]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Linux 6.14-rc3
[linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41
42 enum queue_mode {
43         QUEUE_MODE_STRICT_PRIORITY,
44         QUEUE_MODE_STREAM_RESERVATION,
45 };
46
47 enum tx_queue_prio {
48         TX_QUEUE_PRIO_HIGH,
49         TX_QUEUE_PRIO_LOW,
50 };
51
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54                                 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56                                 "Copyright (c) 2007-2014 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static const struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98         /* required last entry */
99         {0, }
100 };
101
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124                             struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143                           netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163                                    bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165                                 bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167                                  struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180         .notifier_call  = igb_notify_dca,
181         .next           = NULL,
182         .priority       = 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192                      pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195
196 static const struct pci_error_handlers igb_err_handler = {
197         .error_detected = igb_io_error_detected,
198         .slot_reset = igb_io_slot_reset,
199         .resume = igb_io_resume,
200 };
201
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211
212 struct igb_reg_info {
213         u32 ofs;
214         char *name;
215 };
216
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218
219         /* General Registers */
220         {E1000_CTRL, "CTRL"},
221         {E1000_STATUS, "STATUS"},
222         {E1000_CTRL_EXT, "CTRL_EXT"},
223
224         /* Interrupt Registers */
225         {E1000_ICR, "ICR"},
226
227         /* RX Registers */
228         {E1000_RCTL, "RCTL"},
229         {E1000_RDLEN(0), "RDLEN"},
230         {E1000_RDH(0), "RDH"},
231         {E1000_RDT(0), "RDT"},
232         {E1000_RXDCTL(0), "RXDCTL"},
233         {E1000_RDBAL(0), "RDBAL"},
234         {E1000_RDBAH(0), "RDBAH"},
235
236         /* TX Registers */
237         {E1000_TCTL, "TCTL"},
238         {E1000_TDBAL(0), "TDBAL"},
239         {E1000_TDBAH(0), "TDBAH"},
240         {E1000_TDLEN(0), "TDLEN"},
241         {E1000_TDH(0), "TDH"},
242         {E1000_TDT(0), "TDT"},
243         {E1000_TXDCTL(0), "TXDCTL"},
244         {E1000_TDFH, "TDFH"},
245         {E1000_TDFT, "TDFT"},
246         {E1000_TDFHS, "TDFHS"},
247         {E1000_TDFPC, "TDFPC"},
248
249         /* List Terminator */
250         {}
251 };
252
253 /* igb_regdump - register printout routine */
254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256         int n = 0;
257         char rname[16];
258         u32 regs[8];
259
260         switch (reginfo->ofs) {
261         case E1000_RDLEN(0):
262                 for (n = 0; n < 4; n++)
263                         regs[n] = rd32(E1000_RDLEN(n));
264                 break;
265         case E1000_RDH(0):
266                 for (n = 0; n < 4; n++)
267                         regs[n] = rd32(E1000_RDH(n));
268                 break;
269         case E1000_RDT(0):
270                 for (n = 0; n < 4; n++)
271                         regs[n] = rd32(E1000_RDT(n));
272                 break;
273         case E1000_RXDCTL(0):
274                 for (n = 0; n < 4; n++)
275                         regs[n] = rd32(E1000_RXDCTL(n));
276                 break;
277         case E1000_RDBAL(0):
278                 for (n = 0; n < 4; n++)
279                         regs[n] = rd32(E1000_RDBAL(n));
280                 break;
281         case E1000_RDBAH(0):
282                 for (n = 0; n < 4; n++)
283                         regs[n] = rd32(E1000_RDBAH(n));
284                 break;
285         case E1000_TDBAL(0):
286                 for (n = 0; n < 4; n++)
287                         regs[n] = rd32(E1000_TDBAL(n));
288                 break;
289         case E1000_TDBAH(0):
290                 for (n = 0; n < 4; n++)
291                         regs[n] = rd32(E1000_TDBAH(n));
292                 break;
293         case E1000_TDLEN(0):
294                 for (n = 0; n < 4; n++)
295                         regs[n] = rd32(E1000_TDLEN(n));
296                 break;
297         case E1000_TDH(0):
298                 for (n = 0; n < 4; n++)
299                         regs[n] = rd32(E1000_TDH(n));
300                 break;
301         case E1000_TDT(0):
302                 for (n = 0; n < 4; n++)
303                         regs[n] = rd32(E1000_TDT(n));
304                 break;
305         case E1000_TXDCTL(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_TXDCTL(n));
308                 break;
309         default:
310                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311                 return;
312         }
313
314         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316                 regs[2], regs[3]);
317 }
318
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
320 static void igb_dump(struct igb_adapter *adapter)
321 {
322         struct net_device *netdev = adapter->netdev;
323         struct e1000_hw *hw = &adapter->hw;
324         struct igb_reg_info *reginfo;
325         struct igb_ring *tx_ring;
326         union e1000_adv_tx_desc *tx_desc;
327         struct my_u0 { __le64 a; __le64 b; } *u0;
328         struct igb_ring *rx_ring;
329         union e1000_adv_rx_desc *rx_desc;
330         u32 staterr;
331         u16 i, n;
332
333         if (!netif_msg_hw(adapter))
334                 return;
335
336         /* Print netdevice Info */
337         if (netdev) {
338                 dev_info(&adapter->pdev->dev, "Net device Info\n");
339                 pr_info("Device Name     state            trans_start\n");
340                 pr_info("%-15s %016lX %016lX\n", netdev->name,
341                         netdev->state, dev_trans_start(netdev));
342         }
343
344         /* Print Registers */
345         dev_info(&adapter->pdev->dev, "Register Dump\n");
346         pr_info(" Register Name   Value\n");
347         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348              reginfo->name; reginfo++) {
349                 igb_regdump(hw, reginfo);
350         }
351
352         /* Print TX Ring Summary */
353         if (!netdev || !netif_running(netdev))
354                 goto exit;
355
356         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
358         for (n = 0; n < adapter->num_tx_queues; n++) {
359                 struct igb_tx_buffer *buffer_info;
360                 tx_ring = adapter->tx_ring[n];
361                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
364                         (u64)dma_unmap_addr(buffer_info, dma),
365                         dma_unmap_len(buffer_info, len),
366                         buffer_info->next_to_watch,
367                         (u64)buffer_info->time_stamp);
368         }
369
370         /* Print TX Rings */
371         if (!netif_msg_tx_done(adapter))
372                 goto rx_ring_summary;
373
374         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375
376         /* Transmit Descriptor Formats
377          *
378          * Advanced Transmit Descriptor
379          *   +--------------------------------------------------------------+
380          * 0 |         Buffer Address [63:0]                                |
381          *   +--------------------------------------------------------------+
382          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
383          *   +--------------------------------------------------------------+
384          *   63      46 45    40 39 38 36 35 32 31   24             15       0
385          */
386
387         for (n = 0; n < adapter->num_tx_queues; n++) {
388                 tx_ring = adapter->tx_ring[n];
389                 pr_info("------------------------------------\n");
390                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391                 pr_info("------------------------------------\n");
392                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
393
394                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395                         const char *next_desc;
396                         struct igb_tx_buffer *buffer_info;
397                         tx_desc = IGB_TX_DESC(tx_ring, i);
398                         buffer_info = &tx_ring->tx_buffer_info[i];
399                         u0 = (struct my_u0 *)tx_desc;
400                         if (i == tx_ring->next_to_use &&
401                             i == tx_ring->next_to_clean)
402                                 next_desc = " NTC/U";
403                         else if (i == tx_ring->next_to_use)
404                                 next_desc = " NTU";
405                         else if (i == tx_ring->next_to_clean)
406                                 next_desc = " NTC";
407                         else
408                                 next_desc = "";
409
410                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
411                                 i, le64_to_cpu(u0->a),
412                                 le64_to_cpu(u0->b),
413                                 (u64)dma_unmap_addr(buffer_info, dma),
414                                 dma_unmap_len(buffer_info, len),
415                                 buffer_info->next_to_watch,
416                                 (u64)buffer_info->time_stamp,
417                                 buffer_info->skb, next_desc);
418
419                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
420                                 print_hex_dump(KERN_INFO, "",
421                                         DUMP_PREFIX_ADDRESS,
422                                         16, 1, buffer_info->skb->data,
423                                         dma_unmap_len(buffer_info, len),
424                                         true);
425                 }
426         }
427
428         /* Print RX Rings Summary */
429 rx_ring_summary:
430         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431         pr_info("Queue [NTU] [NTC]\n");
432         for (n = 0; n < adapter->num_rx_queues; n++) {
433                 rx_ring = adapter->rx_ring[n];
434                 pr_info(" %5d %5X %5X\n",
435                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
436         }
437
438         /* Print RX Rings */
439         if (!netif_msg_rx_status(adapter))
440                 goto exit;
441
442         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443
444         /* Advanced Receive Descriptor (Read) Format
445          *    63                                           1        0
446          *    +-----------------------------------------------------+
447          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
448          *    +----------------------------------------------+------+
449          *  8 |       Header Buffer Address [63:1]           |  DD  |
450          *    +-----------------------------------------------------+
451          *
452          *
453          * Advanced Receive Descriptor (Write-Back) Format
454          *
455          *   63       48 47    32 31  30      21 20 17 16   4 3     0
456          *   +------------------------------------------------------+
457          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
458          *   | Checksum   Ident  |   |           |    | Type | Type |
459          *   +------------------------------------------------------+
460          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461          *   +------------------------------------------------------+
462          *   63       48 47    32 31            20 19               0
463          */
464
465         for (n = 0; n < adapter->num_rx_queues; n++) {
466                 rx_ring = adapter->rx_ring[n];
467                 pr_info("------------------------------------\n");
468                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469                 pr_info("------------------------------------\n");
470                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
471                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472
473                 for (i = 0; i < rx_ring->count; i++) {
474                         const char *next_desc;
475                         dma_addr_t dma = (dma_addr_t)0;
476                         struct igb_rx_buffer *buffer_info = NULL;
477                         rx_desc = IGB_RX_DESC(rx_ring, i);
478                         u0 = (struct my_u0 *)rx_desc;
479                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480
481                         if (!rx_ring->xsk_pool) {
482                                 buffer_info = &rx_ring->rx_buffer_info[i];
483                                 dma = buffer_info->dma;
484                         }
485
486                         if (i == rx_ring->next_to_use)
487                                 next_desc = " NTU";
488                         else if (i == rx_ring->next_to_clean)
489                                 next_desc = " NTC";
490                         else
491                                 next_desc = "";
492
493                         if (staterr & E1000_RXD_STAT_DD) {
494                                 /* Descriptor Done */
495                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
496                                         "RWB", i,
497                                         le64_to_cpu(u0->a),
498                                         le64_to_cpu(u0->b),
499                                         next_desc);
500                         } else {
501                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
502                                         "R  ", i,
503                                         le64_to_cpu(u0->a),
504                                         le64_to_cpu(u0->b),
505                                         (u64)dma,
506                                         next_desc);
507
508                                 if (netif_msg_pktdata(adapter) &&
509                                     buffer_info && dma && buffer_info->page) {
510                                         print_hex_dump(KERN_INFO, "",
511                                           DUMP_PREFIX_ADDRESS,
512                                           16, 1,
513                                           page_address(buffer_info->page) +
514                                                       buffer_info->page_offset,
515                                           igb_rx_bufsz(rx_ring), true);
516                                 }
517                         }
518                 }
519         }
520
521 exit:
522         return;
523 }
524
525 /**
526  *  igb_get_i2c_data - Reads the I2C SDA data bit
527  *  @data: opaque pointer to adapter struct
528  *
529  *  Returns the I2C data bit value
530  **/
531 static int igb_get_i2c_data(void *data)
532 {
533         struct igb_adapter *adapter = (struct igb_adapter *)data;
534         struct e1000_hw *hw = &adapter->hw;
535         s32 i2cctl = rd32(E1000_I2CPARAMS);
536
537         return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539
540 /**
541  *  igb_set_i2c_data - Sets the I2C data bit
542  *  @data: pointer to hardware structure
543  *  @state: I2C data value (0 or 1) to set
544  *
545  *  Sets the I2C data bit
546  **/
547 static void igb_set_i2c_data(void *data, int state)
548 {
549         struct igb_adapter *adapter = (struct igb_adapter *)data;
550         struct e1000_hw *hw = &adapter->hw;
551         s32 i2cctl = rd32(E1000_I2CPARAMS);
552
553         if (state) {
554                 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555         } else {
556                 i2cctl &= ~E1000_I2C_DATA_OE_N;
557                 i2cctl &= ~E1000_I2C_DATA_OUT;
558         }
559
560         wr32(E1000_I2CPARAMS, i2cctl);
561         wrfl();
562 }
563
564 /**
565  *  igb_set_i2c_clk - Sets the I2C SCL clock
566  *  @data: pointer to hardware structure
567  *  @state: state to set clock
568  *
569  *  Sets the I2C clock line to state
570  **/
571 static void igb_set_i2c_clk(void *data, int state)
572 {
573         struct igb_adapter *adapter = (struct igb_adapter *)data;
574         struct e1000_hw *hw = &adapter->hw;
575         s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577         if (state) {
578                 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579         } else {
580                 i2cctl &= ~E1000_I2C_CLK_OUT;
581                 i2cctl &= ~E1000_I2C_CLK_OE_N;
582         }
583         wr32(E1000_I2CPARAMS, i2cctl);
584         wrfl();
585 }
586
587 /**
588  *  igb_get_i2c_clk - Gets the I2C SCL clock state
589  *  @data: pointer to hardware structure
590  *
591  *  Gets the I2C clock state
592  **/
593 static int igb_get_i2c_clk(void *data)
594 {
595         struct igb_adapter *adapter = (struct igb_adapter *)data;
596         struct e1000_hw *hw = &adapter->hw;
597         s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599         return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603         .setsda         = igb_set_i2c_data,
604         .setscl         = igb_set_i2c_clk,
605         .getsda         = igb_get_i2c_data,
606         .getscl         = igb_get_i2c_clk,
607         .udelay         = 5,
608         .timeout        = 20,
609 };
610
611 /**
612  *  igb_get_hw_dev - return device
613  *  @hw: pointer to hardware structure
614  *
615  *  used by hardware layer to print debugging information
616  **/
617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619         struct igb_adapter *adapter = hw->back;
620         return adapter->netdev;
621 }
622
623 static struct pci_driver igb_driver;
624
625 /**
626  *  igb_init_module - Driver Registration Routine
627  *
628  *  igb_init_module is the first routine called when the driver is
629  *  loaded. All it does is register with the PCI subsystem.
630  **/
631 static int __init igb_init_module(void)
632 {
633         int ret;
634
635         pr_info("%s\n", igb_driver_string);
636         pr_info("%s\n", igb_copyright);
637
638 #ifdef CONFIG_IGB_DCA
639         dca_register_notify(&dca_notifier);
640 #endif
641         ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643         if (ret)
644                 dca_unregister_notify(&dca_notifier);
645 #endif
646         return ret;
647 }
648
649 module_init(igb_init_module);
650
651 /**
652  *  igb_exit_module - Driver Exit Cleanup Routine
653  *
654  *  igb_exit_module is called just before the driver is removed
655  *  from memory.
656  **/
657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660         dca_unregister_notify(&dca_notifier);
661 #endif
662         pci_unregister_driver(&igb_driver);
663 }
664
665 module_exit(igb_exit_module);
666
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669  *  igb_cache_ring_register - Descriptor ring to register mapping
670  *  @adapter: board private structure to initialize
671  *
672  *  Once we know the feature-set enabled for the device, we'll cache
673  *  the register offset the descriptor ring is assigned to.
674  **/
675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677         int i = 0, j = 0;
678         u32 rbase_offset = adapter->vfs_allocated_count;
679
680         switch (adapter->hw.mac.type) {
681         case e1000_82576:
682                 /* The queues are allocated for virtualization such that VF 0
683                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684                  * In order to avoid collision we start at the first free queue
685                  * and continue consuming queues in the same sequence
686                  */
687                 if (adapter->vfs_allocated_count) {
688                         for (; i < adapter->rss_queues; i++)
689                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
690                                                                Q_IDX_82576(i);
691                 }
692                 fallthrough;
693         case e1000_82575:
694         case e1000_82580:
695         case e1000_i350:
696         case e1000_i354:
697         case e1000_i210:
698         case e1000_i211:
699         default:
700                 for (; i < adapter->num_rx_queues; i++)
701                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702                 for (; j < adapter->num_tx_queues; j++)
703                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704                 break;
705         }
706 }
707
708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712         u32 value = 0;
713
714         if (E1000_REMOVED(hw_addr))
715                 return ~value;
716
717         value = readl(&hw_addr[reg]);
718
719         /* reads should not return all F's */
720         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721                 struct net_device *netdev = igb->netdev;
722                 hw->hw_addr = NULL;
723                 netdev_err(netdev, "PCIe link lost\n");
724                 WARN(pci_device_is_present(igb->pdev),
725                      "igb: Failed to read reg 0x%x!\n", reg);
726         }
727
728         return value;
729 }
730
731 /**
732  *  igb_write_ivar - configure ivar for given MSI-X vector
733  *  @hw: pointer to the HW structure
734  *  @msix_vector: vector number we are allocating to a given ring
735  *  @index: row index of IVAR register to write within IVAR table
736  *  @offset: column offset of in IVAR, should be multiple of 8
737  *
738  *  This function is intended to handle the writing of the IVAR register
739  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
740  *  each containing an cause allocation for an Rx and Tx ring, and a
741  *  variable number of rows depending on the number of queues supported.
742  **/
743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744                            int index, int offset)
745 {
746         u32 ivar = array_rd32(E1000_IVAR0, index);
747
748         /* clear any bits that are currently set */
749         ivar &= ~((u32)0xFF << offset);
750
751         /* write vector and valid bit */
752         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753
754         array_wr32(E1000_IVAR0, index, ivar);
755 }
756
757 #define IGB_N0_QUEUE -1
758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760         struct igb_adapter *adapter = q_vector->adapter;
761         struct e1000_hw *hw = &adapter->hw;
762         int rx_queue = IGB_N0_QUEUE;
763         int tx_queue = IGB_N0_QUEUE;
764         u32 msixbm = 0;
765
766         if (q_vector->rx.ring)
767                 rx_queue = q_vector->rx.ring->reg_idx;
768         if (q_vector->tx.ring)
769                 tx_queue = q_vector->tx.ring->reg_idx;
770
771         switch (hw->mac.type) {
772         case e1000_82575:
773                 /* The 82575 assigns vectors using a bitmask, which matches the
774                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
775                  * or more queues to a vector, we write the appropriate bits
776                  * into the MSIXBM register for that vector.
777                  */
778                 if (rx_queue > IGB_N0_QUEUE)
779                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780                 if (tx_queue > IGB_N0_QUEUE)
781                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783                         msixbm |= E1000_EIMS_OTHER;
784                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785                 q_vector->eims_value = msixbm;
786                 break;
787         case e1000_82576:
788                 /* 82576 uses a table that essentially consists of 2 columns
789                  * with 8 rows.  The ordering is column-major so we use the
790                  * lower 3 bits as the row index, and the 4th bit as the
791                  * column offset.
792                  */
793                 if (rx_queue > IGB_N0_QUEUE)
794                         igb_write_ivar(hw, msix_vector,
795                                        rx_queue & 0x7,
796                                        (rx_queue & 0x8) << 1);
797                 if (tx_queue > IGB_N0_QUEUE)
798                         igb_write_ivar(hw, msix_vector,
799                                        tx_queue & 0x7,
800                                        ((tx_queue & 0x8) << 1) + 8);
801                 q_vector->eims_value = BIT(msix_vector);
802                 break;
803         case e1000_82580:
804         case e1000_i350:
805         case e1000_i354:
806         case e1000_i210:
807         case e1000_i211:
808                 /* On 82580 and newer adapters the scheme is similar to 82576
809                  * however instead of ordering column-major we have things
810                  * ordered row-major.  So we traverse the table by using
811                  * bit 0 as the column offset, and the remaining bits as the
812                  * row index.
813                  */
814                 if (rx_queue > IGB_N0_QUEUE)
815                         igb_write_ivar(hw, msix_vector,
816                                        rx_queue >> 1,
817                                        (rx_queue & 0x1) << 4);
818                 if (tx_queue > IGB_N0_QUEUE)
819                         igb_write_ivar(hw, msix_vector,
820                                        tx_queue >> 1,
821                                        ((tx_queue & 0x1) << 4) + 8);
822                 q_vector->eims_value = BIT(msix_vector);
823                 break;
824         default:
825                 BUG();
826                 break;
827         }
828
829         /* add q_vector eims value to global eims_enable_mask */
830         adapter->eims_enable_mask |= q_vector->eims_value;
831
832         /* configure q_vector to set itr on first interrupt */
833         q_vector->set_itr = 1;
834 }
835
836 /**
837  *  igb_configure_msix - Configure MSI-X hardware
838  *  @adapter: board private structure to initialize
839  *
840  *  igb_configure_msix sets up the hardware to properly
841  *  generate MSI-X interrupts.
842  **/
843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845         u32 tmp;
846         int i, vector = 0;
847         struct e1000_hw *hw = &adapter->hw;
848
849         adapter->eims_enable_mask = 0;
850
851         /* set vector for other causes, i.e. link changes */
852         switch (hw->mac.type) {
853         case e1000_82575:
854                 tmp = rd32(E1000_CTRL_EXT);
855                 /* enable MSI-X PBA support*/
856                 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858                 /* Auto-Mask interrupts upon ICR read. */
859                 tmp |= E1000_CTRL_EXT_EIAME;
860                 tmp |= E1000_CTRL_EXT_IRCA;
861
862                 wr32(E1000_CTRL_EXT, tmp);
863
864                 /* enable msix_other interrupt */
865                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866                 adapter->eims_other = E1000_EIMS_OTHER;
867
868                 break;
869
870         case e1000_82576:
871         case e1000_82580:
872         case e1000_i350:
873         case e1000_i354:
874         case e1000_i210:
875         case e1000_i211:
876                 /* Turn on MSI-X capability first, or our settings
877                  * won't stick.  And it will take days to debug.
878                  */
879                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
881                      E1000_GPIE_NSICR);
882
883                 /* enable msix_other interrupt */
884                 adapter->eims_other = BIT(vector);
885                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
886
887                 wr32(E1000_IVAR_MISC, tmp);
888                 break;
889         default:
890                 /* do nothing, since nothing else supports MSI-X */
891                 break;
892         } /* switch (hw->mac.type) */
893
894         adapter->eims_enable_mask |= adapter->eims_other;
895
896         for (i = 0; i < adapter->num_q_vectors; i++)
897                 igb_assign_vector(adapter->q_vector[i], vector++);
898
899         wrfl();
900 }
901
902 /**
903  *  igb_request_msix - Initialize MSI-X interrupts
904  *  @adapter: board private structure to initialize
905  *
906  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
907  *  kernel.
908  **/
909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911         unsigned int num_q_vectors = adapter->num_q_vectors;
912         struct net_device *netdev = adapter->netdev;
913         int i, err = 0, vector = 0, free_vector = 0;
914
915         err = request_irq(adapter->msix_entries[vector].vector,
916                           igb_msix_other, 0, netdev->name, adapter);
917         if (err)
918                 goto err_out;
919
920         if (num_q_vectors > MAX_Q_VECTORS) {
921                 num_q_vectors = MAX_Q_VECTORS;
922                 dev_warn(&adapter->pdev->dev,
923                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924                          adapter->num_q_vectors, MAX_Q_VECTORS);
925         }
926         for (i = 0; i < num_q_vectors; i++) {
927                 struct igb_q_vector *q_vector = adapter->q_vector[i];
928
929                 vector++;
930
931                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932
933                 if (q_vector->rx.ring && q_vector->tx.ring)
934                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935                                 q_vector->rx.ring->queue_index);
936                 else if (q_vector->tx.ring)
937                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938                                 q_vector->tx.ring->queue_index);
939                 else if (q_vector->rx.ring)
940                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941                                 q_vector->rx.ring->queue_index);
942                 else
943                         sprintf(q_vector->name, "%s-unused", netdev->name);
944
945                 err = request_irq(adapter->msix_entries[vector].vector,
946                                   igb_msix_ring, 0, q_vector->name,
947                                   q_vector);
948                 if (err)
949                         goto err_free;
950         }
951
952         igb_configure_msix(adapter);
953         return 0;
954
955 err_free:
956         /* free already assigned IRQs */
957         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
958
959         vector--;
960         for (i = 0; i < vector; i++) {
961                 free_irq(adapter->msix_entries[free_vector++].vector,
962                          adapter->q_vector[i]);
963         }
964 err_out:
965         return err;
966 }
967
968 /**
969  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
970  *  @adapter: board private structure to initialize
971  *  @v_idx: Index of vector to be freed
972  *
973  *  This function frees the memory allocated to the q_vector.
974  **/
975 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
976 {
977         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
978
979         adapter->q_vector[v_idx] = NULL;
980
981         /* igb_get_stats64() might access the rings on this vector,
982          * we must wait a grace period before freeing it.
983          */
984         if (q_vector)
985                 kfree_rcu(q_vector, rcu);
986 }
987
988 /**
989  *  igb_reset_q_vector - Reset config for interrupt vector
990  *  @adapter: board private structure to initialize
991  *  @v_idx: Index of vector to be reset
992  *
993  *  If NAPI is enabled it will delete any references to the
994  *  NAPI struct. This is preparation for igb_free_q_vector.
995  **/
996 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1001          * allocated. So, q_vector is NULL so we should stop here.
1002          */
1003         if (!q_vector)
1004                 return;
1005
1006         if (q_vector->tx.ring)
1007                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1008
1009         if (q_vector->rx.ring)
1010                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1011
1012         netif_napi_del(&q_vector->napi);
1013
1014 }
1015
1016 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1017 {
1018         int v_idx = adapter->num_q_vectors;
1019
1020         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1021                 pci_disable_msix(adapter->pdev);
1022         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1023                 pci_disable_msi(adapter->pdev);
1024
1025         while (v_idx--)
1026                 igb_reset_q_vector(adapter, v_idx);
1027 }
1028
1029 /**
1030  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1031  *  @adapter: board private structure to initialize
1032  *
1033  *  This function frees the memory allocated to the q_vectors.  In addition if
1034  *  NAPI is enabled it will delete any references to the NAPI struct prior
1035  *  to freeing the q_vector.
1036  **/
1037 static void igb_free_q_vectors(struct igb_adapter *adapter)
1038 {
1039         int v_idx = adapter->num_q_vectors;
1040
1041         adapter->num_tx_queues = 0;
1042         adapter->num_rx_queues = 0;
1043         adapter->num_q_vectors = 0;
1044
1045         while (v_idx--) {
1046                 igb_reset_q_vector(adapter, v_idx);
1047                 igb_free_q_vector(adapter, v_idx);
1048         }
1049 }
1050
1051 /**
1052  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1053  *  @adapter: board private structure to initialize
1054  *
1055  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1056  *  MSI-X interrupts allocated.
1057  */
1058 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1059 {
1060         igb_free_q_vectors(adapter);
1061         igb_reset_interrupt_capability(adapter);
1062 }
1063
1064 /**
1065  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1066  *  @adapter: board private structure to initialize
1067  *  @msix: boolean value of MSIX capability
1068  *
1069  *  Attempt to configure interrupts using the best available
1070  *  capabilities of the hardware and kernel.
1071  **/
1072 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1073 {
1074         int err;
1075         int numvecs, i;
1076
1077         if (!msix)
1078                 goto msi_only;
1079         adapter->flags |= IGB_FLAG_HAS_MSIX;
1080
1081         /* Number of supported queues. */
1082         adapter->num_rx_queues = adapter->rss_queues;
1083         if (adapter->vfs_allocated_count)
1084                 adapter->num_tx_queues = 1;
1085         else
1086                 adapter->num_tx_queues = adapter->rss_queues;
1087
1088         /* start with one vector for every Rx queue */
1089         numvecs = adapter->num_rx_queues;
1090
1091         /* if Tx handler is separate add 1 for every Tx queue */
1092         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1093                 numvecs += adapter->num_tx_queues;
1094
1095         /* store the number of vectors reserved for queues */
1096         adapter->num_q_vectors = numvecs;
1097
1098         /* add 1 vector for link status interrupts */
1099         numvecs++;
1100         for (i = 0; i < numvecs; i++)
1101                 adapter->msix_entries[i].entry = i;
1102
1103         err = pci_enable_msix_range(adapter->pdev,
1104                                     adapter->msix_entries,
1105                                     numvecs,
1106                                     numvecs);
1107         if (err > 0)
1108                 return;
1109
1110         igb_reset_interrupt_capability(adapter);
1111
1112         /* If we can't do MSI-X, try MSI */
1113 msi_only:
1114         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1115 #ifdef CONFIG_PCI_IOV
1116         /* disable SR-IOV for non MSI-X configurations */
1117         if (adapter->vf_data) {
1118                 struct e1000_hw *hw = &adapter->hw;
1119                 /* disable iov and allow time for transactions to clear */
1120                 pci_disable_sriov(adapter->pdev);
1121                 msleep(500);
1122
1123                 kfree(adapter->vf_mac_list);
1124                 adapter->vf_mac_list = NULL;
1125                 kfree(adapter->vf_data);
1126                 adapter->vf_data = NULL;
1127                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1128                 wrfl();
1129                 msleep(100);
1130                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1131         }
1132 #endif
1133         adapter->vfs_allocated_count = 0;
1134         adapter->rss_queues = 1;
1135         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1136         adapter->num_rx_queues = 1;
1137         adapter->num_tx_queues = 1;
1138         adapter->num_q_vectors = 1;
1139         if (!pci_enable_msi(adapter->pdev))
1140                 adapter->flags |= IGB_FLAG_HAS_MSI;
1141 }
1142
1143 static void igb_add_ring(struct igb_ring *ring,
1144                          struct igb_ring_container *head)
1145 {
1146         head->ring = ring;
1147         head->count++;
1148 }
1149
1150 /**
1151  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1152  *  @adapter: board private structure to initialize
1153  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1154  *  @v_idx: index of vector in adapter struct
1155  *  @txr_count: total number of Tx rings to allocate
1156  *  @txr_idx: index of first Tx ring to allocate
1157  *  @rxr_count: total number of Rx rings to allocate
1158  *  @rxr_idx: index of first Rx ring to allocate
1159  *
1160  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1161  **/
1162 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1163                               int v_count, int v_idx,
1164                               int txr_count, int txr_idx,
1165                               int rxr_count, int rxr_idx)
1166 {
1167         struct igb_q_vector *q_vector;
1168         struct igb_ring *ring;
1169         int ring_count;
1170         size_t size;
1171
1172         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1173         if (txr_count > 1 || rxr_count > 1)
1174                 return -ENOMEM;
1175
1176         ring_count = txr_count + rxr_count;
1177         size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1178
1179         /* allocate q_vector and rings */
1180         q_vector = adapter->q_vector[v_idx];
1181         if (!q_vector) {
1182                 q_vector = kzalloc(size, GFP_KERNEL);
1183         } else if (size > ksize(q_vector)) {
1184                 struct igb_q_vector *new_q_vector;
1185
1186                 new_q_vector = kzalloc(size, GFP_KERNEL);
1187                 if (new_q_vector)
1188                         kfree_rcu(q_vector, rcu);
1189                 q_vector = new_q_vector;
1190         } else {
1191                 memset(q_vector, 0, size);
1192         }
1193         if (!q_vector)
1194                 return -ENOMEM;
1195
1196         /* initialize NAPI */
1197         netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1198
1199         /* tie q_vector and adapter together */
1200         adapter->q_vector[v_idx] = q_vector;
1201         q_vector->adapter = adapter;
1202
1203         /* initialize work limits */
1204         q_vector->tx.work_limit = adapter->tx_work_limit;
1205
1206         /* initialize ITR configuration */
1207         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1208         q_vector->itr_val = IGB_START_ITR;
1209
1210         /* initialize pointer to rings */
1211         ring = q_vector->ring;
1212
1213         /* initialize ITR */
1214         if (rxr_count) {
1215                 /* rx or rx/tx vector */
1216                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1217                         q_vector->itr_val = adapter->rx_itr_setting;
1218         } else {
1219                 /* tx only vector */
1220                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1221                         q_vector->itr_val = adapter->tx_itr_setting;
1222         }
1223
1224         if (txr_count) {
1225                 /* assign generic ring traits */
1226                 ring->dev = &adapter->pdev->dev;
1227                 ring->netdev = adapter->netdev;
1228
1229                 /* configure backlink on ring */
1230                 ring->q_vector = q_vector;
1231
1232                 /* update q_vector Tx values */
1233                 igb_add_ring(ring, &q_vector->tx);
1234
1235                 /* For 82575, context index must be unique per ring. */
1236                 if (adapter->hw.mac.type == e1000_82575)
1237                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1238
1239                 /* apply Tx specific ring traits */
1240                 ring->count = adapter->tx_ring_count;
1241                 ring->queue_index = txr_idx;
1242
1243                 ring->cbs_enable = false;
1244                 ring->idleslope = 0;
1245                 ring->sendslope = 0;
1246                 ring->hicredit = 0;
1247                 ring->locredit = 0;
1248
1249                 u64_stats_init(&ring->tx_syncp);
1250                 u64_stats_init(&ring->tx_syncp2);
1251
1252                 /* assign ring to adapter */
1253                 adapter->tx_ring[txr_idx] = ring;
1254
1255                 /* push pointer to next ring */
1256                 ring++;
1257         }
1258
1259         if (rxr_count) {
1260                 /* assign generic ring traits */
1261                 ring->dev = &adapter->pdev->dev;
1262                 ring->netdev = adapter->netdev;
1263
1264                 /* configure backlink on ring */
1265                 ring->q_vector = q_vector;
1266
1267                 /* update q_vector Rx values */
1268                 igb_add_ring(ring, &q_vector->rx);
1269
1270                 /* set flag indicating ring supports SCTP checksum offload */
1271                 if (adapter->hw.mac.type >= e1000_82576)
1272                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1273
1274                 /* On i350, i354, i210, and i211, loopback VLAN packets
1275                  * have the tag byte-swapped.
1276                  */
1277                 if (adapter->hw.mac.type >= e1000_i350)
1278                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1279
1280                 /* apply Rx specific ring traits */
1281                 ring->count = adapter->rx_ring_count;
1282                 ring->queue_index = rxr_idx;
1283
1284                 u64_stats_init(&ring->rx_syncp);
1285
1286                 /* assign ring to adapter */
1287                 adapter->rx_ring[rxr_idx] = ring;
1288         }
1289
1290         return 0;
1291 }
1292
1293
1294 /**
1295  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1296  *  @adapter: board private structure to initialize
1297  *
1298  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1299  *  return -ENOMEM.
1300  **/
1301 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1302 {
1303         int q_vectors = adapter->num_q_vectors;
1304         int rxr_remaining = adapter->num_rx_queues;
1305         int txr_remaining = adapter->num_tx_queues;
1306         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1307         int err;
1308
1309         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1310                 for (; rxr_remaining; v_idx++) {
1311                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1312                                                  0, 0, 1, rxr_idx);
1313
1314                         if (err)
1315                                 goto err_out;
1316
1317                         /* update counts and index */
1318                         rxr_remaining--;
1319                         rxr_idx++;
1320                 }
1321         }
1322
1323         for (; v_idx < q_vectors; v_idx++) {
1324                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1325                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1326
1327                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1328                                          tqpv, txr_idx, rqpv, rxr_idx);
1329
1330                 if (err)
1331                         goto err_out;
1332
1333                 /* update counts and index */
1334                 rxr_remaining -= rqpv;
1335                 txr_remaining -= tqpv;
1336                 rxr_idx++;
1337                 txr_idx++;
1338         }
1339
1340         return 0;
1341
1342 err_out:
1343         adapter->num_tx_queues = 0;
1344         adapter->num_rx_queues = 0;
1345         adapter->num_q_vectors = 0;
1346
1347         while (v_idx--)
1348                 igb_free_q_vector(adapter, v_idx);
1349
1350         return -ENOMEM;
1351 }
1352
1353 /**
1354  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1355  *  @adapter: board private structure to initialize
1356  *  @msix: boolean value of MSIX capability
1357  *
1358  *  This function initializes the interrupts and allocates all of the queues.
1359  **/
1360 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1361 {
1362         struct pci_dev *pdev = adapter->pdev;
1363         int err;
1364
1365         igb_set_interrupt_capability(adapter, msix);
1366
1367         err = igb_alloc_q_vectors(adapter);
1368         if (err) {
1369                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1370                 goto err_alloc_q_vectors;
1371         }
1372
1373         igb_cache_ring_register(adapter);
1374
1375         return 0;
1376
1377 err_alloc_q_vectors:
1378         igb_reset_interrupt_capability(adapter);
1379         return err;
1380 }
1381
1382 /**
1383  *  igb_request_irq - initialize interrupts
1384  *  @adapter: board private structure to initialize
1385  *
1386  *  Attempts to configure interrupts using the best available
1387  *  capabilities of the hardware and kernel.
1388  **/
1389 static int igb_request_irq(struct igb_adapter *adapter)
1390 {
1391         struct net_device *netdev = adapter->netdev;
1392         struct pci_dev *pdev = adapter->pdev;
1393         int err = 0;
1394
1395         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1396                 err = igb_request_msix(adapter);
1397                 if (!err)
1398                         goto request_done;
1399                 /* fall back to MSI */
1400                 igb_free_all_tx_resources(adapter);
1401                 igb_free_all_rx_resources(adapter);
1402
1403                 igb_clear_interrupt_scheme(adapter);
1404                 err = igb_init_interrupt_scheme(adapter, false);
1405                 if (err)
1406                         goto request_done;
1407
1408                 igb_setup_all_tx_resources(adapter);
1409                 igb_setup_all_rx_resources(adapter);
1410                 igb_configure(adapter);
1411         }
1412
1413         igb_assign_vector(adapter->q_vector[0], 0);
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1416                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1417                                   netdev->name, adapter);
1418                 if (!err)
1419                         goto request_done;
1420
1421                 /* fall back to legacy interrupts */
1422                 igb_reset_interrupt_capability(adapter);
1423                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1424         }
1425
1426         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1427                           netdev->name, adapter);
1428
1429         if (err)
1430                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1431                         err);
1432
1433 request_done:
1434         return err;
1435 }
1436
1437 static void igb_free_irq(struct igb_adapter *adapter)
1438 {
1439         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1440                 int vector = 0, i;
1441
1442                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1443
1444                 for (i = 0; i < adapter->num_q_vectors; i++)
1445                         free_irq(adapter->msix_entries[vector++].vector,
1446                                  adapter->q_vector[i]);
1447         } else {
1448                 free_irq(adapter->pdev->irq, adapter);
1449         }
1450 }
1451
1452 /**
1453  *  igb_irq_disable - Mask off interrupt generation on the NIC
1454  *  @adapter: board private structure
1455  **/
1456 static void igb_irq_disable(struct igb_adapter *adapter)
1457 {
1458         struct e1000_hw *hw = &adapter->hw;
1459
1460         /* we need to be careful when disabling interrupts.  The VFs are also
1461          * mapped into these registers and so clearing the bits can cause
1462          * issues on the VF drivers so we only need to clear what we set
1463          */
1464         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1465                 u32 regval = rd32(E1000_EIAM);
1466
1467                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1468                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1469                 regval = rd32(E1000_EIAC);
1470                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1471         }
1472
1473         wr32(E1000_IAM, 0);
1474         wr32(E1000_IMC, ~0);
1475         wrfl();
1476         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477                 int i;
1478
1479                 for (i = 0; i < adapter->num_q_vectors; i++)
1480                         synchronize_irq(adapter->msix_entries[i].vector);
1481         } else {
1482                 synchronize_irq(adapter->pdev->irq);
1483         }
1484 }
1485
1486 /**
1487  *  igb_irq_enable - Enable default interrupt generation settings
1488  *  @adapter: board private structure
1489  **/
1490 static void igb_irq_enable(struct igb_adapter *adapter)
1491 {
1492         struct e1000_hw *hw = &adapter->hw;
1493
1494         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1496                 u32 regval = rd32(E1000_EIAC);
1497
1498                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1499                 regval = rd32(E1000_EIAM);
1500                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1501                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1502                 if (adapter->vfs_allocated_count) {
1503                         wr32(E1000_MBVFIMR, 0xFF);
1504                         ims |= E1000_IMS_VMMB;
1505                 }
1506                 wr32(E1000_IMS, ims);
1507         } else {
1508                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1509                                 E1000_IMS_DRSTA);
1510                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1511                                 E1000_IMS_DRSTA);
1512         }
1513 }
1514
1515 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1516 {
1517         struct e1000_hw *hw = &adapter->hw;
1518         u16 pf_id = adapter->vfs_allocated_count;
1519         u16 vid = adapter->hw.mng_cookie.vlan_id;
1520         u16 old_vid = adapter->mng_vlan_id;
1521
1522         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1523                 /* add VID to filter table */
1524                 igb_vfta_set(hw, vid, pf_id, true, true);
1525                 adapter->mng_vlan_id = vid;
1526         } else {
1527                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1528         }
1529
1530         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1531             (vid != old_vid) &&
1532             !test_bit(old_vid, adapter->active_vlans)) {
1533                 /* remove VID from filter table */
1534                 igb_vfta_set(hw, vid, pf_id, false, true);
1535         }
1536 }
1537
1538 /**
1539  *  igb_release_hw_control - release control of the h/w to f/w
1540  *  @adapter: address of board private structure
1541  *
1542  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1543  *  For ASF and Pass Through versions of f/w this means that the
1544  *  driver is no longer loaded.
1545  **/
1546 static void igb_release_hw_control(struct igb_adapter *adapter)
1547 {
1548         struct e1000_hw *hw = &adapter->hw;
1549         u32 ctrl_ext;
1550
1551         /* Let firmware take over control of h/w */
1552         ctrl_ext = rd32(E1000_CTRL_EXT);
1553         wr32(E1000_CTRL_EXT,
1554                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1555 }
1556
1557 /**
1558  *  igb_get_hw_control - get control of the h/w from f/w
1559  *  @adapter: address of board private structure
1560  *
1561  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1562  *  For ASF and Pass Through versions of f/w this means that
1563  *  the driver is loaded.
1564  **/
1565 static void igb_get_hw_control(struct igb_adapter *adapter)
1566 {
1567         struct e1000_hw *hw = &adapter->hw;
1568         u32 ctrl_ext;
1569
1570         /* Let firmware know the driver has taken over */
1571         ctrl_ext = rd32(E1000_CTRL_EXT);
1572         wr32(E1000_CTRL_EXT,
1573                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575
1576 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1577 {
1578         struct net_device *netdev = adapter->netdev;
1579         struct e1000_hw *hw = &adapter->hw;
1580
1581         WARN_ON(hw->mac.type != e1000_i210);
1582
1583         if (enable)
1584                 adapter->flags |= IGB_FLAG_FQTSS;
1585         else
1586                 adapter->flags &= ~IGB_FLAG_FQTSS;
1587
1588         if (netif_running(netdev))
1589                 schedule_work(&adapter->reset_task);
1590 }
1591
1592 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1593 {
1594         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1595 }
1596
1597 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1598                                    enum tx_queue_prio prio)
1599 {
1600         u32 val;
1601
1602         WARN_ON(hw->mac.type != e1000_i210);
1603         WARN_ON(queue < 0 || queue > 4);
1604
1605         val = rd32(E1000_I210_TXDCTL(queue));
1606
1607         if (prio == TX_QUEUE_PRIO_HIGH)
1608                 val |= E1000_TXDCTL_PRIORITY;
1609         else
1610                 val &= ~E1000_TXDCTL_PRIORITY;
1611
1612         wr32(E1000_I210_TXDCTL(queue), val);
1613 }
1614
1615 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1616 {
1617         u32 val;
1618
1619         WARN_ON(hw->mac.type != e1000_i210);
1620         WARN_ON(queue < 0 || queue > 1);
1621
1622         val = rd32(E1000_I210_TQAVCC(queue));
1623
1624         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1625                 val |= E1000_TQAVCC_QUEUEMODE;
1626         else
1627                 val &= ~E1000_TQAVCC_QUEUEMODE;
1628
1629         wr32(E1000_I210_TQAVCC(queue), val);
1630 }
1631
1632 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1633 {
1634         int i;
1635
1636         for (i = 0; i < adapter->num_tx_queues; i++) {
1637                 if (adapter->tx_ring[i]->cbs_enable)
1638                         return true;
1639         }
1640
1641         return false;
1642 }
1643
1644 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1645 {
1646         int i;
1647
1648         for (i = 0; i < adapter->num_tx_queues; i++) {
1649                 if (adapter->tx_ring[i]->launchtime_enable)
1650                         return true;
1651         }
1652
1653         return false;
1654 }
1655
1656 /**
1657  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1658  *  @adapter: pointer to adapter struct
1659  *  @queue: queue number
1660  *
1661  *  Configure CBS and Launchtime for a given hardware queue.
1662  *  Parameters are retrieved from the correct Tx ring, so
1663  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1664  *  for setting those correctly prior to this function being called.
1665  **/
1666 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1667 {
1668         struct net_device *netdev = adapter->netdev;
1669         struct e1000_hw *hw = &adapter->hw;
1670         struct igb_ring *ring;
1671         u32 tqavcc, tqavctrl;
1672         u16 value;
1673
1674         WARN_ON(hw->mac.type != e1000_i210);
1675         WARN_ON(queue < 0 || queue > 1);
1676         ring = adapter->tx_ring[queue];
1677
1678         /* If any of the Qav features is enabled, configure queues as SR and
1679          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1680          * as SP.
1681          */
1682         if (ring->cbs_enable || ring->launchtime_enable) {
1683                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1684                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1685         } else {
1686                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1687                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1688         }
1689
1690         /* If CBS is enabled, set DataTranARB and config its parameters. */
1691         if (ring->cbs_enable || queue == 0) {
1692                 /* i210 does not allow the queue 0 to be in the Strict
1693                  * Priority mode while the Qav mode is enabled, so,
1694                  * instead of disabling strict priority mode, we give
1695                  * queue 0 the maximum of credits possible.
1696                  *
1697                  * See section 8.12.19 of the i210 datasheet, "Note:
1698                  * Queue0 QueueMode must be set to 1b when
1699                  * TransmitMode is set to Qav."
1700                  */
1701                 if (queue == 0 && !ring->cbs_enable) {
1702                         /* max "linkspeed" idleslope in kbps */
1703                         ring->idleslope = 1000000;
1704                         ring->hicredit = ETH_FRAME_LEN;
1705                 }
1706
1707                 /* Always set data transfer arbitration to credit-based
1708                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1709                  * the queues.
1710                  */
1711                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1712                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1713                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1714
1715                 /* According to i210 datasheet section 7.2.7.7, we should set
1716                  * the 'idleSlope' field from TQAVCC register following the
1717                  * equation:
1718                  *
1719                  * For 100 Mbps link speed:
1720                  *
1721                  *     value = BW * 0x7735 * 0.2                          (E1)
1722                  *
1723                  * For 1000Mbps link speed:
1724                  *
1725                  *     value = BW * 0x7735 * 2                            (E2)
1726                  *
1727                  * E1 and E2 can be merged into one equation as shown below.
1728                  * Note that 'link-speed' is in Mbps.
1729                  *
1730                  *     value = BW * 0x7735 * 2 * link-speed
1731                  *                           --------------               (E3)
1732                  *                                1000
1733                  *
1734                  * 'BW' is the percentage bandwidth out of full link speed
1735                  * which can be found with the following equation. Note that
1736                  * idleSlope here is the parameter from this function which
1737                  * is in kbps.
1738                  *
1739                  *     BW =     idleSlope
1740                  *          -----------------                             (E4)
1741                  *          link-speed * 1000
1742                  *
1743                  * That said, we can come up with a generic equation to
1744                  * calculate the value we should set it TQAVCC register by
1745                  * replacing 'BW' in E3 by E4. The resulting equation is:
1746                  *
1747                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1748                  *         -----------------            --------------    (E5)
1749                  *         link-speed * 1000                 1000
1750                  *
1751                  * 'link-speed' is present in both sides of the fraction so
1752                  * it is canceled out. The final equation is the following:
1753                  *
1754                  *     value = idleSlope * 61034
1755                  *             -----------------                          (E6)
1756                  *                  1000000
1757                  *
1758                  * NOTE: For i210, given the above, we can see that idleslope
1759                  *       is represented in 16.38431 kbps units by the value at
1760                  *       the TQAVCC register (1Gbps / 61034), which reduces
1761                  *       the granularity for idleslope increments.
1762                  *       For instance, if you want to configure a 2576kbps
1763                  *       idleslope, the value to be written on the register
1764                  *       would have to be 157.23. If rounded down, you end
1765                  *       up with less bandwidth available than originally
1766                  *       required (~2572 kbps). If rounded up, you end up
1767                  *       with a higher bandwidth (~2589 kbps). Below the
1768                  *       approach we take is to always round up the
1769                  *       calculated value, so the resulting bandwidth might
1770                  *       be slightly higher for some configurations.
1771                  */
1772                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1773
1774                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1775                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1776                 tqavcc |= value;
1777                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1778
1779                 wr32(E1000_I210_TQAVHC(queue),
1780                      0x80000000 + ring->hicredit * 0x7735);
1781         } else {
1782
1783                 /* Set idleSlope to zero. */
1784                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1785                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1786                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1787
1788                 /* Set hiCredit to zero. */
1789                 wr32(E1000_I210_TQAVHC(queue), 0);
1790
1791                 /* If CBS is not enabled for any queues anymore, then return to
1792                  * the default state of Data Transmission Arbitration on
1793                  * TQAVCTRL.
1794                  */
1795                 if (!is_any_cbs_enabled(adapter)) {
1796                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1797                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1798                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1799                 }
1800         }
1801
1802         /* If LaunchTime is enabled, set DataTranTIM. */
1803         if (ring->launchtime_enable) {
1804                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1805                  * for any of the SR queues, and configure fetchtime delta.
1806                  * XXX NOTE:
1807                  *     - LaunchTime will be enabled for all SR queues.
1808                  *     - A fixed offset can be added relative to the launch
1809                  *       time of all packets if configured at reg LAUNCH_OS0.
1810                  *       We are keeping it as 0 for now (default value).
1811                  */
1812                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1813                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1814                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1815                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1816         } else {
1817                 /* If Launchtime is not enabled for any SR queues anymore,
1818                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1819                  * effectively disabling Launchtime.
1820                  */
1821                 if (!is_any_txtime_enabled(adapter)) {
1822                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1823                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1824                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1825                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1826                 }
1827         }
1828
1829         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1830          * CBS are not configurable by software so we don't do any 'controller
1831          * configuration' in respect to these parameters.
1832          */
1833
1834         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1835                    ring->cbs_enable ? "enabled" : "disabled",
1836                    ring->launchtime_enable ? "enabled" : "disabled",
1837                    queue,
1838                    ring->idleslope, ring->sendslope,
1839                    ring->hicredit, ring->locredit);
1840 }
1841
1842 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1843                                   bool enable)
1844 {
1845         struct igb_ring *ring;
1846
1847         if (queue < 0 || queue > adapter->num_tx_queues)
1848                 return -EINVAL;
1849
1850         ring = adapter->tx_ring[queue];
1851         ring->launchtime_enable = enable;
1852
1853         return 0;
1854 }
1855
1856 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1857                                bool enable, int idleslope, int sendslope,
1858                                int hicredit, int locredit)
1859 {
1860         struct igb_ring *ring;
1861
1862         if (queue < 0 || queue > adapter->num_tx_queues)
1863                 return -EINVAL;
1864
1865         ring = adapter->tx_ring[queue];
1866
1867         ring->cbs_enable = enable;
1868         ring->idleslope = idleslope;
1869         ring->sendslope = sendslope;
1870         ring->hicredit = hicredit;
1871         ring->locredit = locredit;
1872
1873         return 0;
1874 }
1875
1876 /**
1877  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1878  *  @adapter: pointer to adapter struct
1879  *
1880  *  Configure TQAVCTRL register switching the controller's Tx mode
1881  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1882  *  a call to igb_config_tx_modes() per queue so any previously saved
1883  *  Tx parameters are applied.
1884  **/
1885 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1886 {
1887         struct net_device *netdev = adapter->netdev;
1888         struct e1000_hw *hw = &adapter->hw;
1889         u32 val;
1890
1891         /* Only i210 controller supports changing the transmission mode. */
1892         if (hw->mac.type != e1000_i210)
1893                 return;
1894
1895         if (is_fqtss_enabled(adapter)) {
1896                 int i, max_queue;
1897
1898                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1899                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1900                  * so SP queues wait for SR ones.
1901                  */
1902                 val = rd32(E1000_I210_TQAVCTRL);
1903                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1904                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1905                 wr32(E1000_I210_TQAVCTRL, val);
1906
1907                 /* Configure Tx and Rx packet buffers sizes as described in
1908                  * i210 datasheet section 7.2.7.7.
1909                  */
1910                 val = rd32(E1000_TXPBS);
1911                 val &= ~I210_TXPBSIZE_MASK;
1912                 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1913                         I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1914                 wr32(E1000_TXPBS, val);
1915
1916                 val = rd32(E1000_RXPBS);
1917                 val &= ~I210_RXPBSIZE_MASK;
1918                 val |= I210_RXPBSIZE_PB_30KB;
1919                 wr32(E1000_RXPBS, val);
1920
1921                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1922                  * register should not exceed the buffer size programmed in
1923                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1924                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1925                  * 4kB / 64.
1926                  *
1927                  * However, when we do so, no frame from queue 2 and 3 are
1928                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1929                  * or _equal_ to the buffer size programmed in TXPBS. For this
1930                  * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1931                  */
1932                 val = (4096 - 1) / 64;
1933                 wr32(E1000_I210_DTXMXPKTSZ, val);
1934
1935                 /* Since FQTSS mode is enabled, apply any CBS configuration
1936                  * previously set. If no previous CBS configuration has been
1937                  * done, then the initial configuration is applied, which means
1938                  * CBS is disabled.
1939                  */
1940                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1941                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1942
1943                 for (i = 0; i < max_queue; i++) {
1944                         igb_config_tx_modes(adapter, i);
1945                 }
1946         } else {
1947                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1948                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1949                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1950
1951                 val = rd32(E1000_I210_TQAVCTRL);
1952                 /* According to Section 8.12.21, the other flags we've set when
1953                  * enabling FQTSS are not relevant when disabling FQTSS so we
1954                  * don't set they here.
1955                  */
1956                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1957                 wr32(E1000_I210_TQAVCTRL, val);
1958         }
1959
1960         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1961                    "enabled" : "disabled");
1962 }
1963
1964 /**
1965  *  igb_configure - configure the hardware for RX and TX
1966  *  @adapter: private board structure
1967  **/
1968 static void igb_configure(struct igb_adapter *adapter)
1969 {
1970         struct net_device *netdev = adapter->netdev;
1971         int i;
1972
1973         igb_get_hw_control(adapter);
1974         igb_set_rx_mode(netdev);
1975         igb_setup_tx_mode(adapter);
1976
1977         igb_restore_vlan(adapter);
1978
1979         igb_setup_tctl(adapter);
1980         igb_setup_mrqc(adapter);
1981         igb_setup_rctl(adapter);
1982
1983         igb_nfc_filter_restore(adapter);
1984         igb_configure_tx(adapter);
1985         igb_configure_rx(adapter);
1986
1987         igb_rx_fifo_flush_82575(&adapter->hw);
1988
1989         /* call igb_desc_unused which always leaves
1990          * at least 1 descriptor unused to make sure
1991          * next_to_use != next_to_clean
1992          */
1993         for (i = 0; i < adapter->num_rx_queues; i++) {
1994                 struct igb_ring *ring = adapter->rx_ring[i];
1995                 if (ring->xsk_pool)
1996                         igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
1997                                                 igb_desc_unused(ring));
1998                 else
1999                         igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2000         }
2001 }
2002
2003 /**
2004  *  igb_power_up_link - Power up the phy/serdes link
2005  *  @adapter: address of board private structure
2006  **/
2007 void igb_power_up_link(struct igb_adapter *adapter)
2008 {
2009         igb_reset_phy(&adapter->hw);
2010
2011         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2012                 igb_power_up_phy_copper(&adapter->hw);
2013         else
2014                 igb_power_up_serdes_link_82575(&adapter->hw);
2015
2016         igb_setup_link(&adapter->hw);
2017 }
2018
2019 /**
2020  *  igb_power_down_link - Power down the phy/serdes link
2021  *  @adapter: address of board private structure
2022  */
2023 static void igb_power_down_link(struct igb_adapter *adapter)
2024 {
2025         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2026                 igb_power_down_phy_copper_82575(&adapter->hw);
2027         else
2028                 igb_shutdown_serdes_link_82575(&adapter->hw);
2029 }
2030
2031 /**
2032  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2033  * @adapter: address of the board private structure
2034  **/
2035 static void igb_check_swap_media(struct igb_adapter *adapter)
2036 {
2037         struct e1000_hw *hw = &adapter->hw;
2038         u32 ctrl_ext, connsw;
2039         bool swap_now = false;
2040
2041         ctrl_ext = rd32(E1000_CTRL_EXT);
2042         connsw = rd32(E1000_CONNSW);
2043
2044         /* need to live swap if current media is copper and we have fiber/serdes
2045          * to go to.
2046          */
2047
2048         if ((hw->phy.media_type == e1000_media_type_copper) &&
2049             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2050                 swap_now = true;
2051         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2052                    !(connsw & E1000_CONNSW_SERDESD)) {
2053                 /* copper signal takes time to appear */
2054                 if (adapter->copper_tries < 4) {
2055                         adapter->copper_tries++;
2056                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2057                         wr32(E1000_CONNSW, connsw);
2058                         return;
2059                 } else {
2060                         adapter->copper_tries = 0;
2061                         if ((connsw & E1000_CONNSW_PHYSD) &&
2062                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2063                                 swap_now = true;
2064                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2065                                 wr32(E1000_CONNSW, connsw);
2066                         }
2067                 }
2068         }
2069
2070         if (!swap_now)
2071                 return;
2072
2073         switch (hw->phy.media_type) {
2074         case e1000_media_type_copper:
2075                 netdev_info(adapter->netdev,
2076                         "MAS: changing media to fiber/serdes\n");
2077                 ctrl_ext |=
2078                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2079                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2080                 adapter->copper_tries = 0;
2081                 break;
2082         case e1000_media_type_internal_serdes:
2083         case e1000_media_type_fiber:
2084                 netdev_info(adapter->netdev,
2085                         "MAS: changing media to copper\n");
2086                 ctrl_ext &=
2087                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2088                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2089                 break;
2090         default:
2091                 /* shouldn't get here during regular operation */
2092                 netdev_err(adapter->netdev,
2093                         "AMS: Invalid media type found, returning\n");
2094                 break;
2095         }
2096         wr32(E1000_CTRL_EXT, ctrl_ext);
2097 }
2098
2099 /**
2100  *  igb_up - Open the interface and prepare it to handle traffic
2101  *  @adapter: board private structure
2102  **/
2103 int igb_up(struct igb_adapter *adapter)
2104 {
2105         struct e1000_hw *hw = &adapter->hw;
2106         int i;
2107
2108         /* hardware has been reset, we need to reload some things */
2109         igb_configure(adapter);
2110
2111         clear_bit(__IGB_DOWN, &adapter->state);
2112
2113         for (i = 0; i < adapter->num_q_vectors; i++)
2114                 napi_enable(&(adapter->q_vector[i]->napi));
2115
2116         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2117                 igb_configure_msix(adapter);
2118         else
2119                 igb_assign_vector(adapter->q_vector[0], 0);
2120
2121         /* Clear any pending interrupts. */
2122         rd32(E1000_TSICR);
2123         rd32(E1000_ICR);
2124         igb_irq_enable(adapter);
2125
2126         /* notify VFs that reset has been completed */
2127         if (adapter->vfs_allocated_count) {
2128                 u32 reg_data = rd32(E1000_CTRL_EXT);
2129
2130                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2131                 wr32(E1000_CTRL_EXT, reg_data);
2132         }
2133
2134         netif_tx_start_all_queues(adapter->netdev);
2135
2136         /* start the watchdog. */
2137         hw->mac.get_link_status = 1;
2138         schedule_work(&adapter->watchdog_task);
2139
2140         if ((adapter->flags & IGB_FLAG_EEE) &&
2141             (!hw->dev_spec._82575.eee_disable))
2142                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2143
2144         return 0;
2145 }
2146
2147 void igb_down(struct igb_adapter *adapter)
2148 {
2149         struct net_device *netdev = adapter->netdev;
2150         struct e1000_hw *hw = &adapter->hw;
2151         u32 tctl, rctl;
2152         int i;
2153
2154         /* signal that we're down so the interrupt handler does not
2155          * reschedule our watchdog timer
2156          */
2157         set_bit(__IGB_DOWN, &adapter->state);
2158
2159         /* disable receives in the hardware */
2160         rctl = rd32(E1000_RCTL);
2161         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2162         /* flush and sleep below */
2163
2164         igb_nfc_filter_exit(adapter);
2165
2166         netif_carrier_off(netdev);
2167         netif_tx_stop_all_queues(netdev);
2168
2169         /* disable transmits in the hardware */
2170         tctl = rd32(E1000_TCTL);
2171         tctl &= ~E1000_TCTL_EN;
2172         wr32(E1000_TCTL, tctl);
2173         /* flush both disables and wait for them to finish */
2174         wrfl();
2175         usleep_range(10000, 11000);
2176
2177         igb_irq_disable(adapter);
2178
2179         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2180
2181         for (i = 0; i < adapter->num_q_vectors; i++) {
2182                 if (adapter->q_vector[i]) {
2183                         napi_synchronize(&adapter->q_vector[i]->napi);
2184                         napi_disable(&adapter->q_vector[i]->napi);
2185                 }
2186         }
2187
2188         del_timer_sync(&adapter->watchdog_timer);
2189         del_timer_sync(&adapter->phy_info_timer);
2190
2191         /* record the stats before reset*/
2192         spin_lock(&adapter->stats64_lock);
2193         igb_update_stats(adapter);
2194         spin_unlock(&adapter->stats64_lock);
2195
2196         adapter->link_speed = 0;
2197         adapter->link_duplex = 0;
2198
2199         if (!pci_channel_offline(adapter->pdev))
2200                 igb_reset(adapter);
2201
2202         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2203         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2204
2205         igb_clean_all_tx_rings(adapter);
2206         igb_clean_all_rx_rings(adapter);
2207 #ifdef CONFIG_IGB_DCA
2208
2209         /* since we reset the hardware DCA settings were cleared */
2210         igb_setup_dca(adapter);
2211 #endif
2212 }
2213
2214 void igb_reinit_locked(struct igb_adapter *adapter)
2215 {
2216         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2217                 usleep_range(1000, 2000);
2218         igb_down(adapter);
2219         igb_up(adapter);
2220         clear_bit(__IGB_RESETTING, &adapter->state);
2221 }
2222
2223 /** igb_enable_mas - Media Autosense re-enable after swap
2224  *
2225  * @adapter: adapter struct
2226  **/
2227 static void igb_enable_mas(struct igb_adapter *adapter)
2228 {
2229         struct e1000_hw *hw = &adapter->hw;
2230         u32 connsw = rd32(E1000_CONNSW);
2231
2232         /* configure for SerDes media detect */
2233         if ((hw->phy.media_type == e1000_media_type_copper) &&
2234             (!(connsw & E1000_CONNSW_SERDESD))) {
2235                 connsw |= E1000_CONNSW_ENRGSRC;
2236                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2237                 wr32(E1000_CONNSW, connsw);
2238                 wrfl();
2239         }
2240 }
2241
2242 #ifdef CONFIG_IGB_HWMON
2243 /**
2244  *  igb_set_i2c_bb - Init I2C interface
2245  *  @hw: pointer to hardware structure
2246  **/
2247 static void igb_set_i2c_bb(struct e1000_hw *hw)
2248 {
2249         u32 ctrl_ext;
2250         s32 i2cctl;
2251
2252         ctrl_ext = rd32(E1000_CTRL_EXT);
2253         ctrl_ext |= E1000_CTRL_I2C_ENA;
2254         wr32(E1000_CTRL_EXT, ctrl_ext);
2255         wrfl();
2256
2257         i2cctl = rd32(E1000_I2CPARAMS);
2258         i2cctl |= E1000_I2CBB_EN
2259                 | E1000_I2C_CLK_OE_N
2260                 | E1000_I2C_DATA_OE_N;
2261         wr32(E1000_I2CPARAMS, i2cctl);
2262         wrfl();
2263 }
2264 #endif
2265
2266 void igb_reset(struct igb_adapter *adapter)
2267 {
2268         struct pci_dev *pdev = adapter->pdev;
2269         struct e1000_hw *hw = &adapter->hw;
2270         struct e1000_mac_info *mac = &hw->mac;
2271         struct e1000_fc_info *fc = &hw->fc;
2272         u32 pba, hwm;
2273
2274         /* Repartition Pba for greater than 9k mtu
2275          * To take effect CTRL.RST is required.
2276          */
2277         switch (mac->type) {
2278         case e1000_i350:
2279         case e1000_i354:
2280         case e1000_82580:
2281                 pba = rd32(E1000_RXPBS);
2282                 pba = igb_rxpbs_adjust_82580(pba);
2283                 break;
2284         case e1000_82576:
2285                 pba = rd32(E1000_RXPBS);
2286                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2287                 break;
2288         case e1000_82575:
2289         case e1000_i210:
2290         case e1000_i211:
2291         default:
2292                 pba = E1000_PBA_34K;
2293                 break;
2294         }
2295
2296         if (mac->type == e1000_82575) {
2297                 u32 min_rx_space, min_tx_space, needed_tx_space;
2298
2299                 /* write Rx PBA so that hardware can report correct Tx PBA */
2300                 wr32(E1000_PBA, pba);
2301
2302                 /* To maintain wire speed transmits, the Tx FIFO should be
2303                  * large enough to accommodate two full transmit packets,
2304                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2305                  * the Rx FIFO should be large enough to accommodate at least
2306                  * one full receive packet and is similarly rounded up and
2307                  * expressed in KB.
2308                  */
2309                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2310
2311                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2312                  * but don't include Ethernet FCS because hardware appends it.
2313                  * We only need to round down to the nearest 512 byte block
2314                  * count since the value we care about is 2 frames, not 1.
2315                  */
2316                 min_tx_space = adapter->max_frame_size;
2317                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2318                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2319
2320                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2321                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2322
2323                 /* If current Tx allocation is less than the min Tx FIFO size,
2324                  * and the min Tx FIFO size is less than the current Rx FIFO
2325                  * allocation, take space away from current Rx allocation.
2326                  */
2327                 if (needed_tx_space < pba) {
2328                         pba -= needed_tx_space;
2329
2330                         /* if short on Rx space, Rx wins and must trump Tx
2331                          * adjustment
2332                          */
2333                         if (pba < min_rx_space)
2334                                 pba = min_rx_space;
2335                 }
2336
2337                 /* adjust PBA for jumbo frames */
2338                 wr32(E1000_PBA, pba);
2339         }
2340
2341         /* flow control settings
2342          * The high water mark must be low enough to fit one full frame
2343          * after transmitting the pause frame.  As such we must have enough
2344          * space to allow for us to complete our current transmit and then
2345          * receive the frame that is in progress from the link partner.
2346          * Set it to:
2347          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2348          */
2349         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2350
2351         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2352         fc->low_water = fc->high_water - 16;
2353         fc->pause_time = 0xFFFF;
2354         fc->send_xon = 1;
2355         fc->current_mode = fc->requested_mode;
2356
2357         /* disable receive for all VFs and wait one second */
2358         if (adapter->vfs_allocated_count) {
2359                 int i;
2360
2361                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2362                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2363
2364                 /* ping all the active vfs to let them know we are going down */
2365                 igb_ping_all_vfs(adapter);
2366
2367                 /* disable transmits and receives */
2368                 wr32(E1000_VFRE, 0);
2369                 wr32(E1000_VFTE, 0);
2370         }
2371
2372         /* Allow time for pending master requests to run */
2373         hw->mac.ops.reset_hw(hw);
2374         wr32(E1000_WUC, 0);
2375
2376         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2377                 /* need to resetup here after media swap */
2378                 adapter->ei.get_invariants(hw);
2379                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2380         }
2381         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2382             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2383                 igb_enable_mas(adapter);
2384         }
2385         if (hw->mac.ops.init_hw(hw))
2386                 dev_err(&pdev->dev, "Hardware Error\n");
2387
2388         /* RAR registers were cleared during init_hw, clear mac table */
2389         igb_flush_mac_table(adapter);
2390         __dev_uc_unsync(adapter->netdev, NULL);
2391
2392         /* Recover default RAR entry */
2393         igb_set_default_mac_filter(adapter);
2394
2395         /* Flow control settings reset on hardware reset, so guarantee flow
2396          * control is off when forcing speed.
2397          */
2398         if (!hw->mac.autoneg)
2399                 igb_force_mac_fc(hw);
2400
2401         igb_init_dmac(adapter, pba);
2402 #ifdef CONFIG_IGB_HWMON
2403         /* Re-initialize the thermal sensor on i350 devices. */
2404         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2405                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2406                         /* If present, re-initialize the external thermal sensor
2407                          * interface.
2408                          */
2409                         if (adapter->ets)
2410                                 igb_set_i2c_bb(hw);
2411                         mac->ops.init_thermal_sensor_thresh(hw);
2412                 }
2413         }
2414 #endif
2415         /* Re-establish EEE setting */
2416         if (hw->phy.media_type == e1000_media_type_copper) {
2417                 switch (mac->type) {
2418                 case e1000_i350:
2419                 case e1000_i210:
2420                 case e1000_i211:
2421                         igb_set_eee_i350(hw, true, true);
2422                         break;
2423                 case e1000_i354:
2424                         igb_set_eee_i354(hw, true, true);
2425                         break;
2426                 default:
2427                         break;
2428                 }
2429         }
2430         if (!netif_running(adapter->netdev))
2431                 igb_power_down_link(adapter);
2432
2433         igb_update_mng_vlan(adapter);
2434
2435         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2436         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2437
2438         /* Re-enable PTP, where applicable. */
2439         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2440                 igb_ptp_reset(adapter);
2441
2442         igb_get_phy_info(hw);
2443 }
2444
2445 static netdev_features_t igb_fix_features(struct net_device *netdev,
2446         netdev_features_t features)
2447 {
2448         /* Since there is no support for separate Rx/Tx vlan accel
2449          * enable/disable make sure Tx flag is always in same state as Rx.
2450          */
2451         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2452                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2453         else
2454                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2455
2456         return features;
2457 }
2458
2459 static int igb_set_features(struct net_device *netdev,
2460         netdev_features_t features)
2461 {
2462         netdev_features_t changed = netdev->features ^ features;
2463         struct igb_adapter *adapter = netdev_priv(netdev);
2464
2465         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2466                 igb_vlan_mode(netdev, features);
2467
2468         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2469                 return 0;
2470
2471         if (!(features & NETIF_F_NTUPLE)) {
2472                 struct hlist_node *node2;
2473                 struct igb_nfc_filter *rule;
2474
2475                 spin_lock(&adapter->nfc_lock);
2476                 hlist_for_each_entry_safe(rule, node2,
2477                                           &adapter->nfc_filter_list, nfc_node) {
2478                         igb_erase_filter(adapter, rule);
2479                         hlist_del(&rule->nfc_node);
2480                         kfree(rule);
2481                 }
2482                 spin_unlock(&adapter->nfc_lock);
2483                 adapter->nfc_filter_count = 0;
2484         }
2485
2486         netdev->features = features;
2487
2488         if (netif_running(netdev))
2489                 igb_reinit_locked(adapter);
2490         else
2491                 igb_reset(adapter);
2492
2493         return 1;
2494 }
2495
2496 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2497                            struct net_device *dev,
2498                            const unsigned char *addr, u16 vid,
2499                            u16 flags, bool *notified,
2500                            struct netlink_ext_ack *extack)
2501 {
2502         /* guarantee we can provide a unique filter for the unicast address */
2503         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2504                 struct igb_adapter *adapter = netdev_priv(dev);
2505                 int vfn = adapter->vfs_allocated_count;
2506
2507                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2508                         return -ENOMEM;
2509         }
2510
2511         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2512 }
2513
2514 #define IGB_MAX_MAC_HDR_LEN     127
2515 #define IGB_MAX_NETWORK_HDR_LEN 511
2516
2517 static netdev_features_t
2518 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2519                    netdev_features_t features)
2520 {
2521         unsigned int network_hdr_len, mac_hdr_len;
2522
2523         /* Make certain the headers can be described by a context descriptor */
2524         mac_hdr_len = skb_network_offset(skb);
2525         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2526                 return features & ~(NETIF_F_HW_CSUM |
2527                                     NETIF_F_SCTP_CRC |
2528                                     NETIF_F_GSO_UDP_L4 |
2529                                     NETIF_F_HW_VLAN_CTAG_TX |
2530                                     NETIF_F_TSO |
2531                                     NETIF_F_TSO6);
2532
2533         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2534         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2535                 return features & ~(NETIF_F_HW_CSUM |
2536                                     NETIF_F_SCTP_CRC |
2537                                     NETIF_F_GSO_UDP_L4 |
2538                                     NETIF_F_TSO |
2539                                     NETIF_F_TSO6);
2540
2541         /* We can only support IPV4 TSO in tunnels if we can mangle the
2542          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2543          */
2544         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2545                 features &= ~NETIF_F_TSO;
2546
2547         return features;
2548 }
2549
2550 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2551 {
2552         if (!is_fqtss_enabled(adapter)) {
2553                 enable_fqtss(adapter, true);
2554                 return;
2555         }
2556
2557         igb_config_tx_modes(adapter, queue);
2558
2559         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2560                 enable_fqtss(adapter, false);
2561 }
2562
2563 static int igb_offload_cbs(struct igb_adapter *adapter,
2564                            struct tc_cbs_qopt_offload *qopt)
2565 {
2566         struct e1000_hw *hw = &adapter->hw;
2567         int err;
2568
2569         /* CBS offloading is only supported by i210 controller. */
2570         if (hw->mac.type != e1000_i210)
2571                 return -EOPNOTSUPP;
2572
2573         /* CBS offloading is only supported by queue 0 and queue 1. */
2574         if (qopt->queue < 0 || qopt->queue > 1)
2575                 return -EINVAL;
2576
2577         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2578                                   qopt->idleslope, qopt->sendslope,
2579                                   qopt->hicredit, qopt->locredit);
2580         if (err)
2581                 return err;
2582
2583         igb_offload_apply(adapter, qopt->queue);
2584
2585         return 0;
2586 }
2587
2588 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2589 #define VLAN_PRIO_FULL_MASK (0x07)
2590
2591 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2592                                 struct flow_cls_offload *f,
2593                                 int traffic_class,
2594                                 struct igb_nfc_filter *input)
2595 {
2596         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2597         struct flow_dissector *dissector = rule->match.dissector;
2598         struct netlink_ext_ack *extack = f->common.extack;
2599
2600         if (dissector->used_keys &
2601             ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2602               BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2603               BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2604               BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2605                 NL_SET_ERR_MSG_MOD(extack,
2606                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2607                 return -EOPNOTSUPP;
2608         }
2609
2610         if (flow_rule_match_has_control_flags(rule, extack))
2611                 return -EOPNOTSUPP;
2612
2613         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2614                 struct flow_match_eth_addrs match;
2615
2616                 flow_rule_match_eth_addrs(rule, &match);
2617                 if (!is_zero_ether_addr(match.mask->dst)) {
2618                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2619                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2620                                 return -EINVAL;
2621                         }
2622
2623                         input->filter.match_flags |=
2624                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2625                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2626                 }
2627
2628                 if (!is_zero_ether_addr(match.mask->src)) {
2629                         if (!is_broadcast_ether_addr(match.mask->src)) {
2630                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2631                                 return -EINVAL;
2632                         }
2633
2634                         input->filter.match_flags |=
2635                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2636                         ether_addr_copy(input->filter.src_addr, match.key->src);
2637                 }
2638         }
2639
2640         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2641                 struct flow_match_basic match;
2642
2643                 flow_rule_match_basic(rule, &match);
2644                 if (match.mask->n_proto) {
2645                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2646                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2647                                 return -EINVAL;
2648                         }
2649
2650                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2651                         input->filter.etype = match.key->n_proto;
2652                 }
2653         }
2654
2655         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2656                 struct flow_match_vlan match;
2657
2658                 flow_rule_match_vlan(rule, &match);
2659                 if (match.mask->vlan_priority) {
2660                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2661                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2662                                 return -EINVAL;
2663                         }
2664
2665                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2666                         input->filter.vlan_tci =
2667                                 (__force __be16)match.key->vlan_priority;
2668                 }
2669         }
2670
2671         input->action = traffic_class;
2672         input->cookie = f->cookie;
2673
2674         return 0;
2675 }
2676
2677 static int igb_configure_clsflower(struct igb_adapter *adapter,
2678                                    struct flow_cls_offload *cls_flower)
2679 {
2680         struct netlink_ext_ack *extack = cls_flower->common.extack;
2681         struct igb_nfc_filter *filter, *f;
2682         int err, tc;
2683
2684         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2685         if (tc < 0) {
2686                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2687                 return -EINVAL;
2688         }
2689
2690         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2691         if (!filter)
2692                 return -ENOMEM;
2693
2694         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2695         if (err < 0)
2696                 goto err_parse;
2697
2698         spin_lock(&adapter->nfc_lock);
2699
2700         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2701                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2702                         err = -EEXIST;
2703                         NL_SET_ERR_MSG_MOD(extack,
2704                                            "This filter is already set in ethtool");
2705                         goto err_locked;
2706                 }
2707         }
2708
2709         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2710                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2711                         err = -EEXIST;
2712                         NL_SET_ERR_MSG_MOD(extack,
2713                                            "This filter is already set in cls_flower");
2714                         goto err_locked;
2715                 }
2716         }
2717
2718         err = igb_add_filter(adapter, filter);
2719         if (err < 0) {
2720                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2721                 goto err_locked;
2722         }
2723
2724         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2725
2726         spin_unlock(&adapter->nfc_lock);
2727
2728         return 0;
2729
2730 err_locked:
2731         spin_unlock(&adapter->nfc_lock);
2732
2733 err_parse:
2734         kfree(filter);
2735
2736         return err;
2737 }
2738
2739 static int igb_delete_clsflower(struct igb_adapter *adapter,
2740                                 struct flow_cls_offload *cls_flower)
2741 {
2742         struct igb_nfc_filter *filter;
2743         int err;
2744
2745         spin_lock(&adapter->nfc_lock);
2746
2747         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2748                 if (filter->cookie == cls_flower->cookie)
2749                         break;
2750
2751         if (!filter) {
2752                 err = -ENOENT;
2753                 goto out;
2754         }
2755
2756         err = igb_erase_filter(adapter, filter);
2757         if (err < 0)
2758                 goto out;
2759
2760         hlist_del(&filter->nfc_node);
2761         kfree(filter);
2762
2763 out:
2764         spin_unlock(&adapter->nfc_lock);
2765
2766         return err;
2767 }
2768
2769 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2770                                    struct flow_cls_offload *cls_flower)
2771 {
2772         switch (cls_flower->command) {
2773         case FLOW_CLS_REPLACE:
2774                 return igb_configure_clsflower(adapter, cls_flower);
2775         case FLOW_CLS_DESTROY:
2776                 return igb_delete_clsflower(adapter, cls_flower);
2777         case FLOW_CLS_STATS:
2778                 return -EOPNOTSUPP;
2779         default:
2780                 return -EOPNOTSUPP;
2781         }
2782 }
2783
2784 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2785                                  void *cb_priv)
2786 {
2787         struct igb_adapter *adapter = cb_priv;
2788
2789         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2790                 return -EOPNOTSUPP;
2791
2792         switch (type) {
2793         case TC_SETUP_CLSFLOWER:
2794                 return igb_setup_tc_cls_flower(adapter, type_data);
2795
2796         default:
2797                 return -EOPNOTSUPP;
2798         }
2799 }
2800
2801 static int igb_offload_txtime(struct igb_adapter *adapter,
2802                               struct tc_etf_qopt_offload *qopt)
2803 {
2804         struct e1000_hw *hw = &adapter->hw;
2805         int err;
2806
2807         /* Launchtime offloading is only supported by i210 controller. */
2808         if (hw->mac.type != e1000_i210)
2809                 return -EOPNOTSUPP;
2810
2811         /* Launchtime offloading is only supported by queues 0 and 1. */
2812         if (qopt->queue < 0 || qopt->queue > 1)
2813                 return -EINVAL;
2814
2815         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2816         if (err)
2817                 return err;
2818
2819         igb_offload_apply(adapter, qopt->queue);
2820
2821         return 0;
2822 }
2823
2824 static int igb_tc_query_caps(struct igb_adapter *adapter,
2825                              struct tc_query_caps_base *base)
2826 {
2827         switch (base->type) {
2828         case TC_SETUP_QDISC_TAPRIO: {
2829                 struct tc_taprio_caps *caps = base->caps;
2830
2831                 caps->broken_mqprio = true;
2832
2833                 return 0;
2834         }
2835         default:
2836                 return -EOPNOTSUPP;
2837         }
2838 }
2839
2840 static LIST_HEAD(igb_block_cb_list);
2841
2842 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2843                         void *type_data)
2844 {
2845         struct igb_adapter *adapter = netdev_priv(dev);
2846
2847         switch (type) {
2848         case TC_QUERY_CAPS:
2849                 return igb_tc_query_caps(adapter, type_data);
2850         case TC_SETUP_QDISC_CBS:
2851                 return igb_offload_cbs(adapter, type_data);
2852         case TC_SETUP_BLOCK:
2853                 return flow_block_cb_setup_simple(type_data,
2854                                                   &igb_block_cb_list,
2855                                                   igb_setup_tc_block_cb,
2856                                                   adapter, adapter, true);
2857
2858         case TC_SETUP_QDISC_ETF:
2859                 return igb_offload_txtime(adapter, type_data);
2860
2861         default:
2862                 return -EOPNOTSUPP;
2863         }
2864 }
2865
2866 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2867 {
2868         int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2869         struct igb_adapter *adapter = netdev_priv(dev);
2870         struct bpf_prog *prog = bpf->prog, *old_prog;
2871         bool running = netif_running(dev);
2872         bool need_reset;
2873
2874         /* verify igb ring attributes are sufficient for XDP */
2875         for (i = 0; i < adapter->num_rx_queues; i++) {
2876                 struct igb_ring *ring = adapter->rx_ring[i];
2877
2878                 if (frame_size > igb_rx_bufsz(ring)) {
2879                         NL_SET_ERR_MSG_MOD(bpf->extack,
2880                                            "The RX buffer size is too small for the frame size");
2881                         netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2882                                     igb_rx_bufsz(ring), frame_size);
2883                         return -EINVAL;
2884                 }
2885         }
2886
2887         old_prog = xchg(&adapter->xdp_prog, prog);
2888         need_reset = (!!prog != !!old_prog);
2889
2890         /* device is up and bpf is added/removed, must setup the RX queues */
2891         if (need_reset && running) {
2892                 igb_close(dev);
2893         } else {
2894                 for (i = 0; i < adapter->num_rx_queues; i++)
2895                         (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2896                             adapter->xdp_prog);
2897         }
2898
2899         if (old_prog)
2900                 bpf_prog_put(old_prog);
2901
2902         /* bpf is just replaced, RXQ and MTU are already setup */
2903         if (!need_reset) {
2904                 return 0;
2905         } else {
2906                 if (prog)
2907                         xdp_features_set_redirect_target(dev, true);
2908                 else
2909                         xdp_features_clear_redirect_target(dev);
2910         }
2911
2912         if (running)
2913                 igb_open(dev);
2914
2915         return 0;
2916 }
2917
2918 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2919 {
2920         struct igb_adapter *adapter = netdev_priv(dev);
2921
2922         switch (xdp->command) {
2923         case XDP_SETUP_PROG:
2924                 return igb_xdp_setup(dev, xdp);
2925         case XDP_SETUP_XSK_POOL:
2926                 return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2927                                           xdp->xsk.queue_id);
2928         default:
2929                 return -EINVAL;
2930         }
2931 }
2932
2933 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2934 {
2935         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2936         int cpu = smp_processor_id();
2937         struct igb_ring *tx_ring;
2938         struct netdev_queue *nq;
2939         u32 ret;
2940
2941         if (unlikely(!xdpf))
2942                 return IGB_XDP_CONSUMED;
2943
2944         /* During program transitions its possible adapter->xdp_prog is assigned
2945          * but ring has not been configured yet. In this case simply abort xmit.
2946          */
2947         tx_ring = igb_xdp_is_enabled(adapter) ?
2948                 igb_xdp_tx_queue_mapping(adapter) : NULL;
2949         if (unlikely(!tx_ring))
2950                 return IGB_XDP_CONSUMED;
2951
2952         nq = txring_txq(tx_ring);
2953         __netif_tx_lock(nq, cpu);
2954         /* Avoid transmit queue timeout since we share it with the slow path */
2955         txq_trans_cond_update(nq);
2956         ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2957         __netif_tx_unlock(nq);
2958
2959         return ret;
2960 }
2961
2962 static int igb_xdp_xmit(struct net_device *dev, int n,
2963                         struct xdp_frame **frames, u32 flags)
2964 {
2965         struct igb_adapter *adapter = netdev_priv(dev);
2966         int cpu = smp_processor_id();
2967         struct igb_ring *tx_ring;
2968         struct netdev_queue *nq;
2969         int nxmit = 0;
2970         int i;
2971
2972         if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2973                 return -ENETDOWN;
2974
2975         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2976                 return -EINVAL;
2977
2978         /* During program transitions its possible adapter->xdp_prog is assigned
2979          * but ring has not been configured yet. In this case simply abort xmit.
2980          */
2981         tx_ring = igb_xdp_is_enabled(adapter) ?
2982                 igb_xdp_tx_queue_mapping(adapter) : NULL;
2983         if (unlikely(!tx_ring))
2984                 return -ENXIO;
2985
2986         if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
2987                 return -ENXIO;
2988
2989         nq = txring_txq(tx_ring);
2990         __netif_tx_lock(nq, cpu);
2991
2992         /* Avoid transmit queue timeout since we share it with the slow path */
2993         txq_trans_cond_update(nq);
2994
2995         for (i = 0; i < n; i++) {
2996                 struct xdp_frame *xdpf = frames[i];
2997                 int err;
2998
2999                 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3000                 if (err != IGB_XDP_TX)
3001                         break;
3002                 nxmit++;
3003         }
3004
3005         if (unlikely(flags & XDP_XMIT_FLUSH))
3006                 igb_xdp_ring_update_tail(tx_ring);
3007
3008         __netif_tx_unlock(nq);
3009
3010         return nxmit;
3011 }
3012
3013 static const struct net_device_ops igb_netdev_ops = {
3014         .ndo_open               = igb_open,
3015         .ndo_stop               = igb_close,
3016         .ndo_start_xmit         = igb_xmit_frame,
3017         .ndo_get_stats64        = igb_get_stats64,
3018         .ndo_set_rx_mode        = igb_set_rx_mode,
3019         .ndo_set_mac_address    = igb_set_mac,
3020         .ndo_change_mtu         = igb_change_mtu,
3021         .ndo_eth_ioctl          = igb_ioctl,
3022         .ndo_tx_timeout         = igb_tx_timeout,
3023         .ndo_validate_addr      = eth_validate_addr,
3024         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
3025         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
3026         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
3027         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
3028         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
3029         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
3030         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
3031         .ndo_get_vf_config      = igb_ndo_get_vf_config,
3032         .ndo_fix_features       = igb_fix_features,
3033         .ndo_set_features       = igb_set_features,
3034         .ndo_fdb_add            = igb_ndo_fdb_add,
3035         .ndo_features_check     = igb_features_check,
3036         .ndo_setup_tc           = igb_setup_tc,
3037         .ndo_bpf                = igb_xdp,
3038         .ndo_xdp_xmit           = igb_xdp_xmit,
3039         .ndo_xsk_wakeup         = igb_xsk_wakeup,
3040 };
3041
3042 /**
3043  * igb_set_fw_version - Configure version string for ethtool
3044  * @adapter: adapter struct
3045  **/
3046 void igb_set_fw_version(struct igb_adapter *adapter)
3047 {
3048         struct e1000_hw *hw = &adapter->hw;
3049         struct e1000_fw_version fw;
3050
3051         igb_get_fw_version(hw, &fw);
3052
3053         switch (hw->mac.type) {
3054         case e1000_i210:
3055         case e1000_i211:
3056                 if (!(igb_get_flash_presence_i210(hw))) {
3057                         snprintf(adapter->fw_version,
3058                                  sizeof(adapter->fw_version),
3059                                  "%2d.%2d-%d",
3060                                  fw.invm_major, fw.invm_minor,
3061                                  fw.invm_img_type);
3062                         break;
3063                 }
3064                 fallthrough;
3065         default:
3066                 /* if option rom is valid, display its version too */
3067                 if (fw.or_valid) {
3068                         snprintf(adapter->fw_version,
3069                                  sizeof(adapter->fw_version),
3070                                  "%d.%d, 0x%08x, %d.%d.%d",
3071                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3072                                  fw.or_major, fw.or_build, fw.or_patch);
3073                 /* no option rom */
3074                 } else if (fw.etrack_id != 0X0000) {
3075                         snprintf(adapter->fw_version,
3076                                  sizeof(adapter->fw_version),
3077                                  "%d.%d, 0x%08x",
3078                                  fw.eep_major, fw.eep_minor, fw.etrack_id);
3079                 } else {
3080                         snprintf(adapter->fw_version,
3081                                  sizeof(adapter->fw_version),
3082                                  "%d.%d.%d",
3083                                  fw.eep_major, fw.eep_minor, fw.eep_build);
3084                 }
3085                 break;
3086         }
3087 }
3088
3089 /**
3090  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3091  *
3092  * @adapter: adapter struct
3093  **/
3094 static void igb_init_mas(struct igb_adapter *adapter)
3095 {
3096         struct e1000_hw *hw = &adapter->hw;
3097         u16 eeprom_data;
3098
3099         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3100         switch (hw->bus.func) {
3101         case E1000_FUNC_0:
3102                 if (eeprom_data & IGB_MAS_ENABLE_0) {
3103                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3104                         netdev_info(adapter->netdev,
3105                                 "MAS: Enabling Media Autosense for port %d\n",
3106                                 hw->bus.func);
3107                 }
3108                 break;
3109         case E1000_FUNC_1:
3110                 if (eeprom_data & IGB_MAS_ENABLE_1) {
3111                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3112                         netdev_info(adapter->netdev,
3113                                 "MAS: Enabling Media Autosense for port %d\n",
3114                                 hw->bus.func);
3115                 }
3116                 break;
3117         case E1000_FUNC_2:
3118                 if (eeprom_data & IGB_MAS_ENABLE_2) {
3119                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3120                         netdev_info(adapter->netdev,
3121                                 "MAS: Enabling Media Autosense for port %d\n",
3122                                 hw->bus.func);
3123                 }
3124                 break;
3125         case E1000_FUNC_3:
3126                 if (eeprom_data & IGB_MAS_ENABLE_3) {
3127                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3128                         netdev_info(adapter->netdev,
3129                                 "MAS: Enabling Media Autosense for port %d\n",
3130                                 hw->bus.func);
3131                 }
3132                 break;
3133         default:
3134                 /* Shouldn't get here */
3135                 netdev_err(adapter->netdev,
3136                         "MAS: Invalid port configuration, returning\n");
3137                 break;
3138         }
3139 }
3140
3141 /**
3142  *  igb_init_i2c - Init I2C interface
3143  *  @adapter: pointer to adapter structure
3144  **/
3145 static s32 igb_init_i2c(struct igb_adapter *adapter)
3146 {
3147         s32 status = 0;
3148
3149         /* I2C interface supported on i350 devices */
3150         if (adapter->hw.mac.type != e1000_i350)
3151                 return 0;
3152
3153         /* Initialize the i2c bus which is controlled by the registers.
3154          * This bus will use the i2c_algo_bit structure that implements
3155          * the protocol through toggling of the 4 bits in the register.
3156          */
3157         adapter->i2c_adap.owner = THIS_MODULE;
3158         adapter->i2c_algo = igb_i2c_algo;
3159         adapter->i2c_algo.data = adapter;
3160         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3161         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3162         strscpy(adapter->i2c_adap.name, "igb BB",
3163                 sizeof(adapter->i2c_adap.name));
3164         status = i2c_bit_add_bus(&adapter->i2c_adap);
3165         return status;
3166 }
3167
3168 /**
3169  *  igb_probe - Device Initialization Routine
3170  *  @pdev: PCI device information struct
3171  *  @ent: entry in igb_pci_tbl
3172  *
3173  *  Returns 0 on success, negative on failure
3174  *
3175  *  igb_probe initializes an adapter identified by a pci_dev structure.
3176  *  The OS initialization, configuring of the adapter private structure,
3177  *  and a hardware reset occur.
3178  **/
3179 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3180 {
3181         struct net_device *netdev;
3182         struct igb_adapter *adapter;
3183         struct e1000_hw *hw;
3184         u16 eeprom_data = 0;
3185         s32 ret_val;
3186         static int global_quad_port_a; /* global quad port a indication */
3187         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3188         u8 part_str[E1000_PBANUM_LENGTH];
3189         int err;
3190
3191         /* Catch broken hardware that put the wrong VF device ID in
3192          * the PCIe SR-IOV capability.
3193          */
3194         if (pdev->is_virtfn) {
3195                 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3196                         pci_name(pdev), pdev->vendor, pdev->device);
3197                 return -EINVAL;
3198         }
3199
3200         err = pci_enable_device_mem(pdev);
3201         if (err)
3202                 return err;
3203
3204         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3205         if (err) {
3206                 dev_err(&pdev->dev,
3207                         "No usable DMA configuration, aborting\n");
3208                 goto err_dma;
3209         }
3210
3211         err = pci_request_mem_regions(pdev, igb_driver_name);
3212         if (err)
3213                 goto err_pci_reg;
3214
3215         pci_set_master(pdev);
3216         pci_save_state(pdev);
3217
3218         err = -ENOMEM;
3219         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3220                                    IGB_MAX_TX_QUEUES);
3221         if (!netdev)
3222                 goto err_alloc_etherdev;
3223
3224         SET_NETDEV_DEV(netdev, &pdev->dev);
3225
3226         pci_set_drvdata(pdev, netdev);
3227         adapter = netdev_priv(netdev);
3228         adapter->netdev = netdev;
3229         adapter->pdev = pdev;
3230         hw = &adapter->hw;
3231         hw->back = adapter;
3232         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3233
3234         err = -EIO;
3235         adapter->io_addr = pci_iomap(pdev, 0, 0);
3236         if (!adapter->io_addr)
3237                 goto err_ioremap;
3238         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3239         hw->hw_addr = adapter->io_addr;
3240
3241         netdev->netdev_ops = &igb_netdev_ops;
3242         igb_set_ethtool_ops(netdev);
3243         netdev->watchdog_timeo = 5 * HZ;
3244
3245         strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3246
3247         netdev->mem_start = pci_resource_start(pdev, 0);
3248         netdev->mem_end = pci_resource_end(pdev, 0);
3249
3250         /* PCI config space info */
3251         hw->vendor_id = pdev->vendor;
3252         hw->device_id = pdev->device;
3253         hw->revision_id = pdev->revision;
3254         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3255         hw->subsystem_device_id = pdev->subsystem_device;
3256
3257         /* Copy the default MAC, PHY and NVM function pointers */
3258         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3259         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3260         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3261         /* Initialize skew-specific constants */
3262         err = ei->get_invariants(hw);
3263         if (err)
3264                 goto err_sw_init;
3265
3266         /* setup the private structure */
3267         err = igb_sw_init(adapter);
3268         if (err)
3269                 goto err_sw_init;
3270
3271         igb_get_bus_info_pcie(hw);
3272
3273         hw->phy.autoneg_wait_to_complete = false;
3274
3275         /* Copper options */
3276         if (hw->phy.media_type == e1000_media_type_copper) {
3277                 hw->phy.mdix = AUTO_ALL_MODES;
3278                 hw->phy.disable_polarity_correction = false;
3279                 hw->phy.ms_type = e1000_ms_hw_default;
3280         }
3281
3282         if (igb_check_reset_block(hw))
3283                 dev_info(&pdev->dev,
3284                         "PHY reset is blocked due to SOL/IDER session.\n");
3285
3286         /* features is initialized to 0 in allocation, it might have bits
3287          * set by igb_sw_init so we should use an or instead of an
3288          * assignment.
3289          */
3290         netdev->features |= NETIF_F_SG |
3291                             NETIF_F_TSO |
3292                             NETIF_F_TSO6 |
3293                             NETIF_F_RXHASH |
3294                             NETIF_F_RXCSUM |
3295                             NETIF_F_HW_CSUM;
3296
3297         if (hw->mac.type >= e1000_82576)
3298                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3299
3300         if (hw->mac.type >= e1000_i350)
3301                 netdev->features |= NETIF_F_HW_TC;
3302
3303 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3304                                   NETIF_F_GSO_GRE_CSUM | \
3305                                   NETIF_F_GSO_IPXIP4 | \
3306                                   NETIF_F_GSO_IPXIP6 | \
3307                                   NETIF_F_GSO_UDP_TUNNEL | \
3308                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3309
3310         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3311         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3312
3313         /* copy netdev features into list of user selectable features */
3314         netdev->hw_features |= netdev->features |
3315                                NETIF_F_HW_VLAN_CTAG_RX |
3316                                NETIF_F_HW_VLAN_CTAG_TX |
3317                                NETIF_F_RXALL;
3318
3319         if (hw->mac.type >= e1000_i350)
3320                 netdev->hw_features |= NETIF_F_NTUPLE;
3321
3322         netdev->features |= NETIF_F_HIGHDMA;
3323
3324         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3325         netdev->mpls_features |= NETIF_F_HW_CSUM;
3326         netdev->hw_enc_features |= netdev->vlan_features;
3327
3328         /* set this bit last since it cannot be part of vlan_features */
3329         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3330                             NETIF_F_HW_VLAN_CTAG_RX |
3331                             NETIF_F_HW_VLAN_CTAG_TX;
3332
3333         netdev->priv_flags |= IFF_SUPP_NOFCS;
3334
3335         netdev->priv_flags |= IFF_UNICAST_FLT;
3336         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3337                                NETDEV_XDP_ACT_XSK_ZEROCOPY;
3338
3339         /* MTU range: 68 - 9216 */
3340         netdev->min_mtu = ETH_MIN_MTU;
3341         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3342
3343         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3344
3345         /* before reading the NVM, reset the controller to put the device in a
3346          * known good starting state
3347          */
3348         hw->mac.ops.reset_hw(hw);
3349
3350         /* make sure the NVM is good , i211/i210 parts can have special NVM
3351          * that doesn't contain a checksum
3352          */
3353         switch (hw->mac.type) {
3354         case e1000_i210:
3355         case e1000_i211:
3356                 if (igb_get_flash_presence_i210(hw)) {
3357                         if (hw->nvm.ops.validate(hw) < 0) {
3358                                 dev_err(&pdev->dev,
3359                                         "The NVM Checksum Is Not Valid\n");
3360                                 err = -EIO;
3361                                 goto err_eeprom;
3362                         }
3363                 }
3364                 break;
3365         default:
3366                 if (hw->nvm.ops.validate(hw) < 0) {
3367                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3368                         err = -EIO;
3369                         goto err_eeprom;
3370                 }
3371                 break;
3372         }
3373
3374         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3375                 /* copy the MAC address out of the NVM */
3376                 if (hw->mac.ops.read_mac_addr(hw))
3377                         dev_err(&pdev->dev, "NVM Read Error\n");
3378         }
3379
3380         eth_hw_addr_set(netdev, hw->mac.addr);
3381
3382         if (!is_valid_ether_addr(netdev->dev_addr)) {
3383                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3384                 err = -EIO;
3385                 goto err_eeprom;
3386         }
3387
3388         igb_set_default_mac_filter(adapter);
3389
3390         /* get firmware version for ethtool -i */
3391         igb_set_fw_version(adapter);
3392
3393         /* configure RXPBSIZE and TXPBSIZE */
3394         if (hw->mac.type == e1000_i210) {
3395                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3396                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3397         }
3398
3399         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3400         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3401
3402         INIT_WORK(&adapter->reset_task, igb_reset_task);
3403         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3404
3405         /* Initialize link properties that are user-changeable */
3406         adapter->fc_autoneg = true;
3407         hw->mac.autoneg = true;
3408         hw->phy.autoneg_advertised = 0x2f;
3409
3410         hw->fc.requested_mode = e1000_fc_default;
3411         hw->fc.current_mode = e1000_fc_default;
3412
3413         igb_validate_mdi_setting(hw);
3414
3415         /* By default, support wake on port A */
3416         if (hw->bus.func == 0)
3417                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3418
3419         /* Check the NVM for wake support on non-port A ports */
3420         if (hw->mac.type >= e1000_82580)
3421                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3422                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3423                                  &eeprom_data);
3424         else if (hw->bus.func == 1)
3425                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3426
3427         if (eeprom_data & IGB_EEPROM_APME)
3428                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3429
3430         /* now that we have the eeprom settings, apply the special cases where
3431          * the eeprom may be wrong or the board simply won't support wake on
3432          * lan on a particular port
3433          */
3434         switch (pdev->device) {
3435         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3436                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3437                 break;
3438         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3439         case E1000_DEV_ID_82576_FIBER:
3440         case E1000_DEV_ID_82576_SERDES:
3441                 /* Wake events only supported on port A for dual fiber
3442                  * regardless of eeprom setting
3443                  */
3444                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3445                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446                 break;
3447         case E1000_DEV_ID_82576_QUAD_COPPER:
3448         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3449                 /* if quad port adapter, disable WoL on all but port A */
3450                 if (global_quad_port_a != 0)
3451                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3452                 else
3453                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3454                 /* Reset for multiple quad port adapters */
3455                 if (++global_quad_port_a == 4)
3456                         global_quad_port_a = 0;
3457                 break;
3458         default:
3459                 /* If the device can't wake, don't set software support */
3460                 if (!device_can_wakeup(&adapter->pdev->dev))
3461                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3462         }
3463
3464         /* initialize the wol settings based on the eeprom settings */
3465         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3466                 adapter->wol |= E1000_WUFC_MAG;
3467
3468         /* Some vendors want WoL disabled by default, but still supported */
3469         if ((hw->mac.type == e1000_i350) &&
3470             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3471                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472                 adapter->wol = 0;
3473         }
3474
3475         /* Some vendors want the ability to Use the EEPROM setting as
3476          * enable/disable only, and not for capability
3477          */
3478         if (((hw->mac.type == e1000_i350) ||
3479              (hw->mac.type == e1000_i354)) &&
3480             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3481                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3482                 adapter->wol = 0;
3483         }
3484         if (hw->mac.type == e1000_i350) {
3485                 if (((pdev->subsystem_device == 0x5001) ||
3486                      (pdev->subsystem_device == 0x5002)) &&
3487                                 (hw->bus.func == 0)) {
3488                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3489                         adapter->wol = 0;
3490                 }
3491                 if (pdev->subsystem_device == 0x1F52)
3492                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493         }
3494
3495         device_set_wakeup_enable(&adapter->pdev->dev,
3496                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3497
3498         /* reset the hardware with the new settings */
3499         igb_reset(adapter);
3500
3501         /* Init the I2C interface */
3502         err = igb_init_i2c(adapter);
3503         if (err) {
3504                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3505                 goto err_eeprom;
3506         }
3507
3508         /* let the f/w know that the h/w is now under the control of the
3509          * driver.
3510          */
3511         igb_get_hw_control(adapter);
3512
3513         strcpy(netdev->name, "eth%d");
3514         err = register_netdev(netdev);
3515         if (err)
3516                 goto err_register;
3517
3518         /* carrier off reporting is important to ethtool even BEFORE open */
3519         netif_carrier_off(netdev);
3520
3521 #ifdef CONFIG_IGB_DCA
3522         if (dca_add_requester(&pdev->dev) == 0) {
3523                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3524                 dev_info(&pdev->dev, "DCA enabled\n");
3525                 igb_setup_dca(adapter);
3526         }
3527
3528 #endif
3529 #ifdef CONFIG_IGB_HWMON
3530         /* Initialize the thermal sensor on i350 devices. */
3531         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3532                 u16 ets_word;
3533
3534                 /* Read the NVM to determine if this i350 device supports an
3535                  * external thermal sensor.
3536                  */
3537                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3538                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3539                         adapter->ets = true;
3540                 else
3541                         adapter->ets = false;
3542                 /* Only enable I2C bit banging if an external thermal
3543                  * sensor is supported.
3544                  */
3545                 if (adapter->ets)
3546                         igb_set_i2c_bb(hw);
3547                 hw->mac.ops.init_thermal_sensor_thresh(hw);
3548                 if (igb_sysfs_init(adapter))
3549                         dev_err(&pdev->dev,
3550                                 "failed to allocate sysfs resources\n");
3551         } else {
3552                 adapter->ets = false;
3553         }
3554 #endif
3555         /* Check if Media Autosense is enabled */
3556         adapter->ei = *ei;
3557         if (hw->dev_spec._82575.mas_capable)
3558                 igb_init_mas(adapter);
3559
3560         /* do hw tstamp init after resetting */
3561         igb_ptp_init(adapter);
3562
3563         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3564         /* print bus type/speed/width info, not applicable to i354 */
3565         if (hw->mac.type != e1000_i354) {
3566                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3567                          netdev->name,
3568                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3569                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3570                            "unknown"),
3571                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3572                           "Width x4" :
3573                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3574                           "Width x2" :
3575                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3576                           "Width x1" : "unknown"), netdev->dev_addr);
3577         }
3578
3579         if ((hw->mac.type == e1000_82576 &&
3580              rd32(E1000_EECD) & E1000_EECD_PRES) ||
3581             (hw->mac.type >= e1000_i210 ||
3582              igb_get_flash_presence_i210(hw))) {
3583                 ret_val = igb_read_part_string(hw, part_str,
3584                                                E1000_PBANUM_LENGTH);
3585         } else {
3586                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3587         }
3588
3589         if (ret_val)
3590                 strcpy(part_str, "Unknown");
3591         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3592         dev_info(&pdev->dev,
3593                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3594                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3595                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3596                 adapter->num_rx_queues, adapter->num_tx_queues);
3597         if (hw->phy.media_type == e1000_media_type_copper) {
3598                 switch (hw->mac.type) {
3599                 case e1000_i350:
3600                 case e1000_i210:
3601                 case e1000_i211:
3602                         /* Enable EEE for internal copper PHY devices */
3603                         err = igb_set_eee_i350(hw, true, true);
3604                         if ((!err) &&
3605                             (!hw->dev_spec._82575.eee_disable)) {
3606                                 adapter->eee_advert =
3607                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3608                                 adapter->flags |= IGB_FLAG_EEE;
3609                         }
3610                         break;
3611                 case e1000_i354:
3612                         if ((rd32(E1000_CTRL_EXT) &
3613                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3614                                 err = igb_set_eee_i354(hw, true, true);
3615                                 if ((!err) &&
3616                                         (!hw->dev_spec._82575.eee_disable)) {
3617                                         adapter->eee_advert =
3618                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3619                                         adapter->flags |= IGB_FLAG_EEE;
3620                                 }
3621                         }
3622                         break;
3623                 default:
3624                         break;
3625                 }
3626         }
3627
3628         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3629
3630         pm_runtime_put_noidle(&pdev->dev);
3631         return 0;
3632
3633 err_register:
3634         igb_release_hw_control(adapter);
3635         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3636 err_eeprom:
3637         if (!igb_check_reset_block(hw))
3638                 igb_reset_phy(hw);
3639
3640         if (hw->flash_address)
3641                 iounmap(hw->flash_address);
3642 err_sw_init:
3643         kfree(adapter->mac_table);
3644         kfree(adapter->shadow_vfta);
3645         igb_clear_interrupt_scheme(adapter);
3646 #ifdef CONFIG_PCI_IOV
3647         igb_disable_sriov(pdev, false);
3648 #endif
3649         pci_iounmap(pdev, adapter->io_addr);
3650 err_ioremap:
3651         free_netdev(netdev);
3652 err_alloc_etherdev:
3653         pci_release_mem_regions(pdev);
3654 err_pci_reg:
3655 err_dma:
3656         pci_disable_device(pdev);
3657         return err;
3658 }
3659
3660 #ifdef CONFIG_PCI_IOV
3661 static int igb_sriov_reinit(struct pci_dev *dev)
3662 {
3663         struct net_device *netdev = pci_get_drvdata(dev);
3664         struct igb_adapter *adapter = netdev_priv(netdev);
3665         struct pci_dev *pdev = adapter->pdev;
3666
3667         rtnl_lock();
3668
3669         if (netif_running(netdev))
3670                 igb_close(netdev);
3671         else
3672                 igb_reset(adapter);
3673
3674         igb_clear_interrupt_scheme(adapter);
3675
3676         igb_init_queue_configuration(adapter);
3677
3678         if (igb_init_interrupt_scheme(adapter, true)) {
3679                 rtnl_unlock();
3680                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3681                 return -ENOMEM;
3682         }
3683
3684         if (netif_running(netdev))
3685                 igb_open(netdev);
3686
3687         rtnl_unlock();
3688
3689         return 0;
3690 }
3691
3692 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3693 {
3694         struct net_device *netdev = pci_get_drvdata(pdev);
3695         struct igb_adapter *adapter = netdev_priv(netdev);
3696         struct e1000_hw *hw = &adapter->hw;
3697         unsigned long flags;
3698
3699         /* reclaim resources allocated to VFs */
3700         if (adapter->vf_data) {
3701                 /* disable iov and allow time for transactions to clear */
3702                 if (pci_vfs_assigned(pdev)) {
3703                         dev_warn(&pdev->dev,
3704                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3705                         return -EPERM;
3706                 } else {
3707                         pci_disable_sriov(pdev);
3708                         msleep(500);
3709                 }
3710                 spin_lock_irqsave(&adapter->vfs_lock, flags);
3711                 kfree(adapter->vf_mac_list);
3712                 adapter->vf_mac_list = NULL;
3713                 kfree(adapter->vf_data);
3714                 adapter->vf_data = NULL;
3715                 adapter->vfs_allocated_count = 0;
3716                 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3717                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3718                 wrfl();
3719                 msleep(100);
3720                 dev_info(&pdev->dev, "IOV Disabled\n");
3721
3722                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3723                 adapter->flags |= IGB_FLAG_DMAC;
3724         }
3725
3726         return reinit ? igb_sriov_reinit(pdev) : 0;
3727 }
3728
3729 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3730 {
3731         struct net_device *netdev = pci_get_drvdata(pdev);
3732         struct igb_adapter *adapter = netdev_priv(netdev);
3733         int old_vfs = pci_num_vf(pdev);
3734         struct vf_mac_filter *mac_list;
3735         int err = 0;
3736         int num_vf_mac_filters, i;
3737
3738         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3739                 err = -EPERM;
3740                 goto out;
3741         }
3742         if (!num_vfs)
3743                 goto out;
3744
3745         if (old_vfs) {
3746                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3747                          old_vfs, max_vfs);
3748                 adapter->vfs_allocated_count = old_vfs;
3749         } else
3750                 adapter->vfs_allocated_count = num_vfs;
3751
3752         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3753                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3754
3755         /* if allocation failed then we do not support SR-IOV */
3756         if (!adapter->vf_data) {
3757                 adapter->vfs_allocated_count = 0;
3758                 err = -ENOMEM;
3759                 goto out;
3760         }
3761
3762         /* Due to the limited number of RAR entries calculate potential
3763          * number of MAC filters available for the VFs. Reserve entries
3764          * for PF default MAC, PF MAC filters and at least one RAR entry
3765          * for each VF for VF MAC.
3766          */
3767         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3768                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3769                               adapter->vfs_allocated_count);
3770
3771         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3772                                        sizeof(struct vf_mac_filter),
3773                                        GFP_KERNEL);
3774
3775         mac_list = adapter->vf_mac_list;
3776         INIT_LIST_HEAD(&adapter->vf_macs.l);
3777
3778         if (adapter->vf_mac_list) {
3779                 /* Initialize list of VF MAC filters */
3780                 for (i = 0; i < num_vf_mac_filters; i++) {
3781                         mac_list->vf = -1;
3782                         mac_list->free = true;
3783                         list_add(&mac_list->l, &adapter->vf_macs.l);
3784                         mac_list++;
3785                 }
3786         } else {
3787                 /* If we could not allocate memory for the VF MAC filters
3788                  * we can continue without this feature but warn user.
3789                  */
3790                 dev_err(&pdev->dev,
3791                         "Unable to allocate memory for VF MAC filter list\n");
3792         }
3793
3794         dev_info(&pdev->dev, "%d VFs allocated\n",
3795                  adapter->vfs_allocated_count);
3796         for (i = 0; i < adapter->vfs_allocated_count; i++)
3797                 igb_vf_configure(adapter, i);
3798
3799         /* DMA Coalescing is not supported in IOV mode. */
3800         adapter->flags &= ~IGB_FLAG_DMAC;
3801
3802         if (reinit) {
3803                 err = igb_sriov_reinit(pdev);
3804                 if (err)
3805                         goto err_out;
3806         }
3807
3808         /* only call pci_enable_sriov() if no VFs are allocated already */
3809         if (!old_vfs) {
3810                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3811                 if (err)
3812                         goto err_out;
3813         }
3814
3815         goto out;
3816
3817 err_out:
3818         kfree(adapter->vf_mac_list);
3819         adapter->vf_mac_list = NULL;
3820         kfree(adapter->vf_data);
3821         adapter->vf_data = NULL;
3822         adapter->vfs_allocated_count = 0;
3823 out:
3824         return err;
3825 }
3826
3827 #endif
3828 /**
3829  *  igb_remove_i2c - Cleanup  I2C interface
3830  *  @adapter: pointer to adapter structure
3831  **/
3832 static void igb_remove_i2c(struct igb_adapter *adapter)
3833 {
3834         /* free the adapter bus structure */
3835         i2c_del_adapter(&adapter->i2c_adap);
3836 }
3837
3838 /**
3839  *  igb_remove - Device Removal Routine
3840  *  @pdev: PCI device information struct
3841  *
3842  *  igb_remove is called by the PCI subsystem to alert the driver
3843  *  that it should release a PCI device.  The could be caused by a
3844  *  Hot-Plug event, or because the driver is going to be removed from
3845  *  memory.
3846  **/
3847 static void igb_remove(struct pci_dev *pdev)
3848 {
3849         struct net_device *netdev = pci_get_drvdata(pdev);
3850         struct igb_adapter *adapter = netdev_priv(netdev);
3851         struct e1000_hw *hw = &adapter->hw;
3852
3853         pm_runtime_get_noresume(&pdev->dev);
3854 #ifdef CONFIG_IGB_HWMON
3855         igb_sysfs_exit(adapter);
3856 #endif
3857         igb_remove_i2c(adapter);
3858         igb_ptp_stop(adapter);
3859         /* The watchdog timer may be rescheduled, so explicitly
3860          * disable watchdog from being rescheduled.
3861          */
3862         set_bit(__IGB_DOWN, &adapter->state);
3863         del_timer_sync(&adapter->watchdog_timer);
3864         del_timer_sync(&adapter->phy_info_timer);
3865
3866         cancel_work_sync(&adapter->reset_task);
3867         cancel_work_sync(&adapter->watchdog_task);
3868
3869 #ifdef CONFIG_IGB_DCA
3870         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3871                 dev_info(&pdev->dev, "DCA disabled\n");
3872                 dca_remove_requester(&pdev->dev);
3873                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3874                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3875         }
3876 #endif
3877
3878         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3879          * would have already happened in close and is redundant.
3880          */
3881         igb_release_hw_control(adapter);
3882
3883 #ifdef CONFIG_PCI_IOV
3884         igb_disable_sriov(pdev, false);
3885 #endif
3886
3887         unregister_netdev(netdev);
3888
3889         igb_clear_interrupt_scheme(adapter);
3890
3891         pci_iounmap(pdev, adapter->io_addr);
3892         if (hw->flash_address)
3893                 iounmap(hw->flash_address);
3894         pci_release_mem_regions(pdev);
3895
3896         kfree(adapter->mac_table);
3897         kfree(adapter->shadow_vfta);
3898         free_netdev(netdev);
3899
3900         pci_disable_device(pdev);
3901 }
3902
3903 /**
3904  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3905  *  @adapter: board private structure to initialize
3906  *
3907  *  This function initializes the vf specific data storage and then attempts to
3908  *  allocate the VFs.  The reason for ordering it this way is because it is much
3909  *  more expensive time wise to disable SR-IOV than it is to allocate and free
3910  *  the memory for the VFs.
3911  **/
3912 static void igb_probe_vfs(struct igb_adapter *adapter)
3913 {
3914 #ifdef CONFIG_PCI_IOV
3915         struct pci_dev *pdev = adapter->pdev;
3916         struct e1000_hw *hw = &adapter->hw;
3917
3918         /* Virtualization features not supported on i210 and 82580 family. */
3919         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3920             (hw->mac.type == e1000_82580))
3921                 return;
3922
3923         /* Of the below we really only want the effect of getting
3924          * IGB_FLAG_HAS_MSIX set (if available), without which
3925          * igb_enable_sriov() has no effect.
3926          */
3927         igb_set_interrupt_capability(adapter, true);
3928         igb_reset_interrupt_capability(adapter);
3929
3930         pci_sriov_set_totalvfs(pdev, 7);
3931         igb_enable_sriov(pdev, max_vfs, false);
3932
3933 #endif /* CONFIG_PCI_IOV */
3934 }
3935
3936 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3937 {
3938         struct e1000_hw *hw = &adapter->hw;
3939         unsigned int max_rss_queues;
3940
3941         /* Determine the maximum number of RSS queues supported. */
3942         switch (hw->mac.type) {
3943         case e1000_i211:
3944                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3945                 break;
3946         case e1000_82575:
3947         case e1000_i210:
3948                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3949                 break;
3950         case e1000_i350:
3951                 /* I350 cannot do RSS and SR-IOV at the same time */
3952                 if (!!adapter->vfs_allocated_count) {
3953                         max_rss_queues = 1;
3954                         break;
3955                 }
3956                 fallthrough;
3957         case e1000_82576:
3958                 if (!!adapter->vfs_allocated_count) {
3959                         max_rss_queues = 2;
3960                         break;
3961                 }
3962                 fallthrough;
3963         case e1000_82580:
3964         case e1000_i354:
3965         default:
3966                 max_rss_queues = IGB_MAX_RX_QUEUES;
3967                 break;
3968         }
3969
3970         return max_rss_queues;
3971 }
3972
3973 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3974 {
3975         u32 max_rss_queues;
3976
3977         max_rss_queues = igb_get_max_rss_queues(adapter);
3978         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3979
3980         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3981 }
3982
3983 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3984                               const u32 max_rss_queues)
3985 {
3986         struct e1000_hw *hw = &adapter->hw;
3987
3988         /* Determine if we need to pair queues. */
3989         switch (hw->mac.type) {
3990         case e1000_82575:
3991         case e1000_i211:
3992                 /* Device supports enough interrupts without queue pairing. */
3993                 break;
3994         case e1000_82576:
3995         case e1000_82580:
3996         case e1000_i350:
3997         case e1000_i354:
3998         case e1000_i210:
3999         default:
4000                 /* If rss_queues > half of max_rss_queues, pair the queues in
4001                  * order to conserve interrupts due to limited supply.
4002                  */
4003                 if (adapter->rss_queues > (max_rss_queues / 2))
4004                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4005                 else
4006                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4007                 break;
4008         }
4009 }
4010
4011 /**
4012  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4013  *  @adapter: board private structure to initialize
4014  *
4015  *  igb_sw_init initializes the Adapter private data structure.
4016  *  Fields are initialized based on PCI device information and
4017  *  OS network device settings (MTU size).
4018  **/
4019 static int igb_sw_init(struct igb_adapter *adapter)
4020 {
4021         struct e1000_hw *hw = &adapter->hw;
4022         struct net_device *netdev = adapter->netdev;
4023         struct pci_dev *pdev = adapter->pdev;
4024
4025         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4026
4027         /* set default ring sizes */
4028         adapter->tx_ring_count = IGB_DEFAULT_TXD;
4029         adapter->rx_ring_count = IGB_DEFAULT_RXD;
4030
4031         /* set default ITR values */
4032         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4033         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4034
4035         /* set default work limits */
4036         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4037
4038         adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4039         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4040
4041         spin_lock_init(&adapter->nfc_lock);
4042         spin_lock_init(&adapter->stats64_lock);
4043
4044         /* init spinlock to avoid concurrency of VF resources */
4045         spin_lock_init(&adapter->vfs_lock);
4046 #ifdef CONFIG_PCI_IOV
4047         switch (hw->mac.type) {
4048         case e1000_82576:
4049         case e1000_i350:
4050                 if (max_vfs > 7) {
4051                         dev_warn(&pdev->dev,
4052                                  "Maximum of 7 VFs per PF, using max\n");
4053                         max_vfs = adapter->vfs_allocated_count = 7;
4054                 } else
4055                         adapter->vfs_allocated_count = max_vfs;
4056                 if (adapter->vfs_allocated_count)
4057                         dev_warn(&pdev->dev,
4058                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4059                 break;
4060         default:
4061                 break;
4062         }
4063 #endif /* CONFIG_PCI_IOV */
4064
4065         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4066         adapter->flags |= IGB_FLAG_HAS_MSIX;
4067
4068         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4069                                      sizeof(struct igb_mac_addr),
4070                                      GFP_KERNEL);
4071         if (!adapter->mac_table)
4072                 return -ENOMEM;
4073
4074         igb_probe_vfs(adapter);
4075
4076         igb_init_queue_configuration(adapter);
4077
4078         /* Setup and initialize a copy of the hw vlan table array */
4079         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4080                                        GFP_KERNEL);
4081         if (!adapter->shadow_vfta)
4082                 return -ENOMEM;
4083
4084         /* This call may decrease the number of queues */
4085         if (igb_init_interrupt_scheme(adapter, true)) {
4086                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4087                 return -ENOMEM;
4088         }
4089
4090         /* Explicitly disable IRQ since the NIC can be in any state. */
4091         igb_irq_disable(adapter);
4092
4093         if (hw->mac.type >= e1000_i350)
4094                 adapter->flags &= ~IGB_FLAG_DMAC;
4095
4096         set_bit(__IGB_DOWN, &adapter->state);
4097         return 0;
4098 }
4099
4100 /**
4101  *  __igb_open - Called when a network interface is made active
4102  *  @netdev: network interface device structure
4103  *  @resuming: indicates whether we are in a resume call
4104  *
4105  *  Returns 0 on success, negative value on failure
4106  *
4107  *  The open entry point is called when a network interface is made
4108  *  active by the system (IFF_UP).  At this point all resources needed
4109  *  for transmit and receive operations are allocated, the interrupt
4110  *  handler is registered with the OS, the watchdog timer is started,
4111  *  and the stack is notified that the interface is ready.
4112  **/
4113 static int __igb_open(struct net_device *netdev, bool resuming)
4114 {
4115         struct igb_adapter *adapter = netdev_priv(netdev);
4116         struct e1000_hw *hw = &adapter->hw;
4117         struct pci_dev *pdev = adapter->pdev;
4118         int err;
4119         int i;
4120
4121         /* disallow open during test */
4122         if (test_bit(__IGB_TESTING, &adapter->state)) {
4123                 WARN_ON(resuming);
4124                 return -EBUSY;
4125         }
4126
4127         if (!resuming)
4128                 pm_runtime_get_sync(&pdev->dev);
4129
4130         netif_carrier_off(netdev);
4131
4132         /* allocate transmit descriptors */
4133         err = igb_setup_all_tx_resources(adapter);
4134         if (err)
4135                 goto err_setup_tx;
4136
4137         /* allocate receive descriptors */
4138         err = igb_setup_all_rx_resources(adapter);
4139         if (err)
4140                 goto err_setup_rx;
4141
4142         igb_power_up_link(adapter);
4143
4144         /* before we allocate an interrupt, we must be ready to handle it.
4145          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4146          * as soon as we call pci_request_irq, so we have to setup our
4147          * clean_rx handler before we do so.
4148          */
4149         igb_configure(adapter);
4150
4151         err = igb_request_irq(adapter);
4152         if (err)
4153                 goto err_req_irq;
4154
4155         /* Notify the stack of the actual queue counts. */
4156         err = netif_set_real_num_tx_queues(adapter->netdev,
4157                                            adapter->num_tx_queues);
4158         if (err)
4159                 goto err_set_queues;
4160
4161         err = netif_set_real_num_rx_queues(adapter->netdev,
4162                                            adapter->num_rx_queues);
4163         if (err)
4164                 goto err_set_queues;
4165
4166         /* From here on the code is the same as igb_up() */
4167         clear_bit(__IGB_DOWN, &adapter->state);
4168
4169         for (i = 0; i < adapter->num_q_vectors; i++)
4170                 napi_enable(&(adapter->q_vector[i]->napi));
4171
4172         /* Clear any pending interrupts. */
4173         rd32(E1000_TSICR);
4174         rd32(E1000_ICR);
4175
4176         igb_irq_enable(adapter);
4177
4178         /* notify VFs that reset has been completed */
4179         if (adapter->vfs_allocated_count) {
4180                 u32 reg_data = rd32(E1000_CTRL_EXT);
4181
4182                 reg_data |= E1000_CTRL_EXT_PFRSTD;
4183                 wr32(E1000_CTRL_EXT, reg_data);
4184         }
4185
4186         netif_tx_start_all_queues(netdev);
4187
4188         if (!resuming)
4189                 pm_runtime_put(&pdev->dev);
4190
4191         /* start the watchdog. */
4192         hw->mac.get_link_status = 1;
4193         schedule_work(&adapter->watchdog_task);
4194
4195         return 0;
4196
4197 err_set_queues:
4198         igb_free_irq(adapter);
4199 err_req_irq:
4200         igb_release_hw_control(adapter);
4201         igb_power_down_link(adapter);
4202         igb_free_all_rx_resources(adapter);
4203 err_setup_rx:
4204         igb_free_all_tx_resources(adapter);
4205 err_setup_tx:
4206         igb_reset(adapter);
4207         if (!resuming)
4208                 pm_runtime_put(&pdev->dev);
4209
4210         return err;
4211 }
4212
4213 int igb_open(struct net_device *netdev)
4214 {
4215         return __igb_open(netdev, false);
4216 }
4217
4218 /**
4219  *  __igb_close - Disables a network interface
4220  *  @netdev: network interface device structure
4221  *  @suspending: indicates we are in a suspend call
4222  *
4223  *  Returns 0, this is not allowed to fail
4224  *
4225  *  The close entry point is called when an interface is de-activated
4226  *  by the OS.  The hardware is still under the driver's control, but
4227  *  needs to be disabled.  A global MAC reset is issued to stop the
4228  *  hardware, and all transmit and receive resources are freed.
4229  **/
4230 static int __igb_close(struct net_device *netdev, bool suspending)
4231 {
4232         struct igb_adapter *adapter = netdev_priv(netdev);
4233         struct pci_dev *pdev = adapter->pdev;
4234
4235         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4236
4237         if (!suspending)
4238                 pm_runtime_get_sync(&pdev->dev);
4239
4240         igb_down(adapter);
4241         igb_free_irq(adapter);
4242
4243         igb_free_all_tx_resources(adapter);
4244         igb_free_all_rx_resources(adapter);
4245
4246         if (!suspending)
4247                 pm_runtime_put_sync(&pdev->dev);
4248         return 0;
4249 }
4250
4251 int igb_close(struct net_device *netdev)
4252 {
4253         if (netif_device_present(netdev) || netdev->dismantle)
4254                 return __igb_close(netdev, false);
4255         return 0;
4256 }
4257
4258 /**
4259  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4260  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4261  *
4262  *  Return 0 on success, negative on failure
4263  **/
4264 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4265 {
4266         struct device *dev = tx_ring->dev;
4267         int size;
4268
4269         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4270
4271         tx_ring->tx_buffer_info = vmalloc(size);
4272         if (!tx_ring->tx_buffer_info)
4273                 goto err;
4274
4275         /* round up to nearest 4K */
4276         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4277         tx_ring->size = ALIGN(tx_ring->size, 4096);
4278
4279         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4280                                            &tx_ring->dma, GFP_KERNEL);
4281         if (!tx_ring->desc)
4282                 goto err;
4283
4284         tx_ring->next_to_use = 0;
4285         tx_ring->next_to_clean = 0;
4286
4287         return 0;
4288
4289 err:
4290         vfree(tx_ring->tx_buffer_info);
4291         tx_ring->tx_buffer_info = NULL;
4292         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4293         return -ENOMEM;
4294 }
4295
4296 /**
4297  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4298  *                               (Descriptors) for all queues
4299  *  @adapter: board private structure
4300  *
4301  *  Return 0 on success, negative on failure
4302  **/
4303 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4304 {
4305         struct pci_dev *pdev = adapter->pdev;
4306         int i, err = 0;
4307
4308         for (i = 0; i < adapter->num_tx_queues; i++) {
4309                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4310                 if (err) {
4311                         dev_err(&pdev->dev,
4312                                 "Allocation for Tx Queue %u failed\n", i);
4313                         for (i--; i >= 0; i--)
4314                                 igb_free_tx_resources(adapter->tx_ring[i]);
4315                         break;
4316                 }
4317         }
4318
4319         return err;
4320 }
4321
4322 /**
4323  *  igb_setup_tctl - configure the transmit control registers
4324  *  @adapter: Board private structure
4325  **/
4326 void igb_setup_tctl(struct igb_adapter *adapter)
4327 {
4328         struct e1000_hw *hw = &adapter->hw;
4329         u32 tctl;
4330
4331         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4332         wr32(E1000_TXDCTL(0), 0);
4333
4334         /* Program the Transmit Control Register */
4335         tctl = rd32(E1000_TCTL);
4336         tctl &= ~E1000_TCTL_CT;
4337         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4338                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4339
4340         igb_config_collision_dist(hw);
4341
4342         /* Enable transmits */
4343         tctl |= E1000_TCTL_EN;
4344
4345         wr32(E1000_TCTL, tctl);
4346 }
4347
4348 /**
4349  *  igb_configure_tx_ring - Configure transmit ring after Reset
4350  *  @adapter: board private structure
4351  *  @ring: tx ring to configure
4352  *
4353  *  Configure a transmit ring after a reset.
4354  **/
4355 void igb_configure_tx_ring(struct igb_adapter *adapter,
4356                            struct igb_ring *ring)
4357 {
4358         struct e1000_hw *hw = &adapter->hw;
4359         u32 txdctl = 0;
4360         u64 tdba = ring->dma;
4361         int reg_idx = ring->reg_idx;
4362
4363         WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4364
4365         wr32(E1000_TDLEN(reg_idx),
4366              ring->count * sizeof(union e1000_adv_tx_desc));
4367         wr32(E1000_TDBAL(reg_idx),
4368              tdba & 0x00000000ffffffffULL);
4369         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4370
4371         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4372         wr32(E1000_TDH(reg_idx), 0);
4373         writel(0, ring->tail);
4374
4375         txdctl |= IGB_TX_PTHRESH;
4376         txdctl |= IGB_TX_HTHRESH << 8;
4377         txdctl |= IGB_TX_WTHRESH << 16;
4378
4379         /* reinitialize tx_buffer_info */
4380         memset(ring->tx_buffer_info, 0,
4381                sizeof(struct igb_tx_buffer) * ring->count);
4382
4383         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4384         wr32(E1000_TXDCTL(reg_idx), txdctl);
4385 }
4386
4387 /**
4388  *  igb_configure_tx - Configure transmit Unit after Reset
4389  *  @adapter: board private structure
4390  *
4391  *  Configure the Tx unit of the MAC after a reset.
4392  **/
4393 static void igb_configure_tx(struct igb_adapter *adapter)
4394 {
4395         struct e1000_hw *hw = &adapter->hw;
4396         int i;
4397
4398         /* disable the queues */
4399         for (i = 0; i < adapter->num_tx_queues; i++)
4400                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4401
4402         wrfl();
4403         usleep_range(10000, 20000);
4404
4405         for (i = 0; i < adapter->num_tx_queues; i++)
4406                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4407 }
4408
4409 /**
4410  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4411  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4412  *
4413  *  Returns 0 on success, negative on failure
4414  **/
4415 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4416 {
4417         struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4418         struct device *dev = rx_ring->dev;
4419         int size, res;
4420
4421         /* XDP RX-queue info */
4422         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4423                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4424         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4425                                rx_ring->queue_index,
4426                                rx_ring->q_vector->napi.napi_id);
4427         if (res < 0) {
4428                 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4429                         rx_ring->queue_index);
4430                 return res;
4431         }
4432
4433         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4434
4435         rx_ring->rx_buffer_info = vmalloc(size);
4436         if (!rx_ring->rx_buffer_info)
4437                 goto err;
4438
4439         /* Round up to nearest 4K */
4440         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4441         rx_ring->size = ALIGN(rx_ring->size, 4096);
4442
4443         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4444                                            &rx_ring->dma, GFP_KERNEL);
4445         if (!rx_ring->desc)
4446                 goto err;
4447
4448         rx_ring->next_to_alloc = 0;
4449         rx_ring->next_to_clean = 0;
4450         rx_ring->next_to_use = 0;
4451
4452         rx_ring->xdp_prog = adapter->xdp_prog;
4453
4454         return 0;
4455
4456 err:
4457         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4458         vfree(rx_ring->rx_buffer_info);
4459         rx_ring->rx_buffer_info = NULL;
4460         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4461         return -ENOMEM;
4462 }
4463
4464 /**
4465  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4466  *                               (Descriptors) for all queues
4467  *  @adapter: board private structure
4468  *
4469  *  Return 0 on success, negative on failure
4470  **/
4471 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4472 {
4473         struct pci_dev *pdev = adapter->pdev;
4474         int i, err = 0;
4475
4476         for (i = 0; i < adapter->num_rx_queues; i++) {
4477                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4478                 if (err) {
4479                         dev_err(&pdev->dev,
4480                                 "Allocation for Rx Queue %u failed\n", i);
4481                         for (i--; i >= 0; i--)
4482                                 igb_free_rx_resources(adapter->rx_ring[i]);
4483                         break;
4484                 }
4485         }
4486
4487         return err;
4488 }
4489
4490 /**
4491  *  igb_setup_mrqc - configure the multiple receive queue control registers
4492  *  @adapter: Board private structure
4493  **/
4494 static void igb_setup_mrqc(struct igb_adapter *adapter)
4495 {
4496         struct e1000_hw *hw = &adapter->hw;
4497         u32 mrqc, rxcsum;
4498         u32 j, num_rx_queues;
4499         u32 rss_key[10];
4500
4501         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4502         for (j = 0; j < 10; j++)
4503                 wr32(E1000_RSSRK(j), rss_key[j]);
4504
4505         num_rx_queues = adapter->rss_queues;
4506
4507         switch (hw->mac.type) {
4508         case e1000_82576:
4509                 /* 82576 supports 2 RSS queues for SR-IOV */
4510                 if (adapter->vfs_allocated_count)
4511                         num_rx_queues = 2;
4512                 break;
4513         default:
4514                 break;
4515         }
4516
4517         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4518                 for (j = 0; j < IGB_RETA_SIZE; j++)
4519                         adapter->rss_indir_tbl[j] =
4520                         (j * num_rx_queues) / IGB_RETA_SIZE;
4521                 adapter->rss_indir_tbl_init = num_rx_queues;
4522         }
4523         igb_write_rss_indir_tbl(adapter);
4524
4525         /* Disable raw packet checksumming so that RSS hash is placed in
4526          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4527          * offloads as they are enabled by default
4528          */
4529         rxcsum = rd32(E1000_RXCSUM);
4530         rxcsum |= E1000_RXCSUM_PCSD;
4531
4532         if (adapter->hw.mac.type >= e1000_82576)
4533                 /* Enable Receive Checksum Offload for SCTP */
4534                 rxcsum |= E1000_RXCSUM_CRCOFL;
4535
4536         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4537         wr32(E1000_RXCSUM, rxcsum);
4538
4539         /* Generate RSS hash based on packet types, TCP/UDP
4540          * port numbers and/or IPv4/v6 src and dst addresses
4541          */
4542         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4543                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4544                E1000_MRQC_RSS_FIELD_IPV6 |
4545                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4546                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4547
4548         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4549                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4550         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4551                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4552
4553         /* If VMDq is enabled then we set the appropriate mode for that, else
4554          * we default to RSS so that an RSS hash is calculated per packet even
4555          * if we are only using one queue
4556          */
4557         if (adapter->vfs_allocated_count) {
4558                 if (hw->mac.type > e1000_82575) {
4559                         /* Set the default pool for the PF's first queue */
4560                         u32 vtctl = rd32(E1000_VT_CTL);
4561
4562                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4563                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4564                         vtctl |= adapter->vfs_allocated_count <<
4565                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4566                         wr32(E1000_VT_CTL, vtctl);
4567                 }
4568                 if (adapter->rss_queues > 1)
4569                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4570                 else
4571                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4572         } else {
4573                 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4574         }
4575         igb_vmm_control(adapter);
4576
4577         wr32(E1000_MRQC, mrqc);
4578 }
4579
4580 /**
4581  *  igb_setup_rctl - configure the receive control registers
4582  *  @adapter: Board private structure
4583  **/
4584 void igb_setup_rctl(struct igb_adapter *adapter)
4585 {
4586         struct e1000_hw *hw = &adapter->hw;
4587         u32 rctl;
4588
4589         rctl = rd32(E1000_RCTL);
4590
4591         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4592         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4593
4594         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4595                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4596
4597         /* enable stripping of CRC. It's unlikely this will break BMC
4598          * redirection as it did with e1000. Newer features require
4599          * that the HW strips the CRC.
4600          */
4601         rctl |= E1000_RCTL_SECRC;
4602
4603         /* disable store bad packets and clear size bits. */
4604         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4605
4606         /* enable LPE to allow for reception of jumbo frames */
4607         rctl |= E1000_RCTL_LPE;
4608
4609         /* disable queue 0 to prevent tail write w/o re-config */
4610         wr32(E1000_RXDCTL(0), 0);
4611
4612         /* Attention!!!  For SR-IOV PF driver operations you must enable
4613          * queue drop for all VF and PF queues to prevent head of line blocking
4614          * if an un-trusted VF does not provide descriptors to hardware.
4615          */
4616         if (adapter->vfs_allocated_count) {
4617                 /* set all queue drop enable bits */
4618                 wr32(E1000_QDE, ALL_QUEUES);
4619         }
4620
4621         /* This is useful for sniffing bad packets. */
4622         if (adapter->netdev->features & NETIF_F_RXALL) {
4623                 /* UPE and MPE will be handled by normal PROMISC logic
4624                  * in e1000e_set_rx_mode
4625                  */
4626                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4627                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4628                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4629
4630                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4631                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4632                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4633                  * and that breaks VLANs.
4634                  */
4635         }
4636
4637         wr32(E1000_RCTL, rctl);
4638 }
4639
4640 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4641                                    int vfn)
4642 {
4643         struct e1000_hw *hw = &adapter->hw;
4644         u32 vmolr;
4645
4646         if (size > MAX_JUMBO_FRAME_SIZE)
4647                 size = MAX_JUMBO_FRAME_SIZE;
4648
4649         vmolr = rd32(E1000_VMOLR(vfn));
4650         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4651         vmolr |= size | E1000_VMOLR_LPE;
4652         wr32(E1000_VMOLR(vfn), vmolr);
4653
4654         return 0;
4655 }
4656
4657 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4658                                          int vfn, bool enable)
4659 {
4660         struct e1000_hw *hw = &adapter->hw;
4661         u32 val, reg;
4662
4663         if (hw->mac.type < e1000_82576)
4664                 return;
4665
4666         if (hw->mac.type == e1000_i350)
4667                 reg = E1000_DVMOLR(vfn);
4668         else
4669                 reg = E1000_VMOLR(vfn);
4670
4671         val = rd32(reg);
4672         if (enable)
4673                 val |= E1000_VMOLR_STRVLAN;
4674         else
4675                 val &= ~(E1000_VMOLR_STRVLAN);
4676         wr32(reg, val);
4677 }
4678
4679 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4680                                  int vfn, bool aupe)
4681 {
4682         struct e1000_hw *hw = &adapter->hw;
4683         u32 vmolr;
4684
4685         /* This register exists only on 82576 and newer so if we are older then
4686          * we should exit and do nothing
4687          */
4688         if (hw->mac.type < e1000_82576)
4689                 return;
4690
4691         vmolr = rd32(E1000_VMOLR(vfn));
4692         if (aupe)
4693                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4694         else
4695                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4696
4697         /* clear all bits that might not be set */
4698         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4699
4700         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4701                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4702         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4703          * multicast packets
4704          */
4705         if (vfn <= adapter->vfs_allocated_count)
4706                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4707
4708         wr32(E1000_VMOLR(vfn), vmolr);
4709 }
4710
4711 /**
4712  *  igb_setup_srrctl - configure the split and replication receive control
4713  *                     registers
4714  *  @adapter: Board private structure
4715  *  @ring: receive ring to be configured
4716  **/
4717 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4718 {
4719         struct e1000_hw *hw = &adapter->hw;
4720         int reg_idx = ring->reg_idx;
4721         u32 srrctl = 0;
4722         u32 buf_size;
4723
4724         if (ring->xsk_pool)
4725                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4726         else if (ring_uses_large_buffer(ring))
4727                 buf_size = IGB_RXBUFFER_3072;
4728         else
4729                 buf_size = IGB_RXBUFFER_2048;
4730
4731         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4732         srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4733         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4734         if (hw->mac.type >= e1000_82580)
4735                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4736         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4737          * queues and rx flow control is disabled
4738          */
4739         if (adapter->vfs_allocated_count ||
4740             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4741              adapter->num_rx_queues > 1))
4742                 srrctl |= E1000_SRRCTL_DROP_EN;
4743
4744         wr32(E1000_SRRCTL(reg_idx), srrctl);
4745 }
4746
4747 /**
4748  *  igb_configure_rx_ring - Configure a receive ring after Reset
4749  *  @adapter: board private structure
4750  *  @ring: receive ring to be configured
4751  *
4752  *  Configure the Rx unit of the MAC after a reset.
4753  **/
4754 void igb_configure_rx_ring(struct igb_adapter *adapter,
4755                            struct igb_ring *ring)
4756 {
4757         struct e1000_hw *hw = &adapter->hw;
4758         union e1000_adv_rx_desc *rx_desc;
4759         u64 rdba = ring->dma;
4760         int reg_idx = ring->reg_idx;
4761         u32 rxdctl = 0;
4762
4763         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4764         WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4765         if (ring->xsk_pool) {
4766                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4767                                                    MEM_TYPE_XSK_BUFF_POOL,
4768                                                    NULL));
4769                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4770         } else {
4771                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4772                                                    MEM_TYPE_PAGE_SHARED,
4773                                                    NULL));
4774         }
4775
4776         /* disable the queue */
4777         wr32(E1000_RXDCTL(reg_idx), 0);
4778
4779         /* Set DMA base address registers */
4780         wr32(E1000_RDBAL(reg_idx),
4781              rdba & 0x00000000ffffffffULL);
4782         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4783         wr32(E1000_RDLEN(reg_idx),
4784              ring->count * sizeof(union e1000_adv_rx_desc));
4785
4786         /* initialize head and tail */
4787         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4788         wr32(E1000_RDH(reg_idx), 0);
4789         writel(0, ring->tail);
4790
4791         /* set descriptor configuration */
4792         igb_setup_srrctl(adapter, ring);
4793
4794         /* set filtering for VMDQ pools */
4795         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4796
4797         rxdctl |= IGB_RX_PTHRESH;
4798         rxdctl |= IGB_RX_HTHRESH << 8;
4799         rxdctl |= IGB_RX_WTHRESH << 16;
4800
4801         if (ring->xsk_pool)
4802                 memset(ring->rx_buffer_info_zc, 0,
4803                        sizeof(*ring->rx_buffer_info_zc) * ring->count);
4804         else
4805                 memset(ring->rx_buffer_info, 0,
4806                        sizeof(*ring->rx_buffer_info) * ring->count);
4807
4808         /* initialize Rx descriptor 0 */
4809         rx_desc = IGB_RX_DESC(ring, 0);
4810         rx_desc->wb.upper.length = 0;
4811
4812         /* enable receive descriptor fetching */
4813         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4814         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4815 }
4816
4817 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4818                                   struct igb_ring *rx_ring)
4819 {
4820 #if (PAGE_SIZE < 8192)
4821         struct e1000_hw *hw = &adapter->hw;
4822 #endif
4823
4824         /* set build_skb and buffer size flags */
4825         clear_ring_build_skb_enabled(rx_ring);
4826         clear_ring_uses_large_buffer(rx_ring);
4827
4828         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4829                 return;
4830
4831         set_ring_build_skb_enabled(rx_ring);
4832
4833 #if (PAGE_SIZE < 8192)
4834         if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4835             IGB_2K_TOO_SMALL_WITH_PADDING ||
4836             rd32(E1000_RCTL) & E1000_RCTL_SBP)
4837                 set_ring_uses_large_buffer(rx_ring);
4838 #endif
4839 }
4840
4841 /**
4842  *  igb_configure_rx - Configure receive Unit after Reset
4843  *  @adapter: board private structure
4844  *
4845  *  Configure the Rx unit of the MAC after a reset.
4846  **/
4847 static void igb_configure_rx(struct igb_adapter *adapter)
4848 {
4849         int i;
4850
4851         /* set the correct pool for the PF default MAC address in entry 0 */
4852         igb_set_default_mac_filter(adapter);
4853
4854         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4855          * the Base and Length of the Rx Descriptor Ring
4856          */
4857         for (i = 0; i < adapter->num_rx_queues; i++) {
4858                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4859
4860                 igb_set_rx_buffer_len(adapter, rx_ring);
4861                 igb_configure_rx_ring(adapter, rx_ring);
4862         }
4863 }
4864
4865 /**
4866  *  igb_free_tx_resources - Free Tx Resources per Queue
4867  *  @tx_ring: Tx descriptor ring for a specific queue
4868  *
4869  *  Free all transmit software resources
4870  **/
4871 void igb_free_tx_resources(struct igb_ring *tx_ring)
4872 {
4873         igb_clean_tx_ring(tx_ring);
4874
4875         vfree(tx_ring->tx_buffer_info);
4876         tx_ring->tx_buffer_info = NULL;
4877
4878         /* if not set, then don't free */
4879         if (!tx_ring->desc)
4880                 return;
4881
4882         dma_free_coherent(tx_ring->dev, tx_ring->size,
4883                           tx_ring->desc, tx_ring->dma);
4884
4885         tx_ring->desc = NULL;
4886 }
4887
4888 /**
4889  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4890  *  @adapter: board private structure
4891  *
4892  *  Free all transmit software resources
4893  **/
4894 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4895 {
4896         int i;
4897
4898         for (i = 0; i < adapter->num_tx_queues; i++)
4899                 if (adapter->tx_ring[i])
4900                         igb_free_tx_resources(adapter->tx_ring[i]);
4901 }
4902
4903 /**
4904  *  igb_clean_tx_ring - Free Tx Buffers
4905  *  @tx_ring: ring to be cleaned
4906  **/
4907 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4908 {
4909         u16 i = tx_ring->next_to_clean;
4910         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4911         u32 xsk_frames = 0;
4912
4913         while (i != tx_ring->next_to_use) {
4914                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4915
4916                 /* Free all the Tx ring sk_buffs or xdp frames */
4917                 if (tx_buffer->type == IGB_TYPE_SKB) {
4918                         dev_kfree_skb_any(tx_buffer->skb);
4919                 } else if (tx_buffer->type == IGB_TYPE_XDP) {
4920                         xdp_return_frame(tx_buffer->xdpf);
4921                 } else if (tx_buffer->type == IGB_TYPE_XSK) {
4922                         xsk_frames++;
4923                         goto skip_for_xsk;
4924                 }
4925
4926                 /* unmap skb header data */
4927                 dma_unmap_single(tx_ring->dev,
4928                                  dma_unmap_addr(tx_buffer, dma),
4929                                  dma_unmap_len(tx_buffer, len),
4930                                  DMA_TO_DEVICE);
4931
4932                 /* check for eop_desc to determine the end of the packet */
4933                 eop_desc = tx_buffer->next_to_watch;
4934                 tx_desc = IGB_TX_DESC(tx_ring, i);
4935
4936                 /* unmap remaining buffers */
4937                 while (tx_desc != eop_desc) {
4938                         tx_buffer++;
4939                         tx_desc++;
4940                         i++;
4941                         if (unlikely(i == tx_ring->count)) {
4942                                 i = 0;
4943                                 tx_buffer = tx_ring->tx_buffer_info;
4944                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4945                         }
4946
4947                         /* unmap any remaining paged data */
4948                         if (dma_unmap_len(tx_buffer, len))
4949                                 dma_unmap_page(tx_ring->dev,
4950                                                dma_unmap_addr(tx_buffer, dma),
4951                                                dma_unmap_len(tx_buffer, len),
4952                                                DMA_TO_DEVICE);
4953                 }
4954
4955 skip_for_xsk:
4956                 tx_buffer->next_to_watch = NULL;
4957
4958                 /* move us one more past the eop_desc for start of next pkt */
4959                 tx_buffer++;
4960                 i++;
4961                 if (unlikely(i == tx_ring->count)) {
4962                         i = 0;
4963                         tx_buffer = tx_ring->tx_buffer_info;
4964                 }
4965         }
4966
4967         /* reset BQL for queue */
4968         netdev_tx_reset_queue(txring_txq(tx_ring));
4969
4970         if (tx_ring->xsk_pool && xsk_frames)
4971                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
4972
4973         /* reset next_to_use and next_to_clean */
4974         tx_ring->next_to_use = 0;
4975         tx_ring->next_to_clean = 0;
4976 }
4977
4978 /**
4979  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4980  *  @adapter: board private structure
4981  **/
4982 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4983 {
4984         int i;
4985
4986         for (i = 0; i < adapter->num_tx_queues; i++)
4987                 if (adapter->tx_ring[i])
4988                         igb_clean_tx_ring(adapter->tx_ring[i]);
4989 }
4990
4991 /**
4992  *  igb_free_rx_resources - Free Rx Resources
4993  *  @rx_ring: ring to clean the resources from
4994  *
4995  *  Free all receive software resources
4996  **/
4997 void igb_free_rx_resources(struct igb_ring *rx_ring)
4998 {
4999         igb_clean_rx_ring(rx_ring);
5000
5001         rx_ring->xdp_prog = NULL;
5002         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5003         if (rx_ring->xsk_pool) {
5004                 vfree(rx_ring->rx_buffer_info_zc);
5005                 rx_ring->rx_buffer_info_zc = NULL;
5006         } else {
5007                 vfree(rx_ring->rx_buffer_info);
5008                 rx_ring->rx_buffer_info = NULL;
5009         }
5010
5011         /* if not set, then don't free */
5012         if (!rx_ring->desc)
5013                 return;
5014
5015         dma_free_coherent(rx_ring->dev, rx_ring->size,
5016                           rx_ring->desc, rx_ring->dma);
5017
5018         rx_ring->desc = NULL;
5019 }
5020
5021 /**
5022  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5023  *  @adapter: board private structure
5024  *
5025  *  Free all receive software resources
5026  **/
5027 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5028 {
5029         int i;
5030
5031         for (i = 0; i < adapter->num_rx_queues; i++)
5032                 if (adapter->rx_ring[i])
5033                         igb_free_rx_resources(adapter->rx_ring[i]);
5034 }
5035
5036 /**
5037  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5038  *  @rx_ring: ring to free buffers from
5039  **/
5040 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5041 {
5042         u16 i = rx_ring->next_to_clean;
5043
5044         dev_kfree_skb(rx_ring->skb);
5045         rx_ring->skb = NULL;
5046
5047         if (rx_ring->xsk_pool) {
5048                 igb_clean_rx_ring_zc(rx_ring);
5049                 goto skip_for_xsk;
5050         }
5051
5052         /* Free all the Rx ring sk_buffs */
5053         while (i != rx_ring->next_to_alloc) {
5054                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5055
5056                 /* Invalidate cache lines that may have been written to by
5057                  * device so that we avoid corrupting memory.
5058                  */
5059                 dma_sync_single_range_for_cpu(rx_ring->dev,
5060                                               buffer_info->dma,
5061                                               buffer_info->page_offset,
5062                                               igb_rx_bufsz(rx_ring),
5063                                               DMA_FROM_DEVICE);
5064
5065                 /* free resources associated with mapping */
5066                 dma_unmap_page_attrs(rx_ring->dev,
5067                                      buffer_info->dma,
5068                                      igb_rx_pg_size(rx_ring),
5069                                      DMA_FROM_DEVICE,
5070                                      IGB_RX_DMA_ATTR);
5071                 __page_frag_cache_drain(buffer_info->page,
5072                                         buffer_info->pagecnt_bias);
5073
5074                 i++;
5075                 if (i == rx_ring->count)
5076                         i = 0;
5077         }
5078
5079 skip_for_xsk:
5080         rx_ring->next_to_alloc = 0;
5081         rx_ring->next_to_clean = 0;
5082         rx_ring->next_to_use = 0;
5083 }
5084
5085 /**
5086  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5087  *  @adapter: board private structure
5088  **/
5089 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5090 {
5091         int i;
5092
5093         for (i = 0; i < adapter->num_rx_queues; i++)
5094                 if (adapter->rx_ring[i])
5095                         igb_clean_rx_ring(adapter->rx_ring[i]);
5096 }
5097
5098 /**
5099  *  igb_set_mac - Change the Ethernet Address of the NIC
5100  *  @netdev: network interface device structure
5101  *  @p: pointer to an address structure
5102  *
5103  *  Returns 0 on success, negative on failure
5104  **/
5105 static int igb_set_mac(struct net_device *netdev, void *p)
5106 {
5107         struct igb_adapter *adapter = netdev_priv(netdev);
5108         struct e1000_hw *hw = &adapter->hw;
5109         struct sockaddr *addr = p;
5110
5111         if (!is_valid_ether_addr(addr->sa_data))
5112                 return -EADDRNOTAVAIL;
5113
5114         eth_hw_addr_set(netdev, addr->sa_data);
5115         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5116
5117         /* set the correct pool for the new PF MAC address in entry 0 */
5118         igb_set_default_mac_filter(adapter);
5119
5120         return 0;
5121 }
5122
5123 /**
5124  *  igb_write_mc_addr_list - write multicast addresses to MTA
5125  *  @netdev: network interface device structure
5126  *
5127  *  Writes multicast address list to the MTA hash table.
5128  *  Returns: -ENOMEM on failure
5129  *           0 on no addresses written
5130  *           X on writing X addresses to MTA
5131  **/
5132 static int igb_write_mc_addr_list(struct net_device *netdev)
5133 {
5134         struct igb_adapter *adapter = netdev_priv(netdev);
5135         struct e1000_hw *hw = &adapter->hw;
5136         struct netdev_hw_addr *ha;
5137         u8  *mta_list;
5138         int i;
5139
5140         if (netdev_mc_empty(netdev)) {
5141                 /* nothing to program, so clear mc list */
5142                 igb_update_mc_addr_list(hw, NULL, 0);
5143                 igb_restore_vf_multicasts(adapter);
5144                 return 0;
5145         }
5146
5147         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5148         if (!mta_list)
5149                 return -ENOMEM;
5150
5151         /* The shared function expects a packed array of only addresses. */
5152         i = 0;
5153         netdev_for_each_mc_addr(ha, netdev)
5154                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5155
5156         igb_update_mc_addr_list(hw, mta_list, i);
5157         kfree(mta_list);
5158
5159         return netdev_mc_count(netdev);
5160 }
5161
5162 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5163 {
5164         struct e1000_hw *hw = &adapter->hw;
5165         u32 i, pf_id;
5166
5167         switch (hw->mac.type) {
5168         case e1000_i210:
5169         case e1000_i211:
5170         case e1000_i350:
5171                 /* VLAN filtering needed for VLAN prio filter */
5172                 if (adapter->netdev->features & NETIF_F_NTUPLE)
5173                         break;
5174                 fallthrough;
5175         case e1000_82576:
5176         case e1000_82580:
5177         case e1000_i354:
5178                 /* VLAN filtering needed for pool filtering */
5179                 if (adapter->vfs_allocated_count)
5180                         break;
5181                 fallthrough;
5182         default:
5183                 return 1;
5184         }
5185
5186         /* We are already in VLAN promisc, nothing to do */
5187         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5188                 return 0;
5189
5190         if (!adapter->vfs_allocated_count)
5191                 goto set_vfta;
5192
5193         /* Add PF to all active pools */
5194         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5195
5196         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5197                 u32 vlvf = rd32(E1000_VLVF(i));
5198
5199                 vlvf |= BIT(pf_id);
5200                 wr32(E1000_VLVF(i), vlvf);
5201         }
5202
5203 set_vfta:
5204         /* Set all bits in the VLAN filter table array */
5205         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5206                 hw->mac.ops.write_vfta(hw, i, ~0U);
5207
5208         /* Set flag so we don't redo unnecessary work */
5209         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5210
5211         return 0;
5212 }
5213
5214 #define VFTA_BLOCK_SIZE 8
5215 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5216 {
5217         struct e1000_hw *hw = &adapter->hw;
5218         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5219         u32 vid_start = vfta_offset * 32;
5220         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5221         u32 i, vid, word, bits, pf_id;
5222
5223         /* guarantee that we don't scrub out management VLAN */
5224         vid = adapter->mng_vlan_id;
5225         if (vid >= vid_start && vid < vid_end)
5226                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5227
5228         if (!adapter->vfs_allocated_count)
5229                 goto set_vfta;
5230
5231         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5232
5233         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5234                 u32 vlvf = rd32(E1000_VLVF(i));
5235
5236                 /* pull VLAN ID from VLVF */
5237                 vid = vlvf & VLAN_VID_MASK;
5238
5239                 /* only concern ourselves with a certain range */
5240                 if (vid < vid_start || vid >= vid_end)
5241                         continue;
5242
5243                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5244                         /* record VLAN ID in VFTA */
5245                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5246
5247                         /* if PF is part of this then continue */
5248                         if (test_bit(vid, adapter->active_vlans))
5249                                 continue;
5250                 }
5251
5252                 /* remove PF from the pool */
5253                 bits = ~BIT(pf_id);
5254                 bits &= rd32(E1000_VLVF(i));
5255                 wr32(E1000_VLVF(i), bits);
5256         }
5257
5258 set_vfta:
5259         /* extract values from active_vlans and write back to VFTA */
5260         for (i = VFTA_BLOCK_SIZE; i--;) {
5261                 vid = (vfta_offset + i) * 32;
5262                 word = vid / BITS_PER_LONG;
5263                 bits = vid % BITS_PER_LONG;
5264
5265                 vfta[i] |= adapter->active_vlans[word] >> bits;
5266
5267                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5268         }
5269 }
5270
5271 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5272 {
5273         u32 i;
5274
5275         /* We are not in VLAN promisc, nothing to do */
5276         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5277                 return;
5278
5279         /* Set flag so we don't redo unnecessary work */
5280         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5281
5282         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5283                 igb_scrub_vfta(adapter, i);
5284 }
5285
5286 /**
5287  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5288  *  @netdev: network interface device structure
5289  *
5290  *  The set_rx_mode entry point is called whenever the unicast or multicast
5291  *  address lists or the network interface flags are updated.  This routine is
5292  *  responsible for configuring the hardware for proper unicast, multicast,
5293  *  promiscuous mode, and all-multi behavior.
5294  **/
5295 static void igb_set_rx_mode(struct net_device *netdev)
5296 {
5297         struct igb_adapter *adapter = netdev_priv(netdev);
5298         struct e1000_hw *hw = &adapter->hw;
5299         unsigned int vfn = adapter->vfs_allocated_count;
5300         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5301         int count;
5302
5303         /* Check for Promiscuous and All Multicast modes */
5304         if (netdev->flags & IFF_PROMISC) {
5305                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5306                 vmolr |= E1000_VMOLR_MPME;
5307
5308                 /* enable use of UTA filter to force packets to default pool */
5309                 if (hw->mac.type == e1000_82576)
5310                         vmolr |= E1000_VMOLR_ROPE;
5311         } else {
5312                 if (netdev->flags & IFF_ALLMULTI) {
5313                         rctl |= E1000_RCTL_MPE;
5314                         vmolr |= E1000_VMOLR_MPME;
5315                 } else {
5316                         /* Write addresses to the MTA, if the attempt fails
5317                          * then we should just turn on promiscuous mode so
5318                          * that we can at least receive multicast traffic
5319                          */
5320                         count = igb_write_mc_addr_list(netdev);
5321                         if (count < 0) {
5322                                 rctl |= E1000_RCTL_MPE;
5323                                 vmolr |= E1000_VMOLR_MPME;
5324                         } else if (count) {
5325                                 vmolr |= E1000_VMOLR_ROMPE;
5326                         }
5327                 }
5328         }
5329
5330         /* Write addresses to available RAR registers, if there is not
5331          * sufficient space to store all the addresses then enable
5332          * unicast promiscuous mode
5333          */
5334         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5335                 rctl |= E1000_RCTL_UPE;
5336                 vmolr |= E1000_VMOLR_ROPE;
5337         }
5338
5339         /* enable VLAN filtering by default */
5340         rctl |= E1000_RCTL_VFE;
5341
5342         /* disable VLAN filtering for modes that require it */
5343         if ((netdev->flags & IFF_PROMISC) ||
5344             (netdev->features & NETIF_F_RXALL)) {
5345                 /* if we fail to set all rules then just clear VFE */
5346                 if (igb_vlan_promisc_enable(adapter))
5347                         rctl &= ~E1000_RCTL_VFE;
5348         } else {
5349                 igb_vlan_promisc_disable(adapter);
5350         }
5351
5352         /* update state of unicast, multicast, and VLAN filtering modes */
5353         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5354                                      E1000_RCTL_VFE);
5355         wr32(E1000_RCTL, rctl);
5356
5357 #if (PAGE_SIZE < 8192)
5358         if (!adapter->vfs_allocated_count) {
5359                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5360                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5361         }
5362 #endif
5363         wr32(E1000_RLPML, rlpml);
5364
5365         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5366          * the VMOLR to enable the appropriate modes.  Without this workaround
5367          * we will have issues with VLAN tag stripping not being done for frames
5368          * that are only arriving because we are the default pool
5369          */
5370         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5371                 return;
5372
5373         /* set UTA to appropriate mode */
5374         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5375
5376         vmolr |= rd32(E1000_VMOLR(vfn)) &
5377                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5378
5379         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5380         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5381 #if (PAGE_SIZE < 8192)
5382         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5383                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5384         else
5385 #endif
5386                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5387         vmolr |= E1000_VMOLR_LPE;
5388
5389         wr32(E1000_VMOLR(vfn), vmolr);
5390
5391         igb_restore_vf_multicasts(adapter);
5392 }
5393
5394 static void igb_check_wvbr(struct igb_adapter *adapter)
5395 {
5396         struct e1000_hw *hw = &adapter->hw;
5397         u32 wvbr = 0;
5398
5399         switch (hw->mac.type) {
5400         case e1000_82576:
5401         case e1000_i350:
5402                 wvbr = rd32(E1000_WVBR);
5403                 if (!wvbr)
5404                         return;
5405                 break;
5406         default:
5407                 break;
5408         }
5409
5410         adapter->wvbr |= wvbr;
5411 }
5412
5413 #define IGB_STAGGERED_QUEUE_OFFSET 8
5414
5415 static void igb_spoof_check(struct igb_adapter *adapter)
5416 {
5417         int j;
5418
5419         if (!adapter->wvbr)
5420                 return;
5421
5422         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5423                 if (adapter->wvbr & BIT(j) ||
5424                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5425                         dev_warn(&adapter->pdev->dev,
5426                                 "Spoof event(s) detected on VF %d\n", j);
5427                         adapter->wvbr &=
5428                                 ~(BIT(j) |
5429                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5430                 }
5431         }
5432 }
5433
5434 /* Need to wait a few seconds after link up to get diagnostic information from
5435  * the phy
5436  */
5437 static void igb_update_phy_info(struct timer_list *t)
5438 {
5439         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5440         igb_get_phy_info(&adapter->hw);
5441 }
5442
5443 /**
5444  *  igb_has_link - check shared code for link and determine up/down
5445  *  @adapter: pointer to driver private info
5446  **/
5447 bool igb_has_link(struct igb_adapter *adapter)
5448 {
5449         struct e1000_hw *hw = &adapter->hw;
5450         bool link_active = false;
5451
5452         /* get_link_status is set on LSC (link status) interrupt or
5453          * rx sequence error interrupt.  get_link_status will stay
5454          * false until the e1000_check_for_link establishes link
5455          * for copper adapters ONLY
5456          */
5457         switch (hw->phy.media_type) {
5458         case e1000_media_type_copper:
5459                 if (!hw->mac.get_link_status)
5460                         return true;
5461                 fallthrough;
5462         case e1000_media_type_internal_serdes:
5463                 hw->mac.ops.check_for_link(hw);
5464                 link_active = !hw->mac.get_link_status;
5465                 break;
5466         default:
5467         case e1000_media_type_unknown:
5468                 break;
5469         }
5470
5471         if (((hw->mac.type == e1000_i210) ||
5472              (hw->mac.type == e1000_i211)) &&
5473              (hw->phy.id == I210_I_PHY_ID)) {
5474                 if (!netif_carrier_ok(adapter->netdev)) {
5475                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5476                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5477                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5478                         adapter->link_check_timeout = jiffies;
5479                 }
5480         }
5481
5482         return link_active;
5483 }
5484
5485 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5486 {
5487         bool ret = false;
5488         u32 ctrl_ext, thstat;
5489
5490         /* check for thermal sensor event on i350 copper only */
5491         if (hw->mac.type == e1000_i350) {
5492                 thstat = rd32(E1000_THSTAT);
5493                 ctrl_ext = rd32(E1000_CTRL_EXT);
5494
5495                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5496                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5497                         ret = !!(thstat & event);
5498         }
5499
5500         return ret;
5501 }
5502
5503 /**
5504  *  igb_check_lvmmc - check for malformed packets received
5505  *  and indicated in LVMMC register
5506  *  @adapter: pointer to adapter
5507  **/
5508 static void igb_check_lvmmc(struct igb_adapter *adapter)
5509 {
5510         struct e1000_hw *hw = &adapter->hw;
5511         u32 lvmmc;
5512
5513         lvmmc = rd32(E1000_LVMMC);
5514         if (lvmmc) {
5515                 if (unlikely(net_ratelimit())) {
5516                         netdev_warn(adapter->netdev,
5517                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5518                                     lvmmc);
5519                 }
5520         }
5521 }
5522
5523 /**
5524  *  igb_watchdog - Timer Call-back
5525  *  @t: pointer to timer_list containing our private info pointer
5526  **/
5527 static void igb_watchdog(struct timer_list *t)
5528 {
5529         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5530         /* Do the rest outside of interrupt context */
5531         schedule_work(&adapter->watchdog_task);
5532 }
5533
5534 static void igb_watchdog_task(struct work_struct *work)
5535 {
5536         struct igb_adapter *adapter = container_of(work,
5537                                                    struct igb_adapter,
5538                                                    watchdog_task);
5539         struct e1000_hw *hw = &adapter->hw;
5540         struct e1000_phy_info *phy = &hw->phy;
5541         struct net_device *netdev = adapter->netdev;
5542         u32 link;
5543         int i;
5544         u32 connsw;
5545         u16 phy_data, retry_count = 20;
5546
5547         link = igb_has_link(adapter);
5548
5549         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5550                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5551                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5552                 else
5553                         link = false;
5554         }
5555
5556         /* Force link down if we have fiber to swap to */
5557         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5558                 if (hw->phy.media_type == e1000_media_type_copper) {
5559                         connsw = rd32(E1000_CONNSW);
5560                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5561                                 link = 0;
5562                 }
5563         }
5564         if (link) {
5565                 /* Perform a reset if the media type changed. */
5566                 if (hw->dev_spec._82575.media_changed) {
5567                         hw->dev_spec._82575.media_changed = false;
5568                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5569                         igb_reset(adapter);
5570                 }
5571                 /* Cancel scheduled suspend requests. */
5572                 pm_runtime_resume(netdev->dev.parent);
5573
5574                 if (!netif_carrier_ok(netdev)) {
5575                         u32 ctrl;
5576
5577                         hw->mac.ops.get_speed_and_duplex(hw,
5578                                                          &adapter->link_speed,
5579                                                          &adapter->link_duplex);
5580
5581                         ctrl = rd32(E1000_CTRL);
5582                         /* Links status message must follow this format */
5583                         netdev_info(netdev,
5584                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5585                                netdev->name,
5586                                adapter->link_speed,
5587                                adapter->link_duplex == FULL_DUPLEX ?
5588                                "Full" : "Half",
5589                                (ctrl & E1000_CTRL_TFCE) &&
5590                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5591                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5592                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5593
5594                         /* disable EEE if enabled */
5595                         if ((adapter->flags & IGB_FLAG_EEE) &&
5596                                 (adapter->link_duplex == HALF_DUPLEX)) {
5597                                 dev_info(&adapter->pdev->dev,
5598                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5599                                 adapter->hw.dev_spec._82575.eee_disable = true;
5600                                 adapter->flags &= ~IGB_FLAG_EEE;
5601                         }
5602
5603                         /* check if SmartSpeed worked */
5604                         igb_check_downshift(hw);
5605                         if (phy->speed_downgraded)
5606                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5607
5608                         /* check for thermal sensor event */
5609                         if (igb_thermal_sensor_event(hw,
5610                             E1000_THSTAT_LINK_THROTTLE))
5611                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5612
5613                         /* adjust timeout factor according to speed/duplex */
5614                         adapter->tx_timeout_factor = 1;
5615                         switch (adapter->link_speed) {
5616                         case SPEED_10:
5617                                 adapter->tx_timeout_factor = 14;
5618                                 break;
5619                         case SPEED_100:
5620                                 /* maybe add some timeout factor ? */
5621                                 break;
5622                         }
5623
5624                         if (adapter->link_speed != SPEED_1000 ||
5625                             !hw->phy.ops.read_reg)
5626                                 goto no_wait;
5627
5628                         /* wait for Remote receiver status OK */
5629 retry_read_status:
5630                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5631                                               &phy_data)) {
5632                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5633                                     retry_count) {
5634                                         msleep(100);
5635                                         retry_count--;
5636                                         goto retry_read_status;
5637                                 } else if (!retry_count) {
5638                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5639                                 }
5640                         } else {
5641                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5642                         }
5643 no_wait:
5644                         netif_carrier_on(netdev);
5645
5646                         igb_ping_all_vfs(adapter);
5647                         igb_check_vf_rate_limit(adapter);
5648
5649                         /* link state has changed, schedule phy info update */
5650                         if (!test_bit(__IGB_DOWN, &adapter->state))
5651                                 mod_timer(&adapter->phy_info_timer,
5652                                           round_jiffies(jiffies + 2 * HZ));
5653                 }
5654         } else {
5655                 if (netif_carrier_ok(netdev)) {
5656                         adapter->link_speed = 0;
5657                         adapter->link_duplex = 0;
5658
5659                         /* check for thermal sensor event */
5660                         if (igb_thermal_sensor_event(hw,
5661                             E1000_THSTAT_PWR_DOWN)) {
5662                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5663                         }
5664
5665                         /* Links status message must follow this format */
5666                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5667                                netdev->name);
5668                         netif_carrier_off(netdev);
5669
5670                         igb_ping_all_vfs(adapter);
5671
5672                         /* link state has changed, schedule phy info update */
5673                         if (!test_bit(__IGB_DOWN, &adapter->state))
5674                                 mod_timer(&adapter->phy_info_timer,
5675                                           round_jiffies(jiffies + 2 * HZ));
5676
5677                         /* link is down, time to check for alternate media */
5678                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5679                                 igb_check_swap_media(adapter);
5680                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5681                                         schedule_work(&adapter->reset_task);
5682                                         /* return immediately */
5683                                         return;
5684                                 }
5685                         }
5686                         pm_schedule_suspend(netdev->dev.parent,
5687                                             MSEC_PER_SEC * 5);
5688
5689                 /* also check for alternate media here */
5690                 } else if (!netif_carrier_ok(netdev) &&
5691                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5692                         igb_check_swap_media(adapter);
5693                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5694                                 schedule_work(&adapter->reset_task);
5695                                 /* return immediately */
5696                                 return;
5697                         }
5698                 }
5699         }
5700
5701         spin_lock(&adapter->stats64_lock);
5702         igb_update_stats(adapter);
5703         spin_unlock(&adapter->stats64_lock);
5704
5705         for (i = 0; i < adapter->num_tx_queues; i++) {
5706                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5707                 if (!netif_carrier_ok(netdev)) {
5708                         /* We've lost link, so the controller stops DMA,
5709                          * but we've got queued Tx work that's never going
5710                          * to get done, so reset controller to flush Tx.
5711                          * (Do the reset outside of interrupt context).
5712                          */
5713                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5714                                 adapter->tx_timeout_count++;
5715                                 schedule_work(&adapter->reset_task);
5716                                 /* return immediately since reset is imminent */
5717                                 return;
5718                         }
5719                 }
5720
5721                 /* Force detection of hung controller every watchdog period */
5722                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5723         }
5724
5725         /* Cause software interrupt to ensure Rx ring is cleaned */
5726         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5727                 u32 eics = 0;
5728
5729                 for (i = 0; i < adapter->num_q_vectors; i++)
5730                         eics |= adapter->q_vector[i]->eims_value;
5731                 wr32(E1000_EICS, eics);
5732         } else {
5733                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5734         }
5735
5736         igb_spoof_check(adapter);
5737         igb_ptp_rx_hang(adapter);
5738         igb_ptp_tx_hang(adapter);
5739
5740         /* Check LVMMC register on i350/i354 only */
5741         if ((adapter->hw.mac.type == e1000_i350) ||
5742             (adapter->hw.mac.type == e1000_i354))
5743                 igb_check_lvmmc(adapter);
5744
5745         /* Reset the timer */
5746         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5747                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5748                         mod_timer(&adapter->watchdog_timer,
5749                                   round_jiffies(jiffies +  HZ));
5750                 else
5751                         mod_timer(&adapter->watchdog_timer,
5752                                   round_jiffies(jiffies + 2 * HZ));
5753         }
5754 }
5755
5756 enum latency_range {
5757         lowest_latency = 0,
5758         low_latency = 1,
5759         bulk_latency = 2,
5760         latency_invalid = 255
5761 };
5762
5763 /**
5764  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5765  *  @q_vector: pointer to q_vector
5766  *
5767  *  Stores a new ITR value based on strictly on packet size.  This
5768  *  algorithm is less sophisticated than that used in igb_update_itr,
5769  *  due to the difficulty of synchronizing statistics across multiple
5770  *  receive rings.  The divisors and thresholds used by this function
5771  *  were determined based on theoretical maximum wire speed and testing
5772  *  data, in order to minimize response time while increasing bulk
5773  *  throughput.
5774  *  This functionality is controlled by ethtool's coalescing settings.
5775  *  NOTE:  This function is called only when operating in a multiqueue
5776  *         receive environment.
5777  **/
5778 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5779 {
5780         int new_val = q_vector->itr_val;
5781         int avg_wire_size = 0;
5782         struct igb_adapter *adapter = q_vector->adapter;
5783         unsigned int packets;
5784
5785         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5786          * ints/sec - ITR timer value of 120 ticks.
5787          */
5788         if (adapter->link_speed != SPEED_1000) {
5789                 new_val = IGB_4K_ITR;
5790                 goto set_itr_val;
5791         }
5792
5793         packets = q_vector->rx.total_packets;
5794         if (packets)
5795                 avg_wire_size = q_vector->rx.total_bytes / packets;
5796
5797         packets = q_vector->tx.total_packets;
5798         if (packets)
5799                 avg_wire_size = max_t(u32, avg_wire_size,
5800                                       q_vector->tx.total_bytes / packets);
5801
5802         /* if avg_wire_size isn't set no work was done */
5803         if (!avg_wire_size)
5804                 goto clear_counts;
5805
5806         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5807         avg_wire_size += 24;
5808
5809         /* Don't starve jumbo frames */
5810         avg_wire_size = min(avg_wire_size, 3000);
5811
5812         /* Give a little boost to mid-size frames */
5813         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5814                 new_val = avg_wire_size / 3;
5815         else
5816                 new_val = avg_wire_size / 2;
5817
5818         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5819         if (new_val < IGB_20K_ITR &&
5820             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5821              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5822                 new_val = IGB_20K_ITR;
5823
5824 set_itr_val:
5825         if (new_val != q_vector->itr_val) {
5826                 q_vector->itr_val = new_val;
5827                 q_vector->set_itr = 1;
5828         }
5829 clear_counts:
5830         q_vector->rx.total_bytes = 0;
5831         q_vector->rx.total_packets = 0;
5832         q_vector->tx.total_bytes = 0;
5833         q_vector->tx.total_packets = 0;
5834 }
5835
5836 /**
5837  *  igb_update_itr - update the dynamic ITR value based on statistics
5838  *  @q_vector: pointer to q_vector
5839  *  @ring_container: ring info to update the itr for
5840  *
5841  *  Stores a new ITR value based on packets and byte
5842  *  counts during the last interrupt.  The advantage of per interrupt
5843  *  computation is faster updates and more accurate ITR for the current
5844  *  traffic pattern.  Constants in this function were computed
5845  *  based on theoretical maximum wire speed and thresholds were set based
5846  *  on testing data as well as attempting to minimize response time
5847  *  while increasing bulk throughput.
5848  *  This functionality is controlled by ethtool's coalescing settings.
5849  *  NOTE:  These calculations are only valid when operating in a single-
5850  *         queue environment.
5851  **/
5852 static void igb_update_itr(struct igb_q_vector *q_vector,
5853                            struct igb_ring_container *ring_container)
5854 {
5855         unsigned int packets = ring_container->total_packets;
5856         unsigned int bytes = ring_container->total_bytes;
5857         u8 itrval = ring_container->itr;
5858
5859         /* no packets, exit with status unchanged */
5860         if (packets == 0)
5861                 return;
5862
5863         switch (itrval) {
5864         case lowest_latency:
5865                 /* handle TSO and jumbo frames */
5866                 if (bytes/packets > 8000)
5867                         itrval = bulk_latency;
5868                 else if ((packets < 5) && (bytes > 512))
5869                         itrval = low_latency;
5870                 break;
5871         case low_latency:  /* 50 usec aka 20000 ints/s */
5872                 if (bytes > 10000) {
5873                         /* this if handles the TSO accounting */
5874                         if (bytes/packets > 8000)
5875                                 itrval = bulk_latency;
5876                         else if ((packets < 10) || ((bytes/packets) > 1200))
5877                                 itrval = bulk_latency;
5878                         else if ((packets > 35))
5879                                 itrval = lowest_latency;
5880                 } else if (bytes/packets > 2000) {
5881                         itrval = bulk_latency;
5882                 } else if (packets <= 2 && bytes < 512) {
5883                         itrval = lowest_latency;
5884                 }
5885                 break;
5886         case bulk_latency: /* 250 usec aka 4000 ints/s */
5887                 if (bytes > 25000) {
5888                         if (packets > 35)
5889                                 itrval = low_latency;
5890                 } else if (bytes < 1500) {
5891                         itrval = low_latency;
5892                 }
5893                 break;
5894         }
5895
5896         /* clear work counters since we have the values we need */
5897         ring_container->total_bytes = 0;
5898         ring_container->total_packets = 0;
5899
5900         /* write updated itr to ring container */
5901         ring_container->itr = itrval;
5902 }
5903
5904 static void igb_set_itr(struct igb_q_vector *q_vector)
5905 {
5906         struct igb_adapter *adapter = q_vector->adapter;
5907         u32 new_itr = q_vector->itr_val;
5908         u8 current_itr = 0;
5909
5910         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5911         if (adapter->link_speed != SPEED_1000) {
5912                 current_itr = 0;
5913                 new_itr = IGB_4K_ITR;
5914                 goto set_itr_now;
5915         }
5916
5917         igb_update_itr(q_vector, &q_vector->tx);
5918         igb_update_itr(q_vector, &q_vector->rx);
5919
5920         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5921
5922         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5923         if (current_itr == lowest_latency &&
5924             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5925              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5926                 current_itr = low_latency;
5927
5928         switch (current_itr) {
5929         /* counts and packets in update_itr are dependent on these numbers */
5930         case lowest_latency:
5931                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5932                 break;
5933         case low_latency:
5934                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5935                 break;
5936         case bulk_latency:
5937                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5938                 break;
5939         default:
5940                 break;
5941         }
5942
5943 set_itr_now:
5944         if (new_itr != q_vector->itr_val) {
5945                 /* this attempts to bias the interrupt rate towards Bulk
5946                  * by adding intermediate steps when interrupt rate is
5947                  * increasing
5948                  */
5949                 new_itr = new_itr > q_vector->itr_val ?
5950                           max((new_itr * q_vector->itr_val) /
5951                           (new_itr + (q_vector->itr_val >> 2)),
5952                           new_itr) : new_itr;
5953                 /* Don't write the value here; it resets the adapter's
5954                  * internal timer, and causes us to delay far longer than
5955                  * we should between interrupts.  Instead, we write the ITR
5956                  * value at the beginning of the next interrupt so the timing
5957                  * ends up being correct.
5958                  */
5959                 q_vector->itr_val = new_itr;
5960                 q_vector->set_itr = 1;
5961         }
5962 }
5963
5964 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5965                             struct igb_tx_buffer *first,
5966                             u32 vlan_macip_lens, u32 type_tucmd,
5967                             u32 mss_l4len_idx)
5968 {
5969         struct e1000_adv_tx_context_desc *context_desc;
5970         u16 i = tx_ring->next_to_use;
5971         struct timespec64 ts;
5972
5973         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5974
5975         i++;
5976         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5977
5978         /* set bits to identify this as an advanced context descriptor */
5979         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5980
5981         /* For 82575, context index must be unique per ring. */
5982         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5983                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5984
5985         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5986         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5987         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5988
5989         /* We assume there is always a valid tx time available. Invalid times
5990          * should have been handled by the upper layers.
5991          */
5992         if (tx_ring->launchtime_enable) {
5993                 ts = ktime_to_timespec64(first->skb->tstamp);
5994                 skb_txtime_consumed(first->skb);
5995                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5996         } else {
5997                 context_desc->seqnum_seed = 0;
5998         }
5999 }
6000
6001 static int igb_tso(struct igb_ring *tx_ring,
6002                    struct igb_tx_buffer *first,
6003                    u8 *hdr_len)
6004 {
6005         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6006         struct sk_buff *skb = first->skb;
6007         union {
6008                 struct iphdr *v4;
6009                 struct ipv6hdr *v6;
6010                 unsigned char *hdr;
6011         } ip;
6012         union {
6013                 struct tcphdr *tcp;
6014                 struct udphdr *udp;
6015                 unsigned char *hdr;
6016         } l4;
6017         u32 paylen, l4_offset;
6018         int err;
6019
6020         if (skb->ip_summed != CHECKSUM_PARTIAL)
6021                 return 0;
6022
6023         if (!skb_is_gso(skb))
6024                 return 0;
6025
6026         err = skb_cow_head(skb, 0);
6027         if (err < 0)
6028                 return err;
6029
6030         ip.hdr = skb_network_header(skb);
6031         l4.hdr = skb_checksum_start(skb);
6032
6033         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6034         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6035                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6036
6037         /* initialize outer IP header fields */
6038         if (ip.v4->version == 4) {
6039                 unsigned char *csum_start = skb_checksum_start(skb);
6040                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6041
6042                 /* IP header will have to cancel out any data that
6043                  * is not a part of the outer IP header
6044                  */
6045                 ip.v4->check = csum_fold(csum_partial(trans_start,
6046                                                       csum_start - trans_start,
6047                                                       0));
6048                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6049
6050                 ip.v4->tot_len = 0;
6051                 first->tx_flags |= IGB_TX_FLAGS_TSO |
6052                                    IGB_TX_FLAGS_CSUM |
6053                                    IGB_TX_FLAGS_IPV4;
6054         } else {
6055                 ip.v6->payload_len = 0;
6056                 first->tx_flags |= IGB_TX_FLAGS_TSO |
6057                                    IGB_TX_FLAGS_CSUM;
6058         }
6059
6060         /* determine offset of inner transport header */
6061         l4_offset = l4.hdr - skb->data;
6062
6063         /* remove payload length from inner checksum */
6064         paylen = skb->len - l4_offset;
6065         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6066                 /* compute length of segmentation header */
6067                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6068                 csum_replace_by_diff(&l4.tcp->check,
6069                         (__force __wsum)htonl(paylen));
6070         } else {
6071                 /* compute length of segmentation header */
6072                 *hdr_len = sizeof(*l4.udp) + l4_offset;
6073                 csum_replace_by_diff(&l4.udp->check,
6074                                      (__force __wsum)htonl(paylen));
6075         }
6076
6077         /* update gso size and bytecount with header size */
6078         first->gso_segs = skb_shinfo(skb)->gso_segs;
6079         first->bytecount += (first->gso_segs - 1) * *hdr_len;
6080
6081         /* MSS L4LEN IDX */
6082         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6083         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6084
6085         /* VLAN MACLEN IPLEN */
6086         vlan_macip_lens = l4.hdr - ip.hdr;
6087         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6088         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6089
6090         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6091                         type_tucmd, mss_l4len_idx);
6092
6093         return 1;
6094 }
6095
6096 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6097 {
6098         struct sk_buff *skb = first->skb;
6099         u32 vlan_macip_lens = 0;
6100         u32 type_tucmd = 0;
6101
6102         if (skb->ip_summed != CHECKSUM_PARTIAL) {
6103 csum_failed:
6104                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6105                     !tx_ring->launchtime_enable)
6106                         return;
6107                 goto no_csum;
6108         }
6109
6110         switch (skb->csum_offset) {
6111         case offsetof(struct tcphdr, check):
6112                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6113                 fallthrough;
6114         case offsetof(struct udphdr, check):
6115                 break;
6116         case offsetof(struct sctphdr, checksum):
6117                 /* validate that this is actually an SCTP request */
6118                 if (skb_csum_is_sctp(skb)) {
6119                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6120                         break;
6121                 }
6122                 fallthrough;
6123         default:
6124                 skb_checksum_help(skb);
6125                 goto csum_failed;
6126         }
6127
6128         /* update TX checksum flag */
6129         first->tx_flags |= IGB_TX_FLAGS_CSUM;
6130         vlan_macip_lens = skb_checksum_start_offset(skb) -
6131                           skb_network_offset(skb);
6132 no_csum:
6133         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6134         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6135
6136         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6137 }
6138
6139 #define IGB_SET_FLAG(_input, _flag, _result) \
6140         ((_flag <= _result) ? \
6141          ((u32)(_input & _flag) * (_result / _flag)) : \
6142          ((u32)(_input & _flag) / (_flag / _result)))
6143
6144 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6145 {
6146         /* set type for advanced descriptor with frame checksum insertion */
6147         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6148                        E1000_ADVTXD_DCMD_DEXT |
6149                        E1000_ADVTXD_DCMD_IFCS;
6150
6151         /* set HW vlan bit if vlan is present */
6152         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6153                                  (E1000_ADVTXD_DCMD_VLE));
6154
6155         /* set segmentation bits for TSO */
6156         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6157                                  (E1000_ADVTXD_DCMD_TSE));
6158
6159         /* set timestamp bit if present */
6160         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6161                                  (E1000_ADVTXD_MAC_TSTAMP));
6162
6163         /* insert frame checksum */
6164         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6165
6166         return cmd_type;
6167 }
6168
6169 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6170                                  union e1000_adv_tx_desc *tx_desc,
6171                                  u32 tx_flags, unsigned int paylen)
6172 {
6173         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6174
6175         /* 82575 requires a unique index per ring */
6176         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6177                 olinfo_status |= tx_ring->reg_idx << 4;
6178
6179         /* insert L4 checksum */
6180         olinfo_status |= IGB_SET_FLAG(tx_flags,
6181                                       IGB_TX_FLAGS_CSUM,
6182                                       (E1000_TXD_POPTS_TXSM << 8));
6183
6184         /* insert IPv4 checksum */
6185         olinfo_status |= IGB_SET_FLAG(tx_flags,
6186                                       IGB_TX_FLAGS_IPV4,
6187                                       (E1000_TXD_POPTS_IXSM << 8));
6188
6189         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6190 }
6191
6192 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6193 {
6194         struct net_device *netdev = tx_ring->netdev;
6195
6196         netif_stop_subqueue(netdev, tx_ring->queue_index);
6197
6198         /* Herbert's original patch had:
6199          *  smp_mb__after_netif_stop_queue();
6200          * but since that doesn't exist yet, just open code it.
6201          */
6202         smp_mb();
6203
6204         /* We need to check again in a case another CPU has just
6205          * made room available.
6206          */
6207         if (igb_desc_unused(tx_ring) < size)
6208                 return -EBUSY;
6209
6210         /* A reprieve! */
6211         netif_wake_subqueue(netdev, tx_ring->queue_index);
6212
6213         u64_stats_update_begin(&tx_ring->tx_syncp2);
6214         tx_ring->tx_stats.restart_queue2++;
6215         u64_stats_update_end(&tx_ring->tx_syncp2);
6216
6217         return 0;
6218 }
6219
6220 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6221 {
6222         if (igb_desc_unused(tx_ring) >= size)
6223                 return 0;
6224         return __igb_maybe_stop_tx(tx_ring, size);
6225 }
6226
6227 static int igb_tx_map(struct igb_ring *tx_ring,
6228                       struct igb_tx_buffer *first,
6229                       const u8 hdr_len)
6230 {
6231         struct sk_buff *skb = first->skb;
6232         struct igb_tx_buffer *tx_buffer;
6233         union e1000_adv_tx_desc *tx_desc;
6234         skb_frag_t *frag;
6235         dma_addr_t dma;
6236         unsigned int data_len, size;
6237         u32 tx_flags = first->tx_flags;
6238         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6239         u16 i = tx_ring->next_to_use;
6240
6241         tx_desc = IGB_TX_DESC(tx_ring, i);
6242
6243         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6244
6245         size = skb_headlen(skb);
6246         data_len = skb->data_len;
6247
6248         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6249
6250         tx_buffer = first;
6251
6252         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6253                 if (dma_mapping_error(tx_ring->dev, dma))
6254                         goto dma_error;
6255
6256                 /* record length, and DMA address */
6257                 dma_unmap_len_set(tx_buffer, len, size);
6258                 dma_unmap_addr_set(tx_buffer, dma, dma);
6259
6260                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6261
6262                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6263                         tx_desc->read.cmd_type_len =
6264                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6265
6266                         i++;
6267                         tx_desc++;
6268                         if (i == tx_ring->count) {
6269                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6270                                 i = 0;
6271                         }
6272                         tx_desc->read.olinfo_status = 0;
6273
6274                         dma += IGB_MAX_DATA_PER_TXD;
6275                         size -= IGB_MAX_DATA_PER_TXD;
6276
6277                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6278                 }
6279
6280                 if (likely(!data_len))
6281                         break;
6282
6283                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6284
6285                 i++;
6286                 tx_desc++;
6287                 if (i == tx_ring->count) {
6288                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6289                         i = 0;
6290                 }
6291                 tx_desc->read.olinfo_status = 0;
6292
6293                 size = skb_frag_size(frag);
6294                 data_len -= size;
6295
6296                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6297                                        size, DMA_TO_DEVICE);
6298
6299                 tx_buffer = &tx_ring->tx_buffer_info[i];
6300         }
6301
6302         /* write last descriptor with RS and EOP bits */
6303         cmd_type |= size | IGB_TXD_DCMD;
6304         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6305
6306         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6307
6308         /* set the timestamp */
6309         first->time_stamp = jiffies;
6310
6311         skb_tx_timestamp(skb);
6312
6313         /* Force memory writes to complete before letting h/w know there
6314          * are new descriptors to fetch.  (Only applicable for weak-ordered
6315          * memory model archs, such as IA-64).
6316          *
6317          * We also need this memory barrier to make certain all of the
6318          * status bits have been updated before next_to_watch is written.
6319          */
6320         dma_wmb();
6321
6322         /* set next_to_watch value indicating a packet is present */
6323         first->next_to_watch = tx_desc;
6324
6325         i++;
6326         if (i == tx_ring->count)
6327                 i = 0;
6328
6329         tx_ring->next_to_use = i;
6330
6331         /* Make sure there is space in the ring for the next send. */
6332         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6333
6334         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6335                 writel(i, tx_ring->tail);
6336         }
6337         return 0;
6338
6339 dma_error:
6340         dev_err(tx_ring->dev, "TX DMA map failed\n");
6341         tx_buffer = &tx_ring->tx_buffer_info[i];
6342
6343         /* clear dma mappings for failed tx_buffer_info map */
6344         while (tx_buffer != first) {
6345                 if (dma_unmap_len(tx_buffer, len))
6346                         dma_unmap_page(tx_ring->dev,
6347                                        dma_unmap_addr(tx_buffer, dma),
6348                                        dma_unmap_len(tx_buffer, len),
6349                                        DMA_TO_DEVICE);
6350                 dma_unmap_len_set(tx_buffer, len, 0);
6351
6352                 if (i-- == 0)
6353                         i += tx_ring->count;
6354                 tx_buffer = &tx_ring->tx_buffer_info[i];
6355         }
6356
6357         if (dma_unmap_len(tx_buffer, len))
6358                 dma_unmap_single(tx_ring->dev,
6359                                  dma_unmap_addr(tx_buffer, dma),
6360                                  dma_unmap_len(tx_buffer, len),
6361                                  DMA_TO_DEVICE);
6362         dma_unmap_len_set(tx_buffer, len, 0);
6363
6364         dev_kfree_skb_any(tx_buffer->skb);
6365         tx_buffer->skb = NULL;
6366
6367         tx_ring->next_to_use = i;
6368
6369         return -1;
6370 }
6371
6372 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6373                       struct igb_ring *tx_ring,
6374                       struct xdp_frame *xdpf)
6375 {
6376         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6377         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6378         u16 count, i, index = tx_ring->next_to_use;
6379         struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6380         struct igb_tx_buffer *tx_buffer = tx_head;
6381         union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6382         u32 len = xdpf->len, cmd_type, olinfo_status;
6383         void *data = xdpf->data;
6384
6385         count = TXD_USE_COUNT(len);
6386         for (i = 0; i < nr_frags; i++)
6387                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6388
6389         if (igb_maybe_stop_tx(tx_ring, count + 3))
6390                 return IGB_XDP_CONSUMED;
6391
6392         i = 0;
6393         /* record the location of the first descriptor for this packet */
6394         tx_head->bytecount = xdp_get_frame_len(xdpf);
6395         tx_head->type = IGB_TYPE_XDP;
6396         tx_head->gso_segs = 1;
6397         tx_head->xdpf = xdpf;
6398
6399         olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6400         /* 82575 requires a unique index per ring */
6401         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6402                 olinfo_status |= tx_ring->reg_idx << 4;
6403         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6404
6405         for (;;) {
6406                 dma_addr_t dma;
6407
6408                 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6409                 if (dma_mapping_error(tx_ring->dev, dma))
6410                         goto unmap;
6411
6412                 /* record length, and DMA address */
6413                 dma_unmap_len_set(tx_buffer, len, len);
6414                 dma_unmap_addr_set(tx_buffer, dma, dma);
6415
6416                 /* put descriptor type bits */
6417                 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6418                            E1000_ADVTXD_DCMD_IFCS | len;
6419
6420                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6421                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6422
6423                 tx_buffer->protocol = 0;
6424
6425                 if (++index == tx_ring->count)
6426                         index = 0;
6427
6428                 if (i == nr_frags)
6429                         break;
6430
6431                 tx_buffer = &tx_ring->tx_buffer_info[index];
6432                 tx_desc = IGB_TX_DESC(tx_ring, index);
6433                 tx_desc->read.olinfo_status = 0;
6434
6435                 data = skb_frag_address(&sinfo->frags[i]);
6436                 len = skb_frag_size(&sinfo->frags[i]);
6437                 i++;
6438         }
6439         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6440
6441         netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6442         /* set the timestamp */
6443         tx_head->time_stamp = jiffies;
6444
6445         /* Avoid any potential race with xdp_xmit and cleanup */
6446         smp_wmb();
6447
6448         /* set next_to_watch value indicating a packet is present */
6449         tx_head->next_to_watch = tx_desc;
6450         tx_ring->next_to_use = index;
6451
6452         /* Make sure there is space in the ring for the next send. */
6453         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6454
6455         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6456                 writel(index, tx_ring->tail);
6457
6458         return IGB_XDP_TX;
6459
6460 unmap:
6461         for (;;) {
6462                 tx_buffer = &tx_ring->tx_buffer_info[index];
6463                 if (dma_unmap_len(tx_buffer, len))
6464                         dma_unmap_page(tx_ring->dev,
6465                                        dma_unmap_addr(tx_buffer, dma),
6466                                        dma_unmap_len(tx_buffer, len),
6467                                        DMA_TO_DEVICE);
6468                 dma_unmap_len_set(tx_buffer, len, 0);
6469                 if (tx_buffer == tx_head)
6470                         break;
6471
6472                 if (!index)
6473                         index += tx_ring->count;
6474                 index--;
6475         }
6476
6477         return IGB_XDP_CONSUMED;
6478 }
6479
6480 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6481                                 struct igb_ring *tx_ring)
6482 {
6483         struct igb_tx_buffer *first;
6484         int tso;
6485         u32 tx_flags = 0;
6486         unsigned short f;
6487         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6488         __be16 protocol = vlan_get_protocol(skb);
6489         u8 hdr_len = 0;
6490
6491         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6492          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6493          *       + 2 desc gap to keep tail from touching head,
6494          *       + 1 desc for context descriptor,
6495          * otherwise try next time
6496          */
6497         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6498                 count += TXD_USE_COUNT(skb_frag_size(
6499                                                 &skb_shinfo(skb)->frags[f]));
6500
6501         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6502                 /* this is a hard error */
6503                 return NETDEV_TX_BUSY;
6504         }
6505
6506         if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6507                 return NETDEV_TX_BUSY;
6508
6509         /* record the location of the first descriptor for this packet */
6510         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6511         first->type = IGB_TYPE_SKB;
6512         first->skb = skb;
6513         first->bytecount = skb->len;
6514         first->gso_segs = 1;
6515
6516         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6517                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6518
6519                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6520                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6521                                            &adapter->state)) {
6522                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6523                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6524
6525                         adapter->ptp_tx_skb = skb_get(skb);
6526                         adapter->ptp_tx_start = jiffies;
6527                         if (adapter->hw.mac.type == e1000_82576)
6528                                 schedule_work(&adapter->ptp_tx_work);
6529                 } else {
6530                         adapter->tx_hwtstamp_skipped++;
6531                 }
6532         }
6533
6534         if (skb_vlan_tag_present(skb)) {
6535                 tx_flags |= IGB_TX_FLAGS_VLAN;
6536                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6537         }
6538
6539         /* record initial flags and protocol */
6540         first->tx_flags = tx_flags;
6541         first->protocol = protocol;
6542
6543         tso = igb_tso(tx_ring, first, &hdr_len);
6544         if (tso < 0)
6545                 goto out_drop;
6546         else if (!tso)
6547                 igb_tx_csum(tx_ring, first);
6548
6549         if (igb_tx_map(tx_ring, first, hdr_len))
6550                 goto cleanup_tx_tstamp;
6551
6552         return NETDEV_TX_OK;
6553
6554 out_drop:
6555         dev_kfree_skb_any(first->skb);
6556         first->skb = NULL;
6557 cleanup_tx_tstamp:
6558         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6559                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6560
6561                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6562                 adapter->ptp_tx_skb = NULL;
6563                 if (adapter->hw.mac.type == e1000_82576)
6564                         cancel_work_sync(&adapter->ptp_tx_work);
6565                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6566         }
6567
6568         return NETDEV_TX_OK;
6569 }
6570
6571 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6572                                                     struct sk_buff *skb)
6573 {
6574         unsigned int r_idx = skb->queue_mapping;
6575
6576         if (r_idx >= adapter->num_tx_queues)
6577                 r_idx = r_idx % adapter->num_tx_queues;
6578
6579         return adapter->tx_ring[r_idx];
6580 }
6581
6582 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6583                                   struct net_device *netdev)
6584 {
6585         struct igb_adapter *adapter = netdev_priv(netdev);
6586
6587         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6588          * in order to meet this minimum size requirement.
6589          */
6590         if (skb_put_padto(skb, 17))
6591                 return NETDEV_TX_OK;
6592
6593         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6594 }
6595
6596 /**
6597  *  igb_tx_timeout - Respond to a Tx Hang
6598  *  @netdev: network interface device structure
6599  *  @txqueue: number of the Tx queue that hung (unused)
6600  **/
6601 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6602 {
6603         struct igb_adapter *adapter = netdev_priv(netdev);
6604         struct e1000_hw *hw = &adapter->hw;
6605
6606         /* Do the reset outside of interrupt context */
6607         adapter->tx_timeout_count++;
6608
6609         if (hw->mac.type >= e1000_82580)
6610                 hw->dev_spec._82575.global_device_reset = true;
6611
6612         schedule_work(&adapter->reset_task);
6613         wr32(E1000_EICS,
6614              (adapter->eims_enable_mask & ~adapter->eims_other));
6615 }
6616
6617 static void igb_reset_task(struct work_struct *work)
6618 {
6619         struct igb_adapter *adapter;
6620         adapter = container_of(work, struct igb_adapter, reset_task);
6621
6622         rtnl_lock();
6623         /* If we're already down or resetting, just bail */
6624         if (test_bit(__IGB_DOWN, &adapter->state) ||
6625             test_bit(__IGB_RESETTING, &adapter->state)) {
6626                 rtnl_unlock();
6627                 return;
6628         }
6629
6630         igb_dump(adapter);
6631         netdev_err(adapter->netdev, "Reset adapter\n");
6632         igb_reinit_locked(adapter);
6633         rtnl_unlock();
6634 }
6635
6636 /**
6637  *  igb_get_stats64 - Get System Network Statistics
6638  *  @netdev: network interface device structure
6639  *  @stats: rtnl_link_stats64 pointer
6640  **/
6641 static void igb_get_stats64(struct net_device *netdev,
6642                             struct rtnl_link_stats64 *stats)
6643 {
6644         struct igb_adapter *adapter = netdev_priv(netdev);
6645
6646         spin_lock(&adapter->stats64_lock);
6647         igb_update_stats(adapter);
6648         memcpy(stats, &adapter->stats64, sizeof(*stats));
6649         spin_unlock(&adapter->stats64_lock);
6650 }
6651
6652 /**
6653  *  igb_change_mtu - Change the Maximum Transfer Unit
6654  *  @netdev: network interface device structure
6655  *  @new_mtu: new value for maximum frame size
6656  *
6657  *  Returns 0 on success, negative on failure
6658  **/
6659 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6660 {
6661         struct igb_adapter *adapter = netdev_priv(netdev);
6662         int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6663
6664         if (igb_xdp_is_enabled(adapter)) {
6665                 int i;
6666
6667                 for (i = 0; i < adapter->num_rx_queues; i++) {
6668                         struct igb_ring *ring = adapter->rx_ring[i];
6669
6670                         if (max_frame > igb_rx_bufsz(ring)) {
6671                                 netdev_warn(adapter->netdev,
6672                                             "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6673                                             max_frame);
6674                                 return -EINVAL;
6675                         }
6676                 }
6677         }
6678
6679         /* adjust max frame to be at least the size of a standard frame */
6680         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6681                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6682
6683         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6684                 usleep_range(1000, 2000);
6685
6686         /* igb_down has a dependency on max_frame_size */
6687         adapter->max_frame_size = max_frame;
6688
6689         if (netif_running(netdev))
6690                 igb_down(adapter);
6691
6692         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6693                    netdev->mtu, new_mtu);
6694         WRITE_ONCE(netdev->mtu, new_mtu);
6695
6696         if (netif_running(netdev))
6697                 igb_up(adapter);
6698         else
6699                 igb_reset(adapter);
6700
6701         clear_bit(__IGB_RESETTING, &adapter->state);
6702
6703         return 0;
6704 }
6705
6706 /**
6707  *  igb_update_stats - Update the board statistics counters
6708  *  @adapter: board private structure
6709  **/
6710 void igb_update_stats(struct igb_adapter *adapter)
6711 {
6712         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6713         struct e1000_hw *hw = &adapter->hw;
6714         struct pci_dev *pdev = adapter->pdev;
6715         u32 reg, mpc;
6716         int i;
6717         u64 bytes, packets;
6718         unsigned int start;
6719         u64 _bytes, _packets;
6720
6721         /* Prevent stats update while adapter is being reset, or if the pci
6722          * connection is down.
6723          */
6724         if (adapter->link_speed == 0)
6725                 return;
6726         if (pci_channel_offline(pdev))
6727                 return;
6728
6729         bytes = 0;
6730         packets = 0;
6731
6732         rcu_read_lock();
6733         for (i = 0; i < adapter->num_rx_queues; i++) {
6734                 struct igb_ring *ring = adapter->rx_ring[i];
6735                 u32 rqdpc = rd32(E1000_RQDPC(i));
6736                 if (hw->mac.type >= e1000_i210)
6737                         wr32(E1000_RQDPC(i), 0);
6738
6739                 if (rqdpc) {
6740                         ring->rx_stats.drops += rqdpc;
6741                         net_stats->rx_fifo_errors += rqdpc;
6742                 }
6743
6744                 do {
6745                         start = u64_stats_fetch_begin(&ring->rx_syncp);
6746                         _bytes = ring->rx_stats.bytes;
6747                         _packets = ring->rx_stats.packets;
6748                 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6749                 bytes += _bytes;
6750                 packets += _packets;
6751         }
6752
6753         net_stats->rx_bytes = bytes;
6754         net_stats->rx_packets = packets;
6755
6756         bytes = 0;
6757         packets = 0;
6758         for (i = 0; i < adapter->num_tx_queues; i++) {
6759                 struct igb_ring *ring = adapter->tx_ring[i];
6760                 do {
6761                         start = u64_stats_fetch_begin(&ring->tx_syncp);
6762                         _bytes = ring->tx_stats.bytes;
6763                         _packets = ring->tx_stats.packets;
6764                 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6765                 bytes += _bytes;
6766                 packets += _packets;
6767         }
6768         net_stats->tx_bytes = bytes;
6769         net_stats->tx_packets = packets;
6770         rcu_read_unlock();
6771
6772         /* read stats registers */
6773         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6774         adapter->stats.gprc += rd32(E1000_GPRC);
6775         adapter->stats.gorc += rd32(E1000_GORCL);
6776         rd32(E1000_GORCH); /* clear GORCL */
6777         adapter->stats.bprc += rd32(E1000_BPRC);
6778         adapter->stats.mprc += rd32(E1000_MPRC);
6779         adapter->stats.roc += rd32(E1000_ROC);
6780
6781         adapter->stats.prc64 += rd32(E1000_PRC64);
6782         adapter->stats.prc127 += rd32(E1000_PRC127);
6783         adapter->stats.prc255 += rd32(E1000_PRC255);
6784         adapter->stats.prc511 += rd32(E1000_PRC511);
6785         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6786         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6787         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6788         adapter->stats.sec += rd32(E1000_SEC);
6789
6790         mpc = rd32(E1000_MPC);
6791         adapter->stats.mpc += mpc;
6792         net_stats->rx_fifo_errors += mpc;
6793         adapter->stats.scc += rd32(E1000_SCC);
6794         adapter->stats.ecol += rd32(E1000_ECOL);
6795         adapter->stats.mcc += rd32(E1000_MCC);
6796         adapter->stats.latecol += rd32(E1000_LATECOL);
6797         adapter->stats.dc += rd32(E1000_DC);
6798         adapter->stats.rlec += rd32(E1000_RLEC);
6799         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6800         adapter->stats.xontxc += rd32(E1000_XONTXC);
6801         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6802         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6803         adapter->stats.fcruc += rd32(E1000_FCRUC);
6804         adapter->stats.gptc += rd32(E1000_GPTC);
6805         adapter->stats.gotc += rd32(E1000_GOTCL);
6806         rd32(E1000_GOTCH); /* clear GOTCL */
6807         adapter->stats.rnbc += rd32(E1000_RNBC);
6808         adapter->stats.ruc += rd32(E1000_RUC);
6809         adapter->stats.rfc += rd32(E1000_RFC);
6810         adapter->stats.rjc += rd32(E1000_RJC);
6811         adapter->stats.tor += rd32(E1000_TORH);
6812         adapter->stats.tot += rd32(E1000_TOTH);
6813         adapter->stats.tpr += rd32(E1000_TPR);
6814
6815         adapter->stats.ptc64 += rd32(E1000_PTC64);
6816         adapter->stats.ptc127 += rd32(E1000_PTC127);
6817         adapter->stats.ptc255 += rd32(E1000_PTC255);
6818         adapter->stats.ptc511 += rd32(E1000_PTC511);
6819         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6820         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6821
6822         adapter->stats.mptc += rd32(E1000_MPTC);
6823         adapter->stats.bptc += rd32(E1000_BPTC);
6824
6825         adapter->stats.tpt += rd32(E1000_TPT);
6826         adapter->stats.colc += rd32(E1000_COLC);
6827
6828         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6829         /* read internal phy specific stats */
6830         reg = rd32(E1000_CTRL_EXT);
6831         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6832                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6833
6834                 /* this stat has invalid values on i210/i211 */
6835                 if ((hw->mac.type != e1000_i210) &&
6836                     (hw->mac.type != e1000_i211))
6837                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6838         }
6839
6840         adapter->stats.tsctc += rd32(E1000_TSCTC);
6841         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6842
6843         adapter->stats.iac += rd32(E1000_IAC);
6844         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6845         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6846         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6847         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6848         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6849         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6850         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6851         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6852
6853         /* Fill out the OS statistics structure */
6854         net_stats->multicast = adapter->stats.mprc;
6855         net_stats->collisions = adapter->stats.colc;
6856
6857         /* Rx Errors */
6858
6859         /* RLEC on some newer hardware can be incorrect so build
6860          * our own version based on RUC and ROC
6861          */
6862         net_stats->rx_errors = adapter->stats.rxerrc +
6863                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6864                 adapter->stats.ruc + adapter->stats.roc +
6865                 adapter->stats.cexterr;
6866         net_stats->rx_length_errors = adapter->stats.ruc +
6867                                       adapter->stats.roc;
6868         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6869         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6870         net_stats->rx_missed_errors = adapter->stats.mpc;
6871
6872         /* Tx Errors */
6873         net_stats->tx_errors = adapter->stats.ecol +
6874                                adapter->stats.latecol;
6875         net_stats->tx_aborted_errors = adapter->stats.ecol;
6876         net_stats->tx_window_errors = adapter->stats.latecol;
6877         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6878
6879         /* Tx Dropped needs to be maintained elsewhere */
6880
6881         /* Management Stats */
6882         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6883         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6884         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6885
6886         /* OS2BMC Stats */
6887         reg = rd32(E1000_MANC);
6888         if (reg & E1000_MANC_EN_BMC2OS) {
6889                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6890                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6891                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6892                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6893         }
6894 }
6895
6896 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6897 {
6898         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6899         struct e1000_hw *hw = &adapter->hw;
6900         struct timespec64 ts;
6901         u32 tsauxc;
6902
6903         if (pin < 0 || pin >= IGB_N_SDP)
6904                 return;
6905
6906         spin_lock(&adapter->tmreg_lock);
6907
6908         if (hw->mac.type == e1000_82580 ||
6909             hw->mac.type == e1000_i354 ||
6910             hw->mac.type == e1000_i350) {
6911                 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6912                 u32 systiml, systimh, level_mask, level, rem;
6913                 u64 systim, now;
6914
6915                 /* read systim registers in sequence */
6916                 rd32(E1000_SYSTIMR);
6917                 systiml = rd32(E1000_SYSTIML);
6918                 systimh = rd32(E1000_SYSTIMH);
6919                 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6920                 now = timecounter_cyc2time(&adapter->tc, systim);
6921
6922                 if (pin < 2) {
6923                         level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6924                         level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6925                 } else {
6926                         level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6927                         level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6928                 }
6929
6930                 div_u64_rem(now, ns, &rem);
6931                 systim = systim + (ns - rem);
6932
6933                 /* synchronize pin level with rising/falling edges */
6934                 div_u64_rem(now, ns << 1, &rem);
6935                 if (rem < ns) {
6936                         /* first half of period */
6937                         if (level == 0) {
6938                                 /* output is already low, skip this period */
6939                                 systim += ns;
6940                                 pr_notice("igb: periodic output on %s missed falling edge\n",
6941                                           adapter->sdp_config[pin].name);
6942                         }
6943                 } else {
6944                         /* second half of period */
6945                         if (level == 1) {
6946                                 /* output is already high, skip this period */
6947                                 systim += ns;
6948                                 pr_notice("igb: periodic output on %s missed rising edge\n",
6949                                           adapter->sdp_config[pin].name);
6950                         }
6951                 }
6952
6953                 /* for this chip family tv_sec is the upper part of the binary value,
6954                  * so not seconds
6955                  */
6956                 ts.tv_nsec = (u32)systim;
6957                 ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6958         } else {
6959                 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6960                                     adapter->perout[tsintr_tt].period);
6961         }
6962
6963         /* u32 conversion of tv_sec is safe until y2106 */
6964         wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6965         wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6966         tsauxc = rd32(E1000_TSAUXC);
6967         tsauxc |= TSAUXC_EN_TT0;
6968         wr32(E1000_TSAUXC, tsauxc);
6969         adapter->perout[tsintr_tt].start = ts;
6970
6971         spin_unlock(&adapter->tmreg_lock);
6972 }
6973
6974 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6975 {
6976         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6977         int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6978         int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6979         struct e1000_hw *hw = &adapter->hw;
6980         struct ptp_clock_event event;
6981         struct timespec64 ts;
6982         unsigned long flags;
6983
6984         if (pin < 0 || pin >= IGB_N_SDP)
6985                 return;
6986
6987         if (hw->mac.type == e1000_82580 ||
6988             hw->mac.type == e1000_i354 ||
6989             hw->mac.type == e1000_i350) {
6990                 u64 ns = rd32(auxstmpl);
6991
6992                 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6993                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6994                 ns = timecounter_cyc2time(&adapter->tc, ns);
6995                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6996                 ts = ns_to_timespec64(ns);
6997         } else {
6998                 ts.tv_nsec = rd32(auxstmpl);
6999                 ts.tv_sec  = rd32(auxstmph);
7000         }
7001
7002         event.type = PTP_CLOCK_EXTTS;
7003         event.index = tsintr_tt;
7004         event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7005         ptp_clock_event(adapter->ptp_clock, &event);
7006 }
7007
7008 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7009 {
7010         const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7011                           TSINTR_TT0 | TSINTR_TT1 |
7012                           TSINTR_AUTT0 | TSINTR_AUTT1);
7013         struct e1000_hw *hw = &adapter->hw;
7014         u32 tsicr = rd32(E1000_TSICR);
7015         struct ptp_clock_event event;
7016
7017         if (hw->mac.type == e1000_82580) {
7018                 /* 82580 has a hardware bug that requires an explicit
7019                  * write to clear the TimeSync interrupt cause.
7020                  */
7021                 wr32(E1000_TSICR, tsicr & mask);
7022         }
7023
7024         if (tsicr & TSINTR_SYS_WRAP) {
7025                 event.type = PTP_CLOCK_PPS;
7026                 if (adapter->ptp_caps.pps)
7027                         ptp_clock_event(adapter->ptp_clock, &event);
7028         }
7029
7030         if (tsicr & E1000_TSICR_TXTS) {
7031                 /* retrieve hardware timestamp */
7032                 schedule_work(&adapter->ptp_tx_work);
7033         }
7034
7035         if (tsicr & TSINTR_TT0)
7036                 igb_perout(adapter, 0);
7037
7038         if (tsicr & TSINTR_TT1)
7039                 igb_perout(adapter, 1);
7040
7041         if (tsicr & TSINTR_AUTT0)
7042                 igb_extts(adapter, 0);
7043
7044         if (tsicr & TSINTR_AUTT1)
7045                 igb_extts(adapter, 1);
7046 }
7047
7048 static irqreturn_t igb_msix_other(int irq, void *data)
7049 {
7050         struct igb_adapter *adapter = data;
7051         struct e1000_hw *hw = &adapter->hw;
7052         u32 icr = rd32(E1000_ICR);
7053         /* reading ICR causes bit 31 of EICR to be cleared */
7054
7055         if (icr & E1000_ICR_DRSTA)
7056                 schedule_work(&adapter->reset_task);
7057
7058         if (icr & E1000_ICR_DOUTSYNC) {
7059                 /* HW is reporting DMA is out of sync */
7060                 adapter->stats.doosync++;
7061                 /* The DMA Out of Sync is also indication of a spoof event
7062                  * in IOV mode. Check the Wrong VM Behavior register to
7063                  * see if it is really a spoof event.
7064                  */
7065                 igb_check_wvbr(adapter);
7066         }
7067
7068         /* Check for a mailbox event */
7069         if (icr & E1000_ICR_VMMB)
7070                 igb_msg_task(adapter);
7071
7072         if (icr & E1000_ICR_LSC) {
7073                 hw->mac.get_link_status = 1;
7074                 /* guard against interrupt when we're going down */
7075                 if (!test_bit(__IGB_DOWN, &adapter->state))
7076                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7077         }
7078
7079         if (icr & E1000_ICR_TS)
7080                 igb_tsync_interrupt(adapter);
7081
7082         wr32(E1000_EIMS, adapter->eims_other);
7083
7084         return IRQ_HANDLED;
7085 }
7086
7087 static void igb_write_itr(struct igb_q_vector *q_vector)
7088 {
7089         struct igb_adapter *adapter = q_vector->adapter;
7090         u32 itr_val = q_vector->itr_val & 0x7FFC;
7091
7092         if (!q_vector->set_itr)
7093                 return;
7094
7095         if (!itr_val)
7096                 itr_val = 0x4;
7097
7098         if (adapter->hw.mac.type == e1000_82575)
7099                 itr_val |= itr_val << 16;
7100         else
7101                 itr_val |= E1000_EITR_CNT_IGNR;
7102
7103         writel(itr_val, q_vector->itr_register);
7104         q_vector->set_itr = 0;
7105 }
7106
7107 static irqreturn_t igb_msix_ring(int irq, void *data)
7108 {
7109         struct igb_q_vector *q_vector = data;
7110
7111         /* Write the ITR value calculated from the previous interrupt. */
7112         igb_write_itr(q_vector);
7113
7114         napi_schedule(&q_vector->napi);
7115
7116         return IRQ_HANDLED;
7117 }
7118
7119 #ifdef CONFIG_IGB_DCA
7120 static void igb_update_tx_dca(struct igb_adapter *adapter,
7121                               struct igb_ring *tx_ring,
7122                               int cpu)
7123 {
7124         struct e1000_hw *hw = &adapter->hw;
7125         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7126
7127         if (hw->mac.type != e1000_82575)
7128                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7129
7130         /* We can enable relaxed ordering for reads, but not writes when
7131          * DCA is enabled.  This is due to a known issue in some chipsets
7132          * which will cause the DCA tag to be cleared.
7133          */
7134         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7135                   E1000_DCA_TXCTRL_DATA_RRO_EN |
7136                   E1000_DCA_TXCTRL_DESC_DCA_EN;
7137
7138         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7139 }
7140
7141 static void igb_update_rx_dca(struct igb_adapter *adapter,
7142                               struct igb_ring *rx_ring,
7143                               int cpu)
7144 {
7145         struct e1000_hw *hw = &adapter->hw;
7146         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7147
7148         if (hw->mac.type != e1000_82575)
7149                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7150
7151         /* We can enable relaxed ordering for reads, but not writes when
7152          * DCA is enabled.  This is due to a known issue in some chipsets
7153          * which will cause the DCA tag to be cleared.
7154          */
7155         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7156                   E1000_DCA_RXCTRL_DESC_DCA_EN;
7157
7158         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7159 }
7160
7161 static void igb_update_dca(struct igb_q_vector *q_vector)
7162 {
7163         struct igb_adapter *adapter = q_vector->adapter;
7164         int cpu = get_cpu();
7165
7166         if (q_vector->cpu == cpu)
7167                 goto out_no_update;
7168
7169         if (q_vector->tx.ring)
7170                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7171
7172         if (q_vector->rx.ring)
7173                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7174
7175         q_vector->cpu = cpu;
7176 out_no_update:
7177         put_cpu();
7178 }
7179
7180 static void igb_setup_dca(struct igb_adapter *adapter)
7181 {
7182         struct e1000_hw *hw = &adapter->hw;
7183         int i;
7184
7185         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7186                 return;
7187
7188         /* Always use CB2 mode, difference is masked in the CB driver. */
7189         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7190
7191         for (i = 0; i < adapter->num_q_vectors; i++) {
7192                 adapter->q_vector[i]->cpu = -1;
7193                 igb_update_dca(adapter->q_vector[i]);
7194         }
7195 }
7196
7197 static int __igb_notify_dca(struct device *dev, void *data)
7198 {
7199         struct net_device *netdev = dev_get_drvdata(dev);
7200         struct igb_adapter *adapter = netdev_priv(netdev);
7201         struct pci_dev *pdev = adapter->pdev;
7202         struct e1000_hw *hw = &adapter->hw;
7203         unsigned long event = *(unsigned long *)data;
7204
7205         switch (event) {
7206         case DCA_PROVIDER_ADD:
7207                 /* if already enabled, don't do it again */
7208                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7209                         break;
7210                 if (dca_add_requester(dev) == 0) {
7211                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
7212                         dev_info(&pdev->dev, "DCA enabled\n");
7213                         igb_setup_dca(adapter);
7214                         break;
7215                 }
7216                 fallthrough; /* since DCA is disabled. */
7217         case DCA_PROVIDER_REMOVE:
7218                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7219                         /* without this a class_device is left
7220                          * hanging around in the sysfs model
7221                          */
7222                         dca_remove_requester(dev);
7223                         dev_info(&pdev->dev, "DCA disabled\n");
7224                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7225                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7226                 }
7227                 break;
7228         }
7229
7230         return 0;
7231 }
7232
7233 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7234                           void *p)
7235 {
7236         int ret_val;
7237
7238         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7239                                          __igb_notify_dca);
7240
7241         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7242 }
7243 #endif /* CONFIG_IGB_DCA */
7244
7245 #ifdef CONFIG_PCI_IOV
7246 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7247 {
7248         unsigned char mac_addr[ETH_ALEN];
7249
7250         eth_zero_addr(mac_addr);
7251         igb_set_vf_mac(adapter, vf, mac_addr);
7252
7253         /* By default spoof check is enabled for all VFs */
7254         adapter->vf_data[vf].spoofchk_enabled = true;
7255
7256         /* By default VFs are not trusted */
7257         adapter->vf_data[vf].trusted = false;
7258
7259         return 0;
7260 }
7261
7262 #endif
7263 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7264 {
7265         struct e1000_hw *hw = &adapter->hw;
7266         u32 ping;
7267         int i;
7268
7269         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7270                 ping = E1000_PF_CONTROL_MSG;
7271                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7272                         ping |= E1000_VT_MSGTYPE_CTS;
7273                 igb_write_mbx(hw, &ping, 1, i);
7274         }
7275 }
7276
7277 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7278 {
7279         struct e1000_hw *hw = &adapter->hw;
7280         u32 vmolr = rd32(E1000_VMOLR(vf));
7281         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7282
7283         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7284                             IGB_VF_FLAG_MULTI_PROMISC);
7285         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7286
7287         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7288                 vmolr |= E1000_VMOLR_MPME;
7289                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7290                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7291         } else {
7292                 /* if we have hashes and we are clearing a multicast promisc
7293                  * flag we need to write the hashes to the MTA as this step
7294                  * was previously skipped
7295                  */
7296                 if (vf_data->num_vf_mc_hashes > 30) {
7297                         vmolr |= E1000_VMOLR_MPME;
7298                 } else if (vf_data->num_vf_mc_hashes) {
7299                         int j;
7300
7301                         vmolr |= E1000_VMOLR_ROMPE;
7302                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7303                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7304                 }
7305         }
7306
7307         wr32(E1000_VMOLR(vf), vmolr);
7308
7309         /* there are flags left unprocessed, likely not supported */
7310         if (*msgbuf & E1000_VT_MSGINFO_MASK)
7311                 return -EINVAL;
7312
7313         return 0;
7314 }
7315
7316 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7317                                   u32 *msgbuf, u32 vf)
7318 {
7319         int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7320         u16 *hash_list = (u16 *)&msgbuf[1];
7321         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7322         int i;
7323
7324         /* salt away the number of multicast addresses assigned
7325          * to this VF for later use to restore when the PF multi cast
7326          * list changes
7327          */
7328         vf_data->num_vf_mc_hashes = n;
7329
7330         /* only up to 30 hash values supported */
7331         if (n > 30)
7332                 n = 30;
7333
7334         /* store the hashes for later use */
7335         for (i = 0; i < n; i++)
7336                 vf_data->vf_mc_hashes[i] = hash_list[i];
7337
7338         /* Flush and reset the mta with the new values */
7339         igb_set_rx_mode(adapter->netdev);
7340
7341         return 0;
7342 }
7343
7344 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7345 {
7346         struct e1000_hw *hw = &adapter->hw;
7347         struct vf_data_storage *vf_data;
7348         int i, j;
7349
7350         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7351                 u32 vmolr = rd32(E1000_VMOLR(i));
7352
7353                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7354
7355                 vf_data = &adapter->vf_data[i];
7356
7357                 if ((vf_data->num_vf_mc_hashes > 30) ||
7358                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7359                         vmolr |= E1000_VMOLR_MPME;
7360                 } else if (vf_data->num_vf_mc_hashes) {
7361                         vmolr |= E1000_VMOLR_ROMPE;
7362                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7363                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7364                 }
7365                 wr32(E1000_VMOLR(i), vmolr);
7366         }
7367 }
7368
7369 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7370 {
7371         struct e1000_hw *hw = &adapter->hw;
7372         u32 pool_mask, vlvf_mask, i;
7373
7374         /* create mask for VF and other pools */
7375         pool_mask = E1000_VLVF_POOLSEL_MASK;
7376         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7377
7378         /* drop PF from pool bits */
7379         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7380                              adapter->vfs_allocated_count);
7381
7382         /* Find the vlan filter for this id */
7383         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7384                 u32 vlvf = rd32(E1000_VLVF(i));
7385                 u32 vfta_mask, vid, vfta;
7386
7387                 /* remove the vf from the pool */
7388                 if (!(vlvf & vlvf_mask))
7389                         continue;
7390
7391                 /* clear out bit from VLVF */
7392                 vlvf ^= vlvf_mask;
7393
7394                 /* if other pools are present, just remove ourselves */
7395                 if (vlvf & pool_mask)
7396                         goto update_vlvfb;
7397
7398                 /* if PF is present, leave VFTA */
7399                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7400                         goto update_vlvf;
7401
7402                 vid = vlvf & E1000_VLVF_VLANID_MASK;
7403                 vfta_mask = BIT(vid % 32);
7404
7405                 /* clear bit from VFTA */
7406                 vfta = adapter->shadow_vfta[vid / 32];
7407                 if (vfta & vfta_mask)
7408                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7409 update_vlvf:
7410                 /* clear pool selection enable */
7411                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7412                         vlvf &= E1000_VLVF_POOLSEL_MASK;
7413                 else
7414                         vlvf = 0;
7415 update_vlvfb:
7416                 /* clear pool bits */
7417                 wr32(E1000_VLVF(i), vlvf);
7418         }
7419 }
7420
7421 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7422 {
7423         u32 vlvf;
7424         int idx;
7425
7426         /* short cut the special case */
7427         if (vlan == 0)
7428                 return 0;
7429
7430         /* Search for the VLAN id in the VLVF entries */
7431         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7432                 vlvf = rd32(E1000_VLVF(idx));
7433                 if ((vlvf & VLAN_VID_MASK) == vlan)
7434                         break;
7435         }
7436
7437         return idx;
7438 }
7439
7440 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7441 {
7442         struct e1000_hw *hw = &adapter->hw;
7443         u32 bits, pf_id;
7444         int idx;
7445
7446         idx = igb_find_vlvf_entry(hw, vid);
7447         if (!idx)
7448                 return;
7449
7450         /* See if any other pools are set for this VLAN filter
7451          * entry other than the PF.
7452          */
7453         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7454         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7455         bits &= rd32(E1000_VLVF(idx));
7456
7457         /* Disable the filter so this falls into the default pool. */
7458         if (!bits) {
7459                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7460                         wr32(E1000_VLVF(idx), BIT(pf_id));
7461                 else
7462                         wr32(E1000_VLVF(idx), 0);
7463         }
7464 }
7465
7466 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7467                            bool add, u32 vf)
7468 {
7469         int pf_id = adapter->vfs_allocated_count;
7470         struct e1000_hw *hw = &adapter->hw;
7471         int err;
7472
7473         /* If VLAN overlaps with one the PF is currently monitoring make
7474          * sure that we are able to allocate a VLVF entry.  This may be
7475          * redundant but it guarantees PF will maintain visibility to
7476          * the VLAN.
7477          */
7478         if (add && test_bit(vid, adapter->active_vlans)) {
7479                 err = igb_vfta_set(hw, vid, pf_id, true, false);
7480                 if (err)
7481                         return err;
7482         }
7483
7484         err = igb_vfta_set(hw, vid, vf, add, false);
7485
7486         if (add && !err)
7487                 return err;
7488
7489         /* If we failed to add the VF VLAN or we are removing the VF VLAN
7490          * we may need to drop the PF pool bit in order to allow us to free
7491          * up the VLVF resources.
7492          */
7493         if (test_bit(vid, adapter->active_vlans) ||
7494             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7495                 igb_update_pf_vlvf(adapter, vid);
7496
7497         return err;
7498 }
7499
7500 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7501 {
7502         struct e1000_hw *hw = &adapter->hw;
7503
7504         if (vid)
7505                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7506         else
7507                 wr32(E1000_VMVIR(vf), 0);
7508 }
7509
7510 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7511                                 u16 vlan, u8 qos)
7512 {
7513         int err;
7514
7515         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7516         if (err)
7517                 return err;
7518
7519         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7520         igb_set_vmolr(adapter, vf, !vlan);
7521
7522         /* revoke access to previous VLAN */
7523         if (vlan != adapter->vf_data[vf].pf_vlan)
7524                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7525                                 false, vf);
7526
7527         adapter->vf_data[vf].pf_vlan = vlan;
7528         adapter->vf_data[vf].pf_qos = qos;
7529         igb_set_vf_vlan_strip(adapter, vf, true);
7530         dev_info(&adapter->pdev->dev,
7531                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7532         if (test_bit(__IGB_DOWN, &adapter->state)) {
7533                 dev_warn(&adapter->pdev->dev,
7534                          "The VF VLAN has been set, but the PF device is not up.\n");
7535                 dev_warn(&adapter->pdev->dev,
7536                          "Bring the PF device up before attempting to use the VF device.\n");
7537         }
7538
7539         return err;
7540 }
7541
7542 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7543 {
7544         /* Restore tagless access via VLAN 0 */
7545         igb_set_vf_vlan(adapter, 0, true, vf);
7546
7547         igb_set_vmvir(adapter, 0, vf);
7548         igb_set_vmolr(adapter, vf, true);
7549
7550         /* Remove any PF assigned VLAN */
7551         if (adapter->vf_data[vf].pf_vlan)
7552                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7553                                 false, vf);
7554
7555         adapter->vf_data[vf].pf_vlan = 0;
7556         adapter->vf_data[vf].pf_qos = 0;
7557         igb_set_vf_vlan_strip(adapter, vf, false);
7558
7559         return 0;
7560 }
7561
7562 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7563                                u16 vlan, u8 qos, __be16 vlan_proto)
7564 {
7565         struct igb_adapter *adapter = netdev_priv(netdev);
7566
7567         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7568                 return -EINVAL;
7569
7570         if (vlan_proto != htons(ETH_P_8021Q))
7571                 return -EPROTONOSUPPORT;
7572
7573         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7574                                igb_disable_port_vlan(adapter, vf);
7575 }
7576
7577 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7578 {
7579         int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7580         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7581         int ret;
7582
7583         if (adapter->vf_data[vf].pf_vlan)
7584                 return -1;
7585
7586         /* VLAN 0 is a special case, don't allow it to be removed */
7587         if (!vid && !add)
7588                 return 0;
7589
7590         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7591         if (!ret)
7592                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7593         return ret;
7594 }
7595
7596 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7597 {
7598         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7599
7600         /* clear flags - except flag that indicates PF has set the MAC */
7601         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7602         vf_data->last_nack = jiffies;
7603
7604         /* reset vlans for device */
7605         igb_clear_vf_vfta(adapter, vf);
7606         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7607         igb_set_vmvir(adapter, vf_data->pf_vlan |
7608                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7609         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7610         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7611
7612         /* reset multicast table array for vf */
7613         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7614
7615         /* Flush and reset the mta with the new values */
7616         igb_set_rx_mode(adapter->netdev);
7617 }
7618
7619 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7620 {
7621         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7622
7623         /* clear mac address as we were hotplug removed/added */
7624         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7625                 eth_zero_addr(vf_mac);
7626
7627         /* process remaining reset events */
7628         igb_vf_reset(adapter, vf);
7629 }
7630
7631 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7632 {
7633         struct e1000_hw *hw = &adapter->hw;
7634         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7635         u32 reg, msgbuf[3] = {};
7636         u8 *addr = (u8 *)(&msgbuf[1]);
7637
7638         /* process all the same items cleared in a function level reset */
7639         igb_vf_reset(adapter, vf);
7640
7641         /* set vf mac address */
7642         igb_set_vf_mac(adapter, vf, vf_mac);
7643
7644         /* enable transmit and receive for vf */
7645         reg = rd32(E1000_VFTE);
7646         wr32(E1000_VFTE, reg | BIT(vf));
7647         reg = rd32(E1000_VFRE);
7648         wr32(E1000_VFRE, reg | BIT(vf));
7649
7650         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7651
7652         /* reply to reset with ack and vf mac address */
7653         if (!is_zero_ether_addr(vf_mac)) {
7654                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7655                 memcpy(addr, vf_mac, ETH_ALEN);
7656         } else {
7657                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7658         }
7659         igb_write_mbx(hw, msgbuf, 3, vf);
7660 }
7661
7662 static void igb_flush_mac_table(struct igb_adapter *adapter)
7663 {
7664         struct e1000_hw *hw = &adapter->hw;
7665         int i;
7666
7667         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7668                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7669                 eth_zero_addr(adapter->mac_table[i].addr);
7670                 adapter->mac_table[i].queue = 0;
7671                 igb_rar_set_index(adapter, i);
7672         }
7673 }
7674
7675 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7676 {
7677         struct e1000_hw *hw = &adapter->hw;
7678         /* do not count rar entries reserved for VFs MAC addresses */
7679         int rar_entries = hw->mac.rar_entry_count -
7680                           adapter->vfs_allocated_count;
7681         int i, count = 0;
7682
7683         for (i = 0; i < rar_entries; i++) {
7684                 /* do not count default entries */
7685                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7686                         continue;
7687
7688                 /* do not count "in use" entries for different queues */
7689                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7690                     (adapter->mac_table[i].queue != queue))
7691                         continue;
7692
7693                 count++;
7694         }
7695
7696         return count;
7697 }
7698
7699 /* Set default MAC address for the PF in the first RAR entry */
7700 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7701 {
7702         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7703
7704         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7705         mac_table->queue = adapter->vfs_allocated_count;
7706         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7707
7708         igb_rar_set_index(adapter, 0);
7709 }
7710
7711 /* If the filter to be added and an already existing filter express
7712  * the same address and address type, it should be possible to only
7713  * override the other configurations, for example the queue to steer
7714  * traffic.
7715  */
7716 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7717                                       const u8 *addr, const u8 flags)
7718 {
7719         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7720                 return true;
7721
7722         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7723             (flags & IGB_MAC_STATE_SRC_ADDR))
7724                 return false;
7725
7726         if (!ether_addr_equal(addr, entry->addr))
7727                 return false;
7728
7729         return true;
7730 }
7731
7732 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7733  * 'flags' is used to indicate what kind of match is made, match is by
7734  * default for the destination address, if matching by source address
7735  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7736  */
7737 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7738                                     const u8 *addr, const u8 queue,
7739                                     const u8 flags)
7740 {
7741         struct e1000_hw *hw = &adapter->hw;
7742         int rar_entries = hw->mac.rar_entry_count -
7743                           adapter->vfs_allocated_count;
7744         int i;
7745
7746         if (is_zero_ether_addr(addr))
7747                 return -EINVAL;
7748
7749         /* Search for the first empty entry in the MAC table.
7750          * Do not touch entries at the end of the table reserved for the VF MAC
7751          * addresses.
7752          */
7753         for (i = 0; i < rar_entries; i++) {
7754                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7755                                                addr, flags))
7756                         continue;
7757
7758                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7759                 adapter->mac_table[i].queue = queue;
7760                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7761
7762                 igb_rar_set_index(adapter, i);
7763                 return i;
7764         }
7765
7766         return -ENOSPC;
7767 }
7768
7769 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7770                               const u8 queue)
7771 {
7772         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7773 }
7774
7775 /* Remove a MAC filter for 'addr' directing matching traffic to
7776  * 'queue', 'flags' is used to indicate what kind of match need to be
7777  * removed, match is by default for the destination address, if
7778  * matching by source address is to be removed the flag
7779  * IGB_MAC_STATE_SRC_ADDR can be used.
7780  */
7781 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7782                                     const u8 *addr, const u8 queue,
7783                                     const u8 flags)
7784 {
7785         struct e1000_hw *hw = &adapter->hw;
7786         int rar_entries = hw->mac.rar_entry_count -
7787                           adapter->vfs_allocated_count;
7788         int i;
7789
7790         if (is_zero_ether_addr(addr))
7791                 return -EINVAL;
7792
7793         /* Search for matching entry in the MAC table based on given address
7794          * and queue. Do not touch entries at the end of the table reserved
7795          * for the VF MAC addresses.
7796          */
7797         for (i = 0; i < rar_entries; i++) {
7798                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7799                         continue;
7800                 if ((adapter->mac_table[i].state & flags) != flags)
7801                         continue;
7802                 if (adapter->mac_table[i].queue != queue)
7803                         continue;
7804                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7805                         continue;
7806
7807                 /* When a filter for the default address is "deleted",
7808                  * we return it to its initial configuration
7809                  */
7810                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7811                         adapter->mac_table[i].state =
7812                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7813                         adapter->mac_table[i].queue =
7814                                 adapter->vfs_allocated_count;
7815                 } else {
7816                         adapter->mac_table[i].state = 0;
7817                         adapter->mac_table[i].queue = 0;
7818                         eth_zero_addr(adapter->mac_table[i].addr);
7819                 }
7820
7821                 igb_rar_set_index(adapter, i);
7822                 return 0;
7823         }
7824
7825         return -ENOENT;
7826 }
7827
7828 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7829                               const u8 queue)
7830 {
7831         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7832 }
7833
7834 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7835                                 const u8 *addr, u8 queue, u8 flags)
7836 {
7837         struct e1000_hw *hw = &adapter->hw;
7838
7839         /* In theory, this should be supported on 82575 as well, but
7840          * that part wasn't easily accessible during development.
7841          */
7842         if (hw->mac.type != e1000_i210)
7843                 return -EOPNOTSUPP;
7844
7845         return igb_add_mac_filter_flags(adapter, addr, queue,
7846                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7847 }
7848
7849 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7850                                 const u8 *addr, u8 queue, u8 flags)
7851 {
7852         return igb_del_mac_filter_flags(adapter, addr, queue,
7853                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7854 }
7855
7856 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7857 {
7858         struct igb_adapter *adapter = netdev_priv(netdev);
7859         int ret;
7860
7861         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7862
7863         return min_t(int, ret, 0);
7864 }
7865
7866 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7867 {
7868         struct igb_adapter *adapter = netdev_priv(netdev);
7869
7870         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7871
7872         return 0;
7873 }
7874
7875 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7876                                  const u32 info, const u8 *addr)
7877 {
7878         struct pci_dev *pdev = adapter->pdev;
7879         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7880         struct vf_mac_filter *entry;
7881         bool found = false;
7882         int ret = 0;
7883
7884         if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7885             !vf_data->trusted) {
7886                 dev_warn(&pdev->dev,
7887                          "VF %d requested MAC filter but is administratively denied\n",
7888                           vf);
7889                 return -EINVAL;
7890         }
7891         if (!is_valid_ether_addr(addr)) {
7892                 dev_warn(&pdev->dev,
7893                          "VF %d attempted to set invalid MAC filter\n",
7894                           vf);
7895                 return -EINVAL;
7896         }
7897
7898         switch (info) {
7899         case E1000_VF_MAC_FILTER_CLR:
7900                 /* remove all unicast MAC filters related to the current VF */
7901                 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7902                         if (entry->vf == vf) {
7903                                 entry->vf = -1;
7904                                 entry->free = true;
7905                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7906                         }
7907                 }
7908                 break;
7909         case E1000_VF_MAC_FILTER_ADD:
7910                 /* try to find empty slot in the list */
7911                 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7912                         if (entry->free) {
7913                                 found = true;
7914                                 break;
7915                         }
7916                 }
7917
7918                 if (found) {
7919                         entry->free = false;
7920                         entry->vf = vf;
7921                         ether_addr_copy(entry->vf_mac, addr);
7922
7923                         ret = igb_add_mac_filter(adapter, addr, vf);
7924                         ret = min_t(int, ret, 0);
7925                 } else {
7926                         ret = -ENOSPC;
7927                 }
7928
7929                 if (ret == -ENOSPC)
7930                         dev_warn(&pdev->dev,
7931                                  "VF %d has requested MAC filter but there is no space for it\n",
7932                                  vf);
7933                 break;
7934         default:
7935                 ret = -EINVAL;
7936                 break;
7937         }
7938
7939         return ret;
7940 }
7941
7942 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7943 {
7944         struct pci_dev *pdev = adapter->pdev;
7945         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7946         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7947
7948         /* The VF MAC Address is stored in a packed array of bytes
7949          * starting at the second 32 bit word of the msg array
7950          */
7951         unsigned char *addr = (unsigned char *)&msg[1];
7952         int ret = 0;
7953
7954         if (!info) {
7955                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7956                     !vf_data->trusted) {
7957                         dev_warn(&pdev->dev,
7958                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7959                                  vf);
7960                         return -EINVAL;
7961                 }
7962
7963                 if (!is_valid_ether_addr(addr)) {
7964                         dev_warn(&pdev->dev,
7965                                  "VF %d attempted to set invalid MAC\n",
7966                                  vf);
7967                         return -EINVAL;
7968                 }
7969
7970                 ret = igb_set_vf_mac(adapter, vf, addr);
7971         } else {
7972                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7973         }
7974
7975         return ret;
7976 }
7977
7978 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7979 {
7980         struct e1000_hw *hw = &adapter->hw;
7981         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7982         u32 msg = E1000_VT_MSGTYPE_NACK;
7983
7984         /* if device isn't clear to send it shouldn't be reading either */
7985         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7986             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7987                 igb_write_mbx(hw, &msg, 1, vf);
7988                 vf_data->last_nack = jiffies;
7989         }
7990 }
7991
7992 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7993 {
7994         struct pci_dev *pdev = adapter->pdev;
7995         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7996         struct e1000_hw *hw = &adapter->hw;
7997         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7998         s32 retval;
7999
8000         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8001
8002         if (retval) {
8003                 /* if receive failed revoke VF CTS stats and restart init */
8004                 dev_err(&pdev->dev, "Error receiving message from VF\n");
8005                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
8006                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8007                         goto unlock;
8008                 goto out;
8009         }
8010
8011         /* this is a message we already processed, do nothing */
8012         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8013                 goto unlock;
8014
8015         /* until the vf completes a reset it should not be
8016          * allowed to start any configuration.
8017          */
8018         if (msgbuf[0] == E1000_VF_RESET) {
8019                 /* unlocks mailbox */
8020                 igb_vf_reset_msg(adapter, vf);
8021                 return;
8022         }
8023
8024         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8025                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8026                         goto unlock;
8027                 retval = -1;
8028                 goto out;
8029         }
8030
8031         switch ((msgbuf[0] & 0xFFFF)) {
8032         case E1000_VF_SET_MAC_ADDR:
8033                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8034                 break;
8035         case E1000_VF_SET_PROMISC:
8036                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8037                 break;
8038         case E1000_VF_SET_MULTICAST:
8039                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8040                 break;
8041         case E1000_VF_SET_LPE:
8042                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8043                 break;
8044         case E1000_VF_SET_VLAN:
8045                 retval = -1;
8046                 if (vf_data->pf_vlan)
8047                         dev_warn(&pdev->dev,
8048                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8049                                  vf);
8050                 else
8051                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8052                 break;
8053         default:
8054                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8055                 retval = -1;
8056                 break;
8057         }
8058
8059         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8060 out:
8061         /* notify the VF of the results of what it sent us */
8062         if (retval)
8063                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8064         else
8065                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8066
8067         /* unlocks mailbox */
8068         igb_write_mbx(hw, msgbuf, 1, vf);
8069         return;
8070
8071 unlock:
8072         igb_unlock_mbx(hw, vf);
8073 }
8074
8075 static void igb_msg_task(struct igb_adapter *adapter)
8076 {
8077         struct e1000_hw *hw = &adapter->hw;
8078         unsigned long flags;
8079         u32 vf;
8080
8081         spin_lock_irqsave(&adapter->vfs_lock, flags);
8082         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8083                 /* process any reset requests */
8084                 if (!igb_check_for_rst(hw, vf))
8085                         igb_vf_reset_event(adapter, vf);
8086
8087                 /* process any messages pending */
8088                 if (!igb_check_for_msg(hw, vf))
8089                         igb_rcv_msg_from_vf(adapter, vf);
8090
8091                 /* process any acks */
8092                 if (!igb_check_for_ack(hw, vf))
8093                         igb_rcv_ack_from_vf(adapter, vf);
8094         }
8095         spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8096 }
8097
8098 /**
8099  *  igb_set_uta - Set unicast filter table address
8100  *  @adapter: board private structure
8101  *  @set: boolean indicating if we are setting or clearing bits
8102  *
8103  *  The unicast table address is a register array of 32-bit registers.
8104  *  The table is meant to be used in a way similar to how the MTA is used
8105  *  however due to certain limitations in the hardware it is necessary to
8106  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8107  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8108  **/
8109 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8110 {
8111         struct e1000_hw *hw = &adapter->hw;
8112         u32 uta = set ? ~0 : 0;
8113         int i;
8114
8115         /* we only need to do this if VMDq is enabled */
8116         if (!adapter->vfs_allocated_count)
8117                 return;
8118
8119         for (i = hw->mac.uta_reg_count; i--;)
8120                 array_wr32(E1000_UTA, i, uta);
8121 }
8122
8123 /**
8124  *  igb_intr_msi - Interrupt Handler
8125  *  @irq: interrupt number
8126  *  @data: pointer to a network interface device structure
8127  **/
8128 static irqreturn_t igb_intr_msi(int irq, void *data)
8129 {
8130         struct igb_adapter *adapter = data;
8131         struct igb_q_vector *q_vector = adapter->q_vector[0];
8132         struct e1000_hw *hw = &adapter->hw;
8133         /* read ICR disables interrupts using IAM */
8134         u32 icr = rd32(E1000_ICR);
8135
8136         igb_write_itr(q_vector);
8137
8138         if (icr & E1000_ICR_DRSTA)
8139                 schedule_work(&adapter->reset_task);
8140
8141         if (icr & E1000_ICR_DOUTSYNC) {
8142                 /* HW is reporting DMA is out of sync */
8143                 adapter->stats.doosync++;
8144         }
8145
8146         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8147                 hw->mac.get_link_status = 1;
8148                 if (!test_bit(__IGB_DOWN, &adapter->state))
8149                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
8150         }
8151
8152         if (icr & E1000_ICR_TS)
8153                 igb_tsync_interrupt(adapter);
8154
8155         napi_schedule(&q_vector->napi);
8156
8157         return IRQ_HANDLED;
8158 }
8159
8160 /**
8161  *  igb_intr - Legacy Interrupt Handler
8162  *  @irq: interrupt number
8163  *  @data: pointer to a network interface device structure
8164  **/
8165 static irqreturn_t igb_intr(int irq, void *data)
8166 {
8167         struct igb_adapter *adapter = data;
8168         struct igb_q_vector *q_vector = adapter->q_vector[0];
8169         struct e1000_hw *hw = &adapter->hw;
8170         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8171          * need for the IMC write
8172          */
8173         u32 icr = rd32(E1000_ICR);
8174
8175         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8176          * not set, then the adapter didn't send an interrupt
8177          */
8178         if (!(icr & E1000_ICR_INT_ASSERTED))
8179                 return IRQ_NONE;
8180
8181         igb_write_itr(q_vector);
8182
8183         if (icr & E1000_ICR_DRSTA)
8184                 schedule_work(&adapter->reset_task);
8185
8186         if (icr & E1000_ICR_DOUTSYNC) {
8187                 /* HW is reporting DMA is out of sync */
8188                 adapter->stats.doosync++;
8189         }
8190
8191         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8192                 hw->mac.get_link_status = 1;
8193                 /* guard against interrupt when we're going down */
8194                 if (!test_bit(__IGB_DOWN, &adapter->state))
8195                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
8196         }
8197
8198         if (icr & E1000_ICR_TS)
8199                 igb_tsync_interrupt(adapter);
8200
8201         napi_schedule(&q_vector->napi);
8202
8203         return IRQ_HANDLED;
8204 }
8205
8206 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8207 {
8208         struct igb_adapter *adapter = q_vector->adapter;
8209         struct e1000_hw *hw = &adapter->hw;
8210
8211         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8212             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8213                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8214                         igb_set_itr(q_vector);
8215                 else
8216                         igb_update_ring_itr(q_vector);
8217         }
8218
8219         if (!test_bit(__IGB_DOWN, &adapter->state)) {
8220                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8221                         wr32(E1000_EIMS, q_vector->eims_value);
8222                 else
8223                         igb_irq_enable(adapter);
8224         }
8225 }
8226
8227 /**
8228  *  igb_poll - NAPI Rx polling callback
8229  *  @napi: napi polling structure
8230  *  @budget: count of how many packets we should handle
8231  **/
8232 static int igb_poll(struct napi_struct *napi, int budget)
8233 {
8234         struct igb_q_vector *q_vector = container_of(napi,
8235                                                      struct igb_q_vector,
8236                                                      napi);
8237         struct xsk_buff_pool *xsk_pool;
8238         bool clean_complete = true;
8239         int work_done = 0;
8240
8241 #ifdef CONFIG_IGB_DCA
8242         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8243                 igb_update_dca(q_vector);
8244 #endif
8245         if (q_vector->tx.ring)
8246                 clean_complete = igb_clean_tx_irq(q_vector, budget);
8247
8248         if (q_vector->rx.ring) {
8249                 int cleaned;
8250
8251                 xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8252                 cleaned = xsk_pool ?
8253                         igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8254                         igb_clean_rx_irq(q_vector, budget);
8255
8256                 work_done += cleaned;
8257                 if (cleaned >= budget)
8258                         clean_complete = false;
8259         }
8260
8261         /* If all work not completed, return budget and keep polling */
8262         if (!clean_complete)
8263                 return budget;
8264
8265         /* Exit the polling mode, but don't re-enable interrupts if stack might
8266          * poll us due to busy-polling
8267          */
8268         if (likely(napi_complete_done(napi, work_done)))
8269                 igb_ring_irq_enable(q_vector);
8270
8271         return work_done;
8272 }
8273
8274 /**
8275  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8276  *  @q_vector: pointer to q_vector containing needed info
8277  *  @napi_budget: Used to determine if we are in netpoll
8278  *
8279  *  returns true if ring is completely cleaned
8280  **/
8281 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8282 {
8283         unsigned int total_bytes = 0, total_packets = 0;
8284         struct igb_adapter *adapter = q_vector->adapter;
8285         unsigned int budget = q_vector->tx.work_limit;
8286         struct igb_ring *tx_ring = q_vector->tx.ring;
8287         unsigned int i = tx_ring->next_to_clean;
8288         union e1000_adv_tx_desc *tx_desc;
8289         struct igb_tx_buffer *tx_buffer;
8290         struct xsk_buff_pool *xsk_pool;
8291         int cpu = smp_processor_id();
8292         bool xsk_xmit_done = true;
8293         struct netdev_queue *nq;
8294         u32 xsk_frames = 0;
8295
8296         if (test_bit(__IGB_DOWN, &adapter->state))
8297                 return true;
8298
8299         tx_buffer = &tx_ring->tx_buffer_info[i];
8300         tx_desc = IGB_TX_DESC(tx_ring, i);
8301         i -= tx_ring->count;
8302
8303         do {
8304                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8305
8306                 /* if next_to_watch is not set then there is no work pending */
8307                 if (!eop_desc)
8308                         break;
8309
8310                 /* prevent any other reads prior to eop_desc */
8311                 smp_rmb();
8312
8313                 /* if DD is not set pending work has not been completed */
8314                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8315                         break;
8316
8317                 /* clear next_to_watch to prevent false hangs */
8318                 tx_buffer->next_to_watch = NULL;
8319
8320                 /* update the statistics for this packet */
8321                 total_bytes += tx_buffer->bytecount;
8322                 total_packets += tx_buffer->gso_segs;
8323
8324                 /* free the skb */
8325                 if (tx_buffer->type == IGB_TYPE_SKB) {
8326                         napi_consume_skb(tx_buffer->skb, napi_budget);
8327                 } else if (tx_buffer->type == IGB_TYPE_XDP) {
8328                         xdp_return_frame(tx_buffer->xdpf);
8329                 } else if (tx_buffer->type == IGB_TYPE_XSK) {
8330                         xsk_frames++;
8331                         goto skip_for_xsk;
8332                 }
8333
8334                 /* unmap skb header data */
8335                 dma_unmap_single(tx_ring->dev,
8336                                  dma_unmap_addr(tx_buffer, dma),
8337                                  dma_unmap_len(tx_buffer, len),
8338                                  DMA_TO_DEVICE);
8339
8340                 /* clear tx_buffer data */
8341                 dma_unmap_len_set(tx_buffer, len, 0);
8342
8343                 /* clear last DMA location and unmap remaining buffers */
8344                 while (tx_desc != eop_desc) {
8345                         tx_buffer++;
8346                         tx_desc++;
8347                         i++;
8348                         if (unlikely(!i)) {
8349                                 i -= tx_ring->count;
8350                                 tx_buffer = tx_ring->tx_buffer_info;
8351                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8352                         }
8353
8354                         /* unmap any remaining paged data */
8355                         if (dma_unmap_len(tx_buffer, len)) {
8356                                 dma_unmap_page(tx_ring->dev,
8357                                                dma_unmap_addr(tx_buffer, dma),
8358                                                dma_unmap_len(tx_buffer, len),
8359                                                DMA_TO_DEVICE);
8360                                 dma_unmap_len_set(tx_buffer, len, 0);
8361                         }
8362                 }
8363
8364 skip_for_xsk:
8365                 /* move us one more past the eop_desc for start of next pkt */
8366                 tx_buffer++;
8367                 tx_desc++;
8368                 i++;
8369                 if (unlikely(!i)) {
8370                         i -= tx_ring->count;
8371                         tx_buffer = tx_ring->tx_buffer_info;
8372                         tx_desc = IGB_TX_DESC(tx_ring, 0);
8373                 }
8374
8375                 /* issue prefetch for next Tx descriptor */
8376                 prefetch(tx_desc);
8377
8378                 /* update budget accounting */
8379                 budget--;
8380         } while (likely(budget));
8381
8382         netdev_tx_completed_queue(txring_txq(tx_ring),
8383                                   total_packets, total_bytes);
8384         i += tx_ring->count;
8385         tx_ring->next_to_clean = i;
8386         u64_stats_update_begin(&tx_ring->tx_syncp);
8387         tx_ring->tx_stats.bytes += total_bytes;
8388         tx_ring->tx_stats.packets += total_packets;
8389         u64_stats_update_end(&tx_ring->tx_syncp);
8390         q_vector->tx.total_bytes += total_bytes;
8391         q_vector->tx.total_packets += total_packets;
8392
8393         xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8394         if (xsk_pool) {
8395                 if (xsk_frames)
8396                         xsk_tx_completed(xsk_pool, xsk_frames);
8397                 if (xsk_uses_need_wakeup(xsk_pool))
8398                         xsk_set_tx_need_wakeup(xsk_pool);
8399
8400                 nq = txring_txq(tx_ring);
8401                 __netif_tx_lock(nq, cpu);
8402                 /* Avoid transmit queue timeout since we share it with the slow path */
8403                 txq_trans_cond_update(nq);
8404                 xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8405                 __netif_tx_unlock(nq);
8406         }
8407
8408         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8409                 struct e1000_hw *hw = &adapter->hw;
8410
8411                 /* Detect a transmit hang in hardware, this serializes the
8412                  * check with the clearing of time_stamp and movement of i
8413                  */
8414                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8415                 if (tx_buffer->next_to_watch &&
8416                     time_after(jiffies, tx_buffer->time_stamp +
8417                                (adapter->tx_timeout_factor * HZ)) &&
8418                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8419
8420                         /* detected Tx unit hang */
8421                         dev_err(tx_ring->dev,
8422                                 "Detected Tx Unit Hang\n"
8423                                 "  Tx Queue             <%d>\n"
8424                                 "  TDH                  <%x>\n"
8425                                 "  TDT                  <%x>\n"
8426                                 "  next_to_use          <%x>\n"
8427                                 "  next_to_clean        <%x>\n"
8428                                 "buffer_info[next_to_clean]\n"
8429                                 "  time_stamp           <%lx>\n"
8430                                 "  next_to_watch        <%p>\n"
8431                                 "  jiffies              <%lx>\n"
8432                                 "  desc.status          <%x>\n",
8433                                 tx_ring->queue_index,
8434                                 rd32(E1000_TDH(tx_ring->reg_idx)),
8435                                 readl(tx_ring->tail),
8436                                 tx_ring->next_to_use,
8437                                 tx_ring->next_to_clean,
8438                                 tx_buffer->time_stamp,
8439                                 tx_buffer->next_to_watch,
8440                                 jiffies,
8441                                 tx_buffer->next_to_watch->wb.status);
8442                         netif_stop_subqueue(tx_ring->netdev,
8443                                             tx_ring->queue_index);
8444
8445                         /* we are about to reset, no point in enabling stuff */
8446                         return true;
8447                 }
8448         }
8449
8450 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8451         if (unlikely(total_packets &&
8452             netif_carrier_ok(tx_ring->netdev) &&
8453             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8454                 /* Make sure that anybody stopping the queue after this
8455                  * sees the new next_to_clean.
8456                  */
8457                 smp_mb();
8458                 if (__netif_subqueue_stopped(tx_ring->netdev,
8459                                              tx_ring->queue_index) &&
8460                     !(test_bit(__IGB_DOWN, &adapter->state))) {
8461                         netif_wake_subqueue(tx_ring->netdev,
8462                                             tx_ring->queue_index);
8463
8464                         u64_stats_update_begin(&tx_ring->tx_syncp);
8465                         tx_ring->tx_stats.restart_queue++;
8466                         u64_stats_update_end(&tx_ring->tx_syncp);
8467                 }
8468         }
8469
8470         return !!budget && xsk_xmit_done;
8471 }
8472
8473 /**
8474  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8475  *  @rx_ring: rx descriptor ring to store buffers on
8476  *  @old_buff: donor buffer to have page reused
8477  *
8478  *  Synchronizes page for reuse by the adapter
8479  **/
8480 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8481                               struct igb_rx_buffer *old_buff)
8482 {
8483         struct igb_rx_buffer *new_buff;
8484         u16 nta = rx_ring->next_to_alloc;
8485
8486         new_buff = &rx_ring->rx_buffer_info[nta];
8487
8488         /* update, and store next to alloc */
8489         nta++;
8490         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8491
8492         /* Transfer page from old buffer to new buffer.
8493          * Move each member individually to avoid possible store
8494          * forwarding stalls.
8495          */
8496         new_buff->dma           = old_buff->dma;
8497         new_buff->page          = old_buff->page;
8498         new_buff->page_offset   = old_buff->page_offset;
8499         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8500 }
8501
8502 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8503                                   int rx_buf_pgcnt)
8504 {
8505         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8506         struct page *page = rx_buffer->page;
8507
8508         /* avoid re-using remote and pfmemalloc pages */
8509         if (!dev_page_is_reusable(page))
8510                 return false;
8511
8512 #if (PAGE_SIZE < 8192)
8513         /* if we are only owner of page we can reuse it */
8514         if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8515                 return false;
8516 #else
8517 #define IGB_LAST_OFFSET \
8518         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8519
8520         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8521                 return false;
8522 #endif
8523
8524         /* If we have drained the page fragment pool we need to update
8525          * the pagecnt_bias and page count so that we fully restock the
8526          * number of references the driver holds.
8527          */
8528         if (unlikely(pagecnt_bias == 1)) {
8529                 page_ref_add(page, USHRT_MAX - 1);
8530                 rx_buffer->pagecnt_bias = USHRT_MAX;
8531         }
8532
8533         return true;
8534 }
8535
8536 /**
8537  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8538  *  @rx_ring: rx descriptor ring to transact packets on
8539  *  @rx_buffer: buffer containing page to add
8540  *  @skb: sk_buff to place the data into
8541  *  @size: size of buffer to be added
8542  *
8543  *  This function will add the data contained in rx_buffer->page to the skb.
8544  **/
8545 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8546                             struct igb_rx_buffer *rx_buffer,
8547                             struct sk_buff *skb,
8548                             unsigned int size)
8549 {
8550 #if (PAGE_SIZE < 8192)
8551         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8552 #else
8553         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8554                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8555                                 SKB_DATA_ALIGN(size);
8556 #endif
8557         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8558                         rx_buffer->page_offset, size, truesize);
8559 #if (PAGE_SIZE < 8192)
8560         rx_buffer->page_offset ^= truesize;
8561 #else
8562         rx_buffer->page_offset += truesize;
8563 #endif
8564 }
8565
8566 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8567                                          struct igb_rx_buffer *rx_buffer,
8568                                          struct xdp_buff *xdp,
8569                                          ktime_t timestamp)
8570 {
8571 #if (PAGE_SIZE < 8192)
8572         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8573 #else
8574         unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8575                                                xdp->data_hard_start);
8576 #endif
8577         unsigned int size = xdp->data_end - xdp->data;
8578         unsigned int headlen;
8579         struct sk_buff *skb;
8580
8581         /* prefetch first cache line of first page */
8582         net_prefetch(xdp->data);
8583
8584         /* allocate a skb to store the frags */
8585         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8586         if (unlikely(!skb))
8587                 return NULL;
8588
8589         if (timestamp)
8590                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8591
8592         /* Determine available headroom for copy */
8593         headlen = size;
8594         if (headlen > IGB_RX_HDR_LEN)
8595                 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8596
8597         /* align pull length to size of long to optimize memcpy performance */
8598         memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8599
8600         /* update all of the pointers */
8601         size -= headlen;
8602         if (size) {
8603                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8604                                 (xdp->data + headlen) - page_address(rx_buffer->page),
8605                                 size, truesize);
8606 #if (PAGE_SIZE < 8192)
8607                 rx_buffer->page_offset ^= truesize;
8608 #else
8609                 rx_buffer->page_offset += truesize;
8610 #endif
8611         } else {
8612                 rx_buffer->pagecnt_bias++;
8613         }
8614
8615         return skb;
8616 }
8617
8618 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8619                                      struct igb_rx_buffer *rx_buffer,
8620                                      struct xdp_buff *xdp,
8621                                      ktime_t timestamp)
8622 {
8623 #if (PAGE_SIZE < 8192)
8624         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8625 #else
8626         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8627                                 SKB_DATA_ALIGN(xdp->data_end -
8628                                                xdp->data_hard_start);
8629 #endif
8630         unsigned int metasize = xdp->data - xdp->data_meta;
8631         struct sk_buff *skb;
8632
8633         /* prefetch first cache line of first page */
8634         net_prefetch(xdp->data_meta);
8635
8636         /* build an skb around the page buffer */
8637         skb = napi_build_skb(xdp->data_hard_start, truesize);
8638         if (unlikely(!skb))
8639                 return NULL;
8640
8641         /* update pointers within the skb to store the data */
8642         skb_reserve(skb, xdp->data - xdp->data_hard_start);
8643         __skb_put(skb, xdp->data_end - xdp->data);
8644
8645         if (metasize)
8646                 skb_metadata_set(skb, metasize);
8647
8648         if (timestamp)
8649                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8650
8651         /* update buffer offset */
8652 #if (PAGE_SIZE < 8192)
8653         rx_buffer->page_offset ^= truesize;
8654 #else
8655         rx_buffer->page_offset += truesize;
8656 #endif
8657
8658         return skb;
8659 }
8660
8661 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8662                        struct xdp_buff *xdp)
8663 {
8664         int err, result = IGB_XDP_PASS;
8665         struct bpf_prog *xdp_prog;
8666         u32 act;
8667
8668         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8669
8670         if (!xdp_prog)
8671                 goto xdp_out;
8672
8673         prefetchw(xdp->data_hard_start); /* xdp_frame write */
8674
8675         act = bpf_prog_run_xdp(xdp_prog, xdp);
8676         switch (act) {
8677         case XDP_PASS:
8678                 break;
8679         case XDP_TX:
8680                 result = igb_xdp_xmit_back(adapter, xdp);
8681                 if (result == IGB_XDP_CONSUMED)
8682                         goto out_failure;
8683                 break;
8684         case XDP_REDIRECT:
8685                 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8686                 if (err)
8687                         goto out_failure;
8688                 result = IGB_XDP_REDIR;
8689                 break;
8690         default:
8691                 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8692                 fallthrough;
8693         case XDP_ABORTED:
8694 out_failure:
8695                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8696                 fallthrough;
8697         case XDP_DROP:
8698                 result = IGB_XDP_CONSUMED;
8699                 break;
8700         }
8701 xdp_out:
8702         return result;
8703 }
8704
8705 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8706                                           unsigned int size)
8707 {
8708         unsigned int truesize;
8709
8710 #if (PAGE_SIZE < 8192)
8711         truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8712 #else
8713         truesize = ring_uses_build_skb(rx_ring) ?
8714                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8715                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8716                 SKB_DATA_ALIGN(size);
8717 #endif
8718         return truesize;
8719 }
8720
8721 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8722                                struct igb_rx_buffer *rx_buffer,
8723                                unsigned int size)
8724 {
8725         unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8726 #if (PAGE_SIZE < 8192)
8727         rx_buffer->page_offset ^= truesize;
8728 #else
8729         rx_buffer->page_offset += truesize;
8730 #endif
8731 }
8732
8733 static inline void igb_rx_checksum(struct igb_ring *ring,
8734                                    union e1000_adv_rx_desc *rx_desc,
8735                                    struct sk_buff *skb)
8736 {
8737         skb_checksum_none_assert(skb);
8738
8739         /* Ignore Checksum bit is set */
8740         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8741                 return;
8742
8743         /* Rx checksum disabled via ethtool */
8744         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8745                 return;
8746
8747         /* TCP/UDP checksum error bit is set */
8748         if (igb_test_staterr(rx_desc,
8749                              E1000_RXDEXT_STATERR_TCPE |
8750                              E1000_RXDEXT_STATERR_IPE)) {
8751                 /* work around errata with sctp packets where the TCPE aka
8752                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8753                  * packets, (aka let the stack check the crc32c)
8754                  */
8755                 if (!((skb->len == 60) &&
8756                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8757                         u64_stats_update_begin(&ring->rx_syncp);
8758                         ring->rx_stats.csum_err++;
8759                         u64_stats_update_end(&ring->rx_syncp);
8760                 }
8761                 /* let the stack verify checksum errors */
8762                 return;
8763         }
8764         /* It must be a TCP or UDP packet with a valid checksum */
8765         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8766                                       E1000_RXD_STAT_UDPCS))
8767                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8768
8769         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8770                 le32_to_cpu(rx_desc->wb.upper.status_error));
8771 }
8772
8773 static inline void igb_rx_hash(struct igb_ring *ring,
8774                                union e1000_adv_rx_desc *rx_desc,
8775                                struct sk_buff *skb)
8776 {
8777         if (ring->netdev->features & NETIF_F_RXHASH)
8778                 skb_set_hash(skb,
8779                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8780                              PKT_HASH_TYPE_L3);
8781 }
8782
8783 /**
8784  *  igb_is_non_eop - process handling of non-EOP buffers
8785  *  @rx_ring: Rx ring being processed
8786  *  @rx_desc: Rx descriptor for current buffer
8787  *
8788  *  This function updates next to clean.  If the buffer is an EOP buffer
8789  *  this function exits returning false, otherwise it will place the
8790  *  sk_buff in the next buffer to be chained and return true indicating
8791  *  that this is in fact a non-EOP buffer.
8792  **/
8793 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8794                            union e1000_adv_rx_desc *rx_desc)
8795 {
8796         u32 ntc = rx_ring->next_to_clean + 1;
8797
8798         /* fetch, update, and store next to clean */
8799         ntc = (ntc < rx_ring->count) ? ntc : 0;
8800         rx_ring->next_to_clean = ntc;
8801
8802         prefetch(IGB_RX_DESC(rx_ring, ntc));
8803
8804         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8805                 return false;
8806
8807         return true;
8808 }
8809
8810 /**
8811  *  igb_cleanup_headers - Correct corrupted or empty headers
8812  *  @rx_ring: rx descriptor ring packet is being transacted on
8813  *  @rx_desc: pointer to the EOP Rx descriptor
8814  *  @skb: pointer to current skb being fixed
8815  *
8816  *  Address the case where we are pulling data in on pages only
8817  *  and as such no data is present in the skb header.
8818  *
8819  *  In addition if skb is not at least 60 bytes we need to pad it so that
8820  *  it is large enough to qualify as a valid Ethernet frame.
8821  *
8822  *  Returns true if an error was encountered and skb was freed.
8823  **/
8824 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8825                                 union e1000_adv_rx_desc *rx_desc,
8826                                 struct sk_buff *skb)
8827 {
8828         if (unlikely((igb_test_staterr(rx_desc,
8829                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8830                 struct net_device *netdev = rx_ring->netdev;
8831                 if (!(netdev->features & NETIF_F_RXALL)) {
8832                         dev_kfree_skb_any(skb);
8833                         return true;
8834                 }
8835         }
8836
8837         /* if eth_skb_pad returns an error the skb was freed */
8838         if (eth_skb_pad(skb))
8839                 return true;
8840
8841         return false;
8842 }
8843
8844 /**
8845  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8846  *  @rx_ring: rx descriptor ring packet is being transacted on
8847  *  @rx_desc: pointer to the EOP Rx descriptor
8848  *  @skb: pointer to current skb being populated
8849  *
8850  *  This function checks the ring, descriptor, and packet information in
8851  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8852  *  other fields within the skb.
8853  **/
8854 void igb_process_skb_fields(struct igb_ring *rx_ring,
8855                             union e1000_adv_rx_desc *rx_desc,
8856                             struct sk_buff *skb)
8857 {
8858         struct net_device *dev = rx_ring->netdev;
8859
8860         igb_rx_hash(rx_ring, rx_desc, skb);
8861
8862         igb_rx_checksum(rx_ring, rx_desc, skb);
8863
8864         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8865             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8866                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8867
8868         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8869             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8870                 u16 vid;
8871
8872                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8873                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8874                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8875                 else
8876                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8877
8878                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8879         }
8880
8881         skb_record_rx_queue(skb, rx_ring->queue_index);
8882
8883         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8884 }
8885
8886 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8887 {
8888         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8889 }
8890
8891 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8892                                                const unsigned int size, int *rx_buf_pgcnt)
8893 {
8894         struct igb_rx_buffer *rx_buffer;
8895
8896         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8897         *rx_buf_pgcnt =
8898 #if (PAGE_SIZE < 8192)
8899                 page_count(rx_buffer->page);
8900 #else
8901                 0;
8902 #endif
8903         prefetchw(rx_buffer->page);
8904
8905         /* we are reusing so sync this buffer for CPU use */
8906         dma_sync_single_range_for_cpu(rx_ring->dev,
8907                                       rx_buffer->dma,
8908                                       rx_buffer->page_offset,
8909                                       size,
8910                                       DMA_FROM_DEVICE);
8911
8912         rx_buffer->pagecnt_bias--;
8913
8914         return rx_buffer;
8915 }
8916
8917 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8918                               struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8919 {
8920         if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8921                 /* hand second half of page back to the ring */
8922                 igb_reuse_rx_page(rx_ring, rx_buffer);
8923         } else {
8924                 /* We are not reusing the buffer so unmap it and free
8925                  * any references we are holding to it
8926                  */
8927                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8928                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8929                                      IGB_RX_DMA_ATTR);
8930                 __page_frag_cache_drain(rx_buffer->page,
8931                                         rx_buffer->pagecnt_bias);
8932         }
8933
8934         /* clear contents of rx_buffer */
8935         rx_buffer->page = NULL;
8936 }
8937
8938 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8939 {
8940         int cpu = smp_processor_id();
8941         struct netdev_queue *nq;
8942
8943         if (status & IGB_XDP_REDIR)
8944                 xdp_do_flush();
8945
8946         if (status & IGB_XDP_TX) {
8947                 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8948
8949                 nq = txring_txq(tx_ring);
8950                 __netif_tx_lock(nq, cpu);
8951                 igb_xdp_ring_update_tail(tx_ring);
8952                 __netif_tx_unlock(nq);
8953         }
8954 }
8955
8956 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
8957                          unsigned int bytes)
8958 {
8959         struct igb_ring *ring = q_vector->rx.ring;
8960
8961         u64_stats_update_begin(&ring->rx_syncp);
8962         ring->rx_stats.packets += packets;
8963         ring->rx_stats.bytes += bytes;
8964         u64_stats_update_end(&ring->rx_syncp);
8965
8966         q_vector->rx.total_packets += packets;
8967         q_vector->rx.total_bytes += bytes;
8968 }
8969
8970 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8971 {
8972         unsigned int total_bytes = 0, total_packets = 0;
8973         struct igb_adapter *adapter = q_vector->adapter;
8974         struct igb_ring *rx_ring = q_vector->rx.ring;
8975         u16 cleaned_count = igb_desc_unused(rx_ring);
8976         struct sk_buff *skb = rx_ring->skb;
8977         unsigned int xdp_xmit = 0;
8978         struct xdp_buff xdp;
8979         u32 frame_sz = 0;
8980         int rx_buf_pgcnt;
8981         int xdp_res = 0;
8982
8983         /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8984 #if (PAGE_SIZE < 8192)
8985         frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8986 #endif
8987         xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8988
8989         while (likely(total_packets < budget)) {
8990                 union e1000_adv_rx_desc *rx_desc;
8991                 struct igb_rx_buffer *rx_buffer;
8992                 ktime_t timestamp = 0;
8993                 int pkt_offset = 0;
8994                 unsigned int size;
8995                 void *pktbuf;
8996
8997                 /* return some buffers to hardware, one at a time is too slow */
8998                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8999                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
9000                         cleaned_count = 0;
9001                 }
9002
9003                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9004                 size = le16_to_cpu(rx_desc->wb.upper.length);
9005                 if (!size)
9006                         break;
9007
9008                 /* This memory barrier is needed to keep us from reading
9009                  * any other fields out of the rx_desc until we know the
9010                  * descriptor has been written back
9011                  */
9012                 dma_rmb();
9013
9014                 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9015                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9016
9017                 /* pull rx packet timestamp if available and valid */
9018                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9019                         int ts_hdr_len;
9020
9021                         ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9022                                                          pktbuf, &timestamp);
9023
9024                         pkt_offset += ts_hdr_len;
9025                         size -= ts_hdr_len;
9026                 }
9027
9028                 /* retrieve a buffer from the ring */
9029                 if (!skb) {
9030                         unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9031                         unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9032
9033                         xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9034                         xdp_buff_clear_frags_flag(&xdp);
9035 #if (PAGE_SIZE > 4096)
9036                         /* At larger PAGE_SIZE, frame_sz depend on len size */
9037                         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9038 #endif
9039                         xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9040                 }
9041
9042                 if (xdp_res) {
9043                         if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9044                                 xdp_xmit |= xdp_res;
9045                                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9046                         } else {
9047                                 rx_buffer->pagecnt_bias++;
9048                         }
9049                         total_packets++;
9050                         total_bytes += size;
9051                 } else if (skb)
9052                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9053                 else if (ring_uses_build_skb(rx_ring))
9054                         skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9055                                             timestamp);
9056                 else
9057                         skb = igb_construct_skb(rx_ring, rx_buffer,
9058                                                 &xdp, timestamp);
9059
9060                 /* exit if we failed to retrieve a buffer */
9061                 if (!xdp_res && !skb) {
9062                         rx_ring->rx_stats.alloc_failed++;
9063                         rx_buffer->pagecnt_bias++;
9064                         break;
9065                 }
9066
9067                 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9068                 cleaned_count++;
9069
9070                 /* fetch next buffer in frame if non-eop */
9071                 if (igb_is_non_eop(rx_ring, rx_desc))
9072                         continue;
9073
9074                 /* verify the packet layout is correct */
9075                 if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9076                         skb = NULL;
9077                         continue;
9078                 }
9079
9080                 /* probably a little skewed due to removing CRC */
9081                 total_bytes += skb->len;
9082
9083                 /* populate checksum, timestamp, VLAN, and protocol */
9084                 igb_process_skb_fields(rx_ring, rx_desc, skb);
9085
9086                 napi_gro_receive(&q_vector->napi, skb);
9087
9088                 /* reset skb pointer */
9089                 skb = NULL;
9090
9091                 /* update budget accounting */
9092                 total_packets++;
9093         }
9094
9095         /* place incomplete frames back on ring for completion */
9096         rx_ring->skb = skb;
9097
9098         if (xdp_xmit)
9099                 igb_finalize_xdp(adapter, xdp_xmit);
9100
9101         igb_update_rx_stats(q_vector, total_packets, total_bytes);
9102
9103         if (cleaned_count)
9104                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9105
9106         return total_packets;
9107 }
9108
9109 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9110                                   struct igb_rx_buffer *bi)
9111 {
9112         struct page *page = bi->page;
9113         dma_addr_t dma;
9114
9115         /* since we are recycling buffers we should seldom need to alloc */
9116         if (likely(page))
9117                 return true;
9118
9119         /* alloc new page for storage */
9120         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9121         if (unlikely(!page)) {
9122                 rx_ring->rx_stats.alloc_failed++;
9123                 return false;
9124         }
9125
9126         /* map page for use */
9127         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9128                                  igb_rx_pg_size(rx_ring),
9129                                  DMA_FROM_DEVICE,
9130                                  IGB_RX_DMA_ATTR);
9131
9132         /* if mapping failed free memory back to system since
9133          * there isn't much point in holding memory we can't use
9134          */
9135         if (dma_mapping_error(rx_ring->dev, dma)) {
9136                 __free_pages(page, igb_rx_pg_order(rx_ring));
9137
9138                 rx_ring->rx_stats.alloc_failed++;
9139                 return false;
9140         }
9141
9142         bi->dma = dma;
9143         bi->page = page;
9144         bi->page_offset = igb_rx_offset(rx_ring);
9145         page_ref_add(page, USHRT_MAX - 1);
9146         bi->pagecnt_bias = USHRT_MAX;
9147
9148         return true;
9149 }
9150
9151 /**
9152  *  igb_alloc_rx_buffers - Replace used receive buffers
9153  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9154  *  @cleaned_count: count of buffers to allocate
9155  **/
9156 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9157 {
9158         union e1000_adv_rx_desc *rx_desc;
9159         struct igb_rx_buffer *bi;
9160         u16 i = rx_ring->next_to_use;
9161         u16 bufsz;
9162
9163         /* nothing to do */
9164         if (!cleaned_count)
9165                 return;
9166
9167         rx_desc = IGB_RX_DESC(rx_ring, i);
9168         bi = &rx_ring->rx_buffer_info[i];
9169         i -= rx_ring->count;
9170
9171         bufsz = igb_rx_bufsz(rx_ring);
9172
9173         do {
9174                 if (!igb_alloc_mapped_page(rx_ring, bi))
9175                         break;
9176
9177                 /* sync the buffer for use by the device */
9178                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9179                                                  bi->page_offset, bufsz,
9180                                                  DMA_FROM_DEVICE);
9181
9182                 /* Refresh the desc even if buffer_addrs didn't change
9183                  * because each write-back erases this info.
9184                  */
9185                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9186
9187                 rx_desc++;
9188                 bi++;
9189                 i++;
9190                 if (unlikely(!i)) {
9191                         rx_desc = IGB_RX_DESC(rx_ring, 0);
9192                         bi = rx_ring->rx_buffer_info;
9193                         i -= rx_ring->count;
9194                 }
9195
9196                 /* clear the length for the next_to_use descriptor */
9197                 rx_desc->wb.upper.length = 0;
9198
9199                 cleaned_count--;
9200         } while (cleaned_count);
9201
9202         i += rx_ring->count;
9203
9204         if (rx_ring->next_to_use != i) {
9205                 /* record the next descriptor to use */
9206                 rx_ring->next_to_use = i;
9207
9208                 /* update next to alloc since we have filled the ring */
9209                 rx_ring->next_to_alloc = i;
9210
9211                 /* Force memory writes to complete before letting h/w
9212                  * know there are new descriptors to fetch.  (Only
9213                  * applicable for weak-ordered memory model archs,
9214                  * such as IA-64).
9215                  */
9216                 dma_wmb();
9217                 writel(i, rx_ring->tail);
9218         }
9219 }
9220
9221 /**
9222  * igb_mii_ioctl -
9223  * @netdev: pointer to netdev struct
9224  * @ifr: interface structure
9225  * @cmd: ioctl command to execute
9226  **/
9227 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9228 {
9229         struct igb_adapter *adapter = netdev_priv(netdev);
9230         struct mii_ioctl_data *data = if_mii(ifr);
9231
9232         if (adapter->hw.phy.media_type != e1000_media_type_copper)
9233                 return -EOPNOTSUPP;
9234
9235         switch (cmd) {
9236         case SIOCGMIIPHY:
9237                 data->phy_id = adapter->hw.phy.addr;
9238                 break;
9239         case SIOCGMIIREG:
9240                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9241                                      &data->val_out))
9242                         return -EIO;
9243                 break;
9244         case SIOCSMIIREG:
9245                 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9246                                       data->val_in))
9247                         return -EIO;
9248                 break;
9249         default:
9250                 return -EOPNOTSUPP;
9251         }
9252         return 0;
9253 }
9254
9255 /**
9256  * igb_ioctl -
9257  * @netdev: pointer to netdev struct
9258  * @ifr: interface structure
9259  * @cmd: ioctl command to execute
9260  **/
9261 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9262 {
9263         switch (cmd) {
9264         case SIOCGMIIPHY:
9265         case SIOCGMIIREG:
9266         case SIOCSMIIREG:
9267                 return igb_mii_ioctl(netdev, ifr, cmd);
9268         case SIOCGHWTSTAMP:
9269                 return igb_ptp_get_ts_config(netdev, ifr);
9270         case SIOCSHWTSTAMP:
9271                 return igb_ptp_set_ts_config(netdev, ifr);
9272         default:
9273                 return -EOPNOTSUPP;
9274         }
9275 }
9276
9277 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9278 {
9279         struct igb_adapter *adapter = hw->back;
9280
9281         pci_read_config_word(adapter->pdev, reg, value);
9282 }
9283
9284 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9285 {
9286         struct igb_adapter *adapter = hw->back;
9287
9288         pci_write_config_word(adapter->pdev, reg, *value);
9289 }
9290
9291 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9292 {
9293         struct igb_adapter *adapter = hw->back;
9294
9295         if (pcie_capability_read_word(adapter->pdev, reg, value))
9296                 return -E1000_ERR_CONFIG;
9297
9298         return 0;
9299 }
9300
9301 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9302 {
9303         struct igb_adapter *adapter = hw->back;
9304
9305         if (pcie_capability_write_word(adapter->pdev, reg, *value))
9306                 return -E1000_ERR_CONFIG;
9307
9308         return 0;
9309 }
9310
9311 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9312 {
9313         struct igb_adapter *adapter = netdev_priv(netdev);
9314         struct e1000_hw *hw = &adapter->hw;
9315         u32 ctrl, rctl;
9316         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9317
9318         if (enable) {
9319                 /* enable VLAN tag insert/strip */
9320                 ctrl = rd32(E1000_CTRL);
9321                 ctrl |= E1000_CTRL_VME;
9322                 wr32(E1000_CTRL, ctrl);
9323
9324                 /* Disable CFI check */
9325                 rctl = rd32(E1000_RCTL);
9326                 rctl &= ~E1000_RCTL_CFIEN;
9327                 wr32(E1000_RCTL, rctl);
9328         } else {
9329                 /* disable VLAN tag insert/strip */
9330                 ctrl = rd32(E1000_CTRL);
9331                 ctrl &= ~E1000_CTRL_VME;
9332                 wr32(E1000_CTRL, ctrl);
9333         }
9334
9335         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9336 }
9337
9338 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9339                                __be16 proto, u16 vid)
9340 {
9341         struct igb_adapter *adapter = netdev_priv(netdev);
9342         struct e1000_hw *hw = &adapter->hw;
9343         int pf_id = adapter->vfs_allocated_count;
9344
9345         /* add the filter since PF can receive vlans w/o entry in vlvf */
9346         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9347                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9348
9349         set_bit(vid, adapter->active_vlans);
9350
9351         return 0;
9352 }
9353
9354 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9355                                 __be16 proto, u16 vid)
9356 {
9357         struct igb_adapter *adapter = netdev_priv(netdev);
9358         int pf_id = adapter->vfs_allocated_count;
9359         struct e1000_hw *hw = &adapter->hw;
9360
9361         /* remove VID from filter table */
9362         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9363                 igb_vfta_set(hw, vid, pf_id, false, true);
9364
9365         clear_bit(vid, adapter->active_vlans);
9366
9367         return 0;
9368 }
9369
9370 static void igb_restore_vlan(struct igb_adapter *adapter)
9371 {
9372         u16 vid = 1;
9373
9374         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9375         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9376
9377         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9378                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9379 }
9380
9381 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9382 {
9383         struct pci_dev *pdev = adapter->pdev;
9384         struct e1000_mac_info *mac = &adapter->hw.mac;
9385
9386         mac->autoneg = 0;
9387
9388         /* Make sure dplx is at most 1 bit and lsb of speed is not set
9389          * for the switch() below to work
9390          */
9391         if ((spd & 1) || (dplx & ~1))
9392                 goto err_inval;
9393
9394         /* Fiber NIC's only allow 1000 gbps Full duplex
9395          * and 100Mbps Full duplex for 100baseFx sfp
9396          */
9397         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9398                 switch (spd + dplx) {
9399                 case SPEED_10 + DUPLEX_HALF:
9400                 case SPEED_10 + DUPLEX_FULL:
9401                 case SPEED_100 + DUPLEX_HALF:
9402                         goto err_inval;
9403                 default:
9404                         break;
9405                 }
9406         }
9407
9408         switch (spd + dplx) {
9409         case SPEED_10 + DUPLEX_HALF:
9410                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9411                 break;
9412         case SPEED_10 + DUPLEX_FULL:
9413                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9414                 break;
9415         case SPEED_100 + DUPLEX_HALF:
9416                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9417                 break;
9418         case SPEED_100 + DUPLEX_FULL:
9419                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9420                 break;
9421         case SPEED_1000 + DUPLEX_FULL:
9422                 mac->autoneg = 1;
9423                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9424                 break;
9425         case SPEED_1000 + DUPLEX_HALF: /* not supported */
9426         default:
9427                 goto err_inval;
9428         }
9429
9430         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9431         adapter->hw.phy.mdix = AUTO_ALL_MODES;
9432
9433         return 0;
9434
9435 err_inval:
9436         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9437         return -EINVAL;
9438 }
9439
9440 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9441                           bool runtime)
9442 {
9443         struct net_device *netdev = pci_get_drvdata(pdev);
9444         struct igb_adapter *adapter = netdev_priv(netdev);
9445         struct e1000_hw *hw = &adapter->hw;
9446         u32 ctrl, rctl, status;
9447         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9448         bool wake;
9449
9450         rtnl_lock();
9451         netif_device_detach(netdev);
9452
9453         if (netif_running(netdev))
9454                 __igb_close(netdev, true);
9455
9456         igb_ptp_suspend(adapter);
9457
9458         igb_clear_interrupt_scheme(adapter);
9459         rtnl_unlock();
9460
9461         status = rd32(E1000_STATUS);
9462         if (status & E1000_STATUS_LU)
9463                 wufc &= ~E1000_WUFC_LNKC;
9464
9465         if (wufc) {
9466                 igb_setup_rctl(adapter);
9467                 igb_set_rx_mode(netdev);
9468
9469                 /* turn on all-multi mode if wake on multicast is enabled */
9470                 if (wufc & E1000_WUFC_MC) {
9471                         rctl = rd32(E1000_RCTL);
9472                         rctl |= E1000_RCTL_MPE;
9473                         wr32(E1000_RCTL, rctl);
9474                 }
9475
9476                 ctrl = rd32(E1000_CTRL);
9477                 ctrl |= E1000_CTRL_ADVD3WUC;
9478                 wr32(E1000_CTRL, ctrl);
9479
9480                 /* Allow time for pending master requests to run */
9481                 igb_disable_pcie_master(hw);
9482
9483                 wr32(E1000_WUC, E1000_WUC_PME_EN);
9484                 wr32(E1000_WUFC, wufc);
9485         } else {
9486                 wr32(E1000_WUC, 0);
9487                 wr32(E1000_WUFC, 0);
9488         }
9489
9490         wake = wufc || adapter->en_mng_pt;
9491         if (!wake)
9492                 igb_power_down_link(adapter);
9493         else
9494                 igb_power_up_link(adapter);
9495
9496         if (enable_wake)
9497                 *enable_wake = wake;
9498
9499         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9500          * would have already happened in close and is redundant.
9501          */
9502         igb_release_hw_control(adapter);
9503
9504         pci_disable_device(pdev);
9505
9506         return 0;
9507 }
9508
9509 static void igb_deliver_wake_packet(struct net_device *netdev)
9510 {
9511         struct igb_adapter *adapter = netdev_priv(netdev);
9512         struct e1000_hw *hw = &adapter->hw;
9513         struct sk_buff *skb;
9514         u32 wupl;
9515
9516         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9517
9518         /* WUPM stores only the first 128 bytes of the wake packet.
9519          * Read the packet only if we have the whole thing.
9520          */
9521         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9522                 return;
9523
9524         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9525         if (!skb)
9526                 return;
9527
9528         skb_put(skb, wupl);
9529
9530         /* Ensure reads are 32-bit aligned */
9531         wupl = roundup(wupl, 4);
9532
9533         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9534
9535         skb->protocol = eth_type_trans(skb, netdev);
9536         netif_rx(skb);
9537 }
9538
9539 static int igb_suspend(struct device *dev)
9540 {
9541         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9542 }
9543
9544 static int __igb_resume(struct device *dev, bool rpm)
9545 {
9546         struct pci_dev *pdev = to_pci_dev(dev);
9547         struct net_device *netdev = pci_get_drvdata(pdev);
9548         struct igb_adapter *adapter = netdev_priv(netdev);
9549         struct e1000_hw *hw = &adapter->hw;
9550         u32 err, val;
9551
9552         pci_set_power_state(pdev, PCI_D0);
9553         pci_restore_state(pdev);
9554         pci_save_state(pdev);
9555
9556         if (!pci_device_is_present(pdev))
9557                 return -ENODEV;
9558         err = pci_enable_device_mem(pdev);
9559         if (err) {
9560                 dev_err(&pdev->dev,
9561                         "igb: Cannot enable PCI device from suspend\n");
9562                 return err;
9563         }
9564         pci_set_master(pdev);
9565
9566         pci_enable_wake(pdev, PCI_D3hot, 0);
9567         pci_enable_wake(pdev, PCI_D3cold, 0);
9568
9569         if (igb_init_interrupt_scheme(adapter, true)) {
9570                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9571                 return -ENOMEM;
9572         }
9573
9574         igb_reset(adapter);
9575
9576         /* let the f/w know that the h/w is now under the control of the
9577          * driver.
9578          */
9579         igb_get_hw_control(adapter);
9580
9581         val = rd32(E1000_WUS);
9582         if (val & WAKE_PKT_WUS)
9583                 igb_deliver_wake_packet(netdev);
9584
9585         wr32(E1000_WUS, ~0);
9586
9587         if (!rpm)
9588                 rtnl_lock();
9589         if (!err && netif_running(netdev))
9590                 err = __igb_open(netdev, true);
9591
9592         if (!err)
9593                 netif_device_attach(netdev);
9594         if (!rpm)
9595                 rtnl_unlock();
9596
9597         return err;
9598 }
9599
9600 static int igb_resume(struct device *dev)
9601 {
9602         return __igb_resume(dev, false);
9603 }
9604
9605 static int igb_runtime_idle(struct device *dev)
9606 {
9607         struct net_device *netdev = dev_get_drvdata(dev);
9608         struct igb_adapter *adapter = netdev_priv(netdev);
9609
9610         if (!igb_has_link(adapter))
9611                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9612
9613         return -EBUSY;
9614 }
9615
9616 static int igb_runtime_suspend(struct device *dev)
9617 {
9618         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9619 }
9620
9621 static int igb_runtime_resume(struct device *dev)
9622 {
9623         return __igb_resume(dev, true);
9624 }
9625
9626 static void igb_shutdown(struct pci_dev *pdev)
9627 {
9628         bool wake;
9629
9630         __igb_shutdown(pdev, &wake, 0);
9631
9632         if (system_state == SYSTEM_POWER_OFF) {
9633                 pci_wake_from_d3(pdev, wake);
9634                 pci_set_power_state(pdev, PCI_D3hot);
9635         }
9636 }
9637
9638 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9639 {
9640 #ifdef CONFIG_PCI_IOV
9641         int err;
9642
9643         if (num_vfs == 0) {
9644                 return igb_disable_sriov(dev, true);
9645         } else {
9646                 err = igb_enable_sriov(dev, num_vfs, true);
9647                 return err ? err : num_vfs;
9648         }
9649 #endif
9650         return 0;
9651 }
9652
9653 /**
9654  *  igb_io_error_detected - called when PCI error is detected
9655  *  @pdev: Pointer to PCI device
9656  *  @state: The current pci connection state
9657  *
9658  *  This function is called after a PCI bus error affecting
9659  *  this device has been detected.
9660  **/
9661 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9662                                               pci_channel_state_t state)
9663 {
9664         struct net_device *netdev = pci_get_drvdata(pdev);
9665         struct igb_adapter *adapter = netdev_priv(netdev);
9666
9667         if (state == pci_channel_io_normal) {
9668                 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9669                 return PCI_ERS_RESULT_CAN_RECOVER;
9670         }
9671
9672         netif_device_detach(netdev);
9673
9674         if (state == pci_channel_io_perm_failure)
9675                 return PCI_ERS_RESULT_DISCONNECT;
9676
9677         if (netif_running(netdev))
9678                 igb_down(adapter);
9679         pci_disable_device(pdev);
9680
9681         /* Request a slot reset. */
9682         return PCI_ERS_RESULT_NEED_RESET;
9683 }
9684
9685 /**
9686  *  igb_io_slot_reset - called after the pci bus has been reset.
9687  *  @pdev: Pointer to PCI device
9688  *
9689  *  Restart the card from scratch, as if from a cold-boot. Implementation
9690  *  resembles the first-half of the __igb_resume routine.
9691  **/
9692 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9693 {
9694         struct net_device *netdev = pci_get_drvdata(pdev);
9695         struct igb_adapter *adapter = netdev_priv(netdev);
9696         struct e1000_hw *hw = &adapter->hw;
9697         pci_ers_result_t result;
9698
9699         if (pci_enable_device_mem(pdev)) {
9700                 dev_err(&pdev->dev,
9701                         "Cannot re-enable PCI device after reset.\n");
9702                 result = PCI_ERS_RESULT_DISCONNECT;
9703         } else {
9704                 pci_set_master(pdev);
9705                 pci_restore_state(pdev);
9706                 pci_save_state(pdev);
9707
9708                 pci_enable_wake(pdev, PCI_D3hot, 0);
9709                 pci_enable_wake(pdev, PCI_D3cold, 0);
9710
9711                 /* In case of PCI error, adapter lose its HW address
9712                  * so we should re-assign it here.
9713                  */
9714                 hw->hw_addr = adapter->io_addr;
9715
9716                 igb_reset(adapter);
9717                 wr32(E1000_WUS, ~0);
9718                 result = PCI_ERS_RESULT_RECOVERED;
9719         }
9720
9721         return result;
9722 }
9723
9724 /**
9725  *  igb_io_resume - called when traffic can start flowing again.
9726  *  @pdev: Pointer to PCI device
9727  *
9728  *  This callback is called when the error recovery driver tells us that
9729  *  its OK to resume normal operation. Implementation resembles the
9730  *  second-half of the __igb_resume routine.
9731  */
9732 static void igb_io_resume(struct pci_dev *pdev)
9733 {
9734         struct net_device *netdev = pci_get_drvdata(pdev);
9735         struct igb_adapter *adapter = netdev_priv(netdev);
9736
9737         if (netif_running(netdev)) {
9738                 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9739                         dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9740                         return;
9741                 }
9742                 if (igb_up(adapter)) {
9743                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9744                         return;
9745                 }
9746         }
9747
9748         netif_device_attach(netdev);
9749
9750         /* let the f/w know that the h/w is now under the control of the
9751          * driver.
9752          */
9753         igb_get_hw_control(adapter);
9754 }
9755
9756 /**
9757  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9758  *  @adapter: Pointer to adapter structure
9759  *  @index: Index of the RAR entry which need to be synced with MAC table
9760  **/
9761 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9762 {
9763         struct e1000_hw *hw = &adapter->hw;
9764         u32 rar_low, rar_high;
9765         u8 *addr = adapter->mac_table[index].addr;
9766
9767         /* HW expects these to be in network order when they are plugged
9768          * into the registers which are little endian.  In order to guarantee
9769          * that ordering we need to do an leXX_to_cpup here in order to be
9770          * ready for the byteswap that occurs with writel
9771          */
9772         rar_low = le32_to_cpup((__le32 *)(addr));
9773         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9774
9775         /* Indicate to hardware the Address is Valid. */
9776         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9777                 if (is_valid_ether_addr(addr))
9778                         rar_high |= E1000_RAH_AV;
9779
9780                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9781                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9782
9783                 switch (hw->mac.type) {
9784                 case e1000_82575:
9785                 case e1000_i210:
9786                         if (adapter->mac_table[index].state &
9787                             IGB_MAC_STATE_QUEUE_STEERING)
9788                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9789
9790                         rar_high |= E1000_RAH_POOL_1 *
9791                                     adapter->mac_table[index].queue;
9792                         break;
9793                 default:
9794                         rar_high |= E1000_RAH_POOL_1 <<
9795                                     adapter->mac_table[index].queue;
9796                         break;
9797                 }
9798         }
9799
9800         wr32(E1000_RAL(index), rar_low);
9801         wrfl();
9802         wr32(E1000_RAH(index), rar_high);
9803         wrfl();
9804 }
9805
9806 static int igb_set_vf_mac(struct igb_adapter *adapter,
9807                           int vf, unsigned char *mac_addr)
9808 {
9809         struct e1000_hw *hw = &adapter->hw;
9810         /* VF MAC addresses start at end of receive addresses and moves
9811          * towards the first, as a result a collision should not be possible
9812          */
9813         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9814         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9815
9816         ether_addr_copy(vf_mac_addr, mac_addr);
9817         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9818         adapter->mac_table[rar_entry].queue = vf;
9819         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9820         igb_rar_set_index(adapter, rar_entry);
9821
9822         return 0;
9823 }
9824
9825 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9826 {
9827         struct igb_adapter *adapter = netdev_priv(netdev);
9828
9829         if (vf >= adapter->vfs_allocated_count)
9830                 return -EINVAL;
9831
9832         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9833          * flag and allows to overwrite the MAC via VF netdev.  This
9834          * is necessary to allow libvirt a way to restore the original
9835          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9836          * down a VM.
9837          */
9838         if (is_zero_ether_addr(mac)) {
9839                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9840                 dev_info(&adapter->pdev->dev,
9841                          "remove administratively set MAC on VF %d\n",
9842                          vf);
9843         } else if (is_valid_ether_addr(mac)) {
9844                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9845                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9846                          mac, vf);
9847                 dev_info(&adapter->pdev->dev,
9848                          "Reload the VF driver to make this change effective.");
9849                 /* Generate additional warning if PF is down */
9850                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9851                         dev_warn(&adapter->pdev->dev,
9852                                  "The VF MAC address has been set, but the PF device is not up.\n");
9853                         dev_warn(&adapter->pdev->dev,
9854                                  "Bring the PF device up before attempting to use the VF device.\n");
9855                 }
9856         } else {
9857                 return -EINVAL;
9858         }
9859         return igb_set_vf_mac(adapter, vf, mac);
9860 }
9861
9862 static int igb_link_mbps(int internal_link_speed)
9863 {
9864         switch (internal_link_speed) {
9865         case SPEED_100:
9866                 return 100;
9867         case SPEED_1000:
9868                 return 1000;
9869         default:
9870                 return 0;
9871         }
9872 }
9873
9874 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9875                                   int link_speed)
9876 {
9877         int rf_dec, rf_int;
9878         u32 bcnrc_val;
9879
9880         if (tx_rate != 0) {
9881                 /* Calculate the rate factor values to set */
9882                 rf_int = link_speed / tx_rate;
9883                 rf_dec = (link_speed - (rf_int * tx_rate));
9884                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9885                          tx_rate;
9886
9887                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9888                 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9889                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9890         } else {
9891                 bcnrc_val = 0;
9892         }
9893
9894         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9895         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9896          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9897          */
9898         wr32(E1000_RTTBCNRM, 0x14);
9899         wr32(E1000_RTTBCNRC, bcnrc_val);
9900 }
9901
9902 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9903 {
9904         int actual_link_speed, i;
9905         bool reset_rate = false;
9906
9907         /* VF TX rate limit was not set or not supported */
9908         if ((adapter->vf_rate_link_speed == 0) ||
9909             (adapter->hw.mac.type != e1000_82576))
9910                 return;
9911
9912         actual_link_speed = igb_link_mbps(adapter->link_speed);
9913         if (actual_link_speed != adapter->vf_rate_link_speed) {
9914                 reset_rate = true;
9915                 adapter->vf_rate_link_speed = 0;
9916                 dev_info(&adapter->pdev->dev,
9917                          "Link speed has been changed. VF Transmit rate is disabled\n");
9918         }
9919
9920         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9921                 if (reset_rate)
9922                         adapter->vf_data[i].tx_rate = 0;
9923
9924                 igb_set_vf_rate_limit(&adapter->hw, i,
9925                                       adapter->vf_data[i].tx_rate,
9926                                       actual_link_speed);
9927         }
9928 }
9929
9930 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9931                              int min_tx_rate, int max_tx_rate)
9932 {
9933         struct igb_adapter *adapter = netdev_priv(netdev);
9934         struct e1000_hw *hw = &adapter->hw;
9935         int actual_link_speed;
9936
9937         if (hw->mac.type != e1000_82576)
9938                 return -EOPNOTSUPP;
9939
9940         if (min_tx_rate)
9941                 return -EINVAL;
9942
9943         actual_link_speed = igb_link_mbps(adapter->link_speed);
9944         if ((vf >= adapter->vfs_allocated_count) ||
9945             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9946             (max_tx_rate < 0) ||
9947             (max_tx_rate > actual_link_speed))
9948                 return -EINVAL;
9949
9950         adapter->vf_rate_link_speed = actual_link_speed;
9951         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9952         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9953
9954         return 0;
9955 }
9956
9957 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9958                                    bool setting)
9959 {
9960         struct igb_adapter *adapter = netdev_priv(netdev);
9961         struct e1000_hw *hw = &adapter->hw;
9962         u32 reg_val, reg_offset;
9963
9964         if (!adapter->vfs_allocated_count)
9965                 return -EOPNOTSUPP;
9966
9967         if (vf >= adapter->vfs_allocated_count)
9968                 return -EINVAL;
9969
9970         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9971         reg_val = rd32(reg_offset);
9972         if (setting)
9973                 reg_val |= (BIT(vf) |
9974                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9975         else
9976                 reg_val &= ~(BIT(vf) |
9977                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9978         wr32(reg_offset, reg_val);
9979
9980         adapter->vf_data[vf].spoofchk_enabled = setting;
9981         return 0;
9982 }
9983
9984 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9985 {
9986         struct igb_adapter *adapter = netdev_priv(netdev);
9987
9988         if (vf >= adapter->vfs_allocated_count)
9989                 return -EINVAL;
9990         if (adapter->vf_data[vf].trusted == setting)
9991                 return 0;
9992
9993         adapter->vf_data[vf].trusted = setting;
9994
9995         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9996                  vf, setting ? "" : "not ");
9997         return 0;
9998 }
9999
10000 static int igb_ndo_get_vf_config(struct net_device *netdev,
10001                                  int vf, struct ifla_vf_info *ivi)
10002 {
10003         struct igb_adapter *adapter = netdev_priv(netdev);
10004         if (vf >= adapter->vfs_allocated_count)
10005                 return -EINVAL;
10006         ivi->vf = vf;
10007         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10008         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10009         ivi->min_tx_rate = 0;
10010         ivi->vlan = adapter->vf_data[vf].pf_vlan;
10011         ivi->qos = adapter->vf_data[vf].pf_qos;
10012         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10013         ivi->trusted = adapter->vf_data[vf].trusted;
10014         return 0;
10015 }
10016
10017 static void igb_vmm_control(struct igb_adapter *adapter)
10018 {
10019         struct e1000_hw *hw = &adapter->hw;
10020         u32 reg;
10021
10022         switch (hw->mac.type) {
10023         case e1000_82575:
10024         case e1000_i210:
10025         case e1000_i211:
10026         case e1000_i354:
10027         default:
10028                 /* replication is not supported for 82575 */
10029                 return;
10030         case e1000_82576:
10031                 /* notify HW that the MAC is adding vlan tags */
10032                 reg = rd32(E1000_DTXCTL);
10033                 reg |= E1000_DTXCTL_VLAN_ADDED;
10034                 wr32(E1000_DTXCTL, reg);
10035                 fallthrough;
10036         case e1000_82580:
10037                 /* enable replication vlan tag stripping */
10038                 reg = rd32(E1000_RPLOLR);
10039                 reg |= E1000_RPLOLR_STRVLAN;
10040                 wr32(E1000_RPLOLR, reg);
10041                 fallthrough;
10042         case e1000_i350:
10043                 /* none of the above registers are supported by i350 */
10044                 break;
10045         }
10046
10047         if (adapter->vfs_allocated_count) {
10048                 igb_vmdq_set_loopback_pf(hw, true);
10049                 igb_vmdq_set_replication_pf(hw, true);
10050                 igb_vmdq_set_anti_spoofing_pf(hw, true,
10051                                               adapter->vfs_allocated_count);
10052         } else {
10053                 igb_vmdq_set_loopback_pf(hw, false);
10054                 igb_vmdq_set_replication_pf(hw, false);
10055         }
10056 }
10057
10058 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10059 {
10060         struct e1000_hw *hw = &adapter->hw;
10061         u32 dmac_thr;
10062         u16 hwm;
10063         u32 reg;
10064
10065         if (hw->mac.type > e1000_82580) {
10066                 if (adapter->flags & IGB_FLAG_DMAC) {
10067                         /* force threshold to 0. */
10068                         wr32(E1000_DMCTXTH, 0);
10069
10070                         /* DMA Coalescing high water mark needs to be greater
10071                          * than the Rx threshold. Set hwm to PBA - max frame
10072                          * size in 16B units, capping it at PBA - 6KB.
10073                          */
10074                         hwm = 64 * (pba - 6);
10075                         reg = rd32(E1000_FCRTC);
10076                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10077                         reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10078                         wr32(E1000_FCRTC, reg);
10079
10080                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10081                          * frame size, capping it at PBA - 10KB.
10082                          */
10083                         dmac_thr = pba - 10;
10084                         reg = rd32(E1000_DMACR);
10085                         reg &= ~E1000_DMACR_DMACTHR_MASK;
10086                         reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10087
10088                         /* transition to L0x or L1 if available..*/
10089                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10090
10091                         /* watchdog timer= +-1000 usec in 32usec intervals */
10092                         reg |= (1000 >> 5);
10093
10094                         /* Disable BMC-to-OS Watchdog Enable */
10095                         if (hw->mac.type != e1000_i354)
10096                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10097                         wr32(E1000_DMACR, reg);
10098
10099                         /* no lower threshold to disable
10100                          * coalescing(smart fifb)-UTRESH=0
10101                          */
10102                         wr32(E1000_DMCRTRH, 0);
10103
10104                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10105
10106                         wr32(E1000_DMCTLX, reg);
10107
10108                         /* free space in tx packet buffer to wake from
10109                          * DMA coal
10110                          */
10111                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10112                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10113                 }
10114
10115                 if (hw->mac.type >= e1000_i210 ||
10116                     (adapter->flags & IGB_FLAG_DMAC)) {
10117                         reg = rd32(E1000_PCIEMISC);
10118                         reg |= E1000_PCIEMISC_LX_DECISION;
10119                         wr32(E1000_PCIEMISC, reg);
10120                 } /* endif adapter->dmac is not disabled */
10121         } else if (hw->mac.type == e1000_82580) {
10122                 u32 reg = rd32(E1000_PCIEMISC);
10123
10124                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10125                 wr32(E1000_DMACR, 0);
10126         }
10127 }
10128
10129 /**
10130  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10131  *  @hw: pointer to hardware structure
10132  *  @byte_offset: byte offset to read
10133  *  @dev_addr: device address
10134  *  @data: value read
10135  *
10136  *  Performs byte read operation over I2C interface at
10137  *  a specified device address.
10138  **/
10139 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10140                       u8 dev_addr, u8 *data)
10141 {
10142         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10143         struct i2c_client *this_client = adapter->i2c_client;
10144         s32 status;
10145         u16 swfw_mask = 0;
10146
10147         if (!this_client)
10148                 return E1000_ERR_I2C;
10149
10150         swfw_mask = E1000_SWFW_PHY0_SM;
10151
10152         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10153                 return E1000_ERR_SWFW_SYNC;
10154
10155         status = i2c_smbus_read_byte_data(this_client, byte_offset);
10156         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10157
10158         if (status < 0)
10159                 return E1000_ERR_I2C;
10160         else {
10161                 *data = status;
10162                 return 0;
10163         }
10164 }
10165
10166 /**
10167  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10168  *  @hw: pointer to hardware structure
10169  *  @byte_offset: byte offset to write
10170  *  @dev_addr: device address
10171  *  @data: value to write
10172  *
10173  *  Performs byte write operation over I2C interface at
10174  *  a specified device address.
10175  **/
10176 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10177                        u8 dev_addr, u8 data)
10178 {
10179         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10180         struct i2c_client *this_client = adapter->i2c_client;
10181         s32 status;
10182         u16 swfw_mask = E1000_SWFW_PHY0_SM;
10183
10184         if (!this_client)
10185                 return E1000_ERR_I2C;
10186
10187         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10188                 return E1000_ERR_SWFW_SYNC;
10189         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10190         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10191
10192         if (status)
10193                 return E1000_ERR_I2C;
10194         else
10195                 return 0;
10196
10197 }
10198
10199 int igb_reinit_queues(struct igb_adapter *adapter)
10200 {
10201         struct net_device *netdev = adapter->netdev;
10202         struct pci_dev *pdev = adapter->pdev;
10203         int err = 0;
10204
10205         if (netif_running(netdev))
10206                 igb_close(netdev);
10207
10208         igb_reset_interrupt_capability(adapter);
10209
10210         if (igb_init_interrupt_scheme(adapter, true)) {
10211                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10212                 return -ENOMEM;
10213         }
10214
10215         if (netif_running(netdev))
10216                 err = igb_open(netdev);
10217
10218         return err;
10219 }
10220
10221 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10222 {
10223         struct igb_nfc_filter *rule;
10224
10225         spin_lock(&adapter->nfc_lock);
10226
10227         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10228                 igb_erase_filter(adapter, rule);
10229
10230         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10231                 igb_erase_filter(adapter, rule);
10232
10233         spin_unlock(&adapter->nfc_lock);
10234 }
10235
10236 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10237 {
10238         struct igb_nfc_filter *rule;
10239
10240         spin_lock(&adapter->nfc_lock);
10241
10242         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10243                 igb_add_filter(adapter, rule);
10244
10245         spin_unlock(&adapter->nfc_lock);
10246 }
10247
10248 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10249                           igb_runtime_suspend, igb_runtime_resume,
10250                           igb_runtime_idle);
10251
10252 static struct pci_driver igb_driver = {
10253         .name     = igb_driver_name,
10254         .id_table = igb_pci_tbl,
10255         .probe    = igb_probe,
10256         .remove   = igb_remove,
10257         .driver.pm = pm_ptr(&igb_pm_ops),
10258         .shutdown = igb_shutdown,
10259         .sriov_configure = igb_pci_sriov_configure,
10260         .err_handler = &igb_err_handler
10261 };
10262
10263 /* igb_main.c */
This page took 0.633049 seconds and 4 git commands to generate.