1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
37 #include <linux/dca.h>
39 #include <linux/i2c.h>
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
62 static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 .notifier_call = igb_notify_dca,
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
196 static const struct pci_error_handlers igb_err_handler = {
197 .error_detected = igb_io_error_detected,
198 .slot_reset = igb_io_slot_reset,
199 .resume = igb_io_resume,
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
212 struct igb_reg_info {
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
219 /* General Registers */
220 {E1000_CTRL, "CTRL"},
221 {E1000_STATUS, "STATUS"},
222 {E1000_CTRL_EXT, "CTRL_EXT"},
224 /* Interrupt Registers */
228 {E1000_RCTL, "RCTL"},
229 {E1000_RDLEN(0), "RDLEN"},
230 {E1000_RDH(0), "RDH"},
231 {E1000_RDT(0), "RDT"},
232 {E1000_RXDCTL(0), "RXDCTL"},
233 {E1000_RDBAL(0), "RDBAL"},
234 {E1000_RDBAH(0), "RDBAH"},
237 {E1000_TCTL, "TCTL"},
238 {E1000_TDBAL(0), "TDBAL"},
239 {E1000_TDBAH(0), "TDBAH"},
240 {E1000_TDLEN(0), "TDLEN"},
241 {E1000_TDH(0), "TDH"},
242 {E1000_TDT(0), "TDT"},
243 {E1000_TXDCTL(0), "TXDCTL"},
244 {E1000_TDFH, "TDFH"},
245 {E1000_TDFT, "TDFT"},
246 {E1000_TDFHS, "TDFHS"},
247 {E1000_TDFPC, "TDFPC"},
249 /* List Terminator */
253 /* igb_regdump - register printout routine */
254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
260 switch (reginfo->ofs) {
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDLEN(n));
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDH(n));
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDT(n));
273 case E1000_RXDCTL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RXDCTL(n));
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAL(n));
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAH(n));
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAL(n));
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDBAH(n));
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDLEN(n));
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDH(n));
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDT(n));
305 case E1000_TXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TXDCTL(n));
310 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
314 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
320 static void igb_dump(struct igb_adapter *adapter)
322 struct net_device *netdev = adapter->netdev;
323 struct e1000_hw *hw = &adapter->hw;
324 struct igb_reg_info *reginfo;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { __le64 a; __le64 b; } *u0;
328 struct igb_ring *rx_ring;
329 union e1000_adv_rx_desc *rx_desc;
333 if (!netif_msg_hw(adapter))
336 /* Print netdevice Info */
338 dev_info(&adapter->pdev->dev, "Net device Info\n");
339 pr_info("Device Name state trans_start\n");
340 pr_info("%-15s %016lX %016lX\n", netdev->name,
341 netdev->state, dev_trans_start(netdev));
344 /* Print Registers */
345 dev_info(&adapter->pdev->dev, "Register Dump\n");
346 pr_info(" Register Name Value\n");
347 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 reginfo->name; reginfo++) {
349 igb_regdump(hw, reginfo);
352 /* Print TX Ring Summary */
353 if (!netdev || !netif_running(netdev))
356 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
358 for (n = 0; n < adapter->num_tx_queues; n++) {
359 struct igb_tx_buffer *buffer_info;
360 tx_ring = adapter->tx_ring[n];
361 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 (u64)dma_unmap_addr(buffer_info, dma),
365 dma_unmap_len(buffer_info, len),
366 buffer_info->next_to_watch,
367 (u64)buffer_info->time_stamp);
371 if (!netif_msg_tx_done(adapter))
372 goto rx_ring_summary;
374 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
376 /* Transmit Descriptor Formats
378 * Advanced Transmit Descriptor
379 * +--------------------------------------------------------------+
380 * 0 | Buffer Address [63:0] |
381 * +--------------------------------------------------------------+
382 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
383 * +--------------------------------------------------------------+
384 * 63 46 45 40 39 38 36 35 32 31 24 15 0
387 for (n = 0; n < adapter->num_tx_queues; n++) {
388 tx_ring = adapter->tx_ring[n];
389 pr_info("------------------------------------\n");
390 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 pr_info("------------------------------------\n");
392 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 const char *next_desc;
396 struct igb_tx_buffer *buffer_info;
397 tx_desc = IGB_TX_DESC(tx_ring, i);
398 buffer_info = &tx_ring->tx_buffer_info[i];
399 u0 = (struct my_u0 *)tx_desc;
400 if (i == tx_ring->next_to_use &&
401 i == tx_ring->next_to_clean)
402 next_desc = " NTC/U";
403 else if (i == tx_ring->next_to_use)
405 else if (i == tx_ring->next_to_clean)
410 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
411 i, le64_to_cpu(u0->a),
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp,
417 buffer_info->skb, next_desc);
419 if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 print_hex_dump(KERN_INFO, "",
422 16, 1, buffer_info->skb->data,
423 dma_unmap_len(buffer_info, len),
428 /* Print RX Rings Summary */
430 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 pr_info("Queue [NTU] [NTC]\n");
432 for (n = 0; n < adapter->num_rx_queues; n++) {
433 rx_ring = adapter->rx_ring[n];
434 pr_info(" %5d %5X %5X\n",
435 n, rx_ring->next_to_use, rx_ring->next_to_clean);
439 if (!netif_msg_rx_status(adapter))
442 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
444 /* Advanced Receive Descriptor (Read) Format
446 * +-----------------------------------------------------+
447 * 0 | Packet Buffer Address [63:1] |A0/NSE|
448 * +----------------------------------------------+------+
449 * 8 | Header Buffer Address [63:1] | DD |
450 * +-----------------------------------------------------+
453 * Advanced Receive Descriptor (Write-Back) Format
455 * 63 48 47 32 31 30 21 20 17 16 4 3 0
456 * +------------------------------------------------------+
457 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
458 * | Checksum Ident | | | | Type | Type |
459 * +------------------------------------------------------+
460 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 * +------------------------------------------------------+
462 * 63 48 47 32 31 20 19 0
465 for (n = 0; n < adapter->num_rx_queues; n++) {
466 rx_ring = adapter->rx_ring[n];
467 pr_info("------------------------------------\n");
468 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 pr_info("------------------------------------\n");
470 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
471 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
473 for (i = 0; i < rx_ring->count; i++) {
474 const char *next_desc;
475 dma_addr_t dma = (dma_addr_t)0;
476 struct igb_rx_buffer *buffer_info = NULL;
477 rx_desc = IGB_RX_DESC(rx_ring, i);
478 u0 = (struct my_u0 *)rx_desc;
479 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
481 if (!rx_ring->xsk_pool) {
482 buffer_info = &rx_ring->rx_buffer_info[i];
483 dma = buffer_info->dma;
486 if (i == rx_ring->next_to_use)
488 else if (i == rx_ring->next_to_clean)
493 if (staterr & E1000_RXD_STAT_DD) {
494 /* Descriptor Done */
495 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
501 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
508 if (netif_msg_pktdata(adapter) &&
509 buffer_info && dma && buffer_info->page) {
510 print_hex_dump(KERN_INFO, "",
513 page_address(buffer_info->page) +
514 buffer_info->page_offset,
515 igb_rx_bufsz(rx_ring), true);
526 * igb_get_i2c_data - Reads the I2C SDA data bit
527 * @data: opaque pointer to adapter struct
529 * Returns the I2C data bit value
531 static int igb_get_i2c_data(void *data)
533 struct igb_adapter *adapter = (struct igb_adapter *)data;
534 struct e1000_hw *hw = &adapter->hw;
535 s32 i2cctl = rd32(E1000_I2CPARAMS);
537 return !!(i2cctl & E1000_I2C_DATA_IN);
541 * igb_set_i2c_data - Sets the I2C data bit
542 * @data: pointer to hardware structure
543 * @state: I2C data value (0 or 1) to set
545 * Sets the I2C data bit
547 static void igb_set_i2c_data(void *data, int state)
549 struct igb_adapter *adapter = (struct igb_adapter *)data;
550 struct e1000_hw *hw = &adapter->hw;
551 s32 i2cctl = rd32(E1000_I2CPARAMS);
554 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
556 i2cctl &= ~E1000_I2C_DATA_OE_N;
557 i2cctl &= ~E1000_I2C_DATA_OUT;
560 wr32(E1000_I2CPARAMS, i2cctl);
565 * igb_set_i2c_clk - Sets the I2C SCL clock
566 * @data: pointer to hardware structure
567 * @state: state to set clock
569 * Sets the I2C clock line to state
571 static void igb_set_i2c_clk(void *data, int state)
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
578 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
580 i2cctl &= ~E1000_I2C_CLK_OUT;
581 i2cctl &= ~E1000_I2C_CLK_OE_N;
583 wr32(E1000_I2CPARAMS, i2cctl);
588 * igb_get_i2c_clk - Gets the I2C SCL clock state
589 * @data: pointer to hardware structure
591 * Gets the I2C clock state
593 static int igb_get_i2c_clk(void *data)
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
599 return !!(i2cctl & E1000_I2C_CLK_IN);
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 .setsda = igb_set_i2c_data,
604 .setscl = igb_set_i2c_clk,
605 .getsda = igb_get_i2c_data,
606 .getscl = igb_get_i2c_clk,
612 * igb_get_hw_dev - return device
613 * @hw: pointer to hardware structure
615 * used by hardware layer to print debugging information
617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
619 struct igb_adapter *adapter = hw->back;
620 return adapter->netdev;
623 static struct pci_driver igb_driver;
626 * igb_init_module - Driver Registration Routine
628 * igb_init_module is the first routine called when the driver is
629 * loaded. All it does is register with the PCI subsystem.
631 static int __init igb_init_module(void)
635 pr_info("%s\n", igb_driver_string);
636 pr_info("%s\n", igb_copyright);
638 #ifdef CONFIG_IGB_DCA
639 dca_register_notify(&dca_notifier);
641 ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
644 dca_unregister_notify(&dca_notifier);
649 module_init(igb_init_module);
652 * igb_exit_module - Driver Exit Cleanup Routine
654 * igb_exit_module is called just before the driver is removed
657 static void __exit igb_exit_module(void)
659 #ifdef CONFIG_IGB_DCA
660 dca_unregister_notify(&dca_notifier);
662 pci_unregister_driver(&igb_driver);
665 module_exit(igb_exit_module);
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
669 * igb_cache_ring_register - Descriptor ring to register mapping
670 * @adapter: board private structure to initialize
672 * Once we know the feature-set enabled for the device, we'll cache
673 * the register offset the descriptor ring is assigned to.
675 static void igb_cache_ring_register(struct igb_adapter *adapter)
678 u32 rbase_offset = adapter->vfs_allocated_count;
680 switch (adapter->hw.mac.type) {
682 /* The queues are allocated for virtualization such that VF 0
683 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 * In order to avoid collision we start at the first free queue
685 * and continue consuming queues in the same sequence
687 if (adapter->vfs_allocated_count) {
688 for (; i < adapter->rss_queues; i++)
689 adapter->rx_ring[i]->reg_idx = rbase_offset +
700 for (; i < adapter->num_rx_queues; i++)
701 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 for (; j < adapter->num_tx_queues; j++)
703 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
710 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
714 if (E1000_REMOVED(hw_addr))
717 value = readl(&hw_addr[reg]);
719 /* reads should not return all F's */
720 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 struct net_device *netdev = igb->netdev;
723 netdev_err(netdev, "PCIe link lost\n");
724 WARN(pci_device_is_present(igb->pdev),
725 "igb: Failed to read reg 0x%x!\n", reg);
732 * igb_write_ivar - configure ivar for given MSI-X vector
733 * @hw: pointer to the HW structure
734 * @msix_vector: vector number we are allocating to a given ring
735 * @index: row index of IVAR register to write within IVAR table
736 * @offset: column offset of in IVAR, should be multiple of 8
738 * This function is intended to handle the writing of the IVAR register
739 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
740 * each containing an cause allocation for an Rx and Tx ring, and a
741 * variable number of rows depending on the number of queues supported.
743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 int index, int offset)
746 u32 ivar = array_rd32(E1000_IVAR0, index);
748 /* clear any bits that are currently set */
749 ivar &= ~((u32)0xFF << offset);
751 /* write vector and valid bit */
752 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
754 array_wr32(E1000_IVAR0, index, ivar);
757 #define IGB_N0_QUEUE -1
758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
760 struct igb_adapter *adapter = q_vector->adapter;
761 struct e1000_hw *hw = &adapter->hw;
762 int rx_queue = IGB_N0_QUEUE;
763 int tx_queue = IGB_N0_QUEUE;
766 if (q_vector->rx.ring)
767 rx_queue = q_vector->rx.ring->reg_idx;
768 if (q_vector->tx.ring)
769 tx_queue = q_vector->tx.ring->reg_idx;
771 switch (hw->mac.type) {
773 /* The 82575 assigns vectors using a bitmask, which matches the
774 * bitmask for the EICR/EIMS/EIMC registers. To assign one
775 * or more queues to a vector, we write the appropriate bits
776 * into the MSIXBM register for that vector.
778 if (rx_queue > IGB_N0_QUEUE)
779 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 if (tx_queue > IGB_N0_QUEUE)
781 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 msixbm |= E1000_EIMS_OTHER;
784 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 q_vector->eims_value = msixbm;
788 /* 82576 uses a table that essentially consists of 2 columns
789 * with 8 rows. The ordering is column-major so we use the
790 * lower 3 bits as the row index, and the 4th bit as the
793 if (rx_queue > IGB_N0_QUEUE)
794 igb_write_ivar(hw, msix_vector,
796 (rx_queue & 0x8) << 1);
797 if (tx_queue > IGB_N0_QUEUE)
798 igb_write_ivar(hw, msix_vector,
800 ((tx_queue & 0x8) << 1) + 8);
801 q_vector->eims_value = BIT(msix_vector);
808 /* On 82580 and newer adapters the scheme is similar to 82576
809 * however instead of ordering column-major we have things
810 * ordered row-major. So we traverse the table by using
811 * bit 0 as the column offset, and the remaining bits as the
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
817 (rx_queue & 0x1) << 4);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
821 ((tx_queue & 0x1) << 4) + 8);
822 q_vector->eims_value = BIT(msix_vector);
829 /* add q_vector eims value to global eims_enable_mask */
830 adapter->eims_enable_mask |= q_vector->eims_value;
832 /* configure q_vector to set itr on first interrupt */
833 q_vector->set_itr = 1;
837 * igb_configure_msix - Configure MSI-X hardware
838 * @adapter: board private structure to initialize
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
843 static void igb_configure_msix(struct igb_adapter *adapter)
847 struct e1000_hw *hw = &adapter->hw;
849 adapter->eims_enable_mask = 0;
851 /* set vector for other causes, i.e. link changes */
852 switch (hw->mac.type) {
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
862 wr32(E1000_CTRL_EXT, tmp);
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 adapter->eims_other = E1000_EIMS_OTHER;
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug.
879 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 E1000_GPIE_PBA | E1000_GPIE_EIAME |
883 /* enable msix_other interrupt */
884 adapter->eims_other = BIT(vector);
885 tmp = (vector++ | E1000_IVAR_VALID) << 8;
887 wr32(E1000_IVAR_MISC, tmp);
890 /* do nothing, since nothing else supports MSI-X */
892 } /* switch (hw->mac.type) */
894 adapter->eims_enable_mask |= adapter->eims_other;
896 for (i = 0; i < adapter->num_q_vectors; i++)
897 igb_assign_vector(adapter->q_vector[i], vector++);
903 * igb_request_msix - Initialize MSI-X interrupts
904 * @adapter: board private structure to initialize
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
909 static int igb_request_msix(struct igb_adapter *adapter)
911 unsigned int num_q_vectors = adapter->num_q_vectors;
912 struct net_device *netdev = adapter->netdev;
913 int i, err = 0, vector = 0, free_vector = 0;
915 err = request_irq(adapter->msix_entries[vector].vector,
916 igb_msix_other, 0, netdev->name, adapter);
920 if (num_q_vectors > MAX_Q_VECTORS) {
921 num_q_vectors = MAX_Q_VECTORS;
922 dev_warn(&adapter->pdev->dev,
923 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 adapter->num_q_vectors, MAX_Q_VECTORS);
926 for (i = 0; i < num_q_vectors; i++) {
927 struct igb_q_vector *q_vector = adapter->q_vector[i];
931 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
933 if (q_vector->rx.ring && q_vector->tx.ring)
934 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 q_vector->rx.ring->queue_index);
936 else if (q_vector->tx.ring)
937 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 q_vector->tx.ring->queue_index);
939 else if (q_vector->rx.ring)
940 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 q_vector->rx.ring->queue_index);
943 sprintf(q_vector->name, "%s-unused", netdev->name);
945 err = request_irq(adapter->msix_entries[vector].vector,
946 igb_msix_ring, 0, q_vector->name,
952 igb_configure_msix(adapter);
956 /* free already assigned IRQs */
957 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
960 for (i = 0; i < vector; i++) {
961 free_irq(adapter->msix_entries[free_vector++].vector,
962 adapter->q_vector[i]);
969 * igb_free_q_vector - Free memory allocated for specific interrupt vector
970 * @adapter: board private structure to initialize
971 * @v_idx: Index of vector to be freed
973 * This function frees the memory allocated to the q_vector.
975 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
977 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
979 adapter->q_vector[v_idx] = NULL;
981 /* igb_get_stats64() might access the rings on this vector,
982 * we must wait a grace period before freeing it.
985 kfree_rcu(q_vector, rcu);
989 * igb_reset_q_vector - Reset config for interrupt vector
990 * @adapter: board private structure to initialize
991 * @v_idx: Index of vector to be reset
993 * If NAPI is enabled it will delete any references to the
994 * NAPI struct. This is preparation for igb_free_q_vector.
996 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1000 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1001 * allocated. So, q_vector is NULL so we should stop here.
1006 if (q_vector->tx.ring)
1007 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009 if (q_vector->rx.ring)
1010 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1012 netif_napi_del(&q_vector->napi);
1016 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1018 int v_idx = adapter->num_q_vectors;
1020 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1021 pci_disable_msix(adapter->pdev);
1022 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1023 pci_disable_msi(adapter->pdev);
1026 igb_reset_q_vector(adapter, v_idx);
1030 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1031 * @adapter: board private structure to initialize
1033 * This function frees the memory allocated to the q_vectors. In addition if
1034 * NAPI is enabled it will delete any references to the NAPI struct prior
1035 * to freeing the q_vector.
1037 static void igb_free_q_vectors(struct igb_adapter *adapter)
1039 int v_idx = adapter->num_q_vectors;
1041 adapter->num_tx_queues = 0;
1042 adapter->num_rx_queues = 0;
1043 adapter->num_q_vectors = 0;
1046 igb_reset_q_vector(adapter, v_idx);
1047 igb_free_q_vector(adapter, v_idx);
1052 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1053 * @adapter: board private structure to initialize
1055 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1056 * MSI-X interrupts allocated.
1058 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1060 igb_free_q_vectors(adapter);
1061 igb_reset_interrupt_capability(adapter);
1065 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1066 * @adapter: board private structure to initialize
1067 * @msix: boolean value of MSIX capability
1069 * Attempt to configure interrupts using the best available
1070 * capabilities of the hardware and kernel.
1072 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1079 adapter->flags |= IGB_FLAG_HAS_MSIX;
1081 /* Number of supported queues. */
1082 adapter->num_rx_queues = adapter->rss_queues;
1083 if (adapter->vfs_allocated_count)
1084 adapter->num_tx_queues = 1;
1086 adapter->num_tx_queues = adapter->rss_queues;
1088 /* start with one vector for every Rx queue */
1089 numvecs = adapter->num_rx_queues;
1091 /* if Tx handler is separate add 1 for every Tx queue */
1092 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1093 numvecs += adapter->num_tx_queues;
1095 /* store the number of vectors reserved for queues */
1096 adapter->num_q_vectors = numvecs;
1098 /* add 1 vector for link status interrupts */
1100 for (i = 0; i < numvecs; i++)
1101 adapter->msix_entries[i].entry = i;
1103 err = pci_enable_msix_range(adapter->pdev,
1104 adapter->msix_entries,
1110 igb_reset_interrupt_capability(adapter);
1112 /* If we can't do MSI-X, try MSI */
1114 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1115 #ifdef CONFIG_PCI_IOV
1116 /* disable SR-IOV for non MSI-X configurations */
1117 if (adapter->vf_data) {
1118 struct e1000_hw *hw = &adapter->hw;
1119 /* disable iov and allow time for transactions to clear */
1120 pci_disable_sriov(adapter->pdev);
1123 kfree(adapter->vf_mac_list);
1124 adapter->vf_mac_list = NULL;
1125 kfree(adapter->vf_data);
1126 adapter->vf_data = NULL;
1127 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1130 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1133 adapter->vfs_allocated_count = 0;
1134 adapter->rss_queues = 1;
1135 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1136 adapter->num_rx_queues = 1;
1137 adapter->num_tx_queues = 1;
1138 adapter->num_q_vectors = 1;
1139 if (!pci_enable_msi(adapter->pdev))
1140 adapter->flags |= IGB_FLAG_HAS_MSI;
1143 static void igb_add_ring(struct igb_ring *ring,
1144 struct igb_ring_container *head)
1151 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1152 * @adapter: board private structure to initialize
1153 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1154 * @v_idx: index of vector in adapter struct
1155 * @txr_count: total number of Tx rings to allocate
1156 * @txr_idx: index of first Tx ring to allocate
1157 * @rxr_count: total number of Rx rings to allocate
1158 * @rxr_idx: index of first Rx ring to allocate
1160 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1162 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1163 int v_count, int v_idx,
1164 int txr_count, int txr_idx,
1165 int rxr_count, int rxr_idx)
1167 struct igb_q_vector *q_vector;
1168 struct igb_ring *ring;
1172 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1173 if (txr_count > 1 || rxr_count > 1)
1176 ring_count = txr_count + rxr_count;
1177 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1179 /* allocate q_vector and rings */
1180 q_vector = adapter->q_vector[v_idx];
1182 q_vector = kzalloc(size, GFP_KERNEL);
1183 } else if (size > ksize(q_vector)) {
1184 struct igb_q_vector *new_q_vector;
1186 new_q_vector = kzalloc(size, GFP_KERNEL);
1188 kfree_rcu(q_vector, rcu);
1189 q_vector = new_q_vector;
1191 memset(q_vector, 0, size);
1196 /* initialize NAPI */
1197 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1199 /* tie q_vector and adapter together */
1200 adapter->q_vector[v_idx] = q_vector;
1201 q_vector->adapter = adapter;
1203 /* initialize work limits */
1204 q_vector->tx.work_limit = adapter->tx_work_limit;
1206 /* initialize ITR configuration */
1207 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1208 q_vector->itr_val = IGB_START_ITR;
1210 /* initialize pointer to rings */
1211 ring = q_vector->ring;
1213 /* initialize ITR */
1215 /* rx or rx/tx vector */
1216 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1217 q_vector->itr_val = adapter->rx_itr_setting;
1219 /* tx only vector */
1220 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1221 q_vector->itr_val = adapter->tx_itr_setting;
1225 /* assign generic ring traits */
1226 ring->dev = &adapter->pdev->dev;
1227 ring->netdev = adapter->netdev;
1229 /* configure backlink on ring */
1230 ring->q_vector = q_vector;
1232 /* update q_vector Tx values */
1233 igb_add_ring(ring, &q_vector->tx);
1235 /* For 82575, context index must be unique per ring. */
1236 if (adapter->hw.mac.type == e1000_82575)
1237 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1239 /* apply Tx specific ring traits */
1240 ring->count = adapter->tx_ring_count;
1241 ring->queue_index = txr_idx;
1243 ring->cbs_enable = false;
1244 ring->idleslope = 0;
1245 ring->sendslope = 0;
1249 u64_stats_init(&ring->tx_syncp);
1250 u64_stats_init(&ring->tx_syncp2);
1252 /* assign ring to adapter */
1253 adapter->tx_ring[txr_idx] = ring;
1255 /* push pointer to next ring */
1260 /* assign generic ring traits */
1261 ring->dev = &adapter->pdev->dev;
1262 ring->netdev = adapter->netdev;
1264 /* configure backlink on ring */
1265 ring->q_vector = q_vector;
1267 /* update q_vector Rx values */
1268 igb_add_ring(ring, &q_vector->rx);
1270 /* set flag indicating ring supports SCTP checksum offload */
1271 if (adapter->hw.mac.type >= e1000_82576)
1272 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1274 /* On i350, i354, i210, and i211, loopback VLAN packets
1275 * have the tag byte-swapped.
1277 if (adapter->hw.mac.type >= e1000_i350)
1278 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1280 /* apply Rx specific ring traits */
1281 ring->count = adapter->rx_ring_count;
1282 ring->queue_index = rxr_idx;
1284 u64_stats_init(&ring->rx_syncp);
1286 /* assign ring to adapter */
1287 adapter->rx_ring[rxr_idx] = ring;
1295 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1296 * @adapter: board private structure to initialize
1298 * We allocate one q_vector per queue interrupt. If allocation fails we
1301 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1303 int q_vectors = adapter->num_q_vectors;
1304 int rxr_remaining = adapter->num_rx_queues;
1305 int txr_remaining = adapter->num_tx_queues;
1306 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1309 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1310 for (; rxr_remaining; v_idx++) {
1311 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1317 /* update counts and index */
1323 for (; v_idx < q_vectors; v_idx++) {
1324 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1325 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1327 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1328 tqpv, txr_idx, rqpv, rxr_idx);
1333 /* update counts and index */
1334 rxr_remaining -= rqpv;
1335 txr_remaining -= tqpv;
1343 adapter->num_tx_queues = 0;
1344 adapter->num_rx_queues = 0;
1345 adapter->num_q_vectors = 0;
1348 igb_free_q_vector(adapter, v_idx);
1354 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1355 * @adapter: board private structure to initialize
1356 * @msix: boolean value of MSIX capability
1358 * This function initializes the interrupts and allocates all of the queues.
1360 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1362 struct pci_dev *pdev = adapter->pdev;
1365 igb_set_interrupt_capability(adapter, msix);
1367 err = igb_alloc_q_vectors(adapter);
1369 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1370 goto err_alloc_q_vectors;
1373 igb_cache_ring_register(adapter);
1377 err_alloc_q_vectors:
1378 igb_reset_interrupt_capability(adapter);
1383 * igb_request_irq - initialize interrupts
1384 * @adapter: board private structure to initialize
1386 * Attempts to configure interrupts using the best available
1387 * capabilities of the hardware and kernel.
1389 static int igb_request_irq(struct igb_adapter *adapter)
1391 struct net_device *netdev = adapter->netdev;
1392 struct pci_dev *pdev = adapter->pdev;
1395 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1396 err = igb_request_msix(adapter);
1399 /* fall back to MSI */
1400 igb_free_all_tx_resources(adapter);
1401 igb_free_all_rx_resources(adapter);
1403 igb_clear_interrupt_scheme(adapter);
1404 err = igb_init_interrupt_scheme(adapter, false);
1408 igb_setup_all_tx_resources(adapter);
1409 igb_setup_all_rx_resources(adapter);
1410 igb_configure(adapter);
1413 igb_assign_vector(adapter->q_vector[0], 0);
1415 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1416 err = request_irq(pdev->irq, igb_intr_msi, 0,
1417 netdev->name, adapter);
1421 /* fall back to legacy interrupts */
1422 igb_reset_interrupt_capability(adapter);
1423 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1426 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1427 netdev->name, adapter);
1430 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1437 static void igb_free_irq(struct igb_adapter *adapter)
1439 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1442 free_irq(adapter->msix_entries[vector++].vector, adapter);
1444 for (i = 0; i < adapter->num_q_vectors; i++)
1445 free_irq(adapter->msix_entries[vector++].vector,
1446 adapter->q_vector[i]);
1448 free_irq(adapter->pdev->irq, adapter);
1453 * igb_irq_disable - Mask off interrupt generation on the NIC
1454 * @adapter: board private structure
1456 static void igb_irq_disable(struct igb_adapter *adapter)
1458 struct e1000_hw *hw = &adapter->hw;
1460 /* we need to be careful when disabling interrupts. The VFs are also
1461 * mapped into these registers and so clearing the bits can cause
1462 * issues on the VF drivers so we only need to clear what we set
1464 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1465 u32 regval = rd32(E1000_EIAM);
1467 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1468 wr32(E1000_EIMC, adapter->eims_enable_mask);
1469 regval = rd32(E1000_EIAC);
1470 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1474 wr32(E1000_IMC, ~0);
1476 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479 for (i = 0; i < adapter->num_q_vectors; i++)
1480 synchronize_irq(adapter->msix_entries[i].vector);
1482 synchronize_irq(adapter->pdev->irq);
1487 * igb_irq_enable - Enable default interrupt generation settings
1488 * @adapter: board private structure
1490 static void igb_irq_enable(struct igb_adapter *adapter)
1492 struct e1000_hw *hw = &adapter->hw;
1494 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1496 u32 regval = rd32(E1000_EIAC);
1498 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1499 regval = rd32(E1000_EIAM);
1500 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1501 wr32(E1000_EIMS, adapter->eims_enable_mask);
1502 if (adapter->vfs_allocated_count) {
1503 wr32(E1000_MBVFIMR, 0xFF);
1504 ims |= E1000_IMS_VMMB;
1506 wr32(E1000_IMS, ims);
1508 wr32(E1000_IMS, IMS_ENABLE_MASK |
1510 wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1517 struct e1000_hw *hw = &adapter->hw;
1518 u16 pf_id = adapter->vfs_allocated_count;
1519 u16 vid = adapter->hw.mng_cookie.vlan_id;
1520 u16 old_vid = adapter->mng_vlan_id;
1522 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1523 /* add VID to filter table */
1524 igb_vfta_set(hw, vid, pf_id, true, true);
1525 adapter->mng_vlan_id = vid;
1527 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1530 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1532 !test_bit(old_vid, adapter->active_vlans)) {
1533 /* remove VID from filter table */
1534 igb_vfta_set(hw, vid, pf_id, false, true);
1539 * igb_release_hw_control - release control of the h/w to f/w
1540 * @adapter: address of board private structure
1542 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1543 * For ASF and Pass Through versions of f/w this means that the
1544 * driver is no longer loaded.
1546 static void igb_release_hw_control(struct igb_adapter *adapter)
1548 struct e1000_hw *hw = &adapter->hw;
1551 /* Let firmware take over control of h/w */
1552 ctrl_ext = rd32(E1000_CTRL_EXT);
1553 wr32(E1000_CTRL_EXT,
1554 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1558 * igb_get_hw_control - get control of the h/w from f/w
1559 * @adapter: address of board private structure
1561 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1562 * For ASF and Pass Through versions of f/w this means that
1563 * the driver is loaded.
1565 static void igb_get_hw_control(struct igb_adapter *adapter)
1567 struct e1000_hw *hw = &adapter->hw;
1570 /* Let firmware know the driver has taken over */
1571 ctrl_ext = rd32(E1000_CTRL_EXT);
1572 wr32(E1000_CTRL_EXT,
1573 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1576 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1578 struct net_device *netdev = adapter->netdev;
1579 struct e1000_hw *hw = &adapter->hw;
1581 WARN_ON(hw->mac.type != e1000_i210);
1584 adapter->flags |= IGB_FLAG_FQTSS;
1586 adapter->flags &= ~IGB_FLAG_FQTSS;
1588 if (netif_running(netdev))
1589 schedule_work(&adapter->reset_task);
1592 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1594 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1597 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1598 enum tx_queue_prio prio)
1602 WARN_ON(hw->mac.type != e1000_i210);
1603 WARN_ON(queue < 0 || queue > 4);
1605 val = rd32(E1000_I210_TXDCTL(queue));
1607 if (prio == TX_QUEUE_PRIO_HIGH)
1608 val |= E1000_TXDCTL_PRIORITY;
1610 val &= ~E1000_TXDCTL_PRIORITY;
1612 wr32(E1000_I210_TXDCTL(queue), val);
1615 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1619 WARN_ON(hw->mac.type != e1000_i210);
1620 WARN_ON(queue < 0 || queue > 1);
1622 val = rd32(E1000_I210_TQAVCC(queue));
1624 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1625 val |= E1000_TQAVCC_QUEUEMODE;
1627 val &= ~E1000_TQAVCC_QUEUEMODE;
1629 wr32(E1000_I210_TQAVCC(queue), val);
1632 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1636 for (i = 0; i < adapter->num_tx_queues; i++) {
1637 if (adapter->tx_ring[i]->cbs_enable)
1644 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1648 for (i = 0; i < adapter->num_tx_queues; i++) {
1649 if (adapter->tx_ring[i]->launchtime_enable)
1657 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1658 * @adapter: pointer to adapter struct
1659 * @queue: queue number
1661 * Configure CBS and Launchtime for a given hardware queue.
1662 * Parameters are retrieved from the correct Tx ring, so
1663 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1664 * for setting those correctly prior to this function being called.
1666 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1668 struct net_device *netdev = adapter->netdev;
1669 struct e1000_hw *hw = &adapter->hw;
1670 struct igb_ring *ring;
1671 u32 tqavcc, tqavctrl;
1674 WARN_ON(hw->mac.type != e1000_i210);
1675 WARN_ON(queue < 0 || queue > 1);
1676 ring = adapter->tx_ring[queue];
1678 /* If any of the Qav features is enabled, configure queues as SR and
1679 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1682 if (ring->cbs_enable || ring->launchtime_enable) {
1683 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1684 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1686 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1687 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1690 /* If CBS is enabled, set DataTranARB and config its parameters. */
1691 if (ring->cbs_enable || queue == 0) {
1692 /* i210 does not allow the queue 0 to be in the Strict
1693 * Priority mode while the Qav mode is enabled, so,
1694 * instead of disabling strict priority mode, we give
1695 * queue 0 the maximum of credits possible.
1697 * See section 8.12.19 of the i210 datasheet, "Note:
1698 * Queue0 QueueMode must be set to 1b when
1699 * TransmitMode is set to Qav."
1701 if (queue == 0 && !ring->cbs_enable) {
1702 /* max "linkspeed" idleslope in kbps */
1703 ring->idleslope = 1000000;
1704 ring->hicredit = ETH_FRAME_LEN;
1707 /* Always set data transfer arbitration to credit-based
1708 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1711 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1712 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1713 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1715 /* According to i210 datasheet section 7.2.7.7, we should set
1716 * the 'idleSlope' field from TQAVCC register following the
1719 * For 100 Mbps link speed:
1721 * value = BW * 0x7735 * 0.2 (E1)
1723 * For 1000Mbps link speed:
1725 * value = BW * 0x7735 * 2 (E2)
1727 * E1 and E2 can be merged into one equation as shown below.
1728 * Note that 'link-speed' is in Mbps.
1730 * value = BW * 0x7735 * 2 * link-speed
1731 * -------------- (E3)
1734 * 'BW' is the percentage bandwidth out of full link speed
1735 * which can be found with the following equation. Note that
1736 * idleSlope here is the parameter from this function which
1740 * ----------------- (E4)
1743 * That said, we can come up with a generic equation to
1744 * calculate the value we should set it TQAVCC register by
1745 * replacing 'BW' in E3 by E4. The resulting equation is:
1747 * value = idleSlope * 0x7735 * 2 * link-speed
1748 * ----------------- -------------- (E5)
1749 * link-speed * 1000 1000
1751 * 'link-speed' is present in both sides of the fraction so
1752 * it is canceled out. The final equation is the following:
1754 * value = idleSlope * 61034
1755 * ----------------- (E6)
1758 * NOTE: For i210, given the above, we can see that idleslope
1759 * is represented in 16.38431 kbps units by the value at
1760 * the TQAVCC register (1Gbps / 61034), which reduces
1761 * the granularity for idleslope increments.
1762 * For instance, if you want to configure a 2576kbps
1763 * idleslope, the value to be written on the register
1764 * would have to be 157.23. If rounded down, you end
1765 * up with less bandwidth available than originally
1766 * required (~2572 kbps). If rounded up, you end up
1767 * with a higher bandwidth (~2589 kbps). Below the
1768 * approach we take is to always round up the
1769 * calculated value, so the resulting bandwidth might
1770 * be slightly higher for some configurations.
1772 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1774 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1775 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1777 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1779 wr32(E1000_I210_TQAVHC(queue),
1780 0x80000000 + ring->hicredit * 0x7735);
1783 /* Set idleSlope to zero. */
1784 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1785 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1786 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1788 /* Set hiCredit to zero. */
1789 wr32(E1000_I210_TQAVHC(queue), 0);
1791 /* If CBS is not enabled for any queues anymore, then return to
1792 * the default state of Data Transmission Arbitration on
1795 if (!is_any_cbs_enabled(adapter)) {
1796 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1797 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1798 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1802 /* If LaunchTime is enabled, set DataTranTIM. */
1803 if (ring->launchtime_enable) {
1804 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1805 * for any of the SR queues, and configure fetchtime delta.
1807 * - LaunchTime will be enabled for all SR queues.
1808 * - A fixed offset can be added relative to the launch
1809 * time of all packets if configured at reg LAUNCH_OS0.
1810 * We are keeping it as 0 for now (default value).
1812 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1813 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1814 E1000_TQAVCTRL_FETCHTIME_DELTA;
1815 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1817 /* If Launchtime is not enabled for any SR queues anymore,
1818 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1819 * effectively disabling Launchtime.
1821 if (!is_any_txtime_enabled(adapter)) {
1822 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1823 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1824 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1825 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1829 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1830 * CBS are not configurable by software so we don't do any 'controller
1831 * configuration' in respect to these parameters.
1834 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1835 ring->cbs_enable ? "enabled" : "disabled",
1836 ring->launchtime_enable ? "enabled" : "disabled",
1838 ring->idleslope, ring->sendslope,
1839 ring->hicredit, ring->locredit);
1842 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1845 struct igb_ring *ring;
1847 if (queue < 0 || queue > adapter->num_tx_queues)
1850 ring = adapter->tx_ring[queue];
1851 ring->launchtime_enable = enable;
1856 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1857 bool enable, int idleslope, int sendslope,
1858 int hicredit, int locredit)
1860 struct igb_ring *ring;
1862 if (queue < 0 || queue > adapter->num_tx_queues)
1865 ring = adapter->tx_ring[queue];
1867 ring->cbs_enable = enable;
1868 ring->idleslope = idleslope;
1869 ring->sendslope = sendslope;
1870 ring->hicredit = hicredit;
1871 ring->locredit = locredit;
1877 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1878 * @adapter: pointer to adapter struct
1880 * Configure TQAVCTRL register switching the controller's Tx mode
1881 * if FQTSS mode is enabled or disabled. Additionally, will issue
1882 * a call to igb_config_tx_modes() per queue so any previously saved
1883 * Tx parameters are applied.
1885 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1887 struct net_device *netdev = adapter->netdev;
1888 struct e1000_hw *hw = &adapter->hw;
1891 /* Only i210 controller supports changing the transmission mode. */
1892 if (hw->mac.type != e1000_i210)
1895 if (is_fqtss_enabled(adapter)) {
1898 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1899 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1900 * so SP queues wait for SR ones.
1902 val = rd32(E1000_I210_TQAVCTRL);
1903 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1904 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1905 wr32(E1000_I210_TQAVCTRL, val);
1907 /* Configure Tx and Rx packet buffers sizes as described in
1908 * i210 datasheet section 7.2.7.7.
1910 val = rd32(E1000_TXPBS);
1911 val &= ~I210_TXPBSIZE_MASK;
1912 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1913 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1914 wr32(E1000_TXPBS, val);
1916 val = rd32(E1000_RXPBS);
1917 val &= ~I210_RXPBSIZE_MASK;
1918 val |= I210_RXPBSIZE_PB_30KB;
1919 wr32(E1000_RXPBS, val);
1921 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1922 * register should not exceed the buffer size programmed in
1923 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1924 * so according to the datasheet we should set MAX_TPKT_SIZE to
1927 * However, when we do so, no frame from queue 2 and 3 are
1928 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1929 * or _equal_ to the buffer size programmed in TXPBS. For this
1930 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1932 val = (4096 - 1) / 64;
1933 wr32(E1000_I210_DTXMXPKTSZ, val);
1935 /* Since FQTSS mode is enabled, apply any CBS configuration
1936 * previously set. If no previous CBS configuration has been
1937 * done, then the initial configuration is applied, which means
1940 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1941 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1943 for (i = 0; i < max_queue; i++) {
1944 igb_config_tx_modes(adapter, i);
1947 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1948 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1949 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1951 val = rd32(E1000_I210_TQAVCTRL);
1952 /* According to Section 8.12.21, the other flags we've set when
1953 * enabling FQTSS are not relevant when disabling FQTSS so we
1954 * don't set they here.
1956 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1957 wr32(E1000_I210_TQAVCTRL, val);
1960 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1961 "enabled" : "disabled");
1965 * igb_configure - configure the hardware for RX and TX
1966 * @adapter: private board structure
1968 static void igb_configure(struct igb_adapter *adapter)
1970 struct net_device *netdev = adapter->netdev;
1973 igb_get_hw_control(adapter);
1974 igb_set_rx_mode(netdev);
1975 igb_setup_tx_mode(adapter);
1977 igb_restore_vlan(adapter);
1979 igb_setup_tctl(adapter);
1980 igb_setup_mrqc(adapter);
1981 igb_setup_rctl(adapter);
1983 igb_nfc_filter_restore(adapter);
1984 igb_configure_tx(adapter);
1985 igb_configure_rx(adapter);
1987 igb_rx_fifo_flush_82575(&adapter->hw);
1989 /* call igb_desc_unused which always leaves
1990 * at least 1 descriptor unused to make sure
1991 * next_to_use != next_to_clean
1993 for (i = 0; i < adapter->num_rx_queues; i++) {
1994 struct igb_ring *ring = adapter->rx_ring[i];
1996 igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
1997 igb_desc_unused(ring));
1999 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2004 * igb_power_up_link - Power up the phy/serdes link
2005 * @adapter: address of board private structure
2007 void igb_power_up_link(struct igb_adapter *adapter)
2009 igb_reset_phy(&adapter->hw);
2011 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2012 igb_power_up_phy_copper(&adapter->hw);
2014 igb_power_up_serdes_link_82575(&adapter->hw);
2016 igb_setup_link(&adapter->hw);
2020 * igb_power_down_link - Power down the phy/serdes link
2021 * @adapter: address of board private structure
2023 static void igb_power_down_link(struct igb_adapter *adapter)
2025 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2026 igb_power_down_phy_copper_82575(&adapter->hw);
2028 igb_shutdown_serdes_link_82575(&adapter->hw);
2032 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2033 * @adapter: address of the board private structure
2035 static void igb_check_swap_media(struct igb_adapter *adapter)
2037 struct e1000_hw *hw = &adapter->hw;
2038 u32 ctrl_ext, connsw;
2039 bool swap_now = false;
2041 ctrl_ext = rd32(E1000_CTRL_EXT);
2042 connsw = rd32(E1000_CONNSW);
2044 /* need to live swap if current media is copper and we have fiber/serdes
2048 if ((hw->phy.media_type == e1000_media_type_copper) &&
2049 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2051 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2052 !(connsw & E1000_CONNSW_SERDESD)) {
2053 /* copper signal takes time to appear */
2054 if (adapter->copper_tries < 4) {
2055 adapter->copper_tries++;
2056 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2057 wr32(E1000_CONNSW, connsw);
2060 adapter->copper_tries = 0;
2061 if ((connsw & E1000_CONNSW_PHYSD) &&
2062 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2064 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2065 wr32(E1000_CONNSW, connsw);
2073 switch (hw->phy.media_type) {
2074 case e1000_media_type_copper:
2075 netdev_info(adapter->netdev,
2076 "MAS: changing media to fiber/serdes\n");
2078 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2079 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2080 adapter->copper_tries = 0;
2082 case e1000_media_type_internal_serdes:
2083 case e1000_media_type_fiber:
2084 netdev_info(adapter->netdev,
2085 "MAS: changing media to copper\n");
2087 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2088 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2091 /* shouldn't get here during regular operation */
2092 netdev_err(adapter->netdev,
2093 "AMS: Invalid media type found, returning\n");
2096 wr32(E1000_CTRL_EXT, ctrl_ext);
2100 * igb_up - Open the interface and prepare it to handle traffic
2101 * @adapter: board private structure
2103 int igb_up(struct igb_adapter *adapter)
2105 struct e1000_hw *hw = &adapter->hw;
2108 /* hardware has been reset, we need to reload some things */
2109 igb_configure(adapter);
2111 clear_bit(__IGB_DOWN, &adapter->state);
2113 for (i = 0; i < adapter->num_q_vectors; i++)
2114 napi_enable(&(adapter->q_vector[i]->napi));
2116 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2117 igb_configure_msix(adapter);
2119 igb_assign_vector(adapter->q_vector[0], 0);
2121 /* Clear any pending interrupts. */
2124 igb_irq_enable(adapter);
2126 /* notify VFs that reset has been completed */
2127 if (adapter->vfs_allocated_count) {
2128 u32 reg_data = rd32(E1000_CTRL_EXT);
2130 reg_data |= E1000_CTRL_EXT_PFRSTD;
2131 wr32(E1000_CTRL_EXT, reg_data);
2134 netif_tx_start_all_queues(adapter->netdev);
2136 /* start the watchdog. */
2137 hw->mac.get_link_status = 1;
2138 schedule_work(&adapter->watchdog_task);
2140 if ((adapter->flags & IGB_FLAG_EEE) &&
2141 (!hw->dev_spec._82575.eee_disable))
2142 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2147 void igb_down(struct igb_adapter *adapter)
2149 struct net_device *netdev = adapter->netdev;
2150 struct e1000_hw *hw = &adapter->hw;
2154 /* signal that we're down so the interrupt handler does not
2155 * reschedule our watchdog timer
2157 set_bit(__IGB_DOWN, &adapter->state);
2159 /* disable receives in the hardware */
2160 rctl = rd32(E1000_RCTL);
2161 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2162 /* flush and sleep below */
2164 igb_nfc_filter_exit(adapter);
2166 netif_carrier_off(netdev);
2167 netif_tx_stop_all_queues(netdev);
2169 /* disable transmits in the hardware */
2170 tctl = rd32(E1000_TCTL);
2171 tctl &= ~E1000_TCTL_EN;
2172 wr32(E1000_TCTL, tctl);
2173 /* flush both disables and wait for them to finish */
2175 usleep_range(10000, 11000);
2177 igb_irq_disable(adapter);
2179 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2181 for (i = 0; i < adapter->num_q_vectors; i++) {
2182 if (adapter->q_vector[i]) {
2183 napi_synchronize(&adapter->q_vector[i]->napi);
2184 napi_disable(&adapter->q_vector[i]->napi);
2188 del_timer_sync(&adapter->watchdog_timer);
2189 del_timer_sync(&adapter->phy_info_timer);
2191 /* record the stats before reset*/
2192 spin_lock(&adapter->stats64_lock);
2193 igb_update_stats(adapter);
2194 spin_unlock(&adapter->stats64_lock);
2196 adapter->link_speed = 0;
2197 adapter->link_duplex = 0;
2199 if (!pci_channel_offline(adapter->pdev))
2202 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2203 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2205 igb_clean_all_tx_rings(adapter);
2206 igb_clean_all_rx_rings(adapter);
2207 #ifdef CONFIG_IGB_DCA
2209 /* since we reset the hardware DCA settings were cleared */
2210 igb_setup_dca(adapter);
2214 void igb_reinit_locked(struct igb_adapter *adapter)
2216 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2217 usleep_range(1000, 2000);
2220 clear_bit(__IGB_RESETTING, &adapter->state);
2223 /** igb_enable_mas - Media Autosense re-enable after swap
2225 * @adapter: adapter struct
2227 static void igb_enable_mas(struct igb_adapter *adapter)
2229 struct e1000_hw *hw = &adapter->hw;
2230 u32 connsw = rd32(E1000_CONNSW);
2232 /* configure for SerDes media detect */
2233 if ((hw->phy.media_type == e1000_media_type_copper) &&
2234 (!(connsw & E1000_CONNSW_SERDESD))) {
2235 connsw |= E1000_CONNSW_ENRGSRC;
2236 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2237 wr32(E1000_CONNSW, connsw);
2242 #ifdef CONFIG_IGB_HWMON
2244 * igb_set_i2c_bb - Init I2C interface
2245 * @hw: pointer to hardware structure
2247 static void igb_set_i2c_bb(struct e1000_hw *hw)
2252 ctrl_ext = rd32(E1000_CTRL_EXT);
2253 ctrl_ext |= E1000_CTRL_I2C_ENA;
2254 wr32(E1000_CTRL_EXT, ctrl_ext);
2257 i2cctl = rd32(E1000_I2CPARAMS);
2258 i2cctl |= E1000_I2CBB_EN
2259 | E1000_I2C_CLK_OE_N
2260 | E1000_I2C_DATA_OE_N;
2261 wr32(E1000_I2CPARAMS, i2cctl);
2266 void igb_reset(struct igb_adapter *adapter)
2268 struct pci_dev *pdev = adapter->pdev;
2269 struct e1000_hw *hw = &adapter->hw;
2270 struct e1000_mac_info *mac = &hw->mac;
2271 struct e1000_fc_info *fc = &hw->fc;
2274 /* Repartition Pba for greater than 9k mtu
2275 * To take effect CTRL.RST is required.
2277 switch (mac->type) {
2281 pba = rd32(E1000_RXPBS);
2282 pba = igb_rxpbs_adjust_82580(pba);
2285 pba = rd32(E1000_RXPBS);
2286 pba &= E1000_RXPBS_SIZE_MASK_82576;
2292 pba = E1000_PBA_34K;
2296 if (mac->type == e1000_82575) {
2297 u32 min_rx_space, min_tx_space, needed_tx_space;
2299 /* write Rx PBA so that hardware can report correct Tx PBA */
2300 wr32(E1000_PBA, pba);
2302 /* To maintain wire speed transmits, the Tx FIFO should be
2303 * large enough to accommodate two full transmit packets,
2304 * rounded up to the next 1KB and expressed in KB. Likewise,
2305 * the Rx FIFO should be large enough to accommodate at least
2306 * one full receive packet and is similarly rounded up and
2309 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2311 /* The Tx FIFO also stores 16 bytes of information about the Tx
2312 * but don't include Ethernet FCS because hardware appends it.
2313 * We only need to round down to the nearest 512 byte block
2314 * count since the value we care about is 2 frames, not 1.
2316 min_tx_space = adapter->max_frame_size;
2317 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2318 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2320 /* upper 16 bits has Tx packet buffer allocation size in KB */
2321 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2323 /* If current Tx allocation is less than the min Tx FIFO size,
2324 * and the min Tx FIFO size is less than the current Rx FIFO
2325 * allocation, take space away from current Rx allocation.
2327 if (needed_tx_space < pba) {
2328 pba -= needed_tx_space;
2330 /* if short on Rx space, Rx wins and must trump Tx
2333 if (pba < min_rx_space)
2337 /* adjust PBA for jumbo frames */
2338 wr32(E1000_PBA, pba);
2341 /* flow control settings
2342 * The high water mark must be low enough to fit one full frame
2343 * after transmitting the pause frame. As such we must have enough
2344 * space to allow for us to complete our current transmit and then
2345 * receive the frame that is in progress from the link partner.
2347 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2349 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2351 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2352 fc->low_water = fc->high_water - 16;
2353 fc->pause_time = 0xFFFF;
2355 fc->current_mode = fc->requested_mode;
2357 /* disable receive for all VFs and wait one second */
2358 if (adapter->vfs_allocated_count) {
2361 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2362 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2364 /* ping all the active vfs to let them know we are going down */
2365 igb_ping_all_vfs(adapter);
2367 /* disable transmits and receives */
2368 wr32(E1000_VFRE, 0);
2369 wr32(E1000_VFTE, 0);
2372 /* Allow time for pending master requests to run */
2373 hw->mac.ops.reset_hw(hw);
2376 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2377 /* need to resetup here after media swap */
2378 adapter->ei.get_invariants(hw);
2379 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2381 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2382 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2383 igb_enable_mas(adapter);
2385 if (hw->mac.ops.init_hw(hw))
2386 dev_err(&pdev->dev, "Hardware Error\n");
2388 /* RAR registers were cleared during init_hw, clear mac table */
2389 igb_flush_mac_table(adapter);
2390 __dev_uc_unsync(adapter->netdev, NULL);
2392 /* Recover default RAR entry */
2393 igb_set_default_mac_filter(adapter);
2395 /* Flow control settings reset on hardware reset, so guarantee flow
2396 * control is off when forcing speed.
2398 if (!hw->mac.autoneg)
2399 igb_force_mac_fc(hw);
2401 igb_init_dmac(adapter, pba);
2402 #ifdef CONFIG_IGB_HWMON
2403 /* Re-initialize the thermal sensor on i350 devices. */
2404 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2405 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2406 /* If present, re-initialize the external thermal sensor
2411 mac->ops.init_thermal_sensor_thresh(hw);
2415 /* Re-establish EEE setting */
2416 if (hw->phy.media_type == e1000_media_type_copper) {
2417 switch (mac->type) {
2421 igb_set_eee_i350(hw, true, true);
2424 igb_set_eee_i354(hw, true, true);
2430 if (!netif_running(adapter->netdev))
2431 igb_power_down_link(adapter);
2433 igb_update_mng_vlan(adapter);
2435 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2436 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2438 /* Re-enable PTP, where applicable. */
2439 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2440 igb_ptp_reset(adapter);
2442 igb_get_phy_info(hw);
2445 static netdev_features_t igb_fix_features(struct net_device *netdev,
2446 netdev_features_t features)
2448 /* Since there is no support for separate Rx/Tx vlan accel
2449 * enable/disable make sure Tx flag is always in same state as Rx.
2451 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2452 features |= NETIF_F_HW_VLAN_CTAG_TX;
2454 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2459 static int igb_set_features(struct net_device *netdev,
2460 netdev_features_t features)
2462 netdev_features_t changed = netdev->features ^ features;
2463 struct igb_adapter *adapter = netdev_priv(netdev);
2465 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2466 igb_vlan_mode(netdev, features);
2468 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2471 if (!(features & NETIF_F_NTUPLE)) {
2472 struct hlist_node *node2;
2473 struct igb_nfc_filter *rule;
2475 spin_lock(&adapter->nfc_lock);
2476 hlist_for_each_entry_safe(rule, node2,
2477 &adapter->nfc_filter_list, nfc_node) {
2478 igb_erase_filter(adapter, rule);
2479 hlist_del(&rule->nfc_node);
2482 spin_unlock(&adapter->nfc_lock);
2483 adapter->nfc_filter_count = 0;
2486 netdev->features = features;
2488 if (netif_running(netdev))
2489 igb_reinit_locked(adapter);
2496 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2497 struct net_device *dev,
2498 const unsigned char *addr, u16 vid,
2499 u16 flags, bool *notified,
2500 struct netlink_ext_ack *extack)
2502 /* guarantee we can provide a unique filter for the unicast address */
2503 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2504 struct igb_adapter *adapter = netdev_priv(dev);
2505 int vfn = adapter->vfs_allocated_count;
2507 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2511 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2514 #define IGB_MAX_MAC_HDR_LEN 127
2515 #define IGB_MAX_NETWORK_HDR_LEN 511
2517 static netdev_features_t
2518 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2519 netdev_features_t features)
2521 unsigned int network_hdr_len, mac_hdr_len;
2523 /* Make certain the headers can be described by a context descriptor */
2524 mac_hdr_len = skb_network_offset(skb);
2525 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2526 return features & ~(NETIF_F_HW_CSUM |
2528 NETIF_F_GSO_UDP_L4 |
2529 NETIF_F_HW_VLAN_CTAG_TX |
2533 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2534 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2535 return features & ~(NETIF_F_HW_CSUM |
2537 NETIF_F_GSO_UDP_L4 |
2541 /* We can only support IPV4 TSO in tunnels if we can mangle the
2542 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2544 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2545 features &= ~NETIF_F_TSO;
2550 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2552 if (!is_fqtss_enabled(adapter)) {
2553 enable_fqtss(adapter, true);
2557 igb_config_tx_modes(adapter, queue);
2559 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2560 enable_fqtss(adapter, false);
2563 static int igb_offload_cbs(struct igb_adapter *adapter,
2564 struct tc_cbs_qopt_offload *qopt)
2566 struct e1000_hw *hw = &adapter->hw;
2569 /* CBS offloading is only supported by i210 controller. */
2570 if (hw->mac.type != e1000_i210)
2573 /* CBS offloading is only supported by queue 0 and queue 1. */
2574 if (qopt->queue < 0 || qopt->queue > 1)
2577 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2578 qopt->idleslope, qopt->sendslope,
2579 qopt->hicredit, qopt->locredit);
2583 igb_offload_apply(adapter, qopt->queue);
2588 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2589 #define VLAN_PRIO_FULL_MASK (0x07)
2591 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2592 struct flow_cls_offload *f,
2594 struct igb_nfc_filter *input)
2596 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2597 struct flow_dissector *dissector = rule->match.dissector;
2598 struct netlink_ext_ack *extack = f->common.extack;
2600 if (dissector->used_keys &
2601 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2602 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2603 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2604 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2605 NL_SET_ERR_MSG_MOD(extack,
2606 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2610 if (flow_rule_match_has_control_flags(rule, extack))
2613 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2614 struct flow_match_eth_addrs match;
2616 flow_rule_match_eth_addrs(rule, &match);
2617 if (!is_zero_ether_addr(match.mask->dst)) {
2618 if (!is_broadcast_ether_addr(match.mask->dst)) {
2619 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2623 input->filter.match_flags |=
2624 IGB_FILTER_FLAG_DST_MAC_ADDR;
2625 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2628 if (!is_zero_ether_addr(match.mask->src)) {
2629 if (!is_broadcast_ether_addr(match.mask->src)) {
2630 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2634 input->filter.match_flags |=
2635 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2636 ether_addr_copy(input->filter.src_addr, match.key->src);
2640 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2641 struct flow_match_basic match;
2643 flow_rule_match_basic(rule, &match);
2644 if (match.mask->n_proto) {
2645 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2646 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2650 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2651 input->filter.etype = match.key->n_proto;
2655 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2656 struct flow_match_vlan match;
2658 flow_rule_match_vlan(rule, &match);
2659 if (match.mask->vlan_priority) {
2660 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2661 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2665 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2666 input->filter.vlan_tci =
2667 (__force __be16)match.key->vlan_priority;
2671 input->action = traffic_class;
2672 input->cookie = f->cookie;
2677 static int igb_configure_clsflower(struct igb_adapter *adapter,
2678 struct flow_cls_offload *cls_flower)
2680 struct netlink_ext_ack *extack = cls_flower->common.extack;
2681 struct igb_nfc_filter *filter, *f;
2684 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2686 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2690 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2694 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2698 spin_lock(&adapter->nfc_lock);
2700 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2701 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703 NL_SET_ERR_MSG_MOD(extack,
2704 "This filter is already set in ethtool");
2709 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2710 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2712 NL_SET_ERR_MSG_MOD(extack,
2713 "This filter is already set in cls_flower");
2718 err = igb_add_filter(adapter, filter);
2720 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2724 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2726 spin_unlock(&adapter->nfc_lock);
2731 spin_unlock(&adapter->nfc_lock);
2739 static int igb_delete_clsflower(struct igb_adapter *adapter,
2740 struct flow_cls_offload *cls_flower)
2742 struct igb_nfc_filter *filter;
2745 spin_lock(&adapter->nfc_lock);
2747 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2748 if (filter->cookie == cls_flower->cookie)
2756 err = igb_erase_filter(adapter, filter);
2760 hlist_del(&filter->nfc_node);
2764 spin_unlock(&adapter->nfc_lock);
2769 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2770 struct flow_cls_offload *cls_flower)
2772 switch (cls_flower->command) {
2773 case FLOW_CLS_REPLACE:
2774 return igb_configure_clsflower(adapter, cls_flower);
2775 case FLOW_CLS_DESTROY:
2776 return igb_delete_clsflower(adapter, cls_flower);
2777 case FLOW_CLS_STATS:
2784 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2787 struct igb_adapter *adapter = cb_priv;
2789 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2793 case TC_SETUP_CLSFLOWER:
2794 return igb_setup_tc_cls_flower(adapter, type_data);
2801 static int igb_offload_txtime(struct igb_adapter *adapter,
2802 struct tc_etf_qopt_offload *qopt)
2804 struct e1000_hw *hw = &adapter->hw;
2807 /* Launchtime offloading is only supported by i210 controller. */
2808 if (hw->mac.type != e1000_i210)
2811 /* Launchtime offloading is only supported by queues 0 and 1. */
2812 if (qopt->queue < 0 || qopt->queue > 1)
2815 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2819 igb_offload_apply(adapter, qopt->queue);
2824 static int igb_tc_query_caps(struct igb_adapter *adapter,
2825 struct tc_query_caps_base *base)
2827 switch (base->type) {
2828 case TC_SETUP_QDISC_TAPRIO: {
2829 struct tc_taprio_caps *caps = base->caps;
2831 caps->broken_mqprio = true;
2840 static LIST_HEAD(igb_block_cb_list);
2842 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2845 struct igb_adapter *adapter = netdev_priv(dev);
2849 return igb_tc_query_caps(adapter, type_data);
2850 case TC_SETUP_QDISC_CBS:
2851 return igb_offload_cbs(adapter, type_data);
2852 case TC_SETUP_BLOCK:
2853 return flow_block_cb_setup_simple(type_data,
2855 igb_setup_tc_block_cb,
2856 adapter, adapter, true);
2858 case TC_SETUP_QDISC_ETF:
2859 return igb_offload_txtime(adapter, type_data);
2866 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2868 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2869 struct igb_adapter *adapter = netdev_priv(dev);
2870 struct bpf_prog *prog = bpf->prog, *old_prog;
2871 bool running = netif_running(dev);
2874 /* verify igb ring attributes are sufficient for XDP */
2875 for (i = 0; i < adapter->num_rx_queues; i++) {
2876 struct igb_ring *ring = adapter->rx_ring[i];
2878 if (frame_size > igb_rx_bufsz(ring)) {
2879 NL_SET_ERR_MSG_MOD(bpf->extack,
2880 "The RX buffer size is too small for the frame size");
2881 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2882 igb_rx_bufsz(ring), frame_size);
2887 old_prog = xchg(&adapter->xdp_prog, prog);
2888 need_reset = (!!prog != !!old_prog);
2890 /* device is up and bpf is added/removed, must setup the RX queues */
2891 if (need_reset && running) {
2894 for (i = 0; i < adapter->num_rx_queues; i++)
2895 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2900 bpf_prog_put(old_prog);
2902 /* bpf is just replaced, RXQ and MTU are already setup */
2907 xdp_features_set_redirect_target(dev, true);
2909 xdp_features_clear_redirect_target(dev);
2918 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2920 struct igb_adapter *adapter = netdev_priv(dev);
2922 switch (xdp->command) {
2923 case XDP_SETUP_PROG:
2924 return igb_xdp_setup(dev, xdp);
2925 case XDP_SETUP_XSK_POOL:
2926 return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2933 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2935 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2936 int cpu = smp_processor_id();
2937 struct igb_ring *tx_ring;
2938 struct netdev_queue *nq;
2941 if (unlikely(!xdpf))
2942 return IGB_XDP_CONSUMED;
2944 /* During program transitions its possible adapter->xdp_prog is assigned
2945 * but ring has not been configured yet. In this case simply abort xmit.
2947 tx_ring = igb_xdp_is_enabled(adapter) ?
2948 igb_xdp_tx_queue_mapping(adapter) : NULL;
2949 if (unlikely(!tx_ring))
2950 return IGB_XDP_CONSUMED;
2952 nq = txring_txq(tx_ring);
2953 __netif_tx_lock(nq, cpu);
2954 /* Avoid transmit queue timeout since we share it with the slow path */
2955 txq_trans_cond_update(nq);
2956 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2957 __netif_tx_unlock(nq);
2962 static int igb_xdp_xmit(struct net_device *dev, int n,
2963 struct xdp_frame **frames, u32 flags)
2965 struct igb_adapter *adapter = netdev_priv(dev);
2966 int cpu = smp_processor_id();
2967 struct igb_ring *tx_ring;
2968 struct netdev_queue *nq;
2972 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2975 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2978 /* During program transitions its possible adapter->xdp_prog is assigned
2979 * but ring has not been configured yet. In this case simply abort xmit.
2981 tx_ring = igb_xdp_is_enabled(adapter) ?
2982 igb_xdp_tx_queue_mapping(adapter) : NULL;
2983 if (unlikely(!tx_ring))
2986 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
2989 nq = txring_txq(tx_ring);
2990 __netif_tx_lock(nq, cpu);
2992 /* Avoid transmit queue timeout since we share it with the slow path */
2993 txq_trans_cond_update(nq);
2995 for (i = 0; i < n; i++) {
2996 struct xdp_frame *xdpf = frames[i];
2999 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3000 if (err != IGB_XDP_TX)
3005 if (unlikely(flags & XDP_XMIT_FLUSH))
3006 igb_xdp_ring_update_tail(tx_ring);
3008 __netif_tx_unlock(nq);
3013 static const struct net_device_ops igb_netdev_ops = {
3014 .ndo_open = igb_open,
3015 .ndo_stop = igb_close,
3016 .ndo_start_xmit = igb_xmit_frame,
3017 .ndo_get_stats64 = igb_get_stats64,
3018 .ndo_set_rx_mode = igb_set_rx_mode,
3019 .ndo_set_mac_address = igb_set_mac,
3020 .ndo_change_mtu = igb_change_mtu,
3021 .ndo_eth_ioctl = igb_ioctl,
3022 .ndo_tx_timeout = igb_tx_timeout,
3023 .ndo_validate_addr = eth_validate_addr,
3024 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3025 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3026 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3027 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3028 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3029 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3030 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3031 .ndo_get_vf_config = igb_ndo_get_vf_config,
3032 .ndo_fix_features = igb_fix_features,
3033 .ndo_set_features = igb_set_features,
3034 .ndo_fdb_add = igb_ndo_fdb_add,
3035 .ndo_features_check = igb_features_check,
3036 .ndo_setup_tc = igb_setup_tc,
3038 .ndo_xdp_xmit = igb_xdp_xmit,
3039 .ndo_xsk_wakeup = igb_xsk_wakeup,
3043 * igb_set_fw_version - Configure version string for ethtool
3044 * @adapter: adapter struct
3046 void igb_set_fw_version(struct igb_adapter *adapter)
3048 struct e1000_hw *hw = &adapter->hw;
3049 struct e1000_fw_version fw;
3051 igb_get_fw_version(hw, &fw);
3053 switch (hw->mac.type) {
3056 if (!(igb_get_flash_presence_i210(hw))) {
3057 snprintf(adapter->fw_version,
3058 sizeof(adapter->fw_version),
3060 fw.invm_major, fw.invm_minor,
3066 /* if option rom is valid, display its version too */
3068 snprintf(adapter->fw_version,
3069 sizeof(adapter->fw_version),
3070 "%d.%d, 0x%08x, %d.%d.%d",
3071 fw.eep_major, fw.eep_minor, fw.etrack_id,
3072 fw.or_major, fw.or_build, fw.or_patch);
3074 } else if (fw.etrack_id != 0X0000) {
3075 snprintf(adapter->fw_version,
3076 sizeof(adapter->fw_version),
3078 fw.eep_major, fw.eep_minor, fw.etrack_id);
3080 snprintf(adapter->fw_version,
3081 sizeof(adapter->fw_version),
3083 fw.eep_major, fw.eep_minor, fw.eep_build);
3090 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3092 * @adapter: adapter struct
3094 static void igb_init_mas(struct igb_adapter *adapter)
3096 struct e1000_hw *hw = &adapter->hw;
3099 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3100 switch (hw->bus.func) {
3102 if (eeprom_data & IGB_MAS_ENABLE_0) {
3103 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3104 netdev_info(adapter->netdev,
3105 "MAS: Enabling Media Autosense for port %d\n",
3110 if (eeprom_data & IGB_MAS_ENABLE_1) {
3111 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3112 netdev_info(adapter->netdev,
3113 "MAS: Enabling Media Autosense for port %d\n",
3118 if (eeprom_data & IGB_MAS_ENABLE_2) {
3119 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3120 netdev_info(adapter->netdev,
3121 "MAS: Enabling Media Autosense for port %d\n",
3126 if (eeprom_data & IGB_MAS_ENABLE_3) {
3127 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3128 netdev_info(adapter->netdev,
3129 "MAS: Enabling Media Autosense for port %d\n",
3134 /* Shouldn't get here */
3135 netdev_err(adapter->netdev,
3136 "MAS: Invalid port configuration, returning\n");
3142 * igb_init_i2c - Init I2C interface
3143 * @adapter: pointer to adapter structure
3145 static s32 igb_init_i2c(struct igb_adapter *adapter)
3149 /* I2C interface supported on i350 devices */
3150 if (adapter->hw.mac.type != e1000_i350)
3153 /* Initialize the i2c bus which is controlled by the registers.
3154 * This bus will use the i2c_algo_bit structure that implements
3155 * the protocol through toggling of the 4 bits in the register.
3157 adapter->i2c_adap.owner = THIS_MODULE;
3158 adapter->i2c_algo = igb_i2c_algo;
3159 adapter->i2c_algo.data = adapter;
3160 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3161 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3162 strscpy(adapter->i2c_adap.name, "igb BB",
3163 sizeof(adapter->i2c_adap.name));
3164 status = i2c_bit_add_bus(&adapter->i2c_adap);
3169 * igb_probe - Device Initialization Routine
3170 * @pdev: PCI device information struct
3171 * @ent: entry in igb_pci_tbl
3173 * Returns 0 on success, negative on failure
3175 * igb_probe initializes an adapter identified by a pci_dev structure.
3176 * The OS initialization, configuring of the adapter private structure,
3177 * and a hardware reset occur.
3179 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3181 struct net_device *netdev;
3182 struct igb_adapter *adapter;
3183 struct e1000_hw *hw;
3184 u16 eeprom_data = 0;
3186 static int global_quad_port_a; /* global quad port a indication */
3187 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3188 u8 part_str[E1000_PBANUM_LENGTH];
3191 /* Catch broken hardware that put the wrong VF device ID in
3192 * the PCIe SR-IOV capability.
3194 if (pdev->is_virtfn) {
3195 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3196 pci_name(pdev), pdev->vendor, pdev->device);
3200 err = pci_enable_device_mem(pdev);
3204 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3207 "No usable DMA configuration, aborting\n");
3211 err = pci_request_mem_regions(pdev, igb_driver_name);
3215 pci_set_master(pdev);
3216 pci_save_state(pdev);
3219 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3222 goto err_alloc_etherdev;
3224 SET_NETDEV_DEV(netdev, &pdev->dev);
3226 pci_set_drvdata(pdev, netdev);
3227 adapter = netdev_priv(netdev);
3228 adapter->netdev = netdev;
3229 adapter->pdev = pdev;
3232 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3235 adapter->io_addr = pci_iomap(pdev, 0, 0);
3236 if (!adapter->io_addr)
3238 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3239 hw->hw_addr = adapter->io_addr;
3241 netdev->netdev_ops = &igb_netdev_ops;
3242 igb_set_ethtool_ops(netdev);
3243 netdev->watchdog_timeo = 5 * HZ;
3245 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3247 netdev->mem_start = pci_resource_start(pdev, 0);
3248 netdev->mem_end = pci_resource_end(pdev, 0);
3250 /* PCI config space info */
3251 hw->vendor_id = pdev->vendor;
3252 hw->device_id = pdev->device;
3253 hw->revision_id = pdev->revision;
3254 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3255 hw->subsystem_device_id = pdev->subsystem_device;
3257 /* Copy the default MAC, PHY and NVM function pointers */
3258 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3259 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3260 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3261 /* Initialize skew-specific constants */
3262 err = ei->get_invariants(hw);
3266 /* setup the private structure */
3267 err = igb_sw_init(adapter);
3271 igb_get_bus_info_pcie(hw);
3273 hw->phy.autoneg_wait_to_complete = false;
3275 /* Copper options */
3276 if (hw->phy.media_type == e1000_media_type_copper) {
3277 hw->phy.mdix = AUTO_ALL_MODES;
3278 hw->phy.disable_polarity_correction = false;
3279 hw->phy.ms_type = e1000_ms_hw_default;
3282 if (igb_check_reset_block(hw))
3283 dev_info(&pdev->dev,
3284 "PHY reset is blocked due to SOL/IDER session.\n");
3286 /* features is initialized to 0 in allocation, it might have bits
3287 * set by igb_sw_init so we should use an or instead of an
3290 netdev->features |= NETIF_F_SG |
3297 if (hw->mac.type >= e1000_82576)
3298 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3300 if (hw->mac.type >= e1000_i350)
3301 netdev->features |= NETIF_F_HW_TC;
3303 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3304 NETIF_F_GSO_GRE_CSUM | \
3305 NETIF_F_GSO_IPXIP4 | \
3306 NETIF_F_GSO_IPXIP6 | \
3307 NETIF_F_GSO_UDP_TUNNEL | \
3308 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3310 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3311 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3313 /* copy netdev features into list of user selectable features */
3314 netdev->hw_features |= netdev->features |
3315 NETIF_F_HW_VLAN_CTAG_RX |
3316 NETIF_F_HW_VLAN_CTAG_TX |
3319 if (hw->mac.type >= e1000_i350)
3320 netdev->hw_features |= NETIF_F_NTUPLE;
3322 netdev->features |= NETIF_F_HIGHDMA;
3324 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3325 netdev->mpls_features |= NETIF_F_HW_CSUM;
3326 netdev->hw_enc_features |= netdev->vlan_features;
3328 /* set this bit last since it cannot be part of vlan_features */
3329 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3330 NETIF_F_HW_VLAN_CTAG_RX |
3331 NETIF_F_HW_VLAN_CTAG_TX;
3333 netdev->priv_flags |= IFF_SUPP_NOFCS;
3335 netdev->priv_flags |= IFF_UNICAST_FLT;
3336 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3337 NETDEV_XDP_ACT_XSK_ZEROCOPY;
3339 /* MTU range: 68 - 9216 */
3340 netdev->min_mtu = ETH_MIN_MTU;
3341 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3343 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3345 /* before reading the NVM, reset the controller to put the device in a
3346 * known good starting state
3348 hw->mac.ops.reset_hw(hw);
3350 /* make sure the NVM is good , i211/i210 parts can have special NVM
3351 * that doesn't contain a checksum
3353 switch (hw->mac.type) {
3356 if (igb_get_flash_presence_i210(hw)) {
3357 if (hw->nvm.ops.validate(hw) < 0) {
3359 "The NVM Checksum Is Not Valid\n");
3366 if (hw->nvm.ops.validate(hw) < 0) {
3367 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3374 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3375 /* copy the MAC address out of the NVM */
3376 if (hw->mac.ops.read_mac_addr(hw))
3377 dev_err(&pdev->dev, "NVM Read Error\n");
3380 eth_hw_addr_set(netdev, hw->mac.addr);
3382 if (!is_valid_ether_addr(netdev->dev_addr)) {
3383 dev_err(&pdev->dev, "Invalid MAC Address\n");
3388 igb_set_default_mac_filter(adapter);
3390 /* get firmware version for ethtool -i */
3391 igb_set_fw_version(adapter);
3393 /* configure RXPBSIZE and TXPBSIZE */
3394 if (hw->mac.type == e1000_i210) {
3395 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3396 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3399 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3400 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3402 INIT_WORK(&adapter->reset_task, igb_reset_task);
3403 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3405 /* Initialize link properties that are user-changeable */
3406 adapter->fc_autoneg = true;
3407 hw->mac.autoneg = true;
3408 hw->phy.autoneg_advertised = 0x2f;
3410 hw->fc.requested_mode = e1000_fc_default;
3411 hw->fc.current_mode = e1000_fc_default;
3413 igb_validate_mdi_setting(hw);
3415 /* By default, support wake on port A */
3416 if (hw->bus.func == 0)
3417 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3419 /* Check the NVM for wake support on non-port A ports */
3420 if (hw->mac.type >= e1000_82580)
3421 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3422 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3424 else if (hw->bus.func == 1)
3425 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3427 if (eeprom_data & IGB_EEPROM_APME)
3428 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3430 /* now that we have the eeprom settings, apply the special cases where
3431 * the eeprom may be wrong or the board simply won't support wake on
3432 * lan on a particular port
3434 switch (pdev->device) {
3435 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3436 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3438 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3439 case E1000_DEV_ID_82576_FIBER:
3440 case E1000_DEV_ID_82576_SERDES:
3441 /* Wake events only supported on port A for dual fiber
3442 * regardless of eeprom setting
3444 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3445 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3447 case E1000_DEV_ID_82576_QUAD_COPPER:
3448 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3449 /* if quad port adapter, disable WoL on all but port A */
3450 if (global_quad_port_a != 0)
3451 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3453 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3454 /* Reset for multiple quad port adapters */
3455 if (++global_quad_port_a == 4)
3456 global_quad_port_a = 0;
3459 /* If the device can't wake, don't set software support */
3460 if (!device_can_wakeup(&adapter->pdev->dev))
3461 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3464 /* initialize the wol settings based on the eeprom settings */
3465 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3466 adapter->wol |= E1000_WUFC_MAG;
3468 /* Some vendors want WoL disabled by default, but still supported */
3469 if ((hw->mac.type == e1000_i350) &&
3470 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3475 /* Some vendors want the ability to Use the EEPROM setting as
3476 * enable/disable only, and not for capability
3478 if (((hw->mac.type == e1000_i350) ||
3479 (hw->mac.type == e1000_i354)) &&
3480 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3481 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3484 if (hw->mac.type == e1000_i350) {
3485 if (((pdev->subsystem_device == 0x5001) ||
3486 (pdev->subsystem_device == 0x5002)) &&
3487 (hw->bus.func == 0)) {
3488 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3491 if (pdev->subsystem_device == 0x1F52)
3492 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3495 device_set_wakeup_enable(&adapter->pdev->dev,
3496 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3498 /* reset the hardware with the new settings */
3501 /* Init the I2C interface */
3502 err = igb_init_i2c(adapter);
3504 dev_err(&pdev->dev, "failed to init i2c interface\n");
3508 /* let the f/w know that the h/w is now under the control of the
3511 igb_get_hw_control(adapter);
3513 strcpy(netdev->name, "eth%d");
3514 err = register_netdev(netdev);
3518 /* carrier off reporting is important to ethtool even BEFORE open */
3519 netif_carrier_off(netdev);
3521 #ifdef CONFIG_IGB_DCA
3522 if (dca_add_requester(&pdev->dev) == 0) {
3523 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3524 dev_info(&pdev->dev, "DCA enabled\n");
3525 igb_setup_dca(adapter);
3529 #ifdef CONFIG_IGB_HWMON
3530 /* Initialize the thermal sensor on i350 devices. */
3531 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3534 /* Read the NVM to determine if this i350 device supports an
3535 * external thermal sensor.
3537 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3538 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3539 adapter->ets = true;
3541 adapter->ets = false;
3542 /* Only enable I2C bit banging if an external thermal
3543 * sensor is supported.
3547 hw->mac.ops.init_thermal_sensor_thresh(hw);
3548 if (igb_sysfs_init(adapter))
3550 "failed to allocate sysfs resources\n");
3552 adapter->ets = false;
3555 /* Check if Media Autosense is enabled */
3557 if (hw->dev_spec._82575.mas_capable)
3558 igb_init_mas(adapter);
3560 /* do hw tstamp init after resetting */
3561 igb_ptp_init(adapter);
3563 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3564 /* print bus type/speed/width info, not applicable to i354 */
3565 if (hw->mac.type != e1000_i354) {
3566 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3568 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3569 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3571 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3573 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3575 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3576 "Width x1" : "unknown"), netdev->dev_addr);
3579 if ((hw->mac.type == e1000_82576 &&
3580 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3581 (hw->mac.type >= e1000_i210 ||
3582 igb_get_flash_presence_i210(hw))) {
3583 ret_val = igb_read_part_string(hw, part_str,
3584 E1000_PBANUM_LENGTH);
3586 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3590 strcpy(part_str, "Unknown");
3591 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3592 dev_info(&pdev->dev,
3593 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3594 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3595 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3596 adapter->num_rx_queues, adapter->num_tx_queues);
3597 if (hw->phy.media_type == e1000_media_type_copper) {
3598 switch (hw->mac.type) {
3602 /* Enable EEE for internal copper PHY devices */
3603 err = igb_set_eee_i350(hw, true, true);
3605 (!hw->dev_spec._82575.eee_disable)) {
3606 adapter->eee_advert =
3607 MDIO_EEE_100TX | MDIO_EEE_1000T;
3608 adapter->flags |= IGB_FLAG_EEE;
3612 if ((rd32(E1000_CTRL_EXT) &
3613 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3614 err = igb_set_eee_i354(hw, true, true);
3616 (!hw->dev_spec._82575.eee_disable)) {
3617 adapter->eee_advert =
3618 MDIO_EEE_100TX | MDIO_EEE_1000T;
3619 adapter->flags |= IGB_FLAG_EEE;
3628 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3630 pm_runtime_put_noidle(&pdev->dev);
3634 igb_release_hw_control(adapter);
3635 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3637 if (!igb_check_reset_block(hw))
3640 if (hw->flash_address)
3641 iounmap(hw->flash_address);
3643 kfree(adapter->mac_table);
3644 kfree(adapter->shadow_vfta);
3645 igb_clear_interrupt_scheme(adapter);
3646 #ifdef CONFIG_PCI_IOV
3647 igb_disable_sriov(pdev, false);
3649 pci_iounmap(pdev, adapter->io_addr);
3651 free_netdev(netdev);
3653 pci_release_mem_regions(pdev);
3656 pci_disable_device(pdev);
3660 #ifdef CONFIG_PCI_IOV
3661 static int igb_sriov_reinit(struct pci_dev *dev)
3663 struct net_device *netdev = pci_get_drvdata(dev);
3664 struct igb_adapter *adapter = netdev_priv(netdev);
3665 struct pci_dev *pdev = adapter->pdev;
3669 if (netif_running(netdev))
3674 igb_clear_interrupt_scheme(adapter);
3676 igb_init_queue_configuration(adapter);
3678 if (igb_init_interrupt_scheme(adapter, true)) {
3680 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3684 if (netif_running(netdev))
3692 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3694 struct net_device *netdev = pci_get_drvdata(pdev);
3695 struct igb_adapter *adapter = netdev_priv(netdev);
3696 struct e1000_hw *hw = &adapter->hw;
3697 unsigned long flags;
3699 /* reclaim resources allocated to VFs */
3700 if (adapter->vf_data) {
3701 /* disable iov and allow time for transactions to clear */
3702 if (pci_vfs_assigned(pdev)) {
3703 dev_warn(&pdev->dev,
3704 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3707 pci_disable_sriov(pdev);
3710 spin_lock_irqsave(&adapter->vfs_lock, flags);
3711 kfree(adapter->vf_mac_list);
3712 adapter->vf_mac_list = NULL;
3713 kfree(adapter->vf_data);
3714 adapter->vf_data = NULL;
3715 adapter->vfs_allocated_count = 0;
3716 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3717 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3720 dev_info(&pdev->dev, "IOV Disabled\n");
3722 /* Re-enable DMA Coalescing flag since IOV is turned off */
3723 adapter->flags |= IGB_FLAG_DMAC;
3726 return reinit ? igb_sriov_reinit(pdev) : 0;
3729 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3731 struct net_device *netdev = pci_get_drvdata(pdev);
3732 struct igb_adapter *adapter = netdev_priv(netdev);
3733 int old_vfs = pci_num_vf(pdev);
3734 struct vf_mac_filter *mac_list;
3736 int num_vf_mac_filters, i;
3738 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3746 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3748 adapter->vfs_allocated_count = old_vfs;
3750 adapter->vfs_allocated_count = num_vfs;
3752 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3753 sizeof(struct vf_data_storage), GFP_KERNEL);
3755 /* if allocation failed then we do not support SR-IOV */
3756 if (!adapter->vf_data) {
3757 adapter->vfs_allocated_count = 0;
3762 /* Due to the limited number of RAR entries calculate potential
3763 * number of MAC filters available for the VFs. Reserve entries
3764 * for PF default MAC, PF MAC filters and at least one RAR entry
3765 * for each VF for VF MAC.
3767 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3768 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3769 adapter->vfs_allocated_count);
3771 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3772 sizeof(struct vf_mac_filter),
3775 mac_list = adapter->vf_mac_list;
3776 INIT_LIST_HEAD(&adapter->vf_macs.l);
3778 if (adapter->vf_mac_list) {
3779 /* Initialize list of VF MAC filters */
3780 for (i = 0; i < num_vf_mac_filters; i++) {
3782 mac_list->free = true;
3783 list_add(&mac_list->l, &adapter->vf_macs.l);
3787 /* If we could not allocate memory for the VF MAC filters
3788 * we can continue without this feature but warn user.
3791 "Unable to allocate memory for VF MAC filter list\n");
3794 dev_info(&pdev->dev, "%d VFs allocated\n",
3795 adapter->vfs_allocated_count);
3796 for (i = 0; i < adapter->vfs_allocated_count; i++)
3797 igb_vf_configure(adapter, i);
3799 /* DMA Coalescing is not supported in IOV mode. */
3800 adapter->flags &= ~IGB_FLAG_DMAC;
3803 err = igb_sriov_reinit(pdev);
3808 /* only call pci_enable_sriov() if no VFs are allocated already */
3810 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3818 kfree(adapter->vf_mac_list);
3819 adapter->vf_mac_list = NULL;
3820 kfree(adapter->vf_data);
3821 adapter->vf_data = NULL;
3822 adapter->vfs_allocated_count = 0;
3829 * igb_remove_i2c - Cleanup I2C interface
3830 * @adapter: pointer to adapter structure
3832 static void igb_remove_i2c(struct igb_adapter *adapter)
3834 /* free the adapter bus structure */
3835 i2c_del_adapter(&adapter->i2c_adap);
3839 * igb_remove - Device Removal Routine
3840 * @pdev: PCI device information struct
3842 * igb_remove is called by the PCI subsystem to alert the driver
3843 * that it should release a PCI device. The could be caused by a
3844 * Hot-Plug event, or because the driver is going to be removed from
3847 static void igb_remove(struct pci_dev *pdev)
3849 struct net_device *netdev = pci_get_drvdata(pdev);
3850 struct igb_adapter *adapter = netdev_priv(netdev);
3851 struct e1000_hw *hw = &adapter->hw;
3853 pm_runtime_get_noresume(&pdev->dev);
3854 #ifdef CONFIG_IGB_HWMON
3855 igb_sysfs_exit(adapter);
3857 igb_remove_i2c(adapter);
3858 igb_ptp_stop(adapter);
3859 /* The watchdog timer may be rescheduled, so explicitly
3860 * disable watchdog from being rescheduled.
3862 set_bit(__IGB_DOWN, &adapter->state);
3863 del_timer_sync(&adapter->watchdog_timer);
3864 del_timer_sync(&adapter->phy_info_timer);
3866 cancel_work_sync(&adapter->reset_task);
3867 cancel_work_sync(&adapter->watchdog_task);
3869 #ifdef CONFIG_IGB_DCA
3870 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3871 dev_info(&pdev->dev, "DCA disabled\n");
3872 dca_remove_requester(&pdev->dev);
3873 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3874 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3878 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3879 * would have already happened in close and is redundant.
3881 igb_release_hw_control(adapter);
3883 #ifdef CONFIG_PCI_IOV
3884 igb_disable_sriov(pdev, false);
3887 unregister_netdev(netdev);
3889 igb_clear_interrupt_scheme(adapter);
3891 pci_iounmap(pdev, adapter->io_addr);
3892 if (hw->flash_address)
3893 iounmap(hw->flash_address);
3894 pci_release_mem_regions(pdev);
3896 kfree(adapter->mac_table);
3897 kfree(adapter->shadow_vfta);
3898 free_netdev(netdev);
3900 pci_disable_device(pdev);
3904 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3905 * @adapter: board private structure to initialize
3907 * This function initializes the vf specific data storage and then attempts to
3908 * allocate the VFs. The reason for ordering it this way is because it is much
3909 * more expensive time wise to disable SR-IOV than it is to allocate and free
3910 * the memory for the VFs.
3912 static void igb_probe_vfs(struct igb_adapter *adapter)
3914 #ifdef CONFIG_PCI_IOV
3915 struct pci_dev *pdev = adapter->pdev;
3916 struct e1000_hw *hw = &adapter->hw;
3918 /* Virtualization features not supported on i210 and 82580 family. */
3919 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3920 (hw->mac.type == e1000_82580))
3923 /* Of the below we really only want the effect of getting
3924 * IGB_FLAG_HAS_MSIX set (if available), without which
3925 * igb_enable_sriov() has no effect.
3927 igb_set_interrupt_capability(adapter, true);
3928 igb_reset_interrupt_capability(adapter);
3930 pci_sriov_set_totalvfs(pdev, 7);
3931 igb_enable_sriov(pdev, max_vfs, false);
3933 #endif /* CONFIG_PCI_IOV */
3936 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3938 struct e1000_hw *hw = &adapter->hw;
3939 unsigned int max_rss_queues;
3941 /* Determine the maximum number of RSS queues supported. */
3942 switch (hw->mac.type) {
3944 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3948 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3951 /* I350 cannot do RSS and SR-IOV at the same time */
3952 if (!!adapter->vfs_allocated_count) {
3958 if (!!adapter->vfs_allocated_count) {
3966 max_rss_queues = IGB_MAX_RX_QUEUES;
3970 return max_rss_queues;
3973 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3977 max_rss_queues = igb_get_max_rss_queues(adapter);
3978 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3980 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3983 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3984 const u32 max_rss_queues)
3986 struct e1000_hw *hw = &adapter->hw;
3988 /* Determine if we need to pair queues. */
3989 switch (hw->mac.type) {
3992 /* Device supports enough interrupts without queue pairing. */
4000 /* If rss_queues > half of max_rss_queues, pair the queues in
4001 * order to conserve interrupts due to limited supply.
4003 if (adapter->rss_queues > (max_rss_queues / 2))
4004 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4006 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4012 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4013 * @adapter: board private structure to initialize
4015 * igb_sw_init initializes the Adapter private data structure.
4016 * Fields are initialized based on PCI device information and
4017 * OS network device settings (MTU size).
4019 static int igb_sw_init(struct igb_adapter *adapter)
4021 struct e1000_hw *hw = &adapter->hw;
4022 struct net_device *netdev = adapter->netdev;
4023 struct pci_dev *pdev = adapter->pdev;
4025 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4027 /* set default ring sizes */
4028 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4029 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4031 /* set default ITR values */
4032 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4033 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4035 /* set default work limits */
4036 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4038 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4039 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4041 spin_lock_init(&adapter->nfc_lock);
4042 spin_lock_init(&adapter->stats64_lock);
4044 /* init spinlock to avoid concurrency of VF resources */
4045 spin_lock_init(&adapter->vfs_lock);
4046 #ifdef CONFIG_PCI_IOV
4047 switch (hw->mac.type) {
4051 dev_warn(&pdev->dev,
4052 "Maximum of 7 VFs per PF, using max\n");
4053 max_vfs = adapter->vfs_allocated_count = 7;
4055 adapter->vfs_allocated_count = max_vfs;
4056 if (adapter->vfs_allocated_count)
4057 dev_warn(&pdev->dev,
4058 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4063 #endif /* CONFIG_PCI_IOV */
4065 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4066 adapter->flags |= IGB_FLAG_HAS_MSIX;
4068 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4069 sizeof(struct igb_mac_addr),
4071 if (!adapter->mac_table)
4074 igb_probe_vfs(adapter);
4076 igb_init_queue_configuration(adapter);
4078 /* Setup and initialize a copy of the hw vlan table array */
4079 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4081 if (!adapter->shadow_vfta)
4084 /* This call may decrease the number of queues */
4085 if (igb_init_interrupt_scheme(adapter, true)) {
4086 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4090 /* Explicitly disable IRQ since the NIC can be in any state. */
4091 igb_irq_disable(adapter);
4093 if (hw->mac.type >= e1000_i350)
4094 adapter->flags &= ~IGB_FLAG_DMAC;
4096 set_bit(__IGB_DOWN, &adapter->state);
4101 * __igb_open - Called when a network interface is made active
4102 * @netdev: network interface device structure
4103 * @resuming: indicates whether we are in a resume call
4105 * Returns 0 on success, negative value on failure
4107 * The open entry point is called when a network interface is made
4108 * active by the system (IFF_UP). At this point all resources needed
4109 * for transmit and receive operations are allocated, the interrupt
4110 * handler is registered with the OS, the watchdog timer is started,
4111 * and the stack is notified that the interface is ready.
4113 static int __igb_open(struct net_device *netdev, bool resuming)
4115 struct igb_adapter *adapter = netdev_priv(netdev);
4116 struct e1000_hw *hw = &adapter->hw;
4117 struct pci_dev *pdev = adapter->pdev;
4121 /* disallow open during test */
4122 if (test_bit(__IGB_TESTING, &adapter->state)) {
4128 pm_runtime_get_sync(&pdev->dev);
4130 netif_carrier_off(netdev);
4132 /* allocate transmit descriptors */
4133 err = igb_setup_all_tx_resources(adapter);
4137 /* allocate receive descriptors */
4138 err = igb_setup_all_rx_resources(adapter);
4142 igb_power_up_link(adapter);
4144 /* before we allocate an interrupt, we must be ready to handle it.
4145 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4146 * as soon as we call pci_request_irq, so we have to setup our
4147 * clean_rx handler before we do so.
4149 igb_configure(adapter);
4151 err = igb_request_irq(adapter);
4155 /* Notify the stack of the actual queue counts. */
4156 err = netif_set_real_num_tx_queues(adapter->netdev,
4157 adapter->num_tx_queues);
4159 goto err_set_queues;
4161 err = netif_set_real_num_rx_queues(adapter->netdev,
4162 adapter->num_rx_queues);
4164 goto err_set_queues;
4166 /* From here on the code is the same as igb_up() */
4167 clear_bit(__IGB_DOWN, &adapter->state);
4169 for (i = 0; i < adapter->num_q_vectors; i++)
4170 napi_enable(&(adapter->q_vector[i]->napi));
4172 /* Clear any pending interrupts. */
4176 igb_irq_enable(adapter);
4178 /* notify VFs that reset has been completed */
4179 if (adapter->vfs_allocated_count) {
4180 u32 reg_data = rd32(E1000_CTRL_EXT);
4182 reg_data |= E1000_CTRL_EXT_PFRSTD;
4183 wr32(E1000_CTRL_EXT, reg_data);
4186 netif_tx_start_all_queues(netdev);
4189 pm_runtime_put(&pdev->dev);
4191 /* start the watchdog. */
4192 hw->mac.get_link_status = 1;
4193 schedule_work(&adapter->watchdog_task);
4198 igb_free_irq(adapter);
4200 igb_release_hw_control(adapter);
4201 igb_power_down_link(adapter);
4202 igb_free_all_rx_resources(adapter);
4204 igb_free_all_tx_resources(adapter);
4208 pm_runtime_put(&pdev->dev);
4213 int igb_open(struct net_device *netdev)
4215 return __igb_open(netdev, false);
4219 * __igb_close - Disables a network interface
4220 * @netdev: network interface device structure
4221 * @suspending: indicates we are in a suspend call
4223 * Returns 0, this is not allowed to fail
4225 * The close entry point is called when an interface is de-activated
4226 * by the OS. The hardware is still under the driver's control, but
4227 * needs to be disabled. A global MAC reset is issued to stop the
4228 * hardware, and all transmit and receive resources are freed.
4230 static int __igb_close(struct net_device *netdev, bool suspending)
4232 struct igb_adapter *adapter = netdev_priv(netdev);
4233 struct pci_dev *pdev = adapter->pdev;
4235 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4238 pm_runtime_get_sync(&pdev->dev);
4241 igb_free_irq(adapter);
4243 igb_free_all_tx_resources(adapter);
4244 igb_free_all_rx_resources(adapter);
4247 pm_runtime_put_sync(&pdev->dev);
4251 int igb_close(struct net_device *netdev)
4253 if (netif_device_present(netdev) || netdev->dismantle)
4254 return __igb_close(netdev, false);
4259 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4260 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4262 * Return 0 on success, negative on failure
4264 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4266 struct device *dev = tx_ring->dev;
4269 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4271 tx_ring->tx_buffer_info = vmalloc(size);
4272 if (!tx_ring->tx_buffer_info)
4275 /* round up to nearest 4K */
4276 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4277 tx_ring->size = ALIGN(tx_ring->size, 4096);
4279 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4280 &tx_ring->dma, GFP_KERNEL);
4284 tx_ring->next_to_use = 0;
4285 tx_ring->next_to_clean = 0;
4290 vfree(tx_ring->tx_buffer_info);
4291 tx_ring->tx_buffer_info = NULL;
4292 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4297 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4298 * (Descriptors) for all queues
4299 * @adapter: board private structure
4301 * Return 0 on success, negative on failure
4303 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4305 struct pci_dev *pdev = adapter->pdev;
4308 for (i = 0; i < adapter->num_tx_queues; i++) {
4309 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4312 "Allocation for Tx Queue %u failed\n", i);
4313 for (i--; i >= 0; i--)
4314 igb_free_tx_resources(adapter->tx_ring[i]);
4323 * igb_setup_tctl - configure the transmit control registers
4324 * @adapter: Board private structure
4326 void igb_setup_tctl(struct igb_adapter *adapter)
4328 struct e1000_hw *hw = &adapter->hw;
4331 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4332 wr32(E1000_TXDCTL(0), 0);
4334 /* Program the Transmit Control Register */
4335 tctl = rd32(E1000_TCTL);
4336 tctl &= ~E1000_TCTL_CT;
4337 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4338 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4340 igb_config_collision_dist(hw);
4342 /* Enable transmits */
4343 tctl |= E1000_TCTL_EN;
4345 wr32(E1000_TCTL, tctl);
4349 * igb_configure_tx_ring - Configure transmit ring after Reset
4350 * @adapter: board private structure
4351 * @ring: tx ring to configure
4353 * Configure a transmit ring after a reset.
4355 void igb_configure_tx_ring(struct igb_adapter *adapter,
4356 struct igb_ring *ring)
4358 struct e1000_hw *hw = &adapter->hw;
4360 u64 tdba = ring->dma;
4361 int reg_idx = ring->reg_idx;
4363 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4365 wr32(E1000_TDLEN(reg_idx),
4366 ring->count * sizeof(union e1000_adv_tx_desc));
4367 wr32(E1000_TDBAL(reg_idx),
4368 tdba & 0x00000000ffffffffULL);
4369 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4371 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4372 wr32(E1000_TDH(reg_idx), 0);
4373 writel(0, ring->tail);
4375 txdctl |= IGB_TX_PTHRESH;
4376 txdctl |= IGB_TX_HTHRESH << 8;
4377 txdctl |= IGB_TX_WTHRESH << 16;
4379 /* reinitialize tx_buffer_info */
4380 memset(ring->tx_buffer_info, 0,
4381 sizeof(struct igb_tx_buffer) * ring->count);
4383 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4384 wr32(E1000_TXDCTL(reg_idx), txdctl);
4388 * igb_configure_tx - Configure transmit Unit after Reset
4389 * @adapter: board private structure
4391 * Configure the Tx unit of the MAC after a reset.
4393 static void igb_configure_tx(struct igb_adapter *adapter)
4395 struct e1000_hw *hw = &adapter->hw;
4398 /* disable the queues */
4399 for (i = 0; i < adapter->num_tx_queues; i++)
4400 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4403 usleep_range(10000, 20000);
4405 for (i = 0; i < adapter->num_tx_queues; i++)
4406 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4410 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4411 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4413 * Returns 0 on success, negative on failure
4415 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4417 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4418 struct device *dev = rx_ring->dev;
4421 /* XDP RX-queue info */
4422 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4423 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4424 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4425 rx_ring->queue_index,
4426 rx_ring->q_vector->napi.napi_id);
4428 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4429 rx_ring->queue_index);
4433 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4435 rx_ring->rx_buffer_info = vmalloc(size);
4436 if (!rx_ring->rx_buffer_info)
4439 /* Round up to nearest 4K */
4440 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4441 rx_ring->size = ALIGN(rx_ring->size, 4096);
4443 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4444 &rx_ring->dma, GFP_KERNEL);
4448 rx_ring->next_to_alloc = 0;
4449 rx_ring->next_to_clean = 0;
4450 rx_ring->next_to_use = 0;
4452 rx_ring->xdp_prog = adapter->xdp_prog;
4457 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4458 vfree(rx_ring->rx_buffer_info);
4459 rx_ring->rx_buffer_info = NULL;
4460 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4465 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4466 * (Descriptors) for all queues
4467 * @adapter: board private structure
4469 * Return 0 on success, negative on failure
4471 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4473 struct pci_dev *pdev = adapter->pdev;
4476 for (i = 0; i < adapter->num_rx_queues; i++) {
4477 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4480 "Allocation for Rx Queue %u failed\n", i);
4481 for (i--; i >= 0; i--)
4482 igb_free_rx_resources(adapter->rx_ring[i]);
4491 * igb_setup_mrqc - configure the multiple receive queue control registers
4492 * @adapter: Board private structure
4494 static void igb_setup_mrqc(struct igb_adapter *adapter)
4496 struct e1000_hw *hw = &adapter->hw;
4498 u32 j, num_rx_queues;
4501 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4502 for (j = 0; j < 10; j++)
4503 wr32(E1000_RSSRK(j), rss_key[j]);
4505 num_rx_queues = adapter->rss_queues;
4507 switch (hw->mac.type) {
4509 /* 82576 supports 2 RSS queues for SR-IOV */
4510 if (adapter->vfs_allocated_count)
4517 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4518 for (j = 0; j < IGB_RETA_SIZE; j++)
4519 adapter->rss_indir_tbl[j] =
4520 (j * num_rx_queues) / IGB_RETA_SIZE;
4521 adapter->rss_indir_tbl_init = num_rx_queues;
4523 igb_write_rss_indir_tbl(adapter);
4525 /* Disable raw packet checksumming so that RSS hash is placed in
4526 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4527 * offloads as they are enabled by default
4529 rxcsum = rd32(E1000_RXCSUM);
4530 rxcsum |= E1000_RXCSUM_PCSD;
4532 if (adapter->hw.mac.type >= e1000_82576)
4533 /* Enable Receive Checksum Offload for SCTP */
4534 rxcsum |= E1000_RXCSUM_CRCOFL;
4536 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4537 wr32(E1000_RXCSUM, rxcsum);
4539 /* Generate RSS hash based on packet types, TCP/UDP
4540 * port numbers and/or IPv4/v6 src and dst addresses
4542 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4543 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4544 E1000_MRQC_RSS_FIELD_IPV6 |
4545 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4546 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4548 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4549 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4550 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4551 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4553 /* If VMDq is enabled then we set the appropriate mode for that, else
4554 * we default to RSS so that an RSS hash is calculated per packet even
4555 * if we are only using one queue
4557 if (adapter->vfs_allocated_count) {
4558 if (hw->mac.type > e1000_82575) {
4559 /* Set the default pool for the PF's first queue */
4560 u32 vtctl = rd32(E1000_VT_CTL);
4562 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4563 E1000_VT_CTL_DISABLE_DEF_POOL);
4564 vtctl |= adapter->vfs_allocated_count <<
4565 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4566 wr32(E1000_VT_CTL, vtctl);
4568 if (adapter->rss_queues > 1)
4569 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4571 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4573 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4575 igb_vmm_control(adapter);
4577 wr32(E1000_MRQC, mrqc);
4581 * igb_setup_rctl - configure the receive control registers
4582 * @adapter: Board private structure
4584 void igb_setup_rctl(struct igb_adapter *adapter)
4586 struct e1000_hw *hw = &adapter->hw;
4589 rctl = rd32(E1000_RCTL);
4591 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4592 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4594 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4595 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4597 /* enable stripping of CRC. It's unlikely this will break BMC
4598 * redirection as it did with e1000. Newer features require
4599 * that the HW strips the CRC.
4601 rctl |= E1000_RCTL_SECRC;
4603 /* disable store bad packets and clear size bits. */
4604 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4606 /* enable LPE to allow for reception of jumbo frames */
4607 rctl |= E1000_RCTL_LPE;
4609 /* disable queue 0 to prevent tail write w/o re-config */
4610 wr32(E1000_RXDCTL(0), 0);
4612 /* Attention!!! For SR-IOV PF driver operations you must enable
4613 * queue drop for all VF and PF queues to prevent head of line blocking
4614 * if an un-trusted VF does not provide descriptors to hardware.
4616 if (adapter->vfs_allocated_count) {
4617 /* set all queue drop enable bits */
4618 wr32(E1000_QDE, ALL_QUEUES);
4621 /* This is useful for sniffing bad packets. */
4622 if (adapter->netdev->features & NETIF_F_RXALL) {
4623 /* UPE and MPE will be handled by normal PROMISC logic
4624 * in e1000e_set_rx_mode
4626 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4627 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4628 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4630 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4631 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4632 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4633 * and that breaks VLANs.
4637 wr32(E1000_RCTL, rctl);
4640 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4643 struct e1000_hw *hw = &adapter->hw;
4646 if (size > MAX_JUMBO_FRAME_SIZE)
4647 size = MAX_JUMBO_FRAME_SIZE;
4649 vmolr = rd32(E1000_VMOLR(vfn));
4650 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4651 vmolr |= size | E1000_VMOLR_LPE;
4652 wr32(E1000_VMOLR(vfn), vmolr);
4657 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4658 int vfn, bool enable)
4660 struct e1000_hw *hw = &adapter->hw;
4663 if (hw->mac.type < e1000_82576)
4666 if (hw->mac.type == e1000_i350)
4667 reg = E1000_DVMOLR(vfn);
4669 reg = E1000_VMOLR(vfn);
4673 val |= E1000_VMOLR_STRVLAN;
4675 val &= ~(E1000_VMOLR_STRVLAN);
4679 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4682 struct e1000_hw *hw = &adapter->hw;
4685 /* This register exists only on 82576 and newer so if we are older then
4686 * we should exit and do nothing
4688 if (hw->mac.type < e1000_82576)
4691 vmolr = rd32(E1000_VMOLR(vfn));
4693 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4695 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4697 /* clear all bits that might not be set */
4698 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4700 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4701 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4702 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4705 if (vfn <= adapter->vfs_allocated_count)
4706 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4708 wr32(E1000_VMOLR(vfn), vmolr);
4712 * igb_setup_srrctl - configure the split and replication receive control
4714 * @adapter: Board private structure
4715 * @ring: receive ring to be configured
4717 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4719 struct e1000_hw *hw = &adapter->hw;
4720 int reg_idx = ring->reg_idx;
4725 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4726 else if (ring_uses_large_buffer(ring))
4727 buf_size = IGB_RXBUFFER_3072;
4729 buf_size = IGB_RXBUFFER_2048;
4731 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4732 srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4733 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4734 if (hw->mac.type >= e1000_82580)
4735 srrctl |= E1000_SRRCTL_TIMESTAMP;
4736 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4737 * queues and rx flow control is disabled
4739 if (adapter->vfs_allocated_count ||
4740 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4741 adapter->num_rx_queues > 1))
4742 srrctl |= E1000_SRRCTL_DROP_EN;
4744 wr32(E1000_SRRCTL(reg_idx), srrctl);
4748 * igb_configure_rx_ring - Configure a receive ring after Reset
4749 * @adapter: board private structure
4750 * @ring: receive ring to be configured
4752 * Configure the Rx unit of the MAC after a reset.
4754 void igb_configure_rx_ring(struct igb_adapter *adapter,
4755 struct igb_ring *ring)
4757 struct e1000_hw *hw = &adapter->hw;
4758 union e1000_adv_rx_desc *rx_desc;
4759 u64 rdba = ring->dma;
4760 int reg_idx = ring->reg_idx;
4763 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4764 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4765 if (ring->xsk_pool) {
4766 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4767 MEM_TYPE_XSK_BUFF_POOL,
4769 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4771 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4772 MEM_TYPE_PAGE_SHARED,
4776 /* disable the queue */
4777 wr32(E1000_RXDCTL(reg_idx), 0);
4779 /* Set DMA base address registers */
4780 wr32(E1000_RDBAL(reg_idx),
4781 rdba & 0x00000000ffffffffULL);
4782 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4783 wr32(E1000_RDLEN(reg_idx),
4784 ring->count * sizeof(union e1000_adv_rx_desc));
4786 /* initialize head and tail */
4787 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4788 wr32(E1000_RDH(reg_idx), 0);
4789 writel(0, ring->tail);
4791 /* set descriptor configuration */
4792 igb_setup_srrctl(adapter, ring);
4794 /* set filtering for VMDQ pools */
4795 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4797 rxdctl |= IGB_RX_PTHRESH;
4798 rxdctl |= IGB_RX_HTHRESH << 8;
4799 rxdctl |= IGB_RX_WTHRESH << 16;
4802 memset(ring->rx_buffer_info_zc, 0,
4803 sizeof(*ring->rx_buffer_info_zc) * ring->count);
4805 memset(ring->rx_buffer_info, 0,
4806 sizeof(*ring->rx_buffer_info) * ring->count);
4808 /* initialize Rx descriptor 0 */
4809 rx_desc = IGB_RX_DESC(ring, 0);
4810 rx_desc->wb.upper.length = 0;
4812 /* enable receive descriptor fetching */
4813 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4814 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4817 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4818 struct igb_ring *rx_ring)
4820 #if (PAGE_SIZE < 8192)
4821 struct e1000_hw *hw = &adapter->hw;
4824 /* set build_skb and buffer size flags */
4825 clear_ring_build_skb_enabled(rx_ring);
4826 clear_ring_uses_large_buffer(rx_ring);
4828 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4831 set_ring_build_skb_enabled(rx_ring);
4833 #if (PAGE_SIZE < 8192)
4834 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4835 IGB_2K_TOO_SMALL_WITH_PADDING ||
4836 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4837 set_ring_uses_large_buffer(rx_ring);
4842 * igb_configure_rx - Configure receive Unit after Reset
4843 * @adapter: board private structure
4845 * Configure the Rx unit of the MAC after a reset.
4847 static void igb_configure_rx(struct igb_adapter *adapter)
4851 /* set the correct pool for the PF default MAC address in entry 0 */
4852 igb_set_default_mac_filter(adapter);
4854 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4855 * the Base and Length of the Rx Descriptor Ring
4857 for (i = 0; i < adapter->num_rx_queues; i++) {
4858 struct igb_ring *rx_ring = adapter->rx_ring[i];
4860 igb_set_rx_buffer_len(adapter, rx_ring);
4861 igb_configure_rx_ring(adapter, rx_ring);
4866 * igb_free_tx_resources - Free Tx Resources per Queue
4867 * @tx_ring: Tx descriptor ring for a specific queue
4869 * Free all transmit software resources
4871 void igb_free_tx_resources(struct igb_ring *tx_ring)
4873 igb_clean_tx_ring(tx_ring);
4875 vfree(tx_ring->tx_buffer_info);
4876 tx_ring->tx_buffer_info = NULL;
4878 /* if not set, then don't free */
4882 dma_free_coherent(tx_ring->dev, tx_ring->size,
4883 tx_ring->desc, tx_ring->dma);
4885 tx_ring->desc = NULL;
4889 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4890 * @adapter: board private structure
4892 * Free all transmit software resources
4894 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4898 for (i = 0; i < adapter->num_tx_queues; i++)
4899 if (adapter->tx_ring[i])
4900 igb_free_tx_resources(adapter->tx_ring[i]);
4904 * igb_clean_tx_ring - Free Tx Buffers
4905 * @tx_ring: ring to be cleaned
4907 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4909 u16 i = tx_ring->next_to_clean;
4910 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4913 while (i != tx_ring->next_to_use) {
4914 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4916 /* Free all the Tx ring sk_buffs or xdp frames */
4917 if (tx_buffer->type == IGB_TYPE_SKB) {
4918 dev_kfree_skb_any(tx_buffer->skb);
4919 } else if (tx_buffer->type == IGB_TYPE_XDP) {
4920 xdp_return_frame(tx_buffer->xdpf);
4921 } else if (tx_buffer->type == IGB_TYPE_XSK) {
4926 /* unmap skb header data */
4927 dma_unmap_single(tx_ring->dev,
4928 dma_unmap_addr(tx_buffer, dma),
4929 dma_unmap_len(tx_buffer, len),
4932 /* check for eop_desc to determine the end of the packet */
4933 eop_desc = tx_buffer->next_to_watch;
4934 tx_desc = IGB_TX_DESC(tx_ring, i);
4936 /* unmap remaining buffers */
4937 while (tx_desc != eop_desc) {
4941 if (unlikely(i == tx_ring->count)) {
4943 tx_buffer = tx_ring->tx_buffer_info;
4944 tx_desc = IGB_TX_DESC(tx_ring, 0);
4947 /* unmap any remaining paged data */
4948 if (dma_unmap_len(tx_buffer, len))
4949 dma_unmap_page(tx_ring->dev,
4950 dma_unmap_addr(tx_buffer, dma),
4951 dma_unmap_len(tx_buffer, len),
4956 tx_buffer->next_to_watch = NULL;
4958 /* move us one more past the eop_desc for start of next pkt */
4961 if (unlikely(i == tx_ring->count)) {
4963 tx_buffer = tx_ring->tx_buffer_info;
4967 /* reset BQL for queue */
4968 netdev_tx_reset_queue(txring_txq(tx_ring));
4970 if (tx_ring->xsk_pool && xsk_frames)
4971 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
4973 /* reset next_to_use and next_to_clean */
4974 tx_ring->next_to_use = 0;
4975 tx_ring->next_to_clean = 0;
4979 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4980 * @adapter: board private structure
4982 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4986 for (i = 0; i < adapter->num_tx_queues; i++)
4987 if (adapter->tx_ring[i])
4988 igb_clean_tx_ring(adapter->tx_ring[i]);
4992 * igb_free_rx_resources - Free Rx Resources
4993 * @rx_ring: ring to clean the resources from
4995 * Free all receive software resources
4997 void igb_free_rx_resources(struct igb_ring *rx_ring)
4999 igb_clean_rx_ring(rx_ring);
5001 rx_ring->xdp_prog = NULL;
5002 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5003 if (rx_ring->xsk_pool) {
5004 vfree(rx_ring->rx_buffer_info_zc);
5005 rx_ring->rx_buffer_info_zc = NULL;
5007 vfree(rx_ring->rx_buffer_info);
5008 rx_ring->rx_buffer_info = NULL;
5011 /* if not set, then don't free */
5015 dma_free_coherent(rx_ring->dev, rx_ring->size,
5016 rx_ring->desc, rx_ring->dma);
5018 rx_ring->desc = NULL;
5022 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5023 * @adapter: board private structure
5025 * Free all receive software resources
5027 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5031 for (i = 0; i < adapter->num_rx_queues; i++)
5032 if (adapter->rx_ring[i])
5033 igb_free_rx_resources(adapter->rx_ring[i]);
5037 * igb_clean_rx_ring - Free Rx Buffers per Queue
5038 * @rx_ring: ring to free buffers from
5040 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5042 u16 i = rx_ring->next_to_clean;
5044 dev_kfree_skb(rx_ring->skb);
5045 rx_ring->skb = NULL;
5047 if (rx_ring->xsk_pool) {
5048 igb_clean_rx_ring_zc(rx_ring);
5052 /* Free all the Rx ring sk_buffs */
5053 while (i != rx_ring->next_to_alloc) {
5054 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5056 /* Invalidate cache lines that may have been written to by
5057 * device so that we avoid corrupting memory.
5059 dma_sync_single_range_for_cpu(rx_ring->dev,
5061 buffer_info->page_offset,
5062 igb_rx_bufsz(rx_ring),
5065 /* free resources associated with mapping */
5066 dma_unmap_page_attrs(rx_ring->dev,
5068 igb_rx_pg_size(rx_ring),
5071 __page_frag_cache_drain(buffer_info->page,
5072 buffer_info->pagecnt_bias);
5075 if (i == rx_ring->count)
5080 rx_ring->next_to_alloc = 0;
5081 rx_ring->next_to_clean = 0;
5082 rx_ring->next_to_use = 0;
5086 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5087 * @adapter: board private structure
5089 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5093 for (i = 0; i < adapter->num_rx_queues; i++)
5094 if (adapter->rx_ring[i])
5095 igb_clean_rx_ring(adapter->rx_ring[i]);
5099 * igb_set_mac - Change the Ethernet Address of the NIC
5100 * @netdev: network interface device structure
5101 * @p: pointer to an address structure
5103 * Returns 0 on success, negative on failure
5105 static int igb_set_mac(struct net_device *netdev, void *p)
5107 struct igb_adapter *adapter = netdev_priv(netdev);
5108 struct e1000_hw *hw = &adapter->hw;
5109 struct sockaddr *addr = p;
5111 if (!is_valid_ether_addr(addr->sa_data))
5112 return -EADDRNOTAVAIL;
5114 eth_hw_addr_set(netdev, addr->sa_data);
5115 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5117 /* set the correct pool for the new PF MAC address in entry 0 */
5118 igb_set_default_mac_filter(adapter);
5124 * igb_write_mc_addr_list - write multicast addresses to MTA
5125 * @netdev: network interface device structure
5127 * Writes multicast address list to the MTA hash table.
5128 * Returns: -ENOMEM on failure
5129 * 0 on no addresses written
5130 * X on writing X addresses to MTA
5132 static int igb_write_mc_addr_list(struct net_device *netdev)
5134 struct igb_adapter *adapter = netdev_priv(netdev);
5135 struct e1000_hw *hw = &adapter->hw;
5136 struct netdev_hw_addr *ha;
5140 if (netdev_mc_empty(netdev)) {
5141 /* nothing to program, so clear mc list */
5142 igb_update_mc_addr_list(hw, NULL, 0);
5143 igb_restore_vf_multicasts(adapter);
5147 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5151 /* The shared function expects a packed array of only addresses. */
5153 netdev_for_each_mc_addr(ha, netdev)
5154 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5156 igb_update_mc_addr_list(hw, mta_list, i);
5159 return netdev_mc_count(netdev);
5162 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5164 struct e1000_hw *hw = &adapter->hw;
5167 switch (hw->mac.type) {
5171 /* VLAN filtering needed for VLAN prio filter */
5172 if (adapter->netdev->features & NETIF_F_NTUPLE)
5178 /* VLAN filtering needed for pool filtering */
5179 if (adapter->vfs_allocated_count)
5186 /* We are already in VLAN promisc, nothing to do */
5187 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5190 if (!adapter->vfs_allocated_count)
5193 /* Add PF to all active pools */
5194 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5196 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5197 u32 vlvf = rd32(E1000_VLVF(i));
5200 wr32(E1000_VLVF(i), vlvf);
5204 /* Set all bits in the VLAN filter table array */
5205 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5206 hw->mac.ops.write_vfta(hw, i, ~0U);
5208 /* Set flag so we don't redo unnecessary work */
5209 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5214 #define VFTA_BLOCK_SIZE 8
5215 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5217 struct e1000_hw *hw = &adapter->hw;
5218 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5219 u32 vid_start = vfta_offset * 32;
5220 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5221 u32 i, vid, word, bits, pf_id;
5223 /* guarantee that we don't scrub out management VLAN */
5224 vid = adapter->mng_vlan_id;
5225 if (vid >= vid_start && vid < vid_end)
5226 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5228 if (!adapter->vfs_allocated_count)
5231 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5233 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5234 u32 vlvf = rd32(E1000_VLVF(i));
5236 /* pull VLAN ID from VLVF */
5237 vid = vlvf & VLAN_VID_MASK;
5239 /* only concern ourselves with a certain range */
5240 if (vid < vid_start || vid >= vid_end)
5243 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5244 /* record VLAN ID in VFTA */
5245 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5247 /* if PF is part of this then continue */
5248 if (test_bit(vid, adapter->active_vlans))
5252 /* remove PF from the pool */
5254 bits &= rd32(E1000_VLVF(i));
5255 wr32(E1000_VLVF(i), bits);
5259 /* extract values from active_vlans and write back to VFTA */
5260 for (i = VFTA_BLOCK_SIZE; i--;) {
5261 vid = (vfta_offset + i) * 32;
5262 word = vid / BITS_PER_LONG;
5263 bits = vid % BITS_PER_LONG;
5265 vfta[i] |= adapter->active_vlans[word] >> bits;
5267 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5271 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5275 /* We are not in VLAN promisc, nothing to do */
5276 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5279 /* Set flag so we don't redo unnecessary work */
5280 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5282 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5283 igb_scrub_vfta(adapter, i);
5287 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5288 * @netdev: network interface device structure
5290 * The set_rx_mode entry point is called whenever the unicast or multicast
5291 * address lists or the network interface flags are updated. This routine is
5292 * responsible for configuring the hardware for proper unicast, multicast,
5293 * promiscuous mode, and all-multi behavior.
5295 static void igb_set_rx_mode(struct net_device *netdev)
5297 struct igb_adapter *adapter = netdev_priv(netdev);
5298 struct e1000_hw *hw = &adapter->hw;
5299 unsigned int vfn = adapter->vfs_allocated_count;
5300 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5303 /* Check for Promiscuous and All Multicast modes */
5304 if (netdev->flags & IFF_PROMISC) {
5305 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5306 vmolr |= E1000_VMOLR_MPME;
5308 /* enable use of UTA filter to force packets to default pool */
5309 if (hw->mac.type == e1000_82576)
5310 vmolr |= E1000_VMOLR_ROPE;
5312 if (netdev->flags & IFF_ALLMULTI) {
5313 rctl |= E1000_RCTL_MPE;
5314 vmolr |= E1000_VMOLR_MPME;
5316 /* Write addresses to the MTA, if the attempt fails
5317 * then we should just turn on promiscuous mode so
5318 * that we can at least receive multicast traffic
5320 count = igb_write_mc_addr_list(netdev);
5322 rctl |= E1000_RCTL_MPE;
5323 vmolr |= E1000_VMOLR_MPME;
5325 vmolr |= E1000_VMOLR_ROMPE;
5330 /* Write addresses to available RAR registers, if there is not
5331 * sufficient space to store all the addresses then enable
5332 * unicast promiscuous mode
5334 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5335 rctl |= E1000_RCTL_UPE;
5336 vmolr |= E1000_VMOLR_ROPE;
5339 /* enable VLAN filtering by default */
5340 rctl |= E1000_RCTL_VFE;
5342 /* disable VLAN filtering for modes that require it */
5343 if ((netdev->flags & IFF_PROMISC) ||
5344 (netdev->features & NETIF_F_RXALL)) {
5345 /* if we fail to set all rules then just clear VFE */
5346 if (igb_vlan_promisc_enable(adapter))
5347 rctl &= ~E1000_RCTL_VFE;
5349 igb_vlan_promisc_disable(adapter);
5352 /* update state of unicast, multicast, and VLAN filtering modes */
5353 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5355 wr32(E1000_RCTL, rctl);
5357 #if (PAGE_SIZE < 8192)
5358 if (!adapter->vfs_allocated_count) {
5359 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5360 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5363 wr32(E1000_RLPML, rlpml);
5365 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5366 * the VMOLR to enable the appropriate modes. Without this workaround
5367 * we will have issues with VLAN tag stripping not being done for frames
5368 * that are only arriving because we are the default pool
5370 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5373 /* set UTA to appropriate mode */
5374 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5376 vmolr |= rd32(E1000_VMOLR(vfn)) &
5377 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5379 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5380 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5381 #if (PAGE_SIZE < 8192)
5382 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5383 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5386 vmolr |= MAX_JUMBO_FRAME_SIZE;
5387 vmolr |= E1000_VMOLR_LPE;
5389 wr32(E1000_VMOLR(vfn), vmolr);
5391 igb_restore_vf_multicasts(adapter);
5394 static void igb_check_wvbr(struct igb_adapter *adapter)
5396 struct e1000_hw *hw = &adapter->hw;
5399 switch (hw->mac.type) {
5402 wvbr = rd32(E1000_WVBR);
5410 adapter->wvbr |= wvbr;
5413 #define IGB_STAGGERED_QUEUE_OFFSET 8
5415 static void igb_spoof_check(struct igb_adapter *adapter)
5422 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5423 if (adapter->wvbr & BIT(j) ||
5424 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5425 dev_warn(&adapter->pdev->dev,
5426 "Spoof event(s) detected on VF %d\n", j);
5429 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5434 /* Need to wait a few seconds after link up to get diagnostic information from
5437 static void igb_update_phy_info(struct timer_list *t)
5439 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5440 igb_get_phy_info(&adapter->hw);
5444 * igb_has_link - check shared code for link and determine up/down
5445 * @adapter: pointer to driver private info
5447 bool igb_has_link(struct igb_adapter *adapter)
5449 struct e1000_hw *hw = &adapter->hw;
5450 bool link_active = false;
5452 /* get_link_status is set on LSC (link status) interrupt or
5453 * rx sequence error interrupt. get_link_status will stay
5454 * false until the e1000_check_for_link establishes link
5455 * for copper adapters ONLY
5457 switch (hw->phy.media_type) {
5458 case e1000_media_type_copper:
5459 if (!hw->mac.get_link_status)
5462 case e1000_media_type_internal_serdes:
5463 hw->mac.ops.check_for_link(hw);
5464 link_active = !hw->mac.get_link_status;
5467 case e1000_media_type_unknown:
5471 if (((hw->mac.type == e1000_i210) ||
5472 (hw->mac.type == e1000_i211)) &&
5473 (hw->phy.id == I210_I_PHY_ID)) {
5474 if (!netif_carrier_ok(adapter->netdev)) {
5475 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5476 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5477 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5478 adapter->link_check_timeout = jiffies;
5485 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5488 u32 ctrl_ext, thstat;
5490 /* check for thermal sensor event on i350 copper only */
5491 if (hw->mac.type == e1000_i350) {
5492 thstat = rd32(E1000_THSTAT);
5493 ctrl_ext = rd32(E1000_CTRL_EXT);
5495 if ((hw->phy.media_type == e1000_media_type_copper) &&
5496 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5497 ret = !!(thstat & event);
5504 * igb_check_lvmmc - check for malformed packets received
5505 * and indicated in LVMMC register
5506 * @adapter: pointer to adapter
5508 static void igb_check_lvmmc(struct igb_adapter *adapter)
5510 struct e1000_hw *hw = &adapter->hw;
5513 lvmmc = rd32(E1000_LVMMC);
5515 if (unlikely(net_ratelimit())) {
5516 netdev_warn(adapter->netdev,
5517 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5524 * igb_watchdog - Timer Call-back
5525 * @t: pointer to timer_list containing our private info pointer
5527 static void igb_watchdog(struct timer_list *t)
5529 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5530 /* Do the rest outside of interrupt context */
5531 schedule_work(&adapter->watchdog_task);
5534 static void igb_watchdog_task(struct work_struct *work)
5536 struct igb_adapter *adapter = container_of(work,
5539 struct e1000_hw *hw = &adapter->hw;
5540 struct e1000_phy_info *phy = &hw->phy;
5541 struct net_device *netdev = adapter->netdev;
5545 u16 phy_data, retry_count = 20;
5547 link = igb_has_link(adapter);
5549 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5550 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5551 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5556 /* Force link down if we have fiber to swap to */
5557 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5558 if (hw->phy.media_type == e1000_media_type_copper) {
5559 connsw = rd32(E1000_CONNSW);
5560 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5565 /* Perform a reset if the media type changed. */
5566 if (hw->dev_spec._82575.media_changed) {
5567 hw->dev_spec._82575.media_changed = false;
5568 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5571 /* Cancel scheduled suspend requests. */
5572 pm_runtime_resume(netdev->dev.parent);
5574 if (!netif_carrier_ok(netdev)) {
5577 hw->mac.ops.get_speed_and_duplex(hw,
5578 &adapter->link_speed,
5579 &adapter->link_duplex);
5581 ctrl = rd32(E1000_CTRL);
5582 /* Links status message must follow this format */
5584 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5586 adapter->link_speed,
5587 adapter->link_duplex == FULL_DUPLEX ?
5589 (ctrl & E1000_CTRL_TFCE) &&
5590 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5591 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5592 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5594 /* disable EEE if enabled */
5595 if ((adapter->flags & IGB_FLAG_EEE) &&
5596 (adapter->link_duplex == HALF_DUPLEX)) {
5597 dev_info(&adapter->pdev->dev,
5598 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5599 adapter->hw.dev_spec._82575.eee_disable = true;
5600 adapter->flags &= ~IGB_FLAG_EEE;
5603 /* check if SmartSpeed worked */
5604 igb_check_downshift(hw);
5605 if (phy->speed_downgraded)
5606 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5608 /* check for thermal sensor event */
5609 if (igb_thermal_sensor_event(hw,
5610 E1000_THSTAT_LINK_THROTTLE))
5611 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5613 /* adjust timeout factor according to speed/duplex */
5614 adapter->tx_timeout_factor = 1;
5615 switch (adapter->link_speed) {
5617 adapter->tx_timeout_factor = 14;
5620 /* maybe add some timeout factor ? */
5624 if (adapter->link_speed != SPEED_1000 ||
5625 !hw->phy.ops.read_reg)
5628 /* wait for Remote receiver status OK */
5630 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5632 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5636 goto retry_read_status;
5637 } else if (!retry_count) {
5638 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5641 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5644 netif_carrier_on(netdev);
5646 igb_ping_all_vfs(adapter);
5647 igb_check_vf_rate_limit(adapter);
5649 /* link state has changed, schedule phy info update */
5650 if (!test_bit(__IGB_DOWN, &adapter->state))
5651 mod_timer(&adapter->phy_info_timer,
5652 round_jiffies(jiffies + 2 * HZ));
5655 if (netif_carrier_ok(netdev)) {
5656 adapter->link_speed = 0;
5657 adapter->link_duplex = 0;
5659 /* check for thermal sensor event */
5660 if (igb_thermal_sensor_event(hw,
5661 E1000_THSTAT_PWR_DOWN)) {
5662 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5665 /* Links status message must follow this format */
5666 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5668 netif_carrier_off(netdev);
5670 igb_ping_all_vfs(adapter);
5672 /* link state has changed, schedule phy info update */
5673 if (!test_bit(__IGB_DOWN, &adapter->state))
5674 mod_timer(&adapter->phy_info_timer,
5675 round_jiffies(jiffies + 2 * HZ));
5677 /* link is down, time to check for alternate media */
5678 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5679 igb_check_swap_media(adapter);
5680 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5681 schedule_work(&adapter->reset_task);
5682 /* return immediately */
5686 pm_schedule_suspend(netdev->dev.parent,
5689 /* also check for alternate media here */
5690 } else if (!netif_carrier_ok(netdev) &&
5691 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5692 igb_check_swap_media(adapter);
5693 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5694 schedule_work(&adapter->reset_task);
5695 /* return immediately */
5701 spin_lock(&adapter->stats64_lock);
5702 igb_update_stats(adapter);
5703 spin_unlock(&adapter->stats64_lock);
5705 for (i = 0; i < adapter->num_tx_queues; i++) {
5706 struct igb_ring *tx_ring = adapter->tx_ring[i];
5707 if (!netif_carrier_ok(netdev)) {
5708 /* We've lost link, so the controller stops DMA,
5709 * but we've got queued Tx work that's never going
5710 * to get done, so reset controller to flush Tx.
5711 * (Do the reset outside of interrupt context).
5713 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5714 adapter->tx_timeout_count++;
5715 schedule_work(&adapter->reset_task);
5716 /* return immediately since reset is imminent */
5721 /* Force detection of hung controller every watchdog period */
5722 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5725 /* Cause software interrupt to ensure Rx ring is cleaned */
5726 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5729 for (i = 0; i < adapter->num_q_vectors; i++)
5730 eics |= adapter->q_vector[i]->eims_value;
5731 wr32(E1000_EICS, eics);
5733 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5736 igb_spoof_check(adapter);
5737 igb_ptp_rx_hang(adapter);
5738 igb_ptp_tx_hang(adapter);
5740 /* Check LVMMC register on i350/i354 only */
5741 if ((adapter->hw.mac.type == e1000_i350) ||
5742 (adapter->hw.mac.type == e1000_i354))
5743 igb_check_lvmmc(adapter);
5745 /* Reset the timer */
5746 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5747 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5748 mod_timer(&adapter->watchdog_timer,
5749 round_jiffies(jiffies + HZ));
5751 mod_timer(&adapter->watchdog_timer,
5752 round_jiffies(jiffies + 2 * HZ));
5756 enum latency_range {
5760 latency_invalid = 255
5764 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5765 * @q_vector: pointer to q_vector
5767 * Stores a new ITR value based on strictly on packet size. This
5768 * algorithm is less sophisticated than that used in igb_update_itr,
5769 * due to the difficulty of synchronizing statistics across multiple
5770 * receive rings. The divisors and thresholds used by this function
5771 * were determined based on theoretical maximum wire speed and testing
5772 * data, in order to minimize response time while increasing bulk
5774 * This functionality is controlled by ethtool's coalescing settings.
5775 * NOTE: This function is called only when operating in a multiqueue
5776 * receive environment.
5778 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5780 int new_val = q_vector->itr_val;
5781 int avg_wire_size = 0;
5782 struct igb_adapter *adapter = q_vector->adapter;
5783 unsigned int packets;
5785 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5786 * ints/sec - ITR timer value of 120 ticks.
5788 if (adapter->link_speed != SPEED_1000) {
5789 new_val = IGB_4K_ITR;
5793 packets = q_vector->rx.total_packets;
5795 avg_wire_size = q_vector->rx.total_bytes / packets;
5797 packets = q_vector->tx.total_packets;
5799 avg_wire_size = max_t(u32, avg_wire_size,
5800 q_vector->tx.total_bytes / packets);
5802 /* if avg_wire_size isn't set no work was done */
5806 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5807 avg_wire_size += 24;
5809 /* Don't starve jumbo frames */
5810 avg_wire_size = min(avg_wire_size, 3000);
5812 /* Give a little boost to mid-size frames */
5813 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5814 new_val = avg_wire_size / 3;
5816 new_val = avg_wire_size / 2;
5818 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5819 if (new_val < IGB_20K_ITR &&
5820 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5821 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5822 new_val = IGB_20K_ITR;
5825 if (new_val != q_vector->itr_val) {
5826 q_vector->itr_val = new_val;
5827 q_vector->set_itr = 1;
5830 q_vector->rx.total_bytes = 0;
5831 q_vector->rx.total_packets = 0;
5832 q_vector->tx.total_bytes = 0;
5833 q_vector->tx.total_packets = 0;
5837 * igb_update_itr - update the dynamic ITR value based on statistics
5838 * @q_vector: pointer to q_vector
5839 * @ring_container: ring info to update the itr for
5841 * Stores a new ITR value based on packets and byte
5842 * counts during the last interrupt. The advantage of per interrupt
5843 * computation is faster updates and more accurate ITR for the current
5844 * traffic pattern. Constants in this function were computed
5845 * based on theoretical maximum wire speed and thresholds were set based
5846 * on testing data as well as attempting to minimize response time
5847 * while increasing bulk throughput.
5848 * This functionality is controlled by ethtool's coalescing settings.
5849 * NOTE: These calculations are only valid when operating in a single-
5850 * queue environment.
5852 static void igb_update_itr(struct igb_q_vector *q_vector,
5853 struct igb_ring_container *ring_container)
5855 unsigned int packets = ring_container->total_packets;
5856 unsigned int bytes = ring_container->total_bytes;
5857 u8 itrval = ring_container->itr;
5859 /* no packets, exit with status unchanged */
5864 case lowest_latency:
5865 /* handle TSO and jumbo frames */
5866 if (bytes/packets > 8000)
5867 itrval = bulk_latency;
5868 else if ((packets < 5) && (bytes > 512))
5869 itrval = low_latency;
5871 case low_latency: /* 50 usec aka 20000 ints/s */
5872 if (bytes > 10000) {
5873 /* this if handles the TSO accounting */
5874 if (bytes/packets > 8000)
5875 itrval = bulk_latency;
5876 else if ((packets < 10) || ((bytes/packets) > 1200))
5877 itrval = bulk_latency;
5878 else if ((packets > 35))
5879 itrval = lowest_latency;
5880 } else if (bytes/packets > 2000) {
5881 itrval = bulk_latency;
5882 } else if (packets <= 2 && bytes < 512) {
5883 itrval = lowest_latency;
5886 case bulk_latency: /* 250 usec aka 4000 ints/s */
5887 if (bytes > 25000) {
5889 itrval = low_latency;
5890 } else if (bytes < 1500) {
5891 itrval = low_latency;
5896 /* clear work counters since we have the values we need */
5897 ring_container->total_bytes = 0;
5898 ring_container->total_packets = 0;
5900 /* write updated itr to ring container */
5901 ring_container->itr = itrval;
5904 static void igb_set_itr(struct igb_q_vector *q_vector)
5906 struct igb_adapter *adapter = q_vector->adapter;
5907 u32 new_itr = q_vector->itr_val;
5910 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5911 if (adapter->link_speed != SPEED_1000) {
5913 new_itr = IGB_4K_ITR;
5917 igb_update_itr(q_vector, &q_vector->tx);
5918 igb_update_itr(q_vector, &q_vector->rx);
5920 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5922 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5923 if (current_itr == lowest_latency &&
5924 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5925 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5926 current_itr = low_latency;
5928 switch (current_itr) {
5929 /* counts and packets in update_itr are dependent on these numbers */
5930 case lowest_latency:
5931 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5934 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5937 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5944 if (new_itr != q_vector->itr_val) {
5945 /* this attempts to bias the interrupt rate towards Bulk
5946 * by adding intermediate steps when interrupt rate is
5949 new_itr = new_itr > q_vector->itr_val ?
5950 max((new_itr * q_vector->itr_val) /
5951 (new_itr + (q_vector->itr_val >> 2)),
5953 /* Don't write the value here; it resets the adapter's
5954 * internal timer, and causes us to delay far longer than
5955 * we should between interrupts. Instead, we write the ITR
5956 * value at the beginning of the next interrupt so the timing
5957 * ends up being correct.
5959 q_vector->itr_val = new_itr;
5960 q_vector->set_itr = 1;
5964 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5965 struct igb_tx_buffer *first,
5966 u32 vlan_macip_lens, u32 type_tucmd,
5969 struct e1000_adv_tx_context_desc *context_desc;
5970 u16 i = tx_ring->next_to_use;
5971 struct timespec64 ts;
5973 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5976 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5978 /* set bits to identify this as an advanced context descriptor */
5979 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5981 /* For 82575, context index must be unique per ring. */
5982 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5983 mss_l4len_idx |= tx_ring->reg_idx << 4;
5985 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5986 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5987 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5989 /* We assume there is always a valid tx time available. Invalid times
5990 * should have been handled by the upper layers.
5992 if (tx_ring->launchtime_enable) {
5993 ts = ktime_to_timespec64(first->skb->tstamp);
5994 skb_txtime_consumed(first->skb);
5995 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5997 context_desc->seqnum_seed = 0;
6001 static int igb_tso(struct igb_ring *tx_ring,
6002 struct igb_tx_buffer *first,
6005 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6006 struct sk_buff *skb = first->skb;
6017 u32 paylen, l4_offset;
6020 if (skb->ip_summed != CHECKSUM_PARTIAL)
6023 if (!skb_is_gso(skb))
6026 err = skb_cow_head(skb, 0);
6030 ip.hdr = skb_network_header(skb);
6031 l4.hdr = skb_checksum_start(skb);
6033 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6034 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6035 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6037 /* initialize outer IP header fields */
6038 if (ip.v4->version == 4) {
6039 unsigned char *csum_start = skb_checksum_start(skb);
6040 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6042 /* IP header will have to cancel out any data that
6043 * is not a part of the outer IP header
6045 ip.v4->check = csum_fold(csum_partial(trans_start,
6046 csum_start - trans_start,
6048 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6051 first->tx_flags |= IGB_TX_FLAGS_TSO |
6055 ip.v6->payload_len = 0;
6056 first->tx_flags |= IGB_TX_FLAGS_TSO |
6060 /* determine offset of inner transport header */
6061 l4_offset = l4.hdr - skb->data;
6063 /* remove payload length from inner checksum */
6064 paylen = skb->len - l4_offset;
6065 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6066 /* compute length of segmentation header */
6067 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6068 csum_replace_by_diff(&l4.tcp->check,
6069 (__force __wsum)htonl(paylen));
6071 /* compute length of segmentation header */
6072 *hdr_len = sizeof(*l4.udp) + l4_offset;
6073 csum_replace_by_diff(&l4.udp->check,
6074 (__force __wsum)htonl(paylen));
6077 /* update gso size and bytecount with header size */
6078 first->gso_segs = skb_shinfo(skb)->gso_segs;
6079 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6082 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6083 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6085 /* VLAN MACLEN IPLEN */
6086 vlan_macip_lens = l4.hdr - ip.hdr;
6087 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6088 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6090 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6091 type_tucmd, mss_l4len_idx);
6096 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6098 struct sk_buff *skb = first->skb;
6099 u32 vlan_macip_lens = 0;
6102 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6104 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6105 !tx_ring->launchtime_enable)
6110 switch (skb->csum_offset) {
6111 case offsetof(struct tcphdr, check):
6112 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6114 case offsetof(struct udphdr, check):
6116 case offsetof(struct sctphdr, checksum):
6117 /* validate that this is actually an SCTP request */
6118 if (skb_csum_is_sctp(skb)) {
6119 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6124 skb_checksum_help(skb);
6128 /* update TX checksum flag */
6129 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6130 vlan_macip_lens = skb_checksum_start_offset(skb) -
6131 skb_network_offset(skb);
6133 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6134 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6136 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6139 #define IGB_SET_FLAG(_input, _flag, _result) \
6140 ((_flag <= _result) ? \
6141 ((u32)(_input & _flag) * (_result / _flag)) : \
6142 ((u32)(_input & _flag) / (_flag / _result)))
6144 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6146 /* set type for advanced descriptor with frame checksum insertion */
6147 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6148 E1000_ADVTXD_DCMD_DEXT |
6149 E1000_ADVTXD_DCMD_IFCS;
6151 /* set HW vlan bit if vlan is present */
6152 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6153 (E1000_ADVTXD_DCMD_VLE));
6155 /* set segmentation bits for TSO */
6156 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6157 (E1000_ADVTXD_DCMD_TSE));
6159 /* set timestamp bit if present */
6160 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6161 (E1000_ADVTXD_MAC_TSTAMP));
6163 /* insert frame checksum */
6164 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6169 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6170 union e1000_adv_tx_desc *tx_desc,
6171 u32 tx_flags, unsigned int paylen)
6173 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6175 /* 82575 requires a unique index per ring */
6176 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6177 olinfo_status |= tx_ring->reg_idx << 4;
6179 /* insert L4 checksum */
6180 olinfo_status |= IGB_SET_FLAG(tx_flags,
6182 (E1000_TXD_POPTS_TXSM << 8));
6184 /* insert IPv4 checksum */
6185 olinfo_status |= IGB_SET_FLAG(tx_flags,
6187 (E1000_TXD_POPTS_IXSM << 8));
6189 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6192 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6194 struct net_device *netdev = tx_ring->netdev;
6196 netif_stop_subqueue(netdev, tx_ring->queue_index);
6198 /* Herbert's original patch had:
6199 * smp_mb__after_netif_stop_queue();
6200 * but since that doesn't exist yet, just open code it.
6204 /* We need to check again in a case another CPU has just
6205 * made room available.
6207 if (igb_desc_unused(tx_ring) < size)
6211 netif_wake_subqueue(netdev, tx_ring->queue_index);
6213 u64_stats_update_begin(&tx_ring->tx_syncp2);
6214 tx_ring->tx_stats.restart_queue2++;
6215 u64_stats_update_end(&tx_ring->tx_syncp2);
6220 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6222 if (igb_desc_unused(tx_ring) >= size)
6224 return __igb_maybe_stop_tx(tx_ring, size);
6227 static int igb_tx_map(struct igb_ring *tx_ring,
6228 struct igb_tx_buffer *first,
6231 struct sk_buff *skb = first->skb;
6232 struct igb_tx_buffer *tx_buffer;
6233 union e1000_adv_tx_desc *tx_desc;
6236 unsigned int data_len, size;
6237 u32 tx_flags = first->tx_flags;
6238 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6239 u16 i = tx_ring->next_to_use;
6241 tx_desc = IGB_TX_DESC(tx_ring, i);
6243 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6245 size = skb_headlen(skb);
6246 data_len = skb->data_len;
6248 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6252 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6253 if (dma_mapping_error(tx_ring->dev, dma))
6256 /* record length, and DMA address */
6257 dma_unmap_len_set(tx_buffer, len, size);
6258 dma_unmap_addr_set(tx_buffer, dma, dma);
6260 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6262 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6263 tx_desc->read.cmd_type_len =
6264 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6268 if (i == tx_ring->count) {
6269 tx_desc = IGB_TX_DESC(tx_ring, 0);
6272 tx_desc->read.olinfo_status = 0;
6274 dma += IGB_MAX_DATA_PER_TXD;
6275 size -= IGB_MAX_DATA_PER_TXD;
6277 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6280 if (likely(!data_len))
6283 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6287 if (i == tx_ring->count) {
6288 tx_desc = IGB_TX_DESC(tx_ring, 0);
6291 tx_desc->read.olinfo_status = 0;
6293 size = skb_frag_size(frag);
6296 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6297 size, DMA_TO_DEVICE);
6299 tx_buffer = &tx_ring->tx_buffer_info[i];
6302 /* write last descriptor with RS and EOP bits */
6303 cmd_type |= size | IGB_TXD_DCMD;
6304 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6306 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6308 /* set the timestamp */
6309 first->time_stamp = jiffies;
6311 skb_tx_timestamp(skb);
6313 /* Force memory writes to complete before letting h/w know there
6314 * are new descriptors to fetch. (Only applicable for weak-ordered
6315 * memory model archs, such as IA-64).
6317 * We also need this memory barrier to make certain all of the
6318 * status bits have been updated before next_to_watch is written.
6322 /* set next_to_watch value indicating a packet is present */
6323 first->next_to_watch = tx_desc;
6326 if (i == tx_ring->count)
6329 tx_ring->next_to_use = i;
6331 /* Make sure there is space in the ring for the next send. */
6332 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6334 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6335 writel(i, tx_ring->tail);
6340 dev_err(tx_ring->dev, "TX DMA map failed\n");
6341 tx_buffer = &tx_ring->tx_buffer_info[i];
6343 /* clear dma mappings for failed tx_buffer_info map */
6344 while (tx_buffer != first) {
6345 if (dma_unmap_len(tx_buffer, len))
6346 dma_unmap_page(tx_ring->dev,
6347 dma_unmap_addr(tx_buffer, dma),
6348 dma_unmap_len(tx_buffer, len),
6350 dma_unmap_len_set(tx_buffer, len, 0);
6353 i += tx_ring->count;
6354 tx_buffer = &tx_ring->tx_buffer_info[i];
6357 if (dma_unmap_len(tx_buffer, len))
6358 dma_unmap_single(tx_ring->dev,
6359 dma_unmap_addr(tx_buffer, dma),
6360 dma_unmap_len(tx_buffer, len),
6362 dma_unmap_len_set(tx_buffer, len, 0);
6364 dev_kfree_skb_any(tx_buffer->skb);
6365 tx_buffer->skb = NULL;
6367 tx_ring->next_to_use = i;
6372 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6373 struct igb_ring *tx_ring,
6374 struct xdp_frame *xdpf)
6376 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6377 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6378 u16 count, i, index = tx_ring->next_to_use;
6379 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6380 struct igb_tx_buffer *tx_buffer = tx_head;
6381 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6382 u32 len = xdpf->len, cmd_type, olinfo_status;
6383 void *data = xdpf->data;
6385 count = TXD_USE_COUNT(len);
6386 for (i = 0; i < nr_frags; i++)
6387 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6389 if (igb_maybe_stop_tx(tx_ring, count + 3))
6390 return IGB_XDP_CONSUMED;
6393 /* record the location of the first descriptor for this packet */
6394 tx_head->bytecount = xdp_get_frame_len(xdpf);
6395 tx_head->type = IGB_TYPE_XDP;
6396 tx_head->gso_segs = 1;
6397 tx_head->xdpf = xdpf;
6399 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6400 /* 82575 requires a unique index per ring */
6401 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6402 olinfo_status |= tx_ring->reg_idx << 4;
6403 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6408 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6409 if (dma_mapping_error(tx_ring->dev, dma))
6412 /* record length, and DMA address */
6413 dma_unmap_len_set(tx_buffer, len, len);
6414 dma_unmap_addr_set(tx_buffer, dma, dma);
6416 /* put descriptor type bits */
6417 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6418 E1000_ADVTXD_DCMD_IFCS | len;
6420 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6421 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6423 tx_buffer->protocol = 0;
6425 if (++index == tx_ring->count)
6431 tx_buffer = &tx_ring->tx_buffer_info[index];
6432 tx_desc = IGB_TX_DESC(tx_ring, index);
6433 tx_desc->read.olinfo_status = 0;
6435 data = skb_frag_address(&sinfo->frags[i]);
6436 len = skb_frag_size(&sinfo->frags[i]);
6439 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6441 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6442 /* set the timestamp */
6443 tx_head->time_stamp = jiffies;
6445 /* Avoid any potential race with xdp_xmit and cleanup */
6448 /* set next_to_watch value indicating a packet is present */
6449 tx_head->next_to_watch = tx_desc;
6450 tx_ring->next_to_use = index;
6452 /* Make sure there is space in the ring for the next send. */
6453 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6455 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6456 writel(index, tx_ring->tail);
6462 tx_buffer = &tx_ring->tx_buffer_info[index];
6463 if (dma_unmap_len(tx_buffer, len))
6464 dma_unmap_page(tx_ring->dev,
6465 dma_unmap_addr(tx_buffer, dma),
6466 dma_unmap_len(tx_buffer, len),
6468 dma_unmap_len_set(tx_buffer, len, 0);
6469 if (tx_buffer == tx_head)
6473 index += tx_ring->count;
6477 return IGB_XDP_CONSUMED;
6480 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6481 struct igb_ring *tx_ring)
6483 struct igb_tx_buffer *first;
6487 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6488 __be16 protocol = vlan_get_protocol(skb);
6491 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6492 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6493 * + 2 desc gap to keep tail from touching head,
6494 * + 1 desc for context descriptor,
6495 * otherwise try next time
6497 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6498 count += TXD_USE_COUNT(skb_frag_size(
6499 &skb_shinfo(skb)->frags[f]));
6501 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6502 /* this is a hard error */
6503 return NETDEV_TX_BUSY;
6506 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6507 return NETDEV_TX_BUSY;
6509 /* record the location of the first descriptor for this packet */
6510 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6511 first->type = IGB_TYPE_SKB;
6513 first->bytecount = skb->len;
6514 first->gso_segs = 1;
6516 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6517 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6519 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6520 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6522 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6523 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6525 adapter->ptp_tx_skb = skb_get(skb);
6526 adapter->ptp_tx_start = jiffies;
6527 if (adapter->hw.mac.type == e1000_82576)
6528 schedule_work(&adapter->ptp_tx_work);
6530 adapter->tx_hwtstamp_skipped++;
6534 if (skb_vlan_tag_present(skb)) {
6535 tx_flags |= IGB_TX_FLAGS_VLAN;
6536 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6539 /* record initial flags and protocol */
6540 first->tx_flags = tx_flags;
6541 first->protocol = protocol;
6543 tso = igb_tso(tx_ring, first, &hdr_len);
6547 igb_tx_csum(tx_ring, first);
6549 if (igb_tx_map(tx_ring, first, hdr_len))
6550 goto cleanup_tx_tstamp;
6552 return NETDEV_TX_OK;
6555 dev_kfree_skb_any(first->skb);
6558 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6559 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6561 dev_kfree_skb_any(adapter->ptp_tx_skb);
6562 adapter->ptp_tx_skb = NULL;
6563 if (adapter->hw.mac.type == e1000_82576)
6564 cancel_work_sync(&adapter->ptp_tx_work);
6565 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6568 return NETDEV_TX_OK;
6571 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6572 struct sk_buff *skb)
6574 unsigned int r_idx = skb->queue_mapping;
6576 if (r_idx >= adapter->num_tx_queues)
6577 r_idx = r_idx % adapter->num_tx_queues;
6579 return adapter->tx_ring[r_idx];
6582 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6583 struct net_device *netdev)
6585 struct igb_adapter *adapter = netdev_priv(netdev);
6587 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6588 * in order to meet this minimum size requirement.
6590 if (skb_put_padto(skb, 17))
6591 return NETDEV_TX_OK;
6593 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6597 * igb_tx_timeout - Respond to a Tx Hang
6598 * @netdev: network interface device structure
6599 * @txqueue: number of the Tx queue that hung (unused)
6601 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6603 struct igb_adapter *adapter = netdev_priv(netdev);
6604 struct e1000_hw *hw = &adapter->hw;
6606 /* Do the reset outside of interrupt context */
6607 adapter->tx_timeout_count++;
6609 if (hw->mac.type >= e1000_82580)
6610 hw->dev_spec._82575.global_device_reset = true;
6612 schedule_work(&adapter->reset_task);
6614 (adapter->eims_enable_mask & ~adapter->eims_other));
6617 static void igb_reset_task(struct work_struct *work)
6619 struct igb_adapter *adapter;
6620 adapter = container_of(work, struct igb_adapter, reset_task);
6623 /* If we're already down or resetting, just bail */
6624 if (test_bit(__IGB_DOWN, &adapter->state) ||
6625 test_bit(__IGB_RESETTING, &adapter->state)) {
6631 netdev_err(adapter->netdev, "Reset adapter\n");
6632 igb_reinit_locked(adapter);
6637 * igb_get_stats64 - Get System Network Statistics
6638 * @netdev: network interface device structure
6639 * @stats: rtnl_link_stats64 pointer
6641 static void igb_get_stats64(struct net_device *netdev,
6642 struct rtnl_link_stats64 *stats)
6644 struct igb_adapter *adapter = netdev_priv(netdev);
6646 spin_lock(&adapter->stats64_lock);
6647 igb_update_stats(adapter);
6648 memcpy(stats, &adapter->stats64, sizeof(*stats));
6649 spin_unlock(&adapter->stats64_lock);
6653 * igb_change_mtu - Change the Maximum Transfer Unit
6654 * @netdev: network interface device structure
6655 * @new_mtu: new value for maximum frame size
6657 * Returns 0 on success, negative on failure
6659 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6661 struct igb_adapter *adapter = netdev_priv(netdev);
6662 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6664 if (igb_xdp_is_enabled(adapter)) {
6667 for (i = 0; i < adapter->num_rx_queues; i++) {
6668 struct igb_ring *ring = adapter->rx_ring[i];
6670 if (max_frame > igb_rx_bufsz(ring)) {
6671 netdev_warn(adapter->netdev,
6672 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6679 /* adjust max frame to be at least the size of a standard frame */
6680 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6681 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6683 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6684 usleep_range(1000, 2000);
6686 /* igb_down has a dependency on max_frame_size */
6687 adapter->max_frame_size = max_frame;
6689 if (netif_running(netdev))
6692 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6693 netdev->mtu, new_mtu);
6694 WRITE_ONCE(netdev->mtu, new_mtu);
6696 if (netif_running(netdev))
6701 clear_bit(__IGB_RESETTING, &adapter->state);
6707 * igb_update_stats - Update the board statistics counters
6708 * @adapter: board private structure
6710 void igb_update_stats(struct igb_adapter *adapter)
6712 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6713 struct e1000_hw *hw = &adapter->hw;
6714 struct pci_dev *pdev = adapter->pdev;
6719 u64 _bytes, _packets;
6721 /* Prevent stats update while adapter is being reset, or if the pci
6722 * connection is down.
6724 if (adapter->link_speed == 0)
6726 if (pci_channel_offline(pdev))
6733 for (i = 0; i < adapter->num_rx_queues; i++) {
6734 struct igb_ring *ring = adapter->rx_ring[i];
6735 u32 rqdpc = rd32(E1000_RQDPC(i));
6736 if (hw->mac.type >= e1000_i210)
6737 wr32(E1000_RQDPC(i), 0);
6740 ring->rx_stats.drops += rqdpc;
6741 net_stats->rx_fifo_errors += rqdpc;
6745 start = u64_stats_fetch_begin(&ring->rx_syncp);
6746 _bytes = ring->rx_stats.bytes;
6747 _packets = ring->rx_stats.packets;
6748 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6750 packets += _packets;
6753 net_stats->rx_bytes = bytes;
6754 net_stats->rx_packets = packets;
6758 for (i = 0; i < adapter->num_tx_queues; i++) {
6759 struct igb_ring *ring = adapter->tx_ring[i];
6761 start = u64_stats_fetch_begin(&ring->tx_syncp);
6762 _bytes = ring->tx_stats.bytes;
6763 _packets = ring->tx_stats.packets;
6764 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6766 packets += _packets;
6768 net_stats->tx_bytes = bytes;
6769 net_stats->tx_packets = packets;
6772 /* read stats registers */
6773 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6774 adapter->stats.gprc += rd32(E1000_GPRC);
6775 adapter->stats.gorc += rd32(E1000_GORCL);
6776 rd32(E1000_GORCH); /* clear GORCL */
6777 adapter->stats.bprc += rd32(E1000_BPRC);
6778 adapter->stats.mprc += rd32(E1000_MPRC);
6779 adapter->stats.roc += rd32(E1000_ROC);
6781 adapter->stats.prc64 += rd32(E1000_PRC64);
6782 adapter->stats.prc127 += rd32(E1000_PRC127);
6783 adapter->stats.prc255 += rd32(E1000_PRC255);
6784 adapter->stats.prc511 += rd32(E1000_PRC511);
6785 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6786 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6787 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6788 adapter->stats.sec += rd32(E1000_SEC);
6790 mpc = rd32(E1000_MPC);
6791 adapter->stats.mpc += mpc;
6792 net_stats->rx_fifo_errors += mpc;
6793 adapter->stats.scc += rd32(E1000_SCC);
6794 adapter->stats.ecol += rd32(E1000_ECOL);
6795 adapter->stats.mcc += rd32(E1000_MCC);
6796 adapter->stats.latecol += rd32(E1000_LATECOL);
6797 adapter->stats.dc += rd32(E1000_DC);
6798 adapter->stats.rlec += rd32(E1000_RLEC);
6799 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6800 adapter->stats.xontxc += rd32(E1000_XONTXC);
6801 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6802 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6803 adapter->stats.fcruc += rd32(E1000_FCRUC);
6804 adapter->stats.gptc += rd32(E1000_GPTC);
6805 adapter->stats.gotc += rd32(E1000_GOTCL);
6806 rd32(E1000_GOTCH); /* clear GOTCL */
6807 adapter->stats.rnbc += rd32(E1000_RNBC);
6808 adapter->stats.ruc += rd32(E1000_RUC);
6809 adapter->stats.rfc += rd32(E1000_RFC);
6810 adapter->stats.rjc += rd32(E1000_RJC);
6811 adapter->stats.tor += rd32(E1000_TORH);
6812 adapter->stats.tot += rd32(E1000_TOTH);
6813 adapter->stats.tpr += rd32(E1000_TPR);
6815 adapter->stats.ptc64 += rd32(E1000_PTC64);
6816 adapter->stats.ptc127 += rd32(E1000_PTC127);
6817 adapter->stats.ptc255 += rd32(E1000_PTC255);
6818 adapter->stats.ptc511 += rd32(E1000_PTC511);
6819 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6820 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6822 adapter->stats.mptc += rd32(E1000_MPTC);
6823 adapter->stats.bptc += rd32(E1000_BPTC);
6825 adapter->stats.tpt += rd32(E1000_TPT);
6826 adapter->stats.colc += rd32(E1000_COLC);
6828 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6829 /* read internal phy specific stats */
6830 reg = rd32(E1000_CTRL_EXT);
6831 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6832 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6834 /* this stat has invalid values on i210/i211 */
6835 if ((hw->mac.type != e1000_i210) &&
6836 (hw->mac.type != e1000_i211))
6837 adapter->stats.tncrs += rd32(E1000_TNCRS);
6840 adapter->stats.tsctc += rd32(E1000_TSCTC);
6841 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6843 adapter->stats.iac += rd32(E1000_IAC);
6844 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6845 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6846 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6847 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6848 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6849 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6850 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6851 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6853 /* Fill out the OS statistics structure */
6854 net_stats->multicast = adapter->stats.mprc;
6855 net_stats->collisions = adapter->stats.colc;
6859 /* RLEC on some newer hardware can be incorrect so build
6860 * our own version based on RUC and ROC
6862 net_stats->rx_errors = adapter->stats.rxerrc +
6863 adapter->stats.crcerrs + adapter->stats.algnerrc +
6864 adapter->stats.ruc + adapter->stats.roc +
6865 adapter->stats.cexterr;
6866 net_stats->rx_length_errors = adapter->stats.ruc +
6868 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6869 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6870 net_stats->rx_missed_errors = adapter->stats.mpc;
6873 net_stats->tx_errors = adapter->stats.ecol +
6874 adapter->stats.latecol;
6875 net_stats->tx_aborted_errors = adapter->stats.ecol;
6876 net_stats->tx_window_errors = adapter->stats.latecol;
6877 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6879 /* Tx Dropped needs to be maintained elsewhere */
6881 /* Management Stats */
6882 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6883 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6884 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6887 reg = rd32(E1000_MANC);
6888 if (reg & E1000_MANC_EN_BMC2OS) {
6889 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6890 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6891 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6892 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6896 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6898 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6899 struct e1000_hw *hw = &adapter->hw;
6900 struct timespec64 ts;
6903 if (pin < 0 || pin >= IGB_N_SDP)
6906 spin_lock(&adapter->tmreg_lock);
6908 if (hw->mac.type == e1000_82580 ||
6909 hw->mac.type == e1000_i354 ||
6910 hw->mac.type == e1000_i350) {
6911 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6912 u32 systiml, systimh, level_mask, level, rem;
6915 /* read systim registers in sequence */
6916 rd32(E1000_SYSTIMR);
6917 systiml = rd32(E1000_SYSTIML);
6918 systimh = rd32(E1000_SYSTIMH);
6919 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6920 now = timecounter_cyc2time(&adapter->tc, systim);
6923 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6924 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6926 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6927 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6930 div_u64_rem(now, ns, &rem);
6931 systim = systim + (ns - rem);
6933 /* synchronize pin level with rising/falling edges */
6934 div_u64_rem(now, ns << 1, &rem);
6936 /* first half of period */
6938 /* output is already low, skip this period */
6940 pr_notice("igb: periodic output on %s missed falling edge\n",
6941 adapter->sdp_config[pin].name);
6944 /* second half of period */
6946 /* output is already high, skip this period */
6948 pr_notice("igb: periodic output on %s missed rising edge\n",
6949 adapter->sdp_config[pin].name);
6953 /* for this chip family tv_sec is the upper part of the binary value,
6956 ts.tv_nsec = (u32)systim;
6957 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6959 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6960 adapter->perout[tsintr_tt].period);
6963 /* u32 conversion of tv_sec is safe until y2106 */
6964 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6965 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6966 tsauxc = rd32(E1000_TSAUXC);
6967 tsauxc |= TSAUXC_EN_TT0;
6968 wr32(E1000_TSAUXC, tsauxc);
6969 adapter->perout[tsintr_tt].start = ts;
6971 spin_unlock(&adapter->tmreg_lock);
6974 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6976 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6977 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6978 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6979 struct e1000_hw *hw = &adapter->hw;
6980 struct ptp_clock_event event;
6981 struct timespec64 ts;
6982 unsigned long flags;
6984 if (pin < 0 || pin >= IGB_N_SDP)
6987 if (hw->mac.type == e1000_82580 ||
6988 hw->mac.type == e1000_i354 ||
6989 hw->mac.type == e1000_i350) {
6990 u64 ns = rd32(auxstmpl);
6992 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6993 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6994 ns = timecounter_cyc2time(&adapter->tc, ns);
6995 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6996 ts = ns_to_timespec64(ns);
6998 ts.tv_nsec = rd32(auxstmpl);
6999 ts.tv_sec = rd32(auxstmph);
7002 event.type = PTP_CLOCK_EXTTS;
7003 event.index = tsintr_tt;
7004 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7005 ptp_clock_event(adapter->ptp_clock, &event);
7008 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7010 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7011 TSINTR_TT0 | TSINTR_TT1 |
7012 TSINTR_AUTT0 | TSINTR_AUTT1);
7013 struct e1000_hw *hw = &adapter->hw;
7014 u32 tsicr = rd32(E1000_TSICR);
7015 struct ptp_clock_event event;
7017 if (hw->mac.type == e1000_82580) {
7018 /* 82580 has a hardware bug that requires an explicit
7019 * write to clear the TimeSync interrupt cause.
7021 wr32(E1000_TSICR, tsicr & mask);
7024 if (tsicr & TSINTR_SYS_WRAP) {
7025 event.type = PTP_CLOCK_PPS;
7026 if (adapter->ptp_caps.pps)
7027 ptp_clock_event(adapter->ptp_clock, &event);
7030 if (tsicr & E1000_TSICR_TXTS) {
7031 /* retrieve hardware timestamp */
7032 schedule_work(&adapter->ptp_tx_work);
7035 if (tsicr & TSINTR_TT0)
7036 igb_perout(adapter, 0);
7038 if (tsicr & TSINTR_TT1)
7039 igb_perout(adapter, 1);
7041 if (tsicr & TSINTR_AUTT0)
7042 igb_extts(adapter, 0);
7044 if (tsicr & TSINTR_AUTT1)
7045 igb_extts(adapter, 1);
7048 static irqreturn_t igb_msix_other(int irq, void *data)
7050 struct igb_adapter *adapter = data;
7051 struct e1000_hw *hw = &adapter->hw;
7052 u32 icr = rd32(E1000_ICR);
7053 /* reading ICR causes bit 31 of EICR to be cleared */
7055 if (icr & E1000_ICR_DRSTA)
7056 schedule_work(&adapter->reset_task);
7058 if (icr & E1000_ICR_DOUTSYNC) {
7059 /* HW is reporting DMA is out of sync */
7060 adapter->stats.doosync++;
7061 /* The DMA Out of Sync is also indication of a spoof event
7062 * in IOV mode. Check the Wrong VM Behavior register to
7063 * see if it is really a spoof event.
7065 igb_check_wvbr(adapter);
7068 /* Check for a mailbox event */
7069 if (icr & E1000_ICR_VMMB)
7070 igb_msg_task(adapter);
7072 if (icr & E1000_ICR_LSC) {
7073 hw->mac.get_link_status = 1;
7074 /* guard against interrupt when we're going down */
7075 if (!test_bit(__IGB_DOWN, &adapter->state))
7076 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7079 if (icr & E1000_ICR_TS)
7080 igb_tsync_interrupt(adapter);
7082 wr32(E1000_EIMS, adapter->eims_other);
7087 static void igb_write_itr(struct igb_q_vector *q_vector)
7089 struct igb_adapter *adapter = q_vector->adapter;
7090 u32 itr_val = q_vector->itr_val & 0x7FFC;
7092 if (!q_vector->set_itr)
7098 if (adapter->hw.mac.type == e1000_82575)
7099 itr_val |= itr_val << 16;
7101 itr_val |= E1000_EITR_CNT_IGNR;
7103 writel(itr_val, q_vector->itr_register);
7104 q_vector->set_itr = 0;
7107 static irqreturn_t igb_msix_ring(int irq, void *data)
7109 struct igb_q_vector *q_vector = data;
7111 /* Write the ITR value calculated from the previous interrupt. */
7112 igb_write_itr(q_vector);
7114 napi_schedule(&q_vector->napi);
7119 #ifdef CONFIG_IGB_DCA
7120 static void igb_update_tx_dca(struct igb_adapter *adapter,
7121 struct igb_ring *tx_ring,
7124 struct e1000_hw *hw = &adapter->hw;
7125 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7127 if (hw->mac.type != e1000_82575)
7128 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7130 /* We can enable relaxed ordering for reads, but not writes when
7131 * DCA is enabled. This is due to a known issue in some chipsets
7132 * which will cause the DCA tag to be cleared.
7134 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7135 E1000_DCA_TXCTRL_DATA_RRO_EN |
7136 E1000_DCA_TXCTRL_DESC_DCA_EN;
7138 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7141 static void igb_update_rx_dca(struct igb_adapter *adapter,
7142 struct igb_ring *rx_ring,
7145 struct e1000_hw *hw = &adapter->hw;
7146 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7148 if (hw->mac.type != e1000_82575)
7149 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7151 /* We can enable relaxed ordering for reads, but not writes when
7152 * DCA is enabled. This is due to a known issue in some chipsets
7153 * which will cause the DCA tag to be cleared.
7155 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7156 E1000_DCA_RXCTRL_DESC_DCA_EN;
7158 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7161 static void igb_update_dca(struct igb_q_vector *q_vector)
7163 struct igb_adapter *adapter = q_vector->adapter;
7164 int cpu = get_cpu();
7166 if (q_vector->cpu == cpu)
7169 if (q_vector->tx.ring)
7170 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7172 if (q_vector->rx.ring)
7173 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7175 q_vector->cpu = cpu;
7180 static void igb_setup_dca(struct igb_adapter *adapter)
7182 struct e1000_hw *hw = &adapter->hw;
7185 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7188 /* Always use CB2 mode, difference is masked in the CB driver. */
7189 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7191 for (i = 0; i < adapter->num_q_vectors; i++) {
7192 adapter->q_vector[i]->cpu = -1;
7193 igb_update_dca(adapter->q_vector[i]);
7197 static int __igb_notify_dca(struct device *dev, void *data)
7199 struct net_device *netdev = dev_get_drvdata(dev);
7200 struct igb_adapter *adapter = netdev_priv(netdev);
7201 struct pci_dev *pdev = adapter->pdev;
7202 struct e1000_hw *hw = &adapter->hw;
7203 unsigned long event = *(unsigned long *)data;
7206 case DCA_PROVIDER_ADD:
7207 /* if already enabled, don't do it again */
7208 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7210 if (dca_add_requester(dev) == 0) {
7211 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7212 dev_info(&pdev->dev, "DCA enabled\n");
7213 igb_setup_dca(adapter);
7216 fallthrough; /* since DCA is disabled. */
7217 case DCA_PROVIDER_REMOVE:
7218 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7219 /* without this a class_device is left
7220 * hanging around in the sysfs model
7222 dca_remove_requester(dev);
7223 dev_info(&pdev->dev, "DCA disabled\n");
7224 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7225 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7233 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7238 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7241 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7243 #endif /* CONFIG_IGB_DCA */
7245 #ifdef CONFIG_PCI_IOV
7246 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7248 unsigned char mac_addr[ETH_ALEN];
7250 eth_zero_addr(mac_addr);
7251 igb_set_vf_mac(adapter, vf, mac_addr);
7253 /* By default spoof check is enabled for all VFs */
7254 adapter->vf_data[vf].spoofchk_enabled = true;
7256 /* By default VFs are not trusted */
7257 adapter->vf_data[vf].trusted = false;
7263 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7265 struct e1000_hw *hw = &adapter->hw;
7269 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7270 ping = E1000_PF_CONTROL_MSG;
7271 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7272 ping |= E1000_VT_MSGTYPE_CTS;
7273 igb_write_mbx(hw, &ping, 1, i);
7277 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7279 struct e1000_hw *hw = &adapter->hw;
7280 u32 vmolr = rd32(E1000_VMOLR(vf));
7281 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7283 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7284 IGB_VF_FLAG_MULTI_PROMISC);
7285 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7287 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7288 vmolr |= E1000_VMOLR_MPME;
7289 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7290 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7292 /* if we have hashes and we are clearing a multicast promisc
7293 * flag we need to write the hashes to the MTA as this step
7294 * was previously skipped
7296 if (vf_data->num_vf_mc_hashes > 30) {
7297 vmolr |= E1000_VMOLR_MPME;
7298 } else if (vf_data->num_vf_mc_hashes) {
7301 vmolr |= E1000_VMOLR_ROMPE;
7302 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7303 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7307 wr32(E1000_VMOLR(vf), vmolr);
7309 /* there are flags left unprocessed, likely not supported */
7310 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7316 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7317 u32 *msgbuf, u32 vf)
7319 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7320 u16 *hash_list = (u16 *)&msgbuf[1];
7321 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7324 /* salt away the number of multicast addresses assigned
7325 * to this VF for later use to restore when the PF multi cast
7328 vf_data->num_vf_mc_hashes = n;
7330 /* only up to 30 hash values supported */
7334 /* store the hashes for later use */
7335 for (i = 0; i < n; i++)
7336 vf_data->vf_mc_hashes[i] = hash_list[i];
7338 /* Flush and reset the mta with the new values */
7339 igb_set_rx_mode(adapter->netdev);
7344 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7346 struct e1000_hw *hw = &adapter->hw;
7347 struct vf_data_storage *vf_data;
7350 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7351 u32 vmolr = rd32(E1000_VMOLR(i));
7353 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7355 vf_data = &adapter->vf_data[i];
7357 if ((vf_data->num_vf_mc_hashes > 30) ||
7358 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7359 vmolr |= E1000_VMOLR_MPME;
7360 } else if (vf_data->num_vf_mc_hashes) {
7361 vmolr |= E1000_VMOLR_ROMPE;
7362 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7363 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7365 wr32(E1000_VMOLR(i), vmolr);
7369 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7371 struct e1000_hw *hw = &adapter->hw;
7372 u32 pool_mask, vlvf_mask, i;
7374 /* create mask for VF and other pools */
7375 pool_mask = E1000_VLVF_POOLSEL_MASK;
7376 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7378 /* drop PF from pool bits */
7379 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7380 adapter->vfs_allocated_count);
7382 /* Find the vlan filter for this id */
7383 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7384 u32 vlvf = rd32(E1000_VLVF(i));
7385 u32 vfta_mask, vid, vfta;
7387 /* remove the vf from the pool */
7388 if (!(vlvf & vlvf_mask))
7391 /* clear out bit from VLVF */
7394 /* if other pools are present, just remove ourselves */
7395 if (vlvf & pool_mask)
7398 /* if PF is present, leave VFTA */
7399 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7402 vid = vlvf & E1000_VLVF_VLANID_MASK;
7403 vfta_mask = BIT(vid % 32);
7405 /* clear bit from VFTA */
7406 vfta = adapter->shadow_vfta[vid / 32];
7407 if (vfta & vfta_mask)
7408 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7410 /* clear pool selection enable */
7411 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7412 vlvf &= E1000_VLVF_POOLSEL_MASK;
7416 /* clear pool bits */
7417 wr32(E1000_VLVF(i), vlvf);
7421 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7426 /* short cut the special case */
7430 /* Search for the VLAN id in the VLVF entries */
7431 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7432 vlvf = rd32(E1000_VLVF(idx));
7433 if ((vlvf & VLAN_VID_MASK) == vlan)
7440 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7442 struct e1000_hw *hw = &adapter->hw;
7446 idx = igb_find_vlvf_entry(hw, vid);
7450 /* See if any other pools are set for this VLAN filter
7451 * entry other than the PF.
7453 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7454 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7455 bits &= rd32(E1000_VLVF(idx));
7457 /* Disable the filter so this falls into the default pool. */
7459 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7460 wr32(E1000_VLVF(idx), BIT(pf_id));
7462 wr32(E1000_VLVF(idx), 0);
7466 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7469 int pf_id = adapter->vfs_allocated_count;
7470 struct e1000_hw *hw = &adapter->hw;
7473 /* If VLAN overlaps with one the PF is currently monitoring make
7474 * sure that we are able to allocate a VLVF entry. This may be
7475 * redundant but it guarantees PF will maintain visibility to
7478 if (add && test_bit(vid, adapter->active_vlans)) {
7479 err = igb_vfta_set(hw, vid, pf_id, true, false);
7484 err = igb_vfta_set(hw, vid, vf, add, false);
7489 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7490 * we may need to drop the PF pool bit in order to allow us to free
7491 * up the VLVF resources.
7493 if (test_bit(vid, adapter->active_vlans) ||
7494 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7495 igb_update_pf_vlvf(adapter, vid);
7500 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7502 struct e1000_hw *hw = &adapter->hw;
7505 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7507 wr32(E1000_VMVIR(vf), 0);
7510 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7515 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7519 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7520 igb_set_vmolr(adapter, vf, !vlan);
7522 /* revoke access to previous VLAN */
7523 if (vlan != adapter->vf_data[vf].pf_vlan)
7524 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7527 adapter->vf_data[vf].pf_vlan = vlan;
7528 adapter->vf_data[vf].pf_qos = qos;
7529 igb_set_vf_vlan_strip(adapter, vf, true);
7530 dev_info(&adapter->pdev->dev,
7531 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7532 if (test_bit(__IGB_DOWN, &adapter->state)) {
7533 dev_warn(&adapter->pdev->dev,
7534 "The VF VLAN has been set, but the PF device is not up.\n");
7535 dev_warn(&adapter->pdev->dev,
7536 "Bring the PF device up before attempting to use the VF device.\n");
7542 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7544 /* Restore tagless access via VLAN 0 */
7545 igb_set_vf_vlan(adapter, 0, true, vf);
7547 igb_set_vmvir(adapter, 0, vf);
7548 igb_set_vmolr(adapter, vf, true);
7550 /* Remove any PF assigned VLAN */
7551 if (adapter->vf_data[vf].pf_vlan)
7552 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7555 adapter->vf_data[vf].pf_vlan = 0;
7556 adapter->vf_data[vf].pf_qos = 0;
7557 igb_set_vf_vlan_strip(adapter, vf, false);
7562 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7563 u16 vlan, u8 qos, __be16 vlan_proto)
7565 struct igb_adapter *adapter = netdev_priv(netdev);
7567 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7570 if (vlan_proto != htons(ETH_P_8021Q))
7571 return -EPROTONOSUPPORT;
7573 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7574 igb_disable_port_vlan(adapter, vf);
7577 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7579 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7580 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7583 if (adapter->vf_data[vf].pf_vlan)
7586 /* VLAN 0 is a special case, don't allow it to be removed */
7590 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7592 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7596 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7598 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7600 /* clear flags - except flag that indicates PF has set the MAC */
7601 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7602 vf_data->last_nack = jiffies;
7604 /* reset vlans for device */
7605 igb_clear_vf_vfta(adapter, vf);
7606 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7607 igb_set_vmvir(adapter, vf_data->pf_vlan |
7608 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7609 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7610 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7612 /* reset multicast table array for vf */
7613 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7615 /* Flush and reset the mta with the new values */
7616 igb_set_rx_mode(adapter->netdev);
7619 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7621 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7623 /* clear mac address as we were hotplug removed/added */
7624 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7625 eth_zero_addr(vf_mac);
7627 /* process remaining reset events */
7628 igb_vf_reset(adapter, vf);
7631 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7633 struct e1000_hw *hw = &adapter->hw;
7634 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7635 u32 reg, msgbuf[3] = {};
7636 u8 *addr = (u8 *)(&msgbuf[1]);
7638 /* process all the same items cleared in a function level reset */
7639 igb_vf_reset(adapter, vf);
7641 /* set vf mac address */
7642 igb_set_vf_mac(adapter, vf, vf_mac);
7644 /* enable transmit and receive for vf */
7645 reg = rd32(E1000_VFTE);
7646 wr32(E1000_VFTE, reg | BIT(vf));
7647 reg = rd32(E1000_VFRE);
7648 wr32(E1000_VFRE, reg | BIT(vf));
7650 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7652 /* reply to reset with ack and vf mac address */
7653 if (!is_zero_ether_addr(vf_mac)) {
7654 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7655 memcpy(addr, vf_mac, ETH_ALEN);
7657 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7659 igb_write_mbx(hw, msgbuf, 3, vf);
7662 static void igb_flush_mac_table(struct igb_adapter *adapter)
7664 struct e1000_hw *hw = &adapter->hw;
7667 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7668 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7669 eth_zero_addr(adapter->mac_table[i].addr);
7670 adapter->mac_table[i].queue = 0;
7671 igb_rar_set_index(adapter, i);
7675 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7677 struct e1000_hw *hw = &adapter->hw;
7678 /* do not count rar entries reserved for VFs MAC addresses */
7679 int rar_entries = hw->mac.rar_entry_count -
7680 adapter->vfs_allocated_count;
7683 for (i = 0; i < rar_entries; i++) {
7684 /* do not count default entries */
7685 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7688 /* do not count "in use" entries for different queues */
7689 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7690 (adapter->mac_table[i].queue != queue))
7699 /* Set default MAC address for the PF in the first RAR entry */
7700 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7702 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7704 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7705 mac_table->queue = adapter->vfs_allocated_count;
7706 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7708 igb_rar_set_index(adapter, 0);
7711 /* If the filter to be added and an already existing filter express
7712 * the same address and address type, it should be possible to only
7713 * override the other configurations, for example the queue to steer
7716 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7717 const u8 *addr, const u8 flags)
7719 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7722 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7723 (flags & IGB_MAC_STATE_SRC_ADDR))
7726 if (!ether_addr_equal(addr, entry->addr))
7732 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7733 * 'flags' is used to indicate what kind of match is made, match is by
7734 * default for the destination address, if matching by source address
7735 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7737 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7738 const u8 *addr, const u8 queue,
7741 struct e1000_hw *hw = &adapter->hw;
7742 int rar_entries = hw->mac.rar_entry_count -
7743 adapter->vfs_allocated_count;
7746 if (is_zero_ether_addr(addr))
7749 /* Search for the first empty entry in the MAC table.
7750 * Do not touch entries at the end of the table reserved for the VF MAC
7753 for (i = 0; i < rar_entries; i++) {
7754 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7758 ether_addr_copy(adapter->mac_table[i].addr, addr);
7759 adapter->mac_table[i].queue = queue;
7760 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7762 igb_rar_set_index(adapter, i);
7769 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7772 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7775 /* Remove a MAC filter for 'addr' directing matching traffic to
7776 * 'queue', 'flags' is used to indicate what kind of match need to be
7777 * removed, match is by default for the destination address, if
7778 * matching by source address is to be removed the flag
7779 * IGB_MAC_STATE_SRC_ADDR can be used.
7781 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7782 const u8 *addr, const u8 queue,
7785 struct e1000_hw *hw = &adapter->hw;
7786 int rar_entries = hw->mac.rar_entry_count -
7787 adapter->vfs_allocated_count;
7790 if (is_zero_ether_addr(addr))
7793 /* Search for matching entry in the MAC table based on given address
7794 * and queue. Do not touch entries at the end of the table reserved
7795 * for the VF MAC addresses.
7797 for (i = 0; i < rar_entries; i++) {
7798 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7800 if ((adapter->mac_table[i].state & flags) != flags)
7802 if (adapter->mac_table[i].queue != queue)
7804 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7807 /* When a filter for the default address is "deleted",
7808 * we return it to its initial configuration
7810 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7811 adapter->mac_table[i].state =
7812 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7813 adapter->mac_table[i].queue =
7814 adapter->vfs_allocated_count;
7816 adapter->mac_table[i].state = 0;
7817 adapter->mac_table[i].queue = 0;
7818 eth_zero_addr(adapter->mac_table[i].addr);
7821 igb_rar_set_index(adapter, i);
7828 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7831 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7834 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7835 const u8 *addr, u8 queue, u8 flags)
7837 struct e1000_hw *hw = &adapter->hw;
7839 /* In theory, this should be supported on 82575 as well, but
7840 * that part wasn't easily accessible during development.
7842 if (hw->mac.type != e1000_i210)
7845 return igb_add_mac_filter_flags(adapter, addr, queue,
7846 IGB_MAC_STATE_QUEUE_STEERING | flags);
7849 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7850 const u8 *addr, u8 queue, u8 flags)
7852 return igb_del_mac_filter_flags(adapter, addr, queue,
7853 IGB_MAC_STATE_QUEUE_STEERING | flags);
7856 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7858 struct igb_adapter *adapter = netdev_priv(netdev);
7861 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7863 return min_t(int, ret, 0);
7866 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7868 struct igb_adapter *adapter = netdev_priv(netdev);
7870 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7875 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7876 const u32 info, const u8 *addr)
7878 struct pci_dev *pdev = adapter->pdev;
7879 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7880 struct vf_mac_filter *entry;
7884 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7885 !vf_data->trusted) {
7886 dev_warn(&pdev->dev,
7887 "VF %d requested MAC filter but is administratively denied\n",
7891 if (!is_valid_ether_addr(addr)) {
7892 dev_warn(&pdev->dev,
7893 "VF %d attempted to set invalid MAC filter\n",
7899 case E1000_VF_MAC_FILTER_CLR:
7900 /* remove all unicast MAC filters related to the current VF */
7901 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7902 if (entry->vf == vf) {
7905 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7909 case E1000_VF_MAC_FILTER_ADD:
7910 /* try to find empty slot in the list */
7911 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7919 entry->free = false;
7921 ether_addr_copy(entry->vf_mac, addr);
7923 ret = igb_add_mac_filter(adapter, addr, vf);
7924 ret = min_t(int, ret, 0);
7930 dev_warn(&pdev->dev,
7931 "VF %d has requested MAC filter but there is no space for it\n",
7942 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7944 struct pci_dev *pdev = adapter->pdev;
7945 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7946 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7948 /* The VF MAC Address is stored in a packed array of bytes
7949 * starting at the second 32 bit word of the msg array
7951 unsigned char *addr = (unsigned char *)&msg[1];
7955 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7956 !vf_data->trusted) {
7957 dev_warn(&pdev->dev,
7958 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7963 if (!is_valid_ether_addr(addr)) {
7964 dev_warn(&pdev->dev,
7965 "VF %d attempted to set invalid MAC\n",
7970 ret = igb_set_vf_mac(adapter, vf, addr);
7972 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7978 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7980 struct e1000_hw *hw = &adapter->hw;
7981 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7982 u32 msg = E1000_VT_MSGTYPE_NACK;
7984 /* if device isn't clear to send it shouldn't be reading either */
7985 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7986 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7987 igb_write_mbx(hw, &msg, 1, vf);
7988 vf_data->last_nack = jiffies;
7992 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7994 struct pci_dev *pdev = adapter->pdev;
7995 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7996 struct e1000_hw *hw = &adapter->hw;
7997 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8000 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8003 /* if receive failed revoke VF CTS stats and restart init */
8004 dev_err(&pdev->dev, "Error receiving message from VF\n");
8005 vf_data->flags &= ~IGB_VF_FLAG_CTS;
8006 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8011 /* this is a message we already processed, do nothing */
8012 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8015 /* until the vf completes a reset it should not be
8016 * allowed to start any configuration.
8018 if (msgbuf[0] == E1000_VF_RESET) {
8019 /* unlocks mailbox */
8020 igb_vf_reset_msg(adapter, vf);
8024 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8025 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8031 switch ((msgbuf[0] & 0xFFFF)) {
8032 case E1000_VF_SET_MAC_ADDR:
8033 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8035 case E1000_VF_SET_PROMISC:
8036 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8038 case E1000_VF_SET_MULTICAST:
8039 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8041 case E1000_VF_SET_LPE:
8042 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8044 case E1000_VF_SET_VLAN:
8046 if (vf_data->pf_vlan)
8047 dev_warn(&pdev->dev,
8048 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8051 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8054 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8059 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8061 /* notify the VF of the results of what it sent us */
8063 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8065 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8067 /* unlocks mailbox */
8068 igb_write_mbx(hw, msgbuf, 1, vf);
8072 igb_unlock_mbx(hw, vf);
8075 static void igb_msg_task(struct igb_adapter *adapter)
8077 struct e1000_hw *hw = &adapter->hw;
8078 unsigned long flags;
8081 spin_lock_irqsave(&adapter->vfs_lock, flags);
8082 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8083 /* process any reset requests */
8084 if (!igb_check_for_rst(hw, vf))
8085 igb_vf_reset_event(adapter, vf);
8087 /* process any messages pending */
8088 if (!igb_check_for_msg(hw, vf))
8089 igb_rcv_msg_from_vf(adapter, vf);
8091 /* process any acks */
8092 if (!igb_check_for_ack(hw, vf))
8093 igb_rcv_ack_from_vf(adapter, vf);
8095 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8099 * igb_set_uta - Set unicast filter table address
8100 * @adapter: board private structure
8101 * @set: boolean indicating if we are setting or clearing bits
8103 * The unicast table address is a register array of 32-bit registers.
8104 * The table is meant to be used in a way similar to how the MTA is used
8105 * however due to certain limitations in the hardware it is necessary to
8106 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8107 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8109 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8111 struct e1000_hw *hw = &adapter->hw;
8112 u32 uta = set ? ~0 : 0;
8115 /* we only need to do this if VMDq is enabled */
8116 if (!adapter->vfs_allocated_count)
8119 for (i = hw->mac.uta_reg_count; i--;)
8120 array_wr32(E1000_UTA, i, uta);
8124 * igb_intr_msi - Interrupt Handler
8125 * @irq: interrupt number
8126 * @data: pointer to a network interface device structure
8128 static irqreturn_t igb_intr_msi(int irq, void *data)
8130 struct igb_adapter *adapter = data;
8131 struct igb_q_vector *q_vector = adapter->q_vector[0];
8132 struct e1000_hw *hw = &adapter->hw;
8133 /* read ICR disables interrupts using IAM */
8134 u32 icr = rd32(E1000_ICR);
8136 igb_write_itr(q_vector);
8138 if (icr & E1000_ICR_DRSTA)
8139 schedule_work(&adapter->reset_task);
8141 if (icr & E1000_ICR_DOUTSYNC) {
8142 /* HW is reporting DMA is out of sync */
8143 adapter->stats.doosync++;
8146 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8147 hw->mac.get_link_status = 1;
8148 if (!test_bit(__IGB_DOWN, &adapter->state))
8149 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8152 if (icr & E1000_ICR_TS)
8153 igb_tsync_interrupt(adapter);
8155 napi_schedule(&q_vector->napi);
8161 * igb_intr - Legacy Interrupt Handler
8162 * @irq: interrupt number
8163 * @data: pointer to a network interface device structure
8165 static irqreturn_t igb_intr(int irq, void *data)
8167 struct igb_adapter *adapter = data;
8168 struct igb_q_vector *q_vector = adapter->q_vector[0];
8169 struct e1000_hw *hw = &adapter->hw;
8170 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8171 * need for the IMC write
8173 u32 icr = rd32(E1000_ICR);
8175 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8176 * not set, then the adapter didn't send an interrupt
8178 if (!(icr & E1000_ICR_INT_ASSERTED))
8181 igb_write_itr(q_vector);
8183 if (icr & E1000_ICR_DRSTA)
8184 schedule_work(&adapter->reset_task);
8186 if (icr & E1000_ICR_DOUTSYNC) {
8187 /* HW is reporting DMA is out of sync */
8188 adapter->stats.doosync++;
8191 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8192 hw->mac.get_link_status = 1;
8193 /* guard against interrupt when we're going down */
8194 if (!test_bit(__IGB_DOWN, &adapter->state))
8195 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8198 if (icr & E1000_ICR_TS)
8199 igb_tsync_interrupt(adapter);
8201 napi_schedule(&q_vector->napi);
8206 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8208 struct igb_adapter *adapter = q_vector->adapter;
8209 struct e1000_hw *hw = &adapter->hw;
8211 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8212 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8213 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8214 igb_set_itr(q_vector);
8216 igb_update_ring_itr(q_vector);
8219 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8220 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8221 wr32(E1000_EIMS, q_vector->eims_value);
8223 igb_irq_enable(adapter);
8228 * igb_poll - NAPI Rx polling callback
8229 * @napi: napi polling structure
8230 * @budget: count of how many packets we should handle
8232 static int igb_poll(struct napi_struct *napi, int budget)
8234 struct igb_q_vector *q_vector = container_of(napi,
8235 struct igb_q_vector,
8237 struct xsk_buff_pool *xsk_pool;
8238 bool clean_complete = true;
8241 #ifdef CONFIG_IGB_DCA
8242 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8243 igb_update_dca(q_vector);
8245 if (q_vector->tx.ring)
8246 clean_complete = igb_clean_tx_irq(q_vector, budget);
8248 if (q_vector->rx.ring) {
8251 xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8252 cleaned = xsk_pool ?
8253 igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8254 igb_clean_rx_irq(q_vector, budget);
8256 work_done += cleaned;
8257 if (cleaned >= budget)
8258 clean_complete = false;
8261 /* If all work not completed, return budget and keep polling */
8262 if (!clean_complete)
8265 /* Exit the polling mode, but don't re-enable interrupts if stack might
8266 * poll us due to busy-polling
8268 if (likely(napi_complete_done(napi, work_done)))
8269 igb_ring_irq_enable(q_vector);
8275 * igb_clean_tx_irq - Reclaim resources after transmit completes
8276 * @q_vector: pointer to q_vector containing needed info
8277 * @napi_budget: Used to determine if we are in netpoll
8279 * returns true if ring is completely cleaned
8281 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8283 unsigned int total_bytes = 0, total_packets = 0;
8284 struct igb_adapter *adapter = q_vector->adapter;
8285 unsigned int budget = q_vector->tx.work_limit;
8286 struct igb_ring *tx_ring = q_vector->tx.ring;
8287 unsigned int i = tx_ring->next_to_clean;
8288 union e1000_adv_tx_desc *tx_desc;
8289 struct igb_tx_buffer *tx_buffer;
8290 struct xsk_buff_pool *xsk_pool;
8291 int cpu = smp_processor_id();
8292 bool xsk_xmit_done = true;
8293 struct netdev_queue *nq;
8296 if (test_bit(__IGB_DOWN, &adapter->state))
8299 tx_buffer = &tx_ring->tx_buffer_info[i];
8300 tx_desc = IGB_TX_DESC(tx_ring, i);
8301 i -= tx_ring->count;
8304 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8306 /* if next_to_watch is not set then there is no work pending */
8310 /* prevent any other reads prior to eop_desc */
8313 /* if DD is not set pending work has not been completed */
8314 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8317 /* clear next_to_watch to prevent false hangs */
8318 tx_buffer->next_to_watch = NULL;
8320 /* update the statistics for this packet */
8321 total_bytes += tx_buffer->bytecount;
8322 total_packets += tx_buffer->gso_segs;
8325 if (tx_buffer->type == IGB_TYPE_SKB) {
8326 napi_consume_skb(tx_buffer->skb, napi_budget);
8327 } else if (tx_buffer->type == IGB_TYPE_XDP) {
8328 xdp_return_frame(tx_buffer->xdpf);
8329 } else if (tx_buffer->type == IGB_TYPE_XSK) {
8334 /* unmap skb header data */
8335 dma_unmap_single(tx_ring->dev,
8336 dma_unmap_addr(tx_buffer, dma),
8337 dma_unmap_len(tx_buffer, len),
8340 /* clear tx_buffer data */
8341 dma_unmap_len_set(tx_buffer, len, 0);
8343 /* clear last DMA location and unmap remaining buffers */
8344 while (tx_desc != eop_desc) {
8349 i -= tx_ring->count;
8350 tx_buffer = tx_ring->tx_buffer_info;
8351 tx_desc = IGB_TX_DESC(tx_ring, 0);
8354 /* unmap any remaining paged data */
8355 if (dma_unmap_len(tx_buffer, len)) {
8356 dma_unmap_page(tx_ring->dev,
8357 dma_unmap_addr(tx_buffer, dma),
8358 dma_unmap_len(tx_buffer, len),
8360 dma_unmap_len_set(tx_buffer, len, 0);
8365 /* move us one more past the eop_desc for start of next pkt */
8370 i -= tx_ring->count;
8371 tx_buffer = tx_ring->tx_buffer_info;
8372 tx_desc = IGB_TX_DESC(tx_ring, 0);
8375 /* issue prefetch for next Tx descriptor */
8378 /* update budget accounting */
8380 } while (likely(budget));
8382 netdev_tx_completed_queue(txring_txq(tx_ring),
8383 total_packets, total_bytes);
8384 i += tx_ring->count;
8385 tx_ring->next_to_clean = i;
8386 u64_stats_update_begin(&tx_ring->tx_syncp);
8387 tx_ring->tx_stats.bytes += total_bytes;
8388 tx_ring->tx_stats.packets += total_packets;
8389 u64_stats_update_end(&tx_ring->tx_syncp);
8390 q_vector->tx.total_bytes += total_bytes;
8391 q_vector->tx.total_packets += total_packets;
8393 xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8396 xsk_tx_completed(xsk_pool, xsk_frames);
8397 if (xsk_uses_need_wakeup(xsk_pool))
8398 xsk_set_tx_need_wakeup(xsk_pool);
8400 nq = txring_txq(tx_ring);
8401 __netif_tx_lock(nq, cpu);
8402 /* Avoid transmit queue timeout since we share it with the slow path */
8403 txq_trans_cond_update(nq);
8404 xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8405 __netif_tx_unlock(nq);
8408 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8409 struct e1000_hw *hw = &adapter->hw;
8411 /* Detect a transmit hang in hardware, this serializes the
8412 * check with the clearing of time_stamp and movement of i
8414 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8415 if (tx_buffer->next_to_watch &&
8416 time_after(jiffies, tx_buffer->time_stamp +
8417 (adapter->tx_timeout_factor * HZ)) &&
8418 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8420 /* detected Tx unit hang */
8421 dev_err(tx_ring->dev,
8422 "Detected Tx Unit Hang\n"
8426 " next_to_use <%x>\n"
8427 " next_to_clean <%x>\n"
8428 "buffer_info[next_to_clean]\n"
8429 " time_stamp <%lx>\n"
8430 " next_to_watch <%p>\n"
8432 " desc.status <%x>\n",
8433 tx_ring->queue_index,
8434 rd32(E1000_TDH(tx_ring->reg_idx)),
8435 readl(tx_ring->tail),
8436 tx_ring->next_to_use,
8437 tx_ring->next_to_clean,
8438 tx_buffer->time_stamp,
8439 tx_buffer->next_to_watch,
8441 tx_buffer->next_to_watch->wb.status);
8442 netif_stop_subqueue(tx_ring->netdev,
8443 tx_ring->queue_index);
8445 /* we are about to reset, no point in enabling stuff */
8450 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8451 if (unlikely(total_packets &&
8452 netif_carrier_ok(tx_ring->netdev) &&
8453 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8454 /* Make sure that anybody stopping the queue after this
8455 * sees the new next_to_clean.
8458 if (__netif_subqueue_stopped(tx_ring->netdev,
8459 tx_ring->queue_index) &&
8460 !(test_bit(__IGB_DOWN, &adapter->state))) {
8461 netif_wake_subqueue(tx_ring->netdev,
8462 tx_ring->queue_index);
8464 u64_stats_update_begin(&tx_ring->tx_syncp);
8465 tx_ring->tx_stats.restart_queue++;
8466 u64_stats_update_end(&tx_ring->tx_syncp);
8470 return !!budget && xsk_xmit_done;
8474 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8475 * @rx_ring: rx descriptor ring to store buffers on
8476 * @old_buff: donor buffer to have page reused
8478 * Synchronizes page for reuse by the adapter
8480 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8481 struct igb_rx_buffer *old_buff)
8483 struct igb_rx_buffer *new_buff;
8484 u16 nta = rx_ring->next_to_alloc;
8486 new_buff = &rx_ring->rx_buffer_info[nta];
8488 /* update, and store next to alloc */
8490 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8492 /* Transfer page from old buffer to new buffer.
8493 * Move each member individually to avoid possible store
8494 * forwarding stalls.
8496 new_buff->dma = old_buff->dma;
8497 new_buff->page = old_buff->page;
8498 new_buff->page_offset = old_buff->page_offset;
8499 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8502 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8505 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8506 struct page *page = rx_buffer->page;
8508 /* avoid re-using remote and pfmemalloc pages */
8509 if (!dev_page_is_reusable(page))
8512 #if (PAGE_SIZE < 8192)
8513 /* if we are only owner of page we can reuse it */
8514 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8517 #define IGB_LAST_OFFSET \
8518 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8520 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8524 /* If we have drained the page fragment pool we need to update
8525 * the pagecnt_bias and page count so that we fully restock the
8526 * number of references the driver holds.
8528 if (unlikely(pagecnt_bias == 1)) {
8529 page_ref_add(page, USHRT_MAX - 1);
8530 rx_buffer->pagecnt_bias = USHRT_MAX;
8537 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8538 * @rx_ring: rx descriptor ring to transact packets on
8539 * @rx_buffer: buffer containing page to add
8540 * @skb: sk_buff to place the data into
8541 * @size: size of buffer to be added
8543 * This function will add the data contained in rx_buffer->page to the skb.
8545 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8546 struct igb_rx_buffer *rx_buffer,
8547 struct sk_buff *skb,
8550 #if (PAGE_SIZE < 8192)
8551 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8553 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8554 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8555 SKB_DATA_ALIGN(size);
8557 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8558 rx_buffer->page_offset, size, truesize);
8559 #if (PAGE_SIZE < 8192)
8560 rx_buffer->page_offset ^= truesize;
8562 rx_buffer->page_offset += truesize;
8566 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8567 struct igb_rx_buffer *rx_buffer,
8568 struct xdp_buff *xdp,
8571 #if (PAGE_SIZE < 8192)
8572 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8574 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8575 xdp->data_hard_start);
8577 unsigned int size = xdp->data_end - xdp->data;
8578 unsigned int headlen;
8579 struct sk_buff *skb;
8581 /* prefetch first cache line of first page */
8582 net_prefetch(xdp->data);
8584 /* allocate a skb to store the frags */
8585 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8590 skb_hwtstamps(skb)->hwtstamp = timestamp;
8592 /* Determine available headroom for copy */
8594 if (headlen > IGB_RX_HDR_LEN)
8595 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8597 /* align pull length to size of long to optimize memcpy performance */
8598 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8600 /* update all of the pointers */
8603 skb_add_rx_frag(skb, 0, rx_buffer->page,
8604 (xdp->data + headlen) - page_address(rx_buffer->page),
8606 #if (PAGE_SIZE < 8192)
8607 rx_buffer->page_offset ^= truesize;
8609 rx_buffer->page_offset += truesize;
8612 rx_buffer->pagecnt_bias++;
8618 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8619 struct igb_rx_buffer *rx_buffer,
8620 struct xdp_buff *xdp,
8623 #if (PAGE_SIZE < 8192)
8624 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8626 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8627 SKB_DATA_ALIGN(xdp->data_end -
8628 xdp->data_hard_start);
8630 unsigned int metasize = xdp->data - xdp->data_meta;
8631 struct sk_buff *skb;
8633 /* prefetch first cache line of first page */
8634 net_prefetch(xdp->data_meta);
8636 /* build an skb around the page buffer */
8637 skb = napi_build_skb(xdp->data_hard_start, truesize);
8641 /* update pointers within the skb to store the data */
8642 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8643 __skb_put(skb, xdp->data_end - xdp->data);
8646 skb_metadata_set(skb, metasize);
8649 skb_hwtstamps(skb)->hwtstamp = timestamp;
8651 /* update buffer offset */
8652 #if (PAGE_SIZE < 8192)
8653 rx_buffer->page_offset ^= truesize;
8655 rx_buffer->page_offset += truesize;
8661 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8662 struct xdp_buff *xdp)
8664 int err, result = IGB_XDP_PASS;
8665 struct bpf_prog *xdp_prog;
8668 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8673 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8675 act = bpf_prog_run_xdp(xdp_prog, xdp);
8680 result = igb_xdp_xmit_back(adapter, xdp);
8681 if (result == IGB_XDP_CONSUMED)
8685 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8688 result = IGB_XDP_REDIR;
8691 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8695 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8698 result = IGB_XDP_CONSUMED;
8705 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8708 unsigned int truesize;
8710 #if (PAGE_SIZE < 8192)
8711 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8713 truesize = ring_uses_build_skb(rx_ring) ?
8714 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8715 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8716 SKB_DATA_ALIGN(size);
8721 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8722 struct igb_rx_buffer *rx_buffer,
8725 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8726 #if (PAGE_SIZE < 8192)
8727 rx_buffer->page_offset ^= truesize;
8729 rx_buffer->page_offset += truesize;
8733 static inline void igb_rx_checksum(struct igb_ring *ring,
8734 union e1000_adv_rx_desc *rx_desc,
8735 struct sk_buff *skb)
8737 skb_checksum_none_assert(skb);
8739 /* Ignore Checksum bit is set */
8740 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8743 /* Rx checksum disabled via ethtool */
8744 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8747 /* TCP/UDP checksum error bit is set */
8748 if (igb_test_staterr(rx_desc,
8749 E1000_RXDEXT_STATERR_TCPE |
8750 E1000_RXDEXT_STATERR_IPE)) {
8751 /* work around errata with sctp packets where the TCPE aka
8752 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8753 * packets, (aka let the stack check the crc32c)
8755 if (!((skb->len == 60) &&
8756 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8757 u64_stats_update_begin(&ring->rx_syncp);
8758 ring->rx_stats.csum_err++;
8759 u64_stats_update_end(&ring->rx_syncp);
8761 /* let the stack verify checksum errors */
8764 /* It must be a TCP or UDP packet with a valid checksum */
8765 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8766 E1000_RXD_STAT_UDPCS))
8767 skb->ip_summed = CHECKSUM_UNNECESSARY;
8769 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8770 le32_to_cpu(rx_desc->wb.upper.status_error));
8773 static inline void igb_rx_hash(struct igb_ring *ring,
8774 union e1000_adv_rx_desc *rx_desc,
8775 struct sk_buff *skb)
8777 if (ring->netdev->features & NETIF_F_RXHASH)
8779 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8784 * igb_is_non_eop - process handling of non-EOP buffers
8785 * @rx_ring: Rx ring being processed
8786 * @rx_desc: Rx descriptor for current buffer
8788 * This function updates next to clean. If the buffer is an EOP buffer
8789 * this function exits returning false, otherwise it will place the
8790 * sk_buff in the next buffer to be chained and return true indicating
8791 * that this is in fact a non-EOP buffer.
8793 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8794 union e1000_adv_rx_desc *rx_desc)
8796 u32 ntc = rx_ring->next_to_clean + 1;
8798 /* fetch, update, and store next to clean */
8799 ntc = (ntc < rx_ring->count) ? ntc : 0;
8800 rx_ring->next_to_clean = ntc;
8802 prefetch(IGB_RX_DESC(rx_ring, ntc));
8804 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8811 * igb_cleanup_headers - Correct corrupted or empty headers
8812 * @rx_ring: rx descriptor ring packet is being transacted on
8813 * @rx_desc: pointer to the EOP Rx descriptor
8814 * @skb: pointer to current skb being fixed
8816 * Address the case where we are pulling data in on pages only
8817 * and as such no data is present in the skb header.
8819 * In addition if skb is not at least 60 bytes we need to pad it so that
8820 * it is large enough to qualify as a valid Ethernet frame.
8822 * Returns true if an error was encountered and skb was freed.
8824 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8825 union e1000_adv_rx_desc *rx_desc,
8826 struct sk_buff *skb)
8828 if (unlikely((igb_test_staterr(rx_desc,
8829 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8830 struct net_device *netdev = rx_ring->netdev;
8831 if (!(netdev->features & NETIF_F_RXALL)) {
8832 dev_kfree_skb_any(skb);
8837 /* if eth_skb_pad returns an error the skb was freed */
8838 if (eth_skb_pad(skb))
8845 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8846 * @rx_ring: rx descriptor ring packet is being transacted on
8847 * @rx_desc: pointer to the EOP Rx descriptor
8848 * @skb: pointer to current skb being populated
8850 * This function checks the ring, descriptor, and packet information in
8851 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8852 * other fields within the skb.
8854 void igb_process_skb_fields(struct igb_ring *rx_ring,
8855 union e1000_adv_rx_desc *rx_desc,
8856 struct sk_buff *skb)
8858 struct net_device *dev = rx_ring->netdev;
8860 igb_rx_hash(rx_ring, rx_desc, skb);
8862 igb_rx_checksum(rx_ring, rx_desc, skb);
8864 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8865 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8866 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8868 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8869 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8872 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8873 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8874 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8876 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8878 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8881 skb_record_rx_queue(skb, rx_ring->queue_index);
8883 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8886 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8888 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8891 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8892 const unsigned int size, int *rx_buf_pgcnt)
8894 struct igb_rx_buffer *rx_buffer;
8896 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8898 #if (PAGE_SIZE < 8192)
8899 page_count(rx_buffer->page);
8903 prefetchw(rx_buffer->page);
8905 /* we are reusing so sync this buffer for CPU use */
8906 dma_sync_single_range_for_cpu(rx_ring->dev,
8908 rx_buffer->page_offset,
8912 rx_buffer->pagecnt_bias--;
8917 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8918 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8920 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8921 /* hand second half of page back to the ring */
8922 igb_reuse_rx_page(rx_ring, rx_buffer);
8924 /* We are not reusing the buffer so unmap it and free
8925 * any references we are holding to it
8927 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8928 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8930 __page_frag_cache_drain(rx_buffer->page,
8931 rx_buffer->pagecnt_bias);
8934 /* clear contents of rx_buffer */
8935 rx_buffer->page = NULL;
8938 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8940 int cpu = smp_processor_id();
8941 struct netdev_queue *nq;
8943 if (status & IGB_XDP_REDIR)
8946 if (status & IGB_XDP_TX) {
8947 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8949 nq = txring_txq(tx_ring);
8950 __netif_tx_lock(nq, cpu);
8951 igb_xdp_ring_update_tail(tx_ring);
8952 __netif_tx_unlock(nq);
8956 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
8959 struct igb_ring *ring = q_vector->rx.ring;
8961 u64_stats_update_begin(&ring->rx_syncp);
8962 ring->rx_stats.packets += packets;
8963 ring->rx_stats.bytes += bytes;
8964 u64_stats_update_end(&ring->rx_syncp);
8966 q_vector->rx.total_packets += packets;
8967 q_vector->rx.total_bytes += bytes;
8970 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8972 unsigned int total_bytes = 0, total_packets = 0;
8973 struct igb_adapter *adapter = q_vector->adapter;
8974 struct igb_ring *rx_ring = q_vector->rx.ring;
8975 u16 cleaned_count = igb_desc_unused(rx_ring);
8976 struct sk_buff *skb = rx_ring->skb;
8977 unsigned int xdp_xmit = 0;
8978 struct xdp_buff xdp;
8983 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8984 #if (PAGE_SIZE < 8192)
8985 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8987 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8989 while (likely(total_packets < budget)) {
8990 union e1000_adv_rx_desc *rx_desc;
8991 struct igb_rx_buffer *rx_buffer;
8992 ktime_t timestamp = 0;
8997 /* return some buffers to hardware, one at a time is too slow */
8998 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8999 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9003 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9004 size = le16_to_cpu(rx_desc->wb.upper.length);
9008 /* This memory barrier is needed to keep us from reading
9009 * any other fields out of the rx_desc until we know the
9010 * descriptor has been written back
9014 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9015 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9017 /* pull rx packet timestamp if available and valid */
9018 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9021 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9022 pktbuf, ×tamp);
9024 pkt_offset += ts_hdr_len;
9028 /* retrieve a buffer from the ring */
9030 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9031 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9033 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9034 xdp_buff_clear_frags_flag(&xdp);
9035 #if (PAGE_SIZE > 4096)
9036 /* At larger PAGE_SIZE, frame_sz depend on len size */
9037 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9039 xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9043 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9044 xdp_xmit |= xdp_res;
9045 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9047 rx_buffer->pagecnt_bias++;
9050 total_bytes += size;
9052 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9053 else if (ring_uses_build_skb(rx_ring))
9054 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9057 skb = igb_construct_skb(rx_ring, rx_buffer,
9060 /* exit if we failed to retrieve a buffer */
9061 if (!xdp_res && !skb) {
9062 rx_ring->rx_stats.alloc_failed++;
9063 rx_buffer->pagecnt_bias++;
9067 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9070 /* fetch next buffer in frame if non-eop */
9071 if (igb_is_non_eop(rx_ring, rx_desc))
9074 /* verify the packet layout is correct */
9075 if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9080 /* probably a little skewed due to removing CRC */
9081 total_bytes += skb->len;
9083 /* populate checksum, timestamp, VLAN, and protocol */
9084 igb_process_skb_fields(rx_ring, rx_desc, skb);
9086 napi_gro_receive(&q_vector->napi, skb);
9088 /* reset skb pointer */
9091 /* update budget accounting */
9095 /* place incomplete frames back on ring for completion */
9099 igb_finalize_xdp(adapter, xdp_xmit);
9101 igb_update_rx_stats(q_vector, total_packets, total_bytes);
9104 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9106 return total_packets;
9109 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9110 struct igb_rx_buffer *bi)
9112 struct page *page = bi->page;
9115 /* since we are recycling buffers we should seldom need to alloc */
9119 /* alloc new page for storage */
9120 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9121 if (unlikely(!page)) {
9122 rx_ring->rx_stats.alloc_failed++;
9126 /* map page for use */
9127 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9128 igb_rx_pg_size(rx_ring),
9132 /* if mapping failed free memory back to system since
9133 * there isn't much point in holding memory we can't use
9135 if (dma_mapping_error(rx_ring->dev, dma)) {
9136 __free_pages(page, igb_rx_pg_order(rx_ring));
9138 rx_ring->rx_stats.alloc_failed++;
9144 bi->page_offset = igb_rx_offset(rx_ring);
9145 page_ref_add(page, USHRT_MAX - 1);
9146 bi->pagecnt_bias = USHRT_MAX;
9152 * igb_alloc_rx_buffers - Replace used receive buffers
9153 * @rx_ring: rx descriptor ring to allocate new receive buffers
9154 * @cleaned_count: count of buffers to allocate
9156 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9158 union e1000_adv_rx_desc *rx_desc;
9159 struct igb_rx_buffer *bi;
9160 u16 i = rx_ring->next_to_use;
9167 rx_desc = IGB_RX_DESC(rx_ring, i);
9168 bi = &rx_ring->rx_buffer_info[i];
9169 i -= rx_ring->count;
9171 bufsz = igb_rx_bufsz(rx_ring);
9174 if (!igb_alloc_mapped_page(rx_ring, bi))
9177 /* sync the buffer for use by the device */
9178 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9179 bi->page_offset, bufsz,
9182 /* Refresh the desc even if buffer_addrs didn't change
9183 * because each write-back erases this info.
9185 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9191 rx_desc = IGB_RX_DESC(rx_ring, 0);
9192 bi = rx_ring->rx_buffer_info;
9193 i -= rx_ring->count;
9196 /* clear the length for the next_to_use descriptor */
9197 rx_desc->wb.upper.length = 0;
9200 } while (cleaned_count);
9202 i += rx_ring->count;
9204 if (rx_ring->next_to_use != i) {
9205 /* record the next descriptor to use */
9206 rx_ring->next_to_use = i;
9208 /* update next to alloc since we have filled the ring */
9209 rx_ring->next_to_alloc = i;
9211 /* Force memory writes to complete before letting h/w
9212 * know there are new descriptors to fetch. (Only
9213 * applicable for weak-ordered memory model archs,
9217 writel(i, rx_ring->tail);
9223 * @netdev: pointer to netdev struct
9224 * @ifr: interface structure
9225 * @cmd: ioctl command to execute
9227 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9229 struct igb_adapter *adapter = netdev_priv(netdev);
9230 struct mii_ioctl_data *data = if_mii(ifr);
9232 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9237 data->phy_id = adapter->hw.phy.addr;
9240 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9245 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9257 * @netdev: pointer to netdev struct
9258 * @ifr: interface structure
9259 * @cmd: ioctl command to execute
9261 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9267 return igb_mii_ioctl(netdev, ifr, cmd);
9269 return igb_ptp_get_ts_config(netdev, ifr);
9271 return igb_ptp_set_ts_config(netdev, ifr);
9277 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9279 struct igb_adapter *adapter = hw->back;
9281 pci_read_config_word(adapter->pdev, reg, value);
9284 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9286 struct igb_adapter *adapter = hw->back;
9288 pci_write_config_word(adapter->pdev, reg, *value);
9291 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9293 struct igb_adapter *adapter = hw->back;
9295 if (pcie_capability_read_word(adapter->pdev, reg, value))
9296 return -E1000_ERR_CONFIG;
9301 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9303 struct igb_adapter *adapter = hw->back;
9305 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9306 return -E1000_ERR_CONFIG;
9311 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9313 struct igb_adapter *adapter = netdev_priv(netdev);
9314 struct e1000_hw *hw = &adapter->hw;
9316 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9319 /* enable VLAN tag insert/strip */
9320 ctrl = rd32(E1000_CTRL);
9321 ctrl |= E1000_CTRL_VME;
9322 wr32(E1000_CTRL, ctrl);
9324 /* Disable CFI check */
9325 rctl = rd32(E1000_RCTL);
9326 rctl &= ~E1000_RCTL_CFIEN;
9327 wr32(E1000_RCTL, rctl);
9329 /* disable VLAN tag insert/strip */
9330 ctrl = rd32(E1000_CTRL);
9331 ctrl &= ~E1000_CTRL_VME;
9332 wr32(E1000_CTRL, ctrl);
9335 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9338 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9339 __be16 proto, u16 vid)
9341 struct igb_adapter *adapter = netdev_priv(netdev);
9342 struct e1000_hw *hw = &adapter->hw;
9343 int pf_id = adapter->vfs_allocated_count;
9345 /* add the filter since PF can receive vlans w/o entry in vlvf */
9346 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9347 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9349 set_bit(vid, adapter->active_vlans);
9354 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9355 __be16 proto, u16 vid)
9357 struct igb_adapter *adapter = netdev_priv(netdev);
9358 int pf_id = adapter->vfs_allocated_count;
9359 struct e1000_hw *hw = &adapter->hw;
9361 /* remove VID from filter table */
9362 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9363 igb_vfta_set(hw, vid, pf_id, false, true);
9365 clear_bit(vid, adapter->active_vlans);
9370 static void igb_restore_vlan(struct igb_adapter *adapter)
9374 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9375 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9377 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9378 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9381 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9383 struct pci_dev *pdev = adapter->pdev;
9384 struct e1000_mac_info *mac = &adapter->hw.mac;
9388 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9389 * for the switch() below to work
9391 if ((spd & 1) || (dplx & ~1))
9394 /* Fiber NIC's only allow 1000 gbps Full duplex
9395 * and 100Mbps Full duplex for 100baseFx sfp
9397 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9398 switch (spd + dplx) {
9399 case SPEED_10 + DUPLEX_HALF:
9400 case SPEED_10 + DUPLEX_FULL:
9401 case SPEED_100 + DUPLEX_HALF:
9408 switch (spd + dplx) {
9409 case SPEED_10 + DUPLEX_HALF:
9410 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9412 case SPEED_10 + DUPLEX_FULL:
9413 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9415 case SPEED_100 + DUPLEX_HALF:
9416 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9418 case SPEED_100 + DUPLEX_FULL:
9419 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9421 case SPEED_1000 + DUPLEX_FULL:
9423 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9425 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9430 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9431 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9436 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9440 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9443 struct net_device *netdev = pci_get_drvdata(pdev);
9444 struct igb_adapter *adapter = netdev_priv(netdev);
9445 struct e1000_hw *hw = &adapter->hw;
9446 u32 ctrl, rctl, status;
9447 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9451 netif_device_detach(netdev);
9453 if (netif_running(netdev))
9454 __igb_close(netdev, true);
9456 igb_ptp_suspend(adapter);
9458 igb_clear_interrupt_scheme(adapter);
9461 status = rd32(E1000_STATUS);
9462 if (status & E1000_STATUS_LU)
9463 wufc &= ~E1000_WUFC_LNKC;
9466 igb_setup_rctl(adapter);
9467 igb_set_rx_mode(netdev);
9469 /* turn on all-multi mode if wake on multicast is enabled */
9470 if (wufc & E1000_WUFC_MC) {
9471 rctl = rd32(E1000_RCTL);
9472 rctl |= E1000_RCTL_MPE;
9473 wr32(E1000_RCTL, rctl);
9476 ctrl = rd32(E1000_CTRL);
9477 ctrl |= E1000_CTRL_ADVD3WUC;
9478 wr32(E1000_CTRL, ctrl);
9480 /* Allow time for pending master requests to run */
9481 igb_disable_pcie_master(hw);
9483 wr32(E1000_WUC, E1000_WUC_PME_EN);
9484 wr32(E1000_WUFC, wufc);
9487 wr32(E1000_WUFC, 0);
9490 wake = wufc || adapter->en_mng_pt;
9492 igb_power_down_link(adapter);
9494 igb_power_up_link(adapter);
9497 *enable_wake = wake;
9499 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9500 * would have already happened in close and is redundant.
9502 igb_release_hw_control(adapter);
9504 pci_disable_device(pdev);
9509 static void igb_deliver_wake_packet(struct net_device *netdev)
9511 struct igb_adapter *adapter = netdev_priv(netdev);
9512 struct e1000_hw *hw = &adapter->hw;
9513 struct sk_buff *skb;
9516 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9518 /* WUPM stores only the first 128 bytes of the wake packet.
9519 * Read the packet only if we have the whole thing.
9521 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9524 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9530 /* Ensure reads are 32-bit aligned */
9531 wupl = roundup(wupl, 4);
9533 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9535 skb->protocol = eth_type_trans(skb, netdev);
9539 static int igb_suspend(struct device *dev)
9541 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9544 static int __igb_resume(struct device *dev, bool rpm)
9546 struct pci_dev *pdev = to_pci_dev(dev);
9547 struct net_device *netdev = pci_get_drvdata(pdev);
9548 struct igb_adapter *adapter = netdev_priv(netdev);
9549 struct e1000_hw *hw = &adapter->hw;
9552 pci_set_power_state(pdev, PCI_D0);
9553 pci_restore_state(pdev);
9554 pci_save_state(pdev);
9556 if (!pci_device_is_present(pdev))
9558 err = pci_enable_device_mem(pdev);
9561 "igb: Cannot enable PCI device from suspend\n");
9564 pci_set_master(pdev);
9566 pci_enable_wake(pdev, PCI_D3hot, 0);
9567 pci_enable_wake(pdev, PCI_D3cold, 0);
9569 if (igb_init_interrupt_scheme(adapter, true)) {
9570 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9576 /* let the f/w know that the h/w is now under the control of the
9579 igb_get_hw_control(adapter);
9581 val = rd32(E1000_WUS);
9582 if (val & WAKE_PKT_WUS)
9583 igb_deliver_wake_packet(netdev);
9585 wr32(E1000_WUS, ~0);
9589 if (!err && netif_running(netdev))
9590 err = __igb_open(netdev, true);
9593 netif_device_attach(netdev);
9600 static int igb_resume(struct device *dev)
9602 return __igb_resume(dev, false);
9605 static int igb_runtime_idle(struct device *dev)
9607 struct net_device *netdev = dev_get_drvdata(dev);
9608 struct igb_adapter *adapter = netdev_priv(netdev);
9610 if (!igb_has_link(adapter))
9611 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9616 static int igb_runtime_suspend(struct device *dev)
9618 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9621 static int igb_runtime_resume(struct device *dev)
9623 return __igb_resume(dev, true);
9626 static void igb_shutdown(struct pci_dev *pdev)
9630 __igb_shutdown(pdev, &wake, 0);
9632 if (system_state == SYSTEM_POWER_OFF) {
9633 pci_wake_from_d3(pdev, wake);
9634 pci_set_power_state(pdev, PCI_D3hot);
9638 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9640 #ifdef CONFIG_PCI_IOV
9644 return igb_disable_sriov(dev, true);
9646 err = igb_enable_sriov(dev, num_vfs, true);
9647 return err ? err : num_vfs;
9654 * igb_io_error_detected - called when PCI error is detected
9655 * @pdev: Pointer to PCI device
9656 * @state: The current pci connection state
9658 * This function is called after a PCI bus error affecting
9659 * this device has been detected.
9661 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9662 pci_channel_state_t state)
9664 struct net_device *netdev = pci_get_drvdata(pdev);
9665 struct igb_adapter *adapter = netdev_priv(netdev);
9667 if (state == pci_channel_io_normal) {
9668 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9669 return PCI_ERS_RESULT_CAN_RECOVER;
9672 netif_device_detach(netdev);
9674 if (state == pci_channel_io_perm_failure)
9675 return PCI_ERS_RESULT_DISCONNECT;
9677 if (netif_running(netdev))
9679 pci_disable_device(pdev);
9681 /* Request a slot reset. */
9682 return PCI_ERS_RESULT_NEED_RESET;
9686 * igb_io_slot_reset - called after the pci bus has been reset.
9687 * @pdev: Pointer to PCI device
9689 * Restart the card from scratch, as if from a cold-boot. Implementation
9690 * resembles the first-half of the __igb_resume routine.
9692 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9694 struct net_device *netdev = pci_get_drvdata(pdev);
9695 struct igb_adapter *adapter = netdev_priv(netdev);
9696 struct e1000_hw *hw = &adapter->hw;
9697 pci_ers_result_t result;
9699 if (pci_enable_device_mem(pdev)) {
9701 "Cannot re-enable PCI device after reset.\n");
9702 result = PCI_ERS_RESULT_DISCONNECT;
9704 pci_set_master(pdev);
9705 pci_restore_state(pdev);
9706 pci_save_state(pdev);
9708 pci_enable_wake(pdev, PCI_D3hot, 0);
9709 pci_enable_wake(pdev, PCI_D3cold, 0);
9711 /* In case of PCI error, adapter lose its HW address
9712 * so we should re-assign it here.
9714 hw->hw_addr = adapter->io_addr;
9717 wr32(E1000_WUS, ~0);
9718 result = PCI_ERS_RESULT_RECOVERED;
9725 * igb_io_resume - called when traffic can start flowing again.
9726 * @pdev: Pointer to PCI device
9728 * This callback is called when the error recovery driver tells us that
9729 * its OK to resume normal operation. Implementation resembles the
9730 * second-half of the __igb_resume routine.
9732 static void igb_io_resume(struct pci_dev *pdev)
9734 struct net_device *netdev = pci_get_drvdata(pdev);
9735 struct igb_adapter *adapter = netdev_priv(netdev);
9737 if (netif_running(netdev)) {
9738 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9739 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9742 if (igb_up(adapter)) {
9743 dev_err(&pdev->dev, "igb_up failed after reset\n");
9748 netif_device_attach(netdev);
9750 /* let the f/w know that the h/w is now under the control of the
9753 igb_get_hw_control(adapter);
9757 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9758 * @adapter: Pointer to adapter structure
9759 * @index: Index of the RAR entry which need to be synced with MAC table
9761 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9763 struct e1000_hw *hw = &adapter->hw;
9764 u32 rar_low, rar_high;
9765 u8 *addr = adapter->mac_table[index].addr;
9767 /* HW expects these to be in network order when they are plugged
9768 * into the registers which are little endian. In order to guarantee
9769 * that ordering we need to do an leXX_to_cpup here in order to be
9770 * ready for the byteswap that occurs with writel
9772 rar_low = le32_to_cpup((__le32 *)(addr));
9773 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9775 /* Indicate to hardware the Address is Valid. */
9776 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9777 if (is_valid_ether_addr(addr))
9778 rar_high |= E1000_RAH_AV;
9780 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9781 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9783 switch (hw->mac.type) {
9786 if (adapter->mac_table[index].state &
9787 IGB_MAC_STATE_QUEUE_STEERING)
9788 rar_high |= E1000_RAH_QSEL_ENABLE;
9790 rar_high |= E1000_RAH_POOL_1 *
9791 adapter->mac_table[index].queue;
9794 rar_high |= E1000_RAH_POOL_1 <<
9795 adapter->mac_table[index].queue;
9800 wr32(E1000_RAL(index), rar_low);
9802 wr32(E1000_RAH(index), rar_high);
9806 static int igb_set_vf_mac(struct igb_adapter *adapter,
9807 int vf, unsigned char *mac_addr)
9809 struct e1000_hw *hw = &adapter->hw;
9810 /* VF MAC addresses start at end of receive addresses and moves
9811 * towards the first, as a result a collision should not be possible
9813 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9814 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9816 ether_addr_copy(vf_mac_addr, mac_addr);
9817 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9818 adapter->mac_table[rar_entry].queue = vf;
9819 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9820 igb_rar_set_index(adapter, rar_entry);
9825 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9827 struct igb_adapter *adapter = netdev_priv(netdev);
9829 if (vf >= adapter->vfs_allocated_count)
9832 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9833 * flag and allows to overwrite the MAC via VF netdev. This
9834 * is necessary to allow libvirt a way to restore the original
9835 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9838 if (is_zero_ether_addr(mac)) {
9839 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9840 dev_info(&adapter->pdev->dev,
9841 "remove administratively set MAC on VF %d\n",
9843 } else if (is_valid_ether_addr(mac)) {
9844 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9845 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9847 dev_info(&adapter->pdev->dev,
9848 "Reload the VF driver to make this change effective.");
9849 /* Generate additional warning if PF is down */
9850 if (test_bit(__IGB_DOWN, &adapter->state)) {
9851 dev_warn(&adapter->pdev->dev,
9852 "The VF MAC address has been set, but the PF device is not up.\n");
9853 dev_warn(&adapter->pdev->dev,
9854 "Bring the PF device up before attempting to use the VF device.\n");
9859 return igb_set_vf_mac(adapter, vf, mac);
9862 static int igb_link_mbps(int internal_link_speed)
9864 switch (internal_link_speed) {
9874 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9881 /* Calculate the rate factor values to set */
9882 rf_int = link_speed / tx_rate;
9883 rf_dec = (link_speed - (rf_int * tx_rate));
9884 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9887 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9888 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9889 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9894 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9895 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9896 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9898 wr32(E1000_RTTBCNRM, 0x14);
9899 wr32(E1000_RTTBCNRC, bcnrc_val);
9902 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9904 int actual_link_speed, i;
9905 bool reset_rate = false;
9907 /* VF TX rate limit was not set or not supported */
9908 if ((adapter->vf_rate_link_speed == 0) ||
9909 (adapter->hw.mac.type != e1000_82576))
9912 actual_link_speed = igb_link_mbps(adapter->link_speed);
9913 if (actual_link_speed != adapter->vf_rate_link_speed) {
9915 adapter->vf_rate_link_speed = 0;
9916 dev_info(&adapter->pdev->dev,
9917 "Link speed has been changed. VF Transmit rate is disabled\n");
9920 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9922 adapter->vf_data[i].tx_rate = 0;
9924 igb_set_vf_rate_limit(&adapter->hw, i,
9925 adapter->vf_data[i].tx_rate,
9930 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9931 int min_tx_rate, int max_tx_rate)
9933 struct igb_adapter *adapter = netdev_priv(netdev);
9934 struct e1000_hw *hw = &adapter->hw;
9935 int actual_link_speed;
9937 if (hw->mac.type != e1000_82576)
9943 actual_link_speed = igb_link_mbps(adapter->link_speed);
9944 if ((vf >= adapter->vfs_allocated_count) ||
9945 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9946 (max_tx_rate < 0) ||
9947 (max_tx_rate > actual_link_speed))
9950 adapter->vf_rate_link_speed = actual_link_speed;
9951 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9952 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9957 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9960 struct igb_adapter *adapter = netdev_priv(netdev);
9961 struct e1000_hw *hw = &adapter->hw;
9962 u32 reg_val, reg_offset;
9964 if (!adapter->vfs_allocated_count)
9967 if (vf >= adapter->vfs_allocated_count)
9970 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9971 reg_val = rd32(reg_offset);
9973 reg_val |= (BIT(vf) |
9974 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9976 reg_val &= ~(BIT(vf) |
9977 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9978 wr32(reg_offset, reg_val);
9980 adapter->vf_data[vf].spoofchk_enabled = setting;
9984 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9986 struct igb_adapter *adapter = netdev_priv(netdev);
9988 if (vf >= adapter->vfs_allocated_count)
9990 if (adapter->vf_data[vf].trusted == setting)
9993 adapter->vf_data[vf].trusted = setting;
9995 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9996 vf, setting ? "" : "not ");
10000 static int igb_ndo_get_vf_config(struct net_device *netdev,
10001 int vf, struct ifla_vf_info *ivi)
10003 struct igb_adapter *adapter = netdev_priv(netdev);
10004 if (vf >= adapter->vfs_allocated_count)
10007 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10008 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10009 ivi->min_tx_rate = 0;
10010 ivi->vlan = adapter->vf_data[vf].pf_vlan;
10011 ivi->qos = adapter->vf_data[vf].pf_qos;
10012 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10013 ivi->trusted = adapter->vf_data[vf].trusted;
10017 static void igb_vmm_control(struct igb_adapter *adapter)
10019 struct e1000_hw *hw = &adapter->hw;
10022 switch (hw->mac.type) {
10028 /* replication is not supported for 82575 */
10031 /* notify HW that the MAC is adding vlan tags */
10032 reg = rd32(E1000_DTXCTL);
10033 reg |= E1000_DTXCTL_VLAN_ADDED;
10034 wr32(E1000_DTXCTL, reg);
10037 /* enable replication vlan tag stripping */
10038 reg = rd32(E1000_RPLOLR);
10039 reg |= E1000_RPLOLR_STRVLAN;
10040 wr32(E1000_RPLOLR, reg);
10043 /* none of the above registers are supported by i350 */
10047 if (adapter->vfs_allocated_count) {
10048 igb_vmdq_set_loopback_pf(hw, true);
10049 igb_vmdq_set_replication_pf(hw, true);
10050 igb_vmdq_set_anti_spoofing_pf(hw, true,
10051 adapter->vfs_allocated_count);
10053 igb_vmdq_set_loopback_pf(hw, false);
10054 igb_vmdq_set_replication_pf(hw, false);
10058 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10060 struct e1000_hw *hw = &adapter->hw;
10065 if (hw->mac.type > e1000_82580) {
10066 if (adapter->flags & IGB_FLAG_DMAC) {
10067 /* force threshold to 0. */
10068 wr32(E1000_DMCTXTH, 0);
10070 /* DMA Coalescing high water mark needs to be greater
10071 * than the Rx threshold. Set hwm to PBA - max frame
10072 * size in 16B units, capping it at PBA - 6KB.
10074 hwm = 64 * (pba - 6);
10075 reg = rd32(E1000_FCRTC);
10076 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10077 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10078 wr32(E1000_FCRTC, reg);
10080 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10081 * frame size, capping it at PBA - 10KB.
10083 dmac_thr = pba - 10;
10084 reg = rd32(E1000_DMACR);
10085 reg &= ~E1000_DMACR_DMACTHR_MASK;
10086 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10088 /* transition to L0x or L1 if available..*/
10089 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10091 /* watchdog timer= +-1000 usec in 32usec intervals */
10092 reg |= (1000 >> 5);
10094 /* Disable BMC-to-OS Watchdog Enable */
10095 if (hw->mac.type != e1000_i354)
10096 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10097 wr32(E1000_DMACR, reg);
10099 /* no lower threshold to disable
10100 * coalescing(smart fifb)-UTRESH=0
10102 wr32(E1000_DMCRTRH, 0);
10104 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10106 wr32(E1000_DMCTLX, reg);
10108 /* free space in tx packet buffer to wake from
10111 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10112 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10115 if (hw->mac.type >= e1000_i210 ||
10116 (adapter->flags & IGB_FLAG_DMAC)) {
10117 reg = rd32(E1000_PCIEMISC);
10118 reg |= E1000_PCIEMISC_LX_DECISION;
10119 wr32(E1000_PCIEMISC, reg);
10120 } /* endif adapter->dmac is not disabled */
10121 } else if (hw->mac.type == e1000_82580) {
10122 u32 reg = rd32(E1000_PCIEMISC);
10124 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10125 wr32(E1000_DMACR, 0);
10130 * igb_read_i2c_byte - Reads 8 bit word over I2C
10131 * @hw: pointer to hardware structure
10132 * @byte_offset: byte offset to read
10133 * @dev_addr: device address
10134 * @data: value read
10136 * Performs byte read operation over I2C interface at
10137 * a specified device address.
10139 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10140 u8 dev_addr, u8 *data)
10142 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10143 struct i2c_client *this_client = adapter->i2c_client;
10148 return E1000_ERR_I2C;
10150 swfw_mask = E1000_SWFW_PHY0_SM;
10152 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10153 return E1000_ERR_SWFW_SYNC;
10155 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10156 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10159 return E1000_ERR_I2C;
10167 * igb_write_i2c_byte - Writes 8 bit word over I2C
10168 * @hw: pointer to hardware structure
10169 * @byte_offset: byte offset to write
10170 * @dev_addr: device address
10171 * @data: value to write
10173 * Performs byte write operation over I2C interface at
10174 * a specified device address.
10176 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10177 u8 dev_addr, u8 data)
10179 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10180 struct i2c_client *this_client = adapter->i2c_client;
10182 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10185 return E1000_ERR_I2C;
10187 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10188 return E1000_ERR_SWFW_SYNC;
10189 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10190 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10193 return E1000_ERR_I2C;
10199 int igb_reinit_queues(struct igb_adapter *adapter)
10201 struct net_device *netdev = adapter->netdev;
10202 struct pci_dev *pdev = adapter->pdev;
10205 if (netif_running(netdev))
10208 igb_reset_interrupt_capability(adapter);
10210 if (igb_init_interrupt_scheme(adapter, true)) {
10211 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10215 if (netif_running(netdev))
10216 err = igb_open(netdev);
10221 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10223 struct igb_nfc_filter *rule;
10225 spin_lock(&adapter->nfc_lock);
10227 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10228 igb_erase_filter(adapter, rule);
10230 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10231 igb_erase_filter(adapter, rule);
10233 spin_unlock(&adapter->nfc_lock);
10236 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10238 struct igb_nfc_filter *rule;
10240 spin_lock(&adapter->nfc_lock);
10242 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10243 igb_add_filter(adapter, rule);
10245 spin_unlock(&adapter->nfc_lock);
10248 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10249 igb_runtime_suspend, igb_runtime_resume,
10252 static struct pci_driver igb_driver = {
10253 .name = igb_driver_name,
10254 .id_table = igb_pci_tbl,
10255 .probe = igb_probe,
10256 .remove = igb_remove,
10257 .driver.pm = pm_ptr(&igb_pm_ops),
10258 .shutdown = igb_shutdown,
10259 .sriov_configure = igb_pci_sriov_configure,
10260 .err_handler = &igb_err_handler