1265
1266         mutex_lock(&kfd->gtt_sa_lock);
1267
1268 kfd_gtt_restart_search:
1269         /* Find the first chunk that is free */
1270         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1271                                         kfd->gtt_sa_num_of_chunks,
1272                                         start_search);
1273
1274         pr_debug("Found = %d\n", found);
1275
1276         /* If there wasn't any free chunk, bail out */
1277         if (found == kfd->gtt_sa_num_of_chunks)
1278                 goto kfd_gtt_no_free_chunk;
1279
1280         /* Update fields of mem_obj */
1281         (*mem_obj)->range_start = found;
1282         (*mem_obj)->range_end = found;
1283         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1284                                         kfd->gtt_start_gpu_addr,
1285                                         found,
1286                                         kfd->gtt_sa_chunk_size);
1287         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1288                                         kfd->gtt_start_cpu_ptr,
1289                                         found,
1290                                         kfd->gtt_sa_chunk_size);
1291
1292         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1293                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1294
1295         /* If we need only one chunk, mark it as allocated and get out */
1296         if (size <= kfd->gtt_sa_chunk_size) {
1297                 pr_debug("Single bit\n");
1298                 __set_bit(found, kfd->gtt_sa_bitmap);
1299                 goto kfd_gtt_out;
1300         }
1301
1302         /* Otherwise, try to see if we have enough contiguous chunks */
1303         cur_size = size - kfd->gtt_sa_chunk_size;
1304         do {
1305                 (*mem_obj)->range_end =
1306                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1307                                         kfd->gtt_sa_num_of_chunks, ++found);
1308                 /*
1309                  * If next free chunk is not contiguous than we need to
1310                  * restart our search from the last free chunk we found (which
1311                  * wasn't contiguous to the previous ones
1312                  */
1313                 if ((*mem_obj)->range_end != found) {
1314                         start_search = found;
1315                         goto kfd_gtt_restart_search;
1316                 }
1317
1318                 /*
1319                  * If we reached end of buffer, bail out with error
1320                  */
1321                 if (found == kfd->gtt_sa_num_of_chunks)
1322                         goto kfd_gtt_no_free_chunk;
1323
1324                 /* Check if we don't need another chunk */
1325                 if (cur_size <= kfd->gtt_sa_chunk_size)
1326                         cur_size = 0;
1327                 else
1328                         cur_size -= kfd->gtt_sa_chunk_size;
1329
1330         } while (cur_size > 0);
1331
1332         pr_debug("range_start = %d, range_end = %d\n",
1333                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1334
1335         /* Mark the chunks as allocated */
1336         bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1337                    (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1338
1339 kfd_gtt_out:
1340         mutex_unlock(&kfd->gtt_sa_lock);
1341         return 0;
1342
1343 kfd_gtt_no_free_chunk:
1344         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1345         mutex_unlock(&kfd->gtt_sa_lock);
1346         kfree(*mem_obj);
1347         return -ENOMEM;
1348 }
1349
1350 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1351 {
1352         struct kfd_dev *kfd = node->kfd;
1353
1354         /* Act like kfree when trying to free a NULL object */
1355         if (!mem_obj)
1356                 return 0;
1357
1358         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1359                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1360
1361         mutex_lock(&kfd->gtt_sa_lock);
1362
1363         /* Mark the chunks as free */
1364         bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1365                      mem_obj->range_end - mem_obj->range_start + 1);
1366
1367         mutex_unlock(&kfd->gtt_sa_lock);
1368
1369         kfree(mem_obj);
1370         return 0;
1371 }
1372
1373 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1374 {
1375         /*
1376          * TODO: Currently update SRAM ECC flag for first node.
1377          * This needs to be updated later when we can
1378          * identify SRAM ECC error on other nodes also.
1379          */
1380         if (kfd)
1381                 atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1382 }
1383
1384 void kfd_inc_compute_active(struct kfd_node *node)
1385 {
1386         if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1387                 amdgpu_amdkfd_set_compute_idle(node->adev, false);
1388 }
1389
1390 void kfd_dec_compute_active(struct kfd_node *node)
1391 {
1392         int count = atomic_dec_return(&node->kfd->compute_profile);
1393
1394         if (count == 0)
1395                 amdgpu_amdkfd_set_compute_idle(node->adev, true);
1396         WARN_ONCE(count < 0, "Compute profile ref. count error");
1397 }
1398
1399 static bool kfd_compute_active(struct kfd_node *node)
1400 {
1401         if (atomic_read(&node->kfd->compute_profile))
1402                 return true;
1403         return false;
1404 }
1405
1406 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1407 {
1408         /*
1409          * TODO: For now, raise the throttling event only on first node.
1410          * This will need to change after we are able to determine
1411          * which node raised the throttling event.
1412          */
1413         if (kfd && kfd->init_complete)
1414                 kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1415                                                         throttle_bitmask);
1416 }
1417
1418 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1419  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1420  * When the device has more than two engines, we reserve two for PCIe to enable
1421  * full-duplex and the rest are used as XGMI.
1422  */
1423 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1424 {
1425         /* If XGMI is not supported, all SDMA engines are PCIe */
1426         if (!node->adev->gmc.xgmi.supported)
1427                 return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1428
1429         return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1430 }
1431
1432 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1433 {
1434         /* After reserved for PCIe, the rest of engines are XGMI */
1435         return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1436                 kfd_get_num_sdma_engines(node);
1437 }
1438
1439 int kgd2kfd_check_and_lock_kfd(void)
1440 {
1441         mutex_lock(&kfd_processes_mutex);
1442         if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1443                 mutex_unlock(&kfd_processes_mutex);
1444                 return -EBUSY;
1445         }
1446
1447         ++kfd_locked;
1448         mutex_unlock(&kfd_processes_mutex);
1449
1450         return 0;
1451 }
1452
1453 void kgd2kfd_unlock_kfd(void)
1454 {
1455         mutex_lock(&kfd_processes_mutex);
1456         --kfd_locked;
1457         mutex_unlock(&kfd_processes_mutex);
1458 }
1459
1460 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1461 {
1462         struct kfd_node *node;
1463         int ret;
1464
1465         if (!kfd->init_complete)
1466                 return 0;
1467
1468         if (node_id >= kfd->num_nodes) {
1469                 dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1470                          node_id, kfd->num_nodes - 1);
1471                 return -EINVAL;
1472         }
1473         node = kfd->nodes[node_id];
1474
1475         ret = node->dqm->ops.unhalt(node->dqm);
1476         if (ret)
1477                 dev_err(kfd_device, "Error in starting scheduler\n");
1478
1479         return ret;
1480 }
1481
1482 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1483 {
1484         struct kfd_node *node;
1485
1486         if (!kfd->init_complete)
1487                 return 0;
1488
1489         if (node_id >= kfd->num_nodes) {
1490                 dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1491                          node_id, kfd->num_nodes - 1);
1492                 return -EINVAL;
1493         }
1494
1495         node = kfd->nodes[node_id];
1496         return node->dqm->ops.halt(node->dqm);
1497 }
1498
1499 bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1500 {
1501         struct kfd_node *node;
1502
1503         if (!kfd->init_complete)
1504                 return false;
1505
1506         if (node_id >= kfd->num_nodes) {
1507                 dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1508                          node_id, kfd->num_nodes - 1);
1509                 return false;
1510         }
1511
1512         node = kfd->nodes[node_id];
1513
1514         return kfd_compute_active(node);
1515 }
1516
1517 /**
1518  * kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
1519  * @adev: amdgpu device
1520  * @entry: vm fault interrupt vector
1521  * @retry_fault: if this is retry fault
1522  *
1523  * retry fault -
1524  *    with CAM enabled, adev primary ring
1525  *                           |  gmc_v9_0_process_interrupt()
1526  *                      adev soft_ring
1527  *                           |  gmc_v9_0_process_interrupt() worker failed to recover page fault
1528  *                      KFD node ih_fifo
1529  *                           |  KFD interrupt_wq worker
1530  *                      kfd_signal_vm_fault_event
1531  *
1532  *    without CAM,      adev primary ring1
1533  *                           |  gmc_v9_0_process_interrupt worker failed to recvoer page fault
1534  *                      KFD node ih_fifo
1535  *                           |  KFD interrupt_wq worker
1536  *                      kfd_signal_vm_fault_event
1537  *
1538  * no-retry fault -
1539  *                      adev primary ring
1540  *                           |  gmc_v9_0_process_interrupt()
1541  *                      KFD node ih_fifo
1542  *                           |  KFD interrupt_wq worker
1543  *                      kfd_signal_vm_fault_event
1544  *
1545  * fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
1546  *            of same process, don't copy interrupt to KFD node ih_fifo.
1547  *            With gdb debugger enabled, need convert the retry fault to no-retry fault for
1548  *            debugger, cannot use the fast path.
1549  *
1550  * Return:
1551  *   true - use the fast path to handle this fault
1552  *   false - use normal path to handle it
1553  */
1554 bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
1555                                bool retry_fault)
1556 {
1557         struct kfd_process *p;
1558         u32 cam_index;
1559
1560         if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
1561                 p = kfd_lookup_process_by_pasid(entry->pasid);
1562                 if (!p)
1563                         return true;
1564
1565                 if (p->gpu_page_fault && !p->debug_trap_enabled) {
1566                         if (retry_fault && adev->irq.retry_cam_enabled) {
1567                                 cam_index = entry->src_data[2] & 0x3ff;
1568                                 WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
1569                         }
1570
1571                         kfd_unref_process(p);
1572                         return true;
1573                 }
1574
1575                 /*
1576                  * This is the first page fault, set flag and then signal user space
1577                  */
1578                 p->gpu_page_fault = true;
1579                 kfd_unref_process(p);
1580         }
1581         return false;
1582 }
1583
1584 #if defined(CONFIG_DEBUG_FS)
1585
1586 /* This function will send a package to HIQ to hang the HWS
1587  * which will trigger a GPU reset and bring the HWS back to normal state
1588  */
1589 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1590 {
1591         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1592                 pr_err("HWS is not enabled");
1593                 return -EINVAL;
1594         }
1595
1596         return dqm_debugfs_hang_hws(dev->dqm);
1597 }
1598
1599 #endif
This page took 0.127232 seconds and 4 git commands to generate.