1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Support for INET connection oriented protocols.
9 * Authors: See the TCP sources
12 #include <linux/module.h>
13 #include <linux/jhash.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
111 bool inet_rcv_saddr_any(const struct sock *sk)
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
117 return !sk->sk_rcv_saddr;
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
131 EXPORT_SYMBOL(inet_get_local_port_range);
133 static bool inet_use_bhash2_on_bind(const struct sock *sk)
135 #if IS_ENABLED(CONFIG_IPV6)
136 if (sk->sk_family == AF_INET6) {
137 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
139 return addr_type != IPV6_ADDR_ANY &&
140 addr_type != IPV6_ADDR_MAPPED;
143 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
146 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
147 kuid_t sk_uid, bool relax,
148 bool reuseport_cb_ok, bool reuseport_ok)
155 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
157 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
158 sk->sk_bound_dev_if == bound_dev_if2) {
159 if (sk->sk_reuse && sk2->sk_reuse &&
160 sk2->sk_state != TCP_LISTEN) {
161 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
162 sk2->sk_reuseport && reuseport_cb_ok &&
163 (sk2->sk_state == TCP_TIME_WAIT ||
164 uid_eq(sk_uid, sock_i_uid(sk2)))))
166 } else if (!reuseport_ok || !sk->sk_reuseport ||
167 !sk2->sk_reuseport || !reuseport_cb_ok ||
168 (sk2->sk_state != TCP_TIME_WAIT &&
169 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
176 static bool inet_bhash2_conflict(const struct sock *sk,
177 const struct inet_bind2_bucket *tb2,
179 bool relax, bool reuseport_cb_ok,
184 sk_for_each_bound_bhash2(sk2, &tb2->owners) {
185 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
188 if (inet_bind_conflict(sk, sk2, sk_uid, relax,
189 reuseport_cb_ok, reuseport_ok))
195 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
196 static int inet_csk_bind_conflict(const struct sock *sk,
197 const struct inet_bind_bucket *tb,
198 const struct inet_bind2_bucket *tb2, /* may be null */
199 bool relax, bool reuseport_ok)
201 bool reuseport_cb_ok;
202 struct sock_reuseport *reuseport_cb;
203 kuid_t uid = sock_i_uid((struct sock *)sk);
206 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
207 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
208 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
212 * Unlike other sk lookup places we do not check
213 * for sk_net here, since _all_ the socks listed
214 * in tb->owners and tb2->owners list belong
215 * to the same net - the one this bucket belongs to.
218 if (!inet_use_bhash2_on_bind(sk)) {
221 sk_for_each_bound(sk2, &tb->owners)
222 if (inet_bind_conflict(sk, sk2, uid, relax,
223 reuseport_cb_ok, reuseport_ok) &&
224 inet_rcv_saddr_equal(sk, sk2, true))
230 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
231 * ipv4) should have been checked already. We need to do these two
232 * checks separately because their spinlocks have to be acquired/released
233 * independently of each other, to prevent possible deadlocks
235 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
239 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
240 * INADDR_ANY (if ipv4) socket.
242 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
243 * against concurrent binds on the port for addr any
245 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
246 bool relax, bool reuseport_ok)
248 kuid_t uid = sock_i_uid((struct sock *)sk);
249 const struct net *net = sock_net(sk);
250 struct sock_reuseport *reuseport_cb;
251 struct inet_bind_hashbucket *head2;
252 struct inet_bind2_bucket *tb2;
253 bool reuseport_cb_ok;
256 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
257 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
258 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
261 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
263 spin_lock(&head2->lock);
265 inet_bind_bucket_for_each(tb2, &head2->chain)
266 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
269 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
271 spin_unlock(&head2->lock);
275 spin_unlock(&head2->lock);
280 * Find an open port number for the socket. Returns with the
281 * inet_bind_hashbucket locks held if successful.
283 static struct inet_bind_hashbucket *
284 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
285 struct inet_bind2_bucket **tb2_ret,
286 struct inet_bind_hashbucket **head2_ret, int *port_ret)
288 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
289 int i, low, high, attempt_half, port, l3mdev;
290 struct inet_bind_hashbucket *head, *head2;
291 struct net *net = sock_net(sk);
292 struct inet_bind2_bucket *tb2;
293 struct inet_bind_bucket *tb;
294 u32 remaining, offset;
297 l3mdev = inet_sk_bound_l3mdev(sk);
299 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
301 inet_get_local_port_range(net, &low, &high);
302 high++; /* [32768, 60999] -> [32768, 61000[ */
306 int half = low + (((high - low) >> 2) << 1);
308 if (attempt_half == 1)
313 remaining = high - low;
314 if (likely(remaining > 1))
317 offset = get_random_u32_below(remaining);
318 /* __inet_hash_connect() favors ports having @low parity
319 * We do the opposite to not pollute connect() users.
325 for (i = 0; i < remaining; i += 2, port += 2) {
326 if (unlikely(port >= high))
328 if (inet_is_local_reserved_port(net, port))
330 head = &hinfo->bhash[inet_bhashfn(net, port,
332 spin_lock_bh(&head->lock);
333 if (inet_use_bhash2_on_bind(sk)) {
334 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
338 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
339 spin_lock(&head2->lock);
340 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
341 inet_bind_bucket_for_each(tb, &head->chain)
342 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
343 if (!inet_csk_bind_conflict(sk, tb, tb2,
346 spin_unlock(&head2->lock);
352 spin_unlock_bh(&head->lock);
358 goto other_parity_scan;
360 if (attempt_half == 1) {
361 /* OK we now try the upper half of the range */
363 goto other_half_scan;
366 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
367 /* We still have a chance to connect to different destinations */
369 goto ports_exhausted;
380 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
383 kuid_t uid = sock_i_uid(sk);
385 if (tb->fastreuseport <= 0)
387 if (!sk->sk_reuseport)
389 if (rcu_access_pointer(sk->sk_reuseport_cb))
391 if (!uid_eq(tb->fastuid, uid))
393 /* We only need to check the rcv_saddr if this tb was once marked
394 * without fastreuseport and then was reset, as we can only know that
395 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
398 if (tb->fastreuseport == FASTREUSEPORT_ANY)
400 #if IS_ENABLED(CONFIG_IPV6)
401 if (tb->fast_sk_family == AF_INET6)
402 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
407 ipv6_only_sock(sk), true, false);
409 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
410 ipv6_only_sock(sk), true, false);
413 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
416 kuid_t uid = sock_i_uid(sk);
417 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
419 if (hlist_empty(&tb->owners)) {
420 tb->fastreuse = reuse;
421 if (sk->sk_reuseport) {
422 tb->fastreuseport = FASTREUSEPORT_ANY;
424 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
425 tb->fast_ipv6_only = ipv6_only_sock(sk);
426 tb->fast_sk_family = sk->sk_family;
427 #if IS_ENABLED(CONFIG_IPV6)
428 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
431 tb->fastreuseport = 0;
436 if (sk->sk_reuseport) {
437 /* We didn't match or we don't have fastreuseport set on
438 * the tb, but we have sk_reuseport set on this socket
439 * and we know that there are no bind conflicts with
440 * this socket in this tb, so reset our tb's reuseport
441 * settings so that any subsequent sockets that match
442 * our current socket will be put on the fast path.
444 * If we reset we need to set FASTREUSEPORT_STRICT so we
445 * do extra checking for all subsequent sk_reuseport
448 if (!sk_reuseport_match(tb, sk)) {
449 tb->fastreuseport = FASTREUSEPORT_STRICT;
451 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
452 tb->fast_ipv6_only = ipv6_only_sock(sk);
453 tb->fast_sk_family = sk->sk_family;
454 #if IS_ENABLED(CONFIG_IPV6)
455 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
459 tb->fastreuseport = 0;
464 /* Obtain a reference to a local port for the given sock,
465 * if snum is zero it means select any available local port.
466 * We try to allocate an odd port (and leave even ports for connect())
468 int inet_csk_get_port(struct sock *sk, unsigned short snum)
470 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
471 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
472 bool found_port = false, check_bind_conflict = true;
473 bool bhash_created = false, bhash2_created = false;
474 int ret = -EADDRINUSE, port = snum, l3mdev;
475 struct inet_bind_hashbucket *head, *head2;
476 struct inet_bind2_bucket *tb2 = NULL;
477 struct inet_bind_bucket *tb = NULL;
478 bool head2_lock_acquired = false;
479 struct net *net = sock_net(sk);
481 l3mdev = inet_sk_bound_l3mdev(sk);
484 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
488 head2_lock_acquired = true;
494 head = &hinfo->bhash[inet_bhashfn(net, port,
496 spin_lock_bh(&head->lock);
497 inet_bind_bucket_for_each(tb, &head->chain)
498 if (inet_bind_bucket_match(tb, net, port, l3mdev))
503 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
507 bhash_created = true;
511 if (!hlist_empty(&tb->owners)) {
512 if (sk->sk_reuse == SK_FORCE_REUSE ||
513 (tb->fastreuse > 0 && reuse) ||
514 sk_reuseport_match(tb, sk))
515 check_bind_conflict = false;
518 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
519 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
523 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
524 spin_lock(&head2->lock);
525 head2_lock_acquired = true;
526 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
530 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
531 net, head2, port, l3mdev, sk);
534 bhash2_created = true;
537 if (!found_port && check_bind_conflict) {
538 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
543 inet_csk_update_fastreuse(tb, sk);
545 if (!inet_csk(sk)->icsk_bind_hash)
546 inet_bind_hash(sk, tb, tb2, port);
547 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
548 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
554 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
556 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
559 if (head2_lock_acquired)
560 spin_unlock(&head2->lock);
561 spin_unlock_bh(&head->lock);
564 EXPORT_SYMBOL_GPL(inet_csk_get_port);
567 * Wait for an incoming connection, avoid race conditions. This must be called
568 * with the socket locked.
570 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
572 struct inet_connection_sock *icsk = inet_csk(sk);
577 * True wake-one mechanism for incoming connections: only
578 * one process gets woken up, not the 'whole herd'.
579 * Since we do not 'race & poll' for established sockets
580 * anymore, the common case will execute the loop only once.
582 * Subtle issue: "add_wait_queue_exclusive()" will be added
583 * after any current non-exclusive waiters, and we know that
584 * it will always _stay_ after any new non-exclusive waiters
585 * because all non-exclusive waiters are added at the
586 * beginning of the wait-queue. As such, it's ok to "drop"
587 * our exclusiveness temporarily when we get woken up without
588 * having to remove and re-insert us on the wait queue.
591 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
594 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
595 timeo = schedule_timeout(timeo);
596 sched_annotate_sleep();
599 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
602 if (sk->sk_state != TCP_LISTEN)
604 err = sock_intr_errno(timeo);
605 if (signal_pending(current))
611 finish_wait(sk_sleep(sk), &wait);
616 * This will accept the next outstanding connection.
618 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
620 struct inet_connection_sock *icsk = inet_csk(sk);
621 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
622 struct request_sock *req;
628 /* We need to make sure that this socket is listening,
629 * and that it has something pending.
632 if (sk->sk_state != TCP_LISTEN)
635 /* Find already established connection */
636 if (reqsk_queue_empty(queue)) {
637 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
639 /* If this is a non blocking socket don't sleep */
644 error = inet_csk_wait_for_connect(sk, timeo);
648 req = reqsk_queue_remove(queue, sk);
651 if (sk->sk_protocol == IPPROTO_TCP &&
652 tcp_rsk(req)->tfo_listener) {
653 spin_lock_bh(&queue->fastopenq.lock);
654 if (tcp_rsk(req)->tfo_listener) {
655 /* We are still waiting for the final ACK from 3WHS
656 * so can't free req now. Instead, we set req->sk to
657 * NULL to signify that the child socket is taken
658 * so reqsk_fastopen_remove() will free the req
659 * when 3WHS finishes (or is aborted).
664 spin_unlock_bh(&queue->fastopenq.lock);
669 if (newsk && mem_cgroup_sockets_enabled) {
672 /* atomically get the memory usage, set and charge the
677 /* The socket has not been accepted yet, no need to look at
678 * newsk->sk_wmem_queued.
680 amt = sk_mem_pages(newsk->sk_forward_alloc +
681 atomic_read(&newsk->sk_rmem_alloc));
682 mem_cgroup_sk_alloc(newsk);
683 if (newsk->sk_memcg && amt)
684 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
685 GFP_KERNEL | __GFP_NOFAIL);
698 EXPORT_SYMBOL(inet_csk_accept);
701 * Using different timers for retransmit, delayed acks and probes
702 * We may wish use just one timer maintaining a list of expire jiffies
705 void inet_csk_init_xmit_timers(struct sock *sk,
706 void (*retransmit_handler)(struct timer_list *t),
707 void (*delack_handler)(struct timer_list *t),
708 void (*keepalive_handler)(struct timer_list *t))
710 struct inet_connection_sock *icsk = inet_csk(sk);
712 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
713 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
714 timer_setup(&sk->sk_timer, keepalive_handler, 0);
715 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
717 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
719 void inet_csk_clear_xmit_timers(struct sock *sk)
721 struct inet_connection_sock *icsk = inet_csk(sk);
723 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
725 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
726 sk_stop_timer(sk, &icsk->icsk_delack_timer);
727 sk_stop_timer(sk, &sk->sk_timer);
729 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
731 void inet_csk_delete_keepalive_timer(struct sock *sk)
733 sk_stop_timer(sk, &sk->sk_timer);
735 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
737 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
739 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
741 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
743 struct dst_entry *inet_csk_route_req(const struct sock *sk,
745 const struct request_sock *req)
747 const struct inet_request_sock *ireq = inet_rsk(req);
748 struct net *net = read_pnet(&ireq->ireq_net);
749 struct ip_options_rcu *opt;
753 opt = rcu_dereference(ireq->ireq_opt);
755 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
756 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
757 sk->sk_protocol, inet_sk_flowi_flags(sk),
758 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
759 ireq->ir_loc_addr, ireq->ir_rmt_port,
760 htons(ireq->ir_num), sk->sk_uid);
761 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
762 rt = ip_route_output_flow(net, fl4, sk);
765 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
774 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
777 EXPORT_SYMBOL_GPL(inet_csk_route_req);
779 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
781 const struct request_sock *req)
783 const struct inet_request_sock *ireq = inet_rsk(req);
784 struct net *net = read_pnet(&ireq->ireq_net);
785 struct inet_sock *newinet = inet_sk(newsk);
786 struct ip_options_rcu *opt;
790 opt = rcu_dereference(ireq->ireq_opt);
791 fl4 = &newinet->cork.fl.u.ip4;
793 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
794 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
795 sk->sk_protocol, inet_sk_flowi_flags(sk),
796 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
797 ireq->ir_loc_addr, ireq->ir_rmt_port,
798 htons(ireq->ir_num), sk->sk_uid);
799 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
800 rt = ip_route_output_flow(net, fl4, sk);
803 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
810 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
813 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
815 /* Decide when to expire the request and when to resend SYN-ACK */
816 static void syn_ack_recalc(struct request_sock *req,
817 const int max_syn_ack_retries,
818 const u8 rskq_defer_accept,
819 int *expire, int *resend)
821 if (!rskq_defer_accept) {
822 *expire = req->num_timeout >= max_syn_ack_retries;
826 *expire = req->num_timeout >= max_syn_ack_retries &&
827 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
828 /* Do not resend while waiting for data after ACK,
829 * start to resend on end of deferring period to give
830 * last chance for data or ACK to create established socket.
832 *resend = !inet_rsk(req)->acked ||
833 req->num_timeout >= rskq_defer_accept - 1;
836 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
838 int err = req->rsk_ops->rtx_syn_ack(parent, req);
844 EXPORT_SYMBOL(inet_rtx_syn_ack);
846 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
849 struct sock *req_sk, *nreq_sk;
850 struct request_sock *nreq;
852 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
854 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
856 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
861 req_sk = req_to_sk(req);
862 nreq_sk = req_to_sk(nreq);
864 memcpy(nreq_sk, req_sk,
865 offsetof(struct sock, sk_dontcopy_begin));
866 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
867 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
869 sk_node_init(&nreq_sk->sk_node);
870 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
871 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
872 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
874 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
876 nreq->rsk_listener = sk;
878 /* We need not acquire fastopenq->lock
879 * because the child socket is locked in inet_csk_listen_stop().
881 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
882 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
887 static void reqsk_queue_migrated(struct request_sock_queue *queue,
888 const struct request_sock *req)
890 if (req->num_timeout == 0)
891 atomic_inc(&queue->young);
892 atomic_inc(&queue->qlen);
895 static void reqsk_migrate_reset(struct request_sock *req)
897 req->saved_syn = NULL;
898 #if IS_ENABLED(CONFIG_IPV6)
899 inet_rsk(req)->ipv6_opt = NULL;
900 inet_rsk(req)->pktopts = NULL;
902 inet_rsk(req)->ireq_opt = NULL;
906 /* return true if req was found in the ehash table */
907 static bool reqsk_queue_unlink(struct request_sock *req)
909 struct sock *sk = req_to_sk(req);
913 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
914 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
917 found = __sk_nulls_del_node_init_rcu(sk);
920 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
925 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
927 bool unlinked = reqsk_queue_unlink(req);
930 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
935 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
937 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
939 inet_csk_reqsk_queue_drop(sk, req);
942 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
944 static void reqsk_timer_handler(struct timer_list *t)
946 struct request_sock *req = from_timer(req, t, rsk_timer);
947 struct request_sock *nreq = NULL, *oreq = req;
948 struct sock *sk_listener = req->rsk_listener;
949 struct inet_connection_sock *icsk;
950 struct request_sock_queue *queue;
952 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
954 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
957 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
961 nreq = inet_reqsk_clone(req, nsk);
965 /* The new timer for the cloned req can decrease the 2
966 * by calling inet_csk_reqsk_queue_drop_and_put(), so
967 * hold another count to prevent use-after-free and
968 * call reqsk_put() just before return.
970 refcount_set(&nreq->rsk_refcnt, 2 + 1);
971 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
972 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
978 icsk = inet_csk(sk_listener);
979 net = sock_net(sk_listener);
980 max_syn_ack_retries = icsk->icsk_syn_retries ? :
981 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
982 /* Normally all the openreqs are young and become mature
983 * (i.e. converted to established socket) for first timeout.
984 * If synack was not acknowledged for 1 second, it means
985 * one of the following things: synack was lost, ack was lost,
986 * rtt is high or nobody planned to ack (i.e. synflood).
987 * When server is a bit loaded, queue is populated with old
988 * open requests, reducing effective size of queue.
989 * When server is well loaded, queue size reduces to zero
990 * after several minutes of work. It is not synflood,
991 * it is normal operation. The solution is pruning
992 * too old entries overriding normal timeout, when
993 * situation becomes dangerous.
995 * Essentially, we reserve half of room for young
996 * embrions; and abort old ones without pity, if old
997 * ones are about to clog our table.
999 queue = &icsk->icsk_accept_queue;
1000 qlen = reqsk_queue_len(queue);
1001 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1002 int young = reqsk_queue_len_young(queue) << 1;
1004 while (max_syn_ack_retries > 2) {
1007 max_syn_ack_retries--;
1011 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1013 req->rsk_ops->syn_ack_timeout(req);
1016 !inet_rtx_syn_ack(sk_listener, req) ||
1017 inet_rsk(req)->acked)) {
1018 if (req->num_timeout++ == 0)
1019 atomic_dec(&queue->young);
1020 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1025 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1027 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1031 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1032 reqsk_migrate_reset(oreq);
1033 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1040 /* Even if we can clone the req, we may need not retransmit any more
1041 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1042 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1045 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1047 reqsk_migrate_reset(nreq);
1048 reqsk_queue_removed(queue, nreq);
1053 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1056 static void reqsk_queue_hash_req(struct request_sock *req,
1057 unsigned long timeout)
1059 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1060 mod_timer(&req->rsk_timer, jiffies + timeout);
1062 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1063 /* before letting lookups find us, make sure all req fields
1064 * are committed to memory and refcnt initialized.
1067 refcount_set(&req->rsk_refcnt, 2 + 1);
1070 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1071 unsigned long timeout)
1073 reqsk_queue_hash_req(req, timeout);
1074 inet_csk_reqsk_queue_added(sk);
1076 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1078 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1079 const gfp_t priority)
1081 struct inet_connection_sock *icsk = inet_csk(newsk);
1083 if (!icsk->icsk_ulp_ops)
1086 if (icsk->icsk_ulp_ops->clone)
1087 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1091 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1092 * @sk: the socket to clone
1093 * @req: request_sock
1094 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1096 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1098 struct sock *inet_csk_clone_lock(const struct sock *sk,
1099 const struct request_sock *req,
1100 const gfp_t priority)
1102 struct sock *newsk = sk_clone_lock(sk, priority);
1105 struct inet_connection_sock *newicsk = inet_csk(newsk);
1107 inet_sk_set_state(newsk, TCP_SYN_RECV);
1108 newicsk->icsk_bind_hash = NULL;
1109 newicsk->icsk_bind2_hash = NULL;
1111 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1112 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1113 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1115 /* listeners have SOCK_RCU_FREE, not the children */
1116 sock_reset_flag(newsk, SOCK_RCU_FREE);
1118 inet_sk(newsk)->mc_list = NULL;
1120 newsk->sk_mark = inet_rsk(req)->ir_mark;
1121 atomic64_set(&newsk->sk_cookie,
1122 atomic64_read(&inet_rsk(req)->ir_cookie));
1124 newicsk->icsk_retransmits = 0;
1125 newicsk->icsk_backoff = 0;
1126 newicsk->icsk_probes_out = 0;
1127 newicsk->icsk_probes_tstamp = 0;
1129 /* Deinitialize accept_queue to trap illegal accesses. */
1130 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1132 inet_clone_ulp(req, newsk, priority);
1134 security_inet_csk_clone(newsk, req);
1138 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1141 * At this point, there should be no process reference to this
1142 * socket, and thus no user references at all. Therefore we
1143 * can assume the socket waitqueue is inactive and nobody will
1144 * try to jump onto it.
1146 void inet_csk_destroy_sock(struct sock *sk)
1148 WARN_ON(sk->sk_state != TCP_CLOSE);
1149 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1151 /* It cannot be in hash table! */
1152 WARN_ON(!sk_unhashed(sk));
1154 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1155 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1157 sk->sk_prot->destroy(sk);
1159 sk_stream_kill_queues(sk);
1161 xfrm_sk_free_policy(sk);
1163 sk_refcnt_debug_release(sk);
1165 this_cpu_dec(*sk->sk_prot->orphan_count);
1169 EXPORT_SYMBOL(inet_csk_destroy_sock);
1171 /* This function allows to force a closure of a socket after the call to
1172 * tcp/dccp_create_openreq_child().
1174 void inet_csk_prepare_forced_close(struct sock *sk)
1175 __releases(&sk->sk_lock.slock)
1177 /* sk_clone_lock locked the socket and set refcnt to 2 */
1180 inet_csk_prepare_for_destroy_sock(sk);
1181 inet_sk(sk)->inet_num = 0;
1183 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1185 int inet_csk_listen_start(struct sock *sk)
1187 struct inet_connection_sock *icsk = inet_csk(sk);
1188 struct inet_sock *inet = inet_sk(sk);
1191 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1193 sk->sk_ack_backlog = 0;
1194 inet_csk_delack_init(sk);
1196 if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
1197 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1199 /* There is race window here: we announce ourselves listening,
1200 * but this transition is still not validated by get_port().
1201 * It is OK, because this socket enters to hash table only
1202 * after validation is complete.
1204 inet_sk_state_store(sk, TCP_LISTEN);
1205 err = sk->sk_prot->get_port(sk, inet->inet_num);
1207 inet->inet_sport = htons(inet->inet_num);
1210 err = sk->sk_prot->hash(sk);
1216 inet_sk_set_state(sk, TCP_CLOSE);
1219 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1221 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1224 sk->sk_prot->disconnect(child, O_NONBLOCK);
1228 this_cpu_inc(*sk->sk_prot->orphan_count);
1230 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1231 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1232 BUG_ON(sk != req->rsk_listener);
1234 /* Paranoid, to prevent race condition if
1235 * an inbound pkt destined for child is
1236 * blocked by sock lock in tcp_v4_rcv().
1237 * Also to satisfy an assertion in
1238 * tcp_v4_destroy_sock().
1240 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1242 inet_csk_destroy_sock(child);
1245 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1246 struct request_sock *req,
1249 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1251 spin_lock(&queue->rskq_lock);
1252 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1253 inet_child_forget(sk, req, child);
1257 req->dl_next = NULL;
1258 if (queue->rskq_accept_head == NULL)
1259 WRITE_ONCE(queue->rskq_accept_head, req);
1261 queue->rskq_accept_tail->dl_next = req;
1262 queue->rskq_accept_tail = req;
1263 sk_acceptq_added(sk);
1265 spin_unlock(&queue->rskq_lock);
1268 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1270 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1271 struct request_sock *req, bool own_req)
1274 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1275 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1277 if (sk != req->rsk_listener) {
1278 /* another listening sk has been selected,
1279 * migrate the req to it.
1281 struct request_sock *nreq;
1283 /* hold a refcnt for the nreq->rsk_listener
1284 * which is assigned in inet_reqsk_clone()
1287 nreq = inet_reqsk_clone(req, sk);
1289 inet_child_forget(sk, req, child);
1293 refcount_set(&nreq->rsk_refcnt, 1);
1294 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1295 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1296 reqsk_migrate_reset(req);
1301 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1302 reqsk_migrate_reset(nreq);
1304 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1308 /* Too bad, another child took ownership of the request, undo. */
1310 bh_unlock_sock(child);
1314 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1317 * This routine closes sockets which have been at least partially
1318 * opened, but not yet accepted.
1320 void inet_csk_listen_stop(struct sock *sk)
1322 struct inet_connection_sock *icsk = inet_csk(sk);
1323 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1324 struct request_sock *next, *req;
1326 /* Following specs, it would be better either to send FIN
1327 * (and enter FIN-WAIT-1, it is normal close)
1328 * or to send active reset (abort).
1329 * Certainly, it is pretty dangerous while synflood, but it is
1330 * bad justification for our negligence 8)
1331 * To be honest, we are not able to make either
1332 * of the variants now. --ANK
1334 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1335 struct sock *child = req->sk, *nsk;
1336 struct request_sock *nreq;
1339 bh_lock_sock(child);
1340 WARN_ON(sock_owned_by_user(child));
1343 nsk = reuseport_migrate_sock(sk, child, NULL);
1345 nreq = inet_reqsk_clone(req, nsk);
1347 refcount_set(&nreq->rsk_refcnt, 1);
1349 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1350 __NET_INC_STATS(sock_net(nsk),
1351 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1352 reqsk_migrate_reset(req);
1354 __NET_INC_STATS(sock_net(nsk),
1355 LINUX_MIB_TCPMIGRATEREQFAILURE);
1356 reqsk_migrate_reset(nreq);
1360 /* inet_csk_reqsk_queue_add() has already
1361 * called inet_child_forget() on failure case.
1363 goto skip_child_forget;
1367 inet_child_forget(sk, req, child);
1370 bh_unlock_sock(child);
1376 if (queue->fastopenq.rskq_rst_head) {
1377 /* Free all the reqs queued in rskq_rst_head. */
1378 spin_lock_bh(&queue->fastopenq.lock);
1379 req = queue->fastopenq.rskq_rst_head;
1380 queue->fastopenq.rskq_rst_head = NULL;
1381 spin_unlock_bh(&queue->fastopenq.lock);
1382 while (req != NULL) {
1383 next = req->dl_next;
1388 WARN_ON_ONCE(sk->sk_ack_backlog);
1390 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1392 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1394 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1395 const struct inet_sock *inet = inet_sk(sk);
1397 sin->sin_family = AF_INET;
1398 sin->sin_addr.s_addr = inet->inet_daddr;
1399 sin->sin_port = inet->inet_dport;
1401 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1403 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1405 const struct inet_sock *inet = inet_sk(sk);
1406 const struct ip_options_rcu *inet_opt;
1407 __be32 daddr = inet->inet_daddr;
1412 inet_opt = rcu_dereference(inet->inet_opt);
1413 if (inet_opt && inet_opt->opt.srr)
1414 daddr = inet_opt->opt.faddr;
1416 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1417 inet->inet_saddr, inet->inet_dport,
1418 inet->inet_sport, sk->sk_protocol,
1419 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1423 sk_setup_caps(sk, &rt->dst);
1429 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1431 struct dst_entry *dst = __sk_dst_check(sk, 0);
1432 struct inet_sock *inet = inet_sk(sk);
1435 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1439 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1441 dst = __sk_dst_check(sk, 0);
1443 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1447 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);