2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
86 __u32 provided, calculated;
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 return provided == calculated;
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 trace_ext4_begin_ordered_truncate(inode, new_size);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode)->jinode)
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
182 * Called at the last iput() if i_nlink is zero.
184 void ext4_evict_inode(struct inode *inode)
188 int extra_credits = 3;
189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
191 trace_ext4_evict_inode(inode);
193 if (inode->i_nlink) {
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
209 * Note that directories do not have this problem because they
210 * don't use page cache.
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
227 if (is_bad_inode(inode))
229 dquot_initialize(inode);
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode->i_sb);
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
259 ext4_handle_sync(handle);
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
271 err = ext4_mark_inode_dirty(handle, inode);
273 ext4_warning(inode->i_sb,
274 "couldn't mark inode dirty (err %d)", err);
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
301 * Kill off the orphan record which ext4_truncate created.
302 * AKPM: I think this can be inside the above `if'.
303 * Note that ext4_orphan_del() has to be able to cope with the
304 * deletion of a non-existent orphan - this is because we don't
305 * know if ext4_truncate() actually created an orphan record.
306 * (Well, we could do this if we need to, but heck - it works)
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
318 if (ext4_mark_inode_dirty(handle, inode))
319 /* If that failed, just do the required in-core inode clear. */
320 ext4_clear_inode(inode);
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
324 sb_end_intwrite(inode->i_sb);
325 ext4_xattr_inode_array_free(ea_inode_array);
328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
334 return &EXT4_I(inode)->i_reserved_quota;
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
342 void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 struct ext4_inode_info *ei = EXT4_I(inode);
348 spin_lock(&ei->i_block_reservation_lock);
349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 if (unlikely(used > ei->i_reserved_data_blocks)) {
351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 "with only %d reserved data blocks",
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
356 used = ei->i_reserved_data_blocks;
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
365 /* Update quota subsystem for data blocks */
367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
372 * not re-claim the quota for fallocated blocks.
374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
384 ext4_discard_preallocations(inode);
387 static int __check_block_validity(struct inode *inode, const char *func,
389 struct ext4_map_blocks *map)
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
397 return -EFSCORRUPTED;
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
407 if (ext4_encrypted_inode(inode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
445 up_read((&EXT4_I(inode)->i_data_sem));
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
454 printk("ES cache assertion failed for inode: %lu "
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
463 #endif /* ES_AGGRESSIVE_TEST */
466 * The ext4_map_blocks() function tries to look up the requested blocks,
467 * and returns if the blocks are already mapped.
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
485 * It returns the error in case of allocation failure.
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
490 struct extent_status es;
493 #ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
496 memcpy(&orig_map, map, sizeof(*map));
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 return -EFSCORRUPTED;
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
543 * Try to see if we can get the block without requesting a new
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
577 up_read((&EXT4_I(inode)->i_data_sem));
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
591 * Returns if the blocks have already allocated
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
610 map->m_flags &= ~EXT4_MAP_FLAGS;
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
618 down_write(&EXT4_I(inode)->i_data_sem);
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 !(status & EXTENT_STATUS_WRITTEN) &&
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
724 ret = ext4_jbd2_inode_add_write(handle, inode);
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 unsigned long old_state;
739 unsigned long new_state;
741 flags &= EXT4_MAP_FLAGS;
743 /* Dummy buffer_head? Set non-atomically. */
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
763 struct ext4_map_blocks map;
766 if (ext4_has_inline_data(inode))
770 map.m_len = bh->b_size >> inode->i_blkbits;
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831 return PTR_ERR(handle);
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
854 * Get block function for AIO DIO writes when we create unwritten extent if
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
886 set_buffer_defer_completion(bh_result);
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
895 * after IO is complete by ext4_direct_IO_write().
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
909 * Mark inode as having pending DIO writes to unwritten extents.
910 * ext4_direct_IO_write() checks this flag and converts extents to
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
941 * `handle' can be NULL if create is zero
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 ext4_lblk_t block, int map_flags)
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
951 J_ASSERT(handle != NULL || create == 0);
955 err = ext4_map_blocks(handle, inode, &map, map_flags);
958 return create ? ERR_PTR(-ENOSPC) : NULL;
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
964 return ERR_PTR(-ENOMEM);
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
977 BUFFER_TRACE(bh, "call get_create_access");
978 err = ext4_journal_get_create_access(handle, bh);
983 if (!buffer_uptodate(bh)) {
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
993 BUFFER_TRACE(bh, "not a new buffer");
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 ext4_lblk_t block, int map_flags)
1003 struct buffer_head *bh;
1005 bh = ext4_getblk(handle, inode, block, map_flags);
1008 if (!bh || buffer_uptodate(bh))
1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012 if (buffer_uptodate(bh))
1015 return ERR_PTR(-EIO);
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 bool wait, struct buffer_head **bhs)
1024 for (i = 0; i < bh_count; i++) {
1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 if (IS_ERR(bhs[i])) {
1027 err = PTR_ERR(bhs[i]);
1033 for (i = 0; i < bh_count; i++)
1034 /* Note that NULL bhs[i] is valid because of holes. */
1035 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1042 for (i = 0; i < bh_count; i++)
1044 wait_on_buffer(bhs[i]);
1046 for (i = 0; i < bh_count; i++) {
1047 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1055 for (i = 0; i < bh_count; i++) {
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 struct buffer_head *head,
1067 int (*fn)(handle_t *handle,
1068 struct buffer_head *bh))
1070 struct buffer_head *bh;
1071 unsigned block_start, block_end;
1072 unsigned blocksize = head->b_size;
1074 struct buffer_head *next;
1076 for (bh = head, block_start = 0;
1077 ret == 0 && (bh != head || !block_start);
1078 block_start = block_end, bh = next) {
1079 next = bh->b_this_page;
1080 block_end = block_start + blocksize;
1081 if (block_end <= from || block_start >= to) {
1082 if (partial && !buffer_uptodate(bh))
1086 err = (*fn)(handle, bh);
1094 * To preserve ordering, it is essential that the hole instantiation and
1095 * the data write be encapsulated in a single transaction. We cannot
1096 * close off a transaction and start a new one between the ext4_get_block()
1097 * and the commit_write(). So doing the jbd2_journal_start at the start of
1098 * prepare_write() is the right place.
1100 * Also, this function can nest inside ext4_writepage(). In that case, we
1101 * *know* that ext4_writepage() has generated enough buffer credits to do the
1102 * whole page. So we won't block on the journal in that case, which is good,
1103 * because the caller may be PF_MEMALLOC.
1105 * By accident, ext4 can be reentered when a transaction is open via
1106 * quota file writes. If we were to commit the transaction while thus
1107 * reentered, there can be a deadlock - we would be holding a quota
1108 * lock, and the commit would never complete if another thread had a
1109 * transaction open and was blocking on the quota lock - a ranking
1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113 * will _not_ run commit under these circumstances because handle->h_ref
1114 * is elevated. We'll still have enough credits for the tiny quotafile
1117 int do_journal_get_write_access(handle_t *handle,
1118 struct buffer_head *bh)
1120 int dirty = buffer_dirty(bh);
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1126 * __block_write_begin() could have dirtied some buffers. Clean
1127 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 * otherwise about fs integrity issues. Setting of the dirty bit
1129 * by __block_write_begin() isn't a real problem here as we clear
1130 * the bit before releasing a page lock and thus writeback cannot
1131 * ever write the buffer.
1134 clear_buffer_dirty(bh);
1135 BUFFER_TRACE(bh, "get write access");
1136 ret = ext4_journal_get_write_access(handle, bh);
1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 get_block_t *get_block)
1146 unsigned from = pos & (PAGE_SIZE - 1);
1147 unsigned to = from + len;
1148 struct inode *inode = page->mapping->host;
1149 unsigned block_start, block_end;
1152 unsigned blocksize = inode->i_sb->s_blocksize;
1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 bool decrypt = false;
1157 BUG_ON(!PageLocked(page));
1158 BUG_ON(from > PAGE_SIZE);
1159 BUG_ON(to > PAGE_SIZE);
1162 if (!page_has_buffers(page))
1163 create_empty_buffers(page, blocksize, 0);
1164 head = page_buffers(page);
1165 bbits = ilog2(blocksize);
1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168 for (bh = head, block_start = 0; bh != head || !block_start;
1169 block++, block_start = block_end, bh = bh->b_this_page) {
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (PageUptodate(page)) {
1173 if (!buffer_uptodate(bh))
1174 set_buffer_uptodate(bh);
1179 clear_buffer_new(bh);
1180 if (!buffer_mapped(bh)) {
1181 WARN_ON(bh->b_size != blocksize);
1182 err = get_block(inode, block, bh, 1);
1185 if (buffer_new(bh)) {
1186 clean_bdev_bh_alias(bh);
1187 if (PageUptodate(page)) {
1188 clear_buffer_new(bh);
1189 set_buffer_uptodate(bh);
1190 mark_buffer_dirty(bh);
1193 if (block_end > to || block_start < from)
1194 zero_user_segments(page, to, block_end,
1199 if (PageUptodate(page)) {
1200 if (!buffer_uptodate(bh))
1201 set_buffer_uptodate(bh);
1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 !buffer_unwritten(bh) &&
1206 (block_start < from || block_end > to)) {
1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209 decrypt = ext4_encrypted_inode(inode) &&
1210 S_ISREG(inode->i_mode);
1214 * If we issued read requests, let them complete.
1216 while (wait_bh > wait) {
1217 wait_on_buffer(*--wait_bh);
1218 if (!buffer_uptodate(*wait_bh))
1222 page_zero_new_buffers(page, from, to);
1224 err = fscrypt_decrypt_page(page->mapping->host, page,
1225 PAGE_SIZE, 0, page->index);
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 loff_t pos, unsigned len, unsigned flags,
1232 struct page **pagep, void **fsdata)
1234 struct inode *inode = mapping->host;
1235 int ret, needed_blocks;
1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1245 trace_ext4_write_begin(inode, pos, len, flags);
1247 * Reserve one block more for addition to orphan list in case
1248 * we allocate blocks but write fails for some reason
1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 index = pos >> PAGE_SHIFT;
1252 from = pos & (PAGE_SIZE - 1);
1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1265 * grab_cache_page_write_begin() can take a long time if the
1266 * system is thrashing due to memory pressure, or if the page
1267 * is being written back. So grab it first before we start
1268 * the transaction handle. This also allows us to allocate
1269 * the page (if needed) without using GFP_NOFS.
1272 page = grab_cache_page_write_begin(mapping, index, flags);
1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 if (IS_ERR(handle)) {
1281 return PTR_ERR(handle);
1285 if (page->mapping != mapping) {
1286 /* The page got truncated from under us */
1289 ext4_journal_stop(handle);
1292 /* In case writeback began while the page was unlocked */
1293 wait_for_stable_page(page);
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 if (ext4_should_dioread_nolock(inode))
1297 ret = ext4_block_write_begin(page, pos, len,
1298 ext4_get_block_unwritten);
1300 ret = ext4_block_write_begin(page, pos, len,
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = __block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1307 ret = __block_write_begin(page, pos, len, ext4_get_block);
1309 if (!ret && ext4_should_journal_data(inode)) {
1310 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312 do_journal_get_write_access);
1318 * __block_write_begin may have instantiated a few blocks
1319 * outside i_size. Trim these off again. Don't need
1320 * i_size_read because we hold i_mutex.
1322 * Add inode to orphan list in case we crash before
1325 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 ext4_orphan_add(handle, inode);
1328 ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size) {
1330 ext4_truncate_failed_write(inode);
1332 * If truncate failed early the inode might
1333 * still be on the orphan list; we need to
1334 * make sure the inode is removed from the
1335 * orphan list in that case.
1338 ext4_orphan_del(NULL, inode);
1341 if (ret == -ENOSPC &&
1342 ext4_should_retry_alloc(inode->i_sb, &retries))
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1355 if (!buffer_mapped(bh) || buffer_freed(bh))
1357 set_buffer_uptodate(bh);
1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 clear_buffer_meta(bh);
1360 clear_buffer_prio(bh);
1365 * We need to pick up the new inode size which generic_commit_write gave us
1366 * `file' can be NULL - eg, when called from page_symlink().
1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1369 * buffers are managed internally.
1371 static int ext4_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1376 handle_t *handle = ext4_journal_current_handle();
1377 struct inode *inode = mapping->host;
1378 loff_t old_size = inode->i_size;
1380 int i_size_changed = 0;
1382 trace_ext4_write_end(inode, pos, len, copied);
1383 if (ext4_has_inline_data(inode)) {
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1393 copied = block_write_end(file, mapping, pos,
1394 len, copied, page, fsdata);
1396 * it's important to update i_size while still holding page lock:
1397 * page writeout could otherwise come in and zero beyond i_size.
1399 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1404 pagecache_isize_extended(inode, old_size, pos);
1406 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 * makes the holding time of page lock longer. Second, it forces lock
1408 * ordering of page lock and transaction start for journaling
1412 ext4_mark_inode_dirty(handle, inode);
1414 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 /* if we have allocated more blocks and copied
1416 * less. We will have blocks allocated outside
1417 * inode->i_size. So truncate them
1419 ext4_orphan_add(handle, inode);
1421 ret2 = ext4_journal_stop(handle);
1425 if (pos + len > inode->i_size) {
1426 ext4_truncate_failed_write(inode);
1428 * If truncate failed early the inode might still be
1429 * on the orphan list; we need to make sure the inode
1430 * is removed from the orphan list in that case.
1433 ext4_orphan_del(NULL, inode);
1436 return ret ? ret : copied;
1440 * This is a private version of page_zero_new_buffers() which doesn't
1441 * set the buffer to be dirty, since in data=journalled mode we need
1442 * to call ext4_handle_dirty_metadata() instead.
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446 unsigned from, unsigned to)
1448 unsigned int block_start = 0, block_end;
1449 struct buffer_head *head, *bh;
1451 bh = head = page_buffers(page);
1453 block_end = block_start + bh->b_size;
1454 if (buffer_new(bh)) {
1455 if (block_end > from && block_start < to) {
1456 if (!PageUptodate(page)) {
1457 unsigned start, size;
1459 start = max(from, block_start);
1460 size = min(to, block_end) - start;
1462 zero_user(page, start, size);
1463 write_end_fn(handle, bh);
1465 clear_buffer_new(bh);
1468 block_start = block_end;
1469 bh = bh->b_this_page;
1470 } while (bh != head);
1473 static int ext4_journalled_write_end(struct file *file,
1474 struct address_space *mapping,
1475 loff_t pos, unsigned len, unsigned copied,
1476 struct page *page, void *fsdata)
1478 handle_t *handle = ext4_journal_current_handle();
1479 struct inode *inode = mapping->host;
1480 loff_t old_size = inode->i_size;
1484 int size_changed = 0;
1486 trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 from = pos & (PAGE_SIZE - 1);
1490 BUG_ON(!ext4_handle_valid(handle));
1492 if (ext4_has_inline_data(inode)) {
1493 ret = ext4_write_inline_data_end(inode, pos, len,
1501 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505 if (unlikely(copied < len))
1506 ext4_journalled_zero_new_buffers(handle, page,
1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 from + copied, &partial,
1512 SetPageUptodate(page);
1514 size_changed = ext4_update_inode_size(inode, pos + copied);
1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1521 pagecache_isize_extended(inode, old_size, pos);
1524 ret2 = ext4_mark_inode_dirty(handle, inode);
1529 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 /* if we have allocated more blocks and copied
1531 * less. We will have blocks allocated outside
1532 * inode->i_size. So truncate them
1534 ext4_orphan_add(handle, inode);
1537 ret2 = ext4_journal_stop(handle);
1540 if (pos + len > inode->i_size) {
1541 ext4_truncate_failed_write(inode);
1543 * If truncate failed early the inode might still be
1544 * on the orphan list; we need to make sure the inode
1545 * is removed from the orphan list in that case.
1548 ext4_orphan_del(NULL, inode);
1551 return ret ? ret : copied;
1555 * Reserve space for a single cluster
1557 static int ext4_da_reserve_space(struct inode *inode)
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 struct ext4_inode_info *ei = EXT4_I(inode);
1564 * We will charge metadata quota at writeout time; this saves
1565 * us from metadata over-estimation, though we may go over by
1566 * a small amount in the end. Here we just reserve for data.
1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1572 spin_lock(&ei->i_block_reservation_lock);
1573 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 spin_unlock(&ei->i_block_reservation_lock);
1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1578 ei->i_reserved_data_blocks++;
1579 trace_ext4_da_reserve_space(inode);
1580 spin_unlock(&ei->i_block_reservation_lock);
1582 return 0; /* success */
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 struct ext4_inode_info *ei = EXT4_I(inode);
1591 return; /* Nothing to release, exit */
1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595 trace_ext4_da_release_space(inode, to_free);
1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598 * if there aren't enough reserved blocks, then the
1599 * counter is messed up somewhere. Since this
1600 * function is called from invalidate page, it's
1601 * harmless to return without any action.
1603 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 "ino %lu, to_free %d with only %d reserved "
1605 "data blocks", inode->i_ino, to_free,
1606 ei->i_reserved_data_blocks);
1608 to_free = ei->i_reserved_data_blocks;
1610 ei->i_reserved_data_blocks -= to_free;
1612 /* update fs dirty data blocks counter */
1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 unsigned int offset,
1622 unsigned int length)
1624 int to_release = 0, contiguous_blks = 0;
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
1627 struct inode *inode = page->mapping->host;
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 unsigned int stop = offset + length;
1633 BUG_ON(stop > PAGE_SIZE || stop < length);
1635 head = page_buffers(page);
1638 unsigned int next_off = curr_off + bh->b_size;
1640 if (next_off > stop)
1643 if ((offset <= curr_off) && (buffer_delay(bh))) {
1646 clear_buffer_delay(bh);
1647 } else if (contiguous_blks) {
1648 lblk = page->index <<
1649 (PAGE_SHIFT - inode->i_blkbits);
1650 lblk += (curr_off >> inode->i_blkbits) -
1652 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 contiguous_blks = 0;
1655 curr_off = next_off;
1656 } while ((bh = bh->b_this_page) != head);
1658 if (contiguous_blks) {
1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 /* If we have released all the blocks belonging to a cluster, then we
1665 * need to release the reserved space for that cluster. */
1666 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 while (num_clusters > 0) {
1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 ((num_clusters - 1) << sbi->s_cluster_bits);
1670 if (sbi->s_cluster_ratio == 1 ||
1671 !ext4_find_delalloc_cluster(inode, lblk))
1672 ext4_da_release_space(inode, 1);
1679 * Delayed allocation stuff
1682 struct mpage_da_data {
1683 struct inode *inode;
1684 struct writeback_control *wbc;
1686 pgoff_t first_page; /* The first page to write */
1687 pgoff_t next_page; /* Current page to examine */
1688 pgoff_t last_page; /* Last page to examine */
1690 * Extent to map - this can be after first_page because that can be
1691 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 * is delalloc or unwritten.
1694 struct ext4_map_blocks map;
1695 struct ext4_io_submit io_submit; /* IO submission data */
1696 unsigned int do_map:1;
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1704 struct pagevec pvec;
1705 struct inode *inode = mpd->inode;
1706 struct address_space *mapping = inode->i_mapping;
1708 /* This is necessary when next_page == 0. */
1709 if (mpd->first_page >= mpd->next_page)
1712 index = mpd->first_page;
1713 end = mpd->next_page - 1;
1715 ext4_lblk_t start, last;
1716 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 ext4_es_remove_extent(inode, start, last - start + 1);
1721 pagevec_init(&pvec, 0);
1722 while (index <= end) {
1723 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
1728 if (page->index > end)
1730 BUG_ON(!PageLocked(page));
1731 BUG_ON(PageWriteback(page));
1733 if (page_mapped(page))
1734 clear_page_dirty_for_io(page);
1735 block_invalidatepage(page, 0, PAGE_SIZE);
1736 ClearPageUptodate(page);
1740 index = pvec.pages[nr_pages - 1]->index + 1;
1741 pagevec_release(&pvec);
1745 static void ext4_print_free_blocks(struct inode *inode)
1747 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1748 struct super_block *sb = inode->i_sb;
1749 struct ext4_inode_info *ei = EXT4_I(inode);
1751 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1752 EXT4_C2B(EXT4_SB(inode->i_sb),
1753 ext4_count_free_clusters(sb)));
1754 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1755 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1756 (long long) EXT4_C2B(EXT4_SB(sb),
1757 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1758 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1759 (long long) EXT4_C2B(EXT4_SB(sb),
1760 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1761 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1762 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1763 ei->i_reserved_data_blocks);
1767 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1773 * This function is grabs code from the very beginning of
1774 * ext4_map_blocks, but assumes that the caller is from delayed write
1775 * time. This function looks up the requested blocks and sets the
1776 * buffer delay bit under the protection of i_data_sem.
1778 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1779 struct ext4_map_blocks *map,
1780 struct buffer_head *bh)
1782 struct extent_status es;
1784 sector_t invalid_block = ~((sector_t) 0xffff);
1785 #ifdef ES_AGGRESSIVE_TEST
1786 struct ext4_map_blocks orig_map;
1788 memcpy(&orig_map, map, sizeof(*map));
1791 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1795 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1796 "logical block %lu\n", inode->i_ino, map->m_len,
1797 (unsigned long) map->m_lblk);
1799 /* Lookup extent status tree firstly */
1800 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1801 if (ext4_es_is_hole(&es)) {
1803 down_read(&EXT4_I(inode)->i_data_sem);
1808 * Delayed extent could be allocated by fallocate.
1809 * So we need to check it.
1811 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1812 map_bh(bh, inode->i_sb, invalid_block);
1814 set_buffer_delay(bh);
1818 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1819 retval = es.es_len - (iblock - es.es_lblk);
1820 if (retval > map->m_len)
1821 retval = map->m_len;
1822 map->m_len = retval;
1823 if (ext4_es_is_written(&es))
1824 map->m_flags |= EXT4_MAP_MAPPED;
1825 else if (ext4_es_is_unwritten(&es))
1826 map->m_flags |= EXT4_MAP_UNWRITTEN;
1830 #ifdef ES_AGGRESSIVE_TEST
1831 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1837 * Try to see if we can get the block without requesting a new
1838 * file system block.
1840 down_read(&EXT4_I(inode)->i_data_sem);
1841 if (ext4_has_inline_data(inode))
1843 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1844 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1846 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1852 * XXX: __block_prepare_write() unmaps passed block,
1856 * If the block was allocated from previously allocated cluster,
1857 * then we don't need to reserve it again. However we still need
1858 * to reserve metadata for every block we're going to write.
1860 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1861 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1862 ret = ext4_da_reserve_space(inode);
1864 /* not enough space to reserve */
1870 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1871 ~0, EXTENT_STATUS_DELAYED);
1877 map_bh(bh, inode->i_sb, invalid_block);
1879 set_buffer_delay(bh);
1880 } else if (retval > 0) {
1882 unsigned int status;
1884 if (unlikely(retval != map->m_len)) {
1885 ext4_warning(inode->i_sb,
1886 "ES len assertion failed for inode "
1887 "%lu: retval %d != map->m_len %d",
1888 inode->i_ino, retval, map->m_len);
1892 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1893 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1894 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1895 map->m_pblk, status);
1901 up_read((&EXT4_I(inode)->i_data_sem));
1907 * This is a special get_block_t callback which is used by
1908 * ext4_da_write_begin(). It will either return mapped block or
1909 * reserve space for a single block.
1911 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1912 * We also have b_blocknr = -1 and b_bdev initialized properly
1914 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1915 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1916 * initialized properly.
1918 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1919 struct buffer_head *bh, int create)
1921 struct ext4_map_blocks map;
1924 BUG_ON(create == 0);
1925 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1927 map.m_lblk = iblock;
1931 * first, we need to know whether the block is allocated already
1932 * preallocated blocks are unmapped but should treated
1933 * the same as allocated blocks.
1935 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1939 map_bh(bh, inode->i_sb, map.m_pblk);
1940 ext4_update_bh_state(bh, map.m_flags);
1942 if (buffer_unwritten(bh)) {
1943 /* A delayed write to unwritten bh should be marked
1944 * new and mapped. Mapped ensures that we don't do
1945 * get_block multiple times when we write to the same
1946 * offset and new ensures that we do proper zero out
1947 * for partial write.
1950 set_buffer_mapped(bh);
1955 static int bget_one(handle_t *handle, struct buffer_head *bh)
1961 static int bput_one(handle_t *handle, struct buffer_head *bh)
1967 static int __ext4_journalled_writepage(struct page *page,
1970 struct address_space *mapping = page->mapping;
1971 struct inode *inode = mapping->host;
1972 struct buffer_head *page_bufs = NULL;
1973 handle_t *handle = NULL;
1974 int ret = 0, err = 0;
1975 int inline_data = ext4_has_inline_data(inode);
1976 struct buffer_head *inode_bh = NULL;
1978 ClearPageChecked(page);
1981 BUG_ON(page->index != 0);
1982 BUG_ON(len > ext4_get_max_inline_size(inode));
1983 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1984 if (inode_bh == NULL)
1987 page_bufs = page_buffers(page);
1992 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1996 * We need to release the page lock before we start the
1997 * journal, so grab a reference so the page won't disappear
1998 * out from under us.
2003 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2004 ext4_writepage_trans_blocks(inode));
2005 if (IS_ERR(handle)) {
2006 ret = PTR_ERR(handle);
2008 goto out_no_pagelock;
2010 BUG_ON(!ext4_handle_valid(handle));
2014 if (page->mapping != mapping) {
2015 /* The page got truncated from under us */
2016 ext4_journal_stop(handle);
2022 BUFFER_TRACE(inode_bh, "get write access");
2023 ret = ext4_journal_get_write_access(handle, inode_bh);
2025 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2028 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2029 do_journal_get_write_access);
2031 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2036 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2037 err = ext4_journal_stop(handle);
2041 if (!ext4_has_inline_data(inode))
2042 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2044 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2053 * Note that we don't need to start a transaction unless we're journaling data
2054 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2055 * need to file the inode to the transaction's list in ordered mode because if
2056 * we are writing back data added by write(), the inode is already there and if
2057 * we are writing back data modified via mmap(), no one guarantees in which
2058 * transaction the data will hit the disk. In case we are journaling data, we
2059 * cannot start transaction directly because transaction start ranks above page
2060 * lock so we have to do some magic.
2062 * This function can get called via...
2063 * - ext4_writepages after taking page lock (have journal handle)
2064 * - journal_submit_inode_data_buffers (no journal handle)
2065 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2066 * - grab_page_cache when doing write_begin (have journal handle)
2068 * We don't do any block allocation in this function. If we have page with
2069 * multiple blocks we need to write those buffer_heads that are mapped. This
2070 * is important for mmaped based write. So if we do with blocksize 1K
2071 * truncate(f, 1024);
2072 * a = mmap(f, 0, 4096);
2074 * truncate(f, 4096);
2075 * we have in the page first buffer_head mapped via page_mkwrite call back
2076 * but other buffer_heads would be unmapped but dirty (dirty done via the
2077 * do_wp_page). So writepage should write the first block. If we modify
2078 * the mmap area beyond 1024 we will again get a page_fault and the
2079 * page_mkwrite callback will do the block allocation and mark the
2080 * buffer_heads mapped.
2082 * We redirty the page if we have any buffer_heads that is either delay or
2083 * unwritten in the page.
2085 * We can get recursively called as show below.
2087 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2090 * But since we don't do any block allocation we should not deadlock.
2091 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2093 static int ext4_writepage(struct page *page,
2094 struct writeback_control *wbc)
2099 struct buffer_head *page_bufs = NULL;
2100 struct inode *inode = page->mapping->host;
2101 struct ext4_io_submit io_submit;
2102 bool keep_towrite = false;
2104 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2105 ext4_invalidatepage(page, 0, PAGE_SIZE);
2110 trace_ext4_writepage(page);
2111 size = i_size_read(inode);
2112 if (page->index == size >> PAGE_SHIFT)
2113 len = size & ~PAGE_MASK;
2117 page_bufs = page_buffers(page);
2119 * We cannot do block allocation or other extent handling in this
2120 * function. If there are buffers needing that, we have to redirty
2121 * the page. But we may reach here when we do a journal commit via
2122 * journal_submit_inode_data_buffers() and in that case we must write
2123 * allocated buffers to achieve data=ordered mode guarantees.
2125 * Also, if there is only one buffer per page (the fs block
2126 * size == the page size), if one buffer needs block
2127 * allocation or needs to modify the extent tree to clear the
2128 * unwritten flag, we know that the page can't be written at
2129 * all, so we might as well refuse the write immediately.
2130 * Unfortunately if the block size != page size, we can't as
2131 * easily detect this case using ext4_walk_page_buffers(), but
2132 * for the extremely common case, this is an optimization that
2133 * skips a useless round trip through ext4_bio_write_page().
2135 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2136 ext4_bh_delay_or_unwritten)) {
2137 redirty_page_for_writepage(wbc, page);
2138 if ((current->flags & PF_MEMALLOC) ||
2139 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2141 * For memory cleaning there's no point in writing only
2142 * some buffers. So just bail out. Warn if we came here
2143 * from direct reclaim.
2145 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2150 keep_towrite = true;
2153 if (PageChecked(page) && ext4_should_journal_data(inode))
2155 * It's mmapped pagecache. Add buffers and journal it. There
2156 * doesn't seem much point in redirtying the page here.
2158 return __ext4_journalled_writepage(page, len);
2160 ext4_io_submit_init(&io_submit, wbc);
2161 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2162 if (!io_submit.io_end) {
2163 redirty_page_for_writepage(wbc, page);
2167 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2168 ext4_io_submit(&io_submit);
2169 /* Drop io_end reference we got from init */
2170 ext4_put_io_end_defer(io_submit.io_end);
2174 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2180 BUG_ON(page->index != mpd->first_page);
2181 clear_page_dirty_for_io(page);
2183 * We have to be very careful here! Nothing protects writeback path
2184 * against i_size changes and the page can be writeably mapped into
2185 * page tables. So an application can be growing i_size and writing
2186 * data through mmap while writeback runs. clear_page_dirty_for_io()
2187 * write-protects our page in page tables and the page cannot get
2188 * written to again until we release page lock. So only after
2189 * clear_page_dirty_for_io() we are safe to sample i_size for
2190 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2191 * on the barrier provided by TestClearPageDirty in
2192 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2193 * after page tables are updated.
2195 size = i_size_read(mpd->inode);
2196 if (page->index == size >> PAGE_SHIFT)
2197 len = size & ~PAGE_MASK;
2200 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2202 mpd->wbc->nr_to_write--;
2208 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2211 * mballoc gives us at most this number of blocks...
2212 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2213 * The rest of mballoc seems to handle chunks up to full group size.
2215 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2218 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2220 * @mpd - extent of blocks
2221 * @lblk - logical number of the block in the file
2222 * @bh - buffer head we want to add to the extent
2224 * The function is used to collect contig. blocks in the same state. If the
2225 * buffer doesn't require mapping for writeback and we haven't started the
2226 * extent of buffers to map yet, the function returns 'true' immediately - the
2227 * caller can write the buffer right away. Otherwise the function returns true
2228 * if the block has been added to the extent, false if the block couldn't be
2231 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2232 struct buffer_head *bh)
2234 struct ext4_map_blocks *map = &mpd->map;
2236 /* Buffer that doesn't need mapping for writeback? */
2237 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2238 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2239 /* So far no extent to map => we write the buffer right away */
2240 if (map->m_len == 0)
2245 /* First block in the extent? */
2246 if (map->m_len == 0) {
2247 /* We cannot map unless handle is started... */
2252 map->m_flags = bh->b_state & BH_FLAGS;
2256 /* Don't go larger than mballoc is willing to allocate */
2257 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2260 /* Can we merge the block to our big extent? */
2261 if (lblk == map->m_lblk + map->m_len &&
2262 (bh->b_state & BH_FLAGS) == map->m_flags) {
2270 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2272 * @mpd - extent of blocks for mapping
2273 * @head - the first buffer in the page
2274 * @bh - buffer we should start processing from
2275 * @lblk - logical number of the block in the file corresponding to @bh
2277 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2278 * the page for IO if all buffers in this page were mapped and there's no
2279 * accumulated extent of buffers to map or add buffers in the page to the
2280 * extent of buffers to map. The function returns 1 if the caller can continue
2281 * by processing the next page, 0 if it should stop adding buffers to the
2282 * extent to map because we cannot extend it anymore. It can also return value
2283 * < 0 in case of error during IO submission.
2285 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2286 struct buffer_head *head,
2287 struct buffer_head *bh,
2290 struct inode *inode = mpd->inode;
2292 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2293 >> inode->i_blkbits;
2296 BUG_ON(buffer_locked(bh));
2298 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2299 /* Found extent to map? */
2302 /* Buffer needs mapping and handle is not started? */
2305 /* Everything mapped so far and we hit EOF */
2308 } while (lblk++, (bh = bh->b_this_page) != head);
2309 /* So far everything mapped? Submit the page for IO. */
2310 if (mpd->map.m_len == 0) {
2311 err = mpage_submit_page(mpd, head->b_page);
2315 return lblk < blocks;
2319 * mpage_map_buffers - update buffers corresponding to changed extent and
2320 * submit fully mapped pages for IO
2322 * @mpd - description of extent to map, on return next extent to map
2324 * Scan buffers corresponding to changed extent (we expect corresponding pages
2325 * to be already locked) and update buffer state according to new extent state.
2326 * We map delalloc buffers to their physical location, clear unwritten bits,
2327 * and mark buffers as uninit when we perform writes to unwritten extents
2328 * and do extent conversion after IO is finished. If the last page is not fully
2329 * mapped, we update @map to the next extent in the last page that needs
2330 * mapping. Otherwise we submit the page for IO.
2332 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2334 struct pagevec pvec;
2336 struct inode *inode = mpd->inode;
2337 struct buffer_head *head, *bh;
2338 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2344 start = mpd->map.m_lblk >> bpp_bits;
2345 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2346 lblk = start << bpp_bits;
2347 pblock = mpd->map.m_pblk;
2349 pagevec_init(&pvec, 0);
2350 while (start <= end) {
2351 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2355 for (i = 0; i < nr_pages; i++) {
2356 struct page *page = pvec.pages[i];
2358 if (page->index > end)
2360 /* Up to 'end' pages must be contiguous */
2361 BUG_ON(page->index != start);
2362 bh = head = page_buffers(page);
2364 if (lblk < mpd->map.m_lblk)
2366 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2368 * Buffer after end of mapped extent.
2369 * Find next buffer in the page to map.
2372 mpd->map.m_flags = 0;
2374 * FIXME: If dioread_nolock supports
2375 * blocksize < pagesize, we need to make
2376 * sure we add size mapped so far to
2377 * io_end->size as the following call
2378 * can submit the page for IO.
2380 err = mpage_process_page_bufs(mpd, head,
2382 pagevec_release(&pvec);
2387 if (buffer_delay(bh)) {
2388 clear_buffer_delay(bh);
2389 bh->b_blocknr = pblock++;
2391 clear_buffer_unwritten(bh);
2392 } while (lblk++, (bh = bh->b_this_page) != head);
2395 * FIXME: This is going to break if dioread_nolock
2396 * supports blocksize < pagesize as we will try to
2397 * convert potentially unmapped parts of inode.
2399 mpd->io_submit.io_end->size += PAGE_SIZE;
2400 /* Page fully mapped - let IO run! */
2401 err = mpage_submit_page(mpd, page);
2403 pagevec_release(&pvec);
2408 pagevec_release(&pvec);
2410 /* Extent fully mapped and matches with page boundary. We are done. */
2412 mpd->map.m_flags = 0;
2416 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2418 struct inode *inode = mpd->inode;
2419 struct ext4_map_blocks *map = &mpd->map;
2420 int get_blocks_flags;
2421 int err, dioread_nolock;
2423 trace_ext4_da_write_pages_extent(inode, map);
2425 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2426 * to convert an unwritten extent to be initialized (in the case
2427 * where we have written into one or more preallocated blocks). It is
2428 * possible that we're going to need more metadata blocks than
2429 * previously reserved. However we must not fail because we're in
2430 * writeback and there is nothing we can do about it so it might result
2431 * in data loss. So use reserved blocks to allocate metadata if
2434 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2435 * the blocks in question are delalloc blocks. This indicates
2436 * that the blocks and quotas has already been checked when
2437 * the data was copied into the page cache.
2439 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2440 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2441 EXT4_GET_BLOCKS_IO_SUBMIT;
2442 dioread_nolock = ext4_should_dioread_nolock(inode);
2444 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2445 if (map->m_flags & (1 << BH_Delay))
2446 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2448 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2451 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2452 if (!mpd->io_submit.io_end->handle &&
2453 ext4_handle_valid(handle)) {
2454 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2455 handle->h_rsv_handle = NULL;
2457 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2460 BUG_ON(map->m_len == 0);
2461 if (map->m_flags & EXT4_MAP_NEW) {
2462 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2469 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2470 * mpd->len and submit pages underlying it for IO
2472 * @handle - handle for journal operations
2473 * @mpd - extent to map
2474 * @give_up_on_write - we set this to true iff there is a fatal error and there
2475 * is no hope of writing the data. The caller should discard
2476 * dirty pages to avoid infinite loops.
2478 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2479 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2480 * them to initialized or split the described range from larger unwritten
2481 * extent. Note that we need not map all the described range since allocation
2482 * can return less blocks or the range is covered by more unwritten extents. We
2483 * cannot map more because we are limited by reserved transaction credits. On
2484 * the other hand we always make sure that the last touched page is fully
2485 * mapped so that it can be written out (and thus forward progress is
2486 * guaranteed). After mapping we submit all mapped pages for IO.
2488 static int mpage_map_and_submit_extent(handle_t *handle,
2489 struct mpage_da_data *mpd,
2490 bool *give_up_on_write)
2492 struct inode *inode = mpd->inode;
2493 struct ext4_map_blocks *map = &mpd->map;
2498 mpd->io_submit.io_end->offset =
2499 ((loff_t)map->m_lblk) << inode->i_blkbits;
2501 err = mpage_map_one_extent(handle, mpd);
2503 struct super_block *sb = inode->i_sb;
2505 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2506 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2507 goto invalidate_dirty_pages;
2509 * Let the uper layers retry transient errors.
2510 * In the case of ENOSPC, if ext4_count_free_blocks()
2511 * is non-zero, a commit should free up blocks.
2513 if ((err == -ENOMEM) ||
2514 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2516 goto update_disksize;
2519 ext4_msg(sb, KERN_CRIT,
2520 "Delayed block allocation failed for "
2521 "inode %lu at logical offset %llu with"
2522 " max blocks %u with error %d",
2524 (unsigned long long)map->m_lblk,
2525 (unsigned)map->m_len, -err);
2526 ext4_msg(sb, KERN_CRIT,
2527 "This should not happen!! Data will "
2530 ext4_print_free_blocks(inode);
2531 invalidate_dirty_pages:
2532 *give_up_on_write = true;
2537 * Update buffer state, submit mapped pages, and get us new
2540 err = mpage_map_and_submit_buffers(mpd);
2542 goto update_disksize;
2543 } while (map->m_len);
2547 * Update on-disk size after IO is submitted. Races with
2548 * truncate are avoided by checking i_size under i_data_sem.
2550 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2551 if (disksize > EXT4_I(inode)->i_disksize) {
2555 down_write(&EXT4_I(inode)->i_data_sem);
2556 i_size = i_size_read(inode);
2557 if (disksize > i_size)
2559 if (disksize > EXT4_I(inode)->i_disksize)
2560 EXT4_I(inode)->i_disksize = disksize;
2561 up_write(&EXT4_I(inode)->i_data_sem);
2562 err2 = ext4_mark_inode_dirty(handle, inode);
2564 ext4_error(inode->i_sb,
2565 "Failed to mark inode %lu dirty",
2574 * Calculate the total number of credits to reserve for one writepages
2575 * iteration. This is called from ext4_writepages(). We map an extent of
2576 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2577 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2578 * bpp - 1 blocks in bpp different extents.
2580 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2582 int bpp = ext4_journal_blocks_per_page(inode);
2584 return ext4_meta_trans_blocks(inode,
2585 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2589 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2590 * and underlying extent to map
2592 * @mpd - where to look for pages
2594 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2595 * IO immediately. When we find a page which isn't mapped we start accumulating
2596 * extent of buffers underlying these pages that needs mapping (formed by
2597 * either delayed or unwritten buffers). We also lock the pages containing
2598 * these buffers. The extent found is returned in @mpd structure (starting at
2599 * mpd->lblk with length mpd->len blocks).
2601 * Note that this function can attach bios to one io_end structure which are
2602 * neither logically nor physically contiguous. Although it may seem as an
2603 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2604 * case as we need to track IO to all buffers underlying a page in one io_end.
2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2608 struct address_space *mapping = mpd->inode->i_mapping;
2609 struct pagevec pvec;
2610 unsigned int nr_pages;
2611 long left = mpd->wbc->nr_to_write;
2612 pgoff_t index = mpd->first_page;
2613 pgoff_t end = mpd->last_page;
2616 int blkbits = mpd->inode->i_blkbits;
2618 struct buffer_head *head;
2620 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2621 tag = PAGECACHE_TAG_TOWRITE;
2623 tag = PAGECACHE_TAG_DIRTY;
2625 pagevec_init(&pvec, 0);
2627 mpd->next_page = index;
2628 while (index <= end) {
2629 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2630 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2634 for (i = 0; i < nr_pages; i++) {
2635 struct page *page = pvec.pages[i];
2638 * At this point, the page may be truncated or
2639 * invalidated (changing page->mapping to NULL), or
2640 * even swizzled back from swapper_space to tmpfs file
2641 * mapping. However, page->index will not change
2642 * because we have a reference on the page.
2644 if (page->index > end)
2648 * Accumulated enough dirty pages? This doesn't apply
2649 * to WB_SYNC_ALL mode. For integrity sync we have to
2650 * keep going because someone may be concurrently
2651 * dirtying pages, and we might have synced a lot of
2652 * newly appeared dirty pages, but have not synced all
2653 * of the old dirty pages.
2655 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2658 /* If we can't merge this page, we are done. */
2659 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2664 * If the page is no longer dirty, or its mapping no
2665 * longer corresponds to inode we are writing (which
2666 * means it has been truncated or invalidated), or the
2667 * page is already under writeback and we are not doing
2668 * a data integrity writeback, skip the page
2670 if (!PageDirty(page) ||
2671 (PageWriteback(page) &&
2672 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2673 unlikely(page->mapping != mapping)) {
2678 wait_on_page_writeback(page);
2679 BUG_ON(PageWriteback(page));
2681 if (mpd->map.m_len == 0)
2682 mpd->first_page = page->index;
2683 mpd->next_page = page->index + 1;
2684 /* Add all dirty buffers to mpd */
2685 lblk = ((ext4_lblk_t)page->index) <<
2686 (PAGE_SHIFT - blkbits);
2687 head = page_buffers(page);
2688 err = mpage_process_page_bufs(mpd, head, head, lblk);
2694 pagevec_release(&pvec);
2699 pagevec_release(&pvec);
2703 static int __writepage(struct page *page, struct writeback_control *wbc,
2706 struct address_space *mapping = data;
2707 int ret = ext4_writepage(page, wbc);
2708 mapping_set_error(mapping, ret);
2712 static int ext4_writepages(struct address_space *mapping,
2713 struct writeback_control *wbc)
2715 pgoff_t writeback_index = 0;
2716 long nr_to_write = wbc->nr_to_write;
2717 int range_whole = 0;
2719 handle_t *handle = NULL;
2720 struct mpage_da_data mpd;
2721 struct inode *inode = mapping->host;
2722 int needed_blocks, rsv_blocks = 0, ret = 0;
2723 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2725 struct blk_plug plug;
2726 bool give_up_on_write = false;
2728 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2731 percpu_down_read(&sbi->s_journal_flag_rwsem);
2732 trace_ext4_writepages(inode, wbc);
2734 if (dax_mapping(mapping)) {
2735 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2737 goto out_writepages;
2741 * No pages to write? This is mainly a kludge to avoid starting
2742 * a transaction for special inodes like journal inode on last iput()
2743 * because that could violate lock ordering on umount
2745 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2746 goto out_writepages;
2748 if (ext4_should_journal_data(inode)) {
2749 struct blk_plug plug;
2751 blk_start_plug(&plug);
2752 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2753 blk_finish_plug(&plug);
2754 goto out_writepages;
2758 * If the filesystem has aborted, it is read-only, so return
2759 * right away instead of dumping stack traces later on that
2760 * will obscure the real source of the problem. We test
2761 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2762 * the latter could be true if the filesystem is mounted
2763 * read-only, and in that case, ext4_writepages should
2764 * *never* be called, so if that ever happens, we would want
2767 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2768 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2770 goto out_writepages;
2773 if (ext4_should_dioread_nolock(inode)) {
2775 * We may need to convert up to one extent per block in
2776 * the page and we may dirty the inode.
2778 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2782 * If we have inline data and arrive here, it means that
2783 * we will soon create the block for the 1st page, so
2784 * we'd better clear the inline data here.
2786 if (ext4_has_inline_data(inode)) {
2787 /* Just inode will be modified... */
2788 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2789 if (IS_ERR(handle)) {
2790 ret = PTR_ERR(handle);
2791 goto out_writepages;
2793 BUG_ON(ext4_test_inode_state(inode,
2794 EXT4_STATE_MAY_INLINE_DATA));
2795 ext4_destroy_inline_data(handle, inode);
2796 ext4_journal_stop(handle);
2799 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2802 if (wbc->range_cyclic) {
2803 writeback_index = mapping->writeback_index;
2804 if (writeback_index)
2806 mpd.first_page = writeback_index;
2809 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2810 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2815 ext4_io_submit_init(&mpd.io_submit, wbc);
2817 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2818 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2820 blk_start_plug(&plug);
2823 * First writeback pages that don't need mapping - we can avoid
2824 * starting a transaction unnecessarily and also avoid being blocked
2825 * in the block layer on device congestion while having transaction
2829 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2830 if (!mpd.io_submit.io_end) {
2834 ret = mpage_prepare_extent_to_map(&mpd);
2835 /* Submit prepared bio */
2836 ext4_io_submit(&mpd.io_submit);
2837 ext4_put_io_end_defer(mpd.io_submit.io_end);
2838 mpd.io_submit.io_end = NULL;
2839 /* Unlock pages we didn't use */
2840 mpage_release_unused_pages(&mpd, false);
2844 while (!done && mpd.first_page <= mpd.last_page) {
2845 /* For each extent of pages we use new io_end */
2846 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2847 if (!mpd.io_submit.io_end) {
2853 * We have two constraints: We find one extent to map and we
2854 * must always write out whole page (makes a difference when
2855 * blocksize < pagesize) so that we don't block on IO when we
2856 * try to write out the rest of the page. Journalled mode is
2857 * not supported by delalloc.
2859 BUG_ON(ext4_should_journal_data(inode));
2860 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2862 /* start a new transaction */
2863 handle = ext4_journal_start_with_reserve(inode,
2864 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2865 if (IS_ERR(handle)) {
2866 ret = PTR_ERR(handle);
2867 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868 "%ld pages, ino %lu; err %d", __func__,
2869 wbc->nr_to_write, inode->i_ino, ret);
2870 /* Release allocated io_end */
2871 ext4_put_io_end(mpd.io_submit.io_end);
2872 mpd.io_submit.io_end = NULL;
2877 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2878 ret = mpage_prepare_extent_to_map(&mpd);
2881 ret = mpage_map_and_submit_extent(handle, &mpd,
2885 * We scanned the whole range (or exhausted
2886 * nr_to_write), submitted what was mapped and
2887 * didn't find anything needing mapping. We are
2894 * Caution: If the handle is synchronous,
2895 * ext4_journal_stop() can wait for transaction commit
2896 * to finish which may depend on writeback of pages to
2897 * complete or on page lock to be released. In that
2898 * case, we have to wait until after after we have
2899 * submitted all the IO, released page locks we hold,
2900 * and dropped io_end reference (for extent conversion
2901 * to be able to complete) before stopping the handle.
2903 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2904 ext4_journal_stop(handle);
2908 /* Submit prepared bio */
2909 ext4_io_submit(&mpd.io_submit);
2910 /* Unlock pages we didn't use */
2911 mpage_release_unused_pages(&mpd, give_up_on_write);
2913 * Drop our io_end reference we got from init. We have
2914 * to be careful and use deferred io_end finishing if
2915 * we are still holding the transaction as we can
2916 * release the last reference to io_end which may end
2917 * up doing unwritten extent conversion.
2920 ext4_put_io_end_defer(mpd.io_submit.io_end);
2921 ext4_journal_stop(handle);
2923 ext4_put_io_end(mpd.io_submit.io_end);
2924 mpd.io_submit.io_end = NULL;
2926 if (ret == -ENOSPC && sbi->s_journal) {
2928 * Commit the transaction which would
2929 * free blocks released in the transaction
2932 jbd2_journal_force_commit_nested(sbi->s_journal);
2936 /* Fatal error - ENOMEM, EIO... */
2941 blk_finish_plug(&plug);
2942 if (!ret && !cycled && wbc->nr_to_write > 0) {
2944 mpd.last_page = writeback_index - 1;
2950 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2952 * Set the writeback_index so that range_cyclic
2953 * mode will write it back later
2955 mapping->writeback_index = mpd.first_page;
2958 trace_ext4_writepages_result(inode, wbc, ret,
2959 nr_to_write - wbc->nr_to_write);
2960 percpu_up_read(&sbi->s_journal_flag_rwsem);
2964 static int ext4_nonda_switch(struct super_block *sb)
2966 s64 free_clusters, dirty_clusters;
2967 struct ext4_sb_info *sbi = EXT4_SB(sb);
2970 * switch to non delalloc mode if we are running low
2971 * on free block. The free block accounting via percpu
2972 * counters can get slightly wrong with percpu_counter_batch getting
2973 * accumulated on each CPU without updating global counters
2974 * Delalloc need an accurate free block accounting. So switch
2975 * to non delalloc when we are near to error range.
2978 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2980 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2982 * Start pushing delalloc when 1/2 of free blocks are dirty.
2984 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2985 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2987 if (2 * free_clusters < 3 * dirty_clusters ||
2988 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2990 * free block count is less than 150% of dirty blocks
2991 * or free blocks is less than watermark
2998 /* We always reserve for an inode update; the superblock could be there too */
2999 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3001 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3004 if (pos + len <= 0x7fffffffULL)
3007 /* We might need to update the superblock to set LARGE_FILE */
3011 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3012 loff_t pos, unsigned len, unsigned flags,
3013 struct page **pagep, void **fsdata)
3015 int ret, retries = 0;
3018 struct inode *inode = mapping->host;
3021 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3024 index = pos >> PAGE_SHIFT;
3026 if (ext4_nonda_switch(inode->i_sb) ||
3027 S_ISLNK(inode->i_mode)) {
3028 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3029 return ext4_write_begin(file, mapping, pos,
3030 len, flags, pagep, fsdata);
3032 *fsdata = (void *)0;
3033 trace_ext4_da_write_begin(inode, pos, len, flags);
3035 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3036 ret = ext4_da_write_inline_data_begin(mapping, inode,
3046 * grab_cache_page_write_begin() can take a long time if the
3047 * system is thrashing due to memory pressure, or if the page
3048 * is being written back. So grab it first before we start
3049 * the transaction handle. This also allows us to allocate
3050 * the page (if needed) without using GFP_NOFS.
3053 page = grab_cache_page_write_begin(mapping, index, flags);
3059 * With delayed allocation, we don't log the i_disksize update
3060 * if there is delayed block allocation. But we still need
3061 * to journalling the i_disksize update if writes to the end
3062 * of file which has an already mapped buffer.
3065 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3066 ext4_da_write_credits(inode, pos, len));
3067 if (IS_ERR(handle)) {
3069 return PTR_ERR(handle);
3073 if (page->mapping != mapping) {
3074 /* The page got truncated from under us */
3077 ext4_journal_stop(handle);
3080 /* In case writeback began while the page was unlocked */
3081 wait_for_stable_page(page);
3083 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3084 ret = ext4_block_write_begin(page, pos, len,
3085 ext4_da_get_block_prep);
3087 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3091 ext4_journal_stop(handle);
3093 * block_write_begin may have instantiated a few blocks
3094 * outside i_size. Trim these off again. Don't need
3095 * i_size_read because we hold i_mutex.
3097 if (pos + len > inode->i_size)
3098 ext4_truncate_failed_write(inode);
3100 if (ret == -ENOSPC &&
3101 ext4_should_retry_alloc(inode->i_sb, &retries))
3113 * Check if we should update i_disksize
3114 * when write to the end of file but not require block allocation
3116 static int ext4_da_should_update_i_disksize(struct page *page,
3117 unsigned long offset)
3119 struct buffer_head *bh;
3120 struct inode *inode = page->mapping->host;
3124 bh = page_buffers(page);
3125 idx = offset >> inode->i_blkbits;
3127 for (i = 0; i < idx; i++)
3128 bh = bh->b_this_page;
3130 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3135 static int ext4_da_write_end(struct file *file,
3136 struct address_space *mapping,
3137 loff_t pos, unsigned len, unsigned copied,
3138 struct page *page, void *fsdata)
3140 struct inode *inode = mapping->host;
3142 handle_t *handle = ext4_journal_current_handle();
3144 unsigned long start, end;
3145 int write_mode = (int)(unsigned long)fsdata;
3147 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3148 return ext4_write_end(file, mapping, pos,
3149 len, copied, page, fsdata);
3151 trace_ext4_da_write_end(inode, pos, len, copied);
3152 start = pos & (PAGE_SIZE - 1);
3153 end = start + copied - 1;
3156 * generic_write_end() will run mark_inode_dirty() if i_size
3157 * changes. So let's piggyback the i_disksize mark_inode_dirty
3160 new_i_size = pos + copied;
3161 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3162 if (ext4_has_inline_data(inode) ||
3163 ext4_da_should_update_i_disksize(page, end)) {
3164 ext4_update_i_disksize(inode, new_i_size);
3165 /* We need to mark inode dirty even if
3166 * new_i_size is less that inode->i_size
3167 * bu greater than i_disksize.(hint delalloc)
3169 ext4_mark_inode_dirty(handle, inode);
3173 if (write_mode != CONVERT_INLINE_DATA &&
3174 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3175 ext4_has_inline_data(inode))
3176 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3179 ret2 = generic_write_end(file, mapping, pos, len, copied,
3185 ret2 = ext4_journal_stop(handle);
3189 return ret ? ret : copied;
3192 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3193 unsigned int length)
3196 * Drop reserved blocks
3198 BUG_ON(!PageLocked(page));
3199 if (!page_has_buffers(page))
3202 ext4_da_page_release_reservation(page, offset, length);
3205 ext4_invalidatepage(page, offset, length);
3211 * Force all delayed allocation blocks to be allocated for a given inode.
3213 int ext4_alloc_da_blocks(struct inode *inode)
3215 trace_ext4_alloc_da_blocks(inode);
3217 if (!EXT4_I(inode)->i_reserved_data_blocks)
3221 * We do something simple for now. The filemap_flush() will
3222 * also start triggering a write of the data blocks, which is
3223 * not strictly speaking necessary (and for users of
3224 * laptop_mode, not even desirable). However, to do otherwise
3225 * would require replicating code paths in:
3227 * ext4_writepages() ->
3228 * write_cache_pages() ---> (via passed in callback function)
3229 * __mpage_da_writepage() -->
3230 * mpage_add_bh_to_extent()
3231 * mpage_da_map_blocks()
3233 * The problem is that write_cache_pages(), located in
3234 * mm/page-writeback.c, marks pages clean in preparation for
3235 * doing I/O, which is not desirable if we're not planning on
3238 * We could call write_cache_pages(), and then redirty all of
3239 * the pages by calling redirty_page_for_writepage() but that
3240 * would be ugly in the extreme. So instead we would need to
3241 * replicate parts of the code in the above functions,
3242 * simplifying them because we wouldn't actually intend to
3243 * write out the pages, but rather only collect contiguous
3244 * logical block extents, call the multi-block allocator, and
3245 * then update the buffer heads with the block allocations.
3247 * For now, though, we'll cheat by calling filemap_flush(),
3248 * which will map the blocks, and start the I/O, but not
3249 * actually wait for the I/O to complete.
3251 return filemap_flush(inode->i_mapping);
3255 * bmap() is special. It gets used by applications such as lilo and by
3256 * the swapper to find the on-disk block of a specific piece of data.
3258 * Naturally, this is dangerous if the block concerned is still in the
3259 * journal. If somebody makes a swapfile on an ext4 data-journaling
3260 * filesystem and enables swap, then they may get a nasty shock when the
3261 * data getting swapped to that swapfile suddenly gets overwritten by
3262 * the original zero's written out previously to the journal and
3263 * awaiting writeback in the kernel's buffer cache.
3265 * So, if we see any bmap calls here on a modified, data-journaled file,
3266 * take extra steps to flush any blocks which might be in the cache.
3268 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3270 struct inode *inode = mapping->host;
3275 * We can get here for an inline file via the FIBMAP ioctl
3277 if (ext4_has_inline_data(inode))
3280 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3281 test_opt(inode->i_sb, DELALLOC)) {
3283 * With delalloc we want to sync the file
3284 * so that we can make sure we allocate
3287 filemap_write_and_wait(mapping);
3290 if (EXT4_JOURNAL(inode) &&
3291 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3293 * This is a REALLY heavyweight approach, but the use of
3294 * bmap on dirty files is expected to be extremely rare:
3295 * only if we run lilo or swapon on a freshly made file
3296 * do we expect this to happen.
3298 * (bmap requires CAP_SYS_RAWIO so this does not
3299 * represent an unprivileged user DOS attack --- we'd be
3300 * in trouble if mortal users could trigger this path at
3303 * NB. EXT4_STATE_JDATA is not set on files other than
3304 * regular files. If somebody wants to bmap a directory
3305 * or symlink and gets confused because the buffer
3306 * hasn't yet been flushed to disk, they deserve
3307 * everything they get.
3310 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3311 journal = EXT4_JOURNAL(inode);
3312 jbd2_journal_lock_updates(journal);
3313 err = jbd2_journal_flush(journal);
3314 jbd2_journal_unlock_updates(journal);
3320 return generic_block_bmap(mapping, block, ext4_get_block);
3323 static int ext4_readpage(struct file *file, struct page *page)
3326 struct inode *inode = page->mapping->host;
3328 trace_ext4_readpage(page);
3330 if (ext4_has_inline_data(inode))
3331 ret = ext4_readpage_inline(inode, page);
3334 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3340 ext4_readpages(struct file *file, struct address_space *mapping,
3341 struct list_head *pages, unsigned nr_pages)
3343 struct inode *inode = mapping->host;
3345 /* If the file has inline data, no need to do readpages. */
3346 if (ext4_has_inline_data(inode))
3349 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3352 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3353 unsigned int length)
3355 trace_ext4_invalidatepage(page, offset, length);
3357 /* No journalling happens on data buffers when this function is used */
3358 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3360 block_invalidatepage(page, offset, length);
3363 static int __ext4_journalled_invalidatepage(struct page *page,
3364 unsigned int offset,
3365 unsigned int length)
3367 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3369 trace_ext4_journalled_invalidatepage(page, offset, length);
3372 * If it's a full truncate we just forget about the pending dirtying
3374 if (offset == 0 && length == PAGE_SIZE)
3375 ClearPageChecked(page);
3377 return jbd2_journal_invalidatepage(journal, page, offset, length);
3380 /* Wrapper for aops... */
3381 static void ext4_journalled_invalidatepage(struct page *page,
3382 unsigned int offset,
3383 unsigned int length)
3385 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3388 static int ext4_releasepage(struct page *page, gfp_t wait)
3390 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3392 trace_ext4_releasepage(page);
3394 /* Page has dirty journalled data -> cannot release */
3395 if (PageChecked(page))
3398 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3400 return try_to_free_buffers(page);
3403 #ifdef CONFIG_FS_DAX
3404 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3405 unsigned flags, struct iomap *iomap)
3407 struct block_device *bdev;
3408 unsigned int blkbits = inode->i_blkbits;
3409 unsigned long first_block = offset >> blkbits;
3410 unsigned long last_block = (offset + length - 1) >> blkbits;
3411 struct ext4_map_blocks map;
3414 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3417 map.m_lblk = first_block;
3418 map.m_len = last_block - first_block + 1;
3420 if (!(flags & IOMAP_WRITE)) {
3421 ret = ext4_map_blocks(NULL, inode, &map, 0);
3427 /* Trim mapping request to maximum we can map at once for DIO */
3428 if (map.m_len > DIO_MAX_BLOCKS)
3429 map.m_len = DIO_MAX_BLOCKS;
3430 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3433 * Either we allocate blocks and then we don't get unwritten
3434 * extent so we have reserved enough credits, or the blocks
3435 * are already allocated and unwritten and in that case
3436 * extent conversion fits in the credits as well.
3438 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3441 return PTR_ERR(handle);
3443 ret = ext4_map_blocks(handle, inode, &map,
3444 EXT4_GET_BLOCKS_CREATE_ZERO);
3446 ext4_journal_stop(handle);
3447 if (ret == -ENOSPC &&
3448 ext4_should_retry_alloc(inode->i_sb, &retries))
3454 * If we added blocks beyond i_size, we need to make sure they
3455 * will get truncated if we crash before updating i_size in
3456 * ext4_iomap_end(). For faults we don't need to do that (and
3457 * even cannot because for orphan list operations inode_lock is
3458 * required) - if we happen to instantiate block beyond i_size,
3459 * it is because we race with truncate which has already added
3460 * the inode to the orphan list.
3462 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3463 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3466 err = ext4_orphan_add(handle, inode);
3468 ext4_journal_stop(handle);
3472 ext4_journal_stop(handle);
3476 bdev = inode->i_sb->s_bdev;
3478 if (blk_queue_dax(bdev->bd_queue))
3479 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3481 iomap->dax_dev = NULL;
3482 iomap->offset = first_block << blkbits;
3485 iomap->type = IOMAP_HOLE;
3486 iomap->blkno = IOMAP_NULL_BLOCK;
3487 iomap->length = (u64)map.m_len << blkbits;
3489 if (map.m_flags & EXT4_MAP_MAPPED) {
3490 iomap->type = IOMAP_MAPPED;
3491 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3492 iomap->type = IOMAP_UNWRITTEN;
3497 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3498 iomap->length = (u64)map.m_len << blkbits;
3501 if (map.m_flags & EXT4_MAP_NEW)
3502 iomap->flags |= IOMAP_F_NEW;
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 ssize_t written, unsigned flags, struct iomap *iomap)
3511 int blkbits = inode->i_blkbits;
3512 bool truncate = false;
3514 fs_put_dax(iomap->dax_dev);
3515 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3518 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3519 if (IS_ERR(handle)) {
3520 ret = PTR_ERR(handle);
3523 if (ext4_update_inode_size(inode, offset + written))
3524 ext4_mark_inode_dirty(handle, inode);
3526 * We may need to truncate allocated but not written blocks beyond EOF.
3528 if (iomap->offset + iomap->length >
3529 ALIGN(inode->i_size, 1 << blkbits)) {
3530 ext4_lblk_t written_blk, end_blk;
3532 written_blk = (offset + written) >> blkbits;
3533 end_blk = (offset + length) >> blkbits;
3534 if (written_blk < end_blk && ext4_can_truncate(inode))
3538 * Remove inode from orphan list if we were extending a inode and
3539 * everything went fine.
3541 if (!truncate && inode->i_nlink &&
3542 !list_empty(&EXT4_I(inode)->i_orphan))
3543 ext4_orphan_del(handle, inode);
3544 ext4_journal_stop(handle);
3546 ext4_truncate_failed_write(inode);
3549 * If truncate failed early the inode might still be on the
3550 * orphan list; we need to make sure the inode is removed from
3551 * the orphan list in that case.
3554 ext4_orphan_del(NULL, inode);
3559 const struct iomap_ops ext4_iomap_ops = {
3560 .iomap_begin = ext4_iomap_begin,
3561 .iomap_end = ext4_iomap_end,
3566 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3567 ssize_t size, void *private)
3569 ext4_io_end_t *io_end = private;
3571 /* if not async direct IO just return */
3575 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3576 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3577 io_end, io_end->inode->i_ino, iocb, offset, size);
3580 * Error during AIO DIO. We cannot convert unwritten extents as the
3581 * data was not written. Just clear the unwritten flag and drop io_end.
3584 ext4_clear_io_unwritten_flag(io_end);
3587 io_end->offset = offset;
3588 io_end->size = size;
3589 ext4_put_io_end(io_end);
3595 * Handling of direct IO writes.
3597 * For ext4 extent files, ext4 will do direct-io write even to holes,
3598 * preallocated extents, and those write extend the file, no need to
3599 * fall back to buffered IO.
3601 * For holes, we fallocate those blocks, mark them as unwritten
3602 * If those blocks were preallocated, we mark sure they are split, but
3603 * still keep the range to write as unwritten.
3605 * The unwritten extents will be converted to written when DIO is completed.
3606 * For async direct IO, since the IO may still pending when return, we
3607 * set up an end_io call back function, which will do the conversion
3608 * when async direct IO completed.
3610 * If the O_DIRECT write will extend the file then add this inode to the
3611 * orphan list. So recovery will truncate it back to the original size
3612 * if the machine crashes during the write.
3615 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3617 struct file *file = iocb->ki_filp;
3618 struct inode *inode = file->f_mapping->host;
3619 struct ext4_inode_info *ei = EXT4_I(inode);
3621 loff_t offset = iocb->ki_pos;
3622 size_t count = iov_iter_count(iter);
3624 get_block_t *get_block_func = NULL;
3626 loff_t final_size = offset + count;
3630 if (final_size > inode->i_size) {
3631 /* Credits for sb + inode write */
3632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3633 if (IS_ERR(handle)) {
3634 ret = PTR_ERR(handle);
3637 ret = ext4_orphan_add(handle, inode);
3639 ext4_journal_stop(handle);
3643 ei->i_disksize = inode->i_size;
3644 ext4_journal_stop(handle);
3647 BUG_ON(iocb->private == NULL);
3650 * Make all waiters for direct IO properly wait also for extent
3651 * conversion. This also disallows race between truncate() and
3652 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3654 inode_dio_begin(inode);
3656 /* If we do a overwrite dio, i_mutex locking can be released */
3657 overwrite = *((int *)iocb->private);
3660 inode_unlock(inode);
3663 * For extent mapped files we could direct write to holes and fallocate.
3665 * Allocated blocks to fill the hole are marked as unwritten to prevent
3666 * parallel buffered read to expose the stale data before DIO complete
3669 * As to previously fallocated extents, ext4 get_block will just simply
3670 * mark the buffer mapped but still keep the extents unwritten.
3672 * For non AIO case, we will convert those unwritten extents to written
3673 * after return back from blockdev_direct_IO. That way we save us from
3674 * allocating io_end structure and also the overhead of offloading
3675 * the extent convertion to a workqueue.
3677 * For async DIO, the conversion needs to be deferred when the
3678 * IO is completed. The ext4 end_io callback function will be
3679 * called to take care of the conversion work. Here for async
3680 * case, we allocate an io_end structure to hook to the iocb.
3682 iocb->private = NULL;
3684 get_block_func = ext4_dio_get_block_overwrite;
3685 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3686 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3687 get_block_func = ext4_dio_get_block;
3688 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3689 } else if (is_sync_kiocb(iocb)) {
3690 get_block_func = ext4_dio_get_block_unwritten_sync;
3691 dio_flags = DIO_LOCKING;
3693 get_block_func = ext4_dio_get_block_unwritten_async;
3694 dio_flags = DIO_LOCKING;
3696 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3697 get_block_func, ext4_end_io_dio, NULL,
3700 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3701 EXT4_STATE_DIO_UNWRITTEN)) {
3704 * for non AIO case, since the IO is already
3705 * completed, we could do the conversion right here
3707 err = ext4_convert_unwritten_extents(NULL, inode,
3711 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3714 inode_dio_end(inode);
3715 /* take i_mutex locking again if we do a ovewrite dio */
3719 if (ret < 0 && final_size > inode->i_size)
3720 ext4_truncate_failed_write(inode);
3722 /* Handle extending of i_size after direct IO write */
3726 /* Credits for sb + inode write */
3727 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3728 if (IS_ERR(handle)) {
3729 /* This is really bad luck. We've written the data
3730 * but cannot extend i_size. Bail out and pretend
3731 * the write failed... */
3732 ret = PTR_ERR(handle);
3734 ext4_orphan_del(NULL, inode);
3739 ext4_orphan_del(handle, inode);
3741 loff_t end = offset + ret;
3742 if (end > inode->i_size) {
3743 ei->i_disksize = end;
3744 i_size_write(inode, end);
3746 * We're going to return a positive `ret'
3747 * here due to non-zero-length I/O, so there's
3748 * no way of reporting error returns from
3749 * ext4_mark_inode_dirty() to userspace. So
3752 ext4_mark_inode_dirty(handle, inode);
3755 err = ext4_journal_stop(handle);
3763 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3765 struct address_space *mapping = iocb->ki_filp->f_mapping;
3766 struct inode *inode = mapping->host;
3767 size_t count = iov_iter_count(iter);
3771 * Shared inode_lock is enough for us - it protects against concurrent
3772 * writes & truncates and since we take care of writing back page cache,
3773 * we are protected against page writeback as well.
3775 inode_lock_shared(inode);
3776 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3777 iocb->ki_pos + count - 1);
3780 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3781 iter, ext4_dio_get_block, NULL, NULL, 0);
3783 inode_unlock_shared(inode);
3787 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3789 struct file *file = iocb->ki_filp;
3790 struct inode *inode = file->f_mapping->host;
3791 size_t count = iov_iter_count(iter);
3792 loff_t offset = iocb->ki_pos;
3795 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3796 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3801 * If we are doing data journalling we don't support O_DIRECT
3803 if (ext4_should_journal_data(inode))
3806 /* Let buffer I/O handle the inline data case. */
3807 if (ext4_has_inline_data(inode))
3810 /* DAX uses iomap path now */
3811 if (WARN_ON_ONCE(IS_DAX(inode)))
3814 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3815 if (iov_iter_rw(iter) == READ)
3816 ret = ext4_direct_IO_read(iocb, iter);
3818 ret = ext4_direct_IO_write(iocb, iter);
3819 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3824 * Pages can be marked dirty completely asynchronously from ext4's journalling
3825 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3826 * much here because ->set_page_dirty is called under VFS locks. The page is
3827 * not necessarily locked.
3829 * We cannot just dirty the page and leave attached buffers clean, because the
3830 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3831 * or jbddirty because all the journalling code will explode.
3833 * So what we do is to mark the page "pending dirty" and next time writepage
3834 * is called, propagate that into the buffers appropriately.
3836 static int ext4_journalled_set_page_dirty(struct page *page)
3838 SetPageChecked(page);
3839 return __set_page_dirty_nobuffers(page);
3842 static int ext4_set_page_dirty(struct page *page)
3844 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3845 WARN_ON_ONCE(!page_has_buffers(page));
3846 return __set_page_dirty_buffers(page);
3849 static const struct address_space_operations ext4_aops = {
3850 .readpage = ext4_readpage,
3851 .readpages = ext4_readpages,
3852 .writepage = ext4_writepage,
3853 .writepages = ext4_writepages,
3854 .write_begin = ext4_write_begin,
3855 .write_end = ext4_write_end,
3856 .set_page_dirty = ext4_set_page_dirty,
3858 .invalidatepage = ext4_invalidatepage,
3859 .releasepage = ext4_releasepage,
3860 .direct_IO = ext4_direct_IO,
3861 .migratepage = buffer_migrate_page,
3862 .is_partially_uptodate = block_is_partially_uptodate,
3863 .error_remove_page = generic_error_remove_page,
3866 static const struct address_space_operations ext4_journalled_aops = {
3867 .readpage = ext4_readpage,
3868 .readpages = ext4_readpages,
3869 .writepage = ext4_writepage,
3870 .writepages = ext4_writepages,
3871 .write_begin = ext4_write_begin,
3872 .write_end = ext4_journalled_write_end,
3873 .set_page_dirty = ext4_journalled_set_page_dirty,
3875 .invalidatepage = ext4_journalled_invalidatepage,
3876 .releasepage = ext4_releasepage,
3877 .direct_IO = ext4_direct_IO,
3878 .is_partially_uptodate = block_is_partially_uptodate,
3879 .error_remove_page = generic_error_remove_page,
3882 static const struct address_space_operations ext4_da_aops = {
3883 .readpage = ext4_readpage,
3884 .readpages = ext4_readpages,
3885 .writepage = ext4_writepage,
3886 .writepages = ext4_writepages,
3887 .write_begin = ext4_da_write_begin,
3888 .write_end = ext4_da_write_end,
3889 .set_page_dirty = ext4_set_page_dirty,
3891 .invalidatepage = ext4_da_invalidatepage,
3892 .releasepage = ext4_releasepage,
3893 .direct_IO = ext4_direct_IO,
3894 .migratepage = buffer_migrate_page,
3895 .is_partially_uptodate = block_is_partially_uptodate,
3896 .error_remove_page = generic_error_remove_page,
3899 void ext4_set_aops(struct inode *inode)
3901 switch (ext4_inode_journal_mode(inode)) {
3902 case EXT4_INODE_ORDERED_DATA_MODE:
3903 case EXT4_INODE_WRITEBACK_DATA_MODE:
3905 case EXT4_INODE_JOURNAL_DATA_MODE:
3906 inode->i_mapping->a_ops = &ext4_journalled_aops;
3911 if (test_opt(inode->i_sb, DELALLOC))
3912 inode->i_mapping->a_ops = &ext4_da_aops;
3914 inode->i_mapping->a_ops = &ext4_aops;
3917 static int __ext4_block_zero_page_range(handle_t *handle,
3918 struct address_space *mapping, loff_t from, loff_t length)
3920 ext4_fsblk_t index = from >> PAGE_SHIFT;
3921 unsigned offset = from & (PAGE_SIZE-1);
3922 unsigned blocksize, pos;
3924 struct inode *inode = mapping->host;
3925 struct buffer_head *bh;
3929 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3930 mapping_gfp_constraint(mapping, ~__GFP_FS));
3934 blocksize = inode->i_sb->s_blocksize;
3936 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3938 if (!page_has_buffers(page))
3939 create_empty_buffers(page, blocksize, 0);
3941 /* Find the buffer that contains "offset" */
3942 bh = page_buffers(page);
3944 while (offset >= pos) {
3945 bh = bh->b_this_page;
3949 if (buffer_freed(bh)) {
3950 BUFFER_TRACE(bh, "freed: skip");
3953 if (!buffer_mapped(bh)) {
3954 BUFFER_TRACE(bh, "unmapped");
3955 ext4_get_block(inode, iblock, bh, 0);
3956 /* unmapped? It's a hole - nothing to do */
3957 if (!buffer_mapped(bh)) {
3958 BUFFER_TRACE(bh, "still unmapped");
3963 /* Ok, it's mapped. Make sure it's up-to-date */
3964 if (PageUptodate(page))
3965 set_buffer_uptodate(bh);
3967 if (!buffer_uptodate(bh)) {
3969 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3971 /* Uhhuh. Read error. Complain and punt. */
3972 if (!buffer_uptodate(bh))
3974 if (S_ISREG(inode->i_mode) &&
3975 ext4_encrypted_inode(inode)) {
3976 /* We expect the key to be set. */
3977 BUG_ON(!fscrypt_has_encryption_key(inode));
3978 BUG_ON(blocksize != PAGE_SIZE);
3979 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3980 page, PAGE_SIZE, 0, page->index));
3983 if (ext4_should_journal_data(inode)) {
3984 BUFFER_TRACE(bh, "get write access");
3985 err = ext4_journal_get_write_access(handle, bh);
3989 zero_user(page, offset, length);
3990 BUFFER_TRACE(bh, "zeroed end of block");
3992 if (ext4_should_journal_data(inode)) {
3993 err = ext4_handle_dirty_metadata(handle, inode, bh);
3996 mark_buffer_dirty(bh);
3997 if (ext4_should_order_data(inode))
3998 err = ext4_jbd2_inode_add_write(handle, inode);
4008 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4009 * starting from file offset 'from'. The range to be zero'd must
4010 * be contained with in one block. If the specified range exceeds
4011 * the end of the block it will be shortened to end of the block
4012 * that cooresponds to 'from'
4014 static int ext4_block_zero_page_range(handle_t *handle,
4015 struct address_space *mapping, loff_t from, loff_t length)
4017 struct inode *inode = mapping->host;
4018 unsigned offset = from & (PAGE_SIZE-1);
4019 unsigned blocksize = inode->i_sb->s_blocksize;
4020 unsigned max = blocksize - (offset & (blocksize - 1));
4023 * correct length if it does not fall between
4024 * 'from' and the end of the block
4026 if (length > max || length < 0)
4029 if (IS_DAX(inode)) {
4030 return iomap_zero_range(inode, from, length, NULL,
4033 return __ext4_block_zero_page_range(handle, mapping, from, length);
4037 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4038 * up to the end of the block which corresponds to `from'.
4039 * This required during truncate. We need to physically zero the tail end
4040 * of that block so it doesn't yield old data if the file is later grown.
4042 static int ext4_block_truncate_page(handle_t *handle,
4043 struct address_space *mapping, loff_t from)
4045 unsigned offset = from & (PAGE_SIZE-1);
4048 struct inode *inode = mapping->host;
4050 /* If we are processing an encrypted inode during orphan list handling */
4051 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4054 blocksize = inode->i_sb->s_blocksize;
4055 length = blocksize - (offset & (blocksize - 1));
4057 return ext4_block_zero_page_range(handle, mapping, from, length);
4060 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4061 loff_t lstart, loff_t length)
4063 struct super_block *sb = inode->i_sb;
4064 struct address_space *mapping = inode->i_mapping;
4065 unsigned partial_start, partial_end;
4066 ext4_fsblk_t start, end;
4067 loff_t byte_end = (lstart + length - 1);
4070 partial_start = lstart & (sb->s_blocksize - 1);
4071 partial_end = byte_end & (sb->s_blocksize - 1);
4073 start = lstart >> sb->s_blocksize_bits;
4074 end = byte_end >> sb->s_blocksize_bits;
4076 /* Handle partial zero within the single block */
4078 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4079 err = ext4_block_zero_page_range(handle, mapping,
4083 /* Handle partial zero out on the start of the range */
4084 if (partial_start) {
4085 err = ext4_block_zero_page_range(handle, mapping,
4086 lstart, sb->s_blocksize);
4090 /* Handle partial zero out on the end of the range */
4091 if (partial_end != sb->s_blocksize - 1)
4092 err = ext4_block_zero_page_range(handle, mapping,
4093 byte_end - partial_end,
4098 int ext4_can_truncate(struct inode *inode)
4100 if (S_ISREG(inode->i_mode))
4102 if (S_ISDIR(inode->i_mode))
4104 if (S_ISLNK(inode->i_mode))
4105 return !ext4_inode_is_fast_symlink(inode);
4110 * We have to make sure i_disksize gets properly updated before we truncate
4111 * page cache due to hole punching or zero range. Otherwise i_disksize update
4112 * can get lost as it may have been postponed to submission of writeback but
4113 * that will never happen after we truncate page cache.
4115 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4119 loff_t size = i_size_read(inode);
4121 WARN_ON(!inode_is_locked(inode));
4122 if (offset > size || offset + len < size)
4125 if (EXT4_I(inode)->i_disksize >= size)
4128 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4130 return PTR_ERR(handle);
4131 ext4_update_i_disksize(inode, size);
4132 ext4_mark_inode_dirty(handle, inode);
4133 ext4_journal_stop(handle);
4139 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4140 * associated with the given offset and length
4142 * @inode: File inode
4143 * @offset: The offset where the hole will begin
4144 * @len: The length of the hole
4146 * Returns: 0 on success or negative on failure
4149 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4151 struct super_block *sb = inode->i_sb;
4152 ext4_lblk_t first_block, stop_block;
4153 struct address_space *mapping = inode->i_mapping;
4154 loff_t first_block_offset, last_block_offset;
4156 unsigned int credits;
4159 if (!S_ISREG(inode->i_mode))
4162 trace_ext4_punch_hole(inode, offset, length, 0);
4165 * Write out all dirty pages to avoid race conditions
4166 * Then release them.
4168 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4169 ret = filemap_write_and_wait_range(mapping, offset,
4170 offset + length - 1);
4177 /* No need to punch hole beyond i_size */
4178 if (offset >= inode->i_size)
4182 * If the hole extends beyond i_size, set the hole
4183 * to end after the page that contains i_size
4185 if (offset + length > inode->i_size) {
4186 length = inode->i_size +
4187 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4191 if (offset & (sb->s_blocksize - 1) ||
4192 (offset + length) & (sb->s_blocksize - 1)) {
4194 * Attach jinode to inode for jbd2 if we do any zeroing of
4197 ret = ext4_inode_attach_jinode(inode);
4203 /* Wait all existing dio workers, newcomers will block on i_mutex */
4204 ext4_inode_block_unlocked_dio(inode);
4205 inode_dio_wait(inode);
4208 * Prevent page faults from reinstantiating pages we have released from
4211 down_write(&EXT4_I(inode)->i_mmap_sem);
4212 first_block_offset = round_up(offset, sb->s_blocksize);
4213 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4215 /* Now release the pages and zero block aligned part of pages*/
4216 if (last_block_offset > first_block_offset) {
4217 ret = ext4_update_disksize_before_punch(inode, offset, length);
4220 truncate_pagecache_range(inode, first_block_offset,
4224 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4225 credits = ext4_writepage_trans_blocks(inode);
4227 credits = ext4_blocks_for_truncate(inode);
4228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4229 if (IS_ERR(handle)) {
4230 ret = PTR_ERR(handle);
4231 ext4_std_error(sb, ret);
4235 ret = ext4_zero_partial_blocks(handle, inode, offset,
4240 first_block = (offset + sb->s_blocksize - 1) >>
4241 EXT4_BLOCK_SIZE_BITS(sb);
4242 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4244 /* If there are no blocks to remove, return now */
4245 if (first_block >= stop_block)
4248 down_write(&EXT4_I(inode)->i_data_sem);
4249 ext4_discard_preallocations(inode);
4251 ret = ext4_es_remove_extent(inode, first_block,
4252 stop_block - first_block);
4254 up_write(&EXT4_I(inode)->i_data_sem);
4258 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4259 ret = ext4_ext_remove_space(inode, first_block,
4262 ret = ext4_ind_remove_space(handle, inode, first_block,
4265 up_write(&EXT4_I(inode)->i_data_sem);
4267 ext4_handle_sync(handle);
4269 inode->i_mtime = inode->i_ctime = current_time(inode);
4270 ext4_mark_inode_dirty(handle, inode);
4272 ext4_update_inode_fsync_trans(handle, inode, 1);
4274 ext4_journal_stop(handle);
4276 up_write(&EXT4_I(inode)->i_mmap_sem);
4277 ext4_inode_resume_unlocked_dio(inode);
4279 inode_unlock(inode);
4283 int ext4_inode_attach_jinode(struct inode *inode)
4285 struct ext4_inode_info *ei = EXT4_I(inode);
4286 struct jbd2_inode *jinode;
4288 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4291 jinode = jbd2_alloc_inode(GFP_KERNEL);
4292 spin_lock(&inode->i_lock);
4295 spin_unlock(&inode->i_lock);
4298 ei->jinode = jinode;
4299 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4302 spin_unlock(&inode->i_lock);
4303 if (unlikely(jinode != NULL))
4304 jbd2_free_inode(jinode);
4311 * We block out ext4_get_block() block instantiations across the entire
4312 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4313 * simultaneously on behalf of the same inode.
4315 * As we work through the truncate and commit bits of it to the journal there
4316 * is one core, guiding principle: the file's tree must always be consistent on
4317 * disk. We must be able to restart the truncate after a crash.
4319 * The file's tree may be transiently inconsistent in memory (although it
4320 * probably isn't), but whenever we close off and commit a journal transaction,
4321 * the contents of (the filesystem + the journal) must be consistent and
4322 * restartable. It's pretty simple, really: bottom up, right to left (although
4323 * left-to-right works OK too).
4325 * Note that at recovery time, journal replay occurs *before* the restart of
4326 * truncate against the orphan inode list.
4328 * The committed inode has the new, desired i_size (which is the same as
4329 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4330 * that this inode's truncate did not complete and it will again call
4331 * ext4_truncate() to have another go. So there will be instantiated blocks
4332 * to the right of the truncation point in a crashed ext4 filesystem. But
4333 * that's fine - as long as they are linked from the inode, the post-crash
4334 * ext4_truncate() run will find them and release them.
4336 int ext4_truncate(struct inode *inode)
4338 struct ext4_inode_info *ei = EXT4_I(inode);
4339 unsigned int credits;
4342 struct address_space *mapping = inode->i_mapping;
4345 * There is a possibility that we're either freeing the inode
4346 * or it's a completely new inode. In those cases we might not
4347 * have i_mutex locked because it's not necessary.
4349 if (!(inode->i_state & (I_NEW|I_FREEING)))
4350 WARN_ON(!inode_is_locked(inode));
4351 trace_ext4_truncate_enter(inode);
4353 if (!ext4_can_truncate(inode))
4356 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4358 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4359 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4361 if (ext4_has_inline_data(inode)) {
4364 err = ext4_inline_data_truncate(inode, &has_inline);
4371 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4372 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4373 if (ext4_inode_attach_jinode(inode) < 0)
4377 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4378 credits = ext4_writepage_trans_blocks(inode);
4380 credits = ext4_blocks_for_truncate(inode);
4382 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4384 return PTR_ERR(handle);
4386 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4387 ext4_block_truncate_page(handle, mapping, inode->i_size);
4390 * We add the inode to the orphan list, so that if this
4391 * truncate spans multiple transactions, and we crash, we will
4392 * resume the truncate when the filesystem recovers. It also
4393 * marks the inode dirty, to catch the new size.
4395 * Implication: the file must always be in a sane, consistent
4396 * truncatable state while each transaction commits.
4398 err = ext4_orphan_add(handle, inode);
4402 down_write(&EXT4_I(inode)->i_data_sem);
4404 ext4_discard_preallocations(inode);
4406 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4407 err = ext4_ext_truncate(handle, inode);
4409 ext4_ind_truncate(handle, inode);
4411 up_write(&ei->i_data_sem);
4416 ext4_handle_sync(handle);
4420 * If this was a simple ftruncate() and the file will remain alive,
4421 * then we need to clear up the orphan record which we created above.
4422 * However, if this was a real unlink then we were called by
4423 * ext4_evict_inode(), and we allow that function to clean up the
4424 * orphan info for us.
4427 ext4_orphan_del(handle, inode);
4429 inode->i_mtime = inode->i_ctime = current_time(inode);
4430 ext4_mark_inode_dirty(handle, inode);
4431 ext4_journal_stop(handle);
4433 trace_ext4_truncate_exit(inode);
4438 * ext4_get_inode_loc returns with an extra refcount against the inode's
4439 * underlying buffer_head on success. If 'in_mem' is true, we have all
4440 * data in memory that is needed to recreate the on-disk version of this
4443 static int __ext4_get_inode_loc(struct inode *inode,
4444 struct ext4_iloc *iloc, int in_mem)
4446 struct ext4_group_desc *gdp;
4447 struct buffer_head *bh;
4448 struct super_block *sb = inode->i_sb;
4450 int inodes_per_block, inode_offset;
4453 if (!ext4_valid_inum(sb, inode->i_ino))
4454 return -EFSCORRUPTED;
4456 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4457 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4462 * Figure out the offset within the block group inode table
4464 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4465 inode_offset = ((inode->i_ino - 1) %
4466 EXT4_INODES_PER_GROUP(sb));
4467 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4468 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4470 bh = sb_getblk(sb, block);
4473 if (!buffer_uptodate(bh)) {
4477 * If the buffer has the write error flag, we have failed
4478 * to write out another inode in the same block. In this
4479 * case, we don't have to read the block because we may
4480 * read the old inode data successfully.
4482 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4483 set_buffer_uptodate(bh);
4485 if (buffer_uptodate(bh)) {
4486 /* someone brought it uptodate while we waited */
4492 * If we have all information of the inode in memory and this
4493 * is the only valid inode in the block, we need not read the
4497 struct buffer_head *bitmap_bh;
4500 start = inode_offset & ~(inodes_per_block - 1);
4502 /* Is the inode bitmap in cache? */
4503 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4504 if (unlikely(!bitmap_bh))
4508 * If the inode bitmap isn't in cache then the
4509 * optimisation may end up performing two reads instead
4510 * of one, so skip it.
4512 if (!buffer_uptodate(bitmap_bh)) {
4516 for (i = start; i < start + inodes_per_block; i++) {
4517 if (i == inode_offset)
4519 if (ext4_test_bit(i, bitmap_bh->b_data))
4523 if (i == start + inodes_per_block) {
4524 /* all other inodes are free, so skip I/O */
4525 memset(bh->b_data, 0, bh->b_size);
4526 set_buffer_uptodate(bh);
4534 * If we need to do any I/O, try to pre-readahead extra
4535 * blocks from the inode table.
4537 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4538 ext4_fsblk_t b, end, table;
4540 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4542 table = ext4_inode_table(sb, gdp);
4543 /* s_inode_readahead_blks is always a power of 2 */
4544 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4548 num = EXT4_INODES_PER_GROUP(sb);
4549 if (ext4_has_group_desc_csum(sb))
4550 num -= ext4_itable_unused_count(sb, gdp);
4551 table += num / inodes_per_block;
4555 sb_breadahead(sb, b++);
4559 * There are other valid inodes in the buffer, this inode
4560 * has in-inode xattrs, or we don't have this inode in memory.
4561 * Read the block from disk.
4563 trace_ext4_load_inode(inode);
4565 bh->b_end_io = end_buffer_read_sync;
4566 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4568 if (!buffer_uptodate(bh)) {
4569 EXT4_ERROR_INODE_BLOCK(inode, block,
4570 "unable to read itable block");
4580 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4582 /* We have all inode data except xattrs in memory here. */
4583 return __ext4_get_inode_loc(inode, iloc,
4584 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4587 void ext4_set_inode_flags(struct inode *inode)
4589 unsigned int flags = EXT4_I(inode)->i_flags;
4590 unsigned int new_fl = 0;
4592 if (flags & EXT4_SYNC_FL)
4594 if (flags & EXT4_APPEND_FL)
4596 if (flags & EXT4_IMMUTABLE_FL)
4597 new_fl |= S_IMMUTABLE;
4598 if (flags & EXT4_NOATIME_FL)
4599 new_fl |= S_NOATIME;
4600 if (flags & EXT4_DIRSYNC_FL)
4601 new_fl |= S_DIRSYNC;
4602 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4603 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4604 !ext4_encrypted_inode(inode))
4606 inode_set_flags(inode, new_fl,
4607 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4610 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4611 struct ext4_inode_info *ei)
4614 struct inode *inode = &(ei->vfs_inode);
4615 struct super_block *sb = inode->i_sb;
4617 if (ext4_has_feature_huge_file(sb)) {
4618 /* we are using combined 48 bit field */
4619 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4620 le32_to_cpu(raw_inode->i_blocks_lo);
4621 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4622 /* i_blocks represent file system block size */
4623 return i_blocks << (inode->i_blkbits - 9);
4628 return le32_to_cpu(raw_inode->i_blocks_lo);
4632 static inline void ext4_iget_extra_inode(struct inode *inode,
4633 struct ext4_inode *raw_inode,
4634 struct ext4_inode_info *ei)
4636 __le32 *magic = (void *)raw_inode +
4637 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4638 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4639 EXT4_INODE_SIZE(inode->i_sb) &&
4640 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4641 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4642 ext4_find_inline_data_nolock(inode);
4644 EXT4_I(inode)->i_inline_off = 0;
4647 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4649 if (!ext4_has_feature_project(inode->i_sb))
4651 *projid = EXT4_I(inode)->i_projid;
4655 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4657 struct ext4_iloc iloc;
4658 struct ext4_inode *raw_inode;
4659 struct ext4_inode_info *ei;
4660 struct inode *inode;
4661 journal_t *journal = EXT4_SB(sb)->s_journal;
4669 inode = iget_locked(sb, ino);
4671 return ERR_PTR(-ENOMEM);
4672 if (!(inode->i_state & I_NEW))
4678 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4681 raw_inode = ext4_raw_inode(&iloc);
4683 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4684 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4685 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4686 EXT4_INODE_SIZE(inode->i_sb) ||
4687 (ei->i_extra_isize & 3)) {
4688 EXT4_ERROR_INODE(inode,
4689 "bad extra_isize %u (inode size %u)",
4691 EXT4_INODE_SIZE(inode->i_sb));
4692 ret = -EFSCORRUPTED;
4696 ei->i_extra_isize = 0;
4698 /* Precompute checksum seed for inode metadata */
4699 if (ext4_has_metadata_csum(sb)) {
4700 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4702 __le32 inum = cpu_to_le32(inode->i_ino);
4703 __le32 gen = raw_inode->i_generation;
4704 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4706 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4710 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4711 EXT4_ERROR_INODE(inode, "checksum invalid");
4716 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4717 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4718 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4719 if (ext4_has_feature_project(sb) &&
4720 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4721 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4722 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4724 i_projid = EXT4_DEF_PROJID;
4726 if (!(test_opt(inode->i_sb, NO_UID32))) {
4727 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4728 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4730 i_uid_write(inode, i_uid);
4731 i_gid_write(inode, i_gid);
4732 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4733 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4735 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4736 ei->i_inline_off = 0;
4737 ei->i_dir_start_lookup = 0;
4738 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4739 /* We now have enough fields to check if the inode was active or not.
4740 * This is needed because nfsd might try to access dead inodes
4741 * the test is that same one that e2fsck uses
4742 * NeilBrown 1999oct15
4744 if (inode->i_nlink == 0) {
4745 if ((inode->i_mode == 0 ||
4746 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4747 ino != EXT4_BOOT_LOADER_INO) {
4748 /* this inode is deleted */
4752 /* The only unlinked inodes we let through here have
4753 * valid i_mode and are being read by the orphan
4754 * recovery code: that's fine, we're about to complete
4755 * the process of deleting those.
4756 * OR it is the EXT4_BOOT_LOADER_INO which is
4757 * not initialized on a new filesystem. */
4759 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4760 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4761 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4762 if (ext4_has_feature_64bit(sb))
4764 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4765 inode->i_size = ext4_isize(sb, raw_inode);
4766 if ((size = i_size_read(inode)) < 0) {
4767 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4768 ret = -EFSCORRUPTED;
4771 ei->i_disksize = inode->i_size;
4773 ei->i_reserved_quota = 0;
4775 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4776 ei->i_block_group = iloc.block_group;
4777 ei->i_last_alloc_group = ~0;
4779 * NOTE! The in-memory inode i_data array is in little-endian order
4780 * even on big-endian machines: we do NOT byteswap the block numbers!
4782 for (block = 0; block < EXT4_N_BLOCKS; block++)
4783 ei->i_data[block] = raw_inode->i_block[block];
4784 INIT_LIST_HEAD(&ei->i_orphan);
4787 * Set transaction id's of transactions that have to be committed
4788 * to finish f[data]sync. We set them to currently running transaction
4789 * as we cannot be sure that the inode or some of its metadata isn't
4790 * part of the transaction - the inode could have been reclaimed and
4791 * now it is reread from disk.
4794 transaction_t *transaction;
4797 read_lock(&journal->j_state_lock);
4798 if (journal->j_running_transaction)
4799 transaction = journal->j_running_transaction;
4801 transaction = journal->j_committing_transaction;
4803 tid = transaction->t_tid;
4805 tid = journal->j_commit_sequence;
4806 read_unlock(&journal->j_state_lock);
4807 ei->i_sync_tid = tid;
4808 ei->i_datasync_tid = tid;
4811 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4812 if (ei->i_extra_isize == 0) {
4813 /* The extra space is currently unused. Use it. */
4814 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4815 ei->i_extra_isize = sizeof(struct ext4_inode) -
4816 EXT4_GOOD_OLD_INODE_SIZE;
4818 ext4_iget_extra_inode(inode, raw_inode, ei);
4822 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4823 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4824 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4825 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4827 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4828 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4829 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4830 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4832 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4837 if (ei->i_file_acl &&
4838 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4839 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4841 ret = -EFSCORRUPTED;
4843 } else if (!ext4_has_inline_data(inode)) {
4844 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4845 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4846 (S_ISLNK(inode->i_mode) &&
4847 !ext4_inode_is_fast_symlink(inode))))
4848 /* Validate extent which is part of inode */
4849 ret = ext4_ext_check_inode(inode);
4850 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4851 (S_ISLNK(inode->i_mode) &&
4852 !ext4_inode_is_fast_symlink(inode))) {
4853 /* Validate block references which are part of inode */
4854 ret = ext4_ind_check_inode(inode);
4860 if (S_ISREG(inode->i_mode)) {
4861 inode->i_op = &ext4_file_inode_operations;
4862 inode->i_fop = &ext4_file_operations;
4863 ext4_set_aops(inode);
4864 } else if (S_ISDIR(inode->i_mode)) {
4865 inode->i_op = &ext4_dir_inode_operations;
4866 inode->i_fop = &ext4_dir_operations;
4867 } else if (S_ISLNK(inode->i_mode)) {
4868 if (ext4_encrypted_inode(inode)) {
4869 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4870 ext4_set_aops(inode);
4871 } else if (ext4_inode_is_fast_symlink(inode)) {
4872 inode->i_link = (char *)ei->i_data;
4873 inode->i_op = &ext4_fast_symlink_inode_operations;
4874 nd_terminate_link(ei->i_data, inode->i_size,
4875 sizeof(ei->i_data) - 1);
4877 inode->i_op = &ext4_symlink_inode_operations;
4878 ext4_set_aops(inode);
4880 inode_nohighmem(inode);
4881 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4882 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4883 inode->i_op = &ext4_special_inode_operations;
4884 if (raw_inode->i_block[0])
4885 init_special_inode(inode, inode->i_mode,
4886 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4888 init_special_inode(inode, inode->i_mode,
4889 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4890 } else if (ino == EXT4_BOOT_LOADER_INO) {
4891 make_bad_inode(inode);
4893 ret = -EFSCORRUPTED;
4894 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4898 ext4_set_inode_flags(inode);
4900 if (ei->i_flags & EXT4_EA_INODE_FL) {
4901 ext4_xattr_inode_set_class(inode);
4904 inode->i_flags |= S_NOQUOTA;
4905 inode_unlock(inode);
4908 unlock_new_inode(inode);
4914 return ERR_PTR(ret);
4917 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4919 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4920 return ERR_PTR(-EFSCORRUPTED);
4921 return ext4_iget(sb, ino);
4924 static int ext4_inode_blocks_set(handle_t *handle,
4925 struct ext4_inode *raw_inode,
4926 struct ext4_inode_info *ei)
4928 struct inode *inode = &(ei->vfs_inode);
4929 u64 i_blocks = inode->i_blocks;
4930 struct super_block *sb = inode->i_sb;
4932 if (i_blocks <= ~0U) {
4934 * i_blocks can be represented in a 32 bit variable
4935 * as multiple of 512 bytes
4937 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4938 raw_inode->i_blocks_high = 0;
4939 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4942 if (!ext4_has_feature_huge_file(sb))
4945 if (i_blocks <= 0xffffffffffffULL) {
4947 * i_blocks can be represented in a 48 bit variable
4948 * as multiple of 512 bytes
4950 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4951 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4952 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4954 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4955 /* i_block is stored in file system block size */
4956 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4957 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4958 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4963 struct other_inode {
4964 unsigned long orig_ino;
4965 struct ext4_inode *raw_inode;
4968 static int other_inode_match(struct inode * inode, unsigned long ino,
4971 struct other_inode *oi = (struct other_inode *) data;
4973 if ((inode->i_ino != ino) ||
4974 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4975 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4976 ((inode->i_state & I_DIRTY_TIME) == 0))
4978 spin_lock(&inode->i_lock);
4979 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4980 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4981 (inode->i_state & I_DIRTY_TIME)) {
4982 struct ext4_inode_info *ei = EXT4_I(inode);
4984 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4985 spin_unlock(&inode->i_lock);
4987 spin_lock(&ei->i_raw_lock);
4988 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4989 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4990 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4991 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4992 spin_unlock(&ei->i_raw_lock);
4993 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4996 spin_unlock(&inode->i_lock);
5001 * Opportunistically update the other time fields for other inodes in
5002 * the same inode table block.
5004 static void ext4_update_other_inodes_time(struct super_block *sb,
5005 unsigned long orig_ino, char *buf)
5007 struct other_inode oi;
5009 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5010 int inode_size = EXT4_INODE_SIZE(sb);
5012 oi.orig_ino = orig_ino;
5014 * Calculate the first inode in the inode table block. Inode
5015 * numbers are one-based. That is, the first inode in a block
5016 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5018 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5019 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5020 if (ino == orig_ino)
5022 oi.raw_inode = (struct ext4_inode *) buf;
5023 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5028 * Post the struct inode info into an on-disk inode location in the
5029 * buffer-cache. This gobbles the caller's reference to the
5030 * buffer_head in the inode location struct.
5032 * The caller must have write access to iloc->bh.
5034 static int ext4_do_update_inode(handle_t *handle,
5035 struct inode *inode,
5036 struct ext4_iloc *iloc)
5038 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5039 struct ext4_inode_info *ei = EXT4_I(inode);
5040 struct buffer_head *bh = iloc->bh;
5041 struct super_block *sb = inode->i_sb;
5042 int err = 0, rc, block;
5043 int need_datasync = 0, set_large_file = 0;
5048 spin_lock(&ei->i_raw_lock);
5050 /* For fields not tracked in the in-memory inode,
5051 * initialise them to zero for new inodes. */
5052 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5053 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5055 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5056 i_uid = i_uid_read(inode);
5057 i_gid = i_gid_read(inode);
5058 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5059 if (!(test_opt(inode->i_sb, NO_UID32))) {
5060 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5061 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5063 * Fix up interoperability with old kernels. Otherwise, old inodes get
5064 * re-used with the upper 16 bits of the uid/gid intact
5066 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5067 raw_inode->i_uid_high = 0;
5068 raw_inode->i_gid_high = 0;
5070 raw_inode->i_uid_high =
5071 cpu_to_le16(high_16_bits(i_uid));
5072 raw_inode->i_gid_high =
5073 cpu_to_le16(high_16_bits(i_gid));
5076 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5077 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5078 raw_inode->i_uid_high = 0;
5079 raw_inode->i_gid_high = 0;
5081 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5083 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5084 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5085 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5086 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5088 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5090 spin_unlock(&ei->i_raw_lock);
5093 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5094 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5095 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5096 raw_inode->i_file_acl_high =
5097 cpu_to_le16(ei->i_file_acl >> 32);
5098 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5099 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5100 ext4_isize_set(raw_inode, ei->i_disksize);
5103 if (ei->i_disksize > 0x7fffffffULL) {
5104 if (!ext4_has_feature_large_file(sb) ||
5105 EXT4_SB(sb)->s_es->s_rev_level ==
5106 cpu_to_le32(EXT4_GOOD_OLD_REV))
5109 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5110 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5111 if (old_valid_dev(inode->i_rdev)) {
5112 raw_inode->i_block[0] =
5113 cpu_to_le32(old_encode_dev(inode->i_rdev));
5114 raw_inode->i_block[1] = 0;
5116 raw_inode->i_block[0] = 0;
5117 raw_inode->i_block[1] =
5118 cpu_to_le32(new_encode_dev(inode->i_rdev));
5119 raw_inode->i_block[2] = 0;
5121 } else if (!ext4_has_inline_data(inode)) {
5122 for (block = 0; block < EXT4_N_BLOCKS; block++)
5123 raw_inode->i_block[block] = ei->i_data[block];
5126 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5127 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5128 if (ei->i_extra_isize) {
5129 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5130 raw_inode->i_version_hi =
5131 cpu_to_le32(inode->i_version >> 32);
5132 raw_inode->i_extra_isize =
5133 cpu_to_le16(ei->i_extra_isize);
5137 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5138 i_projid != EXT4_DEF_PROJID);
5140 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5141 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5142 raw_inode->i_projid = cpu_to_le32(i_projid);
5144 ext4_inode_csum_set(inode, raw_inode, ei);
5145 spin_unlock(&ei->i_raw_lock);
5146 if (inode->i_sb->s_flags & MS_LAZYTIME)
5147 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5150 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5151 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5154 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5155 if (set_large_file) {
5156 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5157 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5160 ext4_update_dynamic_rev(sb);
5161 ext4_set_feature_large_file(sb);
5162 ext4_handle_sync(handle);
5163 err = ext4_handle_dirty_super(handle, sb);
5165 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5168 ext4_std_error(inode->i_sb, err);
5173 * ext4_write_inode()
5175 * We are called from a few places:
5177 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5178 * Here, there will be no transaction running. We wait for any running
5179 * transaction to commit.
5181 * - Within flush work (sys_sync(), kupdate and such).
5182 * We wait on commit, if told to.
5184 * - Within iput_final() -> write_inode_now()
5185 * We wait on commit, if told to.
5187 * In all cases it is actually safe for us to return without doing anything,
5188 * because the inode has been copied into a raw inode buffer in
5189 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5192 * Note that we are absolutely dependent upon all inode dirtiers doing the
5193 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5194 * which we are interested.
5196 * It would be a bug for them to not do this. The code:
5198 * mark_inode_dirty(inode)
5200 * inode->i_size = expr;
5202 * is in error because write_inode() could occur while `stuff()' is running,
5203 * and the new i_size will be lost. Plus the inode will no longer be on the
5204 * superblock's dirty inode list.
5206 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5210 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5213 if (EXT4_SB(inode->i_sb)->s_journal) {
5214 if (ext4_journal_current_handle()) {
5215 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5221 * No need to force transaction in WB_SYNC_NONE mode. Also
5222 * ext4_sync_fs() will force the commit after everything is
5225 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5228 err = ext4_force_commit(inode->i_sb);
5230 struct ext4_iloc iloc;
5232 err = __ext4_get_inode_loc(inode, &iloc, 0);
5236 * sync(2) will flush the whole buffer cache. No need to do
5237 * it here separately for each inode.
5239 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5240 sync_dirty_buffer(iloc.bh);
5241 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5242 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5243 "IO error syncing inode");
5252 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5253 * buffers that are attached to a page stradding i_size and are undergoing
5254 * commit. In that case we have to wait for commit to finish and try again.
5256 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5260 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5261 tid_t commit_tid = 0;
5264 offset = inode->i_size & (PAGE_SIZE - 1);
5266 * All buffers in the last page remain valid? Then there's nothing to
5267 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5270 if (offset > PAGE_SIZE - i_blocksize(inode))
5273 page = find_lock_page(inode->i_mapping,
5274 inode->i_size >> PAGE_SHIFT);
5277 ret = __ext4_journalled_invalidatepage(page, offset,
5278 PAGE_SIZE - offset);
5284 read_lock(&journal->j_state_lock);
5285 if (journal->j_committing_transaction)
5286 commit_tid = journal->j_committing_transaction->t_tid;
5287 read_unlock(&journal->j_state_lock);
5289 jbd2_log_wait_commit(journal, commit_tid);
5296 * Called from notify_change.
5298 * We want to trap VFS attempts to truncate the file as soon as
5299 * possible. In particular, we want to make sure that when the VFS
5300 * shrinks i_size, we put the inode on the orphan list and modify
5301 * i_disksize immediately, so that during the subsequent flushing of
5302 * dirty pages and freeing of disk blocks, we can guarantee that any
5303 * commit will leave the blocks being flushed in an unused state on
5304 * disk. (On recovery, the inode will get truncated and the blocks will
5305 * be freed, so we have a strong guarantee that no future commit will
5306 * leave these blocks visible to the user.)
5308 * Another thing we have to assure is that if we are in ordered mode
5309 * and inode is still attached to the committing transaction, we must
5310 * we start writeout of all the dirty pages which are being truncated.
5311 * This way we are sure that all the data written in the previous
5312 * transaction are already on disk (truncate waits for pages under
5315 * Called with inode->i_mutex down.
5317 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5319 struct inode *inode = d_inode(dentry);
5322 const unsigned int ia_valid = attr->ia_valid;
5324 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5327 error = setattr_prepare(dentry, attr);
5331 if (is_quota_modification(inode, attr)) {
5332 error = dquot_initialize(inode);
5336 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5337 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5340 /* (user+group)*(old+new) structure, inode write (sb,
5341 * inode block, ? - but truncate inode update has it) */
5342 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5343 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5344 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5345 if (IS_ERR(handle)) {
5346 error = PTR_ERR(handle);
5350 /* dquot_transfer() calls back ext4_get_inode_usage() which
5351 * counts xattr inode references.
5353 down_read(&EXT4_I(inode)->xattr_sem);
5354 error = dquot_transfer(inode, attr);
5355 up_read(&EXT4_I(inode)->xattr_sem);
5358 ext4_journal_stop(handle);
5361 /* Update corresponding info in inode so that everything is in
5362 * one transaction */
5363 if (attr->ia_valid & ATTR_UID)
5364 inode->i_uid = attr->ia_uid;
5365 if (attr->ia_valid & ATTR_GID)
5366 inode->i_gid = attr->ia_gid;
5367 error = ext4_mark_inode_dirty(handle, inode);
5368 ext4_journal_stop(handle);
5371 if (attr->ia_valid & ATTR_SIZE) {
5373 loff_t oldsize = inode->i_size;
5374 int shrink = (attr->ia_size <= inode->i_size);
5376 if (ext4_encrypted_inode(inode)) {
5377 error = fscrypt_get_encryption_info(inode);
5380 if (!fscrypt_has_encryption_key(inode))
5384 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5385 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5387 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5390 if (!S_ISREG(inode->i_mode))
5393 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5394 inode_inc_iversion(inode);
5396 if (ext4_should_order_data(inode) &&
5397 (attr->ia_size < inode->i_size)) {
5398 error = ext4_begin_ordered_truncate(inode,
5403 if (attr->ia_size != inode->i_size) {
5404 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5405 if (IS_ERR(handle)) {
5406 error = PTR_ERR(handle);
5409 if (ext4_handle_valid(handle) && shrink) {
5410 error = ext4_orphan_add(handle, inode);
5414 * Update c/mtime on truncate up, ext4_truncate() will
5415 * update c/mtime in shrink case below
5418 inode->i_mtime = current_time(inode);
5419 inode->i_ctime = inode->i_mtime;
5421 down_write(&EXT4_I(inode)->i_data_sem);
5422 EXT4_I(inode)->i_disksize = attr->ia_size;
5423 rc = ext4_mark_inode_dirty(handle, inode);
5427 * We have to update i_size under i_data_sem together
5428 * with i_disksize to avoid races with writeback code
5429 * running ext4_wb_update_i_disksize().
5432 i_size_write(inode, attr->ia_size);
5433 up_write(&EXT4_I(inode)->i_data_sem);
5434 ext4_journal_stop(handle);
5437 ext4_orphan_del(NULL, inode);
5442 pagecache_isize_extended(inode, oldsize, inode->i_size);
5445 * Blocks are going to be removed from the inode. Wait
5446 * for dio in flight. Temporarily disable
5447 * dioread_nolock to prevent livelock.
5450 if (!ext4_should_journal_data(inode)) {
5451 ext4_inode_block_unlocked_dio(inode);
5452 inode_dio_wait(inode);
5453 ext4_inode_resume_unlocked_dio(inode);
5455 ext4_wait_for_tail_page_commit(inode);
5457 down_write(&EXT4_I(inode)->i_mmap_sem);
5459 * Truncate pagecache after we've waited for commit
5460 * in data=journal mode to make pages freeable.
5462 truncate_pagecache(inode, inode->i_size);
5464 rc = ext4_truncate(inode);
5468 up_write(&EXT4_I(inode)->i_mmap_sem);
5472 setattr_copy(inode, attr);
5473 mark_inode_dirty(inode);
5477 * If the call to ext4_truncate failed to get a transaction handle at
5478 * all, we need to clean up the in-core orphan list manually.
5480 if (orphan && inode->i_nlink)
5481 ext4_orphan_del(NULL, inode);
5483 if (!error && (ia_valid & ATTR_MODE))
5484 rc = posix_acl_chmod(inode, inode->i_mode);
5487 ext4_std_error(inode->i_sb, error);
5493 int ext4_getattr(const struct path *path, struct kstat *stat,
5494 u32 request_mask, unsigned int query_flags)
5496 struct inode *inode = d_inode(path->dentry);
5497 struct ext4_inode *raw_inode;
5498 struct ext4_inode_info *ei = EXT4_I(inode);
5501 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5502 stat->result_mask |= STATX_BTIME;
5503 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5504 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5507 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5508 if (flags & EXT4_APPEND_FL)
5509 stat->attributes |= STATX_ATTR_APPEND;
5510 if (flags & EXT4_COMPR_FL)
5511 stat->attributes |= STATX_ATTR_COMPRESSED;
5512 if (flags & EXT4_ENCRYPT_FL)
5513 stat->attributes |= STATX_ATTR_ENCRYPTED;
5514 if (flags & EXT4_IMMUTABLE_FL)
5515 stat->attributes |= STATX_ATTR_IMMUTABLE;
5516 if (flags & EXT4_NODUMP_FL)
5517 stat->attributes |= STATX_ATTR_NODUMP;
5519 stat->attributes_mask |= (STATX_ATTR_APPEND |
5520 STATX_ATTR_COMPRESSED |
5521 STATX_ATTR_ENCRYPTED |
5522 STATX_ATTR_IMMUTABLE |
5525 generic_fillattr(inode, stat);
5529 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5530 u32 request_mask, unsigned int query_flags)
5532 struct inode *inode = d_inode(path->dentry);
5533 u64 delalloc_blocks;
5535 ext4_getattr(path, stat, request_mask, query_flags);
5538 * If there is inline data in the inode, the inode will normally not
5539 * have data blocks allocated (it may have an external xattr block).
5540 * Report at least one sector for such files, so tools like tar, rsync,
5541 * others don't incorrectly think the file is completely sparse.
5543 if (unlikely(ext4_has_inline_data(inode)))
5544 stat->blocks += (stat->size + 511) >> 9;
5547 * We can't update i_blocks if the block allocation is delayed
5548 * otherwise in the case of system crash before the real block
5549 * allocation is done, we will have i_blocks inconsistent with
5550 * on-disk file blocks.
5551 * We always keep i_blocks updated together with real
5552 * allocation. But to not confuse with user, stat
5553 * will return the blocks that include the delayed allocation
5554 * blocks for this file.
5556 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5557 EXT4_I(inode)->i_reserved_data_blocks);
5558 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5562 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5565 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5566 return ext4_ind_trans_blocks(inode, lblocks);
5567 return ext4_ext_index_trans_blocks(inode, pextents);
5571 * Account for index blocks, block groups bitmaps and block group
5572 * descriptor blocks if modify datablocks and index blocks
5573 * worse case, the indexs blocks spread over different block groups
5575 * If datablocks are discontiguous, they are possible to spread over
5576 * different block groups too. If they are contiguous, with flexbg,
5577 * they could still across block group boundary.
5579 * Also account for superblock, inode, quota and xattr blocks
5581 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5584 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5590 * How many index blocks need to touch to map @lblocks logical blocks
5591 * to @pextents physical extents?
5593 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5598 * Now let's see how many group bitmaps and group descriptors need
5601 groups = idxblocks + pextents;
5603 if (groups > ngroups)
5605 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5606 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5608 /* bitmaps and block group descriptor blocks */
5609 ret += groups + gdpblocks;
5611 /* Blocks for super block, inode, quota and xattr blocks */
5612 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5618 * Calculate the total number of credits to reserve to fit
5619 * the modification of a single pages into a single transaction,
5620 * which may include multiple chunks of block allocations.
5622 * This could be called via ext4_write_begin()
5624 * We need to consider the worse case, when
5625 * one new block per extent.
5627 int ext4_writepage_trans_blocks(struct inode *inode)
5629 int bpp = ext4_journal_blocks_per_page(inode);
5632 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5634 /* Account for data blocks for journalled mode */
5635 if (ext4_should_journal_data(inode))
5641 * Calculate the journal credits for a chunk of data modification.
5643 * This is called from DIO, fallocate or whoever calling
5644 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5646 * journal buffers for data blocks are not included here, as DIO
5647 * and fallocate do no need to journal data buffers.
5649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5651 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5655 * The caller must have previously called ext4_reserve_inode_write().
5656 * Give this, we know that the caller already has write access to iloc->bh.
5658 int ext4_mark_iloc_dirty(handle_t *handle,
5659 struct inode *inode, struct ext4_iloc *iloc)
5663 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5666 if (IS_I_VERSION(inode))
5667 inode_inc_iversion(inode);
5669 /* the do_update_inode consumes one bh->b_count */
5672 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5673 err = ext4_do_update_inode(handle, inode, iloc);
5679 * On success, We end up with an outstanding reference count against
5680 * iloc->bh. This _must_ be cleaned up later.
5684 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5685 struct ext4_iloc *iloc)
5689 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5692 err = ext4_get_inode_loc(inode, iloc);
5694 BUFFER_TRACE(iloc->bh, "get_write_access");
5695 err = ext4_journal_get_write_access(handle, iloc->bh);
5701 ext4_std_error(inode->i_sb, err);
5705 static int __ext4_expand_extra_isize(struct inode *inode,
5706 unsigned int new_extra_isize,
5707 struct ext4_iloc *iloc,
5708 handle_t *handle, int *no_expand)
5710 struct ext4_inode *raw_inode;
5711 struct ext4_xattr_ibody_header *header;
5714 raw_inode = ext4_raw_inode(iloc);
5716 header = IHDR(inode, raw_inode);
5718 /* No extended attributes present */
5719 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5720 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5721 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5722 EXT4_I(inode)->i_extra_isize, 0,
5723 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5724 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5728 /* try to expand with EAs present */
5729 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5733 * Inode size expansion failed; don't try again
5742 * Expand an inode by new_extra_isize bytes.
5743 * Returns 0 on success or negative error number on failure.
5745 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5746 unsigned int new_extra_isize,
5747 struct ext4_iloc iloc,
5753 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5757 * In nojournal mode, we can immediately attempt to expand
5758 * the inode. When journaled, we first need to obtain extra
5759 * buffer credits since we may write into the EA block
5760 * with this same handle. If journal_extend fails, then it will
5761 * only result in a minor loss of functionality for that inode.
5762 * If this is felt to be critical, then e2fsck should be run to
5763 * force a large enough s_min_extra_isize.
5765 if (ext4_handle_valid(handle) &&
5766 jbd2_journal_extend(handle,
5767 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5770 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5773 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5774 handle, &no_expand);
5775 ext4_write_unlock_xattr(inode, &no_expand);
5780 int ext4_expand_extra_isize(struct inode *inode,
5781 unsigned int new_extra_isize,
5782 struct ext4_iloc *iloc)
5788 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5793 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5794 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5795 if (IS_ERR(handle)) {
5796 error = PTR_ERR(handle);
5801 ext4_write_lock_xattr(inode, &no_expand);
5803 BUFFER_TRACE(iloc.bh, "get_write_access");
5804 error = ext4_journal_get_write_access(handle, iloc->bh);
5810 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5811 handle, &no_expand);
5813 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5817 ext4_write_unlock_xattr(inode, &no_expand);
5819 ext4_journal_stop(handle);
5824 * What we do here is to mark the in-core inode as clean with respect to inode
5825 * dirtiness (it may still be data-dirty).
5826 * This means that the in-core inode may be reaped by prune_icache
5827 * without having to perform any I/O. This is a very good thing,
5828 * because *any* task may call prune_icache - even ones which
5829 * have a transaction open against a different journal.
5831 * Is this cheating? Not really. Sure, we haven't written the
5832 * inode out, but prune_icache isn't a user-visible syncing function.
5833 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5834 * we start and wait on commits.
5836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5838 struct ext4_iloc iloc;
5839 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5843 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5844 err = ext4_reserve_inode_write(handle, inode, &iloc);
5848 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5849 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5852 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5856 * ext4_dirty_inode() is called from __mark_inode_dirty()
5858 * We're really interested in the case where a file is being extended.
5859 * i_size has been changed by generic_commit_write() and we thus need
5860 * to include the updated inode in the current transaction.
5862 * Also, dquot_alloc_block() will always dirty the inode when blocks
5863 * are allocated to the file.
5865 * If the inode is marked synchronous, we don't honour that here - doing
5866 * so would cause a commit on atime updates, which we don't bother doing.
5867 * We handle synchronous inodes at the highest possible level.
5869 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5870 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5871 * to copy into the on-disk inode structure are the timestamp files.
5873 void ext4_dirty_inode(struct inode *inode, int flags)
5877 if (flags == I_DIRTY_TIME)
5879 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5883 ext4_mark_inode_dirty(handle, inode);
5885 ext4_journal_stop(handle);
5892 * Bind an inode's backing buffer_head into this transaction, to prevent
5893 * it from being flushed to disk early. Unlike
5894 * ext4_reserve_inode_write, this leaves behind no bh reference and
5895 * returns no iloc structure, so the caller needs to repeat the iloc
5896 * lookup to mark the inode dirty later.
5898 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5900 struct ext4_iloc iloc;
5904 err = ext4_get_inode_loc(inode, &iloc);
5906 BUFFER_TRACE(iloc.bh, "get_write_access");
5907 err = jbd2_journal_get_write_access(handle, iloc.bh);
5909 err = ext4_handle_dirty_metadata(handle,
5915 ext4_std_error(inode->i_sb, err);
5920 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5925 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5928 * We have to be very careful here: changing a data block's
5929 * journaling status dynamically is dangerous. If we write a
5930 * data block to the journal, change the status and then delete
5931 * that block, we risk forgetting to revoke the old log record
5932 * from the journal and so a subsequent replay can corrupt data.
5933 * So, first we make sure that the journal is empty and that
5934 * nobody is changing anything.
5937 journal = EXT4_JOURNAL(inode);
5940 if (is_journal_aborted(journal))
5943 /* Wait for all existing dio workers */
5944 ext4_inode_block_unlocked_dio(inode);
5945 inode_dio_wait(inode);
5948 * Before flushing the journal and switching inode's aops, we have
5949 * to flush all dirty data the inode has. There can be outstanding
5950 * delayed allocations, there can be unwritten extents created by
5951 * fallocate or buffered writes in dioread_nolock mode covered by
5952 * dirty data which can be converted only after flushing the dirty
5953 * data (and journalled aops don't know how to handle these cases).
5956 down_write(&EXT4_I(inode)->i_mmap_sem);
5957 err = filemap_write_and_wait(inode->i_mapping);
5959 up_write(&EXT4_I(inode)->i_mmap_sem);
5960 ext4_inode_resume_unlocked_dio(inode);
5965 percpu_down_write(&sbi->s_journal_flag_rwsem);
5966 jbd2_journal_lock_updates(journal);
5969 * OK, there are no updates running now, and all cached data is
5970 * synced to disk. We are now in a completely consistent state
5971 * which doesn't have anything in the journal, and we know that
5972 * no filesystem updates are running, so it is safe to modify
5973 * the inode's in-core data-journaling state flag now.
5977 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5979 err = jbd2_journal_flush(journal);
5981 jbd2_journal_unlock_updates(journal);
5982 percpu_up_write(&sbi->s_journal_flag_rwsem);
5983 ext4_inode_resume_unlocked_dio(inode);
5986 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5988 ext4_set_aops(inode);
5990 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5991 * E.g. S_DAX may get cleared / set.
5993 ext4_set_inode_flags(inode);
5995 jbd2_journal_unlock_updates(journal);
5996 percpu_up_write(&sbi->s_journal_flag_rwsem);
5999 up_write(&EXT4_I(inode)->i_mmap_sem);
6000 ext4_inode_resume_unlocked_dio(inode);
6002 /* Finally we can mark the inode as dirty. */
6004 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6006 return PTR_ERR(handle);
6008 err = ext4_mark_inode_dirty(handle, inode);
6009 ext4_handle_sync(handle);
6010 ext4_journal_stop(handle);
6011 ext4_std_error(inode->i_sb, err);
6016 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6018 return !buffer_mapped(bh);
6021 int ext4_page_mkwrite(struct vm_fault *vmf)
6023 struct vm_area_struct *vma = vmf->vma;
6024 struct page *page = vmf->page;
6028 struct file *file = vma->vm_file;
6029 struct inode *inode = file_inode(file);
6030 struct address_space *mapping = inode->i_mapping;
6032 get_block_t *get_block;
6035 sb_start_pagefault(inode->i_sb);
6036 file_update_time(vma->vm_file);
6038 down_read(&EXT4_I(inode)->i_mmap_sem);
6040 ret = ext4_convert_inline_data(inode);
6044 /* Delalloc case is easy... */
6045 if (test_opt(inode->i_sb, DELALLOC) &&
6046 !ext4_should_journal_data(inode) &&
6047 !ext4_nonda_switch(inode->i_sb)) {
6049 ret = block_page_mkwrite(vma, vmf,
6050 ext4_da_get_block_prep);
6051 } while (ret == -ENOSPC &&
6052 ext4_should_retry_alloc(inode->i_sb, &retries));
6057 size = i_size_read(inode);
6058 /* Page got truncated from under us? */
6059 if (page->mapping != mapping || page_offset(page) > size) {
6061 ret = VM_FAULT_NOPAGE;
6065 if (page->index == size >> PAGE_SHIFT)
6066 len = size & ~PAGE_MASK;
6070 * Return if we have all the buffers mapped. This avoids the need to do
6071 * journal_start/journal_stop which can block and take a long time
6073 if (page_has_buffers(page)) {
6074 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6076 ext4_bh_unmapped)) {
6077 /* Wait so that we don't change page under IO */
6078 wait_for_stable_page(page);
6079 ret = VM_FAULT_LOCKED;
6084 /* OK, we need to fill the hole... */
6085 if (ext4_should_dioread_nolock(inode))
6086 get_block = ext4_get_block_unwritten;
6088 get_block = ext4_get_block;
6090 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6091 ext4_writepage_trans_blocks(inode));
6092 if (IS_ERR(handle)) {
6093 ret = VM_FAULT_SIGBUS;
6096 ret = block_page_mkwrite(vma, vmf, get_block);
6097 if (!ret && ext4_should_journal_data(inode)) {
6098 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6099 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6101 ret = VM_FAULT_SIGBUS;
6102 ext4_journal_stop(handle);
6105 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6107 ext4_journal_stop(handle);
6108 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6111 ret = block_page_mkwrite_return(ret);
6113 up_read(&EXT4_I(inode)->i_mmap_sem);
6114 sb_end_pagefault(inode->i_sb);
6118 int ext4_filemap_fault(struct vm_fault *vmf)
6120 struct inode *inode = file_inode(vmf->vma->vm_file);
6123 down_read(&EXT4_I(inode)->i_mmap_sem);
6124 err = filemap_fault(vmf);
6125 up_read(&EXT4_I(inode)->i_mmap_sem);
6131 * Find the first extent at or after @lblk in an inode that is not a hole.
6132 * Search for @map_len blocks at most. The extent is returned in @result.
6134 * The function returns 1 if we found an extent. The function returns 0 in
6135 * case there is no extent at or after @lblk and in that case also sets
6136 * @result->es_len to 0. In case of error, the error code is returned.
6138 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6139 unsigned int map_len, struct extent_status *result)
6141 struct ext4_map_blocks map;
6142 struct extent_status es = {};
6146 map.m_len = map_len;
6149 * For non-extent based files this loop may iterate several times since
6150 * we do not determine full hole size.
6152 while (map.m_len > 0) {
6153 ret = ext4_map_blocks(NULL, inode, &map, 0);
6156 /* There's extent covering m_lblk? Just return it. */
6160 ext4_es_store_pblock(result, map.m_pblk);
6161 result->es_lblk = map.m_lblk;
6162 result->es_len = map.m_len;
6163 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6164 status = EXTENT_STATUS_UNWRITTEN;
6166 status = EXTENT_STATUS_WRITTEN;
6167 ext4_es_store_status(result, status);
6170 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6171 map.m_lblk + map.m_len - 1,
6173 /* Is delalloc data before next block in extent tree? */
6174 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6175 ext4_lblk_t offset = 0;
6177 if (es.es_lblk < lblk)
6178 offset = lblk - es.es_lblk;
6179 result->es_lblk = es.es_lblk + offset;
6180 ext4_es_store_pblock(result,
6181 ext4_es_pblock(&es) + offset);
6182 result->es_len = es.es_len - offset;
6183 ext4_es_store_status(result, ext4_es_status(&es));
6187 /* There's a hole at m_lblk, advance us after it */
6188 map.m_lblk += map.m_len;
6189 map_len -= map.m_len;
6190 map.m_len = map_len;