]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44         QUEUE_MODE_STRICT_PRIORITY,
45         QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49         TX_QUEUE_PRIO_HIGH,
50         TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57                                 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99         /* required last entry */
100         {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128                             struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147                           netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167                                    bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169                                 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171                                  struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191                         igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198         .notifier_call  = igb_notify_dca,
199         .next           = NULL,
200         .priority       = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210                      pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215         .error_detected = igb_io_error_detected,
216         .slot_reset = igb_io_slot_reset,
217         .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223         .name     = igb_driver_name,
224         .id_table = igb_pci_tbl,
225         .probe    = igb_probe,
226         .remove   = igb_remove,
227 #ifdef CONFIG_PM
228         .driver.pm = &igb_pm_ops,
229 #endif
230         .shutdown = igb_shutdown,
231         .sriov_configure = igb_pci_sriov_configure,
232         .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245         u32 ofs;
246         char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251         /* General Registers */
252         {E1000_CTRL, "CTRL"},
253         {E1000_STATUS, "STATUS"},
254         {E1000_CTRL_EXT, "CTRL_EXT"},
255
256         /* Interrupt Registers */
257         {E1000_ICR, "ICR"},
258
259         /* RX Registers */
260         {E1000_RCTL, "RCTL"},
261         {E1000_RDLEN(0), "RDLEN"},
262         {E1000_RDH(0), "RDH"},
263         {E1000_RDT(0), "RDT"},
264         {E1000_RXDCTL(0), "RXDCTL"},
265         {E1000_RDBAL(0), "RDBAL"},
266         {E1000_RDBAH(0), "RDBAH"},
267
268         /* TX Registers */
269         {E1000_TCTL, "TCTL"},
270         {E1000_TDBAL(0), "TDBAL"},
271         {E1000_TDBAH(0), "TDBAH"},
272         {E1000_TDLEN(0), "TDLEN"},
273         {E1000_TDH(0), "TDH"},
274         {E1000_TDT(0), "TDT"},
275         {E1000_TXDCTL(0), "TXDCTL"},
276         {E1000_TDFH, "TDFH"},
277         {E1000_TDFT, "TDFT"},
278         {E1000_TDFHS, "TDFHS"},
279         {E1000_TDFPC, "TDFPC"},
280
281         /* List Terminator */
282         {}
283 };
284
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288         int n = 0;
289         char rname[16];
290         u32 regs[8];
291
292         switch (reginfo->ofs) {
293         case E1000_RDLEN(0):
294                 for (n = 0; n < 4; n++)
295                         regs[n] = rd32(E1000_RDLEN(n));
296                 break;
297         case E1000_RDH(0):
298                 for (n = 0; n < 4; n++)
299                         regs[n] = rd32(E1000_RDH(n));
300                 break;
301         case E1000_RDT(0):
302                 for (n = 0; n < 4; n++)
303                         regs[n] = rd32(E1000_RDT(n));
304                 break;
305         case E1000_RXDCTL(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RXDCTL(n));
308                 break;
309         case E1000_RDBAL(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDBAL(n));
312                 break;
313         case E1000_RDBAH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDBAH(n));
316                 break;
317         case E1000_TDBAL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RDBAL(n));
320                 break;
321         case E1000_TDBAH(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_TDBAH(n));
324                 break;
325         case E1000_TDLEN(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_TDLEN(n));
328                 break;
329         case E1000_TDH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_TDH(n));
332                 break;
333         case E1000_TDT(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDT(n));
336                 break;
337         case E1000_TXDCTL(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TXDCTL(n));
340                 break;
341         default:
342                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343                 return;
344         }
345
346         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348                 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354         struct net_device *netdev = adapter->netdev;
355         struct e1000_hw *hw = &adapter->hw;
356         struct igb_reg_info *reginfo;
357         struct igb_ring *tx_ring;
358         union e1000_adv_tx_desc *tx_desc;
359         struct my_u0 { u64 a; u64 b; } *u0;
360         struct igb_ring *rx_ring;
361         union e1000_adv_rx_desc *rx_desc;
362         u32 staterr;
363         u16 i, n;
364
365         if (!netif_msg_hw(adapter))
366                 return;
367
368         /* Print netdevice Info */
369         if (netdev) {
370                 dev_info(&adapter->pdev->dev, "Net device Info\n");
371                 pr_info("Device Name     state            trans_start\n");
372                 pr_info("%-15s %016lX %016lX\n", netdev->name,
373                         netdev->state, dev_trans_start(netdev));
374         }
375
376         /* Print Registers */
377         dev_info(&adapter->pdev->dev, "Register Dump\n");
378         pr_info(" Register Name   Value\n");
379         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380              reginfo->name; reginfo++) {
381                 igb_regdump(hw, reginfo);
382         }
383
384         /* Print TX Ring Summary */
385         if (!netdev || !netif_running(netdev))
386                 goto exit;
387
388         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390         for (n = 0; n < adapter->num_tx_queues; n++) {
391                 struct igb_tx_buffer *buffer_info;
392                 tx_ring = adapter->tx_ring[n];
393                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
396                         (u64)dma_unmap_addr(buffer_info, dma),
397                         dma_unmap_len(buffer_info, len),
398                         buffer_info->next_to_watch,
399                         (u64)buffer_info->time_stamp);
400         }
401
402         /* Print TX Rings */
403         if (!netif_msg_tx_done(adapter))
404                 goto rx_ring_summary;
405
406         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408         /* Transmit Descriptor Formats
409          *
410          * Advanced Transmit Descriptor
411          *   +--------------------------------------------------------------+
412          * 0 |         Buffer Address [63:0]                                |
413          *   +--------------------------------------------------------------+
414          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415          *   +--------------------------------------------------------------+
416          *   63      46 45    40 39 38 36 35 32 31   24             15       0
417          */
418
419         for (n = 0; n < adapter->num_tx_queues; n++) {
420                 tx_ring = adapter->tx_ring[n];
421                 pr_info("------------------------------------\n");
422                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423                 pr_info("------------------------------------\n");
424                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425
426                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427                         const char *next_desc;
428                         struct igb_tx_buffer *buffer_info;
429                         tx_desc = IGB_TX_DESC(tx_ring, i);
430                         buffer_info = &tx_ring->tx_buffer_info[i];
431                         u0 = (struct my_u0 *)tx_desc;
432                         if (i == tx_ring->next_to_use &&
433                             i == tx_ring->next_to_clean)
434                                 next_desc = " NTC/U";
435                         else if (i == tx_ring->next_to_use)
436                                 next_desc = " NTU";
437                         else if (i == tx_ring->next_to_clean)
438                                 next_desc = " NTC";
439                         else
440                                 next_desc = "";
441
442                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443                                 i, le64_to_cpu(u0->a),
444                                 le64_to_cpu(u0->b),
445                                 (u64)dma_unmap_addr(buffer_info, dma),
446                                 dma_unmap_len(buffer_info, len),
447                                 buffer_info->next_to_watch,
448                                 (u64)buffer_info->time_stamp,
449                                 buffer_info->skb, next_desc);
450
451                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
452                                 print_hex_dump(KERN_INFO, "",
453                                         DUMP_PREFIX_ADDRESS,
454                                         16, 1, buffer_info->skb->data,
455                                         dma_unmap_len(buffer_info, len),
456                                         true);
457                 }
458         }
459
460         /* Print RX Rings Summary */
461 rx_ring_summary:
462         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463         pr_info("Queue [NTU] [NTC]\n");
464         for (n = 0; n < adapter->num_rx_queues; n++) {
465                 rx_ring = adapter->rx_ring[n];
466                 pr_info(" %5d %5X %5X\n",
467                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
468         }
469
470         /* Print RX Rings */
471         if (!netif_msg_rx_status(adapter))
472                 goto exit;
473
474         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476         /* Advanced Receive Descriptor (Read) Format
477          *    63                                           1        0
478          *    +-----------------------------------------------------+
479          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480          *    +----------------------------------------------+------+
481          *  8 |       Header Buffer Address [63:1]           |  DD  |
482          *    +-----------------------------------------------------+
483          *
484          *
485          * Advanced Receive Descriptor (Write-Back) Format
486          *
487          *   63       48 47    32 31  30      21 20 17 16   4 3     0
488          *   +------------------------------------------------------+
489          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490          *   | Checksum   Ident  |   |           |    | Type | Type |
491          *   +------------------------------------------------------+
492          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493          *   +------------------------------------------------------+
494          *   63       48 47    32 31            20 19               0
495          */
496
497         for (n = 0; n < adapter->num_rx_queues; n++) {
498                 rx_ring = adapter->rx_ring[n];
499                 pr_info("------------------------------------\n");
500                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501                 pr_info("------------------------------------\n");
502                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505                 for (i = 0; i < rx_ring->count; i++) {
506                         const char *next_desc;
507                         struct igb_rx_buffer *buffer_info;
508                         buffer_info = &rx_ring->rx_buffer_info[i];
509                         rx_desc = IGB_RX_DESC(rx_ring, i);
510                         u0 = (struct my_u0 *)rx_desc;
511                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513                         if (i == rx_ring->next_to_use)
514                                 next_desc = " NTU";
515                         else if (i == rx_ring->next_to_clean)
516                                 next_desc = " NTC";
517                         else
518                                 next_desc = "";
519
520                         if (staterr & E1000_RXD_STAT_DD) {
521                                 /* Descriptor Done */
522                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523                                         "RWB", i,
524                                         le64_to_cpu(u0->a),
525                                         le64_to_cpu(u0->b),
526                                         next_desc);
527                         } else {
528                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529                                         "R  ", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         (u64)buffer_info->dma,
533                                         next_desc);
534
535                                 if (netif_msg_pktdata(adapter) &&
536                                     buffer_info->dma && buffer_info->page) {
537                                         print_hex_dump(KERN_INFO, "",
538                                           DUMP_PREFIX_ADDRESS,
539                                           16, 1,
540                                           page_address(buffer_info->page) +
541                                                       buffer_info->page_offset,
542                                           igb_rx_bufsz(rx_ring), true);
543                                 }
544                         }
545                 }
546         }
547
548 exit:
549         return;
550 }
551
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560         struct igb_adapter *adapter = (struct igb_adapter *)data;
561         struct e1000_hw *hw = &adapter->hw;
562         s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564         return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576         struct igb_adapter *adapter = (struct igb_adapter *)data;
577         struct e1000_hw *hw = &adapter->hw;
578         s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580         if (state)
581                 i2cctl |= E1000_I2C_DATA_OUT;
582         else
583                 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585         i2cctl &= ~E1000_I2C_DATA_OE_N;
586         i2cctl |= E1000_I2C_CLK_OE_N;
587         wr32(E1000_I2CPARAMS, i2cctl);
588         wrfl();
589
590 }
591
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
599 static void igb_set_i2c_clk(void *data, int state)
600 {
601         struct igb_adapter *adapter = (struct igb_adapter *)data;
602         struct e1000_hw *hw = &adapter->hw;
603         s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605         if (state) {
606                 i2cctl |= E1000_I2C_CLK_OUT;
607                 i2cctl &= ~E1000_I2C_CLK_OE_N;
608         } else {
609                 i2cctl &= ~E1000_I2C_CLK_OUT;
610                 i2cctl &= ~E1000_I2C_CLK_OE_N;
611         }
612         wr32(E1000_I2CPARAMS, i2cctl);
613         wrfl();
614 }
615
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
622 static int igb_get_i2c_clk(void *data)
623 {
624         struct igb_adapter *adapter = (struct igb_adapter *)data;
625         struct e1000_hw *hw = &adapter->hw;
626         s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628         return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632         .setsda         = igb_set_i2c_data,
633         .setscl         = igb_set_i2c_clk,
634         .getsda         = igb_get_i2c_data,
635         .getscl         = igb_get_i2c_clk,
636         .udelay         = 5,
637         .timeout        = 20,
638 };
639
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648         struct igb_adapter *adapter = hw->back;
649         return adapter->netdev;
650 }
651
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
658 static int __init igb_init_module(void)
659 {
660         int ret;
661
662         pr_info("%s\n", igb_driver_string);
663         pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666         dca_register_notify(&dca_notifier);
667 #endif
668         ret = pci_register_driver(&igb_driver);
669         return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683         dca_unregister_notify(&dca_notifier);
684 #endif
685         pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700         int i = 0, j = 0;
701         u32 rbase_offset = adapter->vfs_allocated_count;
702
703         switch (adapter->hw.mac.type) {
704         case e1000_82576:
705                 /* The queues are allocated for virtualization such that VF 0
706                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707                  * In order to avoid collision we start at the first free queue
708                  * and continue consuming queues in the same sequence
709                  */
710                 if (adapter->vfs_allocated_count) {
711                         for (; i < adapter->rss_queues; i++)
712                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
713                                                                Q_IDX_82576(i);
714                 }
715                 fallthrough;
716         case e1000_82575:
717         case e1000_82580:
718         case e1000_i350:
719         case e1000_i354:
720         case e1000_i210:
721         case e1000_i211:
722         default:
723                 for (; i < adapter->num_rx_queues; i++)
724                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725                 for (; j < adapter->num_tx_queues; j++)
726                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727                 break;
728         }
729 }
730
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735         u32 value = 0;
736
737         if (E1000_REMOVED(hw_addr))
738                 return ~value;
739
740         value = readl(&hw_addr[reg]);
741
742         /* reads should not return all F's */
743         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744                 struct net_device *netdev = igb->netdev;
745                 hw->hw_addr = NULL;
746                 netdev_err(netdev, "PCIe link lost\n");
747                 WARN(pci_device_is_present(igb->pdev),
748                      "igb: Failed to read reg 0x%x!\n", reg);
749         }
750
751         return value;
752 }
753
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767                            int index, int offset)
768 {
769         u32 ivar = array_rd32(E1000_IVAR0, index);
770
771         /* clear any bits that are currently set */
772         ivar &= ~((u32)0xFF << offset);
773
774         /* write vector and valid bit */
775         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777         array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783         struct igb_adapter *adapter = q_vector->adapter;
784         struct e1000_hw *hw = &adapter->hw;
785         int rx_queue = IGB_N0_QUEUE;
786         int tx_queue = IGB_N0_QUEUE;
787         u32 msixbm = 0;
788
789         if (q_vector->rx.ring)
790                 rx_queue = q_vector->rx.ring->reg_idx;
791         if (q_vector->tx.ring)
792                 tx_queue = q_vector->tx.ring->reg_idx;
793
794         switch (hw->mac.type) {
795         case e1000_82575:
796                 /* The 82575 assigns vectors using a bitmask, which matches the
797                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798                  * or more queues to a vector, we write the appropriate bits
799                  * into the MSIXBM register for that vector.
800                  */
801                 if (rx_queue > IGB_N0_QUEUE)
802                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803                 if (tx_queue > IGB_N0_QUEUE)
804                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806                         msixbm |= E1000_EIMS_OTHER;
807                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808                 q_vector->eims_value = msixbm;
809                 break;
810         case e1000_82576:
811                 /* 82576 uses a table that essentially consists of 2 columns
812                  * with 8 rows.  The ordering is column-major so we use the
813                  * lower 3 bits as the row index, and the 4th bit as the
814                  * column offset.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         igb_write_ivar(hw, msix_vector,
818                                        rx_queue & 0x7,
819                                        (rx_queue & 0x8) << 1);
820                 if (tx_queue > IGB_N0_QUEUE)
821                         igb_write_ivar(hw, msix_vector,
822                                        tx_queue & 0x7,
823                                        ((tx_queue & 0x8) << 1) + 8);
824                 q_vector->eims_value = BIT(msix_vector);
825                 break;
826         case e1000_82580:
827         case e1000_i350:
828         case e1000_i354:
829         case e1000_i210:
830         case e1000_i211:
831                 /* On 82580 and newer adapters the scheme is similar to 82576
832                  * however instead of ordering column-major we have things
833                  * ordered row-major.  So we traverse the table by using
834                  * bit 0 as the column offset, and the remaining bits as the
835                  * row index.
836                  */
837                 if (rx_queue > IGB_N0_QUEUE)
838                         igb_write_ivar(hw, msix_vector,
839                                        rx_queue >> 1,
840                                        (rx_queue & 0x1) << 4);
841                 if (tx_queue > IGB_N0_QUEUE)
842                         igb_write_ivar(hw, msix_vector,
843                                        tx_queue >> 1,
844                                        ((tx_queue & 0x1) << 4) + 8);
845                 q_vector->eims_value = BIT(msix_vector);
846                 break;
847         default:
848                 BUG();
849                 break;
850         }
851
852         /* add q_vector eims value to global eims_enable_mask */
853         adapter->eims_enable_mask |= q_vector->eims_value;
854
855         /* configure q_vector to set itr on first interrupt */
856         q_vector->set_itr = 1;
857 }
858
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868         u32 tmp;
869         int i, vector = 0;
870         struct e1000_hw *hw = &adapter->hw;
871
872         adapter->eims_enable_mask = 0;
873
874         /* set vector for other causes, i.e. link changes */
875         switch (hw->mac.type) {
876         case e1000_82575:
877                 tmp = rd32(E1000_CTRL_EXT);
878                 /* enable MSI-X PBA support*/
879                 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881                 /* Auto-Mask interrupts upon ICR read. */
882                 tmp |= E1000_CTRL_EXT_EIAME;
883                 tmp |= E1000_CTRL_EXT_IRCA;
884
885                 wr32(E1000_CTRL_EXT, tmp);
886
887                 /* enable msix_other interrupt */
888                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889                 adapter->eims_other = E1000_EIMS_OTHER;
890
891                 break;
892
893         case e1000_82576:
894         case e1000_82580:
895         case e1000_i350:
896         case e1000_i354:
897         case e1000_i210:
898         case e1000_i211:
899                 /* Turn on MSI-X capability first, or our settings
900                  * won't stick.  And it will take days to debug.
901                  */
902                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
904                      E1000_GPIE_NSICR);
905
906                 /* enable msix_other interrupt */
907                 adapter->eims_other = BIT(vector);
908                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910                 wr32(E1000_IVAR_MISC, tmp);
911                 break;
912         default:
913                 /* do nothing, since nothing else supports MSI-X */
914                 break;
915         } /* switch (hw->mac.type) */
916
917         adapter->eims_enable_mask |= adapter->eims_other;
918
919         for (i = 0; i < adapter->num_q_vectors; i++)
920                 igb_assign_vector(adapter->q_vector[i], vector++);
921
922         wrfl();
923 }
924
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934         struct net_device *netdev = adapter->netdev;
935         int i, err = 0, vector = 0, free_vector = 0;
936
937         err = request_irq(adapter->msix_entries[vector].vector,
938                           igb_msix_other, 0, netdev->name, adapter);
939         if (err)
940                 goto err_out;
941
942         for (i = 0; i < adapter->num_q_vectors; i++) {
943                 struct igb_q_vector *q_vector = adapter->q_vector[i];
944
945                 vector++;
946
947                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
948
949                 if (q_vector->rx.ring && q_vector->tx.ring)
950                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951                                 q_vector->rx.ring->queue_index);
952                 else if (q_vector->tx.ring)
953                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954                                 q_vector->tx.ring->queue_index);
955                 else if (q_vector->rx.ring)
956                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957                                 q_vector->rx.ring->queue_index);
958                 else
959                         sprintf(q_vector->name, "%s-unused", netdev->name);
960
961                 err = request_irq(adapter->msix_entries[vector].vector,
962                                   igb_msix_ring, 0, q_vector->name,
963                                   q_vector);
964                 if (err)
965                         goto err_free;
966         }
967
968         igb_configure_msix(adapter);
969         return 0;
970
971 err_free:
972         /* free already assigned IRQs */
973         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975         vector--;
976         for (i = 0; i < vector; i++) {
977                 free_irq(adapter->msix_entries[free_vector++].vector,
978                          adapter->q_vector[i]);
979         }
980 err_out:
981         return err;
982 }
983
984 /**
985  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
986  *  @adapter: board private structure to initialize
987  *  @v_idx: Index of vector to be freed
988  *
989  *  This function frees the memory allocated to the q_vector.
990  **/
991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
992 {
993         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994
995         adapter->q_vector[v_idx] = NULL;
996
997         /* igb_get_stats64() might access the rings on this vector,
998          * we must wait a grace period before freeing it.
999          */
1000         if (q_vector)
1001                 kfree_rcu(q_vector, rcu);
1002 }
1003
1004 /**
1005  *  igb_reset_q_vector - Reset config for interrupt vector
1006  *  @adapter: board private structure to initialize
1007  *  @v_idx: Index of vector to be reset
1008  *
1009  *  If NAPI is enabled it will delete any references to the
1010  *  NAPI struct. This is preparation for igb_free_q_vector.
1011  **/
1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1017          * allocated. So, q_vector is NULL so we should stop here.
1018          */
1019         if (!q_vector)
1020                 return;
1021
1022         if (q_vector->tx.ring)
1023                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024
1025         if (q_vector->rx.ring)
1026                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027
1028         netif_napi_del(&q_vector->napi);
1029
1030 }
1031
1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033 {
1034         int v_idx = adapter->num_q_vectors;
1035
1036         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037                 pci_disable_msix(adapter->pdev);
1038         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039                 pci_disable_msi(adapter->pdev);
1040
1041         while (v_idx--)
1042                 igb_reset_q_vector(adapter, v_idx);
1043 }
1044
1045 /**
1046  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function frees the memory allocated to the q_vectors.  In addition if
1050  *  NAPI is enabled it will delete any references to the NAPI struct prior
1051  *  to freeing the q_vector.
1052  **/
1053 static void igb_free_q_vectors(struct igb_adapter *adapter)
1054 {
1055         int v_idx = adapter->num_q_vectors;
1056
1057         adapter->num_tx_queues = 0;
1058         adapter->num_rx_queues = 0;
1059         adapter->num_q_vectors = 0;
1060
1061         while (v_idx--) {
1062                 igb_reset_q_vector(adapter, v_idx);
1063                 igb_free_q_vector(adapter, v_idx);
1064         }
1065 }
1066
1067 /**
1068  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1072  *  MSI-X interrupts allocated.
1073  */
1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075 {
1076         igb_free_q_vectors(adapter);
1077         igb_reset_interrupt_capability(adapter);
1078 }
1079
1080 /**
1081  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1082  *  @adapter: board private structure to initialize
1083  *  @msix: boolean value of MSIX capability
1084  *
1085  *  Attempt to configure interrupts using the best available
1086  *  capabilities of the hardware and kernel.
1087  **/
1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089 {
1090         int err;
1091         int numvecs, i;
1092
1093         if (!msix)
1094                 goto msi_only;
1095         adapter->flags |= IGB_FLAG_HAS_MSIX;
1096
1097         /* Number of supported queues. */
1098         adapter->num_rx_queues = adapter->rss_queues;
1099         if (adapter->vfs_allocated_count)
1100                 adapter->num_tx_queues = 1;
1101         else
1102                 adapter->num_tx_queues = adapter->rss_queues;
1103
1104         /* start with one vector for every Rx queue */
1105         numvecs = adapter->num_rx_queues;
1106
1107         /* if Tx handler is separate add 1 for every Tx queue */
1108         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109                 numvecs += adapter->num_tx_queues;
1110
1111         /* store the number of vectors reserved for queues */
1112         adapter->num_q_vectors = numvecs;
1113
1114         /* add 1 vector for link status interrupts */
1115         numvecs++;
1116         for (i = 0; i < numvecs; i++)
1117                 adapter->msix_entries[i].entry = i;
1118
1119         err = pci_enable_msix_range(adapter->pdev,
1120                                     adapter->msix_entries,
1121                                     numvecs,
1122                                     numvecs);
1123         if (err > 0)
1124                 return;
1125
1126         igb_reset_interrupt_capability(adapter);
1127
1128         /* If we can't do MSI-X, try MSI */
1129 msi_only:
1130         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131 #ifdef CONFIG_PCI_IOV
1132         /* disable SR-IOV for non MSI-X configurations */
1133         if (adapter->vf_data) {
1134                 struct e1000_hw *hw = &adapter->hw;
1135                 /* disable iov and allow time for transactions to clear */
1136                 pci_disable_sriov(adapter->pdev);
1137                 msleep(500);
1138
1139                 kfree(adapter->vf_mac_list);
1140                 adapter->vf_mac_list = NULL;
1141                 kfree(adapter->vf_data);
1142                 adapter->vf_data = NULL;
1143                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144                 wrfl();
1145                 msleep(100);
1146                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147         }
1148 #endif
1149         adapter->vfs_allocated_count = 0;
1150         adapter->rss_queues = 1;
1151         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152         adapter->num_rx_queues = 1;
1153         adapter->num_tx_queues = 1;
1154         adapter->num_q_vectors = 1;
1155         if (!pci_enable_msi(adapter->pdev))
1156                 adapter->flags |= IGB_FLAG_HAS_MSI;
1157 }
1158
1159 static void igb_add_ring(struct igb_ring *ring,
1160                          struct igb_ring_container *head)
1161 {
1162         head->ring = ring;
1163         head->count++;
1164 }
1165
1166 /**
1167  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168  *  @adapter: board private structure to initialize
1169  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1170  *  @v_idx: index of vector in adapter struct
1171  *  @txr_count: total number of Tx rings to allocate
1172  *  @txr_idx: index of first Tx ring to allocate
1173  *  @rxr_count: total number of Rx rings to allocate
1174  *  @rxr_idx: index of first Rx ring to allocate
1175  *
1176  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1177  **/
1178 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179                               int v_count, int v_idx,
1180                               int txr_count, int txr_idx,
1181                               int rxr_count, int rxr_idx)
1182 {
1183         struct igb_q_vector *q_vector;
1184         struct igb_ring *ring;
1185         int ring_count;
1186         size_t size;
1187
1188         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189         if (txr_count > 1 || rxr_count > 1)
1190                 return -ENOMEM;
1191
1192         ring_count = txr_count + rxr_count;
1193         size = struct_size(q_vector, ring, ring_count);
1194
1195         /* allocate q_vector and rings */
1196         q_vector = adapter->q_vector[v_idx];
1197         if (!q_vector) {
1198                 q_vector = kzalloc(size, GFP_KERNEL);
1199         } else if (size > ksize(q_vector)) {
1200                 kfree_rcu(q_vector, rcu);
1201                 q_vector = kzalloc(size, GFP_KERNEL);
1202         } else {
1203                 memset(q_vector, 0, size);
1204         }
1205         if (!q_vector)
1206                 return -ENOMEM;
1207
1208         /* initialize NAPI */
1209         netif_napi_add(adapter->netdev, &q_vector->napi,
1210                        igb_poll, 64);
1211
1212         /* tie q_vector and adapter together */
1213         adapter->q_vector[v_idx] = q_vector;
1214         q_vector->adapter = adapter;
1215
1216         /* initialize work limits */
1217         q_vector->tx.work_limit = adapter->tx_work_limit;
1218
1219         /* initialize ITR configuration */
1220         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221         q_vector->itr_val = IGB_START_ITR;
1222
1223         /* initialize pointer to rings */
1224         ring = q_vector->ring;
1225
1226         /* intialize ITR */
1227         if (rxr_count) {
1228                 /* rx or rx/tx vector */
1229                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230                         q_vector->itr_val = adapter->rx_itr_setting;
1231         } else {
1232                 /* tx only vector */
1233                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234                         q_vector->itr_val = adapter->tx_itr_setting;
1235         }
1236
1237         if (txr_count) {
1238                 /* assign generic ring traits */
1239                 ring->dev = &adapter->pdev->dev;
1240                 ring->netdev = adapter->netdev;
1241
1242                 /* configure backlink on ring */
1243                 ring->q_vector = q_vector;
1244
1245                 /* update q_vector Tx values */
1246                 igb_add_ring(ring, &q_vector->tx);
1247
1248                 /* For 82575, context index must be unique per ring. */
1249                 if (adapter->hw.mac.type == e1000_82575)
1250                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251
1252                 /* apply Tx specific ring traits */
1253                 ring->count = adapter->tx_ring_count;
1254                 ring->queue_index = txr_idx;
1255
1256                 ring->cbs_enable = false;
1257                 ring->idleslope = 0;
1258                 ring->sendslope = 0;
1259                 ring->hicredit = 0;
1260                 ring->locredit = 0;
1261
1262                 u64_stats_init(&ring->tx_syncp);
1263                 u64_stats_init(&ring->tx_syncp2);
1264
1265                 /* assign ring to adapter */
1266                 adapter->tx_ring[txr_idx] = ring;
1267
1268                 /* push pointer to next ring */
1269                 ring++;
1270         }
1271
1272         if (rxr_count) {
1273                 /* assign generic ring traits */
1274                 ring->dev = &adapter->pdev->dev;
1275                 ring->netdev = adapter->netdev;
1276
1277                 /* configure backlink on ring */
1278                 ring->q_vector = q_vector;
1279
1280                 /* update q_vector Rx values */
1281                 igb_add_ring(ring, &q_vector->rx);
1282
1283                 /* set flag indicating ring supports SCTP checksum offload */
1284                 if (adapter->hw.mac.type >= e1000_82576)
1285                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287                 /* On i350, i354, i210, and i211, loopback VLAN packets
1288                  * have the tag byte-swapped.
1289                  */
1290                 if (adapter->hw.mac.type >= e1000_i350)
1291                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293                 /* apply Rx specific ring traits */
1294                 ring->count = adapter->rx_ring_count;
1295                 ring->queue_index = rxr_idx;
1296
1297                 u64_stats_init(&ring->rx_syncp);
1298
1299                 /* assign ring to adapter */
1300                 adapter->rx_ring[rxr_idx] = ring;
1301         }
1302
1303         return 0;
1304 }
1305
1306
1307 /**
1308  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309  *  @adapter: board private structure to initialize
1310  *
1311  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312  *  return -ENOMEM.
1313  **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316         int q_vectors = adapter->num_q_vectors;
1317         int rxr_remaining = adapter->num_rx_queues;
1318         int txr_remaining = adapter->num_tx_queues;
1319         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320         int err;
1321
1322         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323                 for (; rxr_remaining; v_idx++) {
1324                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325                                                  0, 0, 1, rxr_idx);
1326
1327                         if (err)
1328                                 goto err_out;
1329
1330                         /* update counts and index */
1331                         rxr_remaining--;
1332                         rxr_idx++;
1333                 }
1334         }
1335
1336         for (; v_idx < q_vectors; v_idx++) {
1337                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341                                          tqpv, txr_idx, rqpv, rxr_idx);
1342
1343                 if (err)
1344                         goto err_out;
1345
1346                 /* update counts and index */
1347                 rxr_remaining -= rqpv;
1348                 txr_remaining -= tqpv;
1349                 rxr_idx++;
1350                 txr_idx++;
1351         }
1352
1353         return 0;
1354
1355 err_out:
1356         adapter->num_tx_queues = 0;
1357         adapter->num_rx_queues = 0;
1358         adapter->num_q_vectors = 0;
1359
1360         while (v_idx--)
1361                 igb_free_q_vector(adapter, v_idx);
1362
1363         return -ENOMEM;
1364 }
1365
1366 /**
1367  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368  *  @adapter: board private structure to initialize
1369  *  @msix: boolean value of MSIX capability
1370  *
1371  *  This function initializes the interrupts and allocates all of the queues.
1372  **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375         struct pci_dev *pdev = adapter->pdev;
1376         int err;
1377
1378         igb_set_interrupt_capability(adapter, msix);
1379
1380         err = igb_alloc_q_vectors(adapter);
1381         if (err) {
1382                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383                 goto err_alloc_q_vectors;
1384         }
1385
1386         igb_cache_ring_register(adapter);
1387
1388         return 0;
1389
1390 err_alloc_q_vectors:
1391         igb_reset_interrupt_capability(adapter);
1392         return err;
1393 }
1394
1395 /**
1396  *  igb_request_irq - initialize interrupts
1397  *  @adapter: board private structure to initialize
1398  *
1399  *  Attempts to configure interrupts using the best available
1400  *  capabilities of the hardware and kernel.
1401  **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404         struct net_device *netdev = adapter->netdev;
1405         struct pci_dev *pdev = adapter->pdev;
1406         int err = 0;
1407
1408         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409                 err = igb_request_msix(adapter);
1410                 if (!err)
1411                         goto request_done;
1412                 /* fall back to MSI */
1413                 igb_free_all_tx_resources(adapter);
1414                 igb_free_all_rx_resources(adapter);
1415
1416                 igb_clear_interrupt_scheme(adapter);
1417                 err = igb_init_interrupt_scheme(adapter, false);
1418                 if (err)
1419                         goto request_done;
1420
1421                 igb_setup_all_tx_resources(adapter);
1422                 igb_setup_all_rx_resources(adapter);
1423                 igb_configure(adapter);
1424         }
1425
1426         igb_assign_vector(adapter->q_vector[0], 0);
1427
1428         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1430                                   netdev->name, adapter);
1431                 if (!err)
1432                         goto request_done;
1433
1434                 /* fall back to legacy interrupts */
1435                 igb_reset_interrupt_capability(adapter);
1436                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437         }
1438
1439         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440                           netdev->name, adapter);
1441
1442         if (err)
1443                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444                         err);
1445
1446 request_done:
1447         return err;
1448 }
1449
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453                 int vector = 0, i;
1454
1455                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457                 for (i = 0; i < adapter->num_q_vectors; i++)
1458                         free_irq(adapter->msix_entries[vector++].vector,
1459                                  adapter->q_vector[i]);
1460         } else {
1461                 free_irq(adapter->pdev->irq, adapter);
1462         }
1463 }
1464
1465 /**
1466  *  igb_irq_disable - Mask off interrupt generation on the NIC
1467  *  @adapter: board private structure
1468  **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472
1473         /* we need to be careful when disabling interrupts.  The VFs are also
1474          * mapped into these registers and so clearing the bits can cause
1475          * issues on the VF drivers so we only need to clear what we set
1476          */
1477         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478                 u32 regval = rd32(E1000_EIAM);
1479
1480                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1482                 regval = rd32(E1000_EIAC);
1483                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484         }
1485
1486         wr32(E1000_IAM, 0);
1487         wr32(E1000_IMC, ~0);
1488         wrfl();
1489         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490                 int i;
1491
1492                 for (i = 0; i < adapter->num_q_vectors; i++)
1493                         synchronize_irq(adapter->msix_entries[i].vector);
1494         } else {
1495                 synchronize_irq(adapter->pdev->irq);
1496         }
1497 }
1498
1499 /**
1500  *  igb_irq_enable - Enable default interrupt generation settings
1501  *  @adapter: board private structure
1502  **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505         struct e1000_hw *hw = &adapter->hw;
1506
1507         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509                 u32 regval = rd32(E1000_EIAC);
1510
1511                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512                 regval = rd32(E1000_EIAM);
1513                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1515                 if (adapter->vfs_allocated_count) {
1516                         wr32(E1000_MBVFIMR, 0xFF);
1517                         ims |= E1000_IMS_VMMB;
1518                 }
1519                 wr32(E1000_IMS, ims);
1520         } else {
1521                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1522                                 E1000_IMS_DRSTA);
1523                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1524                                 E1000_IMS_DRSTA);
1525         }
1526 }
1527
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530         struct e1000_hw *hw = &adapter->hw;
1531         u16 pf_id = adapter->vfs_allocated_count;
1532         u16 vid = adapter->hw.mng_cookie.vlan_id;
1533         u16 old_vid = adapter->mng_vlan_id;
1534
1535         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536                 /* add VID to filter table */
1537                 igb_vfta_set(hw, vid, pf_id, true, true);
1538                 adapter->mng_vlan_id = vid;
1539         } else {
1540                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541         }
1542
1543         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544             (vid != old_vid) &&
1545             !test_bit(old_vid, adapter->active_vlans)) {
1546                 /* remove VID from filter table */
1547                 igb_vfta_set(hw, vid, pf_id, false, true);
1548         }
1549 }
1550
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561         struct e1000_hw *hw = &adapter->hw;
1562         u32 ctrl_ext;
1563
1564         /* Let firmware take over control of h/w */
1565         ctrl_ext = rd32(E1000_CTRL_EXT);
1566         wr32(E1000_CTRL_EXT,
1567                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         u32 ctrl_ext;
1582
1583         /* Let firmware know the driver has taken over */
1584         ctrl_ext = rd32(E1000_CTRL_EXT);
1585         wr32(E1000_CTRL_EXT,
1586                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590 {
1591         struct net_device *netdev = adapter->netdev;
1592         struct e1000_hw *hw = &adapter->hw;
1593
1594         WARN_ON(hw->mac.type != e1000_i210);
1595
1596         if (enable)
1597                 adapter->flags |= IGB_FLAG_FQTSS;
1598         else
1599                 adapter->flags &= ~IGB_FLAG_FQTSS;
1600
1601         if (netif_running(netdev))
1602                 schedule_work(&adapter->reset_task);
1603 }
1604
1605 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606 {
1607         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608 }
1609
1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611                                    enum tx_queue_prio prio)
1612 {
1613         u32 val;
1614
1615         WARN_ON(hw->mac.type != e1000_i210);
1616         WARN_ON(queue < 0 || queue > 4);
1617
1618         val = rd32(E1000_I210_TXDCTL(queue));
1619
1620         if (prio == TX_QUEUE_PRIO_HIGH)
1621                 val |= E1000_TXDCTL_PRIORITY;
1622         else
1623                 val &= ~E1000_TXDCTL_PRIORITY;
1624
1625         wr32(E1000_I210_TXDCTL(queue), val);
1626 }
1627
1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629 {
1630         u32 val;
1631
1632         WARN_ON(hw->mac.type != e1000_i210);
1633         WARN_ON(queue < 0 || queue > 1);
1634
1635         val = rd32(E1000_I210_TQAVCC(queue));
1636
1637         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638                 val |= E1000_TQAVCC_QUEUEMODE;
1639         else
1640                 val &= ~E1000_TQAVCC_QUEUEMODE;
1641
1642         wr32(E1000_I210_TQAVCC(queue), val);
1643 }
1644
1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646 {
1647         int i;
1648
1649         for (i = 0; i < adapter->num_tx_queues; i++) {
1650                 if (adapter->tx_ring[i]->cbs_enable)
1651                         return true;
1652         }
1653
1654         return false;
1655 }
1656
1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658 {
1659         int i;
1660
1661         for (i = 0; i < adapter->num_tx_queues; i++) {
1662                 if (adapter->tx_ring[i]->launchtime_enable)
1663                         return true;
1664         }
1665
1666         return false;
1667 }
1668
1669 /**
1670  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671  *  @adapter: pointer to adapter struct
1672  *  @queue: queue number
1673  *
1674  *  Configure CBS and Launchtime for a given hardware queue.
1675  *  Parameters are retrieved from the correct Tx ring, so
1676  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1677  *  for setting those correctly prior to this function being called.
1678  **/
1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680 {
1681         struct igb_ring *ring = adapter->tx_ring[queue];
1682         struct net_device *netdev = adapter->netdev;
1683         struct e1000_hw *hw = &adapter->hw;
1684         u32 tqavcc, tqavctrl;
1685         u16 value;
1686
1687         WARN_ON(hw->mac.type != e1000_i210);
1688         WARN_ON(queue < 0 || queue > 1);
1689
1690         /* If any of the Qav features is enabled, configure queues as SR and
1691          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692          * as SP.
1693          */
1694         if (ring->cbs_enable || ring->launchtime_enable) {
1695                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697         } else {
1698                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700         }
1701
1702         /* If CBS is enabled, set DataTranARB and config its parameters. */
1703         if (ring->cbs_enable || queue == 0) {
1704                 /* i210 does not allow the queue 0 to be in the Strict
1705                  * Priority mode while the Qav mode is enabled, so,
1706                  * instead of disabling strict priority mode, we give
1707                  * queue 0 the maximum of credits possible.
1708                  *
1709                  * See section 8.12.19 of the i210 datasheet, "Note:
1710                  * Queue0 QueueMode must be set to 1b when
1711                  * TransmitMode is set to Qav."
1712                  */
1713                 if (queue == 0 && !ring->cbs_enable) {
1714                         /* max "linkspeed" idleslope in kbps */
1715                         ring->idleslope = 1000000;
1716                         ring->hicredit = ETH_FRAME_LEN;
1717                 }
1718
1719                 /* Always set data transfer arbitration to credit-based
1720                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721                  * the queues.
1722                  */
1723                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726
1727                 /* According to i210 datasheet section 7.2.7.7, we should set
1728                  * the 'idleSlope' field from TQAVCC register following the
1729                  * equation:
1730                  *
1731                  * For 100 Mbps link speed:
1732                  *
1733                  *     value = BW * 0x7735 * 0.2                          (E1)
1734                  *
1735                  * For 1000Mbps link speed:
1736                  *
1737                  *     value = BW * 0x7735 * 2                            (E2)
1738                  *
1739                  * E1 and E2 can be merged into one equation as shown below.
1740                  * Note that 'link-speed' is in Mbps.
1741                  *
1742                  *     value = BW * 0x7735 * 2 * link-speed
1743                  *                           --------------               (E3)
1744                  *                                1000
1745                  *
1746                  * 'BW' is the percentage bandwidth out of full link speed
1747                  * which can be found with the following equation. Note that
1748                  * idleSlope here is the parameter from this function which
1749                  * is in kbps.
1750                  *
1751                  *     BW =     idleSlope
1752                  *          -----------------                             (E4)
1753                  *          link-speed * 1000
1754                  *
1755                  * That said, we can come up with a generic equation to
1756                  * calculate the value we should set it TQAVCC register by
1757                  * replacing 'BW' in E3 by E4. The resulting equation is:
1758                  *
1759                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1760                  *         -----------------            --------------    (E5)
1761                  *         link-speed * 1000                 1000
1762                  *
1763                  * 'link-speed' is present in both sides of the fraction so
1764                  * it is canceled out. The final equation is the following:
1765                  *
1766                  *     value = idleSlope * 61034
1767                  *             -----------------                          (E6)
1768                  *                  1000000
1769                  *
1770                  * NOTE: For i210, given the above, we can see that idleslope
1771                  *       is represented in 16.38431 kbps units by the value at
1772                  *       the TQAVCC register (1Gbps / 61034), which reduces
1773                  *       the granularity for idleslope increments.
1774                  *       For instance, if you want to configure a 2576kbps
1775                  *       idleslope, the value to be written on the register
1776                  *       would have to be 157.23. If rounded down, you end
1777                  *       up with less bandwidth available than originally
1778                  *       required (~2572 kbps). If rounded up, you end up
1779                  *       with a higher bandwidth (~2589 kbps). Below the
1780                  *       approach we take is to always round up the
1781                  *       calculated value, so the resulting bandwidth might
1782                  *       be slightly higher for some configurations.
1783                  */
1784                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785
1786                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788                 tqavcc |= value;
1789                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790
1791                 wr32(E1000_I210_TQAVHC(queue),
1792                      0x80000000 + ring->hicredit * 0x7735);
1793         } else {
1794
1795                 /* Set idleSlope to zero. */
1796                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800                 /* Set hiCredit to zero. */
1801                 wr32(E1000_I210_TQAVHC(queue), 0);
1802
1803                 /* If CBS is not enabled for any queues anymore, then return to
1804                  * the default state of Data Transmission Arbitration on
1805                  * TQAVCTRL.
1806                  */
1807                 if (!is_any_cbs_enabled(adapter)) {
1808                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811                 }
1812         }
1813
1814         /* If LaunchTime is enabled, set DataTranTIM. */
1815         if (ring->launchtime_enable) {
1816                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817                  * for any of the SR queues, and configure fetchtime delta.
1818                  * XXX NOTE:
1819                  *     - LaunchTime will be enabled for all SR queues.
1820                  *     - A fixed offset can be added relative to the launch
1821                  *       time of all packets if configured at reg LAUNCH_OS0.
1822                  *       We are keeping it as 0 for now (default value).
1823                  */
1824                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1827                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828         } else {
1829                 /* If Launchtime is not enabled for any SR queues anymore,
1830                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831                  * effectively disabling Launchtime.
1832                  */
1833                 if (!is_any_txtime_enabled(adapter)) {
1834                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838                 }
1839         }
1840
1841         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1842          * CBS are not configurable by software so we don't do any 'controller
1843          * configuration' in respect to these parameters.
1844          */
1845
1846         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847                    ring->cbs_enable ? "enabled" : "disabled",
1848                    ring->launchtime_enable ? "enabled" : "disabled",
1849                    queue,
1850                    ring->idleslope, ring->sendslope,
1851                    ring->hicredit, ring->locredit);
1852 }
1853
1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855                                   bool enable)
1856 {
1857         struct igb_ring *ring;
1858
1859         if (queue < 0 || queue > adapter->num_tx_queues)
1860                 return -EINVAL;
1861
1862         ring = adapter->tx_ring[queue];
1863         ring->launchtime_enable = enable;
1864
1865         return 0;
1866 }
1867
1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869                                bool enable, int idleslope, int sendslope,
1870                                int hicredit, int locredit)
1871 {
1872         struct igb_ring *ring;
1873
1874         if (queue < 0 || queue > adapter->num_tx_queues)
1875                 return -EINVAL;
1876
1877         ring = adapter->tx_ring[queue];
1878
1879         ring->cbs_enable = enable;
1880         ring->idleslope = idleslope;
1881         ring->sendslope = sendslope;
1882         ring->hicredit = hicredit;
1883         ring->locredit = locredit;
1884
1885         return 0;
1886 }
1887
1888 /**
1889  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890  *  @adapter: pointer to adapter struct
1891  *
1892  *  Configure TQAVCTRL register switching the controller's Tx mode
1893  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1894  *  a call to igb_config_tx_modes() per queue so any previously saved
1895  *  Tx parameters are applied.
1896  **/
1897 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898 {
1899         struct net_device *netdev = adapter->netdev;
1900         struct e1000_hw *hw = &adapter->hw;
1901         u32 val;
1902
1903         /* Only i210 controller supports changing the transmission mode. */
1904         if (hw->mac.type != e1000_i210)
1905                 return;
1906
1907         if (is_fqtss_enabled(adapter)) {
1908                 int i, max_queue;
1909
1910                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912                  * so SP queues wait for SR ones.
1913                  */
1914                 val = rd32(E1000_I210_TQAVCTRL);
1915                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917                 wr32(E1000_I210_TQAVCTRL, val);
1918
1919                 /* Configure Tx and Rx packet buffers sizes as described in
1920                  * i210 datasheet section 7.2.7.7.
1921                  */
1922                 val = rd32(E1000_TXPBS);
1923                 val &= ~I210_TXPBSIZE_MASK;
1924                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1925                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1926                 wr32(E1000_TXPBS, val);
1927
1928                 val = rd32(E1000_RXPBS);
1929                 val &= ~I210_RXPBSIZE_MASK;
1930                 val |= I210_RXPBSIZE_PB_30KB;
1931                 wr32(E1000_RXPBS, val);
1932
1933                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934                  * register should not exceed the buffer size programmed in
1935                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1937                  * 4kB / 64.
1938                  *
1939                  * However, when we do so, no frame from queue 2 and 3 are
1940                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1941                  * or _equal_ to the buffer size programmed in TXPBS. For this
1942                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943                  */
1944                 val = (4096 - 1) / 64;
1945                 wr32(E1000_I210_DTXMXPKTSZ, val);
1946
1947                 /* Since FQTSS mode is enabled, apply any CBS configuration
1948                  * previously set. If no previous CBS configuration has been
1949                  * done, then the initial configuration is applied, which means
1950                  * CBS is disabled.
1951                  */
1952                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954
1955                 for (i = 0; i < max_queue; i++) {
1956                         igb_config_tx_modes(adapter, i);
1957                 }
1958         } else {
1959                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962
1963                 val = rd32(E1000_I210_TQAVCTRL);
1964                 /* According to Section 8.12.21, the other flags we've set when
1965                  * enabling FQTSS are not relevant when disabling FQTSS so we
1966                  * don't set they here.
1967                  */
1968                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969                 wr32(E1000_I210_TQAVCTRL, val);
1970         }
1971
1972         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973                    "enabled" : "disabled");
1974 }
1975
1976 /**
1977  *  igb_configure - configure the hardware for RX and TX
1978  *  @adapter: private board structure
1979  **/
1980 static void igb_configure(struct igb_adapter *adapter)
1981 {
1982         struct net_device *netdev = adapter->netdev;
1983         int i;
1984
1985         igb_get_hw_control(adapter);
1986         igb_set_rx_mode(netdev);
1987         igb_setup_tx_mode(adapter);
1988
1989         igb_restore_vlan(adapter);
1990
1991         igb_setup_tctl(adapter);
1992         igb_setup_mrqc(adapter);
1993         igb_setup_rctl(adapter);
1994
1995         igb_nfc_filter_restore(adapter);
1996         igb_configure_tx(adapter);
1997         igb_configure_rx(adapter);
1998
1999         igb_rx_fifo_flush_82575(&adapter->hw);
2000
2001         /* call igb_desc_unused which always leaves
2002          * at least 1 descriptor unused to make sure
2003          * next_to_use != next_to_clean
2004          */
2005         for (i = 0; i < adapter->num_rx_queues; i++) {
2006                 struct igb_ring *ring = adapter->rx_ring[i];
2007                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008         }
2009 }
2010
2011 /**
2012  *  igb_power_up_link - Power up the phy/serdes link
2013  *  @adapter: address of board private structure
2014  **/
2015 void igb_power_up_link(struct igb_adapter *adapter)
2016 {
2017         igb_reset_phy(&adapter->hw);
2018
2019         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020                 igb_power_up_phy_copper(&adapter->hw);
2021         else
2022                 igb_power_up_serdes_link_82575(&adapter->hw);
2023
2024         igb_setup_link(&adapter->hw);
2025 }
2026
2027 /**
2028  *  igb_power_down_link - Power down the phy/serdes link
2029  *  @adapter: address of board private structure
2030  */
2031 static void igb_power_down_link(struct igb_adapter *adapter)
2032 {
2033         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034                 igb_power_down_phy_copper_82575(&adapter->hw);
2035         else
2036                 igb_shutdown_serdes_link_82575(&adapter->hw);
2037 }
2038
2039 /**
2040  * Detect and switch function for Media Auto Sense
2041  * @adapter: address of the board private structure
2042  **/
2043 static void igb_check_swap_media(struct igb_adapter *adapter)
2044 {
2045         struct e1000_hw *hw = &adapter->hw;
2046         u32 ctrl_ext, connsw;
2047         bool swap_now = false;
2048
2049         ctrl_ext = rd32(E1000_CTRL_EXT);
2050         connsw = rd32(E1000_CONNSW);
2051
2052         /* need to live swap if current media is copper and we have fiber/serdes
2053          * to go to.
2054          */
2055
2056         if ((hw->phy.media_type == e1000_media_type_copper) &&
2057             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058                 swap_now = true;
2059         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060                    !(connsw & E1000_CONNSW_SERDESD)) {
2061                 /* copper signal takes time to appear */
2062                 if (adapter->copper_tries < 4) {
2063                         adapter->copper_tries++;
2064                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065                         wr32(E1000_CONNSW, connsw);
2066                         return;
2067                 } else {
2068                         adapter->copper_tries = 0;
2069                         if ((connsw & E1000_CONNSW_PHYSD) &&
2070                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071                                 swap_now = true;
2072                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073                                 wr32(E1000_CONNSW, connsw);
2074                         }
2075                 }
2076         }
2077
2078         if (!swap_now)
2079                 return;
2080
2081         switch (hw->phy.media_type) {
2082         case e1000_media_type_copper:
2083                 netdev_info(adapter->netdev,
2084                         "MAS: changing media to fiber/serdes\n");
2085                 ctrl_ext |=
2086                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088                 adapter->copper_tries = 0;
2089                 break;
2090         case e1000_media_type_internal_serdes:
2091         case e1000_media_type_fiber:
2092                 netdev_info(adapter->netdev,
2093                         "MAS: changing media to copper\n");
2094                 ctrl_ext &=
2095                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097                 break;
2098         default:
2099                 /* shouldn't get here during regular operation */
2100                 netdev_err(adapter->netdev,
2101                         "AMS: Invalid media type found, returning\n");
2102                 break;
2103         }
2104         wr32(E1000_CTRL_EXT, ctrl_ext);
2105 }
2106
2107 /**
2108  *  igb_up - Open the interface and prepare it to handle traffic
2109  *  @adapter: board private structure
2110  **/
2111 int igb_up(struct igb_adapter *adapter)
2112 {
2113         struct e1000_hw *hw = &adapter->hw;
2114         int i;
2115
2116         /* hardware has been reset, we need to reload some things */
2117         igb_configure(adapter);
2118
2119         clear_bit(__IGB_DOWN, &adapter->state);
2120
2121         for (i = 0; i < adapter->num_q_vectors; i++)
2122                 napi_enable(&(adapter->q_vector[i]->napi));
2123
2124         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125                 igb_configure_msix(adapter);
2126         else
2127                 igb_assign_vector(adapter->q_vector[0], 0);
2128
2129         /* Clear any pending interrupts. */
2130         rd32(E1000_TSICR);
2131         rd32(E1000_ICR);
2132         igb_irq_enable(adapter);
2133
2134         /* notify VFs that reset has been completed */
2135         if (adapter->vfs_allocated_count) {
2136                 u32 reg_data = rd32(E1000_CTRL_EXT);
2137
2138                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2139                 wr32(E1000_CTRL_EXT, reg_data);
2140         }
2141
2142         netif_tx_start_all_queues(adapter->netdev);
2143
2144         /* start the watchdog. */
2145         hw->mac.get_link_status = 1;
2146         schedule_work(&adapter->watchdog_task);
2147
2148         if ((adapter->flags & IGB_FLAG_EEE) &&
2149             (!hw->dev_spec._82575.eee_disable))
2150                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151
2152         return 0;
2153 }
2154
2155 void igb_down(struct igb_adapter *adapter)
2156 {
2157         struct net_device *netdev = adapter->netdev;
2158         struct e1000_hw *hw = &adapter->hw;
2159         u32 tctl, rctl;
2160         int i;
2161
2162         /* signal that we're down so the interrupt handler does not
2163          * reschedule our watchdog timer
2164          */
2165         set_bit(__IGB_DOWN, &adapter->state);
2166
2167         /* disable receives in the hardware */
2168         rctl = rd32(E1000_RCTL);
2169         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170         /* flush and sleep below */
2171
2172         igb_nfc_filter_exit(adapter);
2173
2174         netif_carrier_off(netdev);
2175         netif_tx_stop_all_queues(netdev);
2176
2177         /* disable transmits in the hardware */
2178         tctl = rd32(E1000_TCTL);
2179         tctl &= ~E1000_TCTL_EN;
2180         wr32(E1000_TCTL, tctl);
2181         /* flush both disables and wait for them to finish */
2182         wrfl();
2183         usleep_range(10000, 11000);
2184
2185         igb_irq_disable(adapter);
2186
2187         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188
2189         for (i = 0; i < adapter->num_q_vectors; i++) {
2190                 if (adapter->q_vector[i]) {
2191                         napi_synchronize(&adapter->q_vector[i]->napi);
2192                         napi_disable(&adapter->q_vector[i]->napi);
2193                 }
2194         }
2195
2196         del_timer_sync(&adapter->watchdog_timer);
2197         del_timer_sync(&adapter->phy_info_timer);
2198
2199         /* record the stats before reset*/
2200         spin_lock(&adapter->stats64_lock);
2201         igb_update_stats(adapter);
2202         spin_unlock(&adapter->stats64_lock);
2203
2204         adapter->link_speed = 0;
2205         adapter->link_duplex = 0;
2206
2207         if (!pci_channel_offline(adapter->pdev))
2208                 igb_reset(adapter);
2209
2210         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2211         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212
2213         igb_clean_all_tx_rings(adapter);
2214         igb_clean_all_rx_rings(adapter);
2215 #ifdef CONFIG_IGB_DCA
2216
2217         /* since we reset the hardware DCA settings were cleared */
2218         igb_setup_dca(adapter);
2219 #endif
2220 }
2221
2222 void igb_reinit_locked(struct igb_adapter *adapter)
2223 {
2224         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225                 usleep_range(1000, 2000);
2226         igb_down(adapter);
2227         igb_up(adapter);
2228         clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232  *
2233  * @adapter: adapter struct
2234  **/
2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237         struct e1000_hw *hw = &adapter->hw;
2238         u32 connsw = rd32(E1000_CONNSW);
2239
2240         /* configure for SerDes media detect */
2241         if ((hw->phy.media_type == e1000_media_type_copper) &&
2242             (!(connsw & E1000_CONNSW_SERDESD))) {
2243                 connsw |= E1000_CONNSW_ENRGSRC;
2244                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245                 wr32(E1000_CONNSW, connsw);
2246                 wrfl();
2247         }
2248 }
2249
2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252         struct pci_dev *pdev = adapter->pdev;
2253         struct e1000_hw *hw = &adapter->hw;
2254         struct e1000_mac_info *mac = &hw->mac;
2255         struct e1000_fc_info *fc = &hw->fc;
2256         u32 pba, hwm;
2257
2258         /* Repartition Pba for greater than 9k mtu
2259          * To take effect CTRL.RST is required.
2260          */
2261         switch (mac->type) {
2262         case e1000_i350:
2263         case e1000_i354:
2264         case e1000_82580:
2265                 pba = rd32(E1000_RXPBS);
2266                 pba = igb_rxpbs_adjust_82580(pba);
2267                 break;
2268         case e1000_82576:
2269                 pba = rd32(E1000_RXPBS);
2270                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2271                 break;
2272         case e1000_82575:
2273         case e1000_i210:
2274         case e1000_i211:
2275         default:
2276                 pba = E1000_PBA_34K;
2277                 break;
2278         }
2279
2280         if (mac->type == e1000_82575) {
2281                 u32 min_rx_space, min_tx_space, needed_tx_space;
2282
2283                 /* write Rx PBA so that hardware can report correct Tx PBA */
2284                 wr32(E1000_PBA, pba);
2285
2286                 /* To maintain wire speed transmits, the Tx FIFO should be
2287                  * large enough to accommodate two full transmit packets,
2288                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2289                  * the Rx FIFO should be large enough to accommodate at least
2290                  * one full receive packet and is similarly rounded up and
2291                  * expressed in KB.
2292                  */
2293                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294
2295                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2296                  * but don't include Ethernet FCS because hardware appends it.
2297                  * We only need to round down to the nearest 512 byte block
2298                  * count since the value we care about is 2 frames, not 1.
2299                  */
2300                 min_tx_space = adapter->max_frame_size;
2301                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303
2304                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2305                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306
2307                 /* If current Tx allocation is less than the min Tx FIFO size,
2308                  * and the min Tx FIFO size is less than the current Rx FIFO
2309                  * allocation, take space away from current Rx allocation.
2310                  */
2311                 if (needed_tx_space < pba) {
2312                         pba -= needed_tx_space;
2313
2314                         /* if short on Rx space, Rx wins and must trump Tx
2315                          * adjustment
2316                          */
2317                         if (pba < min_rx_space)
2318                                 pba = min_rx_space;
2319                 }
2320
2321                 /* adjust PBA for jumbo frames */
2322                 wr32(E1000_PBA, pba);
2323         }
2324
2325         /* flow control settings
2326          * The high water mark must be low enough to fit one full frame
2327          * after transmitting the pause frame.  As such we must have enough
2328          * space to allow for us to complete our current transmit and then
2329          * receive the frame that is in progress from the link partner.
2330          * Set it to:
2331          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332          */
2333         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334
2335         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2336         fc->low_water = fc->high_water - 16;
2337         fc->pause_time = 0xFFFF;
2338         fc->send_xon = 1;
2339         fc->current_mode = fc->requested_mode;
2340
2341         /* disable receive for all VFs and wait one second */
2342         if (adapter->vfs_allocated_count) {
2343                 int i;
2344
2345                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347
2348                 /* ping all the active vfs to let them know we are going down */
2349                 igb_ping_all_vfs(adapter);
2350
2351                 /* disable transmits and receives */
2352                 wr32(E1000_VFRE, 0);
2353                 wr32(E1000_VFTE, 0);
2354         }
2355
2356         /* Allow time for pending master requests to run */
2357         hw->mac.ops.reset_hw(hw);
2358         wr32(E1000_WUC, 0);
2359
2360         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361                 /* need to resetup here after media swap */
2362                 adapter->ei.get_invariants(hw);
2363                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364         }
2365         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367                 igb_enable_mas(adapter);
2368         }
2369         if (hw->mac.ops.init_hw(hw))
2370                 dev_err(&pdev->dev, "Hardware Error\n");
2371
2372         /* RAR registers were cleared during init_hw, clear mac table */
2373         igb_flush_mac_table(adapter);
2374         __dev_uc_unsync(adapter->netdev, NULL);
2375
2376         /* Recover default RAR entry */
2377         igb_set_default_mac_filter(adapter);
2378
2379         /* Flow control settings reset on hardware reset, so guarantee flow
2380          * control is off when forcing speed.
2381          */
2382         if (!hw->mac.autoneg)
2383                 igb_force_mac_fc(hw);
2384
2385         igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387         /* Re-initialize the thermal sensor on i350 devices. */
2388         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390                         /* If present, re-initialize the external thermal sensor
2391                          * interface.
2392                          */
2393                         if (adapter->ets)
2394                                 mac->ops.init_thermal_sensor_thresh(hw);
2395                 }
2396         }
2397 #endif
2398         /* Re-establish EEE setting */
2399         if (hw->phy.media_type == e1000_media_type_copper) {
2400                 switch (mac->type) {
2401                 case e1000_i350:
2402                 case e1000_i210:
2403                 case e1000_i211:
2404                         igb_set_eee_i350(hw, true, true);
2405                         break;
2406                 case e1000_i354:
2407                         igb_set_eee_i354(hw, true, true);
2408                         break;
2409                 default:
2410                         break;
2411                 }
2412         }
2413         if (!netif_running(adapter->netdev))
2414                 igb_power_down_link(adapter);
2415
2416         igb_update_mng_vlan(adapter);
2417
2418         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420
2421         /* Re-enable PTP, where applicable. */
2422         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423                 igb_ptp_reset(adapter);
2424
2425         igb_get_phy_info(hw);
2426 }
2427
2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429         netdev_features_t features)
2430 {
2431         /* Since there is no support for separate Rx/Tx vlan accel
2432          * enable/disable make sure Tx flag is always in same state as Rx.
2433          */
2434         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2436         else
2437                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438
2439         return features;
2440 }
2441
2442 static int igb_set_features(struct net_device *netdev,
2443         netdev_features_t features)
2444 {
2445         netdev_features_t changed = netdev->features ^ features;
2446         struct igb_adapter *adapter = netdev_priv(netdev);
2447
2448         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449                 igb_vlan_mode(netdev, features);
2450
2451         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452                 return 0;
2453
2454         if (!(features & NETIF_F_NTUPLE)) {
2455                 struct hlist_node *node2;
2456                 struct igb_nfc_filter *rule;
2457
2458                 spin_lock(&adapter->nfc_lock);
2459                 hlist_for_each_entry_safe(rule, node2,
2460                                           &adapter->nfc_filter_list, nfc_node) {
2461                         igb_erase_filter(adapter, rule);
2462                         hlist_del(&rule->nfc_node);
2463                         kfree(rule);
2464                 }
2465                 spin_unlock(&adapter->nfc_lock);
2466                 adapter->nfc_filter_count = 0;
2467         }
2468
2469         netdev->features = features;
2470
2471         if (netif_running(netdev))
2472                 igb_reinit_locked(adapter);
2473         else
2474                 igb_reset(adapter);
2475
2476         return 1;
2477 }
2478
2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480                            struct net_device *dev,
2481                            const unsigned char *addr, u16 vid,
2482                            u16 flags,
2483                            struct netlink_ext_ack *extack)
2484 {
2485         /* guarantee we can provide a unique filter for the unicast address */
2486         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487                 struct igb_adapter *adapter = netdev_priv(dev);
2488                 int vfn = adapter->vfs_allocated_count;
2489
2490                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491                         return -ENOMEM;
2492         }
2493
2494         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496
2497 #define IGB_MAX_MAC_HDR_LEN     127
2498 #define IGB_MAX_NETWORK_HDR_LEN 511
2499
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502                    netdev_features_t features)
2503 {
2504         unsigned int network_hdr_len, mac_hdr_len;
2505
2506         /* Make certain the headers can be described by a context descriptor */
2507         mac_hdr_len = skb_network_header(skb) - skb->data;
2508         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509                 return features & ~(NETIF_F_HW_CSUM |
2510                                     NETIF_F_SCTP_CRC |
2511                                     NETIF_F_GSO_UDP_L4 |
2512                                     NETIF_F_HW_VLAN_CTAG_TX |
2513                                     NETIF_F_TSO |
2514                                     NETIF_F_TSO6);
2515
2516         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518                 return features & ~(NETIF_F_HW_CSUM |
2519                                     NETIF_F_SCTP_CRC |
2520                                     NETIF_F_GSO_UDP_L4 |
2521                                     NETIF_F_TSO |
2522                                     NETIF_F_TSO6);
2523
2524         /* We can only support IPV4 TSO in tunnels if we can mangle the
2525          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526          */
2527         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528                 features &= ~NETIF_F_TSO;
2529
2530         return features;
2531 }
2532
2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535         if (!is_fqtss_enabled(adapter)) {
2536                 enable_fqtss(adapter, true);
2537                 return;
2538         }
2539
2540         igb_config_tx_modes(adapter, queue);
2541
2542         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543                 enable_fqtss(adapter, false);
2544 }
2545
2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547                            struct tc_cbs_qopt_offload *qopt)
2548 {
2549         struct e1000_hw *hw = &adapter->hw;
2550         int err;
2551
2552         /* CBS offloading is only supported by i210 controller. */
2553         if (hw->mac.type != e1000_i210)
2554                 return -EOPNOTSUPP;
2555
2556         /* CBS offloading is only supported by queue 0 and queue 1. */
2557         if (qopt->queue < 0 || qopt->queue > 1)
2558                 return -EINVAL;
2559
2560         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561                                   qopt->idleslope, qopt->sendslope,
2562                                   qopt->hicredit, qopt->locredit);
2563         if (err)
2564                 return err;
2565
2566         igb_offload_apply(adapter, qopt->queue);
2567
2568         return 0;
2569 }
2570
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573
2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575                                 struct flow_cls_offload *f,
2576                                 int traffic_class,
2577                                 struct igb_nfc_filter *input)
2578 {
2579         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580         struct flow_dissector *dissector = rule->match.dissector;
2581         struct netlink_ext_ack *extack = f->common.extack;
2582
2583         if (dissector->used_keys &
2584             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588                 NL_SET_ERR_MSG_MOD(extack,
2589                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590                 return -EOPNOTSUPP;
2591         }
2592
2593         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594                 struct flow_match_eth_addrs match;
2595
2596                 flow_rule_match_eth_addrs(rule, &match);
2597                 if (!is_zero_ether_addr(match.mask->dst)) {
2598                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2599                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600                                 return -EINVAL;
2601                         }
2602
2603                         input->filter.match_flags |=
2604                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2605                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606                 }
2607
2608                 if (!is_zero_ether_addr(match.mask->src)) {
2609                         if (!is_broadcast_ether_addr(match.mask->src)) {
2610                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611                                 return -EINVAL;
2612                         }
2613
2614                         input->filter.match_flags |=
2615                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616                         ether_addr_copy(input->filter.src_addr, match.key->src);
2617                 }
2618         }
2619
2620         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621                 struct flow_match_basic match;
2622
2623                 flow_rule_match_basic(rule, &match);
2624                 if (match.mask->n_proto) {
2625                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627                                 return -EINVAL;
2628                         }
2629
2630                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631                         input->filter.etype = match.key->n_proto;
2632                 }
2633         }
2634
2635         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636                 struct flow_match_vlan match;
2637
2638                 flow_rule_match_vlan(rule, &match);
2639                 if (match.mask->vlan_priority) {
2640                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642                                 return -EINVAL;
2643                         }
2644
2645                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646                         input->filter.vlan_tci = match.key->vlan_priority;
2647                 }
2648         }
2649
2650         input->action = traffic_class;
2651         input->cookie = f->cookie;
2652
2653         return 0;
2654 }
2655
2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657                                    struct flow_cls_offload *cls_flower)
2658 {
2659         struct netlink_ext_ack *extack = cls_flower->common.extack;
2660         struct igb_nfc_filter *filter, *f;
2661         int err, tc;
2662
2663         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664         if (tc < 0) {
2665                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666                 return -EINVAL;
2667         }
2668
2669         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670         if (!filter)
2671                 return -ENOMEM;
2672
2673         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674         if (err < 0)
2675                 goto err_parse;
2676
2677         spin_lock(&adapter->nfc_lock);
2678
2679         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681                         err = -EEXIST;
2682                         NL_SET_ERR_MSG_MOD(extack,
2683                                            "This filter is already set in ethtool");
2684                         goto err_locked;
2685                 }
2686         }
2687
2688         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690                         err = -EEXIST;
2691                         NL_SET_ERR_MSG_MOD(extack,
2692                                            "This filter is already set in cls_flower");
2693                         goto err_locked;
2694                 }
2695         }
2696
2697         err = igb_add_filter(adapter, filter);
2698         if (err < 0) {
2699                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700                 goto err_locked;
2701         }
2702
2703         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704
2705         spin_unlock(&adapter->nfc_lock);
2706
2707         return 0;
2708
2709 err_locked:
2710         spin_unlock(&adapter->nfc_lock);
2711
2712 err_parse:
2713         kfree(filter);
2714
2715         return err;
2716 }
2717
2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719                                 struct flow_cls_offload *cls_flower)
2720 {
2721         struct igb_nfc_filter *filter;
2722         int err;
2723
2724         spin_lock(&adapter->nfc_lock);
2725
2726         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727                 if (filter->cookie == cls_flower->cookie)
2728                         break;
2729
2730         if (!filter) {
2731                 err = -ENOENT;
2732                 goto out;
2733         }
2734
2735         err = igb_erase_filter(adapter, filter);
2736         if (err < 0)
2737                 goto out;
2738
2739         hlist_del(&filter->nfc_node);
2740         kfree(filter);
2741
2742 out:
2743         spin_unlock(&adapter->nfc_lock);
2744
2745         return err;
2746 }
2747
2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749                                    struct flow_cls_offload *cls_flower)
2750 {
2751         switch (cls_flower->command) {
2752         case FLOW_CLS_REPLACE:
2753                 return igb_configure_clsflower(adapter, cls_flower);
2754         case FLOW_CLS_DESTROY:
2755                 return igb_delete_clsflower(adapter, cls_flower);
2756         case FLOW_CLS_STATS:
2757                 return -EOPNOTSUPP;
2758         default:
2759                 return -EOPNOTSUPP;
2760         }
2761 }
2762
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764                                  void *cb_priv)
2765 {
2766         struct igb_adapter *adapter = cb_priv;
2767
2768         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769                 return -EOPNOTSUPP;
2770
2771         switch (type) {
2772         case TC_SETUP_CLSFLOWER:
2773                 return igb_setup_tc_cls_flower(adapter, type_data);
2774
2775         default:
2776                 return -EOPNOTSUPP;
2777         }
2778 }
2779
2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781                               struct tc_etf_qopt_offload *qopt)
2782 {
2783         struct e1000_hw *hw = &adapter->hw;
2784         int err;
2785
2786         /* Launchtime offloading is only supported by i210 controller. */
2787         if (hw->mac.type != e1000_i210)
2788                 return -EOPNOTSUPP;
2789
2790         /* Launchtime offloading is only supported by queues 0 and 1. */
2791         if (qopt->queue < 0 || qopt->queue > 1)
2792                 return -EINVAL;
2793
2794         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795         if (err)
2796                 return err;
2797
2798         igb_offload_apply(adapter, qopt->queue);
2799
2800         return 0;
2801 }
2802
2803 static LIST_HEAD(igb_block_cb_list);
2804
2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806                         void *type_data)
2807 {
2808         struct igb_adapter *adapter = netdev_priv(dev);
2809
2810         switch (type) {
2811         case TC_SETUP_QDISC_CBS:
2812                 return igb_offload_cbs(adapter, type_data);
2813         case TC_SETUP_BLOCK:
2814                 return flow_block_cb_setup_simple(type_data,
2815                                                   &igb_block_cb_list,
2816                                                   igb_setup_tc_block_cb,
2817                                                   adapter, adapter, true);
2818
2819         case TC_SETUP_QDISC_ETF:
2820                 return igb_offload_txtime(adapter, type_data);
2821
2822         default:
2823                 return -EOPNOTSUPP;
2824         }
2825 }
2826
2827 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2828 {
2829         int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2830         struct igb_adapter *adapter = netdev_priv(dev);
2831         struct bpf_prog *prog = bpf->prog, *old_prog;
2832         bool running = netif_running(dev);
2833         bool need_reset;
2834
2835         /* verify igb ring attributes are sufficient for XDP */
2836         for (i = 0; i < adapter->num_rx_queues; i++) {
2837                 struct igb_ring *ring = adapter->rx_ring[i];
2838
2839                 if (frame_size > igb_rx_bufsz(ring)) {
2840                         NL_SET_ERR_MSG_MOD(bpf->extack,
2841                                            "The RX buffer size is too small for the frame size");
2842                         netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2843                                     igb_rx_bufsz(ring), frame_size);
2844                         return -EINVAL;
2845                 }
2846         }
2847
2848         old_prog = xchg(&adapter->xdp_prog, prog);
2849         need_reset = (!!prog != !!old_prog);
2850
2851         /* device is up and bpf is added/removed, must setup the RX queues */
2852         if (need_reset && running) {
2853                 igb_close(dev);
2854         } else {
2855                 for (i = 0; i < adapter->num_rx_queues; i++)
2856                         (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2857                             adapter->xdp_prog);
2858         }
2859
2860         if (old_prog)
2861                 bpf_prog_put(old_prog);
2862
2863         /* bpf is just replaced, RXQ and MTU are already setup */
2864         if (!need_reset)
2865                 return 0;
2866
2867         if (running)
2868                 igb_open(dev);
2869
2870         return 0;
2871 }
2872
2873 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2874 {
2875         switch (xdp->command) {
2876         case XDP_SETUP_PROG:
2877                 return igb_xdp_setup(dev, xdp);
2878         default:
2879                 return -EINVAL;
2880         }
2881 }
2882
2883 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2884 {
2885         /* Force memory writes to complete before letting h/w know there
2886          * are new descriptors to fetch.
2887          */
2888         wmb();
2889         writel(ring->next_to_use, ring->tail);
2890 }
2891
2892 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2893 {
2894         unsigned int r_idx = smp_processor_id();
2895
2896         if (r_idx >= adapter->num_tx_queues)
2897                 r_idx = r_idx % adapter->num_tx_queues;
2898
2899         return adapter->tx_ring[r_idx];
2900 }
2901
2902 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2903 {
2904         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2905         int cpu = smp_processor_id();
2906         struct igb_ring *tx_ring;
2907         struct netdev_queue *nq;
2908         u32 ret;
2909
2910         if (unlikely(!xdpf))
2911                 return IGB_XDP_CONSUMED;
2912
2913         /* During program transitions its possible adapter->xdp_prog is assigned
2914          * but ring has not been configured yet. In this case simply abort xmit.
2915          */
2916         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2917         if (unlikely(!tx_ring))
2918                 return IGB_XDP_CONSUMED;
2919
2920         nq = txring_txq(tx_ring);
2921         __netif_tx_lock(nq, cpu);
2922         /* Avoid transmit queue timeout since we share it with the slow path */
2923         nq->trans_start = jiffies;
2924         ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2925         __netif_tx_unlock(nq);
2926
2927         return ret;
2928 }
2929
2930 static int igb_xdp_xmit(struct net_device *dev, int n,
2931                         struct xdp_frame **frames, u32 flags)
2932 {
2933         struct igb_adapter *adapter = netdev_priv(dev);
2934         int cpu = smp_processor_id();
2935         struct igb_ring *tx_ring;
2936         struct netdev_queue *nq;
2937         int drops = 0;
2938         int i;
2939
2940         if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2941                 return -ENETDOWN;
2942
2943         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2944                 return -EINVAL;
2945
2946         /* During program transitions its possible adapter->xdp_prog is assigned
2947          * but ring has not been configured yet. In this case simply abort xmit.
2948          */
2949         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2950         if (unlikely(!tx_ring))
2951                 return -ENXIO;
2952
2953         nq = txring_txq(tx_ring);
2954         __netif_tx_lock(nq, cpu);
2955
2956         /* Avoid transmit queue timeout since we share it with the slow path */
2957         nq->trans_start = jiffies;
2958
2959         for (i = 0; i < n; i++) {
2960                 struct xdp_frame *xdpf = frames[i];
2961                 int err;
2962
2963                 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2964                 if (err != IGB_XDP_TX) {
2965                         xdp_return_frame_rx_napi(xdpf);
2966                         drops++;
2967                 }
2968         }
2969
2970         __netif_tx_unlock(nq);
2971
2972         if (unlikely(flags & XDP_XMIT_FLUSH))
2973                 igb_xdp_ring_update_tail(tx_ring);
2974
2975         return n - drops;
2976 }
2977
2978 static const struct net_device_ops igb_netdev_ops = {
2979         .ndo_open               = igb_open,
2980         .ndo_stop               = igb_close,
2981         .ndo_start_xmit         = igb_xmit_frame,
2982         .ndo_get_stats64        = igb_get_stats64,
2983         .ndo_set_rx_mode        = igb_set_rx_mode,
2984         .ndo_set_mac_address    = igb_set_mac,
2985         .ndo_change_mtu         = igb_change_mtu,
2986         .ndo_do_ioctl           = igb_ioctl,
2987         .ndo_tx_timeout         = igb_tx_timeout,
2988         .ndo_validate_addr      = eth_validate_addr,
2989         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2990         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2991         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2992         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2993         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2994         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2995         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2996         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2997         .ndo_fix_features       = igb_fix_features,
2998         .ndo_set_features       = igb_set_features,
2999         .ndo_fdb_add            = igb_ndo_fdb_add,
3000         .ndo_features_check     = igb_features_check,
3001         .ndo_setup_tc           = igb_setup_tc,
3002         .ndo_bpf                = igb_xdp,
3003         .ndo_xdp_xmit           = igb_xdp_xmit,
3004 };
3005
3006 /**
3007  * igb_set_fw_version - Configure version string for ethtool
3008  * @adapter: adapter struct
3009  **/
3010 void igb_set_fw_version(struct igb_adapter *adapter)
3011 {
3012         struct e1000_hw *hw = &adapter->hw;
3013         struct e1000_fw_version fw;
3014
3015         igb_get_fw_version(hw, &fw);
3016
3017         switch (hw->mac.type) {
3018         case e1000_i210:
3019         case e1000_i211:
3020                 if (!(igb_get_flash_presence_i210(hw))) {
3021                         snprintf(adapter->fw_version,
3022                                  sizeof(adapter->fw_version),
3023                                  "%2d.%2d-%d",
3024                                  fw.invm_major, fw.invm_minor,
3025                                  fw.invm_img_type);
3026                         break;
3027                 }
3028                 fallthrough;
3029         default:
3030                 /* if option is rom valid, display its version too */
3031                 if (fw.or_valid) {
3032                         snprintf(adapter->fw_version,
3033                                  sizeof(adapter->fw_version),
3034                                  "%d.%d, 0x%08x, %d.%d.%d",
3035                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3036                                  fw.or_major, fw.or_build, fw.or_patch);
3037                 /* no option rom */
3038                 } else if (fw.etrack_id != 0X0000) {
3039                         snprintf(adapter->fw_version,
3040                             sizeof(adapter->fw_version),
3041                             "%d.%d, 0x%08x",
3042                             fw.eep_major, fw.eep_minor, fw.etrack_id);
3043                 } else {
3044                 snprintf(adapter->fw_version,
3045                     sizeof(adapter->fw_version),
3046                     "%d.%d.%d",
3047                     fw.eep_major, fw.eep_minor, fw.eep_build);
3048                 }
3049                 break;
3050         }
3051 }
3052
3053 /**
3054  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3055  *
3056  * @adapter: adapter struct
3057  **/
3058 static void igb_init_mas(struct igb_adapter *adapter)
3059 {
3060         struct e1000_hw *hw = &adapter->hw;
3061         u16 eeprom_data;
3062
3063         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3064         switch (hw->bus.func) {
3065         case E1000_FUNC_0:
3066                 if (eeprom_data & IGB_MAS_ENABLE_0) {
3067                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3068                         netdev_info(adapter->netdev,
3069                                 "MAS: Enabling Media Autosense for port %d\n",
3070                                 hw->bus.func);
3071                 }
3072                 break;
3073         case E1000_FUNC_1:
3074                 if (eeprom_data & IGB_MAS_ENABLE_1) {
3075                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3076                         netdev_info(adapter->netdev,
3077                                 "MAS: Enabling Media Autosense for port %d\n",
3078                                 hw->bus.func);
3079                 }
3080                 break;
3081         case E1000_FUNC_2:
3082                 if (eeprom_data & IGB_MAS_ENABLE_2) {
3083                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3084                         netdev_info(adapter->netdev,
3085                                 "MAS: Enabling Media Autosense for port %d\n",
3086                                 hw->bus.func);
3087                 }
3088                 break;
3089         case E1000_FUNC_3:
3090                 if (eeprom_data & IGB_MAS_ENABLE_3) {
3091                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3092                         netdev_info(adapter->netdev,
3093                                 "MAS: Enabling Media Autosense for port %d\n",
3094                                 hw->bus.func);
3095                 }
3096                 break;
3097         default:
3098                 /* Shouldn't get here */
3099                 netdev_err(adapter->netdev,
3100                         "MAS: Invalid port configuration, returning\n");
3101                 break;
3102         }
3103 }
3104
3105 /**
3106  *  igb_init_i2c - Init I2C interface
3107  *  @adapter: pointer to adapter structure
3108  **/
3109 static s32 igb_init_i2c(struct igb_adapter *adapter)
3110 {
3111         s32 status = 0;
3112
3113         /* I2C interface supported on i350 devices */
3114         if (adapter->hw.mac.type != e1000_i350)
3115                 return 0;
3116
3117         /* Initialize the i2c bus which is controlled by the registers.
3118          * This bus will use the i2c_algo_bit structue that implements
3119          * the protocol through toggling of the 4 bits in the register.
3120          */
3121         adapter->i2c_adap.owner = THIS_MODULE;
3122         adapter->i2c_algo = igb_i2c_algo;
3123         adapter->i2c_algo.data = adapter;
3124         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3125         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3126         strlcpy(adapter->i2c_adap.name, "igb BB",
3127                 sizeof(adapter->i2c_adap.name));
3128         status = i2c_bit_add_bus(&adapter->i2c_adap);
3129         return status;
3130 }
3131
3132 /**
3133  *  igb_probe - Device Initialization Routine
3134  *  @pdev: PCI device information struct
3135  *  @ent: entry in igb_pci_tbl
3136  *
3137  *  Returns 0 on success, negative on failure
3138  *
3139  *  igb_probe initializes an adapter identified by a pci_dev structure.
3140  *  The OS initialization, configuring of the adapter private structure,
3141  *  and a hardware reset occur.
3142  **/
3143 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3144 {
3145         struct net_device *netdev;
3146         struct igb_adapter *adapter;
3147         struct e1000_hw *hw;
3148         u16 eeprom_data = 0;
3149         s32 ret_val;
3150         static int global_quad_port_a; /* global quad port a indication */
3151         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3152         int err, pci_using_dac;
3153         u8 part_str[E1000_PBANUM_LENGTH];
3154
3155         /* Catch broken hardware that put the wrong VF device ID in
3156          * the PCIe SR-IOV capability.
3157          */
3158         if (pdev->is_virtfn) {
3159                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3160                         pci_name(pdev), pdev->vendor, pdev->device);
3161                 return -EINVAL;
3162         }
3163
3164         err = pci_enable_device_mem(pdev);
3165         if (err)
3166                 return err;
3167
3168         pci_using_dac = 0;
3169         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3170         if (!err) {
3171                 pci_using_dac = 1;
3172         } else {
3173                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3174                 if (err) {
3175                         dev_err(&pdev->dev,
3176                                 "No usable DMA configuration, aborting\n");
3177                         goto err_dma;
3178                 }
3179         }
3180
3181         err = pci_request_mem_regions(pdev, igb_driver_name);
3182         if (err)
3183                 goto err_pci_reg;
3184
3185         pci_enable_pcie_error_reporting(pdev);
3186
3187         pci_set_master(pdev);
3188         pci_save_state(pdev);
3189
3190         err = -ENOMEM;
3191         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3192                                    IGB_MAX_TX_QUEUES);
3193         if (!netdev)
3194                 goto err_alloc_etherdev;
3195
3196         SET_NETDEV_DEV(netdev, &pdev->dev);
3197
3198         pci_set_drvdata(pdev, netdev);
3199         adapter = netdev_priv(netdev);
3200         adapter->netdev = netdev;
3201         adapter->pdev = pdev;
3202         hw = &adapter->hw;
3203         hw->back = adapter;
3204         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3205
3206         err = -EIO;
3207         adapter->io_addr = pci_iomap(pdev, 0, 0);
3208         if (!adapter->io_addr)
3209                 goto err_ioremap;
3210         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3211         hw->hw_addr = adapter->io_addr;
3212
3213         netdev->netdev_ops = &igb_netdev_ops;
3214         igb_set_ethtool_ops(netdev);
3215         netdev->watchdog_timeo = 5 * HZ;
3216
3217         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3218
3219         netdev->mem_start = pci_resource_start(pdev, 0);
3220         netdev->mem_end = pci_resource_end(pdev, 0);
3221
3222         /* PCI config space info */
3223         hw->vendor_id = pdev->vendor;
3224         hw->device_id = pdev->device;
3225         hw->revision_id = pdev->revision;
3226         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3227         hw->subsystem_device_id = pdev->subsystem_device;
3228
3229         /* Copy the default MAC, PHY and NVM function pointers */
3230         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3231         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3232         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3233         /* Initialize skew-specific constants */
3234         err = ei->get_invariants(hw);
3235         if (err)
3236                 goto err_sw_init;
3237
3238         /* setup the private structure */
3239         err = igb_sw_init(adapter);
3240         if (err)
3241                 goto err_sw_init;
3242
3243         igb_get_bus_info_pcie(hw);
3244
3245         hw->phy.autoneg_wait_to_complete = false;
3246
3247         /* Copper options */
3248         if (hw->phy.media_type == e1000_media_type_copper) {
3249                 hw->phy.mdix = AUTO_ALL_MODES;
3250                 hw->phy.disable_polarity_correction = false;
3251                 hw->phy.ms_type = e1000_ms_hw_default;
3252         }
3253
3254         if (igb_check_reset_block(hw))
3255                 dev_info(&pdev->dev,
3256                         "PHY reset is blocked due to SOL/IDER session.\n");
3257
3258         /* features is initialized to 0 in allocation, it might have bits
3259          * set by igb_sw_init so we should use an or instead of an
3260          * assignment.
3261          */
3262         netdev->features |= NETIF_F_SG |
3263                             NETIF_F_TSO |
3264                             NETIF_F_TSO6 |
3265                             NETIF_F_RXHASH |
3266                             NETIF_F_RXCSUM |
3267                             NETIF_F_HW_CSUM;
3268
3269         if (hw->mac.type >= e1000_82576)
3270                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3271
3272         if (hw->mac.type >= e1000_i350)
3273                 netdev->features |= NETIF_F_HW_TC;
3274
3275 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3276                                   NETIF_F_GSO_GRE_CSUM | \
3277                                   NETIF_F_GSO_IPXIP4 | \
3278                                   NETIF_F_GSO_IPXIP6 | \
3279                                   NETIF_F_GSO_UDP_TUNNEL | \
3280                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3281
3282         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3283         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3284
3285         /* copy netdev features into list of user selectable features */
3286         netdev->hw_features |= netdev->features |
3287                                NETIF_F_HW_VLAN_CTAG_RX |
3288                                NETIF_F_HW_VLAN_CTAG_TX |
3289                                NETIF_F_RXALL;
3290
3291         if (hw->mac.type >= e1000_i350)
3292                 netdev->hw_features |= NETIF_F_NTUPLE;
3293
3294         if (pci_using_dac)
3295                 netdev->features |= NETIF_F_HIGHDMA;
3296
3297         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3298         netdev->mpls_features |= NETIF_F_HW_CSUM;
3299         netdev->hw_enc_features |= netdev->vlan_features;
3300
3301         /* set this bit last since it cannot be part of vlan_features */
3302         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3303                             NETIF_F_HW_VLAN_CTAG_RX |
3304                             NETIF_F_HW_VLAN_CTAG_TX;
3305
3306         netdev->priv_flags |= IFF_SUPP_NOFCS;
3307
3308         netdev->priv_flags |= IFF_UNICAST_FLT;
3309
3310         /* MTU range: 68 - 9216 */
3311         netdev->min_mtu = ETH_MIN_MTU;
3312         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3313
3314         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3315
3316         /* before reading the NVM, reset the controller to put the device in a
3317          * known good starting state
3318          */
3319         hw->mac.ops.reset_hw(hw);
3320
3321         /* make sure the NVM is good , i211/i210 parts can have special NVM
3322          * that doesn't contain a checksum
3323          */
3324         switch (hw->mac.type) {
3325         case e1000_i210:
3326         case e1000_i211:
3327                 if (igb_get_flash_presence_i210(hw)) {
3328                         if (hw->nvm.ops.validate(hw) < 0) {
3329                                 dev_err(&pdev->dev,
3330                                         "The NVM Checksum Is Not Valid\n");
3331                                 err = -EIO;
3332                                 goto err_eeprom;
3333                         }
3334                 }
3335                 break;
3336         default:
3337                 if (hw->nvm.ops.validate(hw) < 0) {
3338                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3339                         err = -EIO;
3340                         goto err_eeprom;
3341                 }
3342                 break;
3343         }
3344
3345         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3346                 /* copy the MAC address out of the NVM */
3347                 if (hw->mac.ops.read_mac_addr(hw))
3348                         dev_err(&pdev->dev, "NVM Read Error\n");
3349         }
3350
3351         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3352
3353         if (!is_valid_ether_addr(netdev->dev_addr)) {
3354                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3355                 err = -EIO;
3356                 goto err_eeprom;
3357         }
3358
3359         igb_set_default_mac_filter(adapter);
3360
3361         /* get firmware version for ethtool -i */
3362         igb_set_fw_version(adapter);
3363
3364         /* configure RXPBSIZE and TXPBSIZE */
3365         if (hw->mac.type == e1000_i210) {
3366                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3367                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3368         }
3369
3370         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3371         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3372
3373         INIT_WORK(&adapter->reset_task, igb_reset_task);
3374         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3375
3376         /* Initialize link properties that are user-changeable */
3377         adapter->fc_autoneg = true;
3378         hw->mac.autoneg = true;
3379         hw->phy.autoneg_advertised = 0x2f;
3380
3381         hw->fc.requested_mode = e1000_fc_default;
3382         hw->fc.current_mode = e1000_fc_default;
3383
3384         igb_validate_mdi_setting(hw);
3385
3386         /* By default, support wake on port A */
3387         if (hw->bus.func == 0)
3388                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3389
3390         /* Check the NVM for wake support on non-port A ports */
3391         if (hw->mac.type >= e1000_82580)
3392                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3393                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3394                                  &eeprom_data);
3395         else if (hw->bus.func == 1)
3396                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3397
3398         if (eeprom_data & IGB_EEPROM_APME)
3399                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3400
3401         /* now that we have the eeprom settings, apply the special cases where
3402          * the eeprom may be wrong or the board simply won't support wake on
3403          * lan on a particular port
3404          */
3405         switch (pdev->device) {
3406         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3407                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3408                 break;
3409         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3410         case E1000_DEV_ID_82576_FIBER:
3411         case E1000_DEV_ID_82576_SERDES:
3412                 /* Wake events only supported on port A for dual fiber
3413                  * regardless of eeprom setting
3414                  */
3415                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3416                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3417                 break;
3418         case E1000_DEV_ID_82576_QUAD_COPPER:
3419         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3420                 /* if quad port adapter, disable WoL on all but port A */
3421                 if (global_quad_port_a != 0)
3422                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3423                 else
3424                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3425                 /* Reset for multiple quad port adapters */
3426                 if (++global_quad_port_a == 4)
3427                         global_quad_port_a = 0;
3428                 break;
3429         default:
3430                 /* If the device can't wake, don't set software support */
3431                 if (!device_can_wakeup(&adapter->pdev->dev))
3432                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3433         }
3434
3435         /* initialize the wol settings based on the eeprom settings */
3436         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3437                 adapter->wol |= E1000_WUFC_MAG;
3438
3439         /* Some vendors want WoL disabled by default, but still supported */
3440         if ((hw->mac.type == e1000_i350) &&
3441             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3442                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3443                 adapter->wol = 0;
3444         }
3445
3446         /* Some vendors want the ability to Use the EEPROM setting as
3447          * enable/disable only, and not for capability
3448          */
3449         if (((hw->mac.type == e1000_i350) ||
3450              (hw->mac.type == e1000_i354)) &&
3451             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3452                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3453                 adapter->wol = 0;
3454         }
3455         if (hw->mac.type == e1000_i350) {
3456                 if (((pdev->subsystem_device == 0x5001) ||
3457                      (pdev->subsystem_device == 0x5002)) &&
3458                                 (hw->bus.func == 0)) {
3459                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3460                         adapter->wol = 0;
3461                 }
3462                 if (pdev->subsystem_device == 0x1F52)
3463                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3464         }
3465
3466         device_set_wakeup_enable(&adapter->pdev->dev,
3467                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3468
3469         /* reset the hardware with the new settings */
3470         igb_reset(adapter);
3471
3472         /* Init the I2C interface */
3473         err = igb_init_i2c(adapter);
3474         if (err) {
3475                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3476                 goto err_eeprom;
3477         }
3478
3479         /* let the f/w know that the h/w is now under the control of the
3480          * driver.
3481          */
3482         igb_get_hw_control(adapter);
3483
3484         strcpy(netdev->name, "eth%d");
3485         err = register_netdev(netdev);
3486         if (err)
3487                 goto err_register;
3488
3489         /* carrier off reporting is important to ethtool even BEFORE open */
3490         netif_carrier_off(netdev);
3491
3492 #ifdef CONFIG_IGB_DCA
3493         if (dca_add_requester(&pdev->dev) == 0) {
3494                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3495                 dev_info(&pdev->dev, "DCA enabled\n");
3496                 igb_setup_dca(adapter);
3497         }
3498
3499 #endif
3500 #ifdef CONFIG_IGB_HWMON
3501         /* Initialize the thermal sensor on i350 devices. */
3502         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3503                 u16 ets_word;
3504
3505                 /* Read the NVM to determine if this i350 device supports an
3506                  * external thermal sensor.
3507                  */
3508                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3509                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3510                         adapter->ets = true;
3511                 else
3512                         adapter->ets = false;
3513                 if (igb_sysfs_init(adapter))
3514                         dev_err(&pdev->dev,
3515                                 "failed to allocate sysfs resources\n");
3516         } else {
3517                 adapter->ets = false;
3518         }
3519 #endif
3520         /* Check if Media Autosense is enabled */
3521         adapter->ei = *ei;
3522         if (hw->dev_spec._82575.mas_capable)
3523                 igb_init_mas(adapter);
3524
3525         /* do hw tstamp init after resetting */
3526         igb_ptp_init(adapter);
3527
3528         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3529         /* print bus type/speed/width info, not applicable to i354 */
3530         if (hw->mac.type != e1000_i354) {
3531                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3532                          netdev->name,
3533                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3534                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3535                            "unknown"),
3536                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3537                           "Width x4" :
3538                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3539                           "Width x2" :
3540                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3541                           "Width x1" : "unknown"), netdev->dev_addr);
3542         }
3543
3544         if ((hw->mac.type == e1000_82576 &&
3545              rd32(E1000_EECD) & E1000_EECD_PRES) ||
3546             (hw->mac.type >= e1000_i210 ||
3547              igb_get_flash_presence_i210(hw))) {
3548                 ret_val = igb_read_part_string(hw, part_str,
3549                                                E1000_PBANUM_LENGTH);
3550         } else {
3551                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3552         }
3553
3554         if (ret_val)
3555                 strcpy(part_str, "Unknown");
3556         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3557         dev_info(&pdev->dev,
3558                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3559                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3560                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3561                 adapter->num_rx_queues, adapter->num_tx_queues);
3562         if (hw->phy.media_type == e1000_media_type_copper) {
3563                 switch (hw->mac.type) {
3564                 case e1000_i350:
3565                 case e1000_i210:
3566                 case e1000_i211:
3567                         /* Enable EEE for internal copper PHY devices */
3568                         err = igb_set_eee_i350(hw, true, true);
3569                         if ((!err) &&
3570                             (!hw->dev_spec._82575.eee_disable)) {
3571                                 adapter->eee_advert =
3572                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3573                                 adapter->flags |= IGB_FLAG_EEE;
3574                         }
3575                         break;
3576                 case e1000_i354:
3577                         if ((rd32(E1000_CTRL_EXT) &
3578                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3579                                 err = igb_set_eee_i354(hw, true, true);
3580                                 if ((!err) &&
3581                                         (!hw->dev_spec._82575.eee_disable)) {
3582                                         adapter->eee_advert =
3583                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3584                                         adapter->flags |= IGB_FLAG_EEE;
3585                                 }
3586                         }
3587                         break;
3588                 default:
3589                         break;
3590                 }
3591         }
3592
3593         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3594
3595         pm_runtime_put_noidle(&pdev->dev);
3596         return 0;
3597
3598 err_register:
3599         igb_release_hw_control(adapter);
3600         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3601 err_eeprom:
3602         if (!igb_check_reset_block(hw))
3603                 igb_reset_phy(hw);
3604
3605         if (hw->flash_address)
3606                 iounmap(hw->flash_address);
3607 err_sw_init:
3608         kfree(adapter->mac_table);
3609         kfree(adapter->shadow_vfta);
3610         igb_clear_interrupt_scheme(adapter);
3611 #ifdef CONFIG_PCI_IOV
3612         igb_disable_sriov(pdev);
3613 #endif
3614         pci_iounmap(pdev, adapter->io_addr);
3615 err_ioremap:
3616         free_netdev(netdev);
3617 err_alloc_etherdev:
3618         pci_release_mem_regions(pdev);
3619 err_pci_reg:
3620 err_dma:
3621         pci_disable_device(pdev);
3622         return err;
3623 }
3624
3625 #ifdef CONFIG_PCI_IOV
3626 static int igb_disable_sriov(struct pci_dev *pdev)
3627 {
3628         struct net_device *netdev = pci_get_drvdata(pdev);
3629         struct igb_adapter *adapter = netdev_priv(netdev);
3630         struct e1000_hw *hw = &adapter->hw;
3631
3632         /* reclaim resources allocated to VFs */
3633         if (adapter->vf_data) {
3634                 /* disable iov and allow time for transactions to clear */
3635                 if (pci_vfs_assigned(pdev)) {
3636                         dev_warn(&pdev->dev,
3637                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3638                         return -EPERM;
3639                 } else {
3640                         pci_disable_sriov(pdev);
3641                         msleep(500);
3642                 }
3643
3644                 kfree(adapter->vf_mac_list);
3645                 adapter->vf_mac_list = NULL;
3646                 kfree(adapter->vf_data);
3647                 adapter->vf_data = NULL;
3648                 adapter->vfs_allocated_count = 0;
3649                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3650                 wrfl();
3651                 msleep(100);
3652                 dev_info(&pdev->dev, "IOV Disabled\n");
3653
3654                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3655                 adapter->flags |= IGB_FLAG_DMAC;
3656         }
3657
3658         return 0;
3659 }
3660
3661 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3662 {
3663         struct net_device *netdev = pci_get_drvdata(pdev);
3664         struct igb_adapter *adapter = netdev_priv(netdev);
3665         int old_vfs = pci_num_vf(pdev);
3666         struct vf_mac_filter *mac_list;
3667         int err = 0;
3668         int num_vf_mac_filters, i;
3669
3670         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3671                 err = -EPERM;
3672                 goto out;
3673         }
3674         if (!num_vfs)
3675                 goto out;
3676
3677         if (old_vfs) {
3678                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3679                          old_vfs, max_vfs);
3680                 adapter->vfs_allocated_count = old_vfs;
3681         } else
3682                 adapter->vfs_allocated_count = num_vfs;
3683
3684         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3685                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3686
3687         /* if allocation failed then we do not support SR-IOV */
3688         if (!adapter->vf_data) {
3689                 adapter->vfs_allocated_count = 0;
3690                 err = -ENOMEM;
3691                 goto out;
3692         }
3693
3694         /* Due to the limited number of RAR entries calculate potential
3695          * number of MAC filters available for the VFs. Reserve entries
3696          * for PF default MAC, PF MAC filters and at least one RAR entry
3697          * for each VF for VF MAC.
3698          */
3699         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3700                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3701                               adapter->vfs_allocated_count);
3702
3703         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3704                                        sizeof(struct vf_mac_filter),
3705                                        GFP_KERNEL);
3706
3707         mac_list = adapter->vf_mac_list;
3708         INIT_LIST_HEAD(&adapter->vf_macs.l);
3709
3710         if (adapter->vf_mac_list) {
3711                 /* Initialize list of VF MAC filters */
3712                 for (i = 0; i < num_vf_mac_filters; i++) {
3713                         mac_list->vf = -1;
3714                         mac_list->free = true;
3715                         list_add(&mac_list->l, &adapter->vf_macs.l);
3716                         mac_list++;
3717                 }
3718         } else {
3719                 /* If we could not allocate memory for the VF MAC filters
3720                  * we can continue without this feature but warn user.
3721                  */
3722                 dev_err(&pdev->dev,
3723                         "Unable to allocate memory for VF MAC filter list\n");
3724         }
3725
3726         /* only call pci_enable_sriov() if no VFs are allocated already */
3727         if (!old_vfs) {
3728                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3729                 if (err)
3730                         goto err_out;
3731         }
3732         dev_info(&pdev->dev, "%d VFs allocated\n",
3733                  adapter->vfs_allocated_count);
3734         for (i = 0; i < adapter->vfs_allocated_count; i++)
3735                 igb_vf_configure(adapter, i);
3736
3737         /* DMA Coalescing is not supported in IOV mode. */
3738         adapter->flags &= ~IGB_FLAG_DMAC;
3739         goto out;
3740
3741 err_out:
3742         kfree(adapter->vf_mac_list);
3743         adapter->vf_mac_list = NULL;
3744         kfree(adapter->vf_data);
3745         adapter->vf_data = NULL;
3746         adapter->vfs_allocated_count = 0;
3747 out:
3748         return err;
3749 }
3750
3751 #endif
3752 /**
3753  *  igb_remove_i2c - Cleanup  I2C interface
3754  *  @adapter: pointer to adapter structure
3755  **/
3756 static void igb_remove_i2c(struct igb_adapter *adapter)
3757 {
3758         /* free the adapter bus structure */
3759         i2c_del_adapter(&adapter->i2c_adap);
3760 }
3761
3762 /**
3763  *  igb_remove - Device Removal Routine
3764  *  @pdev: PCI device information struct
3765  *
3766  *  igb_remove is called by the PCI subsystem to alert the driver
3767  *  that it should release a PCI device.  The could be caused by a
3768  *  Hot-Plug event, or because the driver is going to be removed from
3769  *  memory.
3770  **/
3771 static void igb_remove(struct pci_dev *pdev)
3772 {
3773         struct net_device *netdev = pci_get_drvdata(pdev);
3774         struct igb_adapter *adapter = netdev_priv(netdev);
3775         struct e1000_hw *hw = &adapter->hw;
3776
3777         pm_runtime_get_noresume(&pdev->dev);
3778 #ifdef CONFIG_IGB_HWMON
3779         igb_sysfs_exit(adapter);
3780 #endif
3781         igb_remove_i2c(adapter);
3782         igb_ptp_stop(adapter);
3783         /* The watchdog timer may be rescheduled, so explicitly
3784          * disable watchdog from being rescheduled.
3785          */
3786         set_bit(__IGB_DOWN, &adapter->state);
3787         del_timer_sync(&adapter->watchdog_timer);
3788         del_timer_sync(&adapter->phy_info_timer);
3789
3790         cancel_work_sync(&adapter->reset_task);
3791         cancel_work_sync(&adapter->watchdog_task);
3792
3793 #ifdef CONFIG_IGB_DCA
3794         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3795                 dev_info(&pdev->dev, "DCA disabled\n");
3796                 dca_remove_requester(&pdev->dev);
3797                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3798                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3799         }
3800 #endif
3801
3802         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3803          * would have already happened in close and is redundant.
3804          */
3805         igb_release_hw_control(adapter);
3806
3807 #ifdef CONFIG_PCI_IOV
3808         igb_disable_sriov(pdev);
3809 #endif
3810
3811         unregister_netdev(netdev);
3812
3813         igb_clear_interrupt_scheme(adapter);
3814
3815         pci_iounmap(pdev, adapter->io_addr);
3816         if (hw->flash_address)
3817                 iounmap(hw->flash_address);
3818         pci_release_mem_regions(pdev);
3819
3820         kfree(adapter->mac_table);
3821         kfree(adapter->shadow_vfta);
3822         free_netdev(netdev);
3823
3824         pci_disable_pcie_error_reporting(pdev);
3825
3826         pci_disable_device(pdev);
3827 }
3828
3829 /**
3830  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3831  *  @adapter: board private structure to initialize
3832  *
3833  *  This function initializes the vf specific data storage and then attempts to
3834  *  allocate the VFs.  The reason for ordering it this way is because it is much
3835  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3836  *  the memory for the VFs.
3837  **/
3838 static void igb_probe_vfs(struct igb_adapter *adapter)
3839 {
3840 #ifdef CONFIG_PCI_IOV
3841         struct pci_dev *pdev = adapter->pdev;
3842         struct e1000_hw *hw = &adapter->hw;
3843
3844         /* Virtualization features not supported on i210 family. */
3845         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3846                 return;
3847
3848         /* Of the below we really only want the effect of getting
3849          * IGB_FLAG_HAS_MSIX set (if available), without which
3850          * igb_enable_sriov() has no effect.
3851          */
3852         igb_set_interrupt_capability(adapter, true);
3853         igb_reset_interrupt_capability(adapter);
3854
3855         pci_sriov_set_totalvfs(pdev, 7);
3856         igb_enable_sriov(pdev, max_vfs);
3857
3858 #endif /* CONFIG_PCI_IOV */
3859 }
3860
3861 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3862 {
3863         struct e1000_hw *hw = &adapter->hw;
3864         unsigned int max_rss_queues;
3865
3866         /* Determine the maximum number of RSS queues supported. */
3867         switch (hw->mac.type) {
3868         case e1000_i211:
3869                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3870                 break;
3871         case e1000_82575:
3872         case e1000_i210:
3873                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3874                 break;
3875         case e1000_i350:
3876                 /* I350 cannot do RSS and SR-IOV at the same time */
3877                 if (!!adapter->vfs_allocated_count) {
3878                         max_rss_queues = 1;
3879                         break;
3880                 }
3881                 fallthrough;
3882         case e1000_82576:
3883                 if (!!adapter->vfs_allocated_count) {
3884                         max_rss_queues = 2;
3885                         break;
3886                 }
3887                 fallthrough;
3888         case e1000_82580:
3889         case e1000_i354:
3890         default:
3891                 max_rss_queues = IGB_MAX_RX_QUEUES;
3892                 break;
3893         }
3894
3895         return max_rss_queues;
3896 }
3897
3898 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3899 {
3900         u32 max_rss_queues;
3901
3902         max_rss_queues = igb_get_max_rss_queues(adapter);
3903         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3904
3905         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3906 }
3907
3908 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3909                               const u32 max_rss_queues)
3910 {
3911         struct e1000_hw *hw = &adapter->hw;
3912
3913         /* Determine if we need to pair queues. */
3914         switch (hw->mac.type) {
3915         case e1000_82575:
3916         case e1000_i211:
3917                 /* Device supports enough interrupts without queue pairing. */
3918                 break;
3919         case e1000_82576:
3920         case e1000_82580:
3921         case e1000_i350:
3922         case e1000_i354:
3923         case e1000_i210:
3924         default:
3925                 /* If rss_queues > half of max_rss_queues, pair the queues in
3926                  * order to conserve interrupts due to limited supply.
3927                  */
3928                 if (adapter->rss_queues > (max_rss_queues / 2))
3929                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3930                 else
3931                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3932                 break;
3933         }
3934 }
3935
3936 /**
3937  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3938  *  @adapter: board private structure to initialize
3939  *
3940  *  igb_sw_init initializes the Adapter private data structure.
3941  *  Fields are initialized based on PCI device information and
3942  *  OS network device settings (MTU size).
3943  **/
3944 static int igb_sw_init(struct igb_adapter *adapter)
3945 {
3946         struct e1000_hw *hw = &adapter->hw;
3947         struct net_device *netdev = adapter->netdev;
3948         struct pci_dev *pdev = adapter->pdev;
3949
3950         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3951
3952         /* set default ring sizes */
3953         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3954         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3955
3956         /* set default ITR values */
3957         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3958         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3959
3960         /* set default work limits */
3961         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3962
3963         adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3964         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3965
3966         spin_lock_init(&adapter->nfc_lock);
3967         spin_lock_init(&adapter->stats64_lock);
3968 #ifdef CONFIG_PCI_IOV
3969         switch (hw->mac.type) {
3970         case e1000_82576:
3971         case e1000_i350:
3972                 if (max_vfs > 7) {
3973                         dev_warn(&pdev->dev,
3974                                  "Maximum of 7 VFs per PF, using max\n");
3975                         max_vfs = adapter->vfs_allocated_count = 7;
3976                 } else
3977                         adapter->vfs_allocated_count = max_vfs;
3978                 if (adapter->vfs_allocated_count)
3979                         dev_warn(&pdev->dev,
3980                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3981                 break;
3982         default:
3983                 break;
3984         }
3985 #endif /* CONFIG_PCI_IOV */
3986
3987         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3988         adapter->flags |= IGB_FLAG_HAS_MSIX;
3989
3990         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3991                                      sizeof(struct igb_mac_addr),
3992                                      GFP_KERNEL);
3993         if (!adapter->mac_table)
3994                 return -ENOMEM;
3995
3996         igb_probe_vfs(adapter);
3997
3998         igb_init_queue_configuration(adapter);
3999
4000         /* Setup and initialize a copy of the hw vlan table array */
4001         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4002                                        GFP_KERNEL);
4003         if (!adapter->shadow_vfta)
4004                 return -ENOMEM;
4005
4006         /* This call may decrease the number of queues */
4007         if (igb_init_interrupt_scheme(adapter, true)) {
4008                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4009                 return -ENOMEM;
4010         }
4011
4012         /* Explicitly disable IRQ since the NIC can be in any state. */
4013         igb_irq_disable(adapter);
4014
4015         if (hw->mac.type >= e1000_i350)
4016                 adapter->flags &= ~IGB_FLAG_DMAC;
4017
4018         set_bit(__IGB_DOWN, &adapter->state);
4019         return 0;
4020 }
4021
4022 /**
4023  *  igb_open - Called when a network interface is made active
4024  *  @netdev: network interface device structure
4025  *  @resuming: indicates whether we are in a resume call
4026  *
4027  *  Returns 0 on success, negative value on failure
4028  *
4029  *  The open entry point is called when a network interface is made
4030  *  active by the system (IFF_UP).  At this point all resources needed
4031  *  for transmit and receive operations are allocated, the interrupt
4032  *  handler is registered with the OS, the watchdog timer is started,
4033  *  and the stack is notified that the interface is ready.
4034  **/
4035 static int __igb_open(struct net_device *netdev, bool resuming)
4036 {
4037         struct igb_adapter *adapter = netdev_priv(netdev);
4038         struct e1000_hw *hw = &adapter->hw;
4039         struct pci_dev *pdev = adapter->pdev;
4040         int err;
4041         int i;
4042
4043         /* disallow open during test */
4044         if (test_bit(__IGB_TESTING, &adapter->state)) {
4045                 WARN_ON(resuming);
4046                 return -EBUSY;
4047         }
4048
4049         if (!resuming)
4050                 pm_runtime_get_sync(&pdev->dev);
4051
4052         netif_carrier_off(netdev);
4053
4054         /* allocate transmit descriptors */
4055         err = igb_setup_all_tx_resources(adapter);
4056         if (err)
4057                 goto err_setup_tx;
4058
4059         /* allocate receive descriptors */
4060         err = igb_setup_all_rx_resources(adapter);
4061         if (err)
4062                 goto err_setup_rx;
4063
4064         igb_power_up_link(adapter);
4065
4066         /* before we allocate an interrupt, we must be ready to handle it.
4067          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4068          * as soon as we call pci_request_irq, so we have to setup our
4069          * clean_rx handler before we do so.
4070          */
4071         igb_configure(adapter);
4072
4073         err = igb_request_irq(adapter);
4074         if (err)
4075                 goto err_req_irq;
4076
4077         /* Notify the stack of the actual queue counts. */
4078         err = netif_set_real_num_tx_queues(adapter->netdev,
4079                                            adapter->num_tx_queues);
4080         if (err)
4081                 goto err_set_queues;
4082
4083         err = netif_set_real_num_rx_queues(adapter->netdev,
4084                                            adapter->num_rx_queues);
4085         if (err)
4086                 goto err_set_queues;
4087
4088         /* From here on the code is the same as igb_up() */
4089         clear_bit(__IGB_DOWN, &adapter->state);
4090
4091         for (i = 0; i < adapter->num_q_vectors; i++)
4092                 napi_enable(&(adapter->q_vector[i]->napi));
4093
4094         /* Clear any pending interrupts. */
4095         rd32(E1000_TSICR);
4096         rd32(E1000_ICR);
4097
4098         igb_irq_enable(adapter);
4099
4100         /* notify VFs that reset has been completed */
4101         if (adapter->vfs_allocated_count) {
4102                 u32 reg_data = rd32(E1000_CTRL_EXT);
4103
4104                 reg_data |= E1000_CTRL_EXT_PFRSTD;
4105                 wr32(E1000_CTRL_EXT, reg_data);
4106         }
4107
4108         netif_tx_start_all_queues(netdev);
4109
4110         if (!resuming)
4111                 pm_runtime_put(&pdev->dev);
4112
4113         /* start the watchdog. */
4114         hw->mac.get_link_status = 1;
4115         schedule_work(&adapter->watchdog_task);
4116
4117         return 0;
4118
4119 err_set_queues:
4120         igb_free_irq(adapter);
4121 err_req_irq:
4122         igb_release_hw_control(adapter);
4123         igb_power_down_link(adapter);
4124         igb_free_all_rx_resources(adapter);
4125 err_setup_rx:
4126         igb_free_all_tx_resources(adapter);
4127 err_setup_tx:
4128         igb_reset(adapter);
4129         if (!resuming)
4130                 pm_runtime_put(&pdev->dev);
4131
4132         return err;
4133 }
4134
4135 int igb_open(struct net_device *netdev)
4136 {
4137         return __igb_open(netdev, false);
4138 }
4139
4140 /**
4141  *  igb_close - Disables a network interface
4142  *  @netdev: network interface device structure
4143  *  @suspending: indicates we are in a suspend call
4144  *
4145  *  Returns 0, this is not allowed to fail
4146  *
4147  *  The close entry point is called when an interface is de-activated
4148  *  by the OS.  The hardware is still under the driver's control, but
4149  *  needs to be disabled.  A global MAC reset is issued to stop the
4150  *  hardware, and all transmit and receive resources are freed.
4151  **/
4152 static int __igb_close(struct net_device *netdev, bool suspending)
4153 {
4154         struct igb_adapter *adapter = netdev_priv(netdev);
4155         struct pci_dev *pdev = adapter->pdev;
4156
4157         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4158
4159         if (!suspending)
4160                 pm_runtime_get_sync(&pdev->dev);
4161
4162         igb_down(adapter);
4163         igb_free_irq(adapter);
4164
4165         igb_free_all_tx_resources(adapter);
4166         igb_free_all_rx_resources(adapter);
4167
4168         if (!suspending)
4169                 pm_runtime_put_sync(&pdev->dev);
4170         return 0;
4171 }
4172
4173 int igb_close(struct net_device *netdev)
4174 {
4175         if (netif_device_present(netdev) || netdev->dismantle)
4176                 return __igb_close(netdev, false);
4177         return 0;
4178 }
4179
4180 /**
4181  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4182  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4183  *
4184  *  Return 0 on success, negative on failure
4185  **/
4186 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4187 {
4188         struct device *dev = tx_ring->dev;
4189         int size;
4190
4191         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4192
4193         tx_ring->tx_buffer_info = vmalloc(size);
4194         if (!tx_ring->tx_buffer_info)
4195                 goto err;
4196
4197         /* round up to nearest 4K */
4198         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4199         tx_ring->size = ALIGN(tx_ring->size, 4096);
4200
4201         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4202                                            &tx_ring->dma, GFP_KERNEL);
4203         if (!tx_ring->desc)
4204                 goto err;
4205
4206         tx_ring->next_to_use = 0;
4207         tx_ring->next_to_clean = 0;
4208
4209         return 0;
4210
4211 err:
4212         vfree(tx_ring->tx_buffer_info);
4213         tx_ring->tx_buffer_info = NULL;
4214         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4215         return -ENOMEM;
4216 }
4217
4218 /**
4219  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4220  *                               (Descriptors) for all queues
4221  *  @adapter: board private structure
4222  *
4223  *  Return 0 on success, negative on failure
4224  **/
4225 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4226 {
4227         struct pci_dev *pdev = adapter->pdev;
4228         int i, err = 0;
4229
4230         for (i = 0; i < adapter->num_tx_queues; i++) {
4231                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4232                 if (err) {
4233                         dev_err(&pdev->dev,
4234                                 "Allocation for Tx Queue %u failed\n", i);
4235                         for (i--; i >= 0; i--)
4236                                 igb_free_tx_resources(adapter->tx_ring[i]);
4237                         break;
4238                 }
4239         }
4240
4241         return err;
4242 }
4243
4244 /**
4245  *  igb_setup_tctl - configure the transmit control registers
4246  *  @adapter: Board private structure
4247  **/
4248 void igb_setup_tctl(struct igb_adapter *adapter)
4249 {
4250         struct e1000_hw *hw = &adapter->hw;
4251         u32 tctl;
4252
4253         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4254         wr32(E1000_TXDCTL(0), 0);
4255
4256         /* Program the Transmit Control Register */
4257         tctl = rd32(E1000_TCTL);
4258         tctl &= ~E1000_TCTL_CT;
4259         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4260                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4261
4262         igb_config_collision_dist(hw);
4263
4264         /* Enable transmits */
4265         tctl |= E1000_TCTL_EN;
4266
4267         wr32(E1000_TCTL, tctl);
4268 }
4269
4270 /**
4271  *  igb_configure_tx_ring - Configure transmit ring after Reset
4272  *  @adapter: board private structure
4273  *  @ring: tx ring to configure
4274  *
4275  *  Configure a transmit ring after a reset.
4276  **/
4277 void igb_configure_tx_ring(struct igb_adapter *adapter,
4278                            struct igb_ring *ring)
4279 {
4280         struct e1000_hw *hw = &adapter->hw;
4281         u32 txdctl = 0;
4282         u64 tdba = ring->dma;
4283         int reg_idx = ring->reg_idx;
4284
4285         wr32(E1000_TDLEN(reg_idx),
4286              ring->count * sizeof(union e1000_adv_tx_desc));
4287         wr32(E1000_TDBAL(reg_idx),
4288              tdba & 0x00000000ffffffffULL);
4289         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4290
4291         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4292         wr32(E1000_TDH(reg_idx), 0);
4293         writel(0, ring->tail);
4294
4295         txdctl |= IGB_TX_PTHRESH;
4296         txdctl |= IGB_TX_HTHRESH << 8;
4297         txdctl |= IGB_TX_WTHRESH << 16;
4298
4299         /* reinitialize tx_buffer_info */
4300         memset(ring->tx_buffer_info, 0,
4301                sizeof(struct igb_tx_buffer) * ring->count);
4302
4303         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4304         wr32(E1000_TXDCTL(reg_idx), txdctl);
4305 }
4306
4307 /**
4308  *  igb_configure_tx - Configure transmit Unit after Reset
4309  *  @adapter: board private structure
4310  *
4311  *  Configure the Tx unit of the MAC after a reset.
4312  **/
4313 static void igb_configure_tx(struct igb_adapter *adapter)
4314 {
4315         struct e1000_hw *hw = &adapter->hw;
4316         int i;
4317
4318         /* disable the queues */
4319         for (i = 0; i < adapter->num_tx_queues; i++)
4320                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4321
4322         wrfl();
4323         usleep_range(10000, 20000);
4324
4325         for (i = 0; i < adapter->num_tx_queues; i++)
4326                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4327 }
4328
4329 /**
4330  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4331  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4332  *
4333  *  Returns 0 on success, negative on failure
4334  **/
4335 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4336 {
4337         struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4338         struct device *dev = rx_ring->dev;
4339         int size;
4340
4341         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4342
4343         rx_ring->rx_buffer_info = vmalloc(size);
4344         if (!rx_ring->rx_buffer_info)
4345                 goto err;
4346
4347         /* Round up to nearest 4K */
4348         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4349         rx_ring->size = ALIGN(rx_ring->size, 4096);
4350
4351         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4352                                            &rx_ring->dma, GFP_KERNEL);
4353         if (!rx_ring->desc)
4354                 goto err;
4355
4356         rx_ring->next_to_alloc = 0;
4357         rx_ring->next_to_clean = 0;
4358         rx_ring->next_to_use = 0;
4359
4360         rx_ring->xdp_prog = adapter->xdp_prog;
4361
4362         /* XDP RX-queue info */
4363         if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364                              rx_ring->queue_index, 0) < 0)
4365                 goto err;
4366
4367         return 0;
4368
4369 err:
4370         vfree(rx_ring->rx_buffer_info);
4371         rx_ring->rx_buffer_info = NULL;
4372         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4373         return -ENOMEM;
4374 }
4375
4376 /**
4377  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4378  *                               (Descriptors) for all queues
4379  *  @adapter: board private structure
4380  *
4381  *  Return 0 on success, negative on failure
4382  **/
4383 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4384 {
4385         struct pci_dev *pdev = adapter->pdev;
4386         int i, err = 0;
4387
4388         for (i = 0; i < adapter->num_rx_queues; i++) {
4389                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4390                 if (err) {
4391                         dev_err(&pdev->dev,
4392                                 "Allocation for Rx Queue %u failed\n", i);
4393                         for (i--; i >= 0; i--)
4394                                 igb_free_rx_resources(adapter->rx_ring[i]);
4395                         break;
4396                 }
4397         }
4398
4399         return err;
4400 }
4401
4402 /**
4403  *  igb_setup_mrqc - configure the multiple receive queue control registers
4404  *  @adapter: Board private structure
4405  **/
4406 static void igb_setup_mrqc(struct igb_adapter *adapter)
4407 {
4408         struct e1000_hw *hw = &adapter->hw;
4409         u32 mrqc, rxcsum;
4410         u32 j, num_rx_queues;
4411         u32 rss_key[10];
4412
4413         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4414         for (j = 0; j < 10; j++)
4415                 wr32(E1000_RSSRK(j), rss_key[j]);
4416
4417         num_rx_queues = adapter->rss_queues;
4418
4419         switch (hw->mac.type) {
4420         case e1000_82576:
4421                 /* 82576 supports 2 RSS queues for SR-IOV */
4422                 if (adapter->vfs_allocated_count)
4423                         num_rx_queues = 2;
4424                 break;
4425         default:
4426                 break;
4427         }
4428
4429         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4430                 for (j = 0; j < IGB_RETA_SIZE; j++)
4431                         adapter->rss_indir_tbl[j] =
4432                         (j * num_rx_queues) / IGB_RETA_SIZE;
4433                 adapter->rss_indir_tbl_init = num_rx_queues;
4434         }
4435         igb_write_rss_indir_tbl(adapter);
4436
4437         /* Disable raw packet checksumming so that RSS hash is placed in
4438          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4439          * offloads as they are enabled by default
4440          */
4441         rxcsum = rd32(E1000_RXCSUM);
4442         rxcsum |= E1000_RXCSUM_PCSD;
4443
4444         if (adapter->hw.mac.type >= e1000_82576)
4445                 /* Enable Receive Checksum Offload for SCTP */
4446                 rxcsum |= E1000_RXCSUM_CRCOFL;
4447
4448         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4449         wr32(E1000_RXCSUM, rxcsum);
4450
4451         /* Generate RSS hash based on packet types, TCP/UDP
4452          * port numbers and/or IPv4/v6 src and dst addresses
4453          */
4454         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4455                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4456                E1000_MRQC_RSS_FIELD_IPV6 |
4457                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4458                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4459
4460         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4461                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4462         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4463                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4464
4465         /* If VMDq is enabled then we set the appropriate mode for that, else
4466          * we default to RSS so that an RSS hash is calculated per packet even
4467          * if we are only using one queue
4468          */
4469         if (adapter->vfs_allocated_count) {
4470                 if (hw->mac.type > e1000_82575) {
4471                         /* Set the default pool for the PF's first queue */
4472                         u32 vtctl = rd32(E1000_VT_CTL);
4473
4474                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4475                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4476                         vtctl |= adapter->vfs_allocated_count <<
4477                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4478                         wr32(E1000_VT_CTL, vtctl);
4479                 }
4480                 if (adapter->rss_queues > 1)
4481                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4482                 else
4483                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4484         } else {
4485                 if (hw->mac.type != e1000_i211)
4486                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4487         }
4488         igb_vmm_control(adapter);
4489
4490         wr32(E1000_MRQC, mrqc);
4491 }
4492
4493 /**
4494  *  igb_setup_rctl - configure the receive control registers
4495  *  @adapter: Board private structure
4496  **/
4497 void igb_setup_rctl(struct igb_adapter *adapter)
4498 {
4499         struct e1000_hw *hw = &adapter->hw;
4500         u32 rctl;
4501
4502         rctl = rd32(E1000_RCTL);
4503
4504         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4505         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4506
4507         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4508                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4509
4510         /* enable stripping of CRC. It's unlikely this will break BMC
4511          * redirection as it did with e1000. Newer features require
4512          * that the HW strips the CRC.
4513          */
4514         rctl |= E1000_RCTL_SECRC;
4515
4516         /* disable store bad packets and clear size bits. */
4517         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4518
4519         /* enable LPE to allow for reception of jumbo frames */
4520         rctl |= E1000_RCTL_LPE;
4521
4522         /* disable queue 0 to prevent tail write w/o re-config */
4523         wr32(E1000_RXDCTL(0), 0);
4524
4525         /* Attention!!!  For SR-IOV PF driver operations you must enable
4526          * queue drop for all VF and PF queues to prevent head of line blocking
4527          * if an un-trusted VF does not provide descriptors to hardware.
4528          */
4529         if (adapter->vfs_allocated_count) {
4530                 /* set all queue drop enable bits */
4531                 wr32(E1000_QDE, ALL_QUEUES);
4532         }
4533
4534         /* This is useful for sniffing bad packets. */
4535         if (adapter->netdev->features & NETIF_F_RXALL) {
4536                 /* UPE and MPE will be handled by normal PROMISC logic
4537                  * in e1000e_set_rx_mode
4538                  */
4539                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4540                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4541                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4542
4543                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4544                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4545                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4546                  * and that breaks VLANs.
4547                  */
4548         }
4549
4550         wr32(E1000_RCTL, rctl);
4551 }
4552
4553 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4554                                    int vfn)
4555 {
4556         struct e1000_hw *hw = &adapter->hw;
4557         u32 vmolr;
4558
4559         if (size > MAX_JUMBO_FRAME_SIZE)
4560                 size = MAX_JUMBO_FRAME_SIZE;
4561
4562         vmolr = rd32(E1000_VMOLR(vfn));
4563         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4564         vmolr |= size | E1000_VMOLR_LPE;
4565         wr32(E1000_VMOLR(vfn), vmolr);
4566
4567         return 0;
4568 }
4569
4570 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4571                                          int vfn, bool enable)
4572 {
4573         struct e1000_hw *hw = &adapter->hw;
4574         u32 val, reg;
4575
4576         if (hw->mac.type < e1000_82576)
4577                 return;
4578
4579         if (hw->mac.type == e1000_i350)
4580                 reg = E1000_DVMOLR(vfn);
4581         else
4582                 reg = E1000_VMOLR(vfn);
4583
4584         val = rd32(reg);
4585         if (enable)
4586                 val |= E1000_VMOLR_STRVLAN;
4587         else
4588                 val &= ~(E1000_VMOLR_STRVLAN);
4589         wr32(reg, val);
4590 }
4591
4592 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4593                                  int vfn, bool aupe)
4594 {
4595         struct e1000_hw *hw = &adapter->hw;
4596         u32 vmolr;
4597
4598         /* This register exists only on 82576 and newer so if we are older then
4599          * we should exit and do nothing
4600          */
4601         if (hw->mac.type < e1000_82576)
4602                 return;
4603
4604         vmolr = rd32(E1000_VMOLR(vfn));
4605         if (aupe)
4606                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4607         else
4608                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4609
4610         /* clear all bits that might not be set */
4611         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4612
4613         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4614                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4615         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4616          * multicast packets
4617          */
4618         if (vfn <= adapter->vfs_allocated_count)
4619                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4620
4621         wr32(E1000_VMOLR(vfn), vmolr);
4622 }
4623
4624 /**
4625  *  igb_setup_srrctl - configure the split and replication receive control
4626  *                     registers
4627  *  @adapter: Board private structure
4628  *  @ring: receive ring to be configured
4629  **/
4630 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4631 {
4632         struct e1000_hw *hw = &adapter->hw;
4633         int reg_idx = ring->reg_idx;
4634         u32 srrctl = 0;
4635
4636         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4637         if (ring_uses_large_buffer(ring))
4638                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4639         else
4640                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4641         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4642         if (hw->mac.type >= e1000_82580)
4643                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4644         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4645          * queues and rx flow control is disabled
4646          */
4647         if (adapter->vfs_allocated_count ||
4648             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4649              adapter->num_rx_queues > 1))
4650                 srrctl |= E1000_SRRCTL_DROP_EN;
4651
4652         wr32(E1000_SRRCTL(reg_idx), srrctl);
4653 }
4654
4655 /**
4656  *  igb_configure_rx_ring - Configure a receive ring after Reset
4657  *  @adapter: board private structure
4658  *  @ring: receive ring to be configured
4659  *
4660  *  Configure the Rx unit of the MAC after a reset.
4661  **/
4662 void igb_configure_rx_ring(struct igb_adapter *adapter,
4663                            struct igb_ring *ring)
4664 {
4665         struct e1000_hw *hw = &adapter->hw;
4666         union e1000_adv_rx_desc *rx_desc;
4667         u64 rdba = ring->dma;
4668         int reg_idx = ring->reg_idx;
4669         u32 rxdctl = 0;
4670
4671         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4672         WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4673                                            MEM_TYPE_PAGE_SHARED, NULL));
4674
4675         /* disable the queue */
4676         wr32(E1000_RXDCTL(reg_idx), 0);
4677
4678         /* Set DMA base address registers */
4679         wr32(E1000_RDBAL(reg_idx),
4680              rdba & 0x00000000ffffffffULL);
4681         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4682         wr32(E1000_RDLEN(reg_idx),
4683              ring->count * sizeof(union e1000_adv_rx_desc));
4684
4685         /* initialize head and tail */
4686         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4687         wr32(E1000_RDH(reg_idx), 0);
4688         writel(0, ring->tail);
4689
4690         /* set descriptor configuration */
4691         igb_setup_srrctl(adapter, ring);
4692
4693         /* set filtering for VMDQ pools */
4694         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4695
4696         rxdctl |= IGB_RX_PTHRESH;
4697         rxdctl |= IGB_RX_HTHRESH << 8;
4698         rxdctl |= IGB_RX_WTHRESH << 16;
4699
4700         /* initialize rx_buffer_info */
4701         memset(ring->rx_buffer_info, 0,
4702                sizeof(struct igb_rx_buffer) * ring->count);
4703
4704         /* initialize Rx descriptor 0 */
4705         rx_desc = IGB_RX_DESC(ring, 0);
4706         rx_desc->wb.upper.length = 0;
4707
4708         /* enable receive descriptor fetching */
4709         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4710         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4711 }
4712
4713 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4714                                   struct igb_ring *rx_ring)
4715 {
4716         /* set build_skb and buffer size flags */
4717         clear_ring_build_skb_enabled(rx_ring);
4718         clear_ring_uses_large_buffer(rx_ring);
4719
4720         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4721                 return;
4722
4723         set_ring_build_skb_enabled(rx_ring);
4724
4725 #if (PAGE_SIZE < 8192)
4726         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4727                 return;
4728
4729         set_ring_uses_large_buffer(rx_ring);
4730 #endif
4731 }
4732
4733 /**
4734  *  igb_configure_rx - Configure receive Unit after Reset
4735  *  @adapter: board private structure
4736  *
4737  *  Configure the Rx unit of the MAC after a reset.
4738  **/
4739 static void igb_configure_rx(struct igb_adapter *adapter)
4740 {
4741         int i;
4742
4743         /* set the correct pool for the PF default MAC address in entry 0 */
4744         igb_set_default_mac_filter(adapter);
4745
4746         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4747          * the Base and Length of the Rx Descriptor Ring
4748          */
4749         for (i = 0; i < adapter->num_rx_queues; i++) {
4750                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4751
4752                 igb_set_rx_buffer_len(adapter, rx_ring);
4753                 igb_configure_rx_ring(adapter, rx_ring);
4754         }
4755 }
4756
4757 /**
4758  *  igb_free_tx_resources - Free Tx Resources per Queue
4759  *  @tx_ring: Tx descriptor ring for a specific queue
4760  *
4761  *  Free all transmit software resources
4762  **/
4763 void igb_free_tx_resources(struct igb_ring *tx_ring)
4764 {
4765         igb_clean_tx_ring(tx_ring);
4766
4767         vfree(tx_ring->tx_buffer_info);
4768         tx_ring->tx_buffer_info = NULL;
4769
4770         /* if not set, then don't free */
4771         if (!tx_ring->desc)
4772                 return;
4773
4774         dma_free_coherent(tx_ring->dev, tx_ring->size,
4775                           tx_ring->desc, tx_ring->dma);
4776
4777         tx_ring->desc = NULL;
4778 }
4779
4780 /**
4781  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4782  *  @adapter: board private structure
4783  *
4784  *  Free all transmit software resources
4785  **/
4786 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4787 {
4788         int i;
4789
4790         for (i = 0; i < adapter->num_tx_queues; i++)
4791                 if (adapter->tx_ring[i])
4792                         igb_free_tx_resources(adapter->tx_ring[i]);
4793 }
4794
4795 /**
4796  *  igb_clean_tx_ring - Free Tx Buffers
4797  *  @tx_ring: ring to be cleaned
4798  **/
4799 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4800 {
4801         u16 i = tx_ring->next_to_clean;
4802         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4803
4804         while (i != tx_ring->next_to_use) {
4805                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4806
4807                 /* Free all the Tx ring sk_buffs */
4808                 dev_kfree_skb_any(tx_buffer->skb);
4809
4810                 /* unmap skb header data */
4811                 dma_unmap_single(tx_ring->dev,
4812                                  dma_unmap_addr(tx_buffer, dma),
4813                                  dma_unmap_len(tx_buffer, len),
4814                                  DMA_TO_DEVICE);
4815
4816                 /* check for eop_desc to determine the end of the packet */
4817                 eop_desc = tx_buffer->next_to_watch;
4818                 tx_desc = IGB_TX_DESC(tx_ring, i);
4819
4820                 /* unmap remaining buffers */
4821                 while (tx_desc != eop_desc) {
4822                         tx_buffer++;
4823                         tx_desc++;
4824                         i++;
4825                         if (unlikely(i == tx_ring->count)) {
4826                                 i = 0;
4827                                 tx_buffer = tx_ring->tx_buffer_info;
4828                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4829                         }
4830
4831                         /* unmap any remaining paged data */
4832                         if (dma_unmap_len(tx_buffer, len))
4833                                 dma_unmap_page(tx_ring->dev,
4834                                                dma_unmap_addr(tx_buffer, dma),
4835                                                dma_unmap_len(tx_buffer, len),
4836                                                DMA_TO_DEVICE);
4837                 }
4838
4839                 /* move us one more past the eop_desc for start of next pkt */
4840                 tx_buffer++;
4841                 i++;
4842                 if (unlikely(i == tx_ring->count)) {
4843                         i = 0;
4844                         tx_buffer = tx_ring->tx_buffer_info;
4845                 }
4846         }
4847
4848         /* reset BQL for queue */
4849         netdev_tx_reset_queue(txring_txq(tx_ring));
4850
4851         /* reset next_to_use and next_to_clean */
4852         tx_ring->next_to_use = 0;
4853         tx_ring->next_to_clean = 0;
4854 }
4855
4856 /**
4857  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4858  *  @adapter: board private structure
4859  **/
4860 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4861 {
4862         int i;
4863
4864         for (i = 0; i < adapter->num_tx_queues; i++)
4865                 if (adapter->tx_ring[i])
4866                         igb_clean_tx_ring(adapter->tx_ring[i]);
4867 }
4868
4869 /**
4870  *  igb_free_rx_resources - Free Rx Resources
4871  *  @rx_ring: ring to clean the resources from
4872  *
4873  *  Free all receive software resources
4874  **/
4875 void igb_free_rx_resources(struct igb_ring *rx_ring)
4876 {
4877         igb_clean_rx_ring(rx_ring);
4878
4879         rx_ring->xdp_prog = NULL;
4880         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4881         vfree(rx_ring->rx_buffer_info);
4882         rx_ring->rx_buffer_info = NULL;
4883
4884         /* if not set, then don't free */
4885         if (!rx_ring->desc)
4886                 return;
4887
4888         dma_free_coherent(rx_ring->dev, rx_ring->size,
4889                           rx_ring->desc, rx_ring->dma);
4890
4891         rx_ring->desc = NULL;
4892 }
4893
4894 /**
4895  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4896  *  @adapter: board private structure
4897  *
4898  *  Free all receive software resources
4899  **/
4900 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4901 {
4902         int i;
4903
4904         for (i = 0; i < adapter->num_rx_queues; i++)
4905                 if (adapter->rx_ring[i])
4906                         igb_free_rx_resources(adapter->rx_ring[i]);
4907 }
4908
4909 /**
4910  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4911  *  @rx_ring: ring to free buffers from
4912  **/
4913 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4914 {
4915         u16 i = rx_ring->next_to_clean;
4916
4917         dev_kfree_skb(rx_ring->skb);
4918         rx_ring->skb = NULL;
4919
4920         /* Free all the Rx ring sk_buffs */
4921         while (i != rx_ring->next_to_alloc) {
4922                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4923
4924                 /* Invalidate cache lines that may have been written to by
4925                  * device so that we avoid corrupting memory.
4926                  */
4927                 dma_sync_single_range_for_cpu(rx_ring->dev,
4928                                               buffer_info->dma,
4929                                               buffer_info->page_offset,
4930                                               igb_rx_bufsz(rx_ring),
4931                                               DMA_FROM_DEVICE);
4932
4933                 /* free resources associated with mapping */
4934                 dma_unmap_page_attrs(rx_ring->dev,
4935                                      buffer_info->dma,
4936                                      igb_rx_pg_size(rx_ring),
4937                                      DMA_FROM_DEVICE,
4938                                      IGB_RX_DMA_ATTR);
4939                 __page_frag_cache_drain(buffer_info->page,
4940                                         buffer_info->pagecnt_bias);
4941
4942                 i++;
4943                 if (i == rx_ring->count)
4944                         i = 0;
4945         }
4946
4947         rx_ring->next_to_alloc = 0;
4948         rx_ring->next_to_clean = 0;
4949         rx_ring->next_to_use = 0;
4950 }
4951
4952 /**
4953  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4954  *  @adapter: board private structure
4955  **/
4956 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4957 {
4958         int i;
4959
4960         for (i = 0; i < adapter->num_rx_queues; i++)
4961                 if (adapter->rx_ring[i])
4962                         igb_clean_rx_ring(adapter->rx_ring[i]);
4963 }
4964
4965 /**
4966  *  igb_set_mac - Change the Ethernet Address of the NIC
4967  *  @netdev: network interface device structure
4968  *  @p: pointer to an address structure
4969  *
4970  *  Returns 0 on success, negative on failure
4971  **/
4972 static int igb_set_mac(struct net_device *netdev, void *p)
4973 {
4974         struct igb_adapter *adapter = netdev_priv(netdev);
4975         struct e1000_hw *hw = &adapter->hw;
4976         struct sockaddr *addr = p;
4977
4978         if (!is_valid_ether_addr(addr->sa_data))
4979                 return -EADDRNOTAVAIL;
4980
4981         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4982         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4983
4984         /* set the correct pool for the new PF MAC address in entry 0 */
4985         igb_set_default_mac_filter(adapter);
4986
4987         return 0;
4988 }
4989
4990 /**
4991  *  igb_write_mc_addr_list - write multicast addresses to MTA
4992  *  @netdev: network interface device structure
4993  *
4994  *  Writes multicast address list to the MTA hash table.
4995  *  Returns: -ENOMEM on failure
4996  *           0 on no addresses written
4997  *           X on writing X addresses to MTA
4998  **/
4999 static int igb_write_mc_addr_list(struct net_device *netdev)
5000 {
5001         struct igb_adapter *adapter = netdev_priv(netdev);
5002         struct e1000_hw *hw = &adapter->hw;
5003         struct netdev_hw_addr *ha;
5004         u8  *mta_list;
5005         int i;
5006
5007         if (netdev_mc_empty(netdev)) {
5008                 /* nothing to program, so clear mc list */
5009                 igb_update_mc_addr_list(hw, NULL, 0);
5010                 igb_restore_vf_multicasts(adapter);
5011                 return 0;
5012         }
5013
5014         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5015         if (!mta_list)
5016                 return -ENOMEM;
5017
5018         /* The shared function expects a packed array of only addresses. */
5019         i = 0;
5020         netdev_for_each_mc_addr(ha, netdev)
5021                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5022
5023         igb_update_mc_addr_list(hw, mta_list, i);
5024         kfree(mta_list);
5025
5026         return netdev_mc_count(netdev);
5027 }
5028
5029 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5030 {
5031         struct e1000_hw *hw = &adapter->hw;
5032         u32 i, pf_id;
5033
5034         switch (hw->mac.type) {
5035         case e1000_i210:
5036         case e1000_i211:
5037         case e1000_i350:
5038                 /* VLAN filtering needed for VLAN prio filter */
5039                 if (adapter->netdev->features & NETIF_F_NTUPLE)
5040                         break;
5041                 fallthrough;
5042         case e1000_82576:
5043         case e1000_82580:
5044         case e1000_i354:
5045                 /* VLAN filtering needed for pool filtering */
5046                 if (adapter->vfs_allocated_count)
5047                         break;
5048                 fallthrough;
5049         default:
5050                 return 1;
5051         }
5052
5053         /* We are already in VLAN promisc, nothing to do */
5054         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5055                 return 0;
5056
5057         if (!adapter->vfs_allocated_count)
5058                 goto set_vfta;
5059
5060         /* Add PF to all active pools */
5061         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5062
5063         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5064                 u32 vlvf = rd32(E1000_VLVF(i));
5065
5066                 vlvf |= BIT(pf_id);
5067                 wr32(E1000_VLVF(i), vlvf);
5068         }
5069
5070 set_vfta:
5071         /* Set all bits in the VLAN filter table array */
5072         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5073                 hw->mac.ops.write_vfta(hw, i, ~0U);
5074
5075         /* Set flag so we don't redo unnecessary work */
5076         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5077
5078         return 0;
5079 }
5080
5081 #define VFTA_BLOCK_SIZE 8
5082 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5083 {
5084         struct e1000_hw *hw = &adapter->hw;
5085         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5086         u32 vid_start = vfta_offset * 32;
5087         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5088         u32 i, vid, word, bits, pf_id;
5089
5090         /* guarantee that we don't scrub out management VLAN */
5091         vid = adapter->mng_vlan_id;
5092         if (vid >= vid_start && vid < vid_end)
5093                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5094
5095         if (!adapter->vfs_allocated_count)
5096                 goto set_vfta;
5097
5098         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5099
5100         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5101                 u32 vlvf = rd32(E1000_VLVF(i));
5102
5103                 /* pull VLAN ID from VLVF */
5104                 vid = vlvf & VLAN_VID_MASK;
5105
5106                 /* only concern ourselves with a certain range */
5107                 if (vid < vid_start || vid >= vid_end)
5108                         continue;
5109
5110                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5111                         /* record VLAN ID in VFTA */
5112                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5113
5114                         /* if PF is part of this then continue */
5115                         if (test_bit(vid, adapter->active_vlans))
5116                                 continue;
5117                 }
5118
5119                 /* remove PF from the pool */
5120                 bits = ~BIT(pf_id);
5121                 bits &= rd32(E1000_VLVF(i));
5122                 wr32(E1000_VLVF(i), bits);
5123         }
5124
5125 set_vfta:
5126         /* extract values from active_vlans and write back to VFTA */
5127         for (i = VFTA_BLOCK_SIZE; i--;) {
5128                 vid = (vfta_offset + i) * 32;
5129                 word = vid / BITS_PER_LONG;
5130                 bits = vid % BITS_PER_LONG;
5131
5132                 vfta[i] |= adapter->active_vlans[word] >> bits;
5133
5134                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5135         }
5136 }
5137
5138 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5139 {
5140         u32 i;
5141
5142         /* We are not in VLAN promisc, nothing to do */
5143         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5144                 return;
5145
5146         /* Set flag so we don't redo unnecessary work */
5147         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5148
5149         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5150                 igb_scrub_vfta(adapter, i);
5151 }
5152
5153 /**
5154  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5155  *  @netdev: network interface device structure
5156  *
5157  *  The set_rx_mode entry point is called whenever the unicast or multicast
5158  *  address lists or the network interface flags are updated.  This routine is
5159  *  responsible for configuring the hardware for proper unicast, multicast,
5160  *  promiscuous mode, and all-multi behavior.
5161  **/
5162 static void igb_set_rx_mode(struct net_device *netdev)
5163 {
5164         struct igb_adapter *adapter = netdev_priv(netdev);
5165         struct e1000_hw *hw = &adapter->hw;
5166         unsigned int vfn = adapter->vfs_allocated_count;
5167         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5168         int count;
5169
5170         /* Check for Promiscuous and All Multicast modes */
5171         if (netdev->flags & IFF_PROMISC) {
5172                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5173                 vmolr |= E1000_VMOLR_MPME;
5174
5175                 /* enable use of UTA filter to force packets to default pool */
5176                 if (hw->mac.type == e1000_82576)
5177                         vmolr |= E1000_VMOLR_ROPE;
5178         } else {
5179                 if (netdev->flags & IFF_ALLMULTI) {
5180                         rctl |= E1000_RCTL_MPE;
5181                         vmolr |= E1000_VMOLR_MPME;
5182                 } else {
5183                         /* Write addresses to the MTA, if the attempt fails
5184                          * then we should just turn on promiscuous mode so
5185                          * that we can at least receive multicast traffic
5186                          */
5187                         count = igb_write_mc_addr_list(netdev);
5188                         if (count < 0) {
5189                                 rctl |= E1000_RCTL_MPE;
5190                                 vmolr |= E1000_VMOLR_MPME;
5191                         } else if (count) {
5192                                 vmolr |= E1000_VMOLR_ROMPE;
5193                         }
5194                 }
5195         }
5196
5197         /* Write addresses to available RAR registers, if there is not
5198          * sufficient space to store all the addresses then enable
5199          * unicast promiscuous mode
5200          */
5201         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5202                 rctl |= E1000_RCTL_UPE;
5203                 vmolr |= E1000_VMOLR_ROPE;
5204         }
5205
5206         /* enable VLAN filtering by default */
5207         rctl |= E1000_RCTL_VFE;
5208
5209         /* disable VLAN filtering for modes that require it */
5210         if ((netdev->flags & IFF_PROMISC) ||
5211             (netdev->features & NETIF_F_RXALL)) {
5212                 /* if we fail to set all rules then just clear VFE */
5213                 if (igb_vlan_promisc_enable(adapter))
5214                         rctl &= ~E1000_RCTL_VFE;
5215         } else {
5216                 igb_vlan_promisc_disable(adapter);
5217         }
5218
5219         /* update state of unicast, multicast, and VLAN filtering modes */
5220         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5221                                      E1000_RCTL_VFE);
5222         wr32(E1000_RCTL, rctl);
5223
5224 #if (PAGE_SIZE < 8192)
5225         if (!adapter->vfs_allocated_count) {
5226                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5227                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5228         }
5229 #endif
5230         wr32(E1000_RLPML, rlpml);
5231
5232         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5233          * the VMOLR to enable the appropriate modes.  Without this workaround
5234          * we will have issues with VLAN tag stripping not being done for frames
5235          * that are only arriving because we are the default pool
5236          */
5237         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5238                 return;
5239
5240         /* set UTA to appropriate mode */
5241         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5242
5243         vmolr |= rd32(E1000_VMOLR(vfn)) &
5244                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5245
5246         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5247         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5248 #if (PAGE_SIZE < 8192)
5249         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5250                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5251         else
5252 #endif
5253                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5254         vmolr |= E1000_VMOLR_LPE;
5255
5256         wr32(E1000_VMOLR(vfn), vmolr);
5257
5258         igb_restore_vf_multicasts(adapter);
5259 }
5260
5261 static void igb_check_wvbr(struct igb_adapter *adapter)
5262 {
5263         struct e1000_hw *hw = &adapter->hw;
5264         u32 wvbr = 0;
5265
5266         switch (hw->mac.type) {
5267         case e1000_82576:
5268         case e1000_i350:
5269                 wvbr = rd32(E1000_WVBR);
5270                 if (!wvbr)
5271                         return;
5272                 break;
5273         default:
5274                 break;
5275         }
5276
5277         adapter->wvbr |= wvbr;
5278 }
5279
5280 #define IGB_STAGGERED_QUEUE_OFFSET 8
5281
5282 static void igb_spoof_check(struct igb_adapter *adapter)
5283 {
5284         int j;
5285
5286         if (!adapter->wvbr)
5287                 return;
5288
5289         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5290                 if (adapter->wvbr & BIT(j) ||
5291                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5292                         dev_warn(&adapter->pdev->dev,
5293                                 "Spoof event(s) detected on VF %d\n", j);
5294                         adapter->wvbr &=
5295                                 ~(BIT(j) |
5296                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5297                 }
5298         }
5299 }
5300
5301 /* Need to wait a few seconds after link up to get diagnostic information from
5302  * the phy
5303  */
5304 static void igb_update_phy_info(struct timer_list *t)
5305 {
5306         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5307         igb_get_phy_info(&adapter->hw);
5308 }
5309
5310 /**
5311  *  igb_has_link - check shared code for link and determine up/down
5312  *  @adapter: pointer to driver private info
5313  **/
5314 bool igb_has_link(struct igb_adapter *adapter)
5315 {
5316         struct e1000_hw *hw = &adapter->hw;
5317         bool link_active = false;
5318
5319         /* get_link_status is set on LSC (link status) interrupt or
5320          * rx sequence error interrupt.  get_link_status will stay
5321          * false until the e1000_check_for_link establishes link
5322          * for copper adapters ONLY
5323          */
5324         switch (hw->phy.media_type) {
5325         case e1000_media_type_copper:
5326                 if (!hw->mac.get_link_status)
5327                         return true;
5328                 fallthrough;
5329         case e1000_media_type_internal_serdes:
5330                 hw->mac.ops.check_for_link(hw);
5331                 link_active = !hw->mac.get_link_status;
5332                 break;
5333         default:
5334         case e1000_media_type_unknown:
5335                 break;
5336         }
5337
5338         if (((hw->mac.type == e1000_i210) ||
5339              (hw->mac.type == e1000_i211)) &&
5340              (hw->phy.id == I210_I_PHY_ID)) {
5341                 if (!netif_carrier_ok(adapter->netdev)) {
5342                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5343                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5344                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5345                         adapter->link_check_timeout = jiffies;
5346                 }
5347         }
5348
5349         return link_active;
5350 }
5351
5352 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5353 {
5354         bool ret = false;
5355         u32 ctrl_ext, thstat;
5356
5357         /* check for thermal sensor event on i350 copper only */
5358         if (hw->mac.type == e1000_i350) {
5359                 thstat = rd32(E1000_THSTAT);
5360                 ctrl_ext = rd32(E1000_CTRL_EXT);
5361
5362                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5363                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5364                         ret = !!(thstat & event);
5365         }
5366
5367         return ret;
5368 }
5369
5370 /**
5371  *  igb_check_lvmmc - check for malformed packets received
5372  *  and indicated in LVMMC register
5373  *  @adapter: pointer to adapter
5374  **/
5375 static void igb_check_lvmmc(struct igb_adapter *adapter)
5376 {
5377         struct e1000_hw *hw = &adapter->hw;
5378         u32 lvmmc;
5379
5380         lvmmc = rd32(E1000_LVMMC);
5381         if (lvmmc) {
5382                 if (unlikely(net_ratelimit())) {
5383                         netdev_warn(adapter->netdev,
5384                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5385                                     lvmmc);
5386                 }
5387         }
5388 }
5389
5390 /**
5391  *  igb_watchdog - Timer Call-back
5392  *  @t: pointer to timer_list containing our private info pointer
5393  **/
5394 static void igb_watchdog(struct timer_list *t)
5395 {
5396         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5397         /* Do the rest outside of interrupt context */
5398         schedule_work(&adapter->watchdog_task);
5399 }
5400
5401 static void igb_watchdog_task(struct work_struct *work)
5402 {
5403         struct igb_adapter *adapter = container_of(work,
5404                                                    struct igb_adapter,
5405                                                    watchdog_task);
5406         struct e1000_hw *hw = &adapter->hw;
5407         struct e1000_phy_info *phy = &hw->phy;
5408         struct net_device *netdev = adapter->netdev;
5409         u32 link;
5410         int i;
5411         u32 connsw;
5412         u16 phy_data, retry_count = 20;
5413
5414         link = igb_has_link(adapter);
5415
5416         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5417                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5418                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5419                 else
5420                         link = false;
5421         }
5422
5423         /* Force link down if we have fiber to swap to */
5424         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5425                 if (hw->phy.media_type == e1000_media_type_copper) {
5426                         connsw = rd32(E1000_CONNSW);
5427                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5428                                 link = 0;
5429                 }
5430         }
5431         if (link) {
5432                 /* Perform a reset if the media type changed. */
5433                 if (hw->dev_spec._82575.media_changed) {
5434                         hw->dev_spec._82575.media_changed = false;
5435                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5436                         igb_reset(adapter);
5437                 }
5438                 /* Cancel scheduled suspend requests. */
5439                 pm_runtime_resume(netdev->dev.parent);
5440
5441                 if (!netif_carrier_ok(netdev)) {
5442                         u32 ctrl;
5443
5444                         hw->mac.ops.get_speed_and_duplex(hw,
5445                                                          &adapter->link_speed,
5446                                                          &adapter->link_duplex);
5447
5448                         ctrl = rd32(E1000_CTRL);
5449                         /* Links status message must follow this format */
5450                         netdev_info(netdev,
5451                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5452                                netdev->name,
5453                                adapter->link_speed,
5454                                adapter->link_duplex == FULL_DUPLEX ?
5455                                "Full" : "Half",
5456                                (ctrl & E1000_CTRL_TFCE) &&
5457                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5458                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5459                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5460
5461                         /* disable EEE if enabled */
5462                         if ((adapter->flags & IGB_FLAG_EEE) &&
5463                                 (adapter->link_duplex == HALF_DUPLEX)) {
5464                                 dev_info(&adapter->pdev->dev,
5465                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5466                                 adapter->hw.dev_spec._82575.eee_disable = true;
5467                                 adapter->flags &= ~IGB_FLAG_EEE;
5468                         }
5469
5470                         /* check if SmartSpeed worked */
5471                         igb_check_downshift(hw);
5472                         if (phy->speed_downgraded)
5473                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5474
5475                         /* check for thermal sensor event */
5476                         if (igb_thermal_sensor_event(hw,
5477                             E1000_THSTAT_LINK_THROTTLE))
5478                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5479
5480                         /* adjust timeout factor according to speed/duplex */
5481                         adapter->tx_timeout_factor = 1;
5482                         switch (adapter->link_speed) {
5483                         case SPEED_10:
5484                                 adapter->tx_timeout_factor = 14;
5485                                 break;
5486                         case SPEED_100:
5487                                 /* maybe add some timeout factor ? */
5488                                 break;
5489                         }
5490
5491                         if (adapter->link_speed != SPEED_1000)
5492                                 goto no_wait;
5493
5494                         /* wait for Remote receiver status OK */
5495 retry_read_status:
5496                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5497                                               &phy_data)) {
5498                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5499                                     retry_count) {
5500                                         msleep(100);
5501                                         retry_count--;
5502                                         goto retry_read_status;
5503                                 } else if (!retry_count) {
5504                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5505                                 }
5506                         } else {
5507                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5508                         }
5509 no_wait:
5510                         netif_carrier_on(netdev);
5511
5512                         igb_ping_all_vfs(adapter);
5513                         igb_check_vf_rate_limit(adapter);
5514
5515                         /* link state has changed, schedule phy info update */
5516                         if (!test_bit(__IGB_DOWN, &adapter->state))
5517                                 mod_timer(&adapter->phy_info_timer,
5518                                           round_jiffies(jiffies + 2 * HZ));
5519                 }
5520         } else {
5521                 if (netif_carrier_ok(netdev)) {
5522                         adapter->link_speed = 0;
5523                         adapter->link_duplex = 0;
5524
5525                         /* check for thermal sensor event */
5526                         if (igb_thermal_sensor_event(hw,
5527                             E1000_THSTAT_PWR_DOWN)) {
5528                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5529                         }
5530
5531                         /* Links status message must follow this format */
5532                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5533                                netdev->name);
5534                         netif_carrier_off(netdev);
5535
5536                         igb_ping_all_vfs(adapter);
5537
5538                         /* link state has changed, schedule phy info update */
5539                         if (!test_bit(__IGB_DOWN, &adapter->state))
5540                                 mod_timer(&adapter->phy_info_timer,
5541                                           round_jiffies(jiffies + 2 * HZ));
5542
5543                         /* link is down, time to check for alternate media */
5544                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5545                                 igb_check_swap_media(adapter);
5546                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5547                                         schedule_work(&adapter->reset_task);
5548                                         /* return immediately */
5549                                         return;
5550                                 }
5551                         }
5552                         pm_schedule_suspend(netdev->dev.parent,
5553                                             MSEC_PER_SEC * 5);
5554
5555                 /* also check for alternate media here */
5556                 } else if (!netif_carrier_ok(netdev) &&
5557                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5558                         igb_check_swap_media(adapter);
5559                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5560                                 schedule_work(&adapter->reset_task);
5561                                 /* return immediately */
5562                                 return;
5563                         }
5564                 }
5565         }
5566
5567         spin_lock(&adapter->stats64_lock);
5568         igb_update_stats(adapter);
5569         spin_unlock(&adapter->stats64_lock);
5570
5571         for (i = 0; i < adapter->num_tx_queues; i++) {
5572                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5573                 if (!netif_carrier_ok(netdev)) {
5574                         /* We've lost link, so the controller stops DMA,
5575                          * but we've got queued Tx work that's never going
5576                          * to get done, so reset controller to flush Tx.
5577                          * (Do the reset outside of interrupt context).
5578                          */
5579                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5580                                 adapter->tx_timeout_count++;
5581                                 schedule_work(&adapter->reset_task);
5582                                 /* return immediately since reset is imminent */
5583                                 return;
5584                         }
5585                 }
5586
5587                 /* Force detection of hung controller every watchdog period */
5588                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5589         }
5590
5591         /* Cause software interrupt to ensure Rx ring is cleaned */
5592         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5593                 u32 eics = 0;
5594
5595                 for (i = 0; i < adapter->num_q_vectors; i++)
5596                         eics |= adapter->q_vector[i]->eims_value;
5597                 wr32(E1000_EICS, eics);
5598         } else {
5599                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5600         }
5601
5602         igb_spoof_check(adapter);
5603         igb_ptp_rx_hang(adapter);
5604         igb_ptp_tx_hang(adapter);
5605
5606         /* Check LVMMC register on i350/i354 only */
5607         if ((adapter->hw.mac.type == e1000_i350) ||
5608             (adapter->hw.mac.type == e1000_i354))
5609                 igb_check_lvmmc(adapter);
5610
5611         /* Reset the timer */
5612         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5613                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5614                         mod_timer(&adapter->watchdog_timer,
5615                                   round_jiffies(jiffies +  HZ));
5616                 else
5617                         mod_timer(&adapter->watchdog_timer,
5618                                   round_jiffies(jiffies + 2 * HZ));
5619         }
5620 }
5621
5622 enum latency_range {
5623         lowest_latency = 0,
5624         low_latency = 1,
5625         bulk_latency = 2,
5626         latency_invalid = 255
5627 };
5628
5629 /**
5630  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5631  *  @q_vector: pointer to q_vector
5632  *
5633  *  Stores a new ITR value based on strictly on packet size.  This
5634  *  algorithm is less sophisticated than that used in igb_update_itr,
5635  *  due to the difficulty of synchronizing statistics across multiple
5636  *  receive rings.  The divisors and thresholds used by this function
5637  *  were determined based on theoretical maximum wire speed and testing
5638  *  data, in order to minimize response time while increasing bulk
5639  *  throughput.
5640  *  This functionality is controlled by ethtool's coalescing settings.
5641  *  NOTE:  This function is called only when operating in a multiqueue
5642  *         receive environment.
5643  **/
5644 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5645 {
5646         int new_val = q_vector->itr_val;
5647         int avg_wire_size = 0;
5648         struct igb_adapter *adapter = q_vector->adapter;
5649         unsigned int packets;
5650
5651         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5652          * ints/sec - ITR timer value of 120 ticks.
5653          */
5654         if (adapter->link_speed != SPEED_1000) {
5655                 new_val = IGB_4K_ITR;
5656                 goto set_itr_val;
5657         }
5658
5659         packets = q_vector->rx.total_packets;
5660         if (packets)
5661                 avg_wire_size = q_vector->rx.total_bytes / packets;
5662
5663         packets = q_vector->tx.total_packets;
5664         if (packets)
5665                 avg_wire_size = max_t(u32, avg_wire_size,
5666                                       q_vector->tx.total_bytes / packets);
5667
5668         /* if avg_wire_size isn't set no work was done */
5669         if (!avg_wire_size)
5670                 goto clear_counts;
5671
5672         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5673         avg_wire_size += 24;
5674
5675         /* Don't starve jumbo frames */
5676         avg_wire_size = min(avg_wire_size, 3000);
5677
5678         /* Give a little boost to mid-size frames */
5679         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5680                 new_val = avg_wire_size / 3;
5681         else
5682                 new_val = avg_wire_size / 2;
5683
5684         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5685         if (new_val < IGB_20K_ITR &&
5686             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5687              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5688                 new_val = IGB_20K_ITR;
5689
5690 set_itr_val:
5691         if (new_val != q_vector->itr_val) {
5692                 q_vector->itr_val = new_val;
5693                 q_vector->set_itr = 1;
5694         }
5695 clear_counts:
5696         q_vector->rx.total_bytes = 0;
5697         q_vector->rx.total_packets = 0;
5698         q_vector->tx.total_bytes = 0;
5699         q_vector->tx.total_packets = 0;
5700 }
5701
5702 /**
5703  *  igb_update_itr - update the dynamic ITR value based on statistics
5704  *  @q_vector: pointer to q_vector
5705  *  @ring_container: ring info to update the itr for
5706  *
5707  *  Stores a new ITR value based on packets and byte
5708  *  counts during the last interrupt.  The advantage of per interrupt
5709  *  computation is faster updates and more accurate ITR for the current
5710  *  traffic pattern.  Constants in this function were computed
5711  *  based on theoretical maximum wire speed and thresholds were set based
5712  *  on testing data as well as attempting to minimize response time
5713  *  while increasing bulk throughput.
5714  *  This functionality is controlled by ethtool's coalescing settings.
5715  *  NOTE:  These calculations are only valid when operating in a single-
5716  *         queue environment.
5717  **/
5718 static void igb_update_itr(struct igb_q_vector *q_vector,
5719                            struct igb_ring_container *ring_container)
5720 {
5721         unsigned int packets = ring_container->total_packets;
5722         unsigned int bytes = ring_container->total_bytes;
5723         u8 itrval = ring_container->itr;
5724
5725         /* no packets, exit with status unchanged */
5726         if (packets == 0)
5727                 return;
5728
5729         switch (itrval) {
5730         case lowest_latency:
5731                 /* handle TSO and jumbo frames */
5732                 if (bytes/packets > 8000)
5733                         itrval = bulk_latency;
5734                 else if ((packets < 5) && (bytes > 512))
5735                         itrval = low_latency;
5736                 break;
5737         case low_latency:  /* 50 usec aka 20000 ints/s */
5738                 if (bytes > 10000) {
5739                         /* this if handles the TSO accounting */
5740                         if (bytes/packets > 8000)
5741                                 itrval = bulk_latency;
5742                         else if ((packets < 10) || ((bytes/packets) > 1200))
5743                                 itrval = bulk_latency;
5744                         else if ((packets > 35))
5745                                 itrval = lowest_latency;
5746                 } else if (bytes/packets > 2000) {
5747                         itrval = bulk_latency;
5748                 } else if (packets <= 2 && bytes < 512) {
5749                         itrval = lowest_latency;
5750                 }
5751                 break;
5752         case bulk_latency: /* 250 usec aka 4000 ints/s */
5753                 if (bytes > 25000) {
5754                         if (packets > 35)
5755                                 itrval = low_latency;
5756                 } else if (bytes < 1500) {
5757                         itrval = low_latency;
5758                 }
5759                 break;
5760         }
5761
5762         /* clear work counters since we have the values we need */
5763         ring_container->total_bytes = 0;
5764         ring_container->total_packets = 0;
5765
5766         /* write updated itr to ring container */
5767         ring_container->itr = itrval;
5768 }
5769
5770 static void igb_set_itr(struct igb_q_vector *q_vector)
5771 {
5772         struct igb_adapter *adapter = q_vector->adapter;
5773         u32 new_itr = q_vector->itr_val;
5774         u8 current_itr = 0;
5775
5776         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5777         if (adapter->link_speed != SPEED_1000) {
5778                 current_itr = 0;
5779                 new_itr = IGB_4K_ITR;
5780                 goto set_itr_now;
5781         }
5782
5783         igb_update_itr(q_vector, &q_vector->tx);
5784         igb_update_itr(q_vector, &q_vector->rx);
5785
5786         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5787
5788         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5789         if (current_itr == lowest_latency &&
5790             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5791              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5792                 current_itr = low_latency;
5793
5794         switch (current_itr) {
5795         /* counts and packets in update_itr are dependent on these numbers */
5796         case lowest_latency:
5797                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5798                 break;
5799         case low_latency:
5800                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5801                 break;
5802         case bulk_latency:
5803                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5804                 break;
5805         default:
5806                 break;
5807         }
5808
5809 set_itr_now:
5810         if (new_itr != q_vector->itr_val) {
5811                 /* this attempts to bias the interrupt rate towards Bulk
5812                  * by adding intermediate steps when interrupt rate is
5813                  * increasing
5814                  */
5815                 new_itr = new_itr > q_vector->itr_val ?
5816                           max((new_itr * q_vector->itr_val) /
5817                           (new_itr + (q_vector->itr_val >> 2)),
5818                           new_itr) : new_itr;
5819                 /* Don't write the value here; it resets the adapter's
5820                  * internal timer, and causes us to delay far longer than
5821                  * we should between interrupts.  Instead, we write the ITR
5822                  * value at the beginning of the next interrupt so the timing
5823                  * ends up being correct.
5824                  */
5825                 q_vector->itr_val = new_itr;
5826                 q_vector->set_itr = 1;
5827         }
5828 }
5829
5830 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5831                             struct igb_tx_buffer *first,
5832                             u32 vlan_macip_lens, u32 type_tucmd,
5833                             u32 mss_l4len_idx)
5834 {
5835         struct e1000_adv_tx_context_desc *context_desc;
5836         u16 i = tx_ring->next_to_use;
5837         struct timespec64 ts;
5838
5839         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5840
5841         i++;
5842         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5843
5844         /* set bits to identify this as an advanced context descriptor */
5845         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5846
5847         /* For 82575, context index must be unique per ring. */
5848         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5849                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5850
5851         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5852         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5853         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5854
5855         /* We assume there is always a valid tx time available. Invalid times
5856          * should have been handled by the upper layers.
5857          */
5858         if (tx_ring->launchtime_enable) {
5859                 ts = ktime_to_timespec64(first->skb->tstamp);
5860                 first->skb->tstamp = ktime_set(0, 0);
5861                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5862         } else {
5863                 context_desc->seqnum_seed = 0;
5864         }
5865 }
5866
5867 static int igb_tso(struct igb_ring *tx_ring,
5868                    struct igb_tx_buffer *first,
5869                    u8 *hdr_len)
5870 {
5871         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5872         struct sk_buff *skb = first->skb;
5873         union {
5874                 struct iphdr *v4;
5875                 struct ipv6hdr *v6;
5876                 unsigned char *hdr;
5877         } ip;
5878         union {
5879                 struct tcphdr *tcp;
5880                 struct udphdr *udp;
5881                 unsigned char *hdr;
5882         } l4;
5883         u32 paylen, l4_offset;
5884         int err;
5885
5886         if (skb->ip_summed != CHECKSUM_PARTIAL)
5887                 return 0;
5888
5889         if (!skb_is_gso(skb))
5890                 return 0;
5891
5892         err = skb_cow_head(skb, 0);
5893         if (err < 0)
5894                 return err;
5895
5896         ip.hdr = skb_network_header(skb);
5897         l4.hdr = skb_checksum_start(skb);
5898
5899         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5900         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5901                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5902
5903         /* initialize outer IP header fields */
5904         if (ip.v4->version == 4) {
5905                 unsigned char *csum_start = skb_checksum_start(skb);
5906                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5907
5908                 /* IP header will have to cancel out any data that
5909                  * is not a part of the outer IP header
5910                  */
5911                 ip.v4->check = csum_fold(csum_partial(trans_start,
5912                                                       csum_start - trans_start,
5913                                                       0));
5914                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5915
5916                 ip.v4->tot_len = 0;
5917                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5918                                    IGB_TX_FLAGS_CSUM |
5919                                    IGB_TX_FLAGS_IPV4;
5920         } else {
5921                 ip.v6->payload_len = 0;
5922                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5923                                    IGB_TX_FLAGS_CSUM;
5924         }
5925
5926         /* determine offset of inner transport header */
5927         l4_offset = l4.hdr - skb->data;
5928
5929         /* remove payload length from inner checksum */
5930         paylen = skb->len - l4_offset;
5931         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5932                 /* compute length of segmentation header */
5933                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5934                 csum_replace_by_diff(&l4.tcp->check,
5935                         (__force __wsum)htonl(paylen));
5936         } else {
5937                 /* compute length of segmentation header */
5938                 *hdr_len = sizeof(*l4.udp) + l4_offset;
5939                 csum_replace_by_diff(&l4.udp->check,
5940                                      (__force __wsum)htonl(paylen));
5941         }
5942
5943         /* update gso size and bytecount with header size */
5944         first->gso_segs = skb_shinfo(skb)->gso_segs;
5945         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5946
5947         /* MSS L4LEN IDX */
5948         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5949         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5950
5951         /* VLAN MACLEN IPLEN */
5952         vlan_macip_lens = l4.hdr - ip.hdr;
5953         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5954         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5955
5956         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5957                         type_tucmd, mss_l4len_idx);
5958
5959         return 1;
5960 }
5961
5962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5963 {
5964         unsigned int offset = 0;
5965
5966         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5967
5968         return offset == skb_checksum_start_offset(skb);
5969 }
5970
5971 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5972 {
5973         struct sk_buff *skb = first->skb;
5974         u32 vlan_macip_lens = 0;
5975         u32 type_tucmd = 0;
5976
5977         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5978 csum_failed:
5979                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5980                     !tx_ring->launchtime_enable)
5981                         return;
5982                 goto no_csum;
5983         }
5984
5985         switch (skb->csum_offset) {
5986         case offsetof(struct tcphdr, check):
5987                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5988                 fallthrough;
5989         case offsetof(struct udphdr, check):
5990                 break;
5991         case offsetof(struct sctphdr, checksum):
5992                 /* validate that this is actually an SCTP request */
5993                 if (((first->protocol == htons(ETH_P_IP)) &&
5994                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5995                     ((first->protocol == htons(ETH_P_IPV6)) &&
5996                      igb_ipv6_csum_is_sctp(skb))) {
5997                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5998                         break;
5999                 }
6000                 fallthrough;
6001         default:
6002                 skb_checksum_help(skb);
6003                 goto csum_failed;
6004         }
6005
6006         /* update TX checksum flag */
6007         first->tx_flags |= IGB_TX_FLAGS_CSUM;
6008         vlan_macip_lens = skb_checksum_start_offset(skb) -
6009                           skb_network_offset(skb);
6010 no_csum:
6011         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6012         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6013
6014         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6015 }
6016
6017 #define IGB_SET_FLAG(_input, _flag, _result) \
6018         ((_flag <= _result) ? \
6019          ((u32)(_input & _flag) * (_result / _flag)) : \
6020          ((u32)(_input & _flag) / (_flag / _result)))
6021
6022 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6023 {
6024         /* set type for advanced descriptor with frame checksum insertion */
6025         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6026                        E1000_ADVTXD_DCMD_DEXT |
6027                        E1000_ADVTXD_DCMD_IFCS;
6028
6029         /* set HW vlan bit if vlan is present */
6030         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6031                                  (E1000_ADVTXD_DCMD_VLE));
6032
6033         /* set segmentation bits for TSO */
6034         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6035                                  (E1000_ADVTXD_DCMD_TSE));
6036
6037         /* set timestamp bit if present */
6038         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6039                                  (E1000_ADVTXD_MAC_TSTAMP));
6040
6041         /* insert frame checksum */
6042         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6043
6044         return cmd_type;
6045 }
6046
6047 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6048                                  union e1000_adv_tx_desc *tx_desc,
6049                                  u32 tx_flags, unsigned int paylen)
6050 {
6051         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6052
6053         /* 82575 requires a unique index per ring */
6054         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6055                 olinfo_status |= tx_ring->reg_idx << 4;
6056
6057         /* insert L4 checksum */
6058         olinfo_status |= IGB_SET_FLAG(tx_flags,
6059                                       IGB_TX_FLAGS_CSUM,
6060                                       (E1000_TXD_POPTS_TXSM << 8));
6061
6062         /* insert IPv4 checksum */
6063         olinfo_status |= IGB_SET_FLAG(tx_flags,
6064                                       IGB_TX_FLAGS_IPV4,
6065                                       (E1000_TXD_POPTS_IXSM << 8));
6066
6067         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6068 }
6069
6070 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6071 {
6072         struct net_device *netdev = tx_ring->netdev;
6073
6074         netif_stop_subqueue(netdev, tx_ring->queue_index);
6075
6076         /* Herbert's original patch had:
6077          *  smp_mb__after_netif_stop_queue();
6078          * but since that doesn't exist yet, just open code it.
6079          */
6080         smp_mb();
6081
6082         /* We need to check again in a case another CPU has just
6083          * made room available.
6084          */
6085         if (igb_desc_unused(tx_ring) < size)
6086                 return -EBUSY;
6087
6088         /* A reprieve! */
6089         netif_wake_subqueue(netdev, tx_ring->queue_index);
6090
6091         u64_stats_update_begin(&tx_ring->tx_syncp2);
6092         tx_ring->tx_stats.restart_queue2++;
6093         u64_stats_update_end(&tx_ring->tx_syncp2);
6094
6095         return 0;
6096 }
6097
6098 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099 {
6100         if (igb_desc_unused(tx_ring) >= size)
6101                 return 0;
6102         return __igb_maybe_stop_tx(tx_ring, size);
6103 }
6104
6105 static int igb_tx_map(struct igb_ring *tx_ring,
6106                       struct igb_tx_buffer *first,
6107                       const u8 hdr_len)
6108 {
6109         struct sk_buff *skb = first->skb;
6110         struct igb_tx_buffer *tx_buffer;
6111         union e1000_adv_tx_desc *tx_desc;
6112         skb_frag_t *frag;
6113         dma_addr_t dma;
6114         unsigned int data_len, size;
6115         u32 tx_flags = first->tx_flags;
6116         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6117         u16 i = tx_ring->next_to_use;
6118
6119         tx_desc = IGB_TX_DESC(tx_ring, i);
6120
6121         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6122
6123         size = skb_headlen(skb);
6124         data_len = skb->data_len;
6125
6126         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6127
6128         tx_buffer = first;
6129
6130         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6131                 if (dma_mapping_error(tx_ring->dev, dma))
6132                         goto dma_error;
6133
6134                 /* record length, and DMA address */
6135                 dma_unmap_len_set(tx_buffer, len, size);
6136                 dma_unmap_addr_set(tx_buffer, dma, dma);
6137
6138                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6139
6140                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6141                         tx_desc->read.cmd_type_len =
6142                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6143
6144                         i++;
6145                         tx_desc++;
6146                         if (i == tx_ring->count) {
6147                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6148                                 i = 0;
6149                         }
6150                         tx_desc->read.olinfo_status = 0;
6151
6152                         dma += IGB_MAX_DATA_PER_TXD;
6153                         size -= IGB_MAX_DATA_PER_TXD;
6154
6155                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6156                 }
6157
6158                 if (likely(!data_len))
6159                         break;
6160
6161                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6162
6163                 i++;
6164                 tx_desc++;
6165                 if (i == tx_ring->count) {
6166                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6167                         i = 0;
6168                 }
6169                 tx_desc->read.olinfo_status = 0;
6170
6171                 size = skb_frag_size(frag);
6172                 data_len -= size;
6173
6174                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6175                                        size, DMA_TO_DEVICE);
6176
6177                 tx_buffer = &tx_ring->tx_buffer_info[i];
6178         }
6179
6180         /* write last descriptor with RS and EOP bits */
6181         cmd_type |= size | IGB_TXD_DCMD;
6182         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6183
6184         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6185
6186         /* set the timestamp */
6187         first->time_stamp = jiffies;
6188
6189         skb_tx_timestamp(skb);
6190
6191         /* Force memory writes to complete before letting h/w know there
6192          * are new descriptors to fetch.  (Only applicable for weak-ordered
6193          * memory model archs, such as IA-64).
6194          *
6195          * We also need this memory barrier to make certain all of the
6196          * status bits have been updated before next_to_watch is written.
6197          */
6198         dma_wmb();
6199
6200         /* set next_to_watch value indicating a packet is present */
6201         first->next_to_watch = tx_desc;
6202
6203         i++;
6204         if (i == tx_ring->count)
6205                 i = 0;
6206
6207         tx_ring->next_to_use = i;
6208
6209         /* Make sure there is space in the ring for the next send. */
6210         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6211
6212         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6213                 writel(i, tx_ring->tail);
6214         }
6215         return 0;
6216
6217 dma_error:
6218         dev_err(tx_ring->dev, "TX DMA map failed\n");
6219         tx_buffer = &tx_ring->tx_buffer_info[i];
6220
6221         /* clear dma mappings for failed tx_buffer_info map */
6222         while (tx_buffer != first) {
6223                 if (dma_unmap_len(tx_buffer, len))
6224                         dma_unmap_page(tx_ring->dev,
6225                                        dma_unmap_addr(tx_buffer, dma),
6226                                        dma_unmap_len(tx_buffer, len),
6227                                        DMA_TO_DEVICE);
6228                 dma_unmap_len_set(tx_buffer, len, 0);
6229
6230                 if (i-- == 0)
6231                         i += tx_ring->count;
6232                 tx_buffer = &tx_ring->tx_buffer_info[i];
6233         }
6234
6235         if (dma_unmap_len(tx_buffer, len))
6236                 dma_unmap_single(tx_ring->dev,
6237                                  dma_unmap_addr(tx_buffer, dma),
6238                                  dma_unmap_len(tx_buffer, len),
6239                                  DMA_TO_DEVICE);
6240         dma_unmap_len_set(tx_buffer, len, 0);
6241
6242         dev_kfree_skb_any(tx_buffer->skb);
6243         tx_buffer->skb = NULL;
6244
6245         tx_ring->next_to_use = i;
6246
6247         return -1;
6248 }
6249
6250 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6251                       struct igb_ring *tx_ring,
6252                       struct xdp_frame *xdpf)
6253 {
6254         union e1000_adv_tx_desc *tx_desc;
6255         u32 len, cmd_type, olinfo_status;
6256         struct igb_tx_buffer *tx_buffer;
6257         dma_addr_t dma;
6258         u16 i;
6259
6260         len = xdpf->len;
6261
6262         if (unlikely(!igb_desc_unused(tx_ring)))
6263                 return IGB_XDP_CONSUMED;
6264
6265         dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6266         if (dma_mapping_error(tx_ring->dev, dma))
6267                 return IGB_XDP_CONSUMED;
6268
6269         /* record the location of the first descriptor for this packet */
6270         tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6271         tx_buffer->bytecount = len;
6272         tx_buffer->gso_segs = 1;
6273         tx_buffer->protocol = 0;
6274
6275         i = tx_ring->next_to_use;
6276         tx_desc = IGB_TX_DESC(tx_ring, i);
6277
6278         dma_unmap_len_set(tx_buffer, len, len);
6279         dma_unmap_addr_set(tx_buffer, dma, dma);
6280         tx_buffer->type = IGB_TYPE_XDP;
6281         tx_buffer->xdpf = xdpf;
6282
6283         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6284
6285         /* put descriptor type bits */
6286         cmd_type = E1000_ADVTXD_DTYP_DATA |
6287                    E1000_ADVTXD_DCMD_DEXT |
6288                    E1000_ADVTXD_DCMD_IFCS;
6289         cmd_type |= len | IGB_TXD_DCMD;
6290         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6291
6292         olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
6293         /* 82575 requires a unique index per ring */
6294         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6295                 olinfo_status |= tx_ring->reg_idx << 4;
6296
6297         tx_desc->read.olinfo_status = olinfo_status;
6298
6299         netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6300
6301         /* set the timestamp */
6302         tx_buffer->time_stamp = jiffies;
6303
6304         /* Avoid any potential race with xdp_xmit and cleanup */
6305         smp_wmb();
6306
6307         /* set next_to_watch value indicating a packet is present */
6308         i++;
6309         if (i == tx_ring->count)
6310                 i = 0;
6311
6312         tx_buffer->next_to_watch = tx_desc;
6313         tx_ring->next_to_use = i;
6314
6315         /* Make sure there is space in the ring for the next send. */
6316         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6317
6318         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6319                 writel(i, tx_ring->tail);
6320
6321         return IGB_XDP_TX;
6322 }
6323
6324 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6325                                 struct igb_ring *tx_ring)
6326 {
6327         struct igb_tx_buffer *first;
6328         int tso;
6329         u32 tx_flags = 0;
6330         unsigned short f;
6331         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6332         __be16 protocol = vlan_get_protocol(skb);
6333         u8 hdr_len = 0;
6334
6335         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6336          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6337          *       + 2 desc gap to keep tail from touching head,
6338          *       + 1 desc for context descriptor,
6339          * otherwise try next time
6340          */
6341         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6342                 count += TXD_USE_COUNT(skb_frag_size(
6343                                                 &skb_shinfo(skb)->frags[f]));
6344
6345         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6346                 /* this is a hard error */
6347                 return NETDEV_TX_BUSY;
6348         }
6349
6350         /* record the location of the first descriptor for this packet */
6351         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6352         first->type = IGB_TYPE_SKB;
6353         first->skb = skb;
6354         first->bytecount = skb->len;
6355         first->gso_segs = 1;
6356
6357         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6358                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6359
6360                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6361                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6362                                            &adapter->state)) {
6363                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6364                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6365
6366                         adapter->ptp_tx_skb = skb_get(skb);
6367                         adapter->ptp_tx_start = jiffies;
6368                         if (adapter->hw.mac.type == e1000_82576)
6369                                 schedule_work(&adapter->ptp_tx_work);
6370                 } else {
6371                         adapter->tx_hwtstamp_skipped++;
6372                 }
6373         }
6374
6375         if (skb_vlan_tag_present(skb)) {
6376                 tx_flags |= IGB_TX_FLAGS_VLAN;
6377                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6378         }
6379
6380         /* record initial flags and protocol */
6381         first->tx_flags = tx_flags;
6382         first->protocol = protocol;
6383
6384         tso = igb_tso(tx_ring, first, &hdr_len);
6385         if (tso < 0)
6386                 goto out_drop;
6387         else if (!tso)
6388                 igb_tx_csum(tx_ring, first);
6389
6390         if (igb_tx_map(tx_ring, first, hdr_len))
6391                 goto cleanup_tx_tstamp;
6392
6393         return NETDEV_TX_OK;
6394
6395 out_drop:
6396         dev_kfree_skb_any(first->skb);
6397         first->skb = NULL;
6398 cleanup_tx_tstamp:
6399         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6400                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6401
6402                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6403                 adapter->ptp_tx_skb = NULL;
6404                 if (adapter->hw.mac.type == e1000_82576)
6405                         cancel_work_sync(&adapter->ptp_tx_work);
6406                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6407         }
6408
6409         return NETDEV_TX_OK;
6410 }
6411
6412 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6413                                                     struct sk_buff *skb)
6414 {
6415         unsigned int r_idx = skb->queue_mapping;
6416
6417         if (r_idx >= adapter->num_tx_queues)
6418                 r_idx = r_idx % adapter->num_tx_queues;
6419
6420         return adapter->tx_ring[r_idx];
6421 }
6422
6423 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6424                                   struct net_device *netdev)
6425 {
6426         struct igb_adapter *adapter = netdev_priv(netdev);
6427
6428         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6429          * in order to meet this minimum size requirement.
6430          */
6431         if (skb_put_padto(skb, 17))
6432                 return NETDEV_TX_OK;
6433
6434         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6435 }
6436
6437 /**
6438  *  igb_tx_timeout - Respond to a Tx Hang
6439  *  @netdev: network interface device structure
6440  *  @txqueue: number of the Tx queue that hung (unused)
6441  **/
6442 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6443 {
6444         struct igb_adapter *adapter = netdev_priv(netdev);
6445         struct e1000_hw *hw = &adapter->hw;
6446
6447         /* Do the reset outside of interrupt context */
6448         adapter->tx_timeout_count++;
6449
6450         if (hw->mac.type >= e1000_82580)
6451                 hw->dev_spec._82575.global_device_reset = true;
6452
6453         schedule_work(&adapter->reset_task);
6454         wr32(E1000_EICS,
6455              (adapter->eims_enable_mask & ~adapter->eims_other));
6456 }
6457
6458 static void igb_reset_task(struct work_struct *work)
6459 {
6460         struct igb_adapter *adapter;
6461         adapter = container_of(work, struct igb_adapter, reset_task);
6462
6463         rtnl_lock();
6464         /* If we're already down or resetting, just bail */
6465         if (test_bit(__IGB_DOWN, &adapter->state) ||
6466             test_bit(__IGB_RESETTING, &adapter->state)) {
6467                 rtnl_unlock();
6468                 return;
6469         }
6470
6471         igb_dump(adapter);
6472         netdev_err(adapter->netdev, "Reset adapter\n");
6473         igb_reinit_locked(adapter);
6474         rtnl_unlock();
6475 }
6476
6477 /**
6478  *  igb_get_stats64 - Get System Network Statistics
6479  *  @netdev: network interface device structure
6480  *  @stats: rtnl_link_stats64 pointer
6481  **/
6482 static void igb_get_stats64(struct net_device *netdev,
6483                             struct rtnl_link_stats64 *stats)
6484 {
6485         struct igb_adapter *adapter = netdev_priv(netdev);
6486
6487         spin_lock(&adapter->stats64_lock);
6488         igb_update_stats(adapter);
6489         memcpy(stats, &adapter->stats64, sizeof(*stats));
6490         spin_unlock(&adapter->stats64_lock);
6491 }
6492
6493 /**
6494  *  igb_change_mtu - Change the Maximum Transfer Unit
6495  *  @netdev: network interface device structure
6496  *  @new_mtu: new value for maximum frame size
6497  *
6498  *  Returns 0 on success, negative on failure
6499  **/
6500 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6501 {
6502         struct igb_adapter *adapter = netdev_priv(netdev);
6503         int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6504
6505         if (adapter->xdp_prog) {
6506                 int i;
6507
6508                 for (i = 0; i < adapter->num_rx_queues; i++) {
6509                         struct igb_ring *ring = adapter->rx_ring[i];
6510
6511                         if (max_frame > igb_rx_bufsz(ring)) {
6512                                 netdev_warn(adapter->netdev,
6513                                             "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6514                                             max_frame);
6515                                 return -EINVAL;
6516                         }
6517                 }
6518         }
6519
6520         /* adjust max frame to be at least the size of a standard frame */
6521         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6522                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6523
6524         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6525                 usleep_range(1000, 2000);
6526
6527         /* igb_down has a dependency on max_frame_size */
6528         adapter->max_frame_size = max_frame;
6529
6530         if (netif_running(netdev))
6531                 igb_down(adapter);
6532
6533         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6534                    netdev->mtu, new_mtu);
6535         netdev->mtu = new_mtu;
6536
6537         if (netif_running(netdev))
6538                 igb_up(adapter);
6539         else
6540                 igb_reset(adapter);
6541
6542         clear_bit(__IGB_RESETTING, &adapter->state);
6543
6544         return 0;
6545 }
6546
6547 /**
6548  *  igb_update_stats - Update the board statistics counters
6549  *  @adapter: board private structure
6550  **/
6551 void igb_update_stats(struct igb_adapter *adapter)
6552 {
6553         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6554         struct e1000_hw *hw = &adapter->hw;
6555         struct pci_dev *pdev = adapter->pdev;
6556         u32 reg, mpc;
6557         int i;
6558         u64 bytes, packets;
6559         unsigned int start;
6560         u64 _bytes, _packets;
6561
6562         /* Prevent stats update while adapter is being reset, or if the pci
6563          * connection is down.
6564          */
6565         if (adapter->link_speed == 0)
6566                 return;
6567         if (pci_channel_offline(pdev))
6568                 return;
6569
6570         bytes = 0;
6571         packets = 0;
6572
6573         rcu_read_lock();
6574         for (i = 0; i < adapter->num_rx_queues; i++) {
6575                 struct igb_ring *ring = adapter->rx_ring[i];
6576                 u32 rqdpc = rd32(E1000_RQDPC(i));
6577                 if (hw->mac.type >= e1000_i210)
6578                         wr32(E1000_RQDPC(i), 0);
6579
6580                 if (rqdpc) {
6581                         ring->rx_stats.drops += rqdpc;
6582                         net_stats->rx_fifo_errors += rqdpc;
6583                 }
6584
6585                 do {
6586                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6587                         _bytes = ring->rx_stats.bytes;
6588                         _packets = ring->rx_stats.packets;
6589                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6590                 bytes += _bytes;
6591                 packets += _packets;
6592         }
6593
6594         net_stats->rx_bytes = bytes;
6595         net_stats->rx_packets = packets;
6596
6597         bytes = 0;
6598         packets = 0;
6599         for (i = 0; i < adapter->num_tx_queues; i++) {
6600                 struct igb_ring *ring = adapter->tx_ring[i];
6601                 do {
6602                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6603                         _bytes = ring->tx_stats.bytes;
6604                         _packets = ring->tx_stats.packets;
6605                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6606                 bytes += _bytes;
6607                 packets += _packets;
6608         }
6609         net_stats->tx_bytes = bytes;
6610         net_stats->tx_packets = packets;
6611         rcu_read_unlock();
6612
6613         /* read stats registers */
6614         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6615         adapter->stats.gprc += rd32(E1000_GPRC);
6616         adapter->stats.gorc += rd32(E1000_GORCL);
6617         rd32(E1000_GORCH); /* clear GORCL */
6618         adapter->stats.bprc += rd32(E1000_BPRC);
6619         adapter->stats.mprc += rd32(E1000_MPRC);
6620         adapter->stats.roc += rd32(E1000_ROC);
6621
6622         adapter->stats.prc64 += rd32(E1000_PRC64);
6623         adapter->stats.prc127 += rd32(E1000_PRC127);
6624         adapter->stats.prc255 += rd32(E1000_PRC255);
6625         adapter->stats.prc511 += rd32(E1000_PRC511);
6626         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6627         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6628         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6629         adapter->stats.sec += rd32(E1000_SEC);
6630
6631         mpc = rd32(E1000_MPC);
6632         adapter->stats.mpc += mpc;
6633         net_stats->rx_fifo_errors += mpc;
6634         adapter->stats.scc += rd32(E1000_SCC);
6635         adapter->stats.ecol += rd32(E1000_ECOL);
6636         adapter->stats.mcc += rd32(E1000_MCC);
6637         adapter->stats.latecol += rd32(E1000_LATECOL);
6638         adapter->stats.dc += rd32(E1000_DC);
6639         adapter->stats.rlec += rd32(E1000_RLEC);
6640         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6641         adapter->stats.xontxc += rd32(E1000_XONTXC);
6642         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6643         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6644         adapter->stats.fcruc += rd32(E1000_FCRUC);
6645         adapter->stats.gptc += rd32(E1000_GPTC);
6646         adapter->stats.gotc += rd32(E1000_GOTCL);
6647         rd32(E1000_GOTCH); /* clear GOTCL */
6648         adapter->stats.rnbc += rd32(E1000_RNBC);
6649         adapter->stats.ruc += rd32(E1000_RUC);
6650         adapter->stats.rfc += rd32(E1000_RFC);
6651         adapter->stats.rjc += rd32(E1000_RJC);
6652         adapter->stats.tor += rd32(E1000_TORH);
6653         adapter->stats.tot += rd32(E1000_TOTH);
6654         adapter->stats.tpr += rd32(E1000_TPR);
6655
6656         adapter->stats.ptc64 += rd32(E1000_PTC64);
6657         adapter->stats.ptc127 += rd32(E1000_PTC127);
6658         adapter->stats.ptc255 += rd32(E1000_PTC255);
6659         adapter->stats.ptc511 += rd32(E1000_PTC511);
6660         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6661         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6662
6663         adapter->stats.mptc += rd32(E1000_MPTC);
6664         adapter->stats.bptc += rd32(E1000_BPTC);
6665
6666         adapter->stats.tpt += rd32(E1000_TPT);
6667         adapter->stats.colc += rd32(E1000_COLC);
6668
6669         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6670         /* read internal phy specific stats */
6671         reg = rd32(E1000_CTRL_EXT);
6672         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6673                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6674
6675                 /* this stat has invalid values on i210/i211 */
6676                 if ((hw->mac.type != e1000_i210) &&
6677                     (hw->mac.type != e1000_i211))
6678                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6679         }
6680
6681         adapter->stats.tsctc += rd32(E1000_TSCTC);
6682         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6683
6684         adapter->stats.iac += rd32(E1000_IAC);
6685         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6686         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6687         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6688         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6689         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6690         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6691         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6692         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6693
6694         /* Fill out the OS statistics structure */
6695         net_stats->multicast = adapter->stats.mprc;
6696         net_stats->collisions = adapter->stats.colc;
6697
6698         /* Rx Errors */
6699
6700         /* RLEC on some newer hardware can be incorrect so build
6701          * our own version based on RUC and ROC
6702          */
6703         net_stats->rx_errors = adapter->stats.rxerrc +
6704                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6705                 adapter->stats.ruc + adapter->stats.roc +
6706                 adapter->stats.cexterr;
6707         net_stats->rx_length_errors = adapter->stats.ruc +
6708                                       adapter->stats.roc;
6709         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6710         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6711         net_stats->rx_missed_errors = adapter->stats.mpc;
6712
6713         /* Tx Errors */
6714         net_stats->tx_errors = adapter->stats.ecol +
6715                                adapter->stats.latecol;
6716         net_stats->tx_aborted_errors = adapter->stats.ecol;
6717         net_stats->tx_window_errors = adapter->stats.latecol;
6718         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6719
6720         /* Tx Dropped needs to be maintained elsewhere */
6721
6722         /* Management Stats */
6723         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6724         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6725         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6726
6727         /* OS2BMC Stats */
6728         reg = rd32(E1000_MANC);
6729         if (reg & E1000_MANC_EN_BMC2OS) {
6730                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6731                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6732                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6733                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6734         }
6735 }
6736
6737 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6738 {
6739         struct e1000_hw *hw = &adapter->hw;
6740         struct ptp_clock_event event;
6741         struct timespec64 ts;
6742         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6743
6744         if (tsicr & TSINTR_SYS_WRAP) {
6745                 event.type = PTP_CLOCK_PPS;
6746                 if (adapter->ptp_caps.pps)
6747                         ptp_clock_event(adapter->ptp_clock, &event);
6748                 ack |= TSINTR_SYS_WRAP;
6749         }
6750
6751         if (tsicr & E1000_TSICR_TXTS) {
6752                 /* retrieve hardware timestamp */
6753                 schedule_work(&adapter->ptp_tx_work);
6754                 ack |= E1000_TSICR_TXTS;
6755         }
6756
6757         if (tsicr & TSINTR_TT0) {
6758                 spin_lock(&adapter->tmreg_lock);
6759                 ts = timespec64_add(adapter->perout[0].start,
6760                                     adapter->perout[0].period);
6761                 /* u32 conversion of tv_sec is safe until y2106 */
6762                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6763                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6764                 tsauxc = rd32(E1000_TSAUXC);
6765                 tsauxc |= TSAUXC_EN_TT0;
6766                 wr32(E1000_TSAUXC, tsauxc);
6767                 adapter->perout[0].start = ts;
6768                 spin_unlock(&adapter->tmreg_lock);
6769                 ack |= TSINTR_TT0;
6770         }
6771
6772         if (tsicr & TSINTR_TT1) {
6773                 spin_lock(&adapter->tmreg_lock);
6774                 ts = timespec64_add(adapter->perout[1].start,
6775                                     adapter->perout[1].period);
6776                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6777                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6778                 tsauxc = rd32(E1000_TSAUXC);
6779                 tsauxc |= TSAUXC_EN_TT1;
6780                 wr32(E1000_TSAUXC, tsauxc);
6781                 adapter->perout[1].start = ts;
6782                 spin_unlock(&adapter->tmreg_lock);
6783                 ack |= TSINTR_TT1;
6784         }
6785
6786         if (tsicr & TSINTR_AUTT0) {
6787                 nsec = rd32(E1000_AUXSTMPL0);
6788                 sec  = rd32(E1000_AUXSTMPH0);
6789                 event.type = PTP_CLOCK_EXTTS;
6790                 event.index = 0;
6791                 event.timestamp = sec * 1000000000ULL + nsec;
6792                 ptp_clock_event(adapter->ptp_clock, &event);
6793                 ack |= TSINTR_AUTT0;
6794         }
6795
6796         if (tsicr & TSINTR_AUTT1) {
6797                 nsec = rd32(E1000_AUXSTMPL1);
6798                 sec  = rd32(E1000_AUXSTMPH1);
6799                 event.type = PTP_CLOCK_EXTTS;
6800                 event.index = 1;
6801                 event.timestamp = sec * 1000000000ULL + nsec;
6802                 ptp_clock_event(adapter->ptp_clock, &event);
6803                 ack |= TSINTR_AUTT1;
6804         }
6805
6806         /* acknowledge the interrupts */
6807         wr32(E1000_TSICR, ack);
6808 }
6809
6810 static irqreturn_t igb_msix_other(int irq, void *data)
6811 {
6812         struct igb_adapter *adapter = data;
6813         struct e1000_hw *hw = &adapter->hw;
6814         u32 icr = rd32(E1000_ICR);
6815         /* reading ICR causes bit 31 of EICR to be cleared */
6816
6817         if (icr & E1000_ICR_DRSTA)
6818                 schedule_work(&adapter->reset_task);
6819
6820         if (icr & E1000_ICR_DOUTSYNC) {
6821                 /* HW is reporting DMA is out of sync */
6822                 adapter->stats.doosync++;
6823                 /* The DMA Out of Sync is also indication of a spoof event
6824                  * in IOV mode. Check the Wrong VM Behavior register to
6825                  * see if it is really a spoof event.
6826                  */
6827                 igb_check_wvbr(adapter);
6828         }
6829
6830         /* Check for a mailbox event */
6831         if (icr & E1000_ICR_VMMB)
6832                 igb_msg_task(adapter);
6833
6834         if (icr & E1000_ICR_LSC) {
6835                 hw->mac.get_link_status = 1;
6836                 /* guard against interrupt when we're going down */
6837                 if (!test_bit(__IGB_DOWN, &adapter->state))
6838                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6839         }
6840
6841         if (icr & E1000_ICR_TS)
6842                 igb_tsync_interrupt(adapter);
6843
6844         wr32(E1000_EIMS, adapter->eims_other);
6845
6846         return IRQ_HANDLED;
6847 }
6848
6849 static void igb_write_itr(struct igb_q_vector *q_vector)
6850 {
6851         struct igb_adapter *adapter = q_vector->adapter;
6852         u32 itr_val = q_vector->itr_val & 0x7FFC;
6853
6854         if (!q_vector->set_itr)
6855                 return;
6856
6857         if (!itr_val)
6858                 itr_val = 0x4;
6859
6860         if (adapter->hw.mac.type == e1000_82575)
6861                 itr_val |= itr_val << 16;
6862         else
6863                 itr_val |= E1000_EITR_CNT_IGNR;
6864
6865         writel(itr_val, q_vector->itr_register);
6866         q_vector->set_itr = 0;
6867 }
6868
6869 static irqreturn_t igb_msix_ring(int irq, void *data)
6870 {
6871         struct igb_q_vector *q_vector = data;
6872
6873         /* Write the ITR value calculated from the previous interrupt. */
6874         igb_write_itr(q_vector);
6875
6876         napi_schedule(&q_vector->napi);
6877
6878         return IRQ_HANDLED;
6879 }
6880
6881 #ifdef CONFIG_IGB_DCA
6882 static void igb_update_tx_dca(struct igb_adapter *adapter,
6883                               struct igb_ring *tx_ring,
6884                               int cpu)
6885 {
6886         struct e1000_hw *hw = &adapter->hw;
6887         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6888
6889         if (hw->mac.type != e1000_82575)
6890                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6891
6892         /* We can enable relaxed ordering for reads, but not writes when
6893          * DCA is enabled.  This is due to a known issue in some chipsets
6894          * which will cause the DCA tag to be cleared.
6895          */
6896         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6897                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6898                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6899
6900         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6901 }
6902
6903 static void igb_update_rx_dca(struct igb_adapter *adapter,
6904                               struct igb_ring *rx_ring,
6905                               int cpu)
6906 {
6907         struct e1000_hw *hw = &adapter->hw;
6908         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6909
6910         if (hw->mac.type != e1000_82575)
6911                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6912
6913         /* We can enable relaxed ordering for reads, but not writes when
6914          * DCA is enabled.  This is due to a known issue in some chipsets
6915          * which will cause the DCA tag to be cleared.
6916          */
6917         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6918                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6919
6920         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6921 }
6922
6923 static void igb_update_dca(struct igb_q_vector *q_vector)
6924 {
6925         struct igb_adapter *adapter = q_vector->adapter;
6926         int cpu = get_cpu();
6927
6928         if (q_vector->cpu == cpu)
6929                 goto out_no_update;
6930
6931         if (q_vector->tx.ring)
6932                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6933
6934         if (q_vector->rx.ring)
6935                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6936
6937         q_vector->cpu = cpu;
6938 out_no_update:
6939         put_cpu();
6940 }
6941
6942 static void igb_setup_dca(struct igb_adapter *adapter)
6943 {
6944         struct e1000_hw *hw = &adapter->hw;
6945         int i;
6946
6947         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6948                 return;
6949
6950         /* Always use CB2 mode, difference is masked in the CB driver. */
6951         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6952
6953         for (i = 0; i < adapter->num_q_vectors; i++) {
6954                 adapter->q_vector[i]->cpu = -1;
6955                 igb_update_dca(adapter->q_vector[i]);
6956         }
6957 }
6958
6959 static int __igb_notify_dca(struct device *dev, void *data)
6960 {
6961         struct net_device *netdev = dev_get_drvdata(dev);
6962         struct igb_adapter *adapter = netdev_priv(netdev);
6963         struct pci_dev *pdev = adapter->pdev;
6964         struct e1000_hw *hw = &adapter->hw;
6965         unsigned long event = *(unsigned long *)data;
6966
6967         switch (event) {
6968         case DCA_PROVIDER_ADD:
6969                 /* if already enabled, don't do it again */
6970                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6971                         break;
6972                 if (dca_add_requester(dev) == 0) {
6973                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6974                         dev_info(&pdev->dev, "DCA enabled\n");
6975                         igb_setup_dca(adapter);
6976                         break;
6977                 }
6978                 fallthrough; /* since DCA is disabled. */
6979         case DCA_PROVIDER_REMOVE:
6980                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6981                         /* without this a class_device is left
6982                          * hanging around in the sysfs model
6983                          */
6984                         dca_remove_requester(dev);
6985                         dev_info(&pdev->dev, "DCA disabled\n");
6986                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6987                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6988                 }
6989                 break;
6990         }
6991
6992         return 0;
6993 }
6994
6995 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6996                           void *p)
6997 {
6998         int ret_val;
6999
7000         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7001                                          __igb_notify_dca);
7002
7003         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7004 }
7005 #endif /* CONFIG_IGB_DCA */
7006
7007 #ifdef CONFIG_PCI_IOV
7008 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7009 {
7010         unsigned char mac_addr[ETH_ALEN];
7011
7012         eth_zero_addr(mac_addr);
7013         igb_set_vf_mac(adapter, vf, mac_addr);
7014
7015         /* By default spoof check is enabled for all VFs */
7016         adapter->vf_data[vf].spoofchk_enabled = true;
7017
7018         /* By default VFs are not trusted */
7019         adapter->vf_data[vf].trusted = false;
7020
7021         return 0;
7022 }
7023
7024 #endif
7025 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7026 {
7027         struct e1000_hw *hw = &adapter->hw;
7028         u32 ping;
7029         int i;
7030
7031         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7032                 ping = E1000_PF_CONTROL_MSG;
7033                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7034                         ping |= E1000_VT_MSGTYPE_CTS;
7035                 igb_write_mbx(hw, &ping, 1, i);
7036         }
7037 }
7038
7039 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7040 {
7041         struct e1000_hw *hw = &adapter->hw;
7042         u32 vmolr = rd32(E1000_VMOLR(vf));
7043         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7044
7045         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7046                             IGB_VF_FLAG_MULTI_PROMISC);
7047         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7048
7049         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7050                 vmolr |= E1000_VMOLR_MPME;
7051                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7052                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7053         } else {
7054                 /* if we have hashes and we are clearing a multicast promisc
7055                  * flag we need to write the hashes to the MTA as this step
7056                  * was previously skipped
7057                  */
7058                 if (vf_data->num_vf_mc_hashes > 30) {
7059                         vmolr |= E1000_VMOLR_MPME;
7060                 } else if (vf_data->num_vf_mc_hashes) {
7061                         int j;
7062
7063                         vmolr |= E1000_VMOLR_ROMPE;
7064                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7065                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7066                 }
7067         }
7068
7069         wr32(E1000_VMOLR(vf), vmolr);
7070
7071         /* there are flags left unprocessed, likely not supported */
7072         if (*msgbuf & E1000_VT_MSGINFO_MASK)
7073                 return -EINVAL;
7074
7075         return 0;
7076 }
7077
7078 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7079                                   u32 *msgbuf, u32 vf)
7080 {
7081         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7082         u16 *hash_list = (u16 *)&msgbuf[1];
7083         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7084         int i;
7085
7086         /* salt away the number of multicast addresses assigned
7087          * to this VF for later use to restore when the PF multi cast
7088          * list changes
7089          */
7090         vf_data->num_vf_mc_hashes = n;
7091
7092         /* only up to 30 hash values supported */
7093         if (n > 30)
7094                 n = 30;
7095
7096         /* store the hashes for later use */
7097         for (i = 0; i < n; i++)
7098                 vf_data->vf_mc_hashes[i] = hash_list[i];
7099
7100         /* Flush and reset the mta with the new values */
7101         igb_set_rx_mode(adapter->netdev);
7102
7103         return 0;
7104 }
7105
7106 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7107 {
7108         struct e1000_hw *hw = &adapter->hw;
7109         struct vf_data_storage *vf_data;
7110         int i, j;
7111
7112         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7113                 u32 vmolr = rd32(E1000_VMOLR(i));
7114
7115                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7116
7117                 vf_data = &adapter->vf_data[i];
7118
7119                 if ((vf_data->num_vf_mc_hashes > 30) ||
7120                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7121                         vmolr |= E1000_VMOLR_MPME;
7122                 } else if (vf_data->num_vf_mc_hashes) {
7123                         vmolr |= E1000_VMOLR_ROMPE;
7124                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7125                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7126                 }
7127                 wr32(E1000_VMOLR(i), vmolr);
7128         }
7129 }
7130
7131 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7132 {
7133         struct e1000_hw *hw = &adapter->hw;
7134         u32 pool_mask, vlvf_mask, i;
7135
7136         /* create mask for VF and other pools */
7137         pool_mask = E1000_VLVF_POOLSEL_MASK;
7138         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7139
7140         /* drop PF from pool bits */
7141         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7142                              adapter->vfs_allocated_count);
7143
7144         /* Find the vlan filter for this id */
7145         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7146                 u32 vlvf = rd32(E1000_VLVF(i));
7147                 u32 vfta_mask, vid, vfta;
7148
7149                 /* remove the vf from the pool */
7150                 if (!(vlvf & vlvf_mask))
7151                         continue;
7152
7153                 /* clear out bit from VLVF */
7154                 vlvf ^= vlvf_mask;
7155
7156                 /* if other pools are present, just remove ourselves */
7157                 if (vlvf & pool_mask)
7158                         goto update_vlvfb;
7159
7160                 /* if PF is present, leave VFTA */
7161                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7162                         goto update_vlvf;
7163
7164                 vid = vlvf & E1000_VLVF_VLANID_MASK;
7165                 vfta_mask = BIT(vid % 32);
7166
7167                 /* clear bit from VFTA */
7168                 vfta = adapter->shadow_vfta[vid / 32];
7169                 if (vfta & vfta_mask)
7170                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7171 update_vlvf:
7172                 /* clear pool selection enable */
7173                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7174                         vlvf &= E1000_VLVF_POOLSEL_MASK;
7175                 else
7176                         vlvf = 0;
7177 update_vlvfb:
7178                 /* clear pool bits */
7179                 wr32(E1000_VLVF(i), vlvf);
7180         }
7181 }
7182
7183 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7184 {
7185         u32 vlvf;
7186         int idx;
7187
7188         /* short cut the special case */
7189         if (vlan == 0)
7190                 return 0;
7191
7192         /* Search for the VLAN id in the VLVF entries */
7193         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7194                 vlvf = rd32(E1000_VLVF(idx));
7195                 if ((vlvf & VLAN_VID_MASK) == vlan)
7196                         break;
7197         }
7198
7199         return idx;
7200 }
7201
7202 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7203 {
7204         struct e1000_hw *hw = &adapter->hw;
7205         u32 bits, pf_id;
7206         int idx;
7207
7208         idx = igb_find_vlvf_entry(hw, vid);
7209         if (!idx)
7210                 return;
7211
7212         /* See if any other pools are set for this VLAN filter
7213          * entry other than the PF.
7214          */
7215         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7216         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7217         bits &= rd32(E1000_VLVF(idx));
7218
7219         /* Disable the filter so this falls into the default pool. */
7220         if (!bits) {
7221                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7222                         wr32(E1000_VLVF(idx), BIT(pf_id));
7223                 else
7224                         wr32(E1000_VLVF(idx), 0);
7225         }
7226 }
7227
7228 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7229                            bool add, u32 vf)
7230 {
7231         int pf_id = adapter->vfs_allocated_count;
7232         struct e1000_hw *hw = &adapter->hw;
7233         int err;
7234
7235         /* If VLAN overlaps with one the PF is currently monitoring make
7236          * sure that we are able to allocate a VLVF entry.  This may be
7237          * redundant but it guarantees PF will maintain visibility to
7238          * the VLAN.
7239          */
7240         if (add && test_bit(vid, adapter->active_vlans)) {
7241                 err = igb_vfta_set(hw, vid, pf_id, true, false);
7242                 if (err)
7243                         return err;
7244         }
7245
7246         err = igb_vfta_set(hw, vid, vf, add, false);
7247
7248         if (add && !err)
7249                 return err;
7250
7251         /* If we failed to add the VF VLAN or we are removing the VF VLAN
7252          * we may need to drop the PF pool bit in order to allow us to free
7253          * up the VLVF resources.
7254          */
7255         if (test_bit(vid, adapter->active_vlans) ||
7256             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7257                 igb_update_pf_vlvf(adapter, vid);
7258
7259         return err;
7260 }
7261
7262 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7263 {
7264         struct e1000_hw *hw = &adapter->hw;
7265
7266         if (vid)
7267                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7268         else
7269                 wr32(E1000_VMVIR(vf), 0);
7270 }
7271
7272 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7273                                 u16 vlan, u8 qos)
7274 {
7275         int err;
7276
7277         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7278         if (err)
7279                 return err;
7280
7281         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7282         igb_set_vmolr(adapter, vf, !vlan);
7283
7284         /* revoke access to previous VLAN */
7285         if (vlan != adapter->vf_data[vf].pf_vlan)
7286                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7287                                 false, vf);
7288
7289         adapter->vf_data[vf].pf_vlan = vlan;
7290         adapter->vf_data[vf].pf_qos = qos;
7291         igb_set_vf_vlan_strip(adapter, vf, true);
7292         dev_info(&adapter->pdev->dev,
7293                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7294         if (test_bit(__IGB_DOWN, &adapter->state)) {
7295                 dev_warn(&adapter->pdev->dev,
7296                          "The VF VLAN has been set, but the PF device is not up.\n");
7297                 dev_warn(&adapter->pdev->dev,
7298                          "Bring the PF device up before attempting to use the VF device.\n");
7299         }
7300
7301         return err;
7302 }
7303
7304 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7305 {
7306         /* Restore tagless access via VLAN 0 */
7307         igb_set_vf_vlan(adapter, 0, true, vf);
7308
7309         igb_set_vmvir(adapter, 0, vf);
7310         igb_set_vmolr(adapter, vf, true);
7311
7312         /* Remove any PF assigned VLAN */
7313         if (adapter->vf_data[vf].pf_vlan)
7314                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7315                                 false, vf);
7316
7317         adapter->vf_data[vf].pf_vlan = 0;
7318         adapter->vf_data[vf].pf_qos = 0;
7319         igb_set_vf_vlan_strip(adapter, vf, false);
7320
7321         return 0;
7322 }
7323
7324 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7325                                u16 vlan, u8 qos, __be16 vlan_proto)
7326 {
7327         struct igb_adapter *adapter = netdev_priv(netdev);
7328
7329         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7330                 return -EINVAL;
7331
7332         if (vlan_proto != htons(ETH_P_8021Q))
7333                 return -EPROTONOSUPPORT;
7334
7335         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7336                                igb_disable_port_vlan(adapter, vf);
7337 }
7338
7339 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7340 {
7341         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7342         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7343         int ret;
7344
7345         if (adapter->vf_data[vf].pf_vlan)
7346                 return -1;
7347
7348         /* VLAN 0 is a special case, don't allow it to be removed */
7349         if (!vid && !add)
7350                 return 0;
7351
7352         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7353         if (!ret)
7354                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7355         return ret;
7356 }
7357
7358 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7359 {
7360         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7361
7362         /* clear flags - except flag that indicates PF has set the MAC */
7363         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7364         vf_data->last_nack = jiffies;
7365
7366         /* reset vlans for device */
7367         igb_clear_vf_vfta(adapter, vf);
7368         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7369         igb_set_vmvir(adapter, vf_data->pf_vlan |
7370                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7371         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7372         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7373
7374         /* reset multicast table array for vf */
7375         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7376
7377         /* Flush and reset the mta with the new values */
7378         igb_set_rx_mode(adapter->netdev);
7379 }
7380
7381 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7382 {
7383         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7384
7385         /* clear mac address as we were hotplug removed/added */
7386         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7387                 eth_zero_addr(vf_mac);
7388
7389         /* process remaining reset events */
7390         igb_vf_reset(adapter, vf);
7391 }
7392
7393 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7394 {
7395         struct e1000_hw *hw = &adapter->hw;
7396         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7397         u32 reg, msgbuf[3];
7398         u8 *addr = (u8 *)(&msgbuf[1]);
7399
7400         /* process all the same items cleared in a function level reset */
7401         igb_vf_reset(adapter, vf);
7402
7403         /* set vf mac address */
7404         igb_set_vf_mac(adapter, vf, vf_mac);
7405
7406         /* enable transmit and receive for vf */
7407         reg = rd32(E1000_VFTE);
7408         wr32(E1000_VFTE, reg | BIT(vf));
7409         reg = rd32(E1000_VFRE);
7410         wr32(E1000_VFRE, reg | BIT(vf));
7411
7412         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7413
7414         /* reply to reset with ack and vf mac address */
7415         if (!is_zero_ether_addr(vf_mac)) {
7416                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7417                 memcpy(addr, vf_mac, ETH_ALEN);
7418         } else {
7419                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7420         }
7421         igb_write_mbx(hw, msgbuf, 3, vf);
7422 }
7423
7424 static void igb_flush_mac_table(struct igb_adapter *adapter)
7425 {
7426         struct e1000_hw *hw = &adapter->hw;
7427         int i;
7428
7429         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7430                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7431                 eth_zero_addr(adapter->mac_table[i].addr);
7432                 adapter->mac_table[i].queue = 0;
7433                 igb_rar_set_index(adapter, i);
7434         }
7435 }
7436
7437 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7438 {
7439         struct e1000_hw *hw = &adapter->hw;
7440         /* do not count rar entries reserved for VFs MAC addresses */
7441         int rar_entries = hw->mac.rar_entry_count -
7442                           adapter->vfs_allocated_count;
7443         int i, count = 0;
7444
7445         for (i = 0; i < rar_entries; i++) {
7446                 /* do not count default entries */
7447                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7448                         continue;
7449
7450                 /* do not count "in use" entries for different queues */
7451                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7452                     (adapter->mac_table[i].queue != queue))
7453                         continue;
7454
7455                 count++;
7456         }
7457
7458         return count;
7459 }
7460
7461 /* Set default MAC address for the PF in the first RAR entry */
7462 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7463 {
7464         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7465
7466         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7467         mac_table->queue = adapter->vfs_allocated_count;
7468         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7469
7470         igb_rar_set_index(adapter, 0);
7471 }
7472
7473 /* If the filter to be added and an already existing filter express
7474  * the same address and address type, it should be possible to only
7475  * override the other configurations, for example the queue to steer
7476  * traffic.
7477  */
7478 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7479                                       const u8 *addr, const u8 flags)
7480 {
7481         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7482                 return true;
7483
7484         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7485             (flags & IGB_MAC_STATE_SRC_ADDR))
7486                 return false;
7487
7488         if (!ether_addr_equal(addr, entry->addr))
7489                 return false;
7490
7491         return true;
7492 }
7493
7494 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7495  * 'flags' is used to indicate what kind of match is made, match is by
7496  * default for the destination address, if matching by source address
7497  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7498  */
7499 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7500                                     const u8 *addr, const u8 queue,
7501                                     const u8 flags)
7502 {
7503         struct e1000_hw *hw = &adapter->hw;
7504         int rar_entries = hw->mac.rar_entry_count -
7505                           adapter->vfs_allocated_count;
7506         int i;
7507
7508         if (is_zero_ether_addr(addr))
7509                 return -EINVAL;
7510
7511         /* Search for the first empty entry in the MAC table.
7512          * Do not touch entries at the end of the table reserved for the VF MAC
7513          * addresses.
7514          */
7515         for (i = 0; i < rar_entries; i++) {
7516                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7517                                                addr, flags))
7518                         continue;
7519
7520                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7521                 adapter->mac_table[i].queue = queue;
7522                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7523
7524                 igb_rar_set_index(adapter, i);
7525                 return i;
7526         }
7527
7528         return -ENOSPC;
7529 }
7530
7531 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7532                               const u8 queue)
7533 {
7534         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7535 }
7536
7537 /* Remove a MAC filter for 'addr' directing matching traffic to
7538  * 'queue', 'flags' is used to indicate what kind of match need to be
7539  * removed, match is by default for the destination address, if
7540  * matching by source address is to be removed the flag
7541  * IGB_MAC_STATE_SRC_ADDR can be used.
7542  */
7543 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7544                                     const u8 *addr, const u8 queue,
7545                                     const u8 flags)
7546 {
7547         struct e1000_hw *hw = &adapter->hw;
7548         int rar_entries = hw->mac.rar_entry_count -
7549                           adapter->vfs_allocated_count;
7550         int i;
7551
7552         if (is_zero_ether_addr(addr))
7553                 return -EINVAL;
7554
7555         /* Search for matching entry in the MAC table based on given address
7556          * and queue. Do not touch entries at the end of the table reserved
7557          * for the VF MAC addresses.
7558          */
7559         for (i = 0; i < rar_entries; i++) {
7560                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7561                         continue;
7562                 if ((adapter->mac_table[i].state & flags) != flags)
7563                         continue;
7564                 if (adapter->mac_table[i].queue != queue)
7565                         continue;
7566                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7567                         continue;
7568
7569                 /* When a filter for the default address is "deleted",
7570                  * we return it to its initial configuration
7571                  */
7572                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7573                         adapter->mac_table[i].state =
7574                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7575                         adapter->mac_table[i].queue =
7576                                 adapter->vfs_allocated_count;
7577                 } else {
7578                         adapter->mac_table[i].state = 0;
7579                         adapter->mac_table[i].queue = 0;
7580                         eth_zero_addr(adapter->mac_table[i].addr);
7581                 }
7582
7583                 igb_rar_set_index(adapter, i);
7584                 return 0;
7585         }
7586
7587         return -ENOENT;
7588 }
7589
7590 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7591                               const u8 queue)
7592 {
7593         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7594 }
7595
7596 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7597                                 const u8 *addr, u8 queue, u8 flags)
7598 {
7599         struct e1000_hw *hw = &adapter->hw;
7600
7601         /* In theory, this should be supported on 82575 as well, but
7602          * that part wasn't easily accessible during development.
7603          */
7604         if (hw->mac.type != e1000_i210)
7605                 return -EOPNOTSUPP;
7606
7607         return igb_add_mac_filter_flags(adapter, addr, queue,
7608                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7609 }
7610
7611 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7612                                 const u8 *addr, u8 queue, u8 flags)
7613 {
7614         return igb_del_mac_filter_flags(adapter, addr, queue,
7615                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7616 }
7617
7618 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7619 {
7620         struct igb_adapter *adapter = netdev_priv(netdev);
7621         int ret;
7622
7623         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7624
7625         return min_t(int, ret, 0);
7626 }
7627
7628 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7629 {
7630         struct igb_adapter *adapter = netdev_priv(netdev);
7631
7632         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7633
7634         return 0;
7635 }
7636
7637 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7638                                  const u32 info, const u8 *addr)
7639 {
7640         struct pci_dev *pdev = adapter->pdev;
7641         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7642         struct list_head *pos;
7643         struct vf_mac_filter *entry = NULL;
7644         int ret = 0;
7645
7646         switch (info) {
7647         case E1000_VF_MAC_FILTER_CLR:
7648                 /* remove all unicast MAC filters related to the current VF */
7649                 list_for_each(pos, &adapter->vf_macs.l) {
7650                         entry = list_entry(pos, struct vf_mac_filter, l);
7651                         if (entry->vf == vf) {
7652                                 entry->vf = -1;
7653                                 entry->free = true;
7654                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7655                         }
7656                 }
7657                 break;
7658         case E1000_VF_MAC_FILTER_ADD:
7659                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7660                     !vf_data->trusted) {
7661                         dev_warn(&pdev->dev,
7662                                  "VF %d requested MAC filter but is administratively denied\n",
7663                                  vf);
7664                         return -EINVAL;
7665                 }
7666                 if (!is_valid_ether_addr(addr)) {
7667                         dev_warn(&pdev->dev,
7668                                  "VF %d attempted to set invalid MAC filter\n",
7669                                  vf);
7670                         return -EINVAL;
7671                 }
7672
7673                 /* try to find empty slot in the list */
7674                 list_for_each(pos, &adapter->vf_macs.l) {
7675                         entry = list_entry(pos, struct vf_mac_filter, l);
7676                         if (entry->free)
7677                                 break;
7678                 }
7679
7680                 if (entry && entry->free) {
7681                         entry->free = false;
7682                         entry->vf = vf;
7683                         ether_addr_copy(entry->vf_mac, addr);
7684
7685                         ret = igb_add_mac_filter(adapter, addr, vf);
7686                         ret = min_t(int, ret, 0);
7687                 } else {
7688                         ret = -ENOSPC;
7689                 }
7690
7691                 if (ret == -ENOSPC)
7692                         dev_warn(&pdev->dev,
7693                                  "VF %d has requested MAC filter but there is no space for it\n",
7694                                  vf);
7695                 break;
7696         default:
7697                 ret = -EINVAL;
7698                 break;
7699         }
7700
7701         return ret;
7702 }
7703
7704 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7705 {
7706         struct pci_dev *pdev = adapter->pdev;
7707         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7708         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7709
7710         /* The VF MAC Address is stored in a packed array of bytes
7711          * starting at the second 32 bit word of the msg array
7712          */
7713         unsigned char *addr = (unsigned char *)&msg[1];
7714         int ret = 0;
7715
7716         if (!info) {
7717                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7718                     !vf_data->trusted) {
7719                         dev_warn(&pdev->dev,
7720                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7721                                  vf);
7722                         return -EINVAL;
7723                 }
7724
7725                 if (!is_valid_ether_addr(addr)) {
7726                         dev_warn(&pdev->dev,
7727                                  "VF %d attempted to set invalid MAC\n",
7728                                  vf);
7729                         return -EINVAL;
7730                 }
7731
7732                 ret = igb_set_vf_mac(adapter, vf, addr);
7733         } else {
7734                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7735         }
7736
7737         return ret;
7738 }
7739
7740 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7741 {
7742         struct e1000_hw *hw = &adapter->hw;
7743         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7744         u32 msg = E1000_VT_MSGTYPE_NACK;
7745
7746         /* if device isn't clear to send it shouldn't be reading either */
7747         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7748             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7749                 igb_write_mbx(hw, &msg, 1, vf);
7750                 vf_data->last_nack = jiffies;
7751         }
7752 }
7753
7754 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7755 {
7756         struct pci_dev *pdev = adapter->pdev;
7757         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7758         struct e1000_hw *hw = &adapter->hw;
7759         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7760         s32 retval;
7761
7762         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7763
7764         if (retval) {
7765                 /* if receive failed revoke VF CTS stats and restart init */
7766                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7767                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7768                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7769                         goto unlock;
7770                 goto out;
7771         }
7772
7773         /* this is a message we already processed, do nothing */
7774         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7775                 goto unlock;
7776
7777         /* until the vf completes a reset it should not be
7778          * allowed to start any configuration.
7779          */
7780         if (msgbuf[0] == E1000_VF_RESET) {
7781                 /* unlocks mailbox */
7782                 igb_vf_reset_msg(adapter, vf);
7783                 return;
7784         }
7785
7786         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7787                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7788                         goto unlock;
7789                 retval = -1;
7790                 goto out;
7791         }
7792
7793         switch ((msgbuf[0] & 0xFFFF)) {
7794         case E1000_VF_SET_MAC_ADDR:
7795                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7796                 break;
7797         case E1000_VF_SET_PROMISC:
7798                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7799                 break;
7800         case E1000_VF_SET_MULTICAST:
7801                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7802                 break;
7803         case E1000_VF_SET_LPE:
7804                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7805                 break;
7806         case E1000_VF_SET_VLAN:
7807                 retval = -1;
7808                 if (vf_data->pf_vlan)
7809                         dev_warn(&pdev->dev,
7810                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7811                                  vf);
7812                 else
7813                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7814                 break;
7815         default:
7816                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7817                 retval = -1;
7818                 break;
7819         }
7820
7821         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7822 out:
7823         /* notify the VF of the results of what it sent us */
7824         if (retval)
7825                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7826         else
7827                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7828
7829         /* unlocks mailbox */
7830         igb_write_mbx(hw, msgbuf, 1, vf);
7831         return;
7832
7833 unlock:
7834         igb_unlock_mbx(hw, vf);
7835 }
7836
7837 static void igb_msg_task(struct igb_adapter *adapter)
7838 {
7839         struct e1000_hw *hw = &adapter->hw;
7840         u32 vf;
7841
7842         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7843                 /* process any reset requests */
7844                 if (!igb_check_for_rst(hw, vf))
7845                         igb_vf_reset_event(adapter, vf);
7846
7847                 /* process any messages pending */
7848                 if (!igb_check_for_msg(hw, vf))
7849                         igb_rcv_msg_from_vf(adapter, vf);
7850
7851                 /* process any acks */
7852                 if (!igb_check_for_ack(hw, vf))
7853                         igb_rcv_ack_from_vf(adapter, vf);
7854         }
7855 }
7856
7857 /**
7858  *  igb_set_uta - Set unicast filter table address
7859  *  @adapter: board private structure
7860  *  @set: boolean indicating if we are setting or clearing bits
7861  *
7862  *  The unicast table address is a register array of 32-bit registers.
7863  *  The table is meant to be used in a way similar to how the MTA is used
7864  *  however due to certain limitations in the hardware it is necessary to
7865  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7866  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7867  **/
7868 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7869 {
7870         struct e1000_hw *hw = &adapter->hw;
7871         u32 uta = set ? ~0 : 0;
7872         int i;
7873
7874         /* we only need to do this if VMDq is enabled */
7875         if (!adapter->vfs_allocated_count)
7876                 return;
7877
7878         for (i = hw->mac.uta_reg_count; i--;)
7879                 array_wr32(E1000_UTA, i, uta);
7880 }
7881
7882 /**
7883  *  igb_intr_msi - Interrupt Handler
7884  *  @irq: interrupt number
7885  *  @data: pointer to a network interface device structure
7886  **/
7887 static irqreturn_t igb_intr_msi(int irq, void *data)
7888 {
7889         struct igb_adapter *adapter = data;
7890         struct igb_q_vector *q_vector = adapter->q_vector[0];
7891         struct e1000_hw *hw = &adapter->hw;
7892         /* read ICR disables interrupts using IAM */
7893         u32 icr = rd32(E1000_ICR);
7894
7895         igb_write_itr(q_vector);
7896
7897         if (icr & E1000_ICR_DRSTA)
7898                 schedule_work(&adapter->reset_task);
7899
7900         if (icr & E1000_ICR_DOUTSYNC) {
7901                 /* HW is reporting DMA is out of sync */
7902                 adapter->stats.doosync++;
7903         }
7904
7905         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7906                 hw->mac.get_link_status = 1;
7907                 if (!test_bit(__IGB_DOWN, &adapter->state))
7908                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7909         }
7910
7911         if (icr & E1000_ICR_TS)
7912                 igb_tsync_interrupt(adapter);
7913
7914         napi_schedule(&q_vector->napi);
7915
7916         return IRQ_HANDLED;
7917 }
7918
7919 /**
7920  *  igb_intr - Legacy Interrupt Handler
7921  *  @irq: interrupt number
7922  *  @data: pointer to a network interface device structure
7923  **/
7924 static irqreturn_t igb_intr(int irq, void *data)
7925 {
7926         struct igb_adapter *adapter = data;
7927         struct igb_q_vector *q_vector = adapter->q_vector[0];
7928         struct e1000_hw *hw = &adapter->hw;
7929         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7930          * need for the IMC write
7931          */
7932         u32 icr = rd32(E1000_ICR);
7933
7934         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7935          * not set, then the adapter didn't send an interrupt
7936          */
7937         if (!(icr & E1000_ICR_INT_ASSERTED))
7938                 return IRQ_NONE;
7939
7940         igb_write_itr(q_vector);
7941
7942         if (icr & E1000_ICR_DRSTA)
7943                 schedule_work(&adapter->reset_task);
7944
7945         if (icr & E1000_ICR_DOUTSYNC) {
7946                 /* HW is reporting DMA is out of sync */
7947                 adapter->stats.doosync++;
7948         }
7949
7950         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7951                 hw->mac.get_link_status = 1;
7952                 /* guard against interrupt when we're going down */
7953                 if (!test_bit(__IGB_DOWN, &adapter->state))
7954                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7955         }
7956
7957         if (icr & E1000_ICR_TS)
7958                 igb_tsync_interrupt(adapter);
7959
7960         napi_schedule(&q_vector->napi);
7961
7962         return IRQ_HANDLED;
7963 }
7964
7965 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7966 {
7967         struct igb_adapter *adapter = q_vector->adapter;
7968         struct e1000_hw *hw = &adapter->hw;
7969
7970         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7971             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7972                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7973                         igb_set_itr(q_vector);
7974                 else
7975                         igb_update_ring_itr(q_vector);
7976         }
7977
7978         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7979                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7980                         wr32(E1000_EIMS, q_vector->eims_value);
7981                 else
7982                         igb_irq_enable(adapter);
7983         }
7984 }
7985
7986 /**
7987  *  igb_poll - NAPI Rx polling callback
7988  *  @napi: napi polling structure
7989  *  @budget: count of how many packets we should handle
7990  **/
7991 static int igb_poll(struct napi_struct *napi, int budget)
7992 {
7993         struct igb_q_vector *q_vector = container_of(napi,
7994                                                      struct igb_q_vector,
7995                                                      napi);
7996         bool clean_complete = true;
7997         int work_done = 0;
7998
7999 #ifdef CONFIG_IGB_DCA
8000         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8001                 igb_update_dca(q_vector);
8002 #endif
8003         if (q_vector->tx.ring)
8004                 clean_complete = igb_clean_tx_irq(q_vector, budget);
8005
8006         if (q_vector->rx.ring) {
8007                 int cleaned = igb_clean_rx_irq(q_vector, budget);
8008
8009                 work_done += cleaned;
8010                 if (cleaned >= budget)
8011                         clean_complete = false;
8012         }
8013
8014         /* If all work not completed, return budget and keep polling */
8015         if (!clean_complete)
8016                 return budget;
8017
8018         /* Exit the polling mode, but don't re-enable interrupts if stack might
8019          * poll us due to busy-polling
8020          */
8021         if (likely(napi_complete_done(napi, work_done)))
8022                 igb_ring_irq_enable(q_vector);
8023
8024         return min(work_done, budget - 1);
8025 }
8026
8027 /**
8028  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8029  *  @q_vector: pointer to q_vector containing needed info
8030  *  @napi_budget: Used to determine if we are in netpoll
8031  *
8032  *  returns true if ring is completely cleaned
8033  **/
8034 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8035 {
8036         struct igb_adapter *adapter = q_vector->adapter;
8037         struct igb_ring *tx_ring = q_vector->tx.ring;
8038         struct igb_tx_buffer *tx_buffer;
8039         union e1000_adv_tx_desc *tx_desc;
8040         unsigned int total_bytes = 0, total_packets = 0;
8041         unsigned int budget = q_vector->tx.work_limit;
8042         unsigned int i = tx_ring->next_to_clean;
8043
8044         if (test_bit(__IGB_DOWN, &adapter->state))
8045                 return true;
8046
8047         tx_buffer = &tx_ring->tx_buffer_info[i];
8048         tx_desc = IGB_TX_DESC(tx_ring, i);
8049         i -= tx_ring->count;
8050
8051         do {
8052                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8053
8054                 /* if next_to_watch is not set then there is no work pending */
8055                 if (!eop_desc)
8056                         break;
8057
8058                 /* prevent any other reads prior to eop_desc */
8059                 smp_rmb();
8060
8061                 /* if DD is not set pending work has not been completed */
8062                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8063                         break;
8064
8065                 /* clear next_to_watch to prevent false hangs */
8066                 tx_buffer->next_to_watch = NULL;
8067
8068                 /* update the statistics for this packet */
8069                 total_bytes += tx_buffer->bytecount;
8070                 total_packets += tx_buffer->gso_segs;
8071
8072                 /* free the skb */
8073                 if (tx_buffer->type == IGB_TYPE_SKB)
8074                         napi_consume_skb(tx_buffer->skb, napi_budget);
8075                 else
8076                         xdp_return_frame(tx_buffer->xdpf);
8077
8078                 /* unmap skb header data */
8079                 dma_unmap_single(tx_ring->dev,
8080                                  dma_unmap_addr(tx_buffer, dma),
8081                                  dma_unmap_len(tx_buffer, len),
8082                                  DMA_TO_DEVICE);
8083
8084                 /* clear tx_buffer data */
8085                 dma_unmap_len_set(tx_buffer, len, 0);
8086
8087                 /* clear last DMA location and unmap remaining buffers */
8088                 while (tx_desc != eop_desc) {
8089                         tx_buffer++;
8090                         tx_desc++;
8091                         i++;
8092                         if (unlikely(!i)) {
8093                                 i -= tx_ring->count;
8094                                 tx_buffer = tx_ring->tx_buffer_info;
8095                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8096                         }
8097
8098                         /* unmap any remaining paged data */
8099                         if (dma_unmap_len(tx_buffer, len)) {
8100                                 dma_unmap_page(tx_ring->dev,
8101                                                dma_unmap_addr(tx_buffer, dma),
8102                                                dma_unmap_len(tx_buffer, len),
8103                                                DMA_TO_DEVICE);
8104                                 dma_unmap_len_set(tx_buffer, len, 0);
8105                         }
8106                 }
8107
8108                 /* move us one more past the eop_desc for start of next pkt */
8109                 tx_buffer++;
8110                 tx_desc++;
8111                 i++;
8112                 if (unlikely(!i)) {
8113                         i -= tx_ring->count;
8114                         tx_buffer = tx_ring->tx_buffer_info;
8115                         tx_desc = IGB_TX_DESC(tx_ring, 0);
8116                 }
8117
8118                 /* issue prefetch for next Tx descriptor */
8119                 prefetch(tx_desc);
8120
8121                 /* update budget accounting */
8122                 budget--;
8123         } while (likely(budget));
8124
8125         netdev_tx_completed_queue(txring_txq(tx_ring),
8126                                   total_packets, total_bytes);
8127         i += tx_ring->count;
8128         tx_ring->next_to_clean = i;
8129         u64_stats_update_begin(&tx_ring->tx_syncp);
8130         tx_ring->tx_stats.bytes += total_bytes;
8131         tx_ring->tx_stats.packets += total_packets;
8132         u64_stats_update_end(&tx_ring->tx_syncp);
8133         q_vector->tx.total_bytes += total_bytes;
8134         q_vector->tx.total_packets += total_packets;
8135
8136         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8137                 struct e1000_hw *hw = &adapter->hw;
8138
8139                 /* Detect a transmit hang in hardware, this serializes the
8140                  * check with the clearing of time_stamp and movement of i
8141                  */
8142                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8143                 if (tx_buffer->next_to_watch &&
8144                     time_after(jiffies, tx_buffer->time_stamp +
8145                                (adapter->tx_timeout_factor * HZ)) &&
8146                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8147
8148                         /* detected Tx unit hang */
8149                         dev_err(tx_ring->dev,
8150                                 "Detected Tx Unit Hang\n"
8151                                 "  Tx Queue             <%d>\n"
8152                                 "  TDH                  <%x>\n"
8153                                 "  TDT                  <%x>\n"
8154                                 "  next_to_use          <%x>\n"
8155                                 "  next_to_clean        <%x>\n"
8156                                 "buffer_info[next_to_clean]\n"
8157                                 "  time_stamp           <%lx>\n"
8158                                 "  next_to_watch        <%p>\n"
8159                                 "  jiffies              <%lx>\n"
8160                                 "  desc.status          <%x>\n",
8161                                 tx_ring->queue_index,
8162                                 rd32(E1000_TDH(tx_ring->reg_idx)),
8163                                 readl(tx_ring->tail),
8164                                 tx_ring->next_to_use,
8165                                 tx_ring->next_to_clean,
8166                                 tx_buffer->time_stamp,
8167                                 tx_buffer->next_to_watch,
8168                                 jiffies,
8169                                 tx_buffer->next_to_watch->wb.status);
8170                         netif_stop_subqueue(tx_ring->netdev,
8171                                             tx_ring->queue_index);
8172
8173                         /* we are about to reset, no point in enabling stuff */
8174                         return true;
8175                 }
8176         }
8177
8178 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8179         if (unlikely(total_packets &&
8180             netif_carrier_ok(tx_ring->netdev) &&
8181             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8182                 /* Make sure that anybody stopping the queue after this
8183                  * sees the new next_to_clean.
8184                  */
8185                 smp_mb();
8186                 if (__netif_subqueue_stopped(tx_ring->netdev,
8187                                              tx_ring->queue_index) &&
8188                     !(test_bit(__IGB_DOWN, &adapter->state))) {
8189                         netif_wake_subqueue(tx_ring->netdev,
8190                                             tx_ring->queue_index);
8191
8192                         u64_stats_update_begin(&tx_ring->tx_syncp);
8193                         tx_ring->tx_stats.restart_queue++;
8194                         u64_stats_update_end(&tx_ring->tx_syncp);
8195                 }
8196         }
8197
8198         return !!budget;
8199 }
8200
8201 /**
8202  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8203  *  @rx_ring: rx descriptor ring to store buffers on
8204  *  @old_buff: donor buffer to have page reused
8205  *
8206  *  Synchronizes page for reuse by the adapter
8207  **/
8208 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8209                               struct igb_rx_buffer *old_buff)
8210 {
8211         struct igb_rx_buffer *new_buff;
8212         u16 nta = rx_ring->next_to_alloc;
8213
8214         new_buff = &rx_ring->rx_buffer_info[nta];
8215
8216         /* update, and store next to alloc */
8217         nta++;
8218         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8219
8220         /* Transfer page from old buffer to new buffer.
8221          * Move each member individually to avoid possible store
8222          * forwarding stalls.
8223          */
8224         new_buff->dma           = old_buff->dma;
8225         new_buff->page          = old_buff->page;
8226         new_buff->page_offset   = old_buff->page_offset;
8227         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8228 }
8229
8230 static inline bool igb_page_is_reserved(struct page *page)
8231 {
8232         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8233 }
8234
8235 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
8236 {
8237         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8238         struct page *page = rx_buffer->page;
8239
8240         /* avoid re-using remote pages */
8241         if (unlikely(igb_page_is_reserved(page)))
8242                 return false;
8243
8244 #if (PAGE_SIZE < 8192)
8245         /* if we are only owner of page we can reuse it */
8246         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
8247                 return false;
8248 #else
8249 #define IGB_LAST_OFFSET \
8250         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8251
8252         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8253                 return false;
8254 #endif
8255
8256         /* If we have drained the page fragment pool we need to update
8257          * the pagecnt_bias and page count so that we fully restock the
8258          * number of references the driver holds.
8259          */
8260         if (unlikely(pagecnt_bias == 1)) {
8261                 page_ref_add(page, USHRT_MAX - 1);
8262                 rx_buffer->pagecnt_bias = USHRT_MAX;
8263         }
8264
8265         return true;
8266 }
8267
8268 /**
8269  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8270  *  @rx_ring: rx descriptor ring to transact packets on
8271  *  @rx_buffer: buffer containing page to add
8272  *  @skb: sk_buff to place the data into
8273  *  @size: size of buffer to be added
8274  *
8275  *  This function will add the data contained in rx_buffer->page to the skb.
8276  **/
8277 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8278                             struct igb_rx_buffer *rx_buffer,
8279                             struct sk_buff *skb,
8280                             unsigned int size)
8281 {
8282 #if (PAGE_SIZE < 8192)
8283         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8284 #else
8285         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8286                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8287                                 SKB_DATA_ALIGN(size);
8288 #endif
8289         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8290                         rx_buffer->page_offset, size, truesize);
8291 #if (PAGE_SIZE < 8192)
8292         rx_buffer->page_offset ^= truesize;
8293 #else
8294         rx_buffer->page_offset += truesize;
8295 #endif
8296 }
8297
8298 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8299                                          struct igb_rx_buffer *rx_buffer,
8300                                          struct xdp_buff *xdp,
8301                                          union e1000_adv_rx_desc *rx_desc)
8302 {
8303 #if (PAGE_SIZE < 8192)
8304         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8305 #else
8306         unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8307                                                xdp->data_hard_start);
8308 #endif
8309         unsigned int size = xdp->data_end - xdp->data;
8310         unsigned int headlen;
8311         struct sk_buff *skb;
8312
8313         /* prefetch first cache line of first page */
8314         net_prefetch(xdp->data);
8315
8316         /* allocate a skb to store the frags */
8317         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8318         if (unlikely(!skb))
8319                 return NULL;
8320
8321         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8322                 igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb);
8323                 xdp->data += IGB_TS_HDR_LEN;
8324                 size -= IGB_TS_HDR_LEN;
8325         }
8326
8327         /* Determine available headroom for copy */
8328         headlen = size;
8329         if (headlen > IGB_RX_HDR_LEN)
8330                 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8331
8332         /* align pull length to size of long to optimize memcpy performance */
8333         memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8334
8335         /* update all of the pointers */
8336         size -= headlen;
8337         if (size) {
8338                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8339                                 (xdp->data + headlen) - page_address(rx_buffer->page),
8340                                 size, truesize);
8341 #if (PAGE_SIZE < 8192)
8342                 rx_buffer->page_offset ^= truesize;
8343 #else
8344                 rx_buffer->page_offset += truesize;
8345 #endif
8346         } else {
8347                 rx_buffer->pagecnt_bias++;
8348         }
8349
8350         return skb;
8351 }
8352
8353 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8354                                      struct igb_rx_buffer *rx_buffer,
8355                                      struct xdp_buff *xdp,
8356                                      union e1000_adv_rx_desc *rx_desc)
8357 {
8358 #if (PAGE_SIZE < 8192)
8359         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8360 #else
8361         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8362                                 SKB_DATA_ALIGN(xdp->data_end -
8363                                                xdp->data_hard_start);
8364 #endif
8365         unsigned int metasize = xdp->data - xdp->data_meta;
8366         struct sk_buff *skb;
8367
8368         /* prefetch first cache line of first page */
8369         net_prefetch(xdp->data_meta);
8370
8371         /* build an skb around the page buffer */
8372         skb = build_skb(xdp->data_hard_start, truesize);
8373         if (unlikely(!skb))
8374                 return NULL;
8375
8376         /* update pointers within the skb to store the data */
8377         skb_reserve(skb, xdp->data - xdp->data_hard_start);
8378         __skb_put(skb, xdp->data_end - xdp->data);
8379
8380         if (metasize)
8381                 skb_metadata_set(skb, metasize);
8382
8383         /* pull timestamp out of packet data */
8384         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8385                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8386                 __skb_pull(skb, IGB_TS_HDR_LEN);
8387         }
8388
8389         /* update buffer offset */
8390 #if (PAGE_SIZE < 8192)
8391         rx_buffer->page_offset ^= truesize;
8392 #else
8393         rx_buffer->page_offset += truesize;
8394 #endif
8395
8396         return skb;
8397 }
8398
8399 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8400                                    struct igb_ring *rx_ring,
8401                                    struct xdp_buff *xdp)
8402 {
8403         int err, result = IGB_XDP_PASS;
8404         struct bpf_prog *xdp_prog;
8405         u32 act;
8406
8407         rcu_read_lock();
8408         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8409
8410         if (!xdp_prog)
8411                 goto xdp_out;
8412
8413         prefetchw(xdp->data_hard_start); /* xdp_frame write */
8414
8415         act = bpf_prog_run_xdp(xdp_prog, xdp);
8416         switch (act) {
8417         case XDP_PASS:
8418                 break;
8419         case XDP_TX:
8420                 result = igb_xdp_xmit_back(adapter, xdp);
8421                 break;
8422         case XDP_REDIRECT:
8423                 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8424                 if (!err)
8425                         result = IGB_XDP_REDIR;
8426                 else
8427                         result = IGB_XDP_CONSUMED;
8428                 break;
8429         default:
8430                 bpf_warn_invalid_xdp_action(act);
8431                 fallthrough;
8432         case XDP_ABORTED:
8433                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8434                 fallthrough;
8435         case XDP_DROP:
8436                 result = IGB_XDP_CONSUMED;
8437                 break;
8438         }
8439 xdp_out:
8440         rcu_read_unlock();
8441         return ERR_PTR(-result);
8442 }
8443
8444 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8445                                           unsigned int size)
8446 {
8447         unsigned int truesize;
8448
8449 #if (PAGE_SIZE < 8192)
8450         truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8451 #else
8452         truesize = ring_uses_build_skb(rx_ring) ?
8453                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8454                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8455                 SKB_DATA_ALIGN(size);
8456 #endif
8457         return truesize;
8458 }
8459
8460 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8461                                struct igb_rx_buffer *rx_buffer,
8462                                unsigned int size)
8463 {
8464         unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8465 #if (PAGE_SIZE < 8192)
8466         rx_buffer->page_offset ^= truesize;
8467 #else
8468         rx_buffer->page_offset += truesize;
8469 #endif
8470 }
8471
8472 static inline void igb_rx_checksum(struct igb_ring *ring,
8473                                    union e1000_adv_rx_desc *rx_desc,
8474                                    struct sk_buff *skb)
8475 {
8476         skb_checksum_none_assert(skb);
8477
8478         /* Ignore Checksum bit is set */
8479         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8480                 return;
8481
8482         /* Rx checksum disabled via ethtool */
8483         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8484                 return;
8485
8486         /* TCP/UDP checksum error bit is set */
8487         if (igb_test_staterr(rx_desc,
8488                              E1000_RXDEXT_STATERR_TCPE |
8489                              E1000_RXDEXT_STATERR_IPE)) {
8490                 /* work around errata with sctp packets where the TCPE aka
8491                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8492                  * packets, (aka let the stack check the crc32c)
8493                  */
8494                 if (!((skb->len == 60) &&
8495                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8496                         u64_stats_update_begin(&ring->rx_syncp);
8497                         ring->rx_stats.csum_err++;
8498                         u64_stats_update_end(&ring->rx_syncp);
8499                 }
8500                 /* let the stack verify checksum errors */
8501                 return;
8502         }
8503         /* It must be a TCP or UDP packet with a valid checksum */
8504         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8505                                       E1000_RXD_STAT_UDPCS))
8506                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8507
8508         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8509                 le32_to_cpu(rx_desc->wb.upper.status_error));
8510 }
8511
8512 static inline void igb_rx_hash(struct igb_ring *ring,
8513                                union e1000_adv_rx_desc *rx_desc,
8514                                struct sk_buff *skb)
8515 {
8516         if (ring->netdev->features & NETIF_F_RXHASH)
8517                 skb_set_hash(skb,
8518                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8519                              PKT_HASH_TYPE_L3);
8520 }
8521
8522 /**
8523  *  igb_is_non_eop - process handling of non-EOP buffers
8524  *  @rx_ring: Rx ring being processed
8525  *  @rx_desc: Rx descriptor for current buffer
8526  *
8527  *  This function updates next to clean.  If the buffer is an EOP buffer
8528  *  this function exits returning false, otherwise it will place the
8529  *  sk_buff in the next buffer to be chained and return true indicating
8530  *  that this is in fact a non-EOP buffer.
8531  **/
8532 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8533                            union e1000_adv_rx_desc *rx_desc)
8534 {
8535         u32 ntc = rx_ring->next_to_clean + 1;
8536
8537         /* fetch, update, and store next to clean */
8538         ntc = (ntc < rx_ring->count) ? ntc : 0;
8539         rx_ring->next_to_clean = ntc;
8540
8541         prefetch(IGB_RX_DESC(rx_ring, ntc));
8542
8543         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8544                 return false;
8545
8546         return true;
8547 }
8548
8549 /**
8550  *  igb_cleanup_headers - Correct corrupted or empty headers
8551  *  @rx_ring: rx descriptor ring packet is being transacted on
8552  *  @rx_desc: pointer to the EOP Rx descriptor
8553  *  @skb: pointer to current skb being fixed
8554  *
8555  *  Address the case where we are pulling data in on pages only
8556  *  and as such no data is present in the skb header.
8557  *
8558  *  In addition if skb is not at least 60 bytes we need to pad it so that
8559  *  it is large enough to qualify as a valid Ethernet frame.
8560  *
8561  *  Returns true if an error was encountered and skb was freed.
8562  **/
8563 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8564                                 union e1000_adv_rx_desc *rx_desc,
8565                                 struct sk_buff *skb)
8566 {
8567         /* XDP packets use error pointer so abort at this point */
8568         if (IS_ERR(skb))
8569                 return true;
8570
8571         if (unlikely((igb_test_staterr(rx_desc,
8572                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8573                 struct net_device *netdev = rx_ring->netdev;
8574                 if (!(netdev->features & NETIF_F_RXALL)) {
8575                         dev_kfree_skb_any(skb);
8576                         return true;
8577                 }
8578         }
8579
8580         /* if eth_skb_pad returns an error the skb was freed */
8581         if (eth_skb_pad(skb))
8582                 return true;
8583
8584         return false;
8585 }
8586
8587 /**
8588  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8589  *  @rx_ring: rx descriptor ring packet is being transacted on
8590  *  @rx_desc: pointer to the EOP Rx descriptor
8591  *  @skb: pointer to current skb being populated
8592  *
8593  *  This function checks the ring, descriptor, and packet information in
8594  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8595  *  other fields within the skb.
8596  **/
8597 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8598                                    union e1000_adv_rx_desc *rx_desc,
8599                                    struct sk_buff *skb)
8600 {
8601         struct net_device *dev = rx_ring->netdev;
8602
8603         igb_rx_hash(rx_ring, rx_desc, skb);
8604
8605         igb_rx_checksum(rx_ring, rx_desc, skb);
8606
8607         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8608             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8609                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8610
8611         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8612             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8613                 u16 vid;
8614
8615                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8616                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8617                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8618                 else
8619                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8620
8621                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8622         }
8623
8624         skb_record_rx_queue(skb, rx_ring->queue_index);
8625
8626         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8627 }
8628
8629 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8630 {
8631         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8632 }
8633
8634 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8635                                                const unsigned int size)
8636 {
8637         struct igb_rx_buffer *rx_buffer;
8638
8639         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8640         prefetchw(rx_buffer->page);
8641
8642         /* we are reusing so sync this buffer for CPU use */
8643         dma_sync_single_range_for_cpu(rx_ring->dev,
8644                                       rx_buffer->dma,
8645                                       rx_buffer->page_offset,
8646                                       size,
8647                                       DMA_FROM_DEVICE);
8648
8649         rx_buffer->pagecnt_bias--;
8650
8651         return rx_buffer;
8652 }
8653
8654 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8655                               struct igb_rx_buffer *rx_buffer)
8656 {
8657         if (igb_can_reuse_rx_page(rx_buffer)) {
8658                 /* hand second half of page back to the ring */
8659                 igb_reuse_rx_page(rx_ring, rx_buffer);
8660         } else {
8661                 /* We are not reusing the buffer so unmap it and free
8662                  * any references we are holding to it
8663                  */
8664                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8665                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8666                                      IGB_RX_DMA_ATTR);
8667                 __page_frag_cache_drain(rx_buffer->page,
8668                                         rx_buffer->pagecnt_bias);
8669         }
8670
8671         /* clear contents of rx_buffer */
8672         rx_buffer->page = NULL;
8673 }
8674
8675 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8676 {
8677         struct igb_adapter *adapter = q_vector->adapter;
8678         struct igb_ring *rx_ring = q_vector->rx.ring;
8679         struct sk_buff *skb = rx_ring->skb;
8680         unsigned int total_bytes = 0, total_packets = 0;
8681         u16 cleaned_count = igb_desc_unused(rx_ring);
8682         unsigned int xdp_xmit = 0;
8683         struct xdp_buff xdp;
8684
8685         xdp.rxq = &rx_ring->xdp_rxq;
8686
8687         /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8688 #if (PAGE_SIZE < 8192)
8689         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8690 #endif
8691
8692         while (likely(total_packets < budget)) {
8693                 union e1000_adv_rx_desc *rx_desc;
8694                 struct igb_rx_buffer *rx_buffer;
8695                 unsigned int size;
8696
8697                 /* return some buffers to hardware, one at a time is too slow */
8698                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8699                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8700                         cleaned_count = 0;
8701                 }
8702
8703                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8704                 size = le16_to_cpu(rx_desc->wb.upper.length);
8705                 if (!size)
8706                         break;
8707
8708                 /* This memory barrier is needed to keep us from reading
8709                  * any other fields out of the rx_desc until we know the
8710                  * descriptor has been written back
8711                  */
8712                 dma_rmb();
8713
8714                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8715
8716                 /* retrieve a buffer from the ring */
8717                 if (!skb) {
8718                         xdp.data = page_address(rx_buffer->page) +
8719                                    rx_buffer->page_offset;
8720                         xdp.data_meta = xdp.data;
8721                         xdp.data_hard_start = xdp.data -
8722                                               igb_rx_offset(rx_ring);
8723                         xdp.data_end = xdp.data + size;
8724 #if (PAGE_SIZE > 4096)
8725                         /* At larger PAGE_SIZE, frame_sz depend on len size */
8726                         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8727 #endif
8728                         skb = igb_run_xdp(adapter, rx_ring, &xdp);
8729                 }
8730
8731                 if (IS_ERR(skb)) {
8732                         unsigned int xdp_res = -PTR_ERR(skb);
8733
8734                         if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8735                                 xdp_xmit |= xdp_res;
8736                                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8737                         } else {
8738                                 rx_buffer->pagecnt_bias++;
8739                         }
8740                         total_packets++;
8741                         total_bytes += size;
8742                 } else if (skb)
8743                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8744                 else if (ring_uses_build_skb(rx_ring))
8745                         skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8746                 else
8747                         skb = igb_construct_skb(rx_ring, rx_buffer,
8748                                                 &xdp, rx_desc);
8749
8750                 /* exit if we failed to retrieve a buffer */
8751                 if (!skb) {
8752                         rx_ring->rx_stats.alloc_failed++;
8753                         rx_buffer->pagecnt_bias++;
8754                         break;
8755                 }
8756
8757                 igb_put_rx_buffer(rx_ring, rx_buffer);
8758                 cleaned_count++;
8759
8760                 /* fetch next buffer in frame if non-eop */
8761                 if (igb_is_non_eop(rx_ring, rx_desc))
8762                         continue;
8763
8764                 /* verify the packet layout is correct */
8765                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8766                         skb = NULL;
8767                         continue;
8768                 }
8769
8770                 /* probably a little skewed due to removing CRC */
8771                 total_bytes += skb->len;
8772
8773                 /* populate checksum, timestamp, VLAN, and protocol */
8774                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8775
8776                 napi_gro_receive(&q_vector->napi, skb);
8777
8778                 /* reset skb pointer */
8779                 skb = NULL;
8780
8781                 /* update budget accounting */
8782                 total_packets++;
8783         }
8784
8785         /* place incomplete frames back on ring for completion */
8786         rx_ring->skb = skb;
8787
8788         if (xdp_xmit & IGB_XDP_REDIR)
8789                 xdp_do_flush();
8790
8791         if (xdp_xmit & IGB_XDP_TX) {
8792                 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8793
8794                 igb_xdp_ring_update_tail(tx_ring);
8795         }
8796
8797         u64_stats_update_begin(&rx_ring->rx_syncp);
8798         rx_ring->rx_stats.packets += total_packets;
8799         rx_ring->rx_stats.bytes += total_bytes;
8800         u64_stats_update_end(&rx_ring->rx_syncp);
8801         q_vector->rx.total_packets += total_packets;
8802         q_vector->rx.total_bytes += total_bytes;
8803
8804         if (cleaned_count)
8805                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8806
8807         return total_packets;
8808 }
8809
8810 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8811                                   struct igb_rx_buffer *bi)
8812 {
8813         struct page *page = bi->page;
8814         dma_addr_t dma;
8815
8816         /* since we are recycling buffers we should seldom need to alloc */
8817         if (likely(page))
8818                 return true;
8819
8820         /* alloc new page for storage */
8821         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8822         if (unlikely(!page)) {
8823                 rx_ring->rx_stats.alloc_failed++;
8824                 return false;
8825         }
8826
8827         /* map page for use */
8828         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8829                                  igb_rx_pg_size(rx_ring),
8830                                  DMA_FROM_DEVICE,
8831                                  IGB_RX_DMA_ATTR);
8832
8833         /* if mapping failed free memory back to system since
8834          * there isn't much point in holding memory we can't use
8835          */
8836         if (dma_mapping_error(rx_ring->dev, dma)) {
8837                 __free_pages(page, igb_rx_pg_order(rx_ring));
8838
8839                 rx_ring->rx_stats.alloc_failed++;
8840                 return false;
8841         }
8842
8843         bi->dma = dma;
8844         bi->page = page;
8845         bi->page_offset = igb_rx_offset(rx_ring);
8846         page_ref_add(page, USHRT_MAX - 1);
8847         bi->pagecnt_bias = USHRT_MAX;
8848
8849         return true;
8850 }
8851
8852 /**
8853  *  igb_alloc_rx_buffers - Replace used receive buffers
8854  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8855  *  @cleaned_count: count of buffers to allocate
8856  **/
8857 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8858 {
8859         union e1000_adv_rx_desc *rx_desc;
8860         struct igb_rx_buffer *bi;
8861         u16 i = rx_ring->next_to_use;
8862         u16 bufsz;
8863
8864         /* nothing to do */
8865         if (!cleaned_count)
8866                 return;
8867
8868         rx_desc = IGB_RX_DESC(rx_ring, i);
8869         bi = &rx_ring->rx_buffer_info[i];
8870         i -= rx_ring->count;
8871
8872         bufsz = igb_rx_bufsz(rx_ring);
8873
8874         do {
8875                 if (!igb_alloc_mapped_page(rx_ring, bi))
8876                         break;
8877
8878                 /* sync the buffer for use by the device */
8879                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8880                                                  bi->page_offset, bufsz,
8881                                                  DMA_FROM_DEVICE);
8882
8883                 /* Refresh the desc even if buffer_addrs didn't change
8884                  * because each write-back erases this info.
8885                  */
8886                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8887
8888                 rx_desc++;
8889                 bi++;
8890                 i++;
8891                 if (unlikely(!i)) {
8892                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8893                         bi = rx_ring->rx_buffer_info;
8894                         i -= rx_ring->count;
8895                 }
8896
8897                 /* clear the length for the next_to_use descriptor */
8898                 rx_desc->wb.upper.length = 0;
8899
8900                 cleaned_count--;
8901         } while (cleaned_count);
8902
8903         i += rx_ring->count;
8904
8905         if (rx_ring->next_to_use != i) {
8906                 /* record the next descriptor to use */
8907                 rx_ring->next_to_use = i;
8908
8909                 /* update next to alloc since we have filled the ring */
8910                 rx_ring->next_to_alloc = i;
8911
8912                 /* Force memory writes to complete before letting h/w
8913                  * know there are new descriptors to fetch.  (Only
8914                  * applicable for weak-ordered memory model archs,
8915                  * such as IA-64).
8916                  */
8917                 dma_wmb();
8918                 writel(i, rx_ring->tail);
8919         }
8920 }
8921
8922 /**
8923  * igb_mii_ioctl -
8924  * @netdev: pointer to netdev struct
8925  * @ifr: interface structure
8926  * @cmd: ioctl command to execute
8927  **/
8928 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8929 {
8930         struct igb_adapter *adapter = netdev_priv(netdev);
8931         struct mii_ioctl_data *data = if_mii(ifr);
8932
8933         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8934                 return -EOPNOTSUPP;
8935
8936         switch (cmd) {
8937         case SIOCGMIIPHY:
8938                 data->phy_id = adapter->hw.phy.addr;
8939                 break;
8940         case SIOCGMIIREG:
8941                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8942                                      &data->val_out))
8943                         return -EIO;
8944                 break;
8945         case SIOCSMIIREG:
8946         default:
8947                 return -EOPNOTSUPP;
8948         }
8949         return 0;
8950 }
8951
8952 /**
8953  * igb_ioctl -
8954  * @netdev: pointer to netdev struct
8955  * @ifr: interface structure
8956  * @cmd: ioctl command to execute
8957  **/
8958 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8959 {
8960         switch (cmd) {
8961         case SIOCGMIIPHY:
8962         case SIOCGMIIREG:
8963         case SIOCSMIIREG:
8964                 return igb_mii_ioctl(netdev, ifr, cmd);
8965         case SIOCGHWTSTAMP:
8966                 return igb_ptp_get_ts_config(netdev, ifr);
8967         case SIOCSHWTSTAMP:
8968                 return igb_ptp_set_ts_config(netdev, ifr);
8969         default:
8970                 return -EOPNOTSUPP;
8971         }
8972 }
8973
8974 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8975 {
8976         struct igb_adapter *adapter = hw->back;
8977
8978         pci_read_config_word(adapter->pdev, reg, value);
8979 }
8980
8981 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8982 {
8983         struct igb_adapter *adapter = hw->back;
8984
8985         pci_write_config_word(adapter->pdev, reg, *value);
8986 }
8987
8988 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8989 {
8990         struct igb_adapter *adapter = hw->back;
8991
8992         if (pcie_capability_read_word(adapter->pdev, reg, value))
8993                 return -E1000_ERR_CONFIG;
8994
8995         return 0;
8996 }
8997
8998 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8999 {
9000         struct igb_adapter *adapter = hw->back;
9001
9002         if (pcie_capability_write_word(adapter->pdev, reg, *value))
9003                 return -E1000_ERR_CONFIG;
9004
9005         return 0;
9006 }
9007
9008 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9009 {
9010         struct igb_adapter *adapter = netdev_priv(netdev);
9011         struct e1000_hw *hw = &adapter->hw;
9012         u32 ctrl, rctl;
9013         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9014
9015         if (enable) {
9016                 /* enable VLAN tag insert/strip */
9017                 ctrl = rd32(E1000_CTRL);
9018                 ctrl |= E1000_CTRL_VME;
9019                 wr32(E1000_CTRL, ctrl);
9020
9021                 /* Disable CFI check */
9022                 rctl = rd32(E1000_RCTL);
9023                 rctl &= ~E1000_RCTL_CFIEN;
9024                 wr32(E1000_RCTL, rctl);
9025         } else {
9026                 /* disable VLAN tag insert/strip */
9027                 ctrl = rd32(E1000_CTRL);
9028                 ctrl &= ~E1000_CTRL_VME;
9029                 wr32(E1000_CTRL, ctrl);
9030         }
9031
9032         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9033 }
9034
9035 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9036                                __be16 proto, u16 vid)
9037 {
9038         struct igb_adapter *adapter = netdev_priv(netdev);
9039         struct e1000_hw *hw = &adapter->hw;
9040         int pf_id = adapter->vfs_allocated_count;
9041
9042         /* add the filter since PF can receive vlans w/o entry in vlvf */
9043         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9044                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9045
9046         set_bit(vid, adapter->active_vlans);
9047
9048         return 0;
9049 }
9050
9051 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9052                                 __be16 proto, u16 vid)
9053 {
9054         struct igb_adapter *adapter = netdev_priv(netdev);
9055         int pf_id = adapter->vfs_allocated_count;
9056         struct e1000_hw *hw = &adapter->hw;
9057
9058         /* remove VID from filter table */
9059         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9060                 igb_vfta_set(hw, vid, pf_id, false, true);
9061
9062         clear_bit(vid, adapter->active_vlans);
9063
9064         return 0;
9065 }
9066
9067 static void igb_restore_vlan(struct igb_adapter *adapter)
9068 {
9069         u16 vid = 1;
9070
9071         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9072         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9073
9074         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9075                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9076 }
9077
9078 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9079 {
9080         struct pci_dev *pdev = adapter->pdev;
9081         struct e1000_mac_info *mac = &adapter->hw.mac;
9082
9083         mac->autoneg = 0;
9084
9085         /* Make sure dplx is at most 1 bit and lsb of speed is not set
9086          * for the switch() below to work
9087          */
9088         if ((spd & 1) || (dplx & ~1))
9089                 goto err_inval;
9090
9091         /* Fiber NIC's only allow 1000 gbps Full duplex
9092          * and 100Mbps Full duplex for 100baseFx sfp
9093          */
9094         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9095                 switch (spd + dplx) {
9096                 case SPEED_10 + DUPLEX_HALF:
9097                 case SPEED_10 + DUPLEX_FULL:
9098                 case SPEED_100 + DUPLEX_HALF:
9099                         goto err_inval;
9100                 default:
9101                         break;
9102                 }
9103         }
9104
9105         switch (spd + dplx) {
9106         case SPEED_10 + DUPLEX_HALF:
9107                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9108                 break;
9109         case SPEED_10 + DUPLEX_FULL:
9110                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9111                 break;
9112         case SPEED_100 + DUPLEX_HALF:
9113                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9114                 break;
9115         case SPEED_100 + DUPLEX_FULL:
9116                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9117                 break;
9118         case SPEED_1000 + DUPLEX_FULL:
9119                 mac->autoneg = 1;
9120                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9121                 break;
9122         case SPEED_1000 + DUPLEX_HALF: /* not supported */
9123         default:
9124                 goto err_inval;
9125         }
9126
9127         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9128         adapter->hw.phy.mdix = AUTO_ALL_MODES;
9129
9130         return 0;
9131
9132 err_inval:
9133         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9134         return -EINVAL;
9135 }
9136
9137 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9138                           bool runtime)
9139 {
9140         struct net_device *netdev = pci_get_drvdata(pdev);
9141         struct igb_adapter *adapter = netdev_priv(netdev);
9142         struct e1000_hw *hw = &adapter->hw;
9143         u32 ctrl, rctl, status;
9144         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9145         bool wake;
9146
9147         rtnl_lock();
9148         netif_device_detach(netdev);
9149
9150         if (netif_running(netdev))
9151                 __igb_close(netdev, true);
9152
9153         igb_ptp_suspend(adapter);
9154
9155         igb_clear_interrupt_scheme(adapter);
9156         rtnl_unlock();
9157
9158         status = rd32(E1000_STATUS);
9159         if (status & E1000_STATUS_LU)
9160                 wufc &= ~E1000_WUFC_LNKC;
9161
9162         if (wufc) {
9163                 igb_setup_rctl(adapter);
9164                 igb_set_rx_mode(netdev);
9165
9166                 /* turn on all-multi mode if wake on multicast is enabled */
9167                 if (wufc & E1000_WUFC_MC) {
9168                         rctl = rd32(E1000_RCTL);
9169                         rctl |= E1000_RCTL_MPE;
9170                         wr32(E1000_RCTL, rctl);
9171                 }
9172
9173                 ctrl = rd32(E1000_CTRL);
9174                 ctrl |= E1000_CTRL_ADVD3WUC;
9175                 wr32(E1000_CTRL, ctrl);
9176
9177                 /* Allow time for pending master requests to run */
9178                 igb_disable_pcie_master(hw);
9179
9180                 wr32(E1000_WUC, E1000_WUC_PME_EN);
9181                 wr32(E1000_WUFC, wufc);
9182         } else {
9183                 wr32(E1000_WUC, 0);
9184                 wr32(E1000_WUFC, 0);
9185         }
9186
9187         wake = wufc || adapter->en_mng_pt;
9188         if (!wake)
9189                 igb_power_down_link(adapter);
9190         else
9191                 igb_power_up_link(adapter);
9192
9193         if (enable_wake)
9194                 *enable_wake = wake;
9195
9196         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9197          * would have already happened in close and is redundant.
9198          */
9199         igb_release_hw_control(adapter);
9200
9201         pci_disable_device(pdev);
9202
9203         return 0;
9204 }
9205
9206 static void igb_deliver_wake_packet(struct net_device *netdev)
9207 {
9208         struct igb_adapter *adapter = netdev_priv(netdev);
9209         struct e1000_hw *hw = &adapter->hw;
9210         struct sk_buff *skb;
9211         u32 wupl;
9212
9213         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9214
9215         /* WUPM stores only the first 128 bytes of the wake packet.
9216          * Read the packet only if we have the whole thing.
9217          */
9218         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9219                 return;
9220
9221         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9222         if (!skb)
9223                 return;
9224
9225         skb_put(skb, wupl);
9226
9227         /* Ensure reads are 32-bit aligned */
9228         wupl = roundup(wupl, 4);
9229
9230         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9231
9232         skb->protocol = eth_type_trans(skb, netdev);
9233         netif_rx(skb);
9234 }
9235
9236 static int __maybe_unused igb_suspend(struct device *dev)
9237 {
9238         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9239 }
9240
9241 static int __maybe_unused igb_resume(struct device *dev)
9242 {
9243         struct pci_dev *pdev = to_pci_dev(dev);
9244         struct net_device *netdev = pci_get_drvdata(pdev);
9245         struct igb_adapter *adapter = netdev_priv(netdev);
9246         struct e1000_hw *hw = &adapter->hw;
9247         u32 err, val;
9248
9249         pci_set_power_state(pdev, PCI_D0);
9250         pci_restore_state(pdev);
9251         pci_save_state(pdev);
9252
9253         if (!pci_device_is_present(pdev))
9254                 return -ENODEV;
9255         err = pci_enable_device_mem(pdev);
9256         if (err) {
9257                 dev_err(&pdev->dev,
9258                         "igb: Cannot enable PCI device from suspend\n");
9259                 return err;
9260         }
9261         pci_set_master(pdev);
9262
9263         pci_enable_wake(pdev, PCI_D3hot, 0);
9264         pci_enable_wake(pdev, PCI_D3cold, 0);
9265
9266         if (igb_init_interrupt_scheme(adapter, true)) {
9267                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9268                 return -ENOMEM;
9269         }
9270
9271         igb_reset(adapter);
9272
9273         /* let the f/w know that the h/w is now under the control of the
9274          * driver.
9275          */
9276         igb_get_hw_control(adapter);
9277
9278         val = rd32(E1000_WUS);
9279         if (val & WAKE_PKT_WUS)
9280                 igb_deliver_wake_packet(netdev);
9281
9282         wr32(E1000_WUS, ~0);
9283
9284         rtnl_lock();
9285         if (!err && netif_running(netdev))
9286                 err = __igb_open(netdev, true);
9287
9288         if (!err)
9289                 netif_device_attach(netdev);
9290         rtnl_unlock();
9291
9292         return err;
9293 }
9294
9295 static int __maybe_unused igb_runtime_idle(struct device *dev)
9296 {
9297         struct net_device *netdev = dev_get_drvdata(dev);
9298         struct igb_adapter *adapter = netdev_priv(netdev);
9299
9300         if (!igb_has_link(adapter))
9301                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9302
9303         return -EBUSY;
9304 }
9305
9306 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9307 {
9308         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9309 }
9310
9311 static int __maybe_unused igb_runtime_resume(struct device *dev)
9312 {
9313         return igb_resume(dev);
9314 }
9315
9316 static void igb_shutdown(struct pci_dev *pdev)
9317 {
9318         bool wake;
9319
9320         __igb_shutdown(pdev, &wake, 0);
9321
9322         if (system_state == SYSTEM_POWER_OFF) {
9323                 pci_wake_from_d3(pdev, wake);
9324                 pci_set_power_state(pdev, PCI_D3hot);
9325         }
9326 }
9327
9328 #ifdef CONFIG_PCI_IOV
9329 static int igb_sriov_reinit(struct pci_dev *dev)
9330 {
9331         struct net_device *netdev = pci_get_drvdata(dev);
9332         struct igb_adapter *adapter = netdev_priv(netdev);
9333         struct pci_dev *pdev = adapter->pdev;
9334
9335         rtnl_lock();
9336
9337         if (netif_running(netdev))
9338                 igb_close(netdev);
9339         else
9340                 igb_reset(adapter);
9341
9342         igb_clear_interrupt_scheme(adapter);
9343
9344         igb_init_queue_configuration(adapter);
9345
9346         if (igb_init_interrupt_scheme(adapter, true)) {
9347                 rtnl_unlock();
9348                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9349                 return -ENOMEM;
9350         }
9351
9352         if (netif_running(netdev))
9353                 igb_open(netdev);
9354
9355         rtnl_unlock();
9356
9357         return 0;
9358 }
9359
9360 static int igb_pci_disable_sriov(struct pci_dev *dev)
9361 {
9362         int err = igb_disable_sriov(dev);
9363
9364         if (!err)
9365                 err = igb_sriov_reinit(dev);
9366
9367         return err;
9368 }
9369
9370 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9371 {
9372         int err = igb_enable_sriov(dev, num_vfs);
9373
9374         if (err)
9375                 goto out;
9376
9377         err = igb_sriov_reinit(dev);
9378         if (!err)
9379                 return num_vfs;
9380
9381 out:
9382         return err;
9383 }
9384
9385 #endif
9386 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9387 {
9388 #ifdef CONFIG_PCI_IOV
9389         if (num_vfs == 0)
9390                 return igb_pci_disable_sriov(dev);
9391         else
9392                 return igb_pci_enable_sriov(dev, num_vfs);
9393 #endif
9394         return 0;
9395 }
9396
9397 /**
9398  *  igb_io_error_detected - called when PCI error is detected
9399  *  @pdev: Pointer to PCI device
9400  *  @state: The current pci connection state
9401  *
9402  *  This function is called after a PCI bus error affecting
9403  *  this device has been detected.
9404  **/
9405 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9406                                               pci_channel_state_t state)
9407 {
9408         struct net_device *netdev = pci_get_drvdata(pdev);
9409         struct igb_adapter *adapter = netdev_priv(netdev);
9410
9411         netif_device_detach(netdev);
9412
9413         if (state == pci_channel_io_perm_failure)
9414                 return PCI_ERS_RESULT_DISCONNECT;
9415
9416         if (netif_running(netdev))
9417                 igb_down(adapter);
9418         pci_disable_device(pdev);
9419
9420         /* Request a slot slot reset. */
9421         return PCI_ERS_RESULT_NEED_RESET;
9422 }
9423
9424 /**
9425  *  igb_io_slot_reset - called after the pci bus has been reset.
9426  *  @pdev: Pointer to PCI device
9427  *
9428  *  Restart the card from scratch, as if from a cold-boot. Implementation
9429  *  resembles the first-half of the igb_resume routine.
9430  **/
9431 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9432 {
9433         struct net_device *netdev = pci_get_drvdata(pdev);
9434         struct igb_adapter *adapter = netdev_priv(netdev);
9435         struct e1000_hw *hw = &adapter->hw;
9436         pci_ers_result_t result;
9437
9438         if (pci_enable_device_mem(pdev)) {
9439                 dev_err(&pdev->dev,
9440                         "Cannot re-enable PCI device after reset.\n");
9441                 result = PCI_ERS_RESULT_DISCONNECT;
9442         } else {
9443                 pci_set_master(pdev);
9444                 pci_restore_state(pdev);
9445                 pci_save_state(pdev);
9446
9447                 pci_enable_wake(pdev, PCI_D3hot, 0);
9448                 pci_enable_wake(pdev, PCI_D3cold, 0);
9449
9450                 /* In case of PCI error, adapter lose its HW address
9451                  * so we should re-assign it here.
9452                  */
9453                 hw->hw_addr = adapter->io_addr;
9454
9455                 igb_reset(adapter);
9456                 wr32(E1000_WUS, ~0);
9457                 result = PCI_ERS_RESULT_RECOVERED;
9458         }
9459
9460         return result;
9461 }
9462
9463 /**
9464  *  igb_io_resume - called when traffic can start flowing again.
9465  *  @pdev: Pointer to PCI device
9466  *
9467  *  This callback is called when the error recovery driver tells us that
9468  *  its OK to resume normal operation. Implementation resembles the
9469  *  second-half of the igb_resume routine.
9470  */
9471 static void igb_io_resume(struct pci_dev *pdev)
9472 {
9473         struct net_device *netdev = pci_get_drvdata(pdev);
9474         struct igb_adapter *adapter = netdev_priv(netdev);
9475
9476         if (netif_running(netdev)) {
9477                 if (igb_up(adapter)) {
9478                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9479                         return;
9480                 }
9481         }
9482
9483         netif_device_attach(netdev);
9484
9485         /* let the f/w know that the h/w is now under the control of the
9486          * driver.
9487          */
9488         igb_get_hw_control(adapter);
9489 }
9490
9491 /**
9492  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9493  *  @adapter: Pointer to adapter structure
9494  *  @index: Index of the RAR entry which need to be synced with MAC table
9495  **/
9496 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9497 {
9498         struct e1000_hw *hw = &adapter->hw;
9499         u32 rar_low, rar_high;
9500         u8 *addr = adapter->mac_table[index].addr;
9501
9502         /* HW expects these to be in network order when they are plugged
9503          * into the registers which are little endian.  In order to guarantee
9504          * that ordering we need to do an leXX_to_cpup here in order to be
9505          * ready for the byteswap that occurs with writel
9506          */
9507         rar_low = le32_to_cpup((__le32 *)(addr));
9508         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9509
9510         /* Indicate to hardware the Address is Valid. */
9511         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9512                 if (is_valid_ether_addr(addr))
9513                         rar_high |= E1000_RAH_AV;
9514
9515                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9516                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9517
9518                 switch (hw->mac.type) {
9519                 case e1000_82575:
9520                 case e1000_i210:
9521                         if (adapter->mac_table[index].state &
9522                             IGB_MAC_STATE_QUEUE_STEERING)
9523                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9524
9525                         rar_high |= E1000_RAH_POOL_1 *
9526                                     adapter->mac_table[index].queue;
9527                         break;
9528                 default:
9529                         rar_high |= E1000_RAH_POOL_1 <<
9530                                     adapter->mac_table[index].queue;
9531                         break;
9532                 }
9533         }
9534
9535         wr32(E1000_RAL(index), rar_low);
9536         wrfl();
9537         wr32(E1000_RAH(index), rar_high);
9538         wrfl();
9539 }
9540
9541 static int igb_set_vf_mac(struct igb_adapter *adapter,
9542                           int vf, unsigned char *mac_addr)
9543 {
9544         struct e1000_hw *hw = &adapter->hw;
9545         /* VF MAC addresses start at end of receive addresses and moves
9546          * towards the first, as a result a collision should not be possible
9547          */
9548         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9549         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9550
9551         ether_addr_copy(vf_mac_addr, mac_addr);
9552         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9553         adapter->mac_table[rar_entry].queue = vf;
9554         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9555         igb_rar_set_index(adapter, rar_entry);
9556
9557         return 0;
9558 }
9559
9560 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9561 {
9562         struct igb_adapter *adapter = netdev_priv(netdev);
9563
9564         if (vf >= adapter->vfs_allocated_count)
9565                 return -EINVAL;
9566
9567         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9568          * flag and allows to overwrite the MAC via VF netdev.  This
9569          * is necessary to allow libvirt a way to restore the original
9570          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9571          * down a VM.
9572          */
9573         if (is_zero_ether_addr(mac)) {
9574                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9575                 dev_info(&adapter->pdev->dev,
9576                          "remove administratively set MAC on VF %d\n",
9577                          vf);
9578         } else if (is_valid_ether_addr(mac)) {
9579                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9580                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9581                          mac, vf);
9582                 dev_info(&adapter->pdev->dev,
9583                          "Reload the VF driver to make this change effective.");
9584                 /* Generate additional warning if PF is down */
9585                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9586                         dev_warn(&adapter->pdev->dev,
9587                                  "The VF MAC address has been set, but the PF device is not up.\n");
9588                         dev_warn(&adapter->pdev->dev,
9589                                  "Bring the PF device up before attempting to use the VF device.\n");
9590                 }
9591         } else {
9592                 return -EINVAL;
9593         }
9594         return igb_set_vf_mac(adapter, vf, mac);
9595 }
9596
9597 static int igb_link_mbps(int internal_link_speed)
9598 {
9599         switch (internal_link_speed) {
9600         case SPEED_100:
9601                 return 100;
9602         case SPEED_1000:
9603                 return 1000;
9604         default:
9605                 return 0;
9606         }
9607 }
9608
9609 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9610                                   int link_speed)
9611 {
9612         int rf_dec, rf_int;
9613         u32 bcnrc_val;
9614
9615         if (tx_rate != 0) {
9616                 /* Calculate the rate factor values to set */
9617                 rf_int = link_speed / tx_rate;
9618                 rf_dec = (link_speed - (rf_int * tx_rate));
9619                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9620                          tx_rate;
9621
9622                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9623                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9624                               E1000_RTTBCNRC_RF_INT_MASK);
9625                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9626         } else {
9627                 bcnrc_val = 0;
9628         }
9629
9630         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9631         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9632          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9633          */
9634         wr32(E1000_RTTBCNRM, 0x14);
9635         wr32(E1000_RTTBCNRC, bcnrc_val);
9636 }
9637
9638 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9639 {
9640         int actual_link_speed, i;
9641         bool reset_rate = false;
9642
9643         /* VF TX rate limit was not set or not supported */
9644         if ((adapter->vf_rate_link_speed == 0) ||
9645             (adapter->hw.mac.type != e1000_82576))
9646                 return;
9647
9648         actual_link_speed = igb_link_mbps(adapter->link_speed);
9649         if (actual_link_speed != adapter->vf_rate_link_speed) {
9650                 reset_rate = true;
9651                 adapter->vf_rate_link_speed = 0;
9652                 dev_info(&adapter->pdev->dev,
9653                          "Link speed has been changed. VF Transmit rate is disabled\n");
9654         }
9655
9656         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9657                 if (reset_rate)
9658                         adapter->vf_data[i].tx_rate = 0;
9659
9660                 igb_set_vf_rate_limit(&adapter->hw, i,
9661                                       adapter->vf_data[i].tx_rate,
9662                                       actual_link_speed);
9663         }
9664 }
9665
9666 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9667                              int min_tx_rate, int max_tx_rate)
9668 {
9669         struct igb_adapter *adapter = netdev_priv(netdev);
9670         struct e1000_hw *hw = &adapter->hw;
9671         int actual_link_speed;
9672
9673         if (hw->mac.type != e1000_82576)
9674                 return -EOPNOTSUPP;
9675
9676         if (min_tx_rate)
9677                 return -EINVAL;
9678
9679         actual_link_speed = igb_link_mbps(adapter->link_speed);
9680         if ((vf >= adapter->vfs_allocated_count) ||
9681             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9682             (max_tx_rate < 0) ||
9683             (max_tx_rate > actual_link_speed))
9684                 return -EINVAL;
9685
9686         adapter->vf_rate_link_speed = actual_link_speed;
9687         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9688         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9689
9690         return 0;
9691 }
9692
9693 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9694                                    bool setting)
9695 {
9696         struct igb_adapter *adapter = netdev_priv(netdev);
9697         struct e1000_hw *hw = &adapter->hw;
9698         u32 reg_val, reg_offset;
9699
9700         if (!adapter->vfs_allocated_count)
9701                 return -EOPNOTSUPP;
9702
9703         if (vf >= adapter->vfs_allocated_count)
9704                 return -EINVAL;
9705
9706         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9707         reg_val = rd32(reg_offset);
9708         if (setting)
9709                 reg_val |= (BIT(vf) |
9710                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9711         else
9712                 reg_val &= ~(BIT(vf) |
9713                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9714         wr32(reg_offset, reg_val);
9715
9716         adapter->vf_data[vf].spoofchk_enabled = setting;
9717         return 0;
9718 }
9719
9720 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9721 {
9722         struct igb_adapter *adapter = netdev_priv(netdev);
9723
9724         if (vf >= adapter->vfs_allocated_count)
9725                 return -EINVAL;
9726         if (adapter->vf_data[vf].trusted == setting)
9727                 return 0;
9728
9729         adapter->vf_data[vf].trusted = setting;
9730
9731         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9732                  vf, setting ? "" : "not ");
9733         return 0;
9734 }
9735
9736 static int igb_ndo_get_vf_config(struct net_device *netdev,
9737                                  int vf, struct ifla_vf_info *ivi)
9738 {
9739         struct igb_adapter *adapter = netdev_priv(netdev);
9740         if (vf >= adapter->vfs_allocated_count)
9741                 return -EINVAL;
9742         ivi->vf = vf;
9743         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9744         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9745         ivi->min_tx_rate = 0;
9746         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9747         ivi->qos = adapter->vf_data[vf].pf_qos;
9748         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9749         ivi->trusted = adapter->vf_data[vf].trusted;
9750         return 0;
9751 }
9752
9753 static void igb_vmm_control(struct igb_adapter *adapter)
9754 {
9755         struct e1000_hw *hw = &adapter->hw;
9756         u32 reg;
9757
9758         switch (hw->mac.type) {
9759         case e1000_82575:
9760         case e1000_i210:
9761         case e1000_i211:
9762         case e1000_i354:
9763         default:
9764                 /* replication is not supported for 82575 */
9765                 return;
9766         case e1000_82576:
9767                 /* notify HW that the MAC is adding vlan tags */
9768                 reg = rd32(E1000_DTXCTL);
9769                 reg |= E1000_DTXCTL_VLAN_ADDED;
9770                 wr32(E1000_DTXCTL, reg);
9771                 fallthrough;
9772         case e1000_82580:
9773                 /* enable replication vlan tag stripping */
9774                 reg = rd32(E1000_RPLOLR);
9775                 reg |= E1000_RPLOLR_STRVLAN;
9776                 wr32(E1000_RPLOLR, reg);
9777                 fallthrough;
9778         case e1000_i350:
9779                 /* none of the above registers are supported by i350 */
9780                 break;
9781         }
9782
9783         if (adapter->vfs_allocated_count) {
9784                 igb_vmdq_set_loopback_pf(hw, true);
9785                 igb_vmdq_set_replication_pf(hw, true);
9786                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9787                                               adapter->vfs_allocated_count);
9788         } else {
9789                 igb_vmdq_set_loopback_pf(hw, false);
9790                 igb_vmdq_set_replication_pf(hw, false);
9791         }
9792 }
9793
9794 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9795 {
9796         struct e1000_hw *hw = &adapter->hw;
9797         u32 dmac_thr;
9798         u16 hwm;
9799
9800         if (hw->mac.type > e1000_82580) {
9801                 if (adapter->flags & IGB_FLAG_DMAC) {
9802                         u32 reg;
9803
9804                         /* force threshold to 0. */
9805                         wr32(E1000_DMCTXTH, 0);
9806
9807                         /* DMA Coalescing high water mark needs to be greater
9808                          * than the Rx threshold. Set hwm to PBA - max frame
9809                          * size in 16B units, capping it at PBA - 6KB.
9810                          */
9811                         hwm = 64 * (pba - 6);
9812                         reg = rd32(E1000_FCRTC);
9813                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9814                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9815                                 & E1000_FCRTC_RTH_COAL_MASK);
9816                         wr32(E1000_FCRTC, reg);
9817
9818                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9819                          * frame size, capping it at PBA - 10KB.
9820                          */
9821                         dmac_thr = pba - 10;
9822                         reg = rd32(E1000_DMACR);
9823                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9824                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9825                                 & E1000_DMACR_DMACTHR_MASK);
9826
9827                         /* transition to L0x or L1 if available..*/
9828                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9829
9830                         /* watchdog timer= +-1000 usec in 32usec intervals */
9831                         reg |= (1000 >> 5);
9832
9833                         /* Disable BMC-to-OS Watchdog Enable */
9834                         if (hw->mac.type != e1000_i354)
9835                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9836
9837                         wr32(E1000_DMACR, reg);
9838
9839                         /* no lower threshold to disable
9840                          * coalescing(smart fifb)-UTRESH=0
9841                          */
9842                         wr32(E1000_DMCRTRH, 0);
9843
9844                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9845
9846                         wr32(E1000_DMCTLX, reg);
9847
9848                         /* free space in tx packet buffer to wake from
9849                          * DMA coal
9850                          */
9851                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9852                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9853
9854                         /* make low power state decision controlled
9855                          * by DMA coal
9856                          */
9857                         reg = rd32(E1000_PCIEMISC);
9858                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9859                         wr32(E1000_PCIEMISC, reg);
9860                 } /* endif adapter->dmac is not disabled */
9861         } else if (hw->mac.type == e1000_82580) {
9862                 u32 reg = rd32(E1000_PCIEMISC);
9863
9864                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9865                 wr32(E1000_DMACR, 0);
9866         }
9867 }
9868
9869 /**
9870  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9871  *  @hw: pointer to hardware structure
9872  *  @byte_offset: byte offset to read
9873  *  @dev_addr: device address
9874  *  @data: value read
9875  *
9876  *  Performs byte read operation over I2C interface at
9877  *  a specified device address.
9878  **/
9879 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9880                       u8 dev_addr, u8 *data)
9881 {
9882         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9883         struct i2c_client *this_client = adapter->i2c_client;
9884         s32 status;
9885         u16 swfw_mask = 0;
9886
9887         if (!this_client)
9888                 return E1000_ERR_I2C;
9889
9890         swfw_mask = E1000_SWFW_PHY0_SM;
9891
9892         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9893                 return E1000_ERR_SWFW_SYNC;
9894
9895         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9896         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9897
9898         if (status < 0)
9899                 return E1000_ERR_I2C;
9900         else {
9901                 *data = status;
9902                 return 0;
9903         }
9904 }
9905
9906 /**
9907  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9908  *  @hw: pointer to hardware structure
9909  *  @byte_offset: byte offset to write
9910  *  @dev_addr: device address
9911  *  @data: value to write
9912  *
9913  *  Performs byte write operation over I2C interface at
9914  *  a specified device address.
9915  **/
9916 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9917                        u8 dev_addr, u8 data)
9918 {
9919         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9920         struct i2c_client *this_client = adapter->i2c_client;
9921         s32 status;
9922         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9923
9924         if (!this_client)
9925                 return E1000_ERR_I2C;
9926
9927         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9928                 return E1000_ERR_SWFW_SYNC;
9929         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9930         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9931
9932         if (status)
9933                 return E1000_ERR_I2C;
9934         else
9935                 return 0;
9936
9937 }
9938
9939 int igb_reinit_queues(struct igb_adapter *adapter)
9940 {
9941         struct net_device *netdev = adapter->netdev;
9942         struct pci_dev *pdev = adapter->pdev;
9943         int err = 0;
9944
9945         if (netif_running(netdev))
9946                 igb_close(netdev);
9947
9948         igb_reset_interrupt_capability(adapter);
9949
9950         if (igb_init_interrupt_scheme(adapter, true)) {
9951                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9952                 return -ENOMEM;
9953         }
9954
9955         if (netif_running(netdev))
9956                 err = igb_open(netdev);
9957
9958         return err;
9959 }
9960
9961 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9962 {
9963         struct igb_nfc_filter *rule;
9964
9965         spin_lock(&adapter->nfc_lock);
9966
9967         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9968                 igb_erase_filter(adapter, rule);
9969
9970         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9971                 igb_erase_filter(adapter, rule);
9972
9973         spin_unlock(&adapter->nfc_lock);
9974 }
9975
9976 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9977 {
9978         struct igb_nfc_filter *rule;
9979
9980         spin_lock(&adapter->nfc_lock);
9981
9982         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9983                 igb_add_filter(adapter, rule);
9984
9985         spin_unlock(&adapter->nfc_lock);
9986 }
9987 /* igb_main.c */
This page took 0.641286 seconds and 4 git commands to generate.