2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
44 #include <net/strparser.h>
49 struct tls_decrypt_arg {
59 struct tls_decrypt_ctx {
61 u8 aad[TLS_MAX_AAD_SIZE];
63 struct scatterlist sg[];
66 noinline void tls_err_abort(struct sock *sk, int err)
68 WARN_ON_ONCE(err >= 0);
69 /* sk->sk_err should contain a positive error code. */
74 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
75 unsigned int recursion_level)
77 int start = skb_headlen(skb);
78 int i, chunk = start - offset;
79 struct sk_buff *frag_iter;
82 if (unlikely(recursion_level >= 24))
95 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
98 WARN_ON(start > offset + len);
100 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
101 chunk = end - offset;
114 if (unlikely(skb_has_frag_list(skb))) {
115 skb_walk_frags(skb, frag_iter) {
118 WARN_ON(start > offset + len);
120 end = start + frag_iter->len;
121 chunk = end - offset;
125 ret = __skb_nsg(frag_iter, offset - start, chunk,
126 recursion_level + 1);
127 if (unlikely(ret < 0))
142 /* Return the number of scatterlist elements required to completely map the
143 * skb, or -EMSGSIZE if the recursion depth is exceeded.
145 static int skb_nsg(struct sk_buff *skb, int offset, int len)
147 return __skb_nsg(skb, offset, len, 0);
150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
151 struct tls_decrypt_arg *darg)
153 struct strp_msg *rxm = strp_msg(skb);
154 struct tls_msg *tlm = tls_msg(skb);
157 /* Determine zero-padding length */
158 if (prot->version == TLS_1_3_VERSION) {
159 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
160 char content_type = darg->zc ? darg->tail : 0;
163 while (content_type == 0) {
164 if (offset < prot->prepend_size)
166 err = skb_copy_bits(skb, rxm->offset + offset,
175 tlm->control = content_type;
180 static void tls_decrypt_done(struct crypto_async_request *req, int err)
182 struct aead_request *aead_req = (struct aead_request *)req;
183 struct scatterlist *sgout = aead_req->dst;
184 struct scatterlist *sgin = aead_req->src;
185 struct tls_sw_context_rx *ctx;
186 struct tls_context *tls_ctx;
187 struct scatterlist *sg;
191 sk = (struct sock *)req->data;
192 tls_ctx = tls_get_ctx(sk);
193 ctx = tls_sw_ctx_rx(tls_ctx);
195 /* Propagate if there was an err */
198 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
199 ctx->async_wait.err = err;
200 tls_err_abort(sk, err);
203 /* Free the destination pages if skb was not decrypted inplace */
205 /* Skip the first S/G entry as it points to AAD */
206 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
209 put_page(sg_page(sg));
215 spin_lock_bh(&ctx->decrypt_compl_lock);
216 if (!atomic_dec_return(&ctx->decrypt_pending))
217 complete(&ctx->async_wait.completion);
218 spin_unlock_bh(&ctx->decrypt_compl_lock);
221 static int tls_do_decryption(struct sock *sk,
222 struct scatterlist *sgin,
223 struct scatterlist *sgout,
226 struct aead_request *aead_req,
227 struct tls_decrypt_arg *darg)
229 struct tls_context *tls_ctx = tls_get_ctx(sk);
230 struct tls_prot_info *prot = &tls_ctx->prot_info;
231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
234 aead_request_set_tfm(aead_req, ctx->aead_recv);
235 aead_request_set_ad(aead_req, prot->aad_size);
236 aead_request_set_crypt(aead_req, sgin, sgout,
237 data_len + prot->tag_size,
241 aead_request_set_callback(aead_req,
242 CRYPTO_TFM_REQ_MAY_BACKLOG,
243 tls_decrypt_done, sk);
244 atomic_inc(&ctx->decrypt_pending);
246 aead_request_set_callback(aead_req,
247 CRYPTO_TFM_REQ_MAY_BACKLOG,
248 crypto_req_done, &ctx->async_wait);
251 ret = crypto_aead_decrypt(aead_req);
252 if (ret == -EINPROGRESS) {
256 ret = crypto_wait_req(ret, &ctx->async_wait);
263 static void tls_trim_both_msgs(struct sock *sk, int target_size)
265 struct tls_context *tls_ctx = tls_get_ctx(sk);
266 struct tls_prot_info *prot = &tls_ctx->prot_info;
267 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
268 struct tls_rec *rec = ctx->open_rec;
270 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272 target_size += prot->overhead_size;
273 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
276 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278 struct tls_context *tls_ctx = tls_get_ctx(sk);
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
281 struct sk_msg *msg_en = &rec->msg_encrypted;
283 return sk_msg_alloc(sk, msg_en, len, 0);
286 static int tls_clone_plaintext_msg(struct sock *sk, int required)
288 struct tls_context *tls_ctx = tls_get_ctx(sk);
289 struct tls_prot_info *prot = &tls_ctx->prot_info;
290 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
291 struct tls_rec *rec = ctx->open_rec;
292 struct sk_msg *msg_pl = &rec->msg_plaintext;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
296 /* We add page references worth len bytes from encrypted sg
297 * at the end of plaintext sg. It is guaranteed that msg_en
298 * has enough required room (ensured by caller).
300 len = required - msg_pl->sg.size;
302 /* Skip initial bytes in msg_en's data to be able to use
303 * same offset of both plain and encrypted data.
305 skip = prot->prepend_size + msg_pl->sg.size;
307 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
310 static struct tls_rec *tls_get_rec(struct sock *sk)
312 struct tls_context *tls_ctx = tls_get_ctx(sk);
313 struct tls_prot_info *prot = &tls_ctx->prot_info;
314 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
315 struct sk_msg *msg_pl, *msg_en;
319 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321 rec = kzalloc(mem_size, sk->sk_allocation);
325 msg_pl = &rec->msg_plaintext;
326 msg_en = &rec->msg_encrypted;
331 sg_init_table(rec->sg_aead_in, 2);
332 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
333 sg_unmark_end(&rec->sg_aead_in[1]);
335 sg_init_table(rec->sg_aead_out, 2);
336 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
337 sg_unmark_end(&rec->sg_aead_out[1]);
342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344 sk_msg_free(sk, &rec->msg_encrypted);
345 sk_msg_free(sk, &rec->msg_plaintext);
349 static void tls_free_open_rec(struct sock *sk)
351 struct tls_context *tls_ctx = tls_get_ctx(sk);
352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353 struct tls_rec *rec = ctx->open_rec;
356 tls_free_rec(sk, rec);
357 ctx->open_rec = NULL;
361 int tls_tx_records(struct sock *sk, int flags)
363 struct tls_context *tls_ctx = tls_get_ctx(sk);
364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365 struct tls_rec *rec, *tmp;
366 struct sk_msg *msg_en;
367 int tx_flags, rc = 0;
369 if (tls_is_partially_sent_record(tls_ctx)) {
370 rec = list_first_entry(&ctx->tx_list,
371 struct tls_rec, list);
374 tx_flags = rec->tx_flags;
378 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
382 /* Full record has been transmitted.
383 * Remove the head of tx_list
385 list_del(&rec->list);
386 sk_msg_free(sk, &rec->msg_plaintext);
390 /* Tx all ready records */
391 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
392 if (READ_ONCE(rec->tx_ready)) {
394 tx_flags = rec->tx_flags;
398 msg_en = &rec->msg_encrypted;
399 rc = tls_push_sg(sk, tls_ctx,
400 &msg_en->sg.data[msg_en->sg.curr],
405 list_del(&rec->list);
406 sk_msg_free(sk, &rec->msg_plaintext);
414 if (rc < 0 && rc != -EAGAIN)
415 tls_err_abort(sk, -EBADMSG);
420 static void tls_encrypt_done(struct crypto_async_request *req, int err)
422 struct aead_request *aead_req = (struct aead_request *)req;
423 struct sock *sk = req->data;
424 struct tls_context *tls_ctx = tls_get_ctx(sk);
425 struct tls_prot_info *prot = &tls_ctx->prot_info;
426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
427 struct scatterlist *sge;
428 struct sk_msg *msg_en;
433 rec = container_of(aead_req, struct tls_rec, aead_req);
434 msg_en = &rec->msg_encrypted;
436 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
437 sge->offset -= prot->prepend_size;
438 sge->length += prot->prepend_size;
440 /* Check if error is previously set on socket */
441 if (err || sk->sk_err) {
444 /* If err is already set on socket, return the same code */
446 ctx->async_wait.err = -sk->sk_err;
448 ctx->async_wait.err = err;
449 tls_err_abort(sk, err);
454 struct tls_rec *first_rec;
456 /* Mark the record as ready for transmission */
457 smp_store_mb(rec->tx_ready, true);
459 /* If received record is at head of tx_list, schedule tx */
460 first_rec = list_first_entry(&ctx->tx_list,
461 struct tls_rec, list);
462 if (rec == first_rec)
466 spin_lock_bh(&ctx->encrypt_compl_lock);
467 pending = atomic_dec_return(&ctx->encrypt_pending);
469 if (!pending && ctx->async_notify)
470 complete(&ctx->async_wait.completion);
471 spin_unlock_bh(&ctx->encrypt_compl_lock);
476 /* Schedule the transmission */
477 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
478 schedule_delayed_work(&ctx->tx_work.work, 1);
481 static int tls_do_encryption(struct sock *sk,
482 struct tls_context *tls_ctx,
483 struct tls_sw_context_tx *ctx,
484 struct aead_request *aead_req,
485 size_t data_len, u32 start)
487 struct tls_prot_info *prot = &tls_ctx->prot_info;
488 struct tls_rec *rec = ctx->open_rec;
489 struct sk_msg *msg_en = &rec->msg_encrypted;
490 struct scatterlist *sge = sk_msg_elem(msg_en, start);
491 int rc, iv_offset = 0;
493 /* For CCM based ciphers, first byte of IV is a constant */
494 switch (prot->cipher_type) {
495 case TLS_CIPHER_AES_CCM_128:
496 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
499 case TLS_CIPHER_SM4_CCM:
500 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 prot->iv_size + prot->salt_size);
508 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
509 tls_ctx->tx.rec_seq);
511 sge->offset += prot->prepend_size;
512 sge->length -= prot->prepend_size;
514 msg_en->sg.curr = start;
516 aead_request_set_tfm(aead_req, ctx->aead_send);
517 aead_request_set_ad(aead_req, prot->aad_size);
518 aead_request_set_crypt(aead_req, rec->sg_aead_in,
520 data_len, rec->iv_data);
522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523 tls_encrypt_done, sk);
525 /* Add the record in tx_list */
526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527 atomic_inc(&ctx->encrypt_pending);
529 rc = crypto_aead_encrypt(aead_req);
530 if (!rc || rc != -EINPROGRESS) {
531 atomic_dec(&ctx->encrypt_pending);
532 sge->offset -= prot->prepend_size;
533 sge->length += prot->prepend_size;
537 WRITE_ONCE(rec->tx_ready, true);
538 } else if (rc != -EINPROGRESS) {
539 list_del(&rec->list);
543 /* Unhook the record from context if encryption is not failure */
544 ctx->open_rec = NULL;
545 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550 struct tls_rec **to, struct sk_msg *msg_opl,
551 struct sk_msg *msg_oen, u32 split_point,
552 u32 tx_overhead_size, u32 *orig_end)
554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555 struct scatterlist *sge, *osge, *nsge;
556 u32 orig_size = msg_opl->sg.size;
557 struct scatterlist tmp = { };
558 struct sk_msg *msg_npl;
562 new = tls_get_rec(sk);
565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566 tx_overhead_size, 0);
568 tls_free_rec(sk, new);
572 *orig_end = msg_opl->sg.end;
573 i = msg_opl->sg.start;
574 sge = sk_msg_elem(msg_opl, i);
575 while (apply && sge->length) {
576 if (sge->length > apply) {
577 u32 len = sge->length - apply;
579 get_page(sg_page(sge));
580 sg_set_page(&tmp, sg_page(sge), len,
581 sge->offset + apply);
586 apply -= sge->length;
587 bytes += sge->length;
590 sk_msg_iter_var_next(i);
591 if (i == msg_opl->sg.end)
593 sge = sk_msg_elem(msg_opl, i);
597 msg_opl->sg.curr = i;
598 msg_opl->sg.copybreak = 0;
599 msg_opl->apply_bytes = 0;
600 msg_opl->sg.size = bytes;
602 msg_npl = &new->msg_plaintext;
603 msg_npl->apply_bytes = apply;
604 msg_npl->sg.size = orig_size - bytes;
606 j = msg_npl->sg.start;
607 nsge = sk_msg_elem(msg_npl, j);
609 memcpy(nsge, &tmp, sizeof(*nsge));
610 sk_msg_iter_var_next(j);
611 nsge = sk_msg_elem(msg_npl, j);
614 osge = sk_msg_elem(msg_opl, i);
615 while (osge->length) {
616 memcpy(nsge, osge, sizeof(*nsge));
618 sk_msg_iter_var_next(i);
619 sk_msg_iter_var_next(j);
622 osge = sk_msg_elem(msg_opl, i);
623 nsge = sk_msg_elem(msg_npl, j);
627 msg_npl->sg.curr = j;
628 msg_npl->sg.copybreak = 0;
634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635 struct tls_rec *from, u32 orig_end)
637 struct sk_msg *msg_npl = &from->msg_plaintext;
638 struct sk_msg *msg_opl = &to->msg_plaintext;
639 struct scatterlist *osge, *nsge;
643 sk_msg_iter_var_prev(i);
644 j = msg_npl->sg.start;
646 osge = sk_msg_elem(msg_opl, i);
647 nsge = sk_msg_elem(msg_npl, j);
649 if (sg_page(osge) == sg_page(nsge) &&
650 osge->offset + osge->length == nsge->offset) {
651 osge->length += nsge->length;
652 put_page(sg_page(nsge));
655 msg_opl->sg.end = orig_end;
656 msg_opl->sg.curr = orig_end;
657 msg_opl->sg.copybreak = 0;
658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659 msg_opl->sg.size += msg_npl->sg.size;
661 sk_msg_free(sk, &to->msg_encrypted);
662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
667 static int tls_push_record(struct sock *sk, int flags,
668 unsigned char record_type)
670 struct tls_context *tls_ctx = tls_get_ctx(sk);
671 struct tls_prot_info *prot = &tls_ctx->prot_info;
672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674 u32 i, split_point, orig_end;
675 struct sk_msg *msg_pl, *msg_en;
676 struct aead_request *req;
683 msg_pl = &rec->msg_plaintext;
684 msg_en = &rec->msg_encrypted;
686 split_point = msg_pl->apply_bytes;
687 split = split_point && split_point < msg_pl->sg.size;
688 if (unlikely((!split &&
690 prot->overhead_size > msg_en->sg.size) ||
693 prot->overhead_size > msg_en->sg.size))) {
695 split_point = msg_en->sg.size;
698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699 split_point, prot->overhead_size,
703 /* This can happen if above tls_split_open_record allocates
704 * a single large encryption buffer instead of two smaller
705 * ones. In this case adjust pointers and continue without
708 if (!msg_pl->sg.size) {
709 tls_merge_open_record(sk, rec, tmp, orig_end);
710 msg_pl = &rec->msg_plaintext;
711 msg_en = &rec->msg_encrypted;
714 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715 prot->overhead_size);
718 rec->tx_flags = flags;
719 req = &rec->aead_req;
722 sk_msg_iter_var_prev(i);
724 rec->content_type = record_type;
725 if (prot->version == TLS_1_3_VERSION) {
726 /* Add content type to end of message. No padding added */
727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728 sg_mark_end(&rec->sg_content_type);
729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730 &rec->sg_content_type);
732 sg_mark_end(sk_msg_elem(msg_pl, i));
735 if (msg_pl->sg.end < msg_pl->sg.start) {
736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
741 i = msg_pl->sg.start;
742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
745 sk_msg_iter_var_prev(i);
746 sg_mark_end(sk_msg_elem(msg_en, i));
748 i = msg_en->sg.start;
749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752 tls_ctx->tx.rec_seq, record_type, prot);
754 tls_fill_prepend(tls_ctx,
755 page_address(sg_page(&msg_en->sg.data[i])) +
756 msg_en->sg.data[i].offset,
757 msg_pl->sg.size + prot->tail_size,
760 tls_ctx->pending_open_record_frags = false;
762 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 msg_pl->sg.size + prot->tail_size, i);
765 if (rc != -EINPROGRESS) {
766 tls_err_abort(sk, -EBADMSG);
768 tls_ctx->pending_open_record_frags = true;
769 tls_merge_open_record(sk, rec, tmp, orig_end);
772 ctx->async_capable = 1;
775 msg_pl = &tmp->msg_plaintext;
776 msg_en = &tmp->msg_encrypted;
777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 tls_ctx->pending_open_record_frags = true;
782 return tls_tx_records(sk, flags);
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 bool full_record, u8 record_type,
787 ssize_t *copied, int flags)
789 struct tls_context *tls_ctx = tls_get_ctx(sk);
790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 struct sk_msg msg_redir = { };
792 struct sk_psock *psock;
793 struct sock *sk_redir;
795 bool enospc, policy, redir_ingress;
799 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 psock = sk_psock_get(sk);
801 if (!psock || !policy) {
802 err = tls_push_record(sk, flags, record_type);
803 if (err && sk->sk_err == EBADMSG) {
804 *copied -= sk_msg_free(sk, msg);
805 tls_free_open_rec(sk);
809 sk_psock_put(sk, psock);
813 enospc = sk_msg_full(msg);
814 if (psock->eval == __SK_NONE) {
815 delta = msg->sg.size;
816 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 delta -= msg->sg.size;
819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 !enospc && !full_record) {
826 if (msg->apply_bytes && msg->apply_bytes < send)
827 send = msg->apply_bytes;
829 switch (psock->eval) {
831 err = tls_push_record(sk, flags, record_type);
832 if (err && sk->sk_err == EBADMSG) {
833 *copied -= sk_msg_free(sk, msg);
834 tls_free_open_rec(sk);
840 redir_ingress = psock->redir_ingress;
841 sk_redir = psock->sk_redir;
842 memcpy(&msg_redir, msg, sizeof(*msg));
843 if (msg->apply_bytes < send)
844 msg->apply_bytes = 0;
846 msg->apply_bytes -= send;
847 sk_msg_return_zero(sk, msg, send);
848 msg->sg.size -= send;
850 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
851 &msg_redir, send, flags);
854 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
857 if (msg->sg.size == 0)
858 tls_free_open_rec(sk);
862 sk_msg_free_partial(sk, msg, send);
863 if (msg->apply_bytes < send)
864 msg->apply_bytes = 0;
866 msg->apply_bytes -= send;
867 if (msg->sg.size == 0)
868 tls_free_open_rec(sk);
869 *copied -= (send + delta);
874 bool reset_eval = !ctx->open_rec;
878 msg = &rec->msg_plaintext;
879 if (!msg->apply_bytes)
883 psock->eval = __SK_NONE;
884 if (psock->sk_redir) {
885 sock_put(psock->sk_redir);
886 psock->sk_redir = NULL;
893 sk_psock_put(sk, psock);
897 static int tls_sw_push_pending_record(struct sock *sk, int flags)
899 struct tls_context *tls_ctx = tls_get_ctx(sk);
900 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
901 struct tls_rec *rec = ctx->open_rec;
902 struct sk_msg *msg_pl;
908 msg_pl = &rec->msg_plaintext;
909 copied = msg_pl->sg.size;
913 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
917 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
919 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
920 struct tls_context *tls_ctx = tls_get_ctx(sk);
921 struct tls_prot_info *prot = &tls_ctx->prot_info;
922 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
923 bool async_capable = ctx->async_capable;
924 unsigned char record_type = TLS_RECORD_TYPE_DATA;
925 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
926 bool eor = !(msg->msg_flags & MSG_MORE);
929 struct sk_msg *msg_pl, *msg_en;
940 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
944 mutex_lock(&tls_ctx->tx_lock);
947 if (unlikely(msg->msg_controllen)) {
948 ret = tls_process_cmsg(sk, msg, &record_type);
950 if (ret == -EINPROGRESS)
952 else if (ret != -EAGAIN)
957 while (msg_data_left(msg)) {
966 rec = ctx->open_rec = tls_get_rec(sk);
972 msg_pl = &rec->msg_plaintext;
973 msg_en = &rec->msg_encrypted;
975 orig_size = msg_pl->sg.size;
977 try_to_copy = msg_data_left(msg);
978 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
979 if (try_to_copy >= record_room) {
980 try_to_copy = record_room;
984 required_size = msg_pl->sg.size + try_to_copy +
987 if (!sk_stream_memory_free(sk))
988 goto wait_for_sndbuf;
991 ret = tls_alloc_encrypted_msg(sk, required_size);
994 goto wait_for_memory;
996 /* Adjust try_to_copy according to the amount that was
997 * actually allocated. The difference is due
998 * to max sg elements limit
1000 try_to_copy -= required_size - msg_en->sg.size;
1004 if (!is_kvec && (full_record || eor) && !async_capable) {
1005 u32 first = msg_pl->sg.end;
1007 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1008 msg_pl, try_to_copy);
1010 goto fallback_to_reg_send;
1013 copied += try_to_copy;
1015 sk_msg_sg_copy_set(msg_pl, first);
1016 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1017 record_type, &copied,
1020 if (ret == -EINPROGRESS)
1022 else if (ret == -ENOMEM)
1023 goto wait_for_memory;
1024 else if (ctx->open_rec && ret == -ENOSPC)
1026 else if (ret != -EAGAIN)
1031 copied -= try_to_copy;
1032 sk_msg_sg_copy_clear(msg_pl, first);
1033 iov_iter_revert(&msg->msg_iter,
1034 msg_pl->sg.size - orig_size);
1035 fallback_to_reg_send:
1036 sk_msg_trim(sk, msg_pl, orig_size);
1039 required_size = msg_pl->sg.size + try_to_copy;
1041 ret = tls_clone_plaintext_msg(sk, required_size);
1046 /* Adjust try_to_copy according to the amount that was
1047 * actually allocated. The difference is due
1048 * to max sg elements limit
1050 try_to_copy -= required_size - msg_pl->sg.size;
1052 sk_msg_trim(sk, msg_en,
1053 msg_pl->sg.size + prot->overhead_size);
1057 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1058 msg_pl, try_to_copy);
1063 /* Open records defined only if successfully copied, otherwise
1064 * we would trim the sg but not reset the open record frags.
1066 tls_ctx->pending_open_record_frags = true;
1067 copied += try_to_copy;
1068 if (full_record || eor) {
1069 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1070 record_type, &copied,
1073 if (ret == -EINPROGRESS)
1075 else if (ret == -ENOMEM)
1076 goto wait_for_memory;
1077 else if (ret != -EAGAIN) {
1088 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1090 ret = sk_stream_wait_memory(sk, &timeo);
1094 tls_trim_both_msgs(sk, orig_size);
1098 if (ctx->open_rec && msg_en->sg.size < required_size)
1099 goto alloc_encrypted;
1104 } else if (num_zc) {
1105 /* Wait for pending encryptions to get completed */
1106 spin_lock_bh(&ctx->encrypt_compl_lock);
1107 ctx->async_notify = true;
1109 pending = atomic_read(&ctx->encrypt_pending);
1110 spin_unlock_bh(&ctx->encrypt_compl_lock);
1112 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1114 reinit_completion(&ctx->async_wait.completion);
1116 /* There can be no concurrent accesses, since we have no
1117 * pending encrypt operations
1119 WRITE_ONCE(ctx->async_notify, false);
1121 if (ctx->async_wait.err) {
1122 ret = ctx->async_wait.err;
1127 /* Transmit if any encryptions have completed */
1128 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1129 cancel_delayed_work(&ctx->tx_work.work);
1130 tls_tx_records(sk, msg->msg_flags);
1134 ret = sk_stream_error(sk, msg->msg_flags, ret);
1137 mutex_unlock(&tls_ctx->tx_lock);
1138 return copied > 0 ? copied : ret;
1141 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1142 int offset, size_t size, int flags)
1144 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1145 struct tls_context *tls_ctx = tls_get_ctx(sk);
1146 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1147 struct tls_prot_info *prot = &tls_ctx->prot_info;
1148 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1149 struct sk_msg *msg_pl;
1150 struct tls_rec *rec;
1158 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1159 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1161 /* Call the sk_stream functions to manage the sndbuf mem. */
1163 size_t copy, required_size;
1171 rec = ctx->open_rec;
1173 rec = ctx->open_rec = tls_get_rec(sk);
1179 msg_pl = &rec->msg_plaintext;
1181 full_record = false;
1182 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1184 if (copy >= record_room) {
1189 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1191 if (!sk_stream_memory_free(sk))
1192 goto wait_for_sndbuf;
1194 ret = tls_alloc_encrypted_msg(sk, required_size);
1197 goto wait_for_memory;
1199 /* Adjust copy according to the amount that was
1200 * actually allocated. The difference is due
1201 * to max sg elements limit
1203 copy -= required_size - msg_pl->sg.size;
1207 sk_msg_page_add(msg_pl, page, copy, offset);
1208 sk_mem_charge(sk, copy);
1214 tls_ctx->pending_open_record_frags = true;
1215 if (full_record || eor || sk_msg_full(msg_pl)) {
1216 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1217 record_type, &copied, flags);
1219 if (ret == -EINPROGRESS)
1221 else if (ret == -ENOMEM)
1222 goto wait_for_memory;
1223 else if (ret != -EAGAIN) {
1232 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1234 ret = sk_stream_wait_memory(sk, &timeo);
1237 tls_trim_both_msgs(sk, msg_pl->sg.size);
1246 /* Transmit if any encryptions have completed */
1247 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1248 cancel_delayed_work(&ctx->tx_work.work);
1249 tls_tx_records(sk, flags);
1253 ret = sk_stream_error(sk, flags, ret);
1254 return copied > 0 ? copied : ret;
1257 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1258 int offset, size_t size, int flags)
1260 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1261 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1262 MSG_NO_SHARED_FRAGS))
1265 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1268 int tls_sw_sendpage(struct sock *sk, struct page *page,
1269 int offset, size_t size, int flags)
1271 struct tls_context *tls_ctx = tls_get_ctx(sk);
1274 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1275 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1278 mutex_lock(&tls_ctx->tx_lock);
1280 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1282 mutex_unlock(&tls_ctx->tx_lock);
1287 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1290 struct tls_context *tls_ctx = tls_get_ctx(sk);
1291 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1292 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1295 timeo = sock_rcvtimeo(sk, nonblock);
1297 while (!tls_strp_msg_ready(ctx)) {
1298 if (!sk_psock_queue_empty(psock))
1302 return sock_error(sk);
1304 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1305 tls_strp_check_rcv(&ctx->strp);
1306 if (tls_strp_msg_ready(ctx))
1310 if (sk->sk_shutdown & RCV_SHUTDOWN)
1313 if (sock_flag(sk, SOCK_DONE))
1320 add_wait_queue(sk_sleep(sk), &wait);
1321 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322 sk_wait_event(sk, &timeo,
1323 tls_strp_msg_ready(ctx) ||
1324 !sk_psock_queue_empty(psock),
1326 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1327 remove_wait_queue(sk_sleep(sk), &wait);
1329 /* Handle signals */
1330 if (signal_pending(current))
1331 return sock_intr_errno(timeo);
1334 tls_strp_msg_load(&ctx->strp, released);
1339 static int tls_setup_from_iter(struct iov_iter *from,
1340 int length, int *pages_used,
1341 struct scatterlist *to,
1344 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1345 struct page *pages[MAX_SKB_FRAGS];
1346 unsigned int size = 0;
1347 ssize_t copied, use;
1350 while (length > 0) {
1352 maxpages = to_max_pages - num_elem;
1353 if (maxpages == 0) {
1357 copied = iov_iter_get_pages2(from, pages,
1368 use = min_t(int, copied, PAGE_SIZE - offset);
1370 sg_set_page(&to[num_elem],
1371 pages[i], use, offset);
1372 sg_unmark_end(&to[num_elem]);
1373 /* We do not uncharge memory from this API */
1382 /* Mark the end in the last sg entry if newly added */
1383 if (num_elem > *pages_used)
1384 sg_mark_end(&to[num_elem - 1]);
1387 iov_iter_revert(from, size);
1388 *pages_used = num_elem;
1393 static struct sk_buff *
1394 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1395 unsigned int full_len)
1397 struct strp_msg *clr_rxm;
1398 struct sk_buff *clr_skb;
1401 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1402 &err, sk->sk_allocation);
1406 skb_copy_header(clr_skb, skb);
1407 clr_skb->len = full_len;
1408 clr_skb->data_len = full_len;
1410 clr_rxm = strp_msg(clr_skb);
1411 clr_rxm->offset = 0;
1418 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1419 * They must transform the darg in/out argument are as follows:
1421 * -------------------------------------------------------------------
1422 * zc | Zero-copy decrypt allowed | Zero-copy performed
1423 * async | Async decrypt allowed | Async crypto used / in progress
1424 * skb | * | Output skb
1426 * If ZC decryption was performed darg.skb will point to the input skb.
1429 /* This function decrypts the input skb into either out_iov or in out_sg
1430 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1431 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1432 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1433 * NULL, then the decryption happens inside skb buffers itself, i.e.
1434 * zero-copy gets disabled and 'darg->zc' is updated.
1436 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1437 struct scatterlist *out_sg,
1438 struct tls_decrypt_arg *darg)
1440 struct tls_context *tls_ctx = tls_get_ctx(sk);
1441 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1442 struct tls_prot_info *prot = &tls_ctx->prot_info;
1443 int n_sgin, n_sgout, aead_size, err, pages = 0;
1444 struct sk_buff *skb = tls_strp_msg(ctx);
1445 const struct strp_msg *rxm = strp_msg(skb);
1446 const struct tls_msg *tlm = tls_msg(skb);
1447 struct aead_request *aead_req;
1448 struct scatterlist *sgin = NULL;
1449 struct scatterlist *sgout = NULL;
1450 const int data_len = rxm->full_len - prot->overhead_size;
1451 int tail_pages = !!prot->tail_size;
1452 struct tls_decrypt_ctx *dctx;
1453 struct sk_buff *clear_skb;
1457 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1458 rxm->full_len - prot->prepend_size);
1460 return n_sgin ?: -EBADMSG;
1462 if (darg->zc && (out_iov || out_sg)) {
1466 n_sgout = 1 + tail_pages +
1467 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1469 n_sgout = sg_nents(out_sg);
1473 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1477 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1480 /* Increment to accommodate AAD */
1481 n_sgin = n_sgin + 1;
1483 /* Allocate a single block of memory which contains
1484 * aead_req || tls_decrypt_ctx.
1485 * Both structs are variable length.
1487 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1488 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1495 /* Segment the allocated memory */
1496 aead_req = (struct aead_request *)mem;
1497 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1498 sgin = &dctx->sg[0];
1499 sgout = &dctx->sg[n_sgin];
1501 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1502 switch (prot->cipher_type) {
1503 case TLS_CIPHER_AES_CCM_128:
1504 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1507 case TLS_CIPHER_SM4_CCM:
1508 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1514 if (prot->version == TLS_1_3_VERSION ||
1515 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1516 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1517 prot->iv_size + prot->salt_size);
1519 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1520 &dctx->iv[iv_offset] + prot->salt_size,
1524 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1526 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1529 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1531 tls_ctx->rx.rec_seq, tlm->control, prot);
1534 sg_init_table(sgin, n_sgin);
1535 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1536 err = skb_to_sgvec(skb, &sgin[1],
1537 rxm->offset + prot->prepend_size,
1538 rxm->full_len - prot->prepend_size);
1543 sg_init_table(sgout, n_sgout);
1544 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1546 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1547 data_len + prot->tail_size);
1550 } else if (out_iov) {
1551 sg_init_table(sgout, n_sgout);
1552 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1554 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1555 (n_sgout - 1 - tail_pages));
1557 goto exit_free_pages;
1559 if (prot->tail_size) {
1560 sg_unmark_end(&sgout[pages]);
1561 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1563 sg_mark_end(&sgout[pages + 1]);
1565 } else if (out_sg) {
1566 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1569 /* Prepare and submit AEAD request */
1570 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1571 data_len + prot->tail_size, aead_req, darg);
1573 goto exit_free_pages;
1575 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1578 if (unlikely(darg->async)) {
1579 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1581 __skb_queue_tail(&ctx->async_hold, darg->skb);
1585 if (prot->tail_size)
1586 darg->tail = dctx->tail;
1589 /* Release the pages in case iov was mapped to pages */
1590 for (; pages > 0; pages--)
1591 put_page(sg_page(&sgout[pages]));
1595 consume_skb(clear_skb);
1600 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1601 struct msghdr *msg, struct tls_decrypt_arg *darg)
1603 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1604 struct tls_prot_info *prot = &tls_ctx->prot_info;
1605 struct strp_msg *rxm;
1608 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1610 if (err == -EBADMSG)
1611 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1614 /* keep going even for ->async, the code below is TLS 1.3 */
1616 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1617 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1618 darg->tail != TLS_RECORD_TYPE_DATA)) {
1621 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1622 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1623 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1626 pad = tls_padding_length(prot, darg->skb, darg);
1628 if (darg->skb != tls_strp_msg(ctx))
1629 consume_skb(darg->skb);
1633 rxm = strp_msg(darg->skb);
1634 rxm->full_len -= pad;
1640 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1641 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1643 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1644 struct tls_prot_info *prot = &tls_ctx->prot_info;
1645 struct strp_msg *rxm;
1648 if (tls_ctx->rx_conf != TLS_HW)
1651 err = tls_device_decrypted(sk, tls_ctx);
1655 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1659 darg->async = false;
1660 darg->skb = tls_strp_msg(ctx);
1661 /* ->zc downgrade check, in case TLS 1.3 gets here */
1662 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1663 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1665 rxm = strp_msg(darg->skb);
1666 rxm->full_len -= pad;
1669 /* Non-ZC case needs a real skb */
1670 darg->skb = tls_strp_msg_detach(ctx);
1674 unsigned int off, len;
1676 /* In ZC case nobody cares about the output skb.
1677 * Just copy the data here. Note the skb is not fully trimmed.
1679 off = rxm->offset + prot->prepend_size;
1680 len = rxm->full_len - prot->overhead_size;
1682 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1689 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1690 struct tls_decrypt_arg *darg)
1692 struct tls_context *tls_ctx = tls_get_ctx(sk);
1693 struct tls_prot_info *prot = &tls_ctx->prot_info;
1694 struct strp_msg *rxm;
1697 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1699 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1703 rxm = strp_msg(darg->skb);
1704 rxm->offset += prot->prepend_size;
1705 rxm->full_len -= prot->overhead_size;
1706 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1711 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1713 struct tls_decrypt_arg darg = { .zc = true, };
1715 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1718 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1724 *control = tlm->control;
1728 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1729 sizeof(*control), control);
1730 if (*control != TLS_RECORD_TYPE_DATA) {
1731 if (err || msg->msg_flags & MSG_CTRUNC)
1734 } else if (*control != tlm->control) {
1741 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1743 tls_strp_msg_done(&ctx->strp);
1746 /* This function traverses the rx_list in tls receive context to copies the
1747 * decrypted records into the buffer provided by caller zero copy is not
1748 * true. Further, the records are removed from the rx_list if it is not a peek
1749 * case and the record has been consumed completely.
1751 static int process_rx_list(struct tls_sw_context_rx *ctx,
1758 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1759 struct tls_msg *tlm;
1763 while (skip && skb) {
1764 struct strp_msg *rxm = strp_msg(skb);
1767 err = tls_record_content_type(msg, tlm, control);
1771 if (skip < rxm->full_len)
1774 skip = skip - rxm->full_len;
1775 skb = skb_peek_next(skb, &ctx->rx_list);
1778 while (len && skb) {
1779 struct sk_buff *next_skb;
1780 struct strp_msg *rxm = strp_msg(skb);
1781 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1785 err = tls_record_content_type(msg, tlm, control);
1789 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1795 copied = copied + chunk;
1797 /* Consume the data from record if it is non-peek case*/
1799 rxm->offset = rxm->offset + chunk;
1800 rxm->full_len = rxm->full_len - chunk;
1802 /* Return if there is unconsumed data in the record */
1803 if (rxm->full_len - skip)
1807 /* The remaining skip-bytes must lie in 1st record in rx_list.
1808 * So from the 2nd record, 'skip' should be 0.
1813 msg->msg_flags |= MSG_EOR;
1815 next_skb = skb_peek_next(skb, &ctx->rx_list);
1818 __skb_unlink(skb, &ctx->rx_list);
1827 return copied ? : err;
1831 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1832 size_t len_left, size_t decrypted, ssize_t done,
1837 if (len_left <= decrypted)
1840 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1841 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1845 return sk_flush_backlog(sk);
1848 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1856 timeo = sock_rcvtimeo(sk, nonblock);
1858 while (unlikely(ctx->reader_present)) {
1859 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1861 ctx->reader_contended = 1;
1863 add_wait_queue(&ctx->wq, &wait);
1864 sk_wait_event(sk, &timeo,
1865 !READ_ONCE(ctx->reader_present), &wait);
1866 remove_wait_queue(&ctx->wq, &wait);
1872 if (signal_pending(current)) {
1873 err = sock_intr_errno(timeo);
1878 WRITE_ONCE(ctx->reader_present, 1);
1887 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1889 if (unlikely(ctx->reader_contended)) {
1890 if (wq_has_sleeper(&ctx->wq))
1893 ctx->reader_contended = 0;
1895 WARN_ON_ONCE(!ctx->reader_present);
1898 WRITE_ONCE(ctx->reader_present, 0);
1902 int tls_sw_recvmsg(struct sock *sk,
1908 struct tls_context *tls_ctx = tls_get_ctx(sk);
1909 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1910 struct tls_prot_info *prot = &tls_ctx->prot_info;
1911 ssize_t decrypted = 0, async_copy_bytes = 0;
1912 struct sk_psock *psock;
1913 unsigned char control = 0;
1914 size_t flushed_at = 0;
1915 struct strp_msg *rxm;
1916 struct tls_msg *tlm;
1920 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1921 bool is_peek = flags & MSG_PEEK;
1922 bool released = true;
1923 bool bpf_strp_enabled;
1926 if (unlikely(flags & MSG_ERRQUEUE))
1927 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1929 psock = sk_psock_get(sk);
1930 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1933 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1935 /* If crypto failed the connection is broken */
1936 err = ctx->async_wait.err;
1940 /* Process pending decrypted records. It must be non-zero-copy */
1941 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1949 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1952 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1955 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1956 struct tls_decrypt_arg darg;
1957 int to_decrypt, chunk;
1959 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1963 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1974 memset(&darg.inargs, 0, sizeof(darg.inargs));
1976 rxm = strp_msg(tls_strp_msg(ctx));
1977 tlm = tls_msg(tls_strp_msg(ctx));
1979 to_decrypt = rxm->full_len - prot->overhead_size;
1981 if (zc_capable && to_decrypt <= len &&
1982 tlm->control == TLS_RECORD_TYPE_DATA)
1985 /* Do not use async mode if record is non-data */
1986 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1987 darg.async = ctx->async_capable;
1991 err = tls_rx_one_record(sk, msg, &darg);
1993 tls_err_abort(sk, -EBADMSG);
1997 async |= darg.async;
1999 /* If the type of records being processed is not known yet,
2000 * set it to record type just dequeued. If it is already known,
2001 * but does not match the record type just dequeued, go to end.
2002 * We always get record type here since for tls1.2, record type
2003 * is known just after record is dequeued from stream parser.
2004 * For tls1.3, we disable async.
2006 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2008 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2009 tls_rx_rec_done(ctx);
2011 __skb_queue_tail(&ctx->rx_list, darg.skb);
2015 /* periodically flush backlog, and feed strparser */
2016 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2020 /* TLS 1.3 may have updated the length by more than overhead */
2021 rxm = strp_msg(darg.skb);
2022 chunk = rxm->full_len;
2023 tls_rx_rec_done(ctx);
2026 bool partially_consumed = chunk > len;
2027 struct sk_buff *skb = darg.skb;
2029 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2032 /* TLS 1.2-only, to_decrypt must be text len */
2033 chunk = min_t(int, to_decrypt, len);
2034 async_copy_bytes += chunk;
2038 __skb_queue_tail(&ctx->rx_list, skb);
2042 if (bpf_strp_enabled) {
2044 err = sk_psock_tls_strp_read(psock, skb);
2045 if (err != __SK_PASS) {
2046 rxm->offset = rxm->offset + rxm->full_len;
2048 if (err == __SK_DROP)
2054 if (partially_consumed)
2057 err = skb_copy_datagram_msg(skb, rxm->offset,
2060 goto put_on_rx_list_err;
2063 goto put_on_rx_list;
2065 if (partially_consumed) {
2066 rxm->offset += chunk;
2067 rxm->full_len -= chunk;
2068 goto put_on_rx_list;
2077 /* Return full control message to userspace before trying
2078 * to parse another message type
2080 msg->msg_flags |= MSG_EOR;
2081 if (control != TLS_RECORD_TYPE_DATA)
2089 /* Wait for all previously submitted records to be decrypted */
2090 spin_lock_bh(&ctx->decrypt_compl_lock);
2091 reinit_completion(&ctx->async_wait.completion);
2092 pending = atomic_read(&ctx->decrypt_pending);
2093 spin_unlock_bh(&ctx->decrypt_compl_lock);
2096 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2097 __skb_queue_purge(&ctx->async_hold);
2100 if (err >= 0 || err == -EINPROGRESS)
2106 /* Drain records from the rx_list & copy if required */
2107 if (is_peek || is_kvec)
2108 err = process_rx_list(ctx, msg, &control, copied,
2109 decrypted, is_peek);
2111 err = process_rx_list(ctx, msg, &control, 0,
2112 async_copy_bytes, is_peek);
2113 decrypted = max(err, 0);
2116 copied += decrypted;
2119 tls_rx_reader_unlock(sk, ctx);
2121 sk_psock_put(sk, psock);
2122 return copied ? : err;
2125 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2126 struct pipe_inode_info *pipe,
2127 size_t len, unsigned int flags)
2129 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131 struct strp_msg *rxm = NULL;
2132 struct sock *sk = sock->sk;
2133 struct tls_msg *tlm;
2134 struct sk_buff *skb;
2139 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2143 if (!skb_queue_empty(&ctx->rx_list)) {
2144 skb = __skb_dequeue(&ctx->rx_list);
2146 struct tls_decrypt_arg darg;
2148 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2151 goto splice_read_end;
2153 memset(&darg.inargs, 0, sizeof(darg.inargs));
2155 err = tls_rx_one_record(sk, NULL, &darg);
2157 tls_err_abort(sk, -EBADMSG);
2158 goto splice_read_end;
2161 tls_rx_rec_done(ctx);
2165 rxm = strp_msg(skb);
2168 /* splice does not support reading control messages */
2169 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2171 goto splice_requeue;
2174 chunk = min_t(unsigned int, rxm->full_len, len);
2175 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2177 goto splice_requeue;
2179 if (chunk < rxm->full_len) {
2181 rxm->full_len -= len;
2182 goto splice_requeue;
2188 tls_rx_reader_unlock(sk, ctx);
2189 return copied ? : err;
2192 __skb_queue_head(&ctx->rx_list, skb);
2193 goto splice_read_end;
2196 bool tls_sw_sock_is_readable(struct sock *sk)
2198 struct tls_context *tls_ctx = tls_get_ctx(sk);
2199 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2200 bool ingress_empty = true;
2201 struct sk_psock *psock;
2204 psock = sk_psock(sk);
2206 ingress_empty = list_empty(&psock->ingress_msg);
2209 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2210 !skb_queue_empty(&ctx->rx_list);
2213 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2215 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2216 struct tls_prot_info *prot = &tls_ctx->prot_info;
2217 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2218 size_t cipher_overhead;
2219 size_t data_len = 0;
2222 /* Verify that we have a full TLS header, or wait for more data */
2223 if (strp->stm.offset + prot->prepend_size > skb->len)
2226 /* Sanity-check size of on-stack buffer. */
2227 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2232 /* Linearize header to local buffer */
2233 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2237 strp->mark = header[0];
2239 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2241 cipher_overhead = prot->tag_size;
2242 if (prot->version != TLS_1_3_VERSION &&
2243 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2244 cipher_overhead += prot->iv_size;
2246 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2251 if (data_len < cipher_overhead) {
2256 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2257 if (header[1] != TLS_1_2_VERSION_MINOR ||
2258 header[2] != TLS_1_2_VERSION_MAJOR) {
2263 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2264 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2265 return data_len + TLS_HEADER_SIZE;
2268 tls_err_abort(strp->sk, ret);
2273 void tls_rx_msg_ready(struct tls_strparser *strp)
2275 struct tls_sw_context_rx *ctx;
2277 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2278 ctx->saved_data_ready(strp->sk);
2281 static void tls_data_ready(struct sock *sk)
2283 struct tls_context *tls_ctx = tls_get_ctx(sk);
2284 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2285 struct sk_psock *psock;
2287 tls_strp_data_ready(&ctx->strp);
2289 psock = sk_psock_get(sk);
2291 if (!list_empty(&psock->ingress_msg))
2292 ctx->saved_data_ready(sk);
2293 sk_psock_put(sk, psock);
2297 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2299 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2301 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2302 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2303 cancel_delayed_work_sync(&ctx->tx_work.work);
2306 void tls_sw_release_resources_tx(struct sock *sk)
2308 struct tls_context *tls_ctx = tls_get_ctx(sk);
2309 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2310 struct tls_rec *rec, *tmp;
2313 /* Wait for any pending async encryptions to complete */
2314 spin_lock_bh(&ctx->encrypt_compl_lock);
2315 ctx->async_notify = true;
2316 pending = atomic_read(&ctx->encrypt_pending);
2317 spin_unlock_bh(&ctx->encrypt_compl_lock);
2320 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2322 tls_tx_records(sk, -1);
2324 /* Free up un-sent records in tx_list. First, free
2325 * the partially sent record if any at head of tx_list.
2327 if (tls_ctx->partially_sent_record) {
2328 tls_free_partial_record(sk, tls_ctx);
2329 rec = list_first_entry(&ctx->tx_list,
2330 struct tls_rec, list);
2331 list_del(&rec->list);
2332 sk_msg_free(sk, &rec->msg_plaintext);
2336 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2337 list_del(&rec->list);
2338 sk_msg_free(sk, &rec->msg_encrypted);
2339 sk_msg_free(sk, &rec->msg_plaintext);
2343 crypto_free_aead(ctx->aead_send);
2344 tls_free_open_rec(sk);
2347 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2349 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2354 void tls_sw_release_resources_rx(struct sock *sk)
2356 struct tls_context *tls_ctx = tls_get_ctx(sk);
2357 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2359 kfree(tls_ctx->rx.rec_seq);
2360 kfree(tls_ctx->rx.iv);
2362 if (ctx->aead_recv) {
2363 __skb_queue_purge(&ctx->rx_list);
2364 crypto_free_aead(ctx->aead_recv);
2365 tls_strp_stop(&ctx->strp);
2366 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2367 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2370 if (ctx->saved_data_ready) {
2371 write_lock_bh(&sk->sk_callback_lock);
2372 sk->sk_data_ready = ctx->saved_data_ready;
2373 write_unlock_bh(&sk->sk_callback_lock);
2378 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2380 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2382 tls_strp_done(&ctx->strp);
2385 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2387 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2392 void tls_sw_free_resources_rx(struct sock *sk)
2394 struct tls_context *tls_ctx = tls_get_ctx(sk);
2396 tls_sw_release_resources_rx(sk);
2397 tls_sw_free_ctx_rx(tls_ctx);
2400 /* The work handler to transmitt the encrypted records in tx_list */
2401 static void tx_work_handler(struct work_struct *work)
2403 struct delayed_work *delayed_work = to_delayed_work(work);
2404 struct tx_work *tx_work = container_of(delayed_work,
2405 struct tx_work, work);
2406 struct sock *sk = tx_work->sk;
2407 struct tls_context *tls_ctx = tls_get_ctx(sk);
2408 struct tls_sw_context_tx *ctx;
2410 if (unlikely(!tls_ctx))
2413 ctx = tls_sw_ctx_tx(tls_ctx);
2414 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2417 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2419 mutex_lock(&tls_ctx->tx_lock);
2421 tls_tx_records(sk, -1);
2423 mutex_unlock(&tls_ctx->tx_lock);
2426 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2428 struct tls_rec *rec;
2430 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2434 return READ_ONCE(rec->tx_ready);
2437 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2439 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2441 /* Schedule the transmission if tx list is ready */
2442 if (tls_is_tx_ready(tx_ctx) &&
2443 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2444 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2447 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2449 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2451 write_lock_bh(&sk->sk_callback_lock);
2452 rx_ctx->saved_data_ready = sk->sk_data_ready;
2453 sk->sk_data_ready = tls_data_ready;
2454 write_unlock_bh(&sk->sk_callback_lock);
2457 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2459 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2461 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2462 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2465 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2467 struct tls_context *tls_ctx = tls_get_ctx(sk);
2468 struct tls_prot_info *prot = &tls_ctx->prot_info;
2469 struct tls_crypto_info *crypto_info;
2470 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2471 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2472 struct cipher_context *cctx;
2473 struct crypto_aead **aead;
2474 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2475 struct crypto_tfm *tfm;
2476 char *iv, *rec_seq, *key, *salt, *cipher_name;
2486 if (!ctx->priv_ctx_tx) {
2487 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2492 ctx->priv_ctx_tx = sw_ctx_tx;
2495 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2498 if (!ctx->priv_ctx_rx) {
2499 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2504 ctx->priv_ctx_rx = sw_ctx_rx;
2507 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2512 crypto_init_wait(&sw_ctx_tx->async_wait);
2513 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2514 crypto_info = &ctx->crypto_send.info;
2516 aead = &sw_ctx_tx->aead_send;
2517 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2518 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2519 sw_ctx_tx->tx_work.sk = sk;
2521 crypto_init_wait(&sw_ctx_rx->async_wait);
2522 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2523 init_waitqueue_head(&sw_ctx_rx->wq);
2524 crypto_info = &ctx->crypto_recv.info;
2526 skb_queue_head_init(&sw_ctx_rx->rx_list);
2527 skb_queue_head_init(&sw_ctx_rx->async_hold);
2528 aead = &sw_ctx_rx->aead_recv;
2531 switch (crypto_info->cipher_type) {
2532 case TLS_CIPHER_AES_GCM_128: {
2533 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2535 gcm_128_info = (void *)crypto_info;
2536 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2537 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2538 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2539 iv = gcm_128_info->iv;
2540 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2541 rec_seq = gcm_128_info->rec_seq;
2542 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2543 key = gcm_128_info->key;
2544 salt = gcm_128_info->salt;
2545 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2546 cipher_name = "gcm(aes)";
2549 case TLS_CIPHER_AES_GCM_256: {
2550 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2552 gcm_256_info = (void *)crypto_info;
2553 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2554 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2555 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2556 iv = gcm_256_info->iv;
2557 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2558 rec_seq = gcm_256_info->rec_seq;
2559 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2560 key = gcm_256_info->key;
2561 salt = gcm_256_info->salt;
2562 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2563 cipher_name = "gcm(aes)";
2566 case TLS_CIPHER_AES_CCM_128: {
2567 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2569 ccm_128_info = (void *)crypto_info;
2570 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2571 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2572 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2573 iv = ccm_128_info->iv;
2574 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2575 rec_seq = ccm_128_info->rec_seq;
2576 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2577 key = ccm_128_info->key;
2578 salt = ccm_128_info->salt;
2579 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2580 cipher_name = "ccm(aes)";
2583 case TLS_CIPHER_CHACHA20_POLY1305: {
2584 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2586 chacha20_poly1305_info = (void *)crypto_info;
2588 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2589 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2590 iv = chacha20_poly1305_info->iv;
2591 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2592 rec_seq = chacha20_poly1305_info->rec_seq;
2593 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2594 key = chacha20_poly1305_info->key;
2595 salt = chacha20_poly1305_info->salt;
2596 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2597 cipher_name = "rfc7539(chacha20,poly1305)";
2600 case TLS_CIPHER_SM4_GCM: {
2601 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2603 sm4_gcm_info = (void *)crypto_info;
2604 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2605 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2606 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2607 iv = sm4_gcm_info->iv;
2608 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2609 rec_seq = sm4_gcm_info->rec_seq;
2610 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2611 key = sm4_gcm_info->key;
2612 salt = sm4_gcm_info->salt;
2613 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2614 cipher_name = "gcm(sm4)";
2617 case TLS_CIPHER_SM4_CCM: {
2618 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2620 sm4_ccm_info = (void *)crypto_info;
2621 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2622 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2623 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2624 iv = sm4_ccm_info->iv;
2625 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2626 rec_seq = sm4_ccm_info->rec_seq;
2627 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2628 key = sm4_ccm_info->key;
2629 salt = sm4_ccm_info->salt;
2630 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2631 cipher_name = "ccm(sm4)";
2634 case TLS_CIPHER_ARIA_GCM_128: {
2635 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2637 aria_gcm_128_info = (void *)crypto_info;
2638 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2639 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2640 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2641 iv = aria_gcm_128_info->iv;
2642 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2643 rec_seq = aria_gcm_128_info->rec_seq;
2644 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2645 key = aria_gcm_128_info->key;
2646 salt = aria_gcm_128_info->salt;
2647 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2648 cipher_name = "gcm(aria)";
2651 case TLS_CIPHER_ARIA_GCM_256: {
2652 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2654 gcm_256_info = (void *)crypto_info;
2655 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2656 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2657 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2658 iv = gcm_256_info->iv;
2659 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2660 rec_seq = gcm_256_info->rec_seq;
2661 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2662 key = gcm_256_info->key;
2663 salt = gcm_256_info->salt;
2664 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2665 cipher_name = "gcm(aria)";
2673 if (crypto_info->version == TLS_1_3_VERSION) {
2675 prot->aad_size = TLS_HEADER_SIZE;
2676 prot->tail_size = 1;
2678 prot->aad_size = TLS_AAD_SPACE_SIZE;
2679 prot->tail_size = 0;
2682 /* Sanity-check the sizes for stack allocations. */
2683 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2684 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2685 prot->aad_size > TLS_MAX_AAD_SIZE) {
2690 prot->version = crypto_info->version;
2691 prot->cipher_type = crypto_info->cipher_type;
2692 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2693 prot->tag_size = tag_size;
2694 prot->overhead_size = prot->prepend_size +
2695 prot->tag_size + prot->tail_size;
2696 prot->iv_size = iv_size;
2697 prot->salt_size = salt_size;
2698 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2703 /* Note: 128 & 256 bit salt are the same size */
2704 prot->rec_seq_size = rec_seq_size;
2705 memcpy(cctx->iv, salt, salt_size);
2706 memcpy(cctx->iv + salt_size, iv, iv_size);
2707 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2708 if (!cctx->rec_seq) {
2714 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2715 if (IS_ERR(*aead)) {
2716 rc = PTR_ERR(*aead);
2722 ctx->push_pending_record = tls_sw_push_pending_record;
2724 rc = crypto_aead_setkey(*aead, key, keysize);
2729 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2734 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2736 tls_update_rx_zc_capable(ctx);
2737 sw_ctx_rx->async_capable =
2738 crypto_info->version != TLS_1_3_VERSION &&
2739 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2741 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2749 crypto_free_aead(*aead);
2752 kfree(cctx->rec_seq);
2753 cctx->rec_seq = NULL;
2759 kfree(ctx->priv_ctx_tx);
2760 ctx->priv_ctx_tx = NULL;
2762 kfree(ctx->priv_ctx_rx);
2763 ctx->priv_ctx_rx = NULL;