2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
38 int hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 * Minimum page order among possible hugepage sizes, set to a proper value
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 __initdata LIST_HEAD(huge_boot_pages);
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
61 DEFINE_SPINLOCK(hugetlb_lock);
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 spin_unlock(&spool->lock);
79 /* If no pages are used, and no other handles to the subpool
80 * remain, give up any reservations mased on minimum size and
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 struct hugepage_subpool *spool;
95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 spin_lock_init(&spool->lock);
101 spool->max_hpages = max_hpages;
103 spool->min_hpages = min_hpages;
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 spool->rsv_hpages = min_hpages;
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
119 unlock_or_release_subpool(spool);
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
138 spin_lock(&spool->lock);
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 if (delta > spool->rsv_hpages) {
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
165 spin_unlock(&spool->lock);
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
183 spin_lock(&spool->lock);
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
204 unlock_or_release_subpool(spool);
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 return HUGETLBFS_SB(inode->i_sb)->spool;
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 return subpool_inode(file_inode(vma->vm_file));
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
239 struct list_head link;
245 * Add the huge page range represented by [f, t) to the reserve
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
258 static long region_add(struct resv_map *resv, long f, long t)
260 struct list_head *head = &resv->regions;
261 struct file_region *rg, *nrg, *trg;
264 spin_lock(&resv->lock);
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 list_del(&nrg->link);
286 list_add(&nrg->link, rg->link.prev);
292 /* Round our left edge to the current segment if it encloses us. */
296 /* Check for and consume any regions we now overlap with. */
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
314 add -= (rg->to - rg->from);
320 add += (nrg->from - f); /* Added to beginning of region */
322 add += t - nrg->to; /* Added to end of region */
326 resv->adds_in_progress--;
327 spin_unlock(&resv->lock);
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
354 static long region_chg(struct resv_map *resv, long f, long t)
356 struct list_head *head = &resv->regions;
357 struct file_region *rg, *nrg = NULL;
361 spin_lock(&resv->lock);
363 resv->adds_in_progress++;
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
399 resv->adds_in_progress--;
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
407 INIT_LIST_HEAD(&nrg->link);
411 list_add(&nrg->link, rg->link.prev);
416 /* Round our left edge to the current segment if it encloses us. */
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
428 /* We overlap with this area, if it extends further than
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
435 chg -= rg->to - rg->from;
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
444 spin_unlock(&resv->lock);
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
459 static void region_abort(struct resv_map *resv, long f, long t)
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
481 static long region_del(struct resv_map *resv, long f, long t)
483 struct list_head *head = &resv->regions;
484 struct file_region *rg, *trg;
485 struct file_region *nrg = NULL;
489 spin_lock(&resv->lock);
490 list_for_each_entry_safe(rg, trg, head, link) {
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
504 if (f > rg->from && t < rg->to) { /* Must split region */
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
514 list_del(&nrg->link);
515 resv->region_cache_count--;
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
528 /* New entry for end of split region */
531 INIT_LIST_HEAD(&nrg->link);
533 /* Original entry is trimmed */
536 list_add(&nrg->link, &rg->link);
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
548 if (f <= rg->from) { /* Trim beginning of region */
551 } else { /* Trim end of region */
557 spin_unlock(&resv->lock);
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
571 void hugetlb_fix_reserve_counts(struct inode *inode)
573 struct hugepage_subpool *spool = subpool_inode(inode);
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 struct hstate *h = hstate_inode(inode);
580 hugetlb_acct_memory(h, 1);
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
588 static long region_count(struct resv_map *resv, long f, long t)
590 struct list_head *head = &resv->regions;
591 struct file_region *rg;
594 spin_lock(&resv->lock);
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
608 chg += seg_to - seg_from;
610 spin_unlock(&resv->lock);
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 struct hstate *hstate;
641 if (!is_vm_hugetlb_page(vma))
644 hstate = hstate_vma(vma);
646 return 1UL << huge_page_shift(hstate);
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 return vma_kernel_pagesize(vma);
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
668 #define HPAGE_RESV_OWNER (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 return (unsigned long)vma->vm_private_data;
696 static void set_vma_private_data(struct vm_area_struct *vma,
699 vma->vm_private_data = (void *)value;
702 struct resv_map *resv_map_alloc(void)
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707 if (!resv_map || !rg) {
713 kref_init(&resv_map->refs);
714 spin_lock_init(&resv_map->lock);
715 INIT_LIST_HEAD(&resv_map->regions);
717 resv_map->adds_in_progress = 0;
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
726 void resv_map_release(struct kref *ref)
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
732 /* Clear out any active regions before we release the map. */
733 region_del(resv_map, 0, LONG_MAX);
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
741 VM_BUG_ON(resv_map->adds_in_progress);
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 return inode->i_mapping->private_data;
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
758 return inode_resv_map(inode);
761 return (struct resv_map *)(get_vma_private_data(vma) &
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 return (get_vma_private_data(vma) & flag) != 0;
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 if (!(vma->vm_flags & VM_MAYSHARE))
795 vma->vm_private_data = (void *)0;
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 if (vma->vm_flags & VM_NORESERVE) {
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
817 /* Shared mappings always use reserves */
818 if (vma->vm_flags & VM_MAYSHARE) {
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
833 * Only the process that called mmap() has reserves for
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 int nid = page_to_nid(page);
864 list_move(&page->lru, &h->hugepage_freelists[nid]);
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
869 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!is_migrate_isolate_page(page))
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
880 if (&h->hugepage_freelists[nid] == &page->lru)
882 list_move(&page->lru, &h->hugepage_activelist);
883 set_page_refcounted(page);
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
889 /* Movability of hugepages depends on migration support. */
890 static inline gfp_t htlb_alloc_mask(struct hstate *h)
892 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
893 return GFP_HIGHUSER_MOVABLE;
898 static struct page *dequeue_huge_page_vma(struct hstate *h,
899 struct vm_area_struct *vma,
900 unsigned long address, int avoid_reserve,
903 struct page *page = NULL;
904 struct mempolicy *mpol;
905 nodemask_t *nodemask;
906 struct zonelist *zonelist;
909 unsigned int cpuset_mems_cookie;
912 * A child process with MAP_PRIVATE mappings created by their parent
913 * have no page reserves. This check ensures that reservations are
914 * not "stolen". The child may still get SIGKILLed
916 if (!vma_has_reserves(vma, chg) &&
917 h->free_huge_pages - h->resv_huge_pages == 0)
920 /* If reserves cannot be used, ensure enough pages are in the pool */
921 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
925 cpuset_mems_cookie = read_mems_allowed_begin();
926 zonelist = huge_zonelist(vma, address,
927 htlb_alloc_mask(h), &mpol, &nodemask);
929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
930 MAX_NR_ZONES - 1, nodemask) {
931 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
932 page = dequeue_huge_page_node(h, zone_to_nid(zone));
936 if (!vma_has_reserves(vma, chg))
939 SetPagePrivate(page);
940 h->resv_huge_pages--;
947 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
956 * common helper functions for hstate_next_node_to_{alloc|free}.
957 * We may have allocated or freed a huge page based on a different
958 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959 * be outside of *nodes_allowed. Ensure that we use an allowed
960 * node for alloc or free.
962 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
964 nid = next_node_in(nid, *nodes_allowed);
965 VM_BUG_ON(nid >= MAX_NUMNODES);
970 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
972 if (!node_isset(nid, *nodes_allowed))
973 nid = next_node_allowed(nid, nodes_allowed);
978 * returns the previously saved node ["this node"] from which to
979 * allocate a persistent huge page for the pool and advance the
980 * next node from which to allocate, handling wrap at end of node
983 static int hstate_next_node_to_alloc(struct hstate *h,
984 nodemask_t *nodes_allowed)
988 VM_BUG_ON(!nodes_allowed);
990 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
997 * helper for free_pool_huge_page() - return the previously saved
998 * node ["this node"] from which to free a huge page. Advance the
999 * next node id whether or not we find a free huge page to free so
1000 * that the next attempt to free addresses the next node.
1002 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1006 VM_BUG_ON(!nodes_allowed);
1008 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1014 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1015 for (nr_nodes = nodes_weight(*mask); \
1017 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1020 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1021 for (nr_nodes = nodes_weight(*mask); \
1023 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1026 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1027 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028 defined(CONFIG_CMA))
1029 static void destroy_compound_gigantic_page(struct page *page,
1033 int nr_pages = 1 << order;
1034 struct page *p = page + 1;
1036 atomic_set(compound_mapcount_ptr(page), 0);
1037 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1038 clear_compound_head(p);
1039 set_page_refcounted(p);
1042 set_compound_order(page, 0);
1043 __ClearPageHead(page);
1046 static void free_gigantic_page(struct page *page, unsigned int order)
1048 free_contig_range(page_to_pfn(page), 1 << order);
1051 static int __alloc_gigantic_page(unsigned long start_pfn,
1052 unsigned long nr_pages)
1054 unsigned long end_pfn = start_pfn + nr_pages;
1055 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1058 static bool pfn_range_valid_gigantic(struct zone *z,
1059 unsigned long start_pfn, unsigned long nr_pages)
1061 unsigned long i, end_pfn = start_pfn + nr_pages;
1064 for (i = start_pfn; i < end_pfn; i++) {
1068 page = pfn_to_page(i);
1070 if (page_zone(page) != z)
1073 if (PageReserved(page))
1076 if (page_count(page) > 0)
1086 static bool zone_spans_last_pfn(const struct zone *zone,
1087 unsigned long start_pfn, unsigned long nr_pages)
1089 unsigned long last_pfn = start_pfn + nr_pages - 1;
1090 return zone_spans_pfn(zone, last_pfn);
1093 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1095 unsigned long nr_pages = 1 << order;
1096 unsigned long ret, pfn, flags;
1099 z = NODE_DATA(nid)->node_zones;
1100 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1101 spin_lock_irqsave(&z->lock, flags);
1103 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1104 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1105 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1107 * We release the zone lock here because
1108 * alloc_contig_range() will also lock the zone
1109 * at some point. If there's an allocation
1110 * spinning on this lock, it may win the race
1111 * and cause alloc_contig_range() to fail...
1113 spin_unlock_irqrestore(&z->lock, flags);
1114 ret = __alloc_gigantic_page(pfn, nr_pages);
1116 return pfn_to_page(pfn);
1117 spin_lock_irqsave(&z->lock, flags);
1122 spin_unlock_irqrestore(&z->lock, flags);
1128 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1129 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1131 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1135 page = alloc_gigantic_page(nid, huge_page_order(h));
1137 prep_compound_gigantic_page(page, huge_page_order(h));
1138 prep_new_huge_page(h, page, nid);
1144 static int alloc_fresh_gigantic_page(struct hstate *h,
1145 nodemask_t *nodes_allowed)
1147 struct page *page = NULL;
1150 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1151 page = alloc_fresh_gigantic_page_node(h, node);
1159 static inline bool gigantic_page_supported(void) { return true; }
1161 static inline bool gigantic_page_supported(void) { return false; }
1162 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1163 static inline void destroy_compound_gigantic_page(struct page *page,
1164 unsigned int order) { }
1165 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1166 nodemask_t *nodes_allowed) { return 0; }
1169 static void update_and_free_page(struct hstate *h, struct page *page)
1173 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1177 h->nr_huge_pages_node[page_to_nid(page)]--;
1178 for (i = 0; i < pages_per_huge_page(h); i++) {
1179 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1180 1 << PG_referenced | 1 << PG_dirty |
1181 1 << PG_active | 1 << PG_private |
1184 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1185 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1186 set_page_refcounted(page);
1187 if (hstate_is_gigantic(h)) {
1188 destroy_compound_gigantic_page(page, huge_page_order(h));
1189 free_gigantic_page(page, huge_page_order(h));
1191 __free_pages(page, huge_page_order(h));
1195 struct hstate *size_to_hstate(unsigned long size)
1199 for_each_hstate(h) {
1200 if (huge_page_size(h) == size)
1207 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1208 * to hstate->hugepage_activelist.)
1210 * This function can be called for tail pages, but never returns true for them.
1212 bool page_huge_active(struct page *page)
1214 VM_BUG_ON_PAGE(!PageHuge(page), page);
1215 return PageHead(page) && PagePrivate(&page[1]);
1218 /* never called for tail page */
1219 static void set_page_huge_active(struct page *page)
1221 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1222 SetPagePrivate(&page[1]);
1225 static void clear_page_huge_active(struct page *page)
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 ClearPagePrivate(&page[1]);
1231 void free_huge_page(struct page *page)
1234 * Can't pass hstate in here because it is called from the
1235 * compound page destructor.
1237 struct hstate *h = page_hstate(page);
1238 int nid = page_to_nid(page);
1239 struct hugepage_subpool *spool =
1240 (struct hugepage_subpool *)page_private(page);
1241 bool restore_reserve;
1243 set_page_private(page, 0);
1244 page->mapping = NULL;
1245 VM_BUG_ON_PAGE(page_count(page), page);
1246 VM_BUG_ON_PAGE(page_mapcount(page), page);
1247 restore_reserve = PagePrivate(page);
1248 ClearPagePrivate(page);
1251 * A return code of zero implies that the subpool will be under its
1252 * minimum size if the reservation is not restored after page is free.
1253 * Therefore, force restore_reserve operation.
1255 if (hugepage_subpool_put_pages(spool, 1) == 0)
1256 restore_reserve = true;
1258 spin_lock(&hugetlb_lock);
1259 clear_page_huge_active(page);
1260 hugetlb_cgroup_uncharge_page(hstate_index(h),
1261 pages_per_huge_page(h), page);
1262 if (restore_reserve)
1263 h->resv_huge_pages++;
1265 if (h->surplus_huge_pages_node[nid]) {
1266 /* remove the page from active list */
1267 list_del(&page->lru);
1268 update_and_free_page(h, page);
1269 h->surplus_huge_pages--;
1270 h->surplus_huge_pages_node[nid]--;
1272 arch_clear_hugepage_flags(page);
1273 enqueue_huge_page(h, page);
1275 spin_unlock(&hugetlb_lock);
1278 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1280 INIT_LIST_HEAD(&page->lru);
1281 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1282 spin_lock(&hugetlb_lock);
1283 set_hugetlb_cgroup(page, NULL);
1285 h->nr_huge_pages_node[nid]++;
1286 spin_unlock(&hugetlb_lock);
1287 put_page(page); /* free it into the hugepage allocator */
1290 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1293 int nr_pages = 1 << order;
1294 struct page *p = page + 1;
1296 /* we rely on prep_new_huge_page to set the destructor */
1297 set_compound_order(page, order);
1298 __ClearPageReserved(page);
1299 __SetPageHead(page);
1300 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1302 * For gigantic hugepages allocated through bootmem at
1303 * boot, it's safer to be consistent with the not-gigantic
1304 * hugepages and clear the PG_reserved bit from all tail pages
1305 * too. Otherwse drivers using get_user_pages() to access tail
1306 * pages may get the reference counting wrong if they see
1307 * PG_reserved set on a tail page (despite the head page not
1308 * having PG_reserved set). Enforcing this consistency between
1309 * head and tail pages allows drivers to optimize away a check
1310 * on the head page when they need know if put_page() is needed
1311 * after get_user_pages().
1313 __ClearPageReserved(p);
1314 set_page_count(p, 0);
1315 set_compound_head(p, page);
1317 atomic_set(compound_mapcount_ptr(page), -1);
1321 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1322 * transparent huge pages. See the PageTransHuge() documentation for more
1325 int PageHuge(struct page *page)
1327 if (!PageCompound(page))
1330 page = compound_head(page);
1331 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1333 EXPORT_SYMBOL_GPL(PageHuge);
1336 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1337 * normal or transparent huge pages.
1339 int PageHeadHuge(struct page *page_head)
1341 if (!PageHead(page_head))
1344 return get_compound_page_dtor(page_head) == free_huge_page;
1347 pgoff_t __basepage_index(struct page *page)
1349 struct page *page_head = compound_head(page);
1350 pgoff_t index = page_index(page_head);
1351 unsigned long compound_idx;
1353 if (!PageHuge(page_head))
1354 return page_index(page);
1356 if (compound_order(page_head) >= MAX_ORDER)
1357 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1359 compound_idx = page - page_head;
1361 return (index << compound_order(page_head)) + compound_idx;
1364 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1368 page = __alloc_pages_node(nid,
1369 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1370 __GFP_REPEAT|__GFP_NOWARN,
1371 huge_page_order(h));
1373 prep_new_huge_page(h, page, nid);
1379 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1385 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1386 page = alloc_fresh_huge_page_node(h, node);
1394 count_vm_event(HTLB_BUDDY_PGALLOC);
1396 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1402 * Free huge page from pool from next node to free.
1403 * Attempt to keep persistent huge pages more or less
1404 * balanced over allowed nodes.
1405 * Called with hugetlb_lock locked.
1407 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1413 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1415 * If we're returning unused surplus pages, only examine
1416 * nodes with surplus pages.
1418 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1419 !list_empty(&h->hugepage_freelists[node])) {
1421 list_entry(h->hugepage_freelists[node].next,
1423 list_del(&page->lru);
1424 h->free_huge_pages--;
1425 h->free_huge_pages_node[node]--;
1427 h->surplus_huge_pages--;
1428 h->surplus_huge_pages_node[node]--;
1430 update_and_free_page(h, page);
1440 * Dissolve a given free hugepage into free buddy pages. This function does
1441 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1442 * number of free hugepages would be reduced below the number of reserved
1445 static int dissolve_free_huge_page(struct page *page)
1449 spin_lock(&hugetlb_lock);
1450 if (PageHuge(page) && !page_count(page)) {
1451 struct page *head = compound_head(page);
1452 struct hstate *h = page_hstate(head);
1453 int nid = page_to_nid(head);
1454 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1458 list_del(&head->lru);
1459 h->free_huge_pages--;
1460 h->free_huge_pages_node[nid]--;
1461 h->max_huge_pages--;
1462 update_and_free_page(h, head);
1465 spin_unlock(&hugetlb_lock);
1470 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1471 * make specified memory blocks removable from the system.
1472 * Note that this will dissolve a free gigantic hugepage completely, if any
1473 * part of it lies within the given range.
1474 * Also note that if dissolve_free_huge_page() returns with an error, all
1475 * free hugepages that were dissolved before that error are lost.
1477 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1483 if (!hugepages_supported())
1486 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1487 page = pfn_to_page(pfn);
1488 if (PageHuge(page) && !page_count(page)) {
1489 rc = dissolve_free_huge_page(page);
1499 * There are 3 ways this can get called:
1500 * 1. With vma+addr: we use the VMA's memory policy
1501 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1502 * page from any node, and let the buddy allocator itself figure
1504 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1505 * strictly from 'nid'
1507 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1508 struct vm_area_struct *vma, unsigned long addr, int nid)
1510 int order = huge_page_order(h);
1511 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1512 unsigned int cpuset_mems_cookie;
1515 * We need a VMA to get a memory policy. If we do not
1516 * have one, we use the 'nid' argument.
1518 * The mempolicy stuff below has some non-inlined bits
1519 * and calls ->vm_ops. That makes it hard to optimize at
1520 * compile-time, even when NUMA is off and it does
1521 * nothing. This helps the compiler optimize it out.
1523 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1525 * If a specific node is requested, make sure to
1526 * get memory from there, but only when a node
1527 * is explicitly specified.
1529 if (nid != NUMA_NO_NODE)
1530 gfp |= __GFP_THISNODE;
1532 * Make sure to call something that can handle
1535 return alloc_pages_node(nid, gfp, order);
1539 * OK, so we have a VMA. Fetch the mempolicy and try to
1540 * allocate a huge page with it. We will only reach this
1541 * when CONFIG_NUMA=y.
1545 struct mempolicy *mpol;
1546 struct zonelist *zl;
1547 nodemask_t *nodemask;
1549 cpuset_mems_cookie = read_mems_allowed_begin();
1550 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1551 mpol_cond_put(mpol);
1552 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1555 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1561 * There are two ways to allocate a huge page:
1562 * 1. When you have a VMA and an address (like a fault)
1563 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1565 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1566 * this case which signifies that the allocation should be done with
1567 * respect for the VMA's memory policy.
1569 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1570 * implies that memory policies will not be taken in to account.
1572 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1573 struct vm_area_struct *vma, unsigned long addr, int nid)
1578 if (hstate_is_gigantic(h))
1582 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1583 * This makes sure the caller is picking _one_ of the modes with which
1584 * we can call this function, not both.
1586 if (vma || (addr != -1)) {
1587 VM_WARN_ON_ONCE(addr == -1);
1588 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1591 * Assume we will successfully allocate the surplus page to
1592 * prevent racing processes from causing the surplus to exceed
1595 * This however introduces a different race, where a process B
1596 * tries to grow the static hugepage pool while alloc_pages() is
1597 * called by process A. B will only examine the per-node
1598 * counters in determining if surplus huge pages can be
1599 * converted to normal huge pages in adjust_pool_surplus(). A
1600 * won't be able to increment the per-node counter, until the
1601 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1602 * no more huge pages can be converted from surplus to normal
1603 * state (and doesn't try to convert again). Thus, we have a
1604 * case where a surplus huge page exists, the pool is grown, and
1605 * the surplus huge page still exists after, even though it
1606 * should just have been converted to a normal huge page. This
1607 * does not leak memory, though, as the hugepage will be freed
1608 * once it is out of use. It also does not allow the counters to
1609 * go out of whack in adjust_pool_surplus() as we don't modify
1610 * the node values until we've gotten the hugepage and only the
1611 * per-node value is checked there.
1613 spin_lock(&hugetlb_lock);
1614 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1615 spin_unlock(&hugetlb_lock);
1619 h->surplus_huge_pages++;
1621 spin_unlock(&hugetlb_lock);
1623 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1625 spin_lock(&hugetlb_lock);
1627 INIT_LIST_HEAD(&page->lru);
1628 r_nid = page_to_nid(page);
1629 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1630 set_hugetlb_cgroup(page, NULL);
1632 * We incremented the global counters already
1634 h->nr_huge_pages_node[r_nid]++;
1635 h->surplus_huge_pages_node[r_nid]++;
1636 __count_vm_event(HTLB_BUDDY_PGALLOC);
1639 h->surplus_huge_pages--;
1640 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1642 spin_unlock(&hugetlb_lock);
1648 * Allocate a huge page from 'nid'. Note, 'nid' may be
1649 * NUMA_NO_NODE, which means that it may be allocated
1653 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1655 unsigned long addr = -1;
1657 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1661 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1664 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1665 struct vm_area_struct *vma, unsigned long addr)
1667 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1671 * This allocation function is useful in the context where vma is irrelevant.
1672 * E.g. soft-offlining uses this function because it only cares physical
1673 * address of error page.
1675 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1677 struct page *page = NULL;
1679 spin_lock(&hugetlb_lock);
1680 if (h->free_huge_pages - h->resv_huge_pages > 0)
1681 page = dequeue_huge_page_node(h, nid);
1682 spin_unlock(&hugetlb_lock);
1685 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1691 * Increase the hugetlb pool such that it can accommodate a reservation
1694 static int gather_surplus_pages(struct hstate *h, int delta)
1696 struct list_head surplus_list;
1697 struct page *page, *tmp;
1699 int needed, allocated;
1700 bool alloc_ok = true;
1702 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1704 h->resv_huge_pages += delta;
1709 INIT_LIST_HEAD(&surplus_list);
1713 spin_unlock(&hugetlb_lock);
1714 for (i = 0; i < needed; i++) {
1715 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1720 list_add(&page->lru, &surplus_list);
1725 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 * because either resv_huge_pages or free_huge_pages may have changed.
1728 spin_lock(&hugetlb_lock);
1729 needed = (h->resv_huge_pages + delta) -
1730 (h->free_huge_pages + allocated);
1735 * We were not able to allocate enough pages to
1736 * satisfy the entire reservation so we free what
1737 * we've allocated so far.
1742 * The surplus_list now contains _at_least_ the number of extra pages
1743 * needed to accommodate the reservation. Add the appropriate number
1744 * of pages to the hugetlb pool and free the extras back to the buddy
1745 * allocator. Commit the entire reservation here to prevent another
1746 * process from stealing the pages as they are added to the pool but
1747 * before they are reserved.
1749 needed += allocated;
1750 h->resv_huge_pages += delta;
1753 /* Free the needed pages to the hugetlb pool */
1754 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1758 * This page is now managed by the hugetlb allocator and has
1759 * no users -- drop the buddy allocator's reference.
1761 put_page_testzero(page);
1762 VM_BUG_ON_PAGE(page_count(page), page);
1763 enqueue_huge_page(h, page);
1766 spin_unlock(&hugetlb_lock);
1768 /* Free unnecessary surplus pages to the buddy allocator */
1769 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 spin_lock(&hugetlb_lock);
1777 * This routine has two main purposes:
1778 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779 * in unused_resv_pages. This corresponds to the prior adjustments made
1780 * to the associated reservation map.
1781 * 2) Free any unused surplus pages that may have been allocated to satisfy
1782 * the reservation. As many as unused_resv_pages may be freed.
1784 * Called with hugetlb_lock held. However, the lock could be dropped (and
1785 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1786 * we must make sure nobody else can claim pages we are in the process of
1787 * freeing. Do this by ensuring resv_huge_page always is greater than the
1788 * number of huge pages we plan to free when dropping the lock.
1790 static void return_unused_surplus_pages(struct hstate *h,
1791 unsigned long unused_resv_pages)
1793 unsigned long nr_pages;
1795 /* Cannot return gigantic pages currently */
1796 if (hstate_is_gigantic(h))
1800 * Part (or even all) of the reservation could have been backed
1801 * by pre-allocated pages. Only free surplus pages.
1803 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806 * We want to release as many surplus pages as possible, spread
1807 * evenly across all nodes with memory. Iterate across these nodes
1808 * until we can no longer free unreserved surplus pages. This occurs
1809 * when the nodes with surplus pages have no free pages.
1810 * free_pool_huge_page() will balance the the freed pages across the
1811 * on-line nodes with memory and will handle the hstate accounting.
1813 * Note that we decrement resv_huge_pages as we free the pages. If
1814 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 * to cover subsequent pages we may free.
1817 while (nr_pages--) {
1818 h->resv_huge_pages--;
1819 unused_resv_pages--;
1820 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 cond_resched_lock(&hugetlb_lock);
1826 /* Fully uncommit the reservation */
1827 h->resv_huge_pages -= unused_resv_pages;
1832 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833 * are used by the huge page allocation routines to manage reservations.
1835 * vma_needs_reservation is called to determine if the huge page at addr
1836 * within the vma has an associated reservation. If a reservation is
1837 * needed, the value 1 is returned. The caller is then responsible for
1838 * managing the global reservation and subpool usage counts. After
1839 * the huge page has been allocated, vma_commit_reservation is called
1840 * to add the page to the reservation map. If the page allocation fails,
1841 * the reservation must be ended instead of committed. vma_end_reservation
1842 * is called in such cases.
1844 * In the normal case, vma_commit_reservation returns the same value
1845 * as the preceding vma_needs_reservation call. The only time this
1846 * is not the case is if a reserve map was changed between calls. It
1847 * is the responsibility of the caller to notice the difference and
1848 * take appropriate action.
1850 * vma_add_reservation is used in error paths where a reservation must
1851 * be restored when a newly allocated huge page must be freed. It is
1852 * to be called after calling vma_needs_reservation to determine if a
1853 * reservation exists.
1855 enum vma_resv_mode {
1861 static long __vma_reservation_common(struct hstate *h,
1862 struct vm_area_struct *vma, unsigned long addr,
1863 enum vma_resv_mode mode)
1865 struct resv_map *resv;
1869 resv = vma_resv_map(vma);
1873 idx = vma_hugecache_offset(h, vma, addr);
1875 case VMA_NEEDS_RESV:
1876 ret = region_chg(resv, idx, idx + 1);
1878 case VMA_COMMIT_RESV:
1879 ret = region_add(resv, idx, idx + 1);
1882 region_abort(resv, idx, idx + 1);
1886 if (vma->vm_flags & VM_MAYSHARE)
1887 ret = region_add(resv, idx, idx + 1);
1889 region_abort(resv, idx, idx + 1);
1890 ret = region_del(resv, idx, idx + 1);
1897 if (vma->vm_flags & VM_MAYSHARE)
1899 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 * In most cases, reserves always exist for private mappings.
1902 * However, a file associated with mapping could have been
1903 * hole punched or truncated after reserves were consumed.
1904 * As subsequent fault on such a range will not use reserves.
1905 * Subtle - The reserve map for private mappings has the
1906 * opposite meaning than that of shared mappings. If NO
1907 * entry is in the reserve map, it means a reservation exists.
1908 * If an entry exists in the reserve map, it means the
1909 * reservation has already been consumed. As a result, the
1910 * return value of this routine is the opposite of the
1911 * value returned from reserve map manipulation routines above.
1919 return ret < 0 ? ret : 0;
1922 static long vma_needs_reservation(struct hstate *h,
1923 struct vm_area_struct *vma, unsigned long addr)
1925 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928 static long vma_commit_reservation(struct hstate *h,
1929 struct vm_area_struct *vma, unsigned long addr)
1931 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934 static void vma_end_reservation(struct hstate *h,
1935 struct vm_area_struct *vma, unsigned long addr)
1937 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 static long vma_add_reservation(struct hstate *h,
1941 struct vm_area_struct *vma, unsigned long addr)
1943 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1947 * This routine is called to restore a reservation on error paths. In the
1948 * specific error paths, a huge page was allocated (via alloc_huge_page)
1949 * and is about to be freed. If a reservation for the page existed,
1950 * alloc_huge_page would have consumed the reservation and set PagePrivate
1951 * in the newly allocated page. When the page is freed via free_huge_page,
1952 * the global reservation count will be incremented if PagePrivate is set.
1953 * However, free_huge_page can not adjust the reserve map. Adjust the
1954 * reserve map here to be consistent with global reserve count adjustments
1955 * to be made by free_huge_page.
1957 static void restore_reserve_on_error(struct hstate *h,
1958 struct vm_area_struct *vma, unsigned long address,
1961 if (unlikely(PagePrivate(page))) {
1962 long rc = vma_needs_reservation(h, vma, address);
1964 if (unlikely(rc < 0)) {
1966 * Rare out of memory condition in reserve map
1967 * manipulation. Clear PagePrivate so that
1968 * global reserve count will not be incremented
1969 * by free_huge_page. This will make it appear
1970 * as though the reservation for this page was
1971 * consumed. This may prevent the task from
1972 * faulting in the page at a later time. This
1973 * is better than inconsistent global huge page
1974 * accounting of reserve counts.
1976 ClearPagePrivate(page);
1978 rc = vma_add_reservation(h, vma, address);
1979 if (unlikely(rc < 0))
1981 * See above comment about rare out of
1984 ClearPagePrivate(page);
1986 vma_end_reservation(h, vma, address);
1990 struct page *alloc_huge_page(struct vm_area_struct *vma,
1991 unsigned long addr, int avoid_reserve)
1993 struct hugepage_subpool *spool = subpool_vma(vma);
1994 struct hstate *h = hstate_vma(vma);
1996 long map_chg, map_commit;
1999 struct hugetlb_cgroup *h_cg;
2001 idx = hstate_index(h);
2003 * Examine the region/reserve map to determine if the process
2004 * has a reservation for the page to be allocated. A return
2005 * code of zero indicates a reservation exists (no change).
2007 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 return ERR_PTR(-ENOMEM);
2012 * Processes that did not create the mapping will have no
2013 * reserves as indicated by the region/reserve map. Check
2014 * that the allocation will not exceed the subpool limit.
2015 * Allocations for MAP_NORESERVE mappings also need to be
2016 * checked against any subpool limit.
2018 if (map_chg || avoid_reserve) {
2019 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 vma_end_reservation(h, vma, addr);
2022 return ERR_PTR(-ENOSPC);
2026 * Even though there was no reservation in the region/reserve
2027 * map, there could be reservations associated with the
2028 * subpool that can be used. This would be indicated if the
2029 * return value of hugepage_subpool_get_pages() is zero.
2030 * However, if avoid_reserve is specified we still avoid even
2031 * the subpool reservations.
2037 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 goto out_subpool_put;
2041 spin_lock(&hugetlb_lock);
2043 * glb_chg is passed to indicate whether or not a page must be taken
2044 * from the global free pool (global change). gbl_chg == 0 indicates
2045 * a reservation exists for the allocation.
2047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 spin_unlock(&hugetlb_lock);
2050 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 goto out_uncharge_cgroup;
2053 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054 SetPagePrivate(page);
2055 h->resv_huge_pages--;
2057 spin_lock(&hugetlb_lock);
2058 list_move(&page->lru, &h->hugepage_activelist);
2061 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062 spin_unlock(&hugetlb_lock);
2064 set_page_private(page, (unsigned long)spool);
2066 map_commit = vma_commit_reservation(h, vma, addr);
2067 if (unlikely(map_chg > map_commit)) {
2069 * The page was added to the reservation map between
2070 * vma_needs_reservation and vma_commit_reservation.
2071 * This indicates a race with hugetlb_reserve_pages.
2072 * Adjust for the subpool count incremented above AND
2073 * in hugetlb_reserve_pages for the same page. Also,
2074 * the reservation count added in hugetlb_reserve_pages
2075 * no longer applies.
2079 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080 hugetlb_acct_memory(h, -rsv_adjust);
2084 out_uncharge_cgroup:
2085 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 if (map_chg || avoid_reserve)
2088 hugepage_subpool_put_pages(spool, 1);
2089 vma_end_reservation(h, vma, addr);
2090 return ERR_PTR(-ENOSPC);
2094 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2095 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2096 * where no ERR_VALUE is expected to be returned.
2098 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2099 unsigned long addr, int avoid_reserve)
2101 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2107 int __weak alloc_bootmem_huge_page(struct hstate *h)
2109 struct huge_bootmem_page *m;
2112 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2115 addr = memblock_virt_alloc_try_nid_nopanic(
2116 huge_page_size(h), huge_page_size(h),
2117 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2120 * Use the beginning of the huge page to store the
2121 * huge_bootmem_page struct (until gather_bootmem
2122 * puts them into the mem_map).
2131 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2132 /* Put them into a private list first because mem_map is not up yet */
2133 list_add(&m->list, &huge_boot_pages);
2138 static void __init prep_compound_huge_page(struct page *page,
2141 if (unlikely(order > (MAX_ORDER - 1)))
2142 prep_compound_gigantic_page(page, order);
2144 prep_compound_page(page, order);
2147 /* Put bootmem huge pages into the standard lists after mem_map is up */
2148 static void __init gather_bootmem_prealloc(void)
2150 struct huge_bootmem_page *m;
2152 list_for_each_entry(m, &huge_boot_pages, list) {
2153 struct hstate *h = m->hstate;
2156 #ifdef CONFIG_HIGHMEM
2157 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2158 memblock_free_late(__pa(m),
2159 sizeof(struct huge_bootmem_page));
2161 page = virt_to_page(m);
2163 WARN_ON(page_count(page) != 1);
2164 prep_compound_huge_page(page, h->order);
2165 WARN_ON(PageReserved(page));
2166 prep_new_huge_page(h, page, page_to_nid(page));
2168 * If we had gigantic hugepages allocated at boot time, we need
2169 * to restore the 'stolen' pages to totalram_pages in order to
2170 * fix confusing memory reports from free(1) and another
2171 * side-effects, like CommitLimit going negative.
2173 if (hstate_is_gigantic(h))
2174 adjust_managed_page_count(page, 1 << h->order);
2178 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2182 for (i = 0; i < h->max_huge_pages; ++i) {
2183 if (hstate_is_gigantic(h)) {
2184 if (!alloc_bootmem_huge_page(h))
2186 } else if (!alloc_fresh_huge_page(h,
2187 &node_states[N_MEMORY]))
2190 h->max_huge_pages = i;
2193 static void __init hugetlb_init_hstates(void)
2197 for_each_hstate(h) {
2198 if (minimum_order > huge_page_order(h))
2199 minimum_order = huge_page_order(h);
2201 /* oversize hugepages were init'ed in early boot */
2202 if (!hstate_is_gigantic(h))
2203 hugetlb_hstate_alloc_pages(h);
2205 VM_BUG_ON(minimum_order == UINT_MAX);
2208 static char * __init memfmt(char *buf, unsigned long n)
2210 if (n >= (1UL << 30))
2211 sprintf(buf, "%lu GB", n >> 30);
2212 else if (n >= (1UL << 20))
2213 sprintf(buf, "%lu MB", n >> 20);
2215 sprintf(buf, "%lu KB", n >> 10);
2219 static void __init report_hugepages(void)
2223 for_each_hstate(h) {
2225 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2226 memfmt(buf, huge_page_size(h)),
2227 h->free_huge_pages);
2231 #ifdef CONFIG_HIGHMEM
2232 static void try_to_free_low(struct hstate *h, unsigned long count,
2233 nodemask_t *nodes_allowed)
2237 if (hstate_is_gigantic(h))
2240 for_each_node_mask(i, *nodes_allowed) {
2241 struct page *page, *next;
2242 struct list_head *freel = &h->hugepage_freelists[i];
2243 list_for_each_entry_safe(page, next, freel, lru) {
2244 if (count >= h->nr_huge_pages)
2246 if (PageHighMem(page))
2248 list_del(&page->lru);
2249 update_and_free_page(h, page);
2250 h->free_huge_pages--;
2251 h->free_huge_pages_node[page_to_nid(page)]--;
2256 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2257 nodemask_t *nodes_allowed)
2263 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2264 * balanced by operating on them in a round-robin fashion.
2265 * Returns 1 if an adjustment was made.
2267 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2272 VM_BUG_ON(delta != -1 && delta != 1);
2275 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2276 if (h->surplus_huge_pages_node[node])
2280 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2281 if (h->surplus_huge_pages_node[node] <
2282 h->nr_huge_pages_node[node])
2289 h->surplus_huge_pages += delta;
2290 h->surplus_huge_pages_node[node] += delta;
2294 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2295 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2296 nodemask_t *nodes_allowed)
2298 unsigned long min_count, ret;
2300 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2301 return h->max_huge_pages;
2304 * Increase the pool size
2305 * First take pages out of surplus state. Then make up the
2306 * remaining difference by allocating fresh huge pages.
2308 * We might race with __alloc_buddy_huge_page() here and be unable
2309 * to convert a surplus huge page to a normal huge page. That is
2310 * not critical, though, it just means the overall size of the
2311 * pool might be one hugepage larger than it needs to be, but
2312 * within all the constraints specified by the sysctls.
2314 spin_lock(&hugetlb_lock);
2315 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2316 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2320 while (count > persistent_huge_pages(h)) {
2322 * If this allocation races such that we no longer need the
2323 * page, free_huge_page will handle it by freeing the page
2324 * and reducing the surplus.
2326 spin_unlock(&hugetlb_lock);
2328 /* yield cpu to avoid soft lockup */
2331 if (hstate_is_gigantic(h))
2332 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2334 ret = alloc_fresh_huge_page(h, nodes_allowed);
2335 spin_lock(&hugetlb_lock);
2339 /* Bail for signals. Probably ctrl-c from user */
2340 if (signal_pending(current))
2345 * Decrease the pool size
2346 * First return free pages to the buddy allocator (being careful
2347 * to keep enough around to satisfy reservations). Then place
2348 * pages into surplus state as needed so the pool will shrink
2349 * to the desired size as pages become free.
2351 * By placing pages into the surplus state independent of the
2352 * overcommit value, we are allowing the surplus pool size to
2353 * exceed overcommit. There are few sane options here. Since
2354 * __alloc_buddy_huge_page() is checking the global counter,
2355 * though, we'll note that we're not allowed to exceed surplus
2356 * and won't grow the pool anywhere else. Not until one of the
2357 * sysctls are changed, or the surplus pages go out of use.
2359 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2360 min_count = max(count, min_count);
2361 try_to_free_low(h, min_count, nodes_allowed);
2362 while (min_count < persistent_huge_pages(h)) {
2363 if (!free_pool_huge_page(h, nodes_allowed, 0))
2365 cond_resched_lock(&hugetlb_lock);
2367 while (count < persistent_huge_pages(h)) {
2368 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2372 ret = persistent_huge_pages(h);
2373 spin_unlock(&hugetlb_lock);
2377 #define HSTATE_ATTR_RO(_name) \
2378 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2380 #define HSTATE_ATTR(_name) \
2381 static struct kobj_attribute _name##_attr = \
2382 __ATTR(_name, 0644, _name##_show, _name##_store)
2384 static struct kobject *hugepages_kobj;
2385 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2387 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2389 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2393 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2394 if (hstate_kobjs[i] == kobj) {
2396 *nidp = NUMA_NO_NODE;
2400 return kobj_to_node_hstate(kobj, nidp);
2403 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2404 struct kobj_attribute *attr, char *buf)
2407 unsigned long nr_huge_pages;
2410 h = kobj_to_hstate(kobj, &nid);
2411 if (nid == NUMA_NO_NODE)
2412 nr_huge_pages = h->nr_huge_pages;
2414 nr_huge_pages = h->nr_huge_pages_node[nid];
2416 return sprintf(buf, "%lu\n", nr_huge_pages);
2419 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2420 struct hstate *h, int nid,
2421 unsigned long count, size_t len)
2424 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2426 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2431 if (nid == NUMA_NO_NODE) {
2433 * global hstate attribute
2435 if (!(obey_mempolicy &&
2436 init_nodemask_of_mempolicy(nodes_allowed))) {
2437 NODEMASK_FREE(nodes_allowed);
2438 nodes_allowed = &node_states[N_MEMORY];
2440 } else if (nodes_allowed) {
2442 * per node hstate attribute: adjust count to global,
2443 * but restrict alloc/free to the specified node.
2445 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2446 init_nodemask_of_node(nodes_allowed, nid);
2448 nodes_allowed = &node_states[N_MEMORY];
2450 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2452 if (nodes_allowed != &node_states[N_MEMORY])
2453 NODEMASK_FREE(nodes_allowed);
2457 NODEMASK_FREE(nodes_allowed);
2461 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2462 struct kobject *kobj, const char *buf,
2466 unsigned long count;
2470 err = kstrtoul(buf, 10, &count);
2474 h = kobj_to_hstate(kobj, &nid);
2475 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478 static ssize_t nr_hugepages_show(struct kobject *kobj,
2479 struct kobj_attribute *attr, char *buf)
2481 return nr_hugepages_show_common(kobj, attr, buf);
2484 static ssize_t nr_hugepages_store(struct kobject *kobj,
2485 struct kobj_attribute *attr, const char *buf, size_t len)
2487 return nr_hugepages_store_common(false, kobj, buf, len);
2489 HSTATE_ATTR(nr_hugepages);
2494 * hstate attribute for optionally mempolicy-based constraint on persistent
2495 * huge page alloc/free.
2497 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2498 struct kobj_attribute *attr, char *buf)
2500 return nr_hugepages_show_common(kobj, attr, buf);
2503 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2504 struct kobj_attribute *attr, const char *buf, size_t len)
2506 return nr_hugepages_store_common(true, kobj, buf, len);
2508 HSTATE_ATTR(nr_hugepages_mempolicy);
2512 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2513 struct kobj_attribute *attr, char *buf)
2515 struct hstate *h = kobj_to_hstate(kobj, NULL);
2516 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2520 struct kobj_attribute *attr, const char *buf, size_t count)
2523 unsigned long input;
2524 struct hstate *h = kobj_to_hstate(kobj, NULL);
2526 if (hstate_is_gigantic(h))
2529 err = kstrtoul(buf, 10, &input);
2533 spin_lock(&hugetlb_lock);
2534 h->nr_overcommit_huge_pages = input;
2535 spin_unlock(&hugetlb_lock);
2539 HSTATE_ATTR(nr_overcommit_hugepages);
2541 static ssize_t free_hugepages_show(struct kobject *kobj,
2542 struct kobj_attribute *attr, char *buf)
2545 unsigned long free_huge_pages;
2548 h = kobj_to_hstate(kobj, &nid);
2549 if (nid == NUMA_NO_NODE)
2550 free_huge_pages = h->free_huge_pages;
2552 free_huge_pages = h->free_huge_pages_node[nid];
2554 return sprintf(buf, "%lu\n", free_huge_pages);
2556 HSTATE_ATTR_RO(free_hugepages);
2558 static ssize_t resv_hugepages_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2561 struct hstate *h = kobj_to_hstate(kobj, NULL);
2562 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2564 HSTATE_ATTR_RO(resv_hugepages);
2566 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2567 struct kobj_attribute *attr, char *buf)
2570 unsigned long surplus_huge_pages;
2573 h = kobj_to_hstate(kobj, &nid);
2574 if (nid == NUMA_NO_NODE)
2575 surplus_huge_pages = h->surplus_huge_pages;
2577 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2579 return sprintf(buf, "%lu\n", surplus_huge_pages);
2581 HSTATE_ATTR_RO(surplus_hugepages);
2583 static struct attribute *hstate_attrs[] = {
2584 &nr_hugepages_attr.attr,
2585 &nr_overcommit_hugepages_attr.attr,
2586 &free_hugepages_attr.attr,
2587 &resv_hugepages_attr.attr,
2588 &surplus_hugepages_attr.attr,
2590 &nr_hugepages_mempolicy_attr.attr,
2595 static struct attribute_group hstate_attr_group = {
2596 .attrs = hstate_attrs,
2599 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2600 struct kobject **hstate_kobjs,
2601 struct attribute_group *hstate_attr_group)
2604 int hi = hstate_index(h);
2606 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2607 if (!hstate_kobjs[hi])
2610 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2612 kobject_put(hstate_kobjs[hi]);
2617 static void __init hugetlb_sysfs_init(void)
2622 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2623 if (!hugepages_kobj)
2626 for_each_hstate(h) {
2627 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2628 hstate_kobjs, &hstate_attr_group);
2630 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2637 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2638 * with node devices in node_devices[] using a parallel array. The array
2639 * index of a node device or _hstate == node id.
2640 * This is here to avoid any static dependency of the node device driver, in
2641 * the base kernel, on the hugetlb module.
2643 struct node_hstate {
2644 struct kobject *hugepages_kobj;
2645 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2647 static struct node_hstate node_hstates[MAX_NUMNODES];
2650 * A subset of global hstate attributes for node devices
2652 static struct attribute *per_node_hstate_attrs[] = {
2653 &nr_hugepages_attr.attr,
2654 &free_hugepages_attr.attr,
2655 &surplus_hugepages_attr.attr,
2659 static struct attribute_group per_node_hstate_attr_group = {
2660 .attrs = per_node_hstate_attrs,
2664 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2665 * Returns node id via non-NULL nidp.
2667 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2671 for (nid = 0; nid < nr_node_ids; nid++) {
2672 struct node_hstate *nhs = &node_hstates[nid];
2674 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2675 if (nhs->hstate_kobjs[i] == kobj) {
2687 * Unregister hstate attributes from a single node device.
2688 * No-op if no hstate attributes attached.
2690 static void hugetlb_unregister_node(struct node *node)
2693 struct node_hstate *nhs = &node_hstates[node->dev.id];
2695 if (!nhs->hugepages_kobj)
2696 return; /* no hstate attributes */
2698 for_each_hstate(h) {
2699 int idx = hstate_index(h);
2700 if (nhs->hstate_kobjs[idx]) {
2701 kobject_put(nhs->hstate_kobjs[idx]);
2702 nhs->hstate_kobjs[idx] = NULL;
2706 kobject_put(nhs->hugepages_kobj);
2707 nhs->hugepages_kobj = NULL;
2712 * Register hstate attributes for a single node device.
2713 * No-op if attributes already registered.
2715 static void hugetlb_register_node(struct node *node)
2718 struct node_hstate *nhs = &node_hstates[node->dev.id];
2721 if (nhs->hugepages_kobj)
2722 return; /* already allocated */
2724 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2726 if (!nhs->hugepages_kobj)
2729 for_each_hstate(h) {
2730 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2732 &per_node_hstate_attr_group);
2734 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2735 h->name, node->dev.id);
2736 hugetlb_unregister_node(node);
2743 * hugetlb init time: register hstate attributes for all registered node
2744 * devices of nodes that have memory. All on-line nodes should have
2745 * registered their associated device by this time.
2747 static void __init hugetlb_register_all_nodes(void)
2751 for_each_node_state(nid, N_MEMORY) {
2752 struct node *node = node_devices[nid];
2753 if (node->dev.id == nid)
2754 hugetlb_register_node(node);
2758 * Let the node device driver know we're here so it can
2759 * [un]register hstate attributes on node hotplug.
2761 register_hugetlbfs_with_node(hugetlb_register_node,
2762 hugetlb_unregister_node);
2764 #else /* !CONFIG_NUMA */
2766 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2774 static void hugetlb_register_all_nodes(void) { }
2778 static int __init hugetlb_init(void)
2782 if (!hugepages_supported())
2785 if (!size_to_hstate(default_hstate_size)) {
2786 default_hstate_size = HPAGE_SIZE;
2787 if (!size_to_hstate(default_hstate_size))
2788 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2790 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2791 if (default_hstate_max_huge_pages) {
2792 if (!default_hstate.max_huge_pages)
2793 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796 hugetlb_init_hstates();
2797 gather_bootmem_prealloc();
2800 hugetlb_sysfs_init();
2801 hugetlb_register_all_nodes();
2802 hugetlb_cgroup_file_init();
2805 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807 num_fault_mutexes = 1;
2809 hugetlb_fault_mutex_table =
2810 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2811 BUG_ON(!hugetlb_fault_mutex_table);
2813 for (i = 0; i < num_fault_mutexes; i++)
2814 mutex_init(&hugetlb_fault_mutex_table[i]);
2817 subsys_initcall(hugetlb_init);
2819 /* Should be called on processing a hugepagesz=... option */
2820 void __init hugetlb_bad_size(void)
2822 parsed_valid_hugepagesz = false;
2825 void __init hugetlb_add_hstate(unsigned int order)
2830 if (size_to_hstate(PAGE_SIZE << order)) {
2831 pr_warn("hugepagesz= specified twice, ignoring\n");
2834 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2836 h = &hstates[hugetlb_max_hstate++];
2838 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2839 h->nr_huge_pages = 0;
2840 h->free_huge_pages = 0;
2841 for (i = 0; i < MAX_NUMNODES; ++i)
2842 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2843 INIT_LIST_HEAD(&h->hugepage_activelist);
2844 h->next_nid_to_alloc = first_memory_node;
2845 h->next_nid_to_free = first_memory_node;
2846 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2847 huge_page_size(h)/1024);
2852 static int __init hugetlb_nrpages_setup(char *s)
2855 static unsigned long *last_mhp;
2857 if (!parsed_valid_hugepagesz) {
2858 pr_warn("hugepages = %s preceded by "
2859 "an unsupported hugepagesz, ignoring\n", s);
2860 parsed_valid_hugepagesz = true;
2864 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2865 * so this hugepages= parameter goes to the "default hstate".
2867 else if (!hugetlb_max_hstate)
2868 mhp = &default_hstate_max_huge_pages;
2870 mhp = &parsed_hstate->max_huge_pages;
2872 if (mhp == last_mhp) {
2873 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2877 if (sscanf(s, "%lu", mhp) <= 0)
2881 * Global state is always initialized later in hugetlb_init.
2882 * But we need to allocate >= MAX_ORDER hstates here early to still
2883 * use the bootmem allocator.
2885 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2886 hugetlb_hstate_alloc_pages(parsed_hstate);
2892 __setup("hugepages=", hugetlb_nrpages_setup);
2894 static int __init hugetlb_default_setup(char *s)
2896 default_hstate_size = memparse(s, &s);
2899 __setup("default_hugepagesz=", hugetlb_default_setup);
2901 static unsigned int cpuset_mems_nr(unsigned int *array)
2904 unsigned int nr = 0;
2906 for_each_node_mask(node, cpuset_current_mems_allowed)
2912 #ifdef CONFIG_SYSCTL
2913 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2914 struct ctl_table *table, int write,
2915 void __user *buffer, size_t *length, loff_t *ppos)
2917 struct hstate *h = &default_hstate;
2918 unsigned long tmp = h->max_huge_pages;
2921 if (!hugepages_supported())
2925 table->maxlen = sizeof(unsigned long);
2926 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2931 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2932 NUMA_NO_NODE, tmp, *length);
2937 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2938 void __user *buffer, size_t *length, loff_t *ppos)
2941 return hugetlb_sysctl_handler_common(false, table, write,
2942 buffer, length, ppos);
2946 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2947 void __user *buffer, size_t *length, loff_t *ppos)
2949 return hugetlb_sysctl_handler_common(true, table, write,
2950 buffer, length, ppos);
2952 #endif /* CONFIG_NUMA */
2954 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2955 void __user *buffer,
2956 size_t *length, loff_t *ppos)
2958 struct hstate *h = &default_hstate;
2962 if (!hugepages_supported())
2965 tmp = h->nr_overcommit_huge_pages;
2967 if (write && hstate_is_gigantic(h))
2971 table->maxlen = sizeof(unsigned long);
2972 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2977 spin_lock(&hugetlb_lock);
2978 h->nr_overcommit_huge_pages = tmp;
2979 spin_unlock(&hugetlb_lock);
2985 #endif /* CONFIG_SYSCTL */
2987 void hugetlb_report_meminfo(struct seq_file *m)
2989 struct hstate *h = &default_hstate;
2990 if (!hugepages_supported())
2993 "HugePages_Total: %5lu\n"
2994 "HugePages_Free: %5lu\n"
2995 "HugePages_Rsvd: %5lu\n"
2996 "HugePages_Surp: %5lu\n"
2997 "Hugepagesize: %8lu kB\n",
3001 h->surplus_huge_pages,
3002 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3005 int hugetlb_report_node_meminfo(int nid, char *buf)
3007 struct hstate *h = &default_hstate;
3008 if (!hugepages_supported())
3011 "Node %d HugePages_Total: %5u\n"
3012 "Node %d HugePages_Free: %5u\n"
3013 "Node %d HugePages_Surp: %5u\n",
3014 nid, h->nr_huge_pages_node[nid],
3015 nid, h->free_huge_pages_node[nid],
3016 nid, h->surplus_huge_pages_node[nid]);
3019 void hugetlb_show_meminfo(void)
3024 if (!hugepages_supported())
3027 for_each_node_state(nid, N_MEMORY)
3029 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 h->nr_huge_pages_node[nid],
3032 h->free_huge_pages_node[nid],
3033 h->surplus_huge_pages_node[nid],
3034 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044 unsigned long hugetlb_total_pages(void)
3047 unsigned long nr_total_pages = 0;
3050 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051 return nr_total_pages;
3054 static int hugetlb_acct_memory(struct hstate *h, long delta)
3058 spin_lock(&hugetlb_lock);
3060 * When cpuset is configured, it breaks the strict hugetlb page
3061 * reservation as the accounting is done on a global variable. Such
3062 * reservation is completely rubbish in the presence of cpuset because
3063 * the reservation is not checked against page availability for the
3064 * current cpuset. Application can still potentially OOM'ed by kernel
3065 * with lack of free htlb page in cpuset that the task is in.
3066 * Attempt to enforce strict accounting with cpuset is almost
3067 * impossible (or too ugly) because cpuset is too fluid that
3068 * task or memory node can be dynamically moved between cpusets.
3070 * The change of semantics for shared hugetlb mapping with cpuset is
3071 * undesirable. However, in order to preserve some of the semantics,
3072 * we fall back to check against current free page availability as
3073 * a best attempt and hopefully to minimize the impact of changing
3074 * semantics that cpuset has.
3077 if (gather_surplus_pages(h, delta) < 0)
3080 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081 return_unused_surplus_pages(h, delta);
3088 return_unused_surplus_pages(h, (unsigned long) -delta);
3091 spin_unlock(&hugetlb_lock);
3095 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097 struct resv_map *resv = vma_resv_map(vma);
3100 * This new VMA should share its siblings reservation map if present.
3101 * The VMA will only ever have a valid reservation map pointer where
3102 * it is being copied for another still existing VMA. As that VMA
3103 * has a reference to the reservation map it cannot disappear until
3104 * after this open call completes. It is therefore safe to take a
3105 * new reference here without additional locking.
3107 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108 kref_get(&resv->refs);
3111 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113 struct hstate *h = hstate_vma(vma);
3114 struct resv_map *resv = vma_resv_map(vma);
3115 struct hugepage_subpool *spool = subpool_vma(vma);
3116 unsigned long reserve, start, end;
3119 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122 start = vma_hugecache_offset(h, vma, vma->vm_start);
3123 end = vma_hugecache_offset(h, vma, vma->vm_end);
3125 reserve = (end - start) - region_count(resv, start, end);
3127 kref_put(&resv->refs, resv_map_release);
3131 * Decrement reserve counts. The global reserve count may be
3132 * adjusted if the subpool has a minimum size.
3134 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135 hugetlb_acct_memory(h, -gbl_reserve);
3140 * We cannot handle pagefaults against hugetlb pages at all. They cause
3141 * handle_mm_fault() to try to instantiate regular-sized pages in the
3142 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3145 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3151 const struct vm_operations_struct hugetlb_vm_ops = {
3152 .fault = hugetlb_vm_op_fault,
3153 .open = hugetlb_vm_op_open,
3154 .close = hugetlb_vm_op_close,
3157 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3163 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3164 vma->vm_page_prot)));
3166 entry = huge_pte_wrprotect(mk_huge_pte(page,
3167 vma->vm_page_prot));
3169 entry = pte_mkyoung(entry);
3170 entry = pte_mkhuge(entry);
3171 entry = arch_make_huge_pte(entry, vma, page, writable);
3176 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3177 unsigned long address, pte_t *ptep)
3181 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3182 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3183 update_mmu_cache(vma, address, ptep);
3186 static int is_hugetlb_entry_migration(pte_t pte)
3190 if (huge_pte_none(pte) || pte_present(pte))
3192 swp = pte_to_swp_entry(pte);
3193 if (non_swap_entry(swp) && is_migration_entry(swp))
3199 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3203 if (huge_pte_none(pte) || pte_present(pte))
3205 swp = pte_to_swp_entry(pte);
3206 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3212 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3213 struct vm_area_struct *vma)
3215 pte_t *src_pte, *dst_pte, entry;
3216 struct page *ptepage;
3219 struct hstate *h = hstate_vma(vma);
3220 unsigned long sz = huge_page_size(h);
3221 unsigned long mmun_start; /* For mmu_notifiers */
3222 unsigned long mmun_end; /* For mmu_notifiers */
3225 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3227 mmun_start = vma->vm_start;
3228 mmun_end = vma->vm_end;
3230 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3232 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3233 spinlock_t *src_ptl, *dst_ptl;
3234 src_pte = huge_pte_offset(src, addr);
3237 dst_pte = huge_pte_alloc(dst, addr, sz);
3243 /* If the pagetables are shared don't copy or take references */
3244 if (dst_pte == src_pte)
3247 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3248 src_ptl = huge_pte_lockptr(h, src, src_pte);
3249 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3250 entry = huge_ptep_get(src_pte);
3251 if (huge_pte_none(entry)) { /* skip none entry */
3253 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3254 is_hugetlb_entry_hwpoisoned(entry))) {
3255 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3257 if (is_write_migration_entry(swp_entry) && cow) {
3259 * COW mappings require pages in both
3260 * parent and child to be set to read.
3262 make_migration_entry_read(&swp_entry);
3263 entry = swp_entry_to_pte(swp_entry);
3264 set_huge_pte_at(src, addr, src_pte, entry);
3266 set_huge_pte_at(dst, addr, dst_pte, entry);
3269 huge_ptep_set_wrprotect(src, addr, src_pte);
3270 mmu_notifier_invalidate_range(src, mmun_start,
3273 entry = huge_ptep_get(src_pte);
3274 ptepage = pte_page(entry);
3276 page_dup_rmap(ptepage, true);
3277 set_huge_pte_at(dst, addr, dst_pte, entry);
3278 hugetlb_count_add(pages_per_huge_page(h), dst);
3280 spin_unlock(src_ptl);
3281 spin_unlock(dst_ptl);
3285 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3290 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3291 unsigned long start, unsigned long end,
3292 struct page *ref_page)
3294 struct mm_struct *mm = vma->vm_mm;
3295 unsigned long address;
3300 struct hstate *h = hstate_vma(vma);
3301 unsigned long sz = huge_page_size(h);
3302 const unsigned long mmun_start = start; /* For mmu_notifiers */
3303 const unsigned long mmun_end = end; /* For mmu_notifiers */
3305 WARN_ON(!is_vm_hugetlb_page(vma));
3306 BUG_ON(start & ~huge_page_mask(h));
3307 BUG_ON(end & ~huge_page_mask(h));
3310 * This is a hugetlb vma, all the pte entries should point
3313 tlb_remove_check_page_size_change(tlb, sz);
3314 tlb_start_vma(tlb, vma);
3315 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3317 for (; address < end; address += sz) {
3318 ptep = huge_pte_offset(mm, address);
3322 ptl = huge_pte_lock(h, mm, ptep);
3323 if (huge_pmd_unshare(mm, &address, ptep)) {
3328 pte = huge_ptep_get(ptep);
3329 if (huge_pte_none(pte)) {
3335 * Migrating hugepage or HWPoisoned hugepage is already
3336 * unmapped and its refcount is dropped, so just clear pte here.
3338 if (unlikely(!pte_present(pte))) {
3339 huge_pte_clear(mm, address, ptep);
3344 page = pte_page(pte);
3346 * If a reference page is supplied, it is because a specific
3347 * page is being unmapped, not a range. Ensure the page we
3348 * are about to unmap is the actual page of interest.
3351 if (page != ref_page) {
3356 * Mark the VMA as having unmapped its page so that
3357 * future faults in this VMA will fail rather than
3358 * looking like data was lost
3360 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3363 pte = huge_ptep_get_and_clear(mm, address, ptep);
3364 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3365 if (huge_pte_dirty(pte))
3366 set_page_dirty(page);
3368 hugetlb_count_sub(pages_per_huge_page(h), mm);
3369 page_remove_rmap(page, true);
3372 tlb_remove_page_size(tlb, page, huge_page_size(h));
3374 * Bail out after unmapping reference page if supplied
3379 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3380 tlb_end_vma(tlb, vma);
3383 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3384 struct vm_area_struct *vma, unsigned long start,
3385 unsigned long end, struct page *ref_page)
3387 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3390 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3391 * test will fail on a vma being torn down, and not grab a page table
3392 * on its way out. We're lucky that the flag has such an appropriate
3393 * name, and can in fact be safely cleared here. We could clear it
3394 * before the __unmap_hugepage_range above, but all that's necessary
3395 * is to clear it before releasing the i_mmap_rwsem. This works
3396 * because in the context this is called, the VMA is about to be
3397 * destroyed and the i_mmap_rwsem is held.
3399 vma->vm_flags &= ~VM_MAYSHARE;
3402 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3403 unsigned long end, struct page *ref_page)
3405 struct mm_struct *mm;
3406 struct mmu_gather tlb;
3410 tlb_gather_mmu(&tlb, mm, start, end);
3411 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3412 tlb_finish_mmu(&tlb, start, end);
3416 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3417 * mappping it owns the reserve page for. The intention is to unmap the page
3418 * from other VMAs and let the children be SIGKILLed if they are faulting the
3421 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3422 struct page *page, unsigned long address)
3424 struct hstate *h = hstate_vma(vma);
3425 struct vm_area_struct *iter_vma;
3426 struct address_space *mapping;
3430 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3431 * from page cache lookup which is in HPAGE_SIZE units.
3433 address = address & huge_page_mask(h);
3434 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3436 mapping = vma->vm_file->f_mapping;
3439 * Take the mapping lock for the duration of the table walk. As
3440 * this mapping should be shared between all the VMAs,
3441 * __unmap_hugepage_range() is called as the lock is already held
3443 i_mmap_lock_write(mapping);
3444 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3445 /* Do not unmap the current VMA */
3446 if (iter_vma == vma)
3450 * Shared VMAs have their own reserves and do not affect
3451 * MAP_PRIVATE accounting but it is possible that a shared
3452 * VMA is using the same page so check and skip such VMAs.
3454 if (iter_vma->vm_flags & VM_MAYSHARE)
3458 * Unmap the page from other VMAs without their own reserves.
3459 * They get marked to be SIGKILLed if they fault in these
3460 * areas. This is because a future no-page fault on this VMA
3461 * could insert a zeroed page instead of the data existing
3462 * from the time of fork. This would look like data corruption
3464 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3465 unmap_hugepage_range(iter_vma, address,
3466 address + huge_page_size(h), page);
3468 i_mmap_unlock_write(mapping);
3472 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3473 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3474 * cannot race with other handlers or page migration.
3475 * Keep the pte_same checks anyway to make transition from the mutex easier.
3477 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3478 unsigned long address, pte_t *ptep,
3479 struct page *pagecache_page, spinlock_t *ptl)
3482 struct hstate *h = hstate_vma(vma);
3483 struct page *old_page, *new_page;
3484 int ret = 0, outside_reserve = 0;
3485 unsigned long mmun_start; /* For mmu_notifiers */
3486 unsigned long mmun_end; /* For mmu_notifiers */
3488 pte = huge_ptep_get(ptep);
3489 old_page = pte_page(pte);
3492 /* If no-one else is actually using this page, avoid the copy
3493 * and just make the page writable */
3494 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3495 page_move_anon_rmap(old_page, vma);
3496 set_huge_ptep_writable(vma, address, ptep);
3501 * If the process that created a MAP_PRIVATE mapping is about to
3502 * perform a COW due to a shared page count, attempt to satisfy
3503 * the allocation without using the existing reserves. The pagecache
3504 * page is used to determine if the reserve at this address was
3505 * consumed or not. If reserves were used, a partial faulted mapping
3506 * at the time of fork() could consume its reserves on COW instead
3507 * of the full address range.
3509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3510 old_page != pagecache_page)
3511 outside_reserve = 1;
3516 * Drop page table lock as buddy allocator may be called. It will
3517 * be acquired again before returning to the caller, as expected.
3520 new_page = alloc_huge_page(vma, address, outside_reserve);
3522 if (IS_ERR(new_page)) {
3524 * If a process owning a MAP_PRIVATE mapping fails to COW,
3525 * it is due to references held by a child and an insufficient
3526 * huge page pool. To guarantee the original mappers
3527 * reliability, unmap the page from child processes. The child
3528 * may get SIGKILLed if it later faults.
3530 if (outside_reserve) {
3532 BUG_ON(huge_pte_none(pte));
3533 unmap_ref_private(mm, vma, old_page, address);
3534 BUG_ON(huge_pte_none(pte));
3536 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3538 pte_same(huge_ptep_get(ptep), pte)))
3539 goto retry_avoidcopy;
3541 * race occurs while re-acquiring page table
3542 * lock, and our job is done.
3547 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3548 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3549 goto out_release_old;
3553 * When the original hugepage is shared one, it does not have
3554 * anon_vma prepared.
3556 if (unlikely(anon_vma_prepare(vma))) {
3558 goto out_release_all;
3561 copy_user_huge_page(new_page, old_page, address, vma,
3562 pages_per_huge_page(h));
3563 __SetPageUptodate(new_page);
3564 set_page_huge_active(new_page);
3566 mmun_start = address & huge_page_mask(h);
3567 mmun_end = mmun_start + huge_page_size(h);
3568 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3571 * Retake the page table lock to check for racing updates
3572 * before the page tables are altered
3575 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3576 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3577 ClearPagePrivate(new_page);
3580 huge_ptep_clear_flush(vma, address, ptep);
3581 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3582 set_huge_pte_at(mm, address, ptep,
3583 make_huge_pte(vma, new_page, 1));
3584 page_remove_rmap(old_page, true);
3585 hugepage_add_new_anon_rmap(new_page, vma, address);
3586 /* Make the old page be freed below */
3587 new_page = old_page;
3590 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3592 restore_reserve_on_error(h, vma, address, new_page);
3597 spin_lock(ptl); /* Caller expects lock to be held */
3601 /* Return the pagecache page at a given address within a VMA */
3602 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3603 struct vm_area_struct *vma, unsigned long address)
3605 struct address_space *mapping;
3608 mapping = vma->vm_file->f_mapping;
3609 idx = vma_hugecache_offset(h, vma, address);
3611 return find_lock_page(mapping, idx);
3615 * Return whether there is a pagecache page to back given address within VMA.
3616 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3618 static bool hugetlbfs_pagecache_present(struct hstate *h,
3619 struct vm_area_struct *vma, unsigned long address)
3621 struct address_space *mapping;
3625 mapping = vma->vm_file->f_mapping;
3626 idx = vma_hugecache_offset(h, vma, address);
3628 page = find_get_page(mapping, idx);
3631 return page != NULL;
3634 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3637 struct inode *inode = mapping->host;
3638 struct hstate *h = hstate_inode(inode);
3639 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3643 ClearPagePrivate(page);
3645 spin_lock(&inode->i_lock);
3646 inode->i_blocks += blocks_per_huge_page(h);
3647 spin_unlock(&inode->i_lock);
3651 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3652 struct address_space *mapping, pgoff_t idx,
3653 unsigned long address, pte_t *ptep, unsigned int flags)
3655 struct hstate *h = hstate_vma(vma);
3656 int ret = VM_FAULT_SIGBUS;
3664 * Currently, we are forced to kill the process in the event the
3665 * original mapper has unmapped pages from the child due to a failed
3666 * COW. Warn that such a situation has occurred as it may not be obvious
3668 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3669 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3675 * Use page lock to guard against racing truncation
3676 * before we get page_table_lock.
3679 page = find_lock_page(mapping, idx);
3681 size = i_size_read(mapping->host) >> huge_page_shift(h);
3686 * Check for page in userfault range
3688 if (userfaultfd_missing(vma)) {
3690 struct vm_fault vmf = {
3695 * Hard to debug if it ends up being
3696 * used by a callee that assumes
3697 * something about the other
3698 * uninitialized fields... same as in
3704 * hugetlb_fault_mutex must be dropped before
3705 * handling userfault. Reacquire after handling
3706 * fault to make calling code simpler.
3708 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3710 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3711 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3712 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3716 page = alloc_huge_page(vma, address, 0);
3718 ret = PTR_ERR(page);
3722 ret = VM_FAULT_SIGBUS;
3725 clear_huge_page(page, address, pages_per_huge_page(h));
3726 __SetPageUptodate(page);
3727 set_page_huge_active(page);
3729 if (vma->vm_flags & VM_MAYSHARE) {
3730 int err = huge_add_to_page_cache(page, mapping, idx);
3739 if (unlikely(anon_vma_prepare(vma))) {
3741 goto backout_unlocked;
3747 * If memory error occurs between mmap() and fault, some process
3748 * don't have hwpoisoned swap entry for errored virtual address.
3749 * So we need to block hugepage fault by PG_hwpoison bit check.
3751 if (unlikely(PageHWPoison(page))) {
3752 ret = VM_FAULT_HWPOISON |
3753 VM_FAULT_SET_HINDEX(hstate_index(h));
3754 goto backout_unlocked;
3759 * If we are going to COW a private mapping later, we examine the
3760 * pending reservations for this page now. This will ensure that
3761 * any allocations necessary to record that reservation occur outside
3764 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3765 if (vma_needs_reservation(h, vma, address) < 0) {
3767 goto backout_unlocked;
3769 /* Just decrements count, does not deallocate */
3770 vma_end_reservation(h, vma, address);
3773 ptl = huge_pte_lock(h, mm, ptep);
3774 size = i_size_read(mapping->host) >> huge_page_shift(h);
3779 if (!huge_pte_none(huge_ptep_get(ptep)))
3783 ClearPagePrivate(page);
3784 hugepage_add_new_anon_rmap(page, vma, address);
3786 page_dup_rmap(page, true);
3787 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3788 && (vma->vm_flags & VM_SHARED)));
3789 set_huge_pte_at(mm, address, ptep, new_pte);
3791 hugetlb_count_add(pages_per_huge_page(h), mm);
3792 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3793 /* Optimization, do the COW without a second fault */
3794 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3806 restore_reserve_on_error(h, vma, address, page);
3812 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3813 struct vm_area_struct *vma,
3814 struct address_space *mapping,
3815 pgoff_t idx, unsigned long address)
3817 unsigned long key[2];
3820 if (vma->vm_flags & VM_SHARED) {
3821 key[0] = (unsigned long) mapping;
3824 key[0] = (unsigned long) mm;
3825 key[1] = address >> huge_page_shift(h);
3828 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3830 return hash & (num_fault_mutexes - 1);
3834 * For uniprocesor systems we always use a single mutex, so just
3835 * return 0 and avoid the hashing overhead.
3837 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3838 struct vm_area_struct *vma,
3839 struct address_space *mapping,
3840 pgoff_t idx, unsigned long address)
3846 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3847 unsigned long address, unsigned int flags)
3854 struct page *page = NULL;
3855 struct page *pagecache_page = NULL;
3856 struct hstate *h = hstate_vma(vma);
3857 struct address_space *mapping;
3858 int need_wait_lock = 0;
3860 address &= huge_page_mask(h);
3862 ptep = huge_pte_offset(mm, address);
3864 entry = huge_ptep_get(ptep);
3865 if (unlikely(is_hugetlb_entry_migration(entry))) {
3866 migration_entry_wait_huge(vma, mm, ptep);
3868 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3869 return VM_FAULT_HWPOISON_LARGE |
3870 VM_FAULT_SET_HINDEX(hstate_index(h));
3872 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3874 return VM_FAULT_OOM;
3877 mapping = vma->vm_file->f_mapping;
3878 idx = vma_hugecache_offset(h, vma, address);
3881 * Serialize hugepage allocation and instantiation, so that we don't
3882 * get spurious allocation failures if two CPUs race to instantiate
3883 * the same page in the page cache.
3885 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3886 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3888 entry = huge_ptep_get(ptep);
3889 if (huge_pte_none(entry)) {
3890 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3897 * entry could be a migration/hwpoison entry at this point, so this
3898 * check prevents the kernel from going below assuming that we have
3899 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3900 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3903 if (!pte_present(entry))
3907 * If we are going to COW the mapping later, we examine the pending
3908 * reservations for this page now. This will ensure that any
3909 * allocations necessary to record that reservation occur outside the
3910 * spinlock. For private mappings, we also lookup the pagecache
3911 * page now as it is used to determine if a reservation has been
3914 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3915 if (vma_needs_reservation(h, vma, address) < 0) {
3919 /* Just decrements count, does not deallocate */
3920 vma_end_reservation(h, vma, address);
3922 if (!(vma->vm_flags & VM_MAYSHARE))
3923 pagecache_page = hugetlbfs_pagecache_page(h,
3927 ptl = huge_pte_lock(h, mm, ptep);
3929 /* Check for a racing update before calling hugetlb_cow */
3930 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3934 * hugetlb_cow() requires page locks of pte_page(entry) and
3935 * pagecache_page, so here we need take the former one
3936 * when page != pagecache_page or !pagecache_page.
3938 page = pte_page(entry);
3939 if (page != pagecache_page)
3940 if (!trylock_page(page)) {
3947 if (flags & FAULT_FLAG_WRITE) {
3948 if (!huge_pte_write(entry)) {
3949 ret = hugetlb_cow(mm, vma, address, ptep,
3950 pagecache_page, ptl);
3953 entry = huge_pte_mkdirty(entry);
3955 entry = pte_mkyoung(entry);
3956 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3957 flags & FAULT_FLAG_WRITE))
3958 update_mmu_cache(vma, address, ptep);
3960 if (page != pagecache_page)
3966 if (pagecache_page) {
3967 unlock_page(pagecache_page);
3968 put_page(pagecache_page);
3971 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3973 * Generally it's safe to hold refcount during waiting page lock. But
3974 * here we just wait to defer the next page fault to avoid busy loop and
3975 * the page is not used after unlocked before returning from the current
3976 * page fault. So we are safe from accessing freed page, even if we wait
3977 * here without taking refcount.
3980 wait_on_page_locked(page);
3985 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3986 * modifications for huge pages.
3988 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3990 struct vm_area_struct *dst_vma,
3991 unsigned long dst_addr,
3992 unsigned long src_addr,
3993 struct page **pagep)
3995 int vm_shared = dst_vma->vm_flags & VM_SHARED;
3996 struct hstate *h = hstate_vma(dst_vma);
4004 page = alloc_huge_page(dst_vma, dst_addr, 0);
4008 ret = copy_huge_page_from_user(page,
4009 (const void __user *) src_addr,
4010 pages_per_huge_page(h), false);
4012 /* fallback to copy_from_user outside mmap_sem */
4013 if (unlikely(ret)) {
4016 /* don't free the page */
4025 * The memory barrier inside __SetPageUptodate makes sure that
4026 * preceding stores to the page contents become visible before
4027 * the set_pte_at() write.
4029 __SetPageUptodate(page);
4030 set_page_huge_active(page);
4033 * If shared, add to page cache
4036 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4037 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4039 ret = huge_add_to_page_cache(page, mapping, idx);
4041 goto out_release_nounlock;
4044 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4048 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4049 goto out_release_unlock;
4052 page_dup_rmap(page, true);
4054 ClearPagePrivate(page);
4055 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4058 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4059 if (dst_vma->vm_flags & VM_WRITE)
4060 _dst_pte = huge_pte_mkdirty(_dst_pte);
4061 _dst_pte = pte_mkyoung(_dst_pte);
4063 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4065 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4066 dst_vma->vm_flags & VM_WRITE);
4067 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4069 /* No need to invalidate - it was non-present before */
4070 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4080 out_release_nounlock:
4087 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4088 struct page **pages, struct vm_area_struct **vmas,
4089 unsigned long *position, unsigned long *nr_pages,
4090 long i, unsigned int flags, int *nonblocking)
4092 unsigned long pfn_offset;
4093 unsigned long vaddr = *position;
4094 unsigned long remainder = *nr_pages;
4095 struct hstate *h = hstate_vma(vma);
4097 while (vaddr < vma->vm_end && remainder) {
4099 spinlock_t *ptl = NULL;
4104 * If we have a pending SIGKILL, don't keep faulting pages and
4105 * potentially allocating memory.
4107 if (unlikely(fatal_signal_pending(current))) {
4113 * Some archs (sparc64, sh*) have multiple pte_ts to
4114 * each hugepage. We have to make sure we get the
4115 * first, for the page indexing below to work.
4117 * Note that page table lock is not held when pte is null.
4119 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4121 ptl = huge_pte_lock(h, mm, pte);
4122 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4125 * When coredumping, it suits get_dump_page if we just return
4126 * an error where there's an empty slot with no huge pagecache
4127 * to back it. This way, we avoid allocating a hugepage, and
4128 * the sparse dumpfile avoids allocating disk blocks, but its
4129 * huge holes still show up with zeroes where they need to be.
4131 if (absent && (flags & FOLL_DUMP) &&
4132 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4140 * We need call hugetlb_fault for both hugepages under migration
4141 * (in which case hugetlb_fault waits for the migration,) and
4142 * hwpoisoned hugepages (in which case we need to prevent the
4143 * caller from accessing to them.) In order to do this, we use
4144 * here is_swap_pte instead of is_hugetlb_entry_migration and
4145 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4146 * both cases, and because we can't follow correct pages
4147 * directly from any kind of swap entries.
4149 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4150 ((flags & FOLL_WRITE) &&
4151 !huge_pte_write(huge_ptep_get(pte)))) {
4153 unsigned int fault_flags = 0;
4157 if (flags & FOLL_WRITE)
4158 fault_flags |= FAULT_FLAG_WRITE;
4160 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4161 if (flags & FOLL_NOWAIT)
4162 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4163 FAULT_FLAG_RETRY_NOWAIT;
4164 if (flags & FOLL_TRIED) {
4165 VM_WARN_ON_ONCE(fault_flags &
4166 FAULT_FLAG_ALLOW_RETRY);
4167 fault_flags |= FAULT_FLAG_TRIED;
4169 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4170 if (ret & VM_FAULT_ERROR) {
4174 if (ret & VM_FAULT_RETRY) {
4179 * VM_FAULT_RETRY must not return an
4180 * error, it will return zero
4183 * No need to update "position" as the
4184 * caller will not check it after
4185 * *nr_pages is set to 0.
4192 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4193 page = pte_page(huge_ptep_get(pte));
4196 pages[i] = mem_map_offset(page, pfn_offset);
4207 if (vaddr < vma->vm_end && remainder &&
4208 pfn_offset < pages_per_huge_page(h)) {
4210 * We use pfn_offset to avoid touching the pageframes
4211 * of this compound page.
4217 *nr_pages = remainder;
4219 * setting position is actually required only if remainder is
4220 * not zero but it's faster not to add a "if (remainder)"
4225 return i ? i : -EFAULT;
4228 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4230 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4233 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4236 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4237 unsigned long address, unsigned long end, pgprot_t newprot)
4239 struct mm_struct *mm = vma->vm_mm;
4240 unsigned long start = address;
4243 struct hstate *h = hstate_vma(vma);
4244 unsigned long pages = 0;
4246 BUG_ON(address >= end);
4247 flush_cache_range(vma, address, end);
4249 mmu_notifier_invalidate_range_start(mm, start, end);
4250 i_mmap_lock_write(vma->vm_file->f_mapping);
4251 for (; address < end; address += huge_page_size(h)) {
4253 ptep = huge_pte_offset(mm, address);
4256 ptl = huge_pte_lock(h, mm, ptep);
4257 if (huge_pmd_unshare(mm, &address, ptep)) {
4262 pte = huge_ptep_get(ptep);
4263 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4267 if (unlikely(is_hugetlb_entry_migration(pte))) {
4268 swp_entry_t entry = pte_to_swp_entry(pte);
4270 if (is_write_migration_entry(entry)) {
4273 make_migration_entry_read(&entry);
4274 newpte = swp_entry_to_pte(entry);
4275 set_huge_pte_at(mm, address, ptep, newpte);
4281 if (!huge_pte_none(pte)) {
4282 pte = huge_ptep_get_and_clear(mm, address, ptep);
4283 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4284 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4285 set_huge_pte_at(mm, address, ptep, pte);
4291 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4292 * may have cleared our pud entry and done put_page on the page table:
4293 * once we release i_mmap_rwsem, another task can do the final put_page
4294 * and that page table be reused and filled with junk.
4296 flush_hugetlb_tlb_range(vma, start, end);
4297 mmu_notifier_invalidate_range(mm, start, end);
4298 i_mmap_unlock_write(vma->vm_file->f_mapping);
4299 mmu_notifier_invalidate_range_end(mm, start, end);
4301 return pages << h->order;
4304 int hugetlb_reserve_pages(struct inode *inode,
4306 struct vm_area_struct *vma,
4307 vm_flags_t vm_flags)
4310 struct hstate *h = hstate_inode(inode);
4311 struct hugepage_subpool *spool = subpool_inode(inode);
4312 struct resv_map *resv_map;
4316 * Only apply hugepage reservation if asked. At fault time, an
4317 * attempt will be made for VM_NORESERVE to allocate a page
4318 * without using reserves
4320 if (vm_flags & VM_NORESERVE)
4324 * Shared mappings base their reservation on the number of pages that
4325 * are already allocated on behalf of the file. Private mappings need
4326 * to reserve the full area even if read-only as mprotect() may be
4327 * called to make the mapping read-write. Assume !vma is a shm mapping
4329 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4330 resv_map = inode_resv_map(inode);
4332 chg = region_chg(resv_map, from, to);
4335 resv_map = resv_map_alloc();
4341 set_vma_resv_map(vma, resv_map);
4342 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4351 * There must be enough pages in the subpool for the mapping. If
4352 * the subpool has a minimum size, there may be some global
4353 * reservations already in place (gbl_reserve).
4355 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4356 if (gbl_reserve < 0) {
4362 * Check enough hugepages are available for the reservation.
4363 * Hand the pages back to the subpool if there are not
4365 ret = hugetlb_acct_memory(h, gbl_reserve);
4367 /* put back original number of pages, chg */
4368 (void)hugepage_subpool_put_pages(spool, chg);
4373 * Account for the reservations made. Shared mappings record regions
4374 * that have reservations as they are shared by multiple VMAs.
4375 * When the last VMA disappears, the region map says how much
4376 * the reservation was and the page cache tells how much of
4377 * the reservation was consumed. Private mappings are per-VMA and
4378 * only the consumed reservations are tracked. When the VMA
4379 * disappears, the original reservation is the VMA size and the
4380 * consumed reservations are stored in the map. Hence, nothing
4381 * else has to be done for private mappings here
4383 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4384 long add = region_add(resv_map, from, to);
4386 if (unlikely(chg > add)) {
4388 * pages in this range were added to the reserve
4389 * map between region_chg and region_add. This
4390 * indicates a race with alloc_huge_page. Adjust
4391 * the subpool and reserve counts modified above
4392 * based on the difference.
4396 rsv_adjust = hugepage_subpool_put_pages(spool,
4398 hugetlb_acct_memory(h, -rsv_adjust);
4403 if (!vma || vma->vm_flags & VM_MAYSHARE)
4404 region_abort(resv_map, from, to);
4405 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4406 kref_put(&resv_map->refs, resv_map_release);
4410 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4413 struct hstate *h = hstate_inode(inode);
4414 struct resv_map *resv_map = inode_resv_map(inode);
4416 struct hugepage_subpool *spool = subpool_inode(inode);
4420 chg = region_del(resv_map, start, end);
4422 * region_del() can fail in the rare case where a region
4423 * must be split and another region descriptor can not be
4424 * allocated. If end == LONG_MAX, it will not fail.
4430 spin_lock(&inode->i_lock);
4431 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4432 spin_unlock(&inode->i_lock);
4435 * If the subpool has a minimum size, the number of global
4436 * reservations to be released may be adjusted.
4438 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4439 hugetlb_acct_memory(h, -gbl_reserve);
4444 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4445 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4446 struct vm_area_struct *vma,
4447 unsigned long addr, pgoff_t idx)
4449 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4451 unsigned long sbase = saddr & PUD_MASK;
4452 unsigned long s_end = sbase + PUD_SIZE;
4454 /* Allow segments to share if only one is marked locked */
4455 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4456 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4459 * match the virtual addresses, permission and the alignment of the
4462 if (pmd_index(addr) != pmd_index(saddr) ||
4463 vm_flags != svm_flags ||
4464 sbase < svma->vm_start || svma->vm_end < s_end)
4470 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4472 unsigned long base = addr & PUD_MASK;
4473 unsigned long end = base + PUD_SIZE;
4476 * check on proper vm_flags and page table alignment
4478 if (vma->vm_flags & VM_MAYSHARE &&
4479 vma->vm_start <= base && end <= vma->vm_end)
4485 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4486 * and returns the corresponding pte. While this is not necessary for the
4487 * !shared pmd case because we can allocate the pmd later as well, it makes the
4488 * code much cleaner. pmd allocation is essential for the shared case because
4489 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4490 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4491 * bad pmd for sharing.
4493 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4495 struct vm_area_struct *vma = find_vma(mm, addr);
4496 struct address_space *mapping = vma->vm_file->f_mapping;
4497 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4499 struct vm_area_struct *svma;
4500 unsigned long saddr;
4505 if (!vma_shareable(vma, addr))
4506 return (pte_t *)pmd_alloc(mm, pud, addr);
4508 i_mmap_lock_write(mapping);
4509 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4513 saddr = page_table_shareable(svma, vma, addr, idx);
4515 spte = huge_pte_offset(svma->vm_mm, saddr);
4517 get_page(virt_to_page(spte));
4526 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4527 if (pud_none(*pud)) {
4528 pud_populate(mm, pud,
4529 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4532 put_page(virt_to_page(spte));
4536 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4537 i_mmap_unlock_write(mapping);
4542 * unmap huge page backed by shared pte.
4544 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4545 * indicated by page_count > 1, unmap is achieved by clearing pud and
4546 * decrementing the ref count. If count == 1, the pte page is not shared.
4548 * called with page table lock held.
4550 * returns: 1 successfully unmapped a shared pte page
4551 * 0 the underlying pte page is not shared, or it is the last user
4553 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4555 pgd_t *pgd = pgd_offset(mm, *addr);
4556 pud_t *pud = pud_offset(pgd, *addr);
4558 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4559 if (page_count(virt_to_page(ptep)) == 1)
4563 put_page(virt_to_page(ptep));
4565 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4568 #define want_pmd_share() (1)
4569 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4570 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4575 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4579 #define want_pmd_share() (0)
4580 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4582 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4583 pte_t *huge_pte_alloc(struct mm_struct *mm,
4584 unsigned long addr, unsigned long sz)
4590 pgd = pgd_offset(mm, addr);
4591 pud = pud_alloc(mm, pgd, addr);
4593 if (sz == PUD_SIZE) {
4596 BUG_ON(sz != PMD_SIZE);
4597 if (want_pmd_share() && pud_none(*pud))
4598 pte = huge_pmd_share(mm, addr, pud);
4600 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4603 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4608 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4614 pgd = pgd_offset(mm, addr);
4615 if (pgd_present(*pgd)) {
4616 pud = pud_offset(pgd, addr);
4617 if (pud_present(*pud)) {
4619 return (pte_t *)pud;
4620 pmd = pmd_offset(pud, addr);
4623 return (pte_t *) pmd;
4626 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4629 * These functions are overwritable if your architecture needs its own
4632 struct page * __weak
4633 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4636 return ERR_PTR(-EINVAL);
4639 struct page * __weak
4640 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4641 pmd_t *pmd, int flags)
4643 struct page *page = NULL;
4646 ptl = pmd_lockptr(mm, pmd);
4649 * make sure that the address range covered by this pmd is not
4650 * unmapped from other threads.
4652 if (!pmd_huge(*pmd))
4654 if (pmd_present(*pmd)) {
4655 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4656 if (flags & FOLL_GET)
4659 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4661 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4665 * hwpoisoned entry is treated as no_page_table in
4666 * follow_page_mask().
4674 struct page * __weak
4675 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4676 pud_t *pud, int flags)
4678 if (flags & FOLL_GET)
4681 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4684 #ifdef CONFIG_MEMORY_FAILURE
4687 * This function is called from memory failure code.
4689 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4691 struct hstate *h = page_hstate(hpage);
4692 int nid = page_to_nid(hpage);
4695 spin_lock(&hugetlb_lock);
4697 * Just checking !page_huge_active is not enough, because that could be
4698 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4700 if (!page_huge_active(hpage) && !page_count(hpage)) {
4702 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4703 * but dangling hpage->lru can trigger list-debug warnings
4704 * (this happens when we call unpoison_memory() on it),
4705 * so let it point to itself with list_del_init().
4707 list_del_init(&hpage->lru);
4708 set_page_refcounted(hpage);
4709 h->free_huge_pages--;
4710 h->free_huge_pages_node[nid]--;
4713 spin_unlock(&hugetlb_lock);
4718 bool isolate_huge_page(struct page *page, struct list_head *list)
4722 VM_BUG_ON_PAGE(!PageHead(page), page);
4723 spin_lock(&hugetlb_lock);
4724 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4728 clear_page_huge_active(page);
4729 list_move_tail(&page->lru, list);
4731 spin_unlock(&hugetlb_lock);
4735 void putback_active_hugepage(struct page *page)
4737 VM_BUG_ON_PAGE(!PageHead(page), page);
4738 spin_lock(&hugetlb_lock);
4739 set_page_huge_active(page);
4740 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4741 spin_unlock(&hugetlb_lock);