]> Git Repo - linux.git/blob - fs/ext4/inode.c
mm: make pagevec_lookup() update index
[linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card ([email protected])
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      ([email protected])
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         return S_ISLNK(inode->i_mode) && inode->i_size &&
152                (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188         int extra_credits = 3;
189         struct ext4_xattr_inode_array *ea_inode_array = NULL;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (inode->i_ino != EXT4_JOURNAL_INO &&
213                     ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215                     inode->i_data.nrpages) {
216                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219                         jbd2_complete_transaction(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages_final(&inode->i_data);
223
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240
241         if (!IS_NOQUOTA(inode))
242                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245                                  ext4_blocks_for_truncate(inode)+extra_credits);
246         if (IS_ERR(handle)) {
247                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248                 /*
249                  * If we're going to skip the normal cleanup, we still need to
250                  * make sure that the in-core orphan linked list is properly
251                  * cleaned up.
252                  */
253                 ext4_orphan_del(NULL, inode);
254                 sb_end_intwrite(inode->i_sb);
255                 goto no_delete;
256         }
257
258         if (IS_SYNC(inode))
259                 ext4_handle_sync(handle);
260
261         /*
262          * Set inode->i_size to 0 before calling ext4_truncate(). We need
263          * special handling of symlinks here because i_size is used to
264          * determine whether ext4_inode_info->i_data contains symlink data or
265          * block mappings. Setting i_size to 0 will remove its fast symlink
266          * status. Erase i_data so that it becomes a valid empty block map.
267          */
268         if (ext4_inode_is_fast_symlink(inode))
269                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270         inode->i_size = 0;
271         err = ext4_mark_inode_dirty(handle, inode);
272         if (err) {
273                 ext4_warning(inode->i_sb,
274                              "couldn't mark inode dirty (err %d)", err);
275                 goto stop_handle;
276         }
277         if (inode->i_blocks) {
278                 err = ext4_truncate(inode);
279                 if (err) {
280                         ext4_error(inode->i_sb,
281                                    "couldn't truncate inode %lu (err %d)",
282                                    inode->i_ino, err);
283                         goto stop_handle;
284                 }
285         }
286
287         /* Remove xattr references. */
288         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289                                       extra_credits);
290         if (err) {
291                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293                 ext4_journal_stop(handle);
294                 ext4_orphan_del(NULL, inode);
295                 sb_end_intwrite(inode->i_sb);
296                 ext4_xattr_inode_array_free(ea_inode_array);
297                 goto no_delete;
298         }
299
300         /*
301          * Kill off the orphan record which ext4_truncate created.
302          * AKPM: I think this can be inside the above `if'.
303          * Note that ext4_orphan_del() has to be able to cope with the
304          * deletion of a non-existent orphan - this is because we don't
305          * know if ext4_truncate() actually created an orphan record.
306          * (Well, we could do this if we need to, but heck - it works)
307          */
308         ext4_orphan_del(handle, inode);
309         EXT4_I(inode)->i_dtime  = get_seconds();
310
311         /*
312          * One subtle ordering requirement: if anything has gone wrong
313          * (transaction abort, IO errors, whatever), then we can still
314          * do these next steps (the fs will already have been marked as
315          * having errors), but we can't free the inode if the mark_dirty
316          * fails.
317          */
318         if (ext4_mark_inode_dirty(handle, inode))
319                 /* If that failed, just do the required in-core inode clear. */
320                 ext4_clear_inode(inode);
321         else
322                 ext4_free_inode(handle, inode);
323         ext4_journal_stop(handle);
324         sb_end_intwrite(inode->i_sb);
325         ext4_xattr_inode_array_free(ea_inode_array);
326         return;
327 no_delete:
328         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
329 }
330
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334         return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337
338 /*
339  * Called with i_data_sem down, which is important since we can call
340  * ext4_discard_preallocations() from here.
341  */
342 void ext4_da_update_reserve_space(struct inode *inode,
343                                         int used, int quota_claim)
344 {
345         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346         struct ext4_inode_info *ei = EXT4_I(inode);
347
348         spin_lock(&ei->i_block_reservation_lock);
349         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350         if (unlikely(used > ei->i_reserved_data_blocks)) {
351                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352                          "with only %d reserved data blocks",
353                          __func__, inode->i_ino, used,
354                          ei->i_reserved_data_blocks);
355                 WARN_ON(1);
356                 used = ei->i_reserved_data_blocks;
357         }
358
359         /* Update per-inode reservations */
360         ei->i_reserved_data_blocks -= used;
361         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362
363         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364
365         /* Update quota subsystem for data blocks */
366         if (quota_claim)
367                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
368         else {
369                 /*
370                  * We did fallocate with an offset that is already delayed
371                  * allocated. So on delayed allocated writeback we should
372                  * not re-claim the quota for fallocated blocks.
373                  */
374                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375         }
376
377         /*
378          * If we have done all the pending block allocations and if
379          * there aren't any writers on the inode, we can discard the
380          * inode's preallocations.
381          */
382         if ((ei->i_reserved_data_blocks == 0) &&
383             (atomic_read(&inode->i_writecount) == 0))
384                 ext4_discard_preallocations(inode);
385 }
386
387 static int __check_block_validity(struct inode *inode, const char *func,
388                                 unsigned int line,
389                                 struct ext4_map_blocks *map)
390 {
391         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392                                    map->m_len)) {
393                 ext4_error_inode(inode, func, line, map->m_pblk,
394                                  "lblock %lu mapped to illegal pblock "
395                                  "(length %d)", (unsigned long) map->m_lblk,
396                                  map->m_len);
397                 return -EFSCORRUPTED;
398         }
399         return 0;
400 }
401
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403                        ext4_lblk_t len)
404 {
405         int ret;
406
407         if (ext4_encrypted_inode(inode))
408                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411         if (ret > 0)
412                 ret = 0;
413
414         return ret;
415 }
416
417 #define check_block_validity(inode, map)        \
418         __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422                                        struct inode *inode,
423                                        struct ext4_map_blocks *es_map,
424                                        struct ext4_map_blocks *map,
425                                        int flags)
426 {
427         int retval;
428
429         map->m_flags = 0;
430         /*
431          * There is a race window that the result is not the same.
432          * e.g. xfstests #223 when dioread_nolock enables.  The reason
433          * is that we lookup a block mapping in extent status tree with
434          * out taking i_data_sem.  So at the time the unwritten extent
435          * could be converted.
436          */
437         down_read(&EXT4_I(inode)->i_data_sem);
438         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440                                              EXT4_GET_BLOCKS_KEEP_SIZE);
441         } else {
442                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443                                              EXT4_GET_BLOCKS_KEEP_SIZE);
444         }
445         up_read((&EXT4_I(inode)->i_data_sem));
446
447         /*
448          * We don't check m_len because extent will be collpased in status
449          * tree.  So the m_len might not equal.
450          */
451         if (es_map->m_lblk != map->m_lblk ||
452             es_map->m_flags != map->m_flags ||
453             es_map->m_pblk != map->m_pblk) {
454                 printk("ES cache assertion failed for inode: %lu "
455                        "es_cached ex [%d/%d/%llu/%x] != "
456                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457                        inode->i_ino, es_map->m_lblk, es_map->m_len,
458                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
459                        map->m_len, map->m_pblk, map->m_flags,
460                        retval, flags);
461         }
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464
465 /*
466  * The ext4_map_blocks() function tries to look up the requested blocks,
467  * and returns if the blocks are already mapped.
468  *
469  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470  * and store the allocated blocks in the result buffer head and mark it
471  * mapped.
472  *
473  * If file type is extents based, it will call ext4_ext_map_blocks(),
474  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475  * based files
476  *
477  * On success, it returns the number of blocks being mapped or allocated.  if
478  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480  *
481  * It returns 0 if plain look up failed (blocks have not been allocated), in
482  * that case, @map is returned as unmapped but we still do fill map->m_len to
483  * indicate the length of a hole starting at map->m_lblk.
484  *
485  * It returns the error in case of allocation failure.
486  */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488                     struct ext4_map_blocks *map, int flags)
489 {
490         struct extent_status es;
491         int retval;
492         int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494         struct ext4_map_blocks orig_map;
495
496         memcpy(&orig_map, map, sizeof(*map));
497 #endif
498
499         map->m_flags = 0;
500         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
502                   (unsigned long) map->m_lblk);
503
504         /*
505          * ext4_map_blocks returns an int, and m_len is an unsigned int
506          */
507         if (unlikely(map->m_len > INT_MAX))
508                 map->m_len = INT_MAX;
509
510         /* We can handle the block number less than EXT_MAX_BLOCKS */
511         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512                 return -EFSCORRUPTED;
513
514         /* Lookup extent status tree firstly */
515         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517                         map->m_pblk = ext4_es_pblock(&es) +
518                                         map->m_lblk - es.es_lblk;
519                         map->m_flags |= ext4_es_is_written(&es) ?
520                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526                         map->m_pblk = 0;
527                         retval = es.es_len - (map->m_lblk - es.es_lblk);
528                         if (retval > map->m_len)
529                                 retval = map->m_len;
530                         map->m_len = retval;
531                         retval = 0;
532                 } else {
533                         BUG_ON(1);
534                 }
535 #ifdef ES_AGGRESSIVE_TEST
536                 ext4_map_blocks_es_recheck(handle, inode, map,
537                                            &orig_map, flags);
538 #endif
539                 goto found;
540         }
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         down_read(&EXT4_I(inode)->i_data_sem);
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 unsigned int status;
556
557                 if (unlikely(retval != map->m_len)) {
558                         ext4_warning(inode->i_sb,
559                                      "ES len assertion failed for inode "
560                                      "%lu: retval %d != map->m_len %d",
561                                      inode->i_ino, retval, map->m_len);
562                         WARN_ON(1);
563                 }
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     !(status & EXTENT_STATUS_WRITTEN) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 /*
599                  * If we need to convert extent to unwritten
600                  * we continue and do the actual work in
601                  * ext4_ext_map_blocks()
602                  */
603                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604                         return retval;
605
606         /*
607          * Here we clear m_flags because after allocating an new extent,
608          * it will be set again.
609          */
610         map->m_flags &= ~EXT4_MAP_FLAGS;
611
612         /*
613          * New blocks allocate and/or writing to unwritten extent
614          * will possibly result in updating i_data, so we take
615          * the write lock of i_data_sem, and call get_block()
616          * with create == 1 flag.
617          */
618         down_write(&EXT4_I(inode)->i_data_sem);
619
620         /*
621          * We need to check for EXT4 here because migrate
622          * could have changed the inode type in between
623          */
624         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626         } else {
627                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630                         /*
631                          * We allocated new blocks which will result in
632                          * i_data's format changing.  Force the migrate
633                          * to fail by clearing migrate flags
634                          */
635                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636                 }
637
638                 /*
639                  * Update reserved blocks/metadata blocks after successful
640                  * block allocation which had been deferred till now. We don't
641                  * support fallocate for non extent files. So we can update
642                  * reserve space here.
643                  */
644                 if ((retval > 0) &&
645                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646                         ext4_da_update_reserve_space(inode, retval, 1);
647         }
648
649         if (retval > 0) {
650                 unsigned int status;
651
652                 if (unlikely(retval != map->m_len)) {
653                         ext4_warning(inode->i_sb,
654                                      "ES len assertion failed for inode "
655                                      "%lu: retval %d != map->m_len %d",
656                                      inode->i_ino, retval, map->m_len);
657                         WARN_ON(1);
658                 }
659
660                 /*
661                  * We have to zeroout blocks before inserting them into extent
662                  * status tree. Otherwise someone could look them up there and
663                  * use them before they are really zeroed. We also have to
664                  * unmap metadata before zeroing as otherwise writeback can
665                  * overwrite zeros with stale data from block device.
666                  */
667                 if (flags & EXT4_GET_BLOCKS_ZERO &&
668                     map->m_flags & EXT4_MAP_MAPPED &&
669                     map->m_flags & EXT4_MAP_NEW) {
670                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671                                            map->m_len);
672                         ret = ext4_issue_zeroout(inode, map->m_lblk,
673                                                  map->m_pblk, map->m_len);
674                         if (ret) {
675                                 retval = ret;
676                                 goto out_sem;
677                         }
678                 }
679
680                 /*
681                  * If the extent has been zeroed out, we don't need to update
682                  * extent status tree.
683                  */
684                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686                         if (ext4_es_is_written(&es))
687                                 goto out_sem;
688                 }
689                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692                     !(status & EXTENT_STATUS_WRITTEN) &&
693                     ext4_find_delalloc_range(inode, map->m_lblk,
694                                              map->m_lblk + map->m_len - 1))
695                         status |= EXTENT_STATUS_DELAYED;
696                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697                                             map->m_pblk, status);
698                 if (ret < 0) {
699                         retval = ret;
700                         goto out_sem;
701                 }
702         }
703
704 out_sem:
705         up_write((&EXT4_I(inode)->i_data_sem));
706         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707                 ret = check_block_validity(inode, map);
708                 if (ret != 0)
709                         return ret;
710
711                 /*
712                  * Inodes with freshly allocated blocks where contents will be
713                  * visible after transaction commit must be on transaction's
714                  * ordered data list.
715                  */
716                 if (map->m_flags & EXT4_MAP_NEW &&
717                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
719                     !ext4_is_quota_file(inode) &&
720                     ext4_should_order_data(inode)) {
721                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
723                         else
724                                 ret = ext4_jbd2_inode_add_write(handle, inode);
725                         if (ret)
726                                 return ret;
727                 }
728         }
729         return retval;
730 }
731
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738         unsigned long old_state;
739         unsigned long new_state;
740
741         flags &= EXT4_MAP_FLAGS;
742
743         /* Dummy buffer_head? Set non-atomically. */
744         if (!bh->b_page) {
745                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746                 return;
747         }
748         /*
749          * Someone else may be modifying b_state. Be careful! This is ugly but
750          * once we get rid of using bh as a container for mapping information
751          * to pass to / from get_block functions, this can go away.
752          */
753         do {
754                 old_state = READ_ONCE(bh->b_state);
755                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756         } while (unlikely(
757                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         struct ext4_map_blocks map;
764         int ret = 0;
765
766         if (ext4_has_inline_data(inode))
767                 return -ERANGE;
768
769         map.m_lblk = iblock;
770         map.m_len = bh->b_size >> inode->i_blkbits;
771
772         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773                               flags);
774         if (ret > 0) {
775                 map_bh(bh, inode->i_sb, map.m_pblk);
776                 ext4_update_bh_state(bh, map.m_flags);
777                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778                 ret = 0;
779         } else if (ret == 0) {
780                 /* hole case, need to fill in bh->b_size */
781                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782         }
783         return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787                    struct buffer_head *bh, int create)
788 {
789         return _ext4_get_block(inode, iblock, bh,
790                                create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799                              struct buffer_head *bh_result, int create)
800 {
801         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802                    inode->i_ino, create);
803         return _ext4_get_block(inode, iblock, bh_result,
804                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811  * Get blocks function for the cases that need to start a transaction -
812  * generally difference cases of direct IO and DAX IO. It also handles retries
813  * in case of ENOSPC.
814  */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816                                 struct buffer_head *bh_result, int flags)
817 {
818         int dio_credits;
819         handle_t *handle;
820         int retries = 0;
821         int ret;
822
823         /* Trim mapping request to maximum we can map at once for DIO */
824         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826         dio_credits = ext4_chunk_trans_blocks(inode,
827                                       bh_result->b_size >> inode->i_blkbits);
828 retry:
829         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830         if (IS_ERR(handle))
831                 return PTR_ERR(handle);
832
833         ret = _ext4_get_block(inode, iblock, bh_result, flags);
834         ext4_journal_stop(handle);
835
836         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837                 goto retry;
838         return ret;
839 }
840
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843                        struct buffer_head *bh, int create)
844 {
845         /* We don't expect handle for direct IO */
846         WARN_ON_ONCE(ext4_journal_current_handle());
847
848         if (!create)
849                 return _ext4_get_block(inode, iblock, bh, 0);
850         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852
853 /*
854  * Get block function for AIO DIO writes when we create unwritten extent if
855  * blocks are not allocated yet. The extent will be converted to written
856  * after IO is complete.
857  */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859                 sector_t iblock, struct buffer_head *bh_result, int create)
860 {
861         int ret;
862
863         /* We don't expect handle for direct IO */
864         WARN_ON_ONCE(ext4_journal_current_handle());
865
866         ret = ext4_get_block_trans(inode, iblock, bh_result,
867                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
868
869         /*
870          * When doing DIO using unwritten extents, we need io_end to convert
871          * unwritten extents to written on IO completion. We allocate io_end
872          * once we spot unwritten extent and store it in b_private. Generic
873          * DIO code keeps b_private set and furthermore passes the value to
874          * our completion callback in 'private' argument.
875          */
876         if (!ret && buffer_unwritten(bh_result)) {
877                 if (!bh_result->b_private) {
878                         ext4_io_end_t *io_end;
879
880                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
881                         if (!io_end)
882                                 return -ENOMEM;
883                         bh_result->b_private = io_end;
884                         ext4_set_io_unwritten_flag(inode, io_end);
885                 }
886                 set_buffer_defer_completion(bh_result);
887         }
888
889         return ret;
890 }
891
892 /*
893  * Get block function for non-AIO DIO writes when we create unwritten extent if
894  * blocks are not allocated yet. The extent will be converted to written
895  * after IO is complete by ext4_direct_IO_write().
896  */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898                 sector_t iblock, struct buffer_head *bh_result, int create)
899 {
900         int ret;
901
902         /* We don't expect handle for direct IO */
903         WARN_ON_ONCE(ext4_journal_current_handle());
904
905         ret = ext4_get_block_trans(inode, iblock, bh_result,
906                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
907
908         /*
909          * Mark inode as having pending DIO writes to unwritten extents.
910          * ext4_direct_IO_write() checks this flag and converts extents to
911          * written.
912          */
913         if (!ret && buffer_unwritten(bh_result))
914                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916         return ret;
917 }
918
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920                    struct buffer_head *bh_result, int create)
921 {
922         int ret;
923
924         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925                    inode->i_ino, create);
926         /* We don't expect handle for direct IO */
927         WARN_ON_ONCE(ext4_journal_current_handle());
928
929         ret = _ext4_get_block(inode, iblock, bh_result, 0);
930         /*
931          * Blocks should have been preallocated! ext4_file_write_iter() checks
932          * that.
933          */
934         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935
936         return ret;
937 }
938
939
940 /*
941  * `handle' can be NULL if create is zero
942  */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944                                 ext4_lblk_t block, int map_flags)
945 {
946         struct ext4_map_blocks map;
947         struct buffer_head *bh;
948         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949         int err;
950
951         J_ASSERT(handle != NULL || create == 0);
952
953         map.m_lblk = block;
954         map.m_len = 1;
955         err = ext4_map_blocks(handle, inode, &map, map_flags);
956
957         if (err == 0)
958                 return create ? ERR_PTR(-ENOSPC) : NULL;
959         if (err < 0)
960                 return ERR_PTR(err);
961
962         bh = sb_getblk(inode->i_sb, map.m_pblk);
963         if (unlikely(!bh))
964                 return ERR_PTR(-ENOMEM);
965         if (map.m_flags & EXT4_MAP_NEW) {
966                 J_ASSERT(create != 0);
967                 J_ASSERT(handle != NULL);
968
969                 /*
970                  * Now that we do not always journal data, we should
971                  * keep in mind whether this should always journal the
972                  * new buffer as metadata.  For now, regular file
973                  * writes use ext4_get_block instead, so it's not a
974                  * problem.
975                  */
976                 lock_buffer(bh);
977                 BUFFER_TRACE(bh, "call get_create_access");
978                 err = ext4_journal_get_create_access(handle, bh);
979                 if (unlikely(err)) {
980                         unlock_buffer(bh);
981                         goto errout;
982                 }
983                 if (!buffer_uptodate(bh)) {
984                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985                         set_buffer_uptodate(bh);
986                 }
987                 unlock_buffer(bh);
988                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989                 err = ext4_handle_dirty_metadata(handle, inode, bh);
990                 if (unlikely(err))
991                         goto errout;
992         } else
993                 BUFFER_TRACE(bh, "not a new buffer");
994         return bh;
995 errout:
996         brelse(bh);
997         return ERR_PTR(err);
998 }
999
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001                                ext4_lblk_t block, int map_flags)
1002 {
1003         struct buffer_head *bh;
1004
1005         bh = ext4_getblk(handle, inode, block, map_flags);
1006         if (IS_ERR(bh))
1007                 return bh;
1008         if (!bh || buffer_uptodate(bh))
1009                 return bh;
1010         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011         wait_on_buffer(bh);
1012         if (buffer_uptodate(bh))
1013                 return bh;
1014         put_bh(bh);
1015         return ERR_PTR(-EIO);
1016 }
1017
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020                      bool wait, struct buffer_head **bhs)
1021 {
1022         int i, err;
1023
1024         for (i = 0; i < bh_count; i++) {
1025                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026                 if (IS_ERR(bhs[i])) {
1027                         err = PTR_ERR(bhs[i]);
1028                         bh_count = i;
1029                         goto out_brelse;
1030                 }
1031         }
1032
1033         for (i = 0; i < bh_count; i++)
1034                 /* Note that NULL bhs[i] is valid because of holes. */
1035                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037                                     &bhs[i]);
1038
1039         if (!wait)
1040                 return 0;
1041
1042         for (i = 0; i < bh_count; i++)
1043                 if (bhs[i])
1044                         wait_on_buffer(bhs[i]);
1045
1046         for (i = 0; i < bh_count; i++) {
1047                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048                         err = -EIO;
1049                         goto out_brelse;
1050                 }
1051         }
1052         return 0;
1053
1054 out_brelse:
1055         for (i = 0; i < bh_count; i++) {
1056                 brelse(bhs[i]);
1057                 bhs[i] = NULL;
1058         }
1059         return err;
1060 }
1061
1062 int ext4_walk_page_buffers(handle_t *handle,
1063                            struct buffer_head *head,
1064                            unsigned from,
1065                            unsigned to,
1066                            int *partial,
1067                            int (*fn)(handle_t *handle,
1068                                      struct buffer_head *bh))
1069 {
1070         struct buffer_head *bh;
1071         unsigned block_start, block_end;
1072         unsigned blocksize = head->b_size;
1073         int err, ret = 0;
1074         struct buffer_head *next;
1075
1076         for (bh = head, block_start = 0;
1077              ret == 0 && (bh != head || !block_start);
1078              block_start = block_end, bh = next) {
1079                 next = bh->b_this_page;
1080                 block_end = block_start + blocksize;
1081                 if (block_end <= from || block_start >= to) {
1082                         if (partial && !buffer_uptodate(bh))
1083                                 *partial = 1;
1084                         continue;
1085                 }
1086                 err = (*fn)(handle, bh);
1087                 if (!ret)
1088                         ret = err;
1089         }
1090         return ret;
1091 }
1092
1093 /*
1094  * To preserve ordering, it is essential that the hole instantiation and
1095  * the data write be encapsulated in a single transaction.  We cannot
1096  * close off a transaction and start a new one between the ext4_get_block()
1097  * and the commit_write().  So doing the jbd2_journal_start at the start of
1098  * prepare_write() is the right place.
1099  *
1100  * Also, this function can nest inside ext4_writepage().  In that case, we
1101  * *know* that ext4_writepage() has generated enough buffer credits to do the
1102  * whole page.  So we won't block on the journal in that case, which is good,
1103  * because the caller may be PF_MEMALLOC.
1104  *
1105  * By accident, ext4 can be reentered when a transaction is open via
1106  * quota file writes.  If we were to commit the transaction while thus
1107  * reentered, there can be a deadlock - we would be holding a quota
1108  * lock, and the commit would never complete if another thread had a
1109  * transaction open and was blocking on the quota lock - a ranking
1110  * violation.
1111  *
1112  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113  * will _not_ run commit under these circumstances because handle->h_ref
1114  * is elevated.  We'll still have enough credits for the tiny quotafile
1115  * write.
1116  */
1117 int do_journal_get_write_access(handle_t *handle,
1118                                 struct buffer_head *bh)
1119 {
1120         int dirty = buffer_dirty(bh);
1121         int ret;
1122
1123         if (!buffer_mapped(bh) || buffer_freed(bh))
1124                 return 0;
1125         /*
1126          * __block_write_begin() could have dirtied some buffers. Clean
1127          * the dirty bit as jbd2_journal_get_write_access() could complain
1128          * otherwise about fs integrity issues. Setting of the dirty bit
1129          * by __block_write_begin() isn't a real problem here as we clear
1130          * the bit before releasing a page lock and thus writeback cannot
1131          * ever write the buffer.
1132          */
1133         if (dirty)
1134                 clear_buffer_dirty(bh);
1135         BUFFER_TRACE(bh, "get write access");
1136         ret = ext4_journal_get_write_access(handle, bh);
1137         if (!ret && dirty)
1138                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139         return ret;
1140 }
1141
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144                                   get_block_t *get_block)
1145 {
1146         unsigned from = pos & (PAGE_SIZE - 1);
1147         unsigned to = from + len;
1148         struct inode *inode = page->mapping->host;
1149         unsigned block_start, block_end;
1150         sector_t block;
1151         int err = 0;
1152         unsigned blocksize = inode->i_sb->s_blocksize;
1153         unsigned bbits;
1154         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155         bool decrypt = false;
1156
1157         BUG_ON(!PageLocked(page));
1158         BUG_ON(from > PAGE_SIZE);
1159         BUG_ON(to > PAGE_SIZE);
1160         BUG_ON(from > to);
1161
1162         if (!page_has_buffers(page))
1163                 create_empty_buffers(page, blocksize, 0);
1164         head = page_buffers(page);
1165         bbits = ilog2(blocksize);
1166         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1167
1168         for (bh = head, block_start = 0; bh != head || !block_start;
1169             block++, block_start = block_end, bh = bh->b_this_page) {
1170                 block_end = block_start + blocksize;
1171                 if (block_end <= from || block_start >= to) {
1172                         if (PageUptodate(page)) {
1173                                 if (!buffer_uptodate(bh))
1174                                         set_buffer_uptodate(bh);
1175                         }
1176                         continue;
1177                 }
1178                 if (buffer_new(bh))
1179                         clear_buffer_new(bh);
1180                 if (!buffer_mapped(bh)) {
1181                         WARN_ON(bh->b_size != blocksize);
1182                         err = get_block(inode, block, bh, 1);
1183                         if (err)
1184                                 break;
1185                         if (buffer_new(bh)) {
1186                                 clean_bdev_bh_alias(bh);
1187                                 if (PageUptodate(page)) {
1188                                         clear_buffer_new(bh);
1189                                         set_buffer_uptodate(bh);
1190                                         mark_buffer_dirty(bh);
1191                                         continue;
1192                                 }
1193                                 if (block_end > to || block_start < from)
1194                                         zero_user_segments(page, to, block_end,
1195                                                            block_start, from);
1196                                 continue;
1197                         }
1198                 }
1199                 if (PageUptodate(page)) {
1200                         if (!buffer_uptodate(bh))
1201                                 set_buffer_uptodate(bh);
1202                         continue;
1203                 }
1204                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205                     !buffer_unwritten(bh) &&
1206                     (block_start < from || block_end > to)) {
1207                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208                         *wait_bh++ = bh;
1209                         decrypt = ext4_encrypted_inode(inode) &&
1210                                 S_ISREG(inode->i_mode);
1211                 }
1212         }
1213         /*
1214          * If we issued read requests, let them complete.
1215          */
1216         while (wait_bh > wait) {
1217                 wait_on_buffer(*--wait_bh);
1218                 if (!buffer_uptodate(*wait_bh))
1219                         err = -EIO;
1220         }
1221         if (unlikely(err))
1222                 page_zero_new_buffers(page, from, to);
1223         else if (decrypt)
1224                 err = fscrypt_decrypt_page(page->mapping->host, page,
1225                                 PAGE_SIZE, 0, page->index);
1226         return err;
1227 }
1228 #endif
1229
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231                             loff_t pos, unsigned len, unsigned flags,
1232                             struct page **pagep, void **fsdata)
1233 {
1234         struct inode *inode = mapping->host;
1235         int ret, needed_blocks;
1236         handle_t *handle;
1237         int retries = 0;
1238         struct page *page;
1239         pgoff_t index;
1240         unsigned from, to;
1241
1242         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243                 return -EIO;
1244
1245         trace_ext4_write_begin(inode, pos, len, flags);
1246         /*
1247          * Reserve one block more for addition to orphan list in case
1248          * we allocate blocks but write fails for some reason
1249          */
1250         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251         index = pos >> PAGE_SHIFT;
1252         from = pos & (PAGE_SIZE - 1);
1253         to = from + len;
1254
1255         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257                                                     flags, pagep);
1258                 if (ret < 0)
1259                         return ret;
1260                 if (ret == 1)
1261                         return 0;
1262         }
1263
1264         /*
1265          * grab_cache_page_write_begin() can take a long time if the
1266          * system is thrashing due to memory pressure, or if the page
1267          * is being written back.  So grab it first before we start
1268          * the transaction handle.  This also allows us to allocate
1269          * the page (if needed) without using GFP_NOFS.
1270          */
1271 retry_grab:
1272         page = grab_cache_page_write_begin(mapping, index, flags);
1273         if (!page)
1274                 return -ENOMEM;
1275         unlock_page(page);
1276
1277 retry_journal:
1278         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279         if (IS_ERR(handle)) {
1280                 put_page(page);
1281                 return PTR_ERR(handle);
1282         }
1283
1284         lock_page(page);
1285         if (page->mapping != mapping) {
1286                 /* The page got truncated from under us */
1287                 unlock_page(page);
1288                 put_page(page);
1289                 ext4_journal_stop(handle);
1290                 goto retry_grab;
1291         }
1292         /* In case writeback began while the page was unlocked */
1293         wait_for_stable_page(page);
1294
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296         if (ext4_should_dioread_nolock(inode))
1297                 ret = ext4_block_write_begin(page, pos, len,
1298                                              ext4_get_block_unwritten);
1299         else
1300                 ret = ext4_block_write_begin(page, pos, len,
1301                                              ext4_get_block);
1302 #else
1303         if (ext4_should_dioread_nolock(inode))
1304                 ret = __block_write_begin(page, pos, len,
1305                                           ext4_get_block_unwritten);
1306         else
1307                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1308 #endif
1309         if (!ret && ext4_should_journal_data(inode)) {
1310                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311                                              from, to, NULL,
1312                                              do_journal_get_write_access);
1313         }
1314
1315         if (ret) {
1316                 unlock_page(page);
1317                 /*
1318                  * __block_write_begin may have instantiated a few blocks
1319                  * outside i_size.  Trim these off again. Don't need
1320                  * i_size_read because we hold i_mutex.
1321                  *
1322                  * Add inode to orphan list in case we crash before
1323                  * truncate finishes
1324                  */
1325                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326                         ext4_orphan_add(handle, inode);
1327
1328                 ext4_journal_stop(handle);
1329                 if (pos + len > inode->i_size) {
1330                         ext4_truncate_failed_write(inode);
1331                         /*
1332                          * If truncate failed early the inode might
1333                          * still be on the orphan list; we need to
1334                          * make sure the inode is removed from the
1335                          * orphan list in that case.
1336                          */
1337                         if (inode->i_nlink)
1338                                 ext4_orphan_del(NULL, inode);
1339                 }
1340
1341                 if (ret == -ENOSPC &&
1342                     ext4_should_retry_alloc(inode->i_sb, &retries))
1343                         goto retry_journal;
1344                 put_page(page);
1345                 return ret;
1346         }
1347         *pagep = page;
1348         return ret;
1349 }
1350
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1353 {
1354         int ret;
1355         if (!buffer_mapped(bh) || buffer_freed(bh))
1356                 return 0;
1357         set_buffer_uptodate(bh);
1358         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359         clear_buffer_meta(bh);
1360         clear_buffer_prio(bh);
1361         return ret;
1362 }
1363
1364 /*
1365  * We need to pick up the new inode size which generic_commit_write gave us
1366  * `file' can be NULL - eg, when called from page_symlink().
1367  *
1368  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1369  * buffers are managed internally.
1370  */
1371 static int ext4_write_end(struct file *file,
1372                           struct address_space *mapping,
1373                           loff_t pos, unsigned len, unsigned copied,
1374                           struct page *page, void *fsdata)
1375 {
1376         handle_t *handle = ext4_journal_current_handle();
1377         struct inode *inode = mapping->host;
1378         loff_t old_size = inode->i_size;
1379         int ret = 0, ret2;
1380         int i_size_changed = 0;
1381
1382         trace_ext4_write_end(inode, pos, len, copied);
1383         if (ext4_has_inline_data(inode)) {
1384                 ret = ext4_write_inline_data_end(inode, pos, len,
1385                                                  copied, page);
1386                 if (ret < 0) {
1387                         unlock_page(page);
1388                         put_page(page);
1389                         goto errout;
1390                 }
1391                 copied = ret;
1392         } else
1393                 copied = block_write_end(file, mapping, pos,
1394                                          len, copied, page, fsdata);
1395         /*
1396          * it's important to update i_size while still holding page lock:
1397          * page writeout could otherwise come in and zero beyond i_size.
1398          */
1399         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1400         unlock_page(page);
1401         put_page(page);
1402
1403         if (old_size < pos)
1404                 pagecache_isize_extended(inode, old_size, pos);
1405         /*
1406          * Don't mark the inode dirty under page lock. First, it unnecessarily
1407          * makes the holding time of page lock longer. Second, it forces lock
1408          * ordering of page lock and transaction start for journaling
1409          * filesystems.
1410          */
1411         if (i_size_changed)
1412                 ext4_mark_inode_dirty(handle, inode);
1413
1414         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415                 /* if we have allocated more blocks and copied
1416                  * less. We will have blocks allocated outside
1417                  * inode->i_size. So truncate them
1418                  */
1419                 ext4_orphan_add(handle, inode);
1420 errout:
1421         ret2 = ext4_journal_stop(handle);
1422         if (!ret)
1423                 ret = ret2;
1424
1425         if (pos + len > inode->i_size) {
1426                 ext4_truncate_failed_write(inode);
1427                 /*
1428                  * If truncate failed early the inode might still be
1429                  * on the orphan list; we need to make sure the inode
1430                  * is removed from the orphan list in that case.
1431                  */
1432                 if (inode->i_nlink)
1433                         ext4_orphan_del(NULL, inode);
1434         }
1435
1436         return ret ? ret : copied;
1437 }
1438
1439 /*
1440  * This is a private version of page_zero_new_buffers() which doesn't
1441  * set the buffer to be dirty, since in data=journalled mode we need
1442  * to call ext4_handle_dirty_metadata() instead.
1443  */
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445                                             struct page *page,
1446                                             unsigned from, unsigned to)
1447 {
1448         unsigned int block_start = 0, block_end;
1449         struct buffer_head *head, *bh;
1450
1451         bh = head = page_buffers(page);
1452         do {
1453                 block_end = block_start + bh->b_size;
1454                 if (buffer_new(bh)) {
1455                         if (block_end > from && block_start < to) {
1456                                 if (!PageUptodate(page)) {
1457                                         unsigned start, size;
1458
1459                                         start = max(from, block_start);
1460                                         size = min(to, block_end) - start;
1461
1462                                         zero_user(page, start, size);
1463                                         write_end_fn(handle, bh);
1464                                 }
1465                                 clear_buffer_new(bh);
1466                         }
1467                 }
1468                 block_start = block_end;
1469                 bh = bh->b_this_page;
1470         } while (bh != head);
1471 }
1472
1473 static int ext4_journalled_write_end(struct file *file,
1474                                      struct address_space *mapping,
1475                                      loff_t pos, unsigned len, unsigned copied,
1476                                      struct page *page, void *fsdata)
1477 {
1478         handle_t *handle = ext4_journal_current_handle();
1479         struct inode *inode = mapping->host;
1480         loff_t old_size = inode->i_size;
1481         int ret = 0, ret2;
1482         int partial = 0;
1483         unsigned from, to;
1484         int size_changed = 0;
1485
1486         trace_ext4_journalled_write_end(inode, pos, len, copied);
1487         from = pos & (PAGE_SIZE - 1);
1488         to = from + len;
1489
1490         BUG_ON(!ext4_handle_valid(handle));
1491
1492         if (ext4_has_inline_data(inode)) {
1493                 ret = ext4_write_inline_data_end(inode, pos, len,
1494                                                  copied, page);
1495                 if (ret < 0) {
1496                         unlock_page(page);
1497                         put_page(page);
1498                         goto errout;
1499                 }
1500                 copied = ret;
1501         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1502                 copied = 0;
1503                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1504         } else {
1505                 if (unlikely(copied < len))
1506                         ext4_journalled_zero_new_buffers(handle, page,
1507                                                          from + copied, to);
1508                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509                                              from + copied, &partial,
1510                                              write_end_fn);
1511                 if (!partial)
1512                         SetPageUptodate(page);
1513         }
1514         size_changed = ext4_update_inode_size(inode, pos + copied);
1515         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1517         unlock_page(page);
1518         put_page(page);
1519
1520         if (old_size < pos)
1521                 pagecache_isize_extended(inode, old_size, pos);
1522
1523         if (size_changed) {
1524                 ret2 = ext4_mark_inode_dirty(handle, inode);
1525                 if (!ret)
1526                         ret = ret2;
1527         }
1528
1529         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530                 /* if we have allocated more blocks and copied
1531                  * less. We will have blocks allocated outside
1532                  * inode->i_size. So truncate them
1533                  */
1534                 ext4_orphan_add(handle, inode);
1535
1536 errout:
1537         ret2 = ext4_journal_stop(handle);
1538         if (!ret)
1539                 ret = ret2;
1540         if (pos + len > inode->i_size) {
1541                 ext4_truncate_failed_write(inode);
1542                 /*
1543                  * If truncate failed early the inode might still be
1544                  * on the orphan list; we need to make sure the inode
1545                  * is removed from the orphan list in that case.
1546                  */
1547                 if (inode->i_nlink)
1548                         ext4_orphan_del(NULL, inode);
1549         }
1550
1551         return ret ? ret : copied;
1552 }
1553
1554 /*
1555  * Reserve space for a single cluster
1556  */
1557 static int ext4_da_reserve_space(struct inode *inode)
1558 {
1559         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560         struct ext4_inode_info *ei = EXT4_I(inode);
1561         int ret;
1562
1563         /*
1564          * We will charge metadata quota at writeout time; this saves
1565          * us from metadata over-estimation, though we may go over by
1566          * a small amount in the end.  Here we just reserve for data.
1567          */
1568         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569         if (ret)
1570                 return ret;
1571
1572         spin_lock(&ei->i_block_reservation_lock);
1573         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574                 spin_unlock(&ei->i_block_reservation_lock);
1575                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1576                 return -ENOSPC;
1577         }
1578         ei->i_reserved_data_blocks++;
1579         trace_ext4_da_reserve_space(inode);
1580         spin_unlock(&ei->i_block_reservation_lock);
1581
1582         return 0;       /* success */
1583 }
1584
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588         struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590         if (!to_free)
1591                 return;         /* Nothing to release, exit */
1592
1593         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594
1595         trace_ext4_da_release_space(inode, to_free);
1596         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1597                 /*
1598                  * if there aren't enough reserved blocks, then the
1599                  * counter is messed up somewhere.  Since this
1600                  * function is called from invalidate page, it's
1601                  * harmless to return without any action.
1602                  */
1603                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604                          "ino %lu, to_free %d with only %d reserved "
1605                          "data blocks", inode->i_ino, to_free,
1606                          ei->i_reserved_data_blocks);
1607                 WARN_ON(1);
1608                 to_free = ei->i_reserved_data_blocks;
1609         }
1610         ei->i_reserved_data_blocks -= to_free;
1611
1612         /* update fs dirty data blocks counter */
1613         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1614
1615         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1616
1617         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1618 }
1619
1620 static void ext4_da_page_release_reservation(struct page *page,
1621                                              unsigned int offset,
1622                                              unsigned int length)
1623 {
1624         int to_release = 0, contiguous_blks = 0;
1625         struct buffer_head *head, *bh;
1626         unsigned int curr_off = 0;
1627         struct inode *inode = page->mapping->host;
1628         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629         unsigned int stop = offset + length;
1630         int num_clusters;
1631         ext4_fsblk_t lblk;
1632
1633         BUG_ON(stop > PAGE_SIZE || stop < length);
1634
1635         head = page_buffers(page);
1636         bh = head;
1637         do {
1638                 unsigned int next_off = curr_off + bh->b_size;
1639
1640                 if (next_off > stop)
1641                         break;
1642
1643                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1644                         to_release++;
1645                         contiguous_blks++;
1646                         clear_buffer_delay(bh);
1647                 } else if (contiguous_blks) {
1648                         lblk = page->index <<
1649                                (PAGE_SHIFT - inode->i_blkbits);
1650                         lblk += (curr_off >> inode->i_blkbits) -
1651                                 contiguous_blks;
1652                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653                         contiguous_blks = 0;
1654                 }
1655                 curr_off = next_off;
1656         } while ((bh = bh->b_this_page) != head);
1657
1658         if (contiguous_blks) {
1659                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1662         }
1663
1664         /* If we have released all the blocks belonging to a cluster, then we
1665          * need to release the reserved space for that cluster. */
1666         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667         while (num_clusters > 0) {
1668                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669                         ((num_clusters - 1) << sbi->s_cluster_bits);
1670                 if (sbi->s_cluster_ratio == 1 ||
1671                     !ext4_find_delalloc_cluster(inode, lblk))
1672                         ext4_da_release_space(inode, 1);
1673
1674                 num_clusters--;
1675         }
1676 }
1677
1678 /*
1679  * Delayed allocation stuff
1680  */
1681
1682 struct mpage_da_data {
1683         struct inode *inode;
1684         struct writeback_control *wbc;
1685
1686         pgoff_t first_page;     /* The first page to write */
1687         pgoff_t next_page;      /* Current page to examine */
1688         pgoff_t last_page;      /* Last page to examine */
1689         /*
1690          * Extent to map - this can be after first_page because that can be
1691          * fully mapped. We somewhat abuse m_flags to store whether the extent
1692          * is delalloc or unwritten.
1693          */
1694         struct ext4_map_blocks map;
1695         struct ext4_io_submit io_submit;        /* IO submission data */
1696         unsigned int do_map:1;
1697 };
1698
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700                                        bool invalidate)
1701 {
1702         int nr_pages, i;
1703         pgoff_t index, end;
1704         struct pagevec pvec;
1705         struct inode *inode = mpd->inode;
1706         struct address_space *mapping = inode->i_mapping;
1707
1708         /* This is necessary when next_page == 0. */
1709         if (mpd->first_page >= mpd->next_page)
1710                 return;
1711
1712         index = mpd->first_page;
1713         end   = mpd->next_page - 1;
1714         if (invalidate) {
1715                 ext4_lblk_t start, last;
1716                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718                 ext4_es_remove_extent(inode, start, last - start + 1);
1719         }
1720
1721         pagevec_init(&pvec, 0);
1722         while (index <= end) {
1723                 nr_pages = pagevec_lookup(&pvec, mapping, &index, PAGEVEC_SIZE);
1724                 if (nr_pages == 0)
1725                         break;
1726                 for (i = 0; i < nr_pages; i++) {
1727                         struct page *page = pvec.pages[i];
1728                         if (page->index > end)
1729                                 break;
1730                         BUG_ON(!PageLocked(page));
1731                         BUG_ON(PageWriteback(page));
1732                         if (invalidate) {
1733                                 if (page_mapped(page))
1734                                         clear_page_dirty_for_io(page);
1735                                 block_invalidatepage(page, 0, PAGE_SIZE);
1736                                 ClearPageUptodate(page);
1737                         }
1738                         unlock_page(page);
1739                 }
1740                 pagevec_release(&pvec);
1741         }
1742 }
1743
1744 static void ext4_print_free_blocks(struct inode *inode)
1745 {
1746         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1747         struct super_block *sb = inode->i_sb;
1748         struct ext4_inode_info *ei = EXT4_I(inode);
1749
1750         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1751                EXT4_C2B(EXT4_SB(inode->i_sb),
1752                         ext4_count_free_clusters(sb)));
1753         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1755                (long long) EXT4_C2B(EXT4_SB(sb),
1756                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1757         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1758                (long long) EXT4_C2B(EXT4_SB(sb),
1759                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1760         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1762                  ei->i_reserved_data_blocks);
1763         return;
1764 }
1765
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 {
1768         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 }
1770
1771 /*
1772  * This function is grabs code from the very beginning of
1773  * ext4_map_blocks, but assumes that the caller is from delayed write
1774  * time. This function looks up the requested blocks and sets the
1775  * buffer delay bit under the protection of i_data_sem.
1776  */
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778                               struct ext4_map_blocks *map,
1779                               struct buffer_head *bh)
1780 {
1781         struct extent_status es;
1782         int retval;
1783         sector_t invalid_block = ~((sector_t) 0xffff);
1784 #ifdef ES_AGGRESSIVE_TEST
1785         struct ext4_map_blocks orig_map;
1786
1787         memcpy(&orig_map, map, sizeof(*map));
1788 #endif
1789
1790         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1791                 invalid_block = ~0;
1792
1793         map->m_flags = 0;
1794         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795                   "logical block %lu\n", inode->i_ino, map->m_len,
1796                   (unsigned long) map->m_lblk);
1797
1798         /* Lookup extent status tree firstly */
1799         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1800                 if (ext4_es_is_hole(&es)) {
1801                         retval = 0;
1802                         down_read(&EXT4_I(inode)->i_data_sem);
1803                         goto add_delayed;
1804                 }
1805
1806                 /*
1807                  * Delayed extent could be allocated by fallocate.
1808                  * So we need to check it.
1809                  */
1810                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811                         map_bh(bh, inode->i_sb, invalid_block);
1812                         set_buffer_new(bh);
1813                         set_buffer_delay(bh);
1814                         return 0;
1815                 }
1816
1817                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818                 retval = es.es_len - (iblock - es.es_lblk);
1819                 if (retval > map->m_len)
1820                         retval = map->m_len;
1821                 map->m_len = retval;
1822                 if (ext4_es_is_written(&es))
1823                         map->m_flags |= EXT4_MAP_MAPPED;
1824                 else if (ext4_es_is_unwritten(&es))
1825                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1826                 else
1827                         BUG_ON(1);
1828
1829 #ifdef ES_AGGRESSIVE_TEST
1830                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1831 #endif
1832                 return retval;
1833         }
1834
1835         /*
1836          * Try to see if we can get the block without requesting a new
1837          * file system block.
1838          */
1839         down_read(&EXT4_I(inode)->i_data_sem);
1840         if (ext4_has_inline_data(inode))
1841                 retval = 0;
1842         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1843                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1844         else
1845                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1846
1847 add_delayed:
1848         if (retval == 0) {
1849                 int ret;
1850                 /*
1851                  * XXX: __block_prepare_write() unmaps passed block,
1852                  * is it OK?
1853                  */
1854                 /*
1855                  * If the block was allocated from previously allocated cluster,
1856                  * then we don't need to reserve it again. However we still need
1857                  * to reserve metadata for every block we're going to write.
1858                  */
1859                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1860                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1861                         ret = ext4_da_reserve_space(inode);
1862                         if (ret) {
1863                                 /* not enough space to reserve */
1864                                 retval = ret;
1865                                 goto out_unlock;
1866                         }
1867                 }
1868
1869                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870                                             ~0, EXTENT_STATUS_DELAYED);
1871                 if (ret) {
1872                         retval = ret;
1873                         goto out_unlock;
1874                 }
1875
1876                 map_bh(bh, inode->i_sb, invalid_block);
1877                 set_buffer_new(bh);
1878                 set_buffer_delay(bh);
1879         } else if (retval > 0) {
1880                 int ret;
1881                 unsigned int status;
1882
1883                 if (unlikely(retval != map->m_len)) {
1884                         ext4_warning(inode->i_sb,
1885                                      "ES len assertion failed for inode "
1886                                      "%lu: retval %d != map->m_len %d",
1887                                      inode->i_ino, retval, map->m_len);
1888                         WARN_ON(1);
1889                 }
1890
1891                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894                                             map->m_pblk, status);
1895                 if (ret != 0)
1896                         retval = ret;
1897         }
1898
1899 out_unlock:
1900         up_read((&EXT4_I(inode)->i_data_sem));
1901
1902         return retval;
1903 }
1904
1905 /*
1906  * This is a special get_block_t callback which is used by
1907  * ext4_da_write_begin().  It will either return mapped block or
1908  * reserve space for a single block.
1909  *
1910  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911  * We also have b_blocknr = -1 and b_bdev initialized properly
1912  *
1913  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915  * initialized properly.
1916  */
1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918                            struct buffer_head *bh, int create)
1919 {
1920         struct ext4_map_blocks map;
1921         int ret = 0;
1922
1923         BUG_ON(create == 0);
1924         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925
1926         map.m_lblk = iblock;
1927         map.m_len = 1;
1928
1929         /*
1930          * first, we need to know whether the block is allocated already
1931          * preallocated blocks are unmapped but should treated
1932          * the same as allocated blocks.
1933          */
1934         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1935         if (ret <= 0)
1936                 return ret;
1937
1938         map_bh(bh, inode->i_sb, map.m_pblk);
1939         ext4_update_bh_state(bh, map.m_flags);
1940
1941         if (buffer_unwritten(bh)) {
1942                 /* A delayed write to unwritten bh should be marked
1943                  * new and mapped.  Mapped ensures that we don't do
1944                  * get_block multiple times when we write to the same
1945                  * offset and new ensures that we do proper zero out
1946                  * for partial write.
1947                  */
1948                 set_buffer_new(bh);
1949                 set_buffer_mapped(bh);
1950         }
1951         return 0;
1952 }
1953
1954 static int bget_one(handle_t *handle, struct buffer_head *bh)
1955 {
1956         get_bh(bh);
1957         return 0;
1958 }
1959
1960 static int bput_one(handle_t *handle, struct buffer_head *bh)
1961 {
1962         put_bh(bh);
1963         return 0;
1964 }
1965
1966 static int __ext4_journalled_writepage(struct page *page,
1967                                        unsigned int len)
1968 {
1969         struct address_space *mapping = page->mapping;
1970         struct inode *inode = mapping->host;
1971         struct buffer_head *page_bufs = NULL;
1972         handle_t *handle = NULL;
1973         int ret = 0, err = 0;
1974         int inline_data = ext4_has_inline_data(inode);
1975         struct buffer_head *inode_bh = NULL;
1976
1977         ClearPageChecked(page);
1978
1979         if (inline_data) {
1980                 BUG_ON(page->index != 0);
1981                 BUG_ON(len > ext4_get_max_inline_size(inode));
1982                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983                 if (inode_bh == NULL)
1984                         goto out;
1985         } else {
1986                 page_bufs = page_buffers(page);
1987                 if (!page_bufs) {
1988                         BUG();
1989                         goto out;
1990                 }
1991                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1992                                        NULL, bget_one);
1993         }
1994         /*
1995          * We need to release the page lock before we start the
1996          * journal, so grab a reference so the page won't disappear
1997          * out from under us.
1998          */
1999         get_page(page);
2000         unlock_page(page);
2001
2002         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003                                     ext4_writepage_trans_blocks(inode));
2004         if (IS_ERR(handle)) {
2005                 ret = PTR_ERR(handle);
2006                 put_page(page);
2007                 goto out_no_pagelock;
2008         }
2009         BUG_ON(!ext4_handle_valid(handle));
2010
2011         lock_page(page);
2012         put_page(page);
2013         if (page->mapping != mapping) {
2014                 /* The page got truncated from under us */
2015                 ext4_journal_stop(handle);
2016                 ret = 0;
2017                 goto out;
2018         }
2019
2020         if (inline_data) {
2021                 BUFFER_TRACE(inode_bh, "get write access");
2022                 ret = ext4_journal_get_write_access(handle, inode_bh);
2023
2024                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2025
2026         } else {
2027                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028                                              do_journal_get_write_access);
2029
2030                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2031                                              write_end_fn);
2032         }
2033         if (ret == 0)
2034                 ret = err;
2035         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2036         err = ext4_journal_stop(handle);
2037         if (!ret)
2038                 ret = err;
2039
2040         if (!ext4_has_inline_data(inode))
2041                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2042                                        NULL, bput_one);
2043         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2044 out:
2045         unlock_page(page);
2046 out_no_pagelock:
2047         brelse(inode_bh);
2048         return ret;
2049 }
2050
2051 /*
2052  * Note that we don't need to start a transaction unless we're journaling data
2053  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054  * need to file the inode to the transaction's list in ordered mode because if
2055  * we are writing back data added by write(), the inode is already there and if
2056  * we are writing back data modified via mmap(), no one guarantees in which
2057  * transaction the data will hit the disk. In case we are journaling data, we
2058  * cannot start transaction directly because transaction start ranks above page
2059  * lock so we have to do some magic.
2060  *
2061  * This function can get called via...
2062  *   - ext4_writepages after taking page lock (have journal handle)
2063  *   - journal_submit_inode_data_buffers (no journal handle)
2064  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2065  *   - grab_page_cache when doing write_begin (have journal handle)
2066  *
2067  * We don't do any block allocation in this function. If we have page with
2068  * multiple blocks we need to write those buffer_heads that are mapped. This
2069  * is important for mmaped based write. So if we do with blocksize 1K
2070  * truncate(f, 1024);
2071  * a = mmap(f, 0, 4096);
2072  * a[0] = 'a';
2073  * truncate(f, 4096);
2074  * we have in the page first buffer_head mapped via page_mkwrite call back
2075  * but other buffer_heads would be unmapped but dirty (dirty done via the
2076  * do_wp_page). So writepage should write the first block. If we modify
2077  * the mmap area beyond 1024 we will again get a page_fault and the
2078  * page_mkwrite callback will do the block allocation and mark the
2079  * buffer_heads mapped.
2080  *
2081  * We redirty the page if we have any buffer_heads that is either delay or
2082  * unwritten in the page.
2083  *
2084  * We can get recursively called as show below.
2085  *
2086  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2087  *              ext4_writepage()
2088  *
2089  * But since we don't do any block allocation we should not deadlock.
2090  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2091  */
2092 static int ext4_writepage(struct page *page,
2093                           struct writeback_control *wbc)
2094 {
2095         int ret = 0;
2096         loff_t size;
2097         unsigned int len;
2098         struct buffer_head *page_bufs = NULL;
2099         struct inode *inode = page->mapping->host;
2100         struct ext4_io_submit io_submit;
2101         bool keep_towrite = false;
2102
2103         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2105                 unlock_page(page);
2106                 return -EIO;
2107         }
2108
2109         trace_ext4_writepage(page);
2110         size = i_size_read(inode);
2111         if (page->index == size >> PAGE_SHIFT)
2112                 len = size & ~PAGE_MASK;
2113         else
2114                 len = PAGE_SIZE;
2115
2116         page_bufs = page_buffers(page);
2117         /*
2118          * We cannot do block allocation or other extent handling in this
2119          * function. If there are buffers needing that, we have to redirty
2120          * the page. But we may reach here when we do a journal commit via
2121          * journal_submit_inode_data_buffers() and in that case we must write
2122          * allocated buffers to achieve data=ordered mode guarantees.
2123          *
2124          * Also, if there is only one buffer per page (the fs block
2125          * size == the page size), if one buffer needs block
2126          * allocation or needs to modify the extent tree to clear the
2127          * unwritten flag, we know that the page can't be written at
2128          * all, so we might as well refuse the write immediately.
2129          * Unfortunately if the block size != page size, we can't as
2130          * easily detect this case using ext4_walk_page_buffers(), but
2131          * for the extremely common case, this is an optimization that
2132          * skips a useless round trip through ext4_bio_write_page().
2133          */
2134         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135                                    ext4_bh_delay_or_unwritten)) {
2136                 redirty_page_for_writepage(wbc, page);
2137                 if ((current->flags & PF_MEMALLOC) ||
2138                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2139                         /*
2140                          * For memory cleaning there's no point in writing only
2141                          * some buffers. So just bail out. Warn if we came here
2142                          * from direct reclaim.
2143                          */
2144                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2145                                                         == PF_MEMALLOC);
2146                         unlock_page(page);
2147                         return 0;
2148                 }
2149                 keep_towrite = true;
2150         }
2151
2152         if (PageChecked(page) && ext4_should_journal_data(inode))
2153                 /*
2154                  * It's mmapped pagecache.  Add buffers and journal it.  There
2155                  * doesn't seem much point in redirtying the page here.
2156                  */
2157                 return __ext4_journalled_writepage(page, len);
2158
2159         ext4_io_submit_init(&io_submit, wbc);
2160         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161         if (!io_submit.io_end) {
2162                 redirty_page_for_writepage(wbc, page);
2163                 unlock_page(page);
2164                 return -ENOMEM;
2165         }
2166         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2167         ext4_io_submit(&io_submit);
2168         /* Drop io_end reference we got from init */
2169         ext4_put_io_end_defer(io_submit.io_end);
2170         return ret;
2171 }
2172
2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2174 {
2175         int len;
2176         loff_t size;
2177         int err;
2178
2179         BUG_ON(page->index != mpd->first_page);
2180         clear_page_dirty_for_io(page);
2181         /*
2182          * We have to be very careful here!  Nothing protects writeback path
2183          * against i_size changes and the page can be writeably mapped into
2184          * page tables. So an application can be growing i_size and writing
2185          * data through mmap while writeback runs. clear_page_dirty_for_io()
2186          * write-protects our page in page tables and the page cannot get
2187          * written to again until we release page lock. So only after
2188          * clear_page_dirty_for_io() we are safe to sample i_size for
2189          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190          * on the barrier provided by TestClearPageDirty in
2191          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192          * after page tables are updated.
2193          */
2194         size = i_size_read(mpd->inode);
2195         if (page->index == size >> PAGE_SHIFT)
2196                 len = size & ~PAGE_MASK;
2197         else
2198                 len = PAGE_SIZE;
2199         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2200         if (!err)
2201                 mpd->wbc->nr_to_write--;
2202         mpd->first_page++;
2203
2204         return err;
2205 }
2206
2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2208
2209 /*
2210  * mballoc gives us at most this number of blocks...
2211  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2212  * The rest of mballoc seems to handle chunks up to full group size.
2213  */
2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2215
2216 /*
2217  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218  *
2219  * @mpd - extent of blocks
2220  * @lblk - logical number of the block in the file
2221  * @bh - buffer head we want to add to the extent
2222  *
2223  * The function is used to collect contig. blocks in the same state. If the
2224  * buffer doesn't require mapping for writeback and we haven't started the
2225  * extent of buffers to map yet, the function returns 'true' immediately - the
2226  * caller can write the buffer right away. Otherwise the function returns true
2227  * if the block has been added to the extent, false if the block couldn't be
2228  * added.
2229  */
2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231                                    struct buffer_head *bh)
2232 {
2233         struct ext4_map_blocks *map = &mpd->map;
2234
2235         /* Buffer that doesn't need mapping for writeback? */
2236         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238                 /* So far no extent to map => we write the buffer right away */
2239                 if (map->m_len == 0)
2240                         return true;
2241                 return false;
2242         }
2243
2244         /* First block in the extent? */
2245         if (map->m_len == 0) {
2246                 /* We cannot map unless handle is started... */
2247                 if (!mpd->do_map)
2248                         return false;
2249                 map->m_lblk = lblk;
2250                 map->m_len = 1;
2251                 map->m_flags = bh->b_state & BH_FLAGS;
2252                 return true;
2253         }
2254
2255         /* Don't go larger than mballoc is willing to allocate */
2256         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2257                 return false;
2258
2259         /* Can we merge the block to our big extent? */
2260         if (lblk == map->m_lblk + map->m_len &&
2261             (bh->b_state & BH_FLAGS) == map->m_flags) {
2262                 map->m_len++;
2263                 return true;
2264         }
2265         return false;
2266 }
2267
2268 /*
2269  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270  *
2271  * @mpd - extent of blocks for mapping
2272  * @head - the first buffer in the page
2273  * @bh - buffer we should start processing from
2274  * @lblk - logical number of the block in the file corresponding to @bh
2275  *
2276  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277  * the page for IO if all buffers in this page were mapped and there's no
2278  * accumulated extent of buffers to map or add buffers in the page to the
2279  * extent of buffers to map. The function returns 1 if the caller can continue
2280  * by processing the next page, 0 if it should stop adding buffers to the
2281  * extent to map because we cannot extend it anymore. It can also return value
2282  * < 0 in case of error during IO submission.
2283  */
2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285                                    struct buffer_head *head,
2286                                    struct buffer_head *bh,
2287                                    ext4_lblk_t lblk)
2288 {
2289         struct inode *inode = mpd->inode;
2290         int err;
2291         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2292                                                         >> inode->i_blkbits;
2293
2294         do {
2295                 BUG_ON(buffer_locked(bh));
2296
2297                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2298                         /* Found extent to map? */
2299                         if (mpd->map.m_len)
2300                                 return 0;
2301                         /* Buffer needs mapping and handle is not started? */
2302                         if (!mpd->do_map)
2303                                 return 0;
2304                         /* Everything mapped so far and we hit EOF */
2305                         break;
2306                 }
2307         } while (lblk++, (bh = bh->b_this_page) != head);
2308         /* So far everything mapped? Submit the page for IO. */
2309         if (mpd->map.m_len == 0) {
2310                 err = mpage_submit_page(mpd, head->b_page);
2311                 if (err < 0)
2312                         return err;
2313         }
2314         return lblk < blocks;
2315 }
2316
2317 /*
2318  * mpage_map_buffers - update buffers corresponding to changed extent and
2319  *                     submit fully mapped pages for IO
2320  *
2321  * @mpd - description of extent to map, on return next extent to map
2322  *
2323  * Scan buffers corresponding to changed extent (we expect corresponding pages
2324  * to be already locked) and update buffer state according to new extent state.
2325  * We map delalloc buffers to their physical location, clear unwritten bits,
2326  * and mark buffers as uninit when we perform writes to unwritten extents
2327  * and do extent conversion after IO is finished. If the last page is not fully
2328  * mapped, we update @map to the next extent in the last page that needs
2329  * mapping. Otherwise we submit the page for IO.
2330  */
2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 {
2333         struct pagevec pvec;
2334         int nr_pages, i;
2335         struct inode *inode = mpd->inode;
2336         struct buffer_head *head, *bh;
2337         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2338         pgoff_t start, end;
2339         ext4_lblk_t lblk;
2340         sector_t pblock;
2341         int err;
2342
2343         start = mpd->map.m_lblk >> bpp_bits;
2344         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345         lblk = start << bpp_bits;
2346         pblock = mpd->map.m_pblk;
2347
2348         pagevec_init(&pvec, 0);
2349         while (start <= end) {
2350                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, &start,
2351                                           PAGEVEC_SIZE);
2352                 if (nr_pages == 0)
2353                         break;
2354                 for (i = 0; i < nr_pages; i++) {
2355                         struct page *page = pvec.pages[i];
2356
2357                         if (page->index > end)
2358                                 break;
2359                         bh = head = page_buffers(page);
2360                         do {
2361                                 if (lblk < mpd->map.m_lblk)
2362                                         continue;
2363                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2364                                         /*
2365                                          * Buffer after end of mapped extent.
2366                                          * Find next buffer in the page to map.
2367                                          */
2368                                         mpd->map.m_len = 0;
2369                                         mpd->map.m_flags = 0;
2370                                         /*
2371                                          * FIXME: If dioread_nolock supports
2372                                          * blocksize < pagesize, we need to make
2373                                          * sure we add size mapped so far to
2374                                          * io_end->size as the following call
2375                                          * can submit the page for IO.
2376                                          */
2377                                         err = mpage_process_page_bufs(mpd, head,
2378                                                                       bh, lblk);
2379                                         pagevec_release(&pvec);
2380                                         if (err > 0)
2381                                                 err = 0;
2382                                         return err;
2383                                 }
2384                                 if (buffer_delay(bh)) {
2385                                         clear_buffer_delay(bh);
2386                                         bh->b_blocknr = pblock++;
2387                                 }
2388                                 clear_buffer_unwritten(bh);
2389                         } while (lblk++, (bh = bh->b_this_page) != head);
2390
2391                         /*
2392                          * FIXME: This is going to break if dioread_nolock
2393                          * supports blocksize < pagesize as we will try to
2394                          * convert potentially unmapped parts of inode.
2395                          */
2396                         mpd->io_submit.io_end->size += PAGE_SIZE;
2397                         /* Page fully mapped - let IO run! */
2398                         err = mpage_submit_page(mpd, page);
2399                         if (err < 0) {
2400                                 pagevec_release(&pvec);
2401                                 return err;
2402                         }
2403                 }
2404                 pagevec_release(&pvec);
2405         }
2406         /* Extent fully mapped and matches with page boundary. We are done. */
2407         mpd->map.m_len = 0;
2408         mpd->map.m_flags = 0;
2409         return 0;
2410 }
2411
2412 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2413 {
2414         struct inode *inode = mpd->inode;
2415         struct ext4_map_blocks *map = &mpd->map;
2416         int get_blocks_flags;
2417         int err, dioread_nolock;
2418
2419         trace_ext4_da_write_pages_extent(inode, map);
2420         /*
2421          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2422          * to convert an unwritten extent to be initialized (in the case
2423          * where we have written into one or more preallocated blocks).  It is
2424          * possible that we're going to need more metadata blocks than
2425          * previously reserved. However we must not fail because we're in
2426          * writeback and there is nothing we can do about it so it might result
2427          * in data loss.  So use reserved blocks to allocate metadata if
2428          * possible.
2429          *
2430          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2431          * the blocks in question are delalloc blocks.  This indicates
2432          * that the blocks and quotas has already been checked when
2433          * the data was copied into the page cache.
2434          */
2435         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2436                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2437                            EXT4_GET_BLOCKS_IO_SUBMIT;
2438         dioread_nolock = ext4_should_dioread_nolock(inode);
2439         if (dioread_nolock)
2440                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2441         if (map->m_flags & (1 << BH_Delay))
2442                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2443
2444         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2445         if (err < 0)
2446                 return err;
2447         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2448                 if (!mpd->io_submit.io_end->handle &&
2449                     ext4_handle_valid(handle)) {
2450                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2451                         handle->h_rsv_handle = NULL;
2452                 }
2453                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2454         }
2455
2456         BUG_ON(map->m_len == 0);
2457         if (map->m_flags & EXT4_MAP_NEW) {
2458                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2459                                    map->m_len);
2460         }
2461         return 0;
2462 }
2463
2464 /*
2465  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2466  *                               mpd->len and submit pages underlying it for IO
2467  *
2468  * @handle - handle for journal operations
2469  * @mpd - extent to map
2470  * @give_up_on_write - we set this to true iff there is a fatal error and there
2471  *                     is no hope of writing the data. The caller should discard
2472  *                     dirty pages to avoid infinite loops.
2473  *
2474  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2475  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2476  * them to initialized or split the described range from larger unwritten
2477  * extent. Note that we need not map all the described range since allocation
2478  * can return less blocks or the range is covered by more unwritten extents. We
2479  * cannot map more because we are limited by reserved transaction credits. On
2480  * the other hand we always make sure that the last touched page is fully
2481  * mapped so that it can be written out (and thus forward progress is
2482  * guaranteed). After mapping we submit all mapped pages for IO.
2483  */
2484 static int mpage_map_and_submit_extent(handle_t *handle,
2485                                        struct mpage_da_data *mpd,
2486                                        bool *give_up_on_write)
2487 {
2488         struct inode *inode = mpd->inode;
2489         struct ext4_map_blocks *map = &mpd->map;
2490         int err;
2491         loff_t disksize;
2492         int progress = 0;
2493
2494         mpd->io_submit.io_end->offset =
2495                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2496         do {
2497                 err = mpage_map_one_extent(handle, mpd);
2498                 if (err < 0) {
2499                         struct super_block *sb = inode->i_sb;
2500
2501                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2502                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2503                                 goto invalidate_dirty_pages;
2504                         /*
2505                          * Let the uper layers retry transient errors.
2506                          * In the case of ENOSPC, if ext4_count_free_blocks()
2507                          * is non-zero, a commit should free up blocks.
2508                          */
2509                         if ((err == -ENOMEM) ||
2510                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2511                                 if (progress)
2512                                         goto update_disksize;
2513                                 return err;
2514                         }
2515                         ext4_msg(sb, KERN_CRIT,
2516                                  "Delayed block allocation failed for "
2517                                  "inode %lu at logical offset %llu with"
2518                                  " max blocks %u with error %d",
2519                                  inode->i_ino,
2520                                  (unsigned long long)map->m_lblk,
2521                                  (unsigned)map->m_len, -err);
2522                         ext4_msg(sb, KERN_CRIT,
2523                                  "This should not happen!! Data will "
2524                                  "be lost\n");
2525                         if (err == -ENOSPC)
2526                                 ext4_print_free_blocks(inode);
2527                 invalidate_dirty_pages:
2528                         *give_up_on_write = true;
2529                         return err;
2530                 }
2531                 progress = 1;
2532                 /*
2533                  * Update buffer state, submit mapped pages, and get us new
2534                  * extent to map
2535                  */
2536                 err = mpage_map_and_submit_buffers(mpd);
2537                 if (err < 0)
2538                         goto update_disksize;
2539         } while (map->m_len);
2540
2541 update_disksize:
2542         /*
2543          * Update on-disk size after IO is submitted.  Races with
2544          * truncate are avoided by checking i_size under i_data_sem.
2545          */
2546         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2547         if (disksize > EXT4_I(inode)->i_disksize) {
2548                 int err2;
2549                 loff_t i_size;
2550
2551                 down_write(&EXT4_I(inode)->i_data_sem);
2552                 i_size = i_size_read(inode);
2553                 if (disksize > i_size)
2554                         disksize = i_size;
2555                 if (disksize > EXT4_I(inode)->i_disksize)
2556                         EXT4_I(inode)->i_disksize = disksize;
2557                 up_write(&EXT4_I(inode)->i_data_sem);
2558                 err2 = ext4_mark_inode_dirty(handle, inode);
2559                 if (err2)
2560                         ext4_error(inode->i_sb,
2561                                    "Failed to mark inode %lu dirty",
2562                                    inode->i_ino);
2563                 if (!err)
2564                         err = err2;
2565         }
2566         return err;
2567 }
2568
2569 /*
2570  * Calculate the total number of credits to reserve for one writepages
2571  * iteration. This is called from ext4_writepages(). We map an extent of
2572  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2573  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2574  * bpp - 1 blocks in bpp different extents.
2575  */
2576 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2577 {
2578         int bpp = ext4_journal_blocks_per_page(inode);
2579
2580         return ext4_meta_trans_blocks(inode,
2581                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2582 }
2583
2584 /*
2585  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2586  *                               and underlying extent to map
2587  *
2588  * @mpd - where to look for pages
2589  *
2590  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2591  * IO immediately. When we find a page which isn't mapped we start accumulating
2592  * extent of buffers underlying these pages that needs mapping (formed by
2593  * either delayed or unwritten buffers). We also lock the pages containing
2594  * these buffers. The extent found is returned in @mpd structure (starting at
2595  * mpd->lblk with length mpd->len blocks).
2596  *
2597  * Note that this function can attach bios to one io_end structure which are
2598  * neither logically nor physically contiguous. Although it may seem as an
2599  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2600  * case as we need to track IO to all buffers underlying a page in one io_end.
2601  */
2602 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2603 {
2604         struct address_space *mapping = mpd->inode->i_mapping;
2605         struct pagevec pvec;
2606         unsigned int nr_pages;
2607         long left = mpd->wbc->nr_to_write;
2608         pgoff_t index = mpd->first_page;
2609         pgoff_t end = mpd->last_page;
2610         int tag;
2611         int i, err = 0;
2612         int blkbits = mpd->inode->i_blkbits;
2613         ext4_lblk_t lblk;
2614         struct buffer_head *head;
2615
2616         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2617                 tag = PAGECACHE_TAG_TOWRITE;
2618         else
2619                 tag = PAGECACHE_TAG_DIRTY;
2620
2621         pagevec_init(&pvec, 0);
2622         mpd->map.m_len = 0;
2623         mpd->next_page = index;
2624         while (index <= end) {
2625                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2626                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2627                 if (nr_pages == 0)
2628                         goto out;
2629
2630                 for (i = 0; i < nr_pages; i++) {
2631                         struct page *page = pvec.pages[i];
2632
2633                         /*
2634                          * At this point, the page may be truncated or
2635                          * invalidated (changing page->mapping to NULL), or
2636                          * even swizzled back from swapper_space to tmpfs file
2637                          * mapping. However, page->index will not change
2638                          * because we have a reference on the page.
2639                          */
2640                         if (page->index > end)
2641                                 goto out;
2642
2643                         /*
2644                          * Accumulated enough dirty pages? This doesn't apply
2645                          * to WB_SYNC_ALL mode. For integrity sync we have to
2646                          * keep going because someone may be concurrently
2647                          * dirtying pages, and we might have synced a lot of
2648                          * newly appeared dirty pages, but have not synced all
2649                          * of the old dirty pages.
2650                          */
2651                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2652                                 goto out;
2653
2654                         /* If we can't merge this page, we are done. */
2655                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2656                                 goto out;
2657
2658                         lock_page(page);
2659                         /*
2660                          * If the page is no longer dirty, or its mapping no
2661                          * longer corresponds to inode we are writing (which
2662                          * means it has been truncated or invalidated), or the
2663                          * page is already under writeback and we are not doing
2664                          * a data integrity writeback, skip the page
2665                          */
2666                         if (!PageDirty(page) ||
2667                             (PageWriteback(page) &&
2668                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2669                             unlikely(page->mapping != mapping)) {
2670                                 unlock_page(page);
2671                                 continue;
2672                         }
2673
2674                         wait_on_page_writeback(page);
2675                         BUG_ON(PageWriteback(page));
2676
2677                         if (mpd->map.m_len == 0)
2678                                 mpd->first_page = page->index;
2679                         mpd->next_page = page->index + 1;
2680                         /* Add all dirty buffers to mpd */
2681                         lblk = ((ext4_lblk_t)page->index) <<
2682                                 (PAGE_SHIFT - blkbits);
2683                         head = page_buffers(page);
2684                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2685                         if (err <= 0)
2686                                 goto out;
2687                         err = 0;
2688                         left--;
2689                 }
2690                 pagevec_release(&pvec);
2691                 cond_resched();
2692         }
2693         return 0;
2694 out:
2695         pagevec_release(&pvec);
2696         return err;
2697 }
2698
2699 static int __writepage(struct page *page, struct writeback_control *wbc,
2700                        void *data)
2701 {
2702         struct address_space *mapping = data;
2703         int ret = ext4_writepage(page, wbc);
2704         mapping_set_error(mapping, ret);
2705         return ret;
2706 }
2707
2708 static int ext4_writepages(struct address_space *mapping,
2709                            struct writeback_control *wbc)
2710 {
2711         pgoff_t writeback_index = 0;
2712         long nr_to_write = wbc->nr_to_write;
2713         int range_whole = 0;
2714         int cycled = 1;
2715         handle_t *handle = NULL;
2716         struct mpage_da_data mpd;
2717         struct inode *inode = mapping->host;
2718         int needed_blocks, rsv_blocks = 0, ret = 0;
2719         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2720         bool done;
2721         struct blk_plug plug;
2722         bool give_up_on_write = false;
2723
2724         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2725                 return -EIO;
2726
2727         percpu_down_read(&sbi->s_journal_flag_rwsem);
2728         trace_ext4_writepages(inode, wbc);
2729
2730         if (dax_mapping(mapping)) {
2731                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2732                                                   wbc);
2733                 goto out_writepages;
2734         }
2735
2736         /*
2737          * No pages to write? This is mainly a kludge to avoid starting
2738          * a transaction for special inodes like journal inode on last iput()
2739          * because that could violate lock ordering on umount
2740          */
2741         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2742                 goto out_writepages;
2743
2744         if (ext4_should_journal_data(inode)) {
2745                 struct blk_plug plug;
2746
2747                 blk_start_plug(&plug);
2748                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2749                 blk_finish_plug(&plug);
2750                 goto out_writepages;
2751         }
2752
2753         /*
2754          * If the filesystem has aborted, it is read-only, so return
2755          * right away instead of dumping stack traces later on that
2756          * will obscure the real source of the problem.  We test
2757          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2758          * the latter could be true if the filesystem is mounted
2759          * read-only, and in that case, ext4_writepages should
2760          * *never* be called, so if that ever happens, we would want
2761          * the stack trace.
2762          */
2763         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2765                 ret = -EROFS;
2766                 goto out_writepages;
2767         }
2768
2769         if (ext4_should_dioread_nolock(inode)) {
2770                 /*
2771                  * We may need to convert up to one extent per block in
2772                  * the page and we may dirty the inode.
2773                  */
2774                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2775         }
2776
2777         /*
2778          * If we have inline data and arrive here, it means that
2779          * we will soon create the block for the 1st page, so
2780          * we'd better clear the inline data here.
2781          */
2782         if (ext4_has_inline_data(inode)) {
2783                 /* Just inode will be modified... */
2784                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2785                 if (IS_ERR(handle)) {
2786                         ret = PTR_ERR(handle);
2787                         goto out_writepages;
2788                 }
2789                 BUG_ON(ext4_test_inode_state(inode,
2790                                 EXT4_STATE_MAY_INLINE_DATA));
2791                 ext4_destroy_inline_data(handle, inode);
2792                 ext4_journal_stop(handle);
2793         }
2794
2795         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2796                 range_whole = 1;
2797
2798         if (wbc->range_cyclic) {
2799                 writeback_index = mapping->writeback_index;
2800                 if (writeback_index)
2801                         cycled = 0;
2802                 mpd.first_page = writeback_index;
2803                 mpd.last_page = -1;
2804         } else {
2805                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2806                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2807         }
2808
2809         mpd.inode = inode;
2810         mpd.wbc = wbc;
2811         ext4_io_submit_init(&mpd.io_submit, wbc);
2812 retry:
2813         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2815         done = false;
2816         blk_start_plug(&plug);
2817
2818         /*
2819          * First writeback pages that don't need mapping - we can avoid
2820          * starting a transaction unnecessarily and also avoid being blocked
2821          * in the block layer on device congestion while having transaction
2822          * started.
2823          */
2824         mpd.do_map = 0;
2825         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826         if (!mpd.io_submit.io_end) {
2827                 ret = -ENOMEM;
2828                 goto unplug;
2829         }
2830         ret = mpage_prepare_extent_to_map(&mpd);
2831         /* Submit prepared bio */
2832         ext4_io_submit(&mpd.io_submit);
2833         ext4_put_io_end_defer(mpd.io_submit.io_end);
2834         mpd.io_submit.io_end = NULL;
2835         /* Unlock pages we didn't use */
2836         mpage_release_unused_pages(&mpd, false);
2837         if (ret < 0)
2838                 goto unplug;
2839
2840         while (!done && mpd.first_page <= mpd.last_page) {
2841                 /* For each extent of pages we use new io_end */
2842                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843                 if (!mpd.io_submit.io_end) {
2844                         ret = -ENOMEM;
2845                         break;
2846                 }
2847
2848                 /*
2849                  * We have two constraints: We find one extent to map and we
2850                  * must always write out whole page (makes a difference when
2851                  * blocksize < pagesize) so that we don't block on IO when we
2852                  * try to write out the rest of the page. Journalled mode is
2853                  * not supported by delalloc.
2854                  */
2855                 BUG_ON(ext4_should_journal_data(inode));
2856                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2857
2858                 /* start a new transaction */
2859                 handle = ext4_journal_start_with_reserve(inode,
2860                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861                 if (IS_ERR(handle)) {
2862                         ret = PTR_ERR(handle);
2863                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864                                "%ld pages, ino %lu; err %d", __func__,
2865                                 wbc->nr_to_write, inode->i_ino, ret);
2866                         /* Release allocated io_end */
2867                         ext4_put_io_end(mpd.io_submit.io_end);
2868                         mpd.io_submit.io_end = NULL;
2869                         break;
2870                 }
2871                 mpd.do_map = 1;
2872
2873                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2874                 ret = mpage_prepare_extent_to_map(&mpd);
2875                 if (!ret) {
2876                         if (mpd.map.m_len)
2877                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2878                                         &give_up_on_write);
2879                         else {
2880                                 /*
2881                                  * We scanned the whole range (or exhausted
2882                                  * nr_to_write), submitted what was mapped and
2883                                  * didn't find anything needing mapping. We are
2884                                  * done.
2885                                  */
2886                                 done = true;
2887                         }
2888                 }
2889                 /*
2890                  * Caution: If the handle is synchronous,
2891                  * ext4_journal_stop() can wait for transaction commit
2892                  * to finish which may depend on writeback of pages to
2893                  * complete or on page lock to be released.  In that
2894                  * case, we have to wait until after after we have
2895                  * submitted all the IO, released page locks we hold,
2896                  * and dropped io_end reference (for extent conversion
2897                  * to be able to complete) before stopping the handle.
2898                  */
2899                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2900                         ext4_journal_stop(handle);
2901                         handle = NULL;
2902                         mpd.do_map = 0;
2903                 }
2904                 /* Submit prepared bio */
2905                 ext4_io_submit(&mpd.io_submit);
2906                 /* Unlock pages we didn't use */
2907                 mpage_release_unused_pages(&mpd, give_up_on_write);
2908                 /*
2909                  * Drop our io_end reference we got from init. We have
2910                  * to be careful and use deferred io_end finishing if
2911                  * we are still holding the transaction as we can
2912                  * release the last reference to io_end which may end
2913                  * up doing unwritten extent conversion.
2914                  */
2915                 if (handle) {
2916                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2917                         ext4_journal_stop(handle);
2918                 } else
2919                         ext4_put_io_end(mpd.io_submit.io_end);
2920                 mpd.io_submit.io_end = NULL;
2921
2922                 if (ret == -ENOSPC && sbi->s_journal) {
2923                         /*
2924                          * Commit the transaction which would
2925                          * free blocks released in the transaction
2926                          * and try again
2927                          */
2928                         jbd2_journal_force_commit_nested(sbi->s_journal);
2929                         ret = 0;
2930                         continue;
2931                 }
2932                 /* Fatal error - ENOMEM, EIO... */
2933                 if (ret)
2934                         break;
2935         }
2936 unplug:
2937         blk_finish_plug(&plug);
2938         if (!ret && !cycled && wbc->nr_to_write > 0) {
2939                 cycled = 1;
2940                 mpd.last_page = writeback_index - 1;
2941                 mpd.first_page = 0;
2942                 goto retry;
2943         }
2944
2945         /* Update index */
2946         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2947                 /*
2948                  * Set the writeback_index so that range_cyclic
2949                  * mode will write it back later
2950                  */
2951                 mapping->writeback_index = mpd.first_page;
2952
2953 out_writepages:
2954         trace_ext4_writepages_result(inode, wbc, ret,
2955                                      nr_to_write - wbc->nr_to_write);
2956         percpu_up_read(&sbi->s_journal_flag_rwsem);
2957         return ret;
2958 }
2959
2960 static int ext4_nonda_switch(struct super_block *sb)
2961 {
2962         s64 free_clusters, dirty_clusters;
2963         struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965         /*
2966          * switch to non delalloc mode if we are running low
2967          * on free block. The free block accounting via percpu
2968          * counters can get slightly wrong with percpu_counter_batch getting
2969          * accumulated on each CPU without updating global counters
2970          * Delalloc need an accurate free block accounting. So switch
2971          * to non delalloc when we are near to error range.
2972          */
2973         free_clusters =
2974                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975         dirty_clusters =
2976                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977         /*
2978          * Start pushing delalloc when 1/2 of free blocks are dirty.
2979          */
2980         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983         if (2 * free_clusters < 3 * dirty_clusters ||
2984             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985                 /*
2986                  * free block count is less than 150% of dirty blocks
2987                  * or free blocks is less than watermark
2988                  */
2989                 return 1;
2990         }
2991         return 0;
2992 }
2993
2994 /* We always reserve for an inode update; the superblock could be there too */
2995 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996 {
2997         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998                 return 1;
2999
3000         if (pos + len <= 0x7fffffffULL)
3001                 return 1;
3002
3003         /* We might need to update the superblock to set LARGE_FILE */
3004         return 2;
3005 }
3006
3007 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008                                loff_t pos, unsigned len, unsigned flags,
3009                                struct page **pagep, void **fsdata)
3010 {
3011         int ret, retries = 0;
3012         struct page *page;
3013         pgoff_t index;
3014         struct inode *inode = mapping->host;
3015         handle_t *handle;
3016
3017         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018                 return -EIO;
3019
3020         index = pos >> PAGE_SHIFT;
3021
3022         if (ext4_nonda_switch(inode->i_sb) ||
3023             S_ISLNK(inode->i_mode)) {
3024                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025                 return ext4_write_begin(file, mapping, pos,
3026                                         len, flags, pagep, fsdata);
3027         }
3028         *fsdata = (void *)0;
3029         trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3033                                                       pos, len, flags,
3034                                                       pagep, fsdata);
3035                 if (ret < 0)
3036                         return ret;
3037                 if (ret == 1)
3038                         return 0;
3039         }
3040
3041         /*
3042          * grab_cache_page_write_begin() can take a long time if the
3043          * system is thrashing due to memory pressure, or if the page
3044          * is being written back.  So grab it first before we start
3045          * the transaction handle.  This also allows us to allocate
3046          * the page (if needed) without using GFP_NOFS.
3047          */
3048 retry_grab:
3049         page = grab_cache_page_write_begin(mapping, index, flags);
3050         if (!page)
3051                 return -ENOMEM;
3052         unlock_page(page);
3053
3054         /*
3055          * With delayed allocation, we don't log the i_disksize update
3056          * if there is delayed block allocation. But we still need
3057          * to journalling the i_disksize update if writes to the end
3058          * of file which has an already mapped buffer.
3059          */
3060 retry_journal:
3061         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062                                 ext4_da_write_credits(inode, pos, len));
3063         if (IS_ERR(handle)) {
3064                 put_page(page);
3065                 return PTR_ERR(handle);
3066         }
3067
3068         lock_page(page);
3069         if (page->mapping != mapping) {
3070                 /* The page got truncated from under us */
3071                 unlock_page(page);
3072                 put_page(page);
3073                 ext4_journal_stop(handle);
3074                 goto retry_grab;
3075         }
3076         /* In case writeback began while the page was unlocked */
3077         wait_for_stable_page(page);
3078
3079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3080         ret = ext4_block_write_begin(page, pos, len,
3081                                      ext4_da_get_block_prep);
3082 #else
3083         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084 #endif
3085         if (ret < 0) {
3086                 unlock_page(page);
3087                 ext4_journal_stop(handle);
3088                 /*
3089                  * block_write_begin may have instantiated a few blocks
3090                  * outside i_size.  Trim these off again. Don't need
3091                  * i_size_read because we hold i_mutex.
3092                  */
3093                 if (pos + len > inode->i_size)
3094                         ext4_truncate_failed_write(inode);
3095
3096                 if (ret == -ENOSPC &&
3097                     ext4_should_retry_alloc(inode->i_sb, &retries))
3098                         goto retry_journal;
3099
3100                 put_page(page);
3101                 return ret;
3102         }
3103
3104         *pagep = page;
3105         return ret;
3106 }
3107
3108 /*
3109  * Check if we should update i_disksize
3110  * when write to the end of file but not require block allocation
3111  */
3112 static int ext4_da_should_update_i_disksize(struct page *page,
3113                                             unsigned long offset)
3114 {
3115         struct buffer_head *bh;
3116         struct inode *inode = page->mapping->host;
3117         unsigned int idx;
3118         int i;
3119
3120         bh = page_buffers(page);
3121         idx = offset >> inode->i_blkbits;
3122
3123         for (i = 0; i < idx; i++)
3124                 bh = bh->b_this_page;
3125
3126         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127                 return 0;
3128         return 1;
3129 }
3130
3131 static int ext4_da_write_end(struct file *file,
3132                              struct address_space *mapping,
3133                              loff_t pos, unsigned len, unsigned copied,
3134                              struct page *page, void *fsdata)
3135 {
3136         struct inode *inode = mapping->host;
3137         int ret = 0, ret2;
3138         handle_t *handle = ext4_journal_current_handle();
3139         loff_t new_i_size;
3140         unsigned long start, end;
3141         int write_mode = (int)(unsigned long)fsdata;
3142
3143         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144                 return ext4_write_end(file, mapping, pos,
3145                                       len, copied, page, fsdata);
3146
3147         trace_ext4_da_write_end(inode, pos, len, copied);
3148         start = pos & (PAGE_SIZE - 1);
3149         end = start + copied - 1;
3150
3151         /*
3152          * generic_write_end() will run mark_inode_dirty() if i_size
3153          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154          * into that.
3155          */
3156         new_i_size = pos + copied;
3157         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158                 if (ext4_has_inline_data(inode) ||
3159                     ext4_da_should_update_i_disksize(page, end)) {
3160                         ext4_update_i_disksize(inode, new_i_size);
3161                         /* We need to mark inode dirty even if
3162                          * new_i_size is less that inode->i_size
3163                          * bu greater than i_disksize.(hint delalloc)
3164                          */
3165                         ext4_mark_inode_dirty(handle, inode);
3166                 }
3167         }
3168
3169         if (write_mode != CONVERT_INLINE_DATA &&
3170             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171             ext4_has_inline_data(inode))
3172                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173                                                      page);
3174         else
3175                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3176                                                         page, fsdata);
3177
3178         copied = ret2;
3179         if (ret2 < 0)
3180                 ret = ret2;
3181         ret2 = ext4_journal_stop(handle);
3182         if (!ret)
3183                 ret = ret2;
3184
3185         return ret ? ret : copied;
3186 }
3187
3188 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189                                    unsigned int length)
3190 {
3191         /*
3192          * Drop reserved blocks
3193          */
3194         BUG_ON(!PageLocked(page));
3195         if (!page_has_buffers(page))
3196                 goto out;
3197
3198         ext4_da_page_release_reservation(page, offset, length);
3199
3200 out:
3201         ext4_invalidatepage(page, offset, length);
3202
3203         return;
3204 }
3205
3206 /*
3207  * Force all delayed allocation blocks to be allocated for a given inode.
3208  */
3209 int ext4_alloc_da_blocks(struct inode *inode)
3210 {
3211         trace_ext4_alloc_da_blocks(inode);
3212
3213         if (!EXT4_I(inode)->i_reserved_data_blocks)
3214                 return 0;
3215
3216         /*
3217          * We do something simple for now.  The filemap_flush() will
3218          * also start triggering a write of the data blocks, which is
3219          * not strictly speaking necessary (and for users of
3220          * laptop_mode, not even desirable).  However, to do otherwise
3221          * would require replicating code paths in:
3222          *
3223          * ext4_writepages() ->
3224          *    write_cache_pages() ---> (via passed in callback function)
3225          *        __mpage_da_writepage() -->
3226          *           mpage_add_bh_to_extent()
3227          *           mpage_da_map_blocks()
3228          *
3229          * The problem is that write_cache_pages(), located in
3230          * mm/page-writeback.c, marks pages clean in preparation for
3231          * doing I/O, which is not desirable if we're not planning on
3232          * doing I/O at all.
3233          *
3234          * We could call write_cache_pages(), and then redirty all of
3235          * the pages by calling redirty_page_for_writepage() but that
3236          * would be ugly in the extreme.  So instead we would need to
3237          * replicate parts of the code in the above functions,
3238          * simplifying them because we wouldn't actually intend to
3239          * write out the pages, but rather only collect contiguous
3240          * logical block extents, call the multi-block allocator, and
3241          * then update the buffer heads with the block allocations.
3242          *
3243          * For now, though, we'll cheat by calling filemap_flush(),
3244          * which will map the blocks, and start the I/O, but not
3245          * actually wait for the I/O to complete.
3246          */
3247         return filemap_flush(inode->i_mapping);
3248 }
3249
3250 /*
3251  * bmap() is special.  It gets used by applications such as lilo and by
3252  * the swapper to find the on-disk block of a specific piece of data.
3253  *
3254  * Naturally, this is dangerous if the block concerned is still in the
3255  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256  * filesystem and enables swap, then they may get a nasty shock when the
3257  * data getting swapped to that swapfile suddenly gets overwritten by
3258  * the original zero's written out previously to the journal and
3259  * awaiting writeback in the kernel's buffer cache.
3260  *
3261  * So, if we see any bmap calls here on a modified, data-journaled file,
3262  * take extra steps to flush any blocks which might be in the cache.
3263  */
3264 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265 {
3266         struct inode *inode = mapping->host;
3267         journal_t *journal;
3268         int err;
3269
3270         /*
3271          * We can get here for an inline file via the FIBMAP ioctl
3272          */
3273         if (ext4_has_inline_data(inode))
3274                 return 0;
3275
3276         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277                         test_opt(inode->i_sb, DELALLOC)) {
3278                 /*
3279                  * With delalloc we want to sync the file
3280                  * so that we can make sure we allocate
3281                  * blocks for file
3282                  */
3283                 filemap_write_and_wait(mapping);
3284         }
3285
3286         if (EXT4_JOURNAL(inode) &&
3287             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288                 /*
3289                  * This is a REALLY heavyweight approach, but the use of
3290                  * bmap on dirty files is expected to be extremely rare:
3291                  * only if we run lilo or swapon on a freshly made file
3292                  * do we expect this to happen.
3293                  *
3294                  * (bmap requires CAP_SYS_RAWIO so this does not
3295                  * represent an unprivileged user DOS attack --- we'd be
3296                  * in trouble if mortal users could trigger this path at
3297                  * will.)
3298                  *
3299                  * NB. EXT4_STATE_JDATA is not set on files other than
3300                  * regular files.  If somebody wants to bmap a directory
3301                  * or symlink and gets confused because the buffer
3302                  * hasn't yet been flushed to disk, they deserve
3303                  * everything they get.
3304                  */
3305
3306                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307                 journal = EXT4_JOURNAL(inode);
3308                 jbd2_journal_lock_updates(journal);
3309                 err = jbd2_journal_flush(journal);
3310                 jbd2_journal_unlock_updates(journal);
3311
3312                 if (err)
3313                         return 0;
3314         }
3315
3316         return generic_block_bmap(mapping, block, ext4_get_block);
3317 }
3318
3319 static int ext4_readpage(struct file *file, struct page *page)
3320 {
3321         int ret = -EAGAIN;
3322         struct inode *inode = page->mapping->host;
3323
3324         trace_ext4_readpage(page);
3325
3326         if (ext4_has_inline_data(inode))
3327                 ret = ext4_readpage_inline(inode, page);
3328
3329         if (ret == -EAGAIN)
3330                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332         return ret;
3333 }
3334
3335 static int
3336 ext4_readpages(struct file *file, struct address_space *mapping,
3337                 struct list_head *pages, unsigned nr_pages)
3338 {
3339         struct inode *inode = mapping->host;
3340
3341         /* If the file has inline data, no need to do readpages. */
3342         if (ext4_has_inline_data(inode))
3343                 return 0;
3344
3345         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346 }
3347
3348 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349                                 unsigned int length)
3350 {
3351         trace_ext4_invalidatepage(page, offset, length);
3352
3353         /* No journalling happens on data buffers when this function is used */
3354         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356         block_invalidatepage(page, offset, length);
3357 }
3358
3359 static int __ext4_journalled_invalidatepage(struct page *page,
3360                                             unsigned int offset,
3361                                             unsigned int length)
3362 {
3363         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365         trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367         /*
3368          * If it's a full truncate we just forget about the pending dirtying
3369          */
3370         if (offset == 0 && length == PAGE_SIZE)
3371                 ClearPageChecked(page);
3372
3373         return jbd2_journal_invalidatepage(journal, page, offset, length);
3374 }
3375
3376 /* Wrapper for aops... */
3377 static void ext4_journalled_invalidatepage(struct page *page,
3378                                            unsigned int offset,
3379                                            unsigned int length)
3380 {
3381         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382 }
3383
3384 static int ext4_releasepage(struct page *page, gfp_t wait)
3385 {
3386         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388         trace_ext4_releasepage(page);
3389
3390         /* Page has dirty journalled data -> cannot release */
3391         if (PageChecked(page))
3392                 return 0;
3393         if (journal)
3394                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395         else
3396                 return try_to_free_buffers(page);
3397 }
3398
3399 #ifdef CONFIG_FS_DAX
3400 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3401                             unsigned flags, struct iomap *iomap)
3402 {
3403         struct block_device *bdev;
3404         unsigned int blkbits = inode->i_blkbits;
3405         unsigned long first_block = offset >> blkbits;
3406         unsigned long last_block = (offset + length - 1) >> blkbits;
3407         struct ext4_map_blocks map;
3408         int ret;
3409
3410         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3411                 return -ERANGE;
3412
3413         map.m_lblk = first_block;
3414         map.m_len = last_block - first_block + 1;
3415
3416         if (!(flags & IOMAP_WRITE)) {
3417                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3418         } else {
3419                 int dio_credits;
3420                 handle_t *handle;
3421                 int retries = 0;
3422
3423                 /* Trim mapping request to maximum we can map at once for DIO */
3424                 if (map.m_len > DIO_MAX_BLOCKS)
3425                         map.m_len = DIO_MAX_BLOCKS;
3426                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3427 retry:
3428                 /*
3429                  * Either we allocate blocks and then we don't get unwritten
3430                  * extent so we have reserved enough credits, or the blocks
3431                  * are already allocated and unwritten and in that case
3432                  * extent conversion fits in the credits as well.
3433                  */
3434                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3435                                             dio_credits);
3436                 if (IS_ERR(handle))
3437                         return PTR_ERR(handle);
3438
3439                 ret = ext4_map_blocks(handle, inode, &map,
3440                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3441                 if (ret < 0) {
3442                         ext4_journal_stop(handle);
3443                         if (ret == -ENOSPC &&
3444                             ext4_should_retry_alloc(inode->i_sb, &retries))
3445                                 goto retry;
3446                         return ret;
3447                 }
3448
3449                 /*
3450                  * If we added blocks beyond i_size, we need to make sure they
3451                  * will get truncated if we crash before updating i_size in
3452                  * ext4_iomap_end(). For faults we don't need to do that (and
3453                  * even cannot because for orphan list operations inode_lock is
3454                  * required) - if we happen to instantiate block beyond i_size,
3455                  * it is because we race with truncate which has already added
3456                  * the inode to the orphan list.
3457                  */
3458                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3459                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3460                         int err;
3461
3462                         err = ext4_orphan_add(handle, inode);
3463                         if (err < 0) {
3464                                 ext4_journal_stop(handle);
3465                                 return err;
3466                         }
3467                 }
3468                 ext4_journal_stop(handle);
3469         }
3470
3471         iomap->flags = 0;
3472         bdev = inode->i_sb->s_bdev;
3473         iomap->bdev = bdev;
3474         if (blk_queue_dax(bdev->bd_queue))
3475                 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3476         else
3477                 iomap->dax_dev = NULL;
3478         iomap->offset = first_block << blkbits;
3479
3480         if (ret == 0) {
3481                 iomap->type = IOMAP_HOLE;
3482                 iomap->blkno = IOMAP_NULL_BLOCK;
3483                 iomap->length = (u64)map.m_len << blkbits;
3484         } else {
3485                 if (map.m_flags & EXT4_MAP_MAPPED) {
3486                         iomap->type = IOMAP_MAPPED;
3487                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3488                         iomap->type = IOMAP_UNWRITTEN;
3489                 } else {
3490                         WARN_ON_ONCE(1);
3491                         return -EIO;
3492                 }
3493                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3494                 iomap->length = (u64)map.m_len << blkbits;
3495         }
3496
3497         if (map.m_flags & EXT4_MAP_NEW)
3498                 iomap->flags |= IOMAP_F_NEW;
3499         return 0;
3500 }
3501
3502 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3503                           ssize_t written, unsigned flags, struct iomap *iomap)
3504 {
3505         int ret = 0;
3506         handle_t *handle;
3507         int blkbits = inode->i_blkbits;
3508         bool truncate = false;
3509
3510         fs_put_dax(iomap->dax_dev);
3511         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3512                 return 0;
3513
3514         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3515         if (IS_ERR(handle)) {
3516                 ret = PTR_ERR(handle);
3517                 goto orphan_del;
3518         }
3519         if (ext4_update_inode_size(inode, offset + written))
3520                 ext4_mark_inode_dirty(handle, inode);
3521         /*
3522          * We may need to truncate allocated but not written blocks beyond EOF.
3523          */
3524         if (iomap->offset + iomap->length > 
3525             ALIGN(inode->i_size, 1 << blkbits)) {
3526                 ext4_lblk_t written_blk, end_blk;
3527
3528                 written_blk = (offset + written) >> blkbits;
3529                 end_blk = (offset + length) >> blkbits;
3530                 if (written_blk < end_blk && ext4_can_truncate(inode))
3531                         truncate = true;
3532         }
3533         /*
3534          * Remove inode from orphan list if we were extending a inode and
3535          * everything went fine.
3536          */
3537         if (!truncate && inode->i_nlink &&
3538             !list_empty(&EXT4_I(inode)->i_orphan))
3539                 ext4_orphan_del(handle, inode);
3540         ext4_journal_stop(handle);
3541         if (truncate) {
3542                 ext4_truncate_failed_write(inode);
3543 orphan_del:
3544                 /*
3545                  * If truncate failed early the inode might still be on the
3546                  * orphan list; we need to make sure the inode is removed from
3547                  * the orphan list in that case.
3548                  */
3549                 if (inode->i_nlink)
3550                         ext4_orphan_del(NULL, inode);
3551         }
3552         return ret;
3553 }
3554
3555 const struct iomap_ops ext4_iomap_ops = {
3556         .iomap_begin            = ext4_iomap_begin,
3557         .iomap_end              = ext4_iomap_end,
3558 };
3559
3560 #endif
3561
3562 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3563                             ssize_t size, void *private)
3564 {
3565         ext4_io_end_t *io_end = private;
3566
3567         /* if not async direct IO just return */
3568         if (!io_end)
3569                 return 0;
3570
3571         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3572                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3573                   io_end, io_end->inode->i_ino, iocb, offset, size);
3574
3575         /*
3576          * Error during AIO DIO. We cannot convert unwritten extents as the
3577          * data was not written. Just clear the unwritten flag and drop io_end.
3578          */
3579         if (size <= 0) {
3580                 ext4_clear_io_unwritten_flag(io_end);
3581                 size = 0;
3582         }
3583         io_end->offset = offset;
3584         io_end->size = size;
3585         ext4_put_io_end(io_end);
3586
3587         return 0;
3588 }
3589
3590 /*
3591  * Handling of direct IO writes.
3592  *
3593  * For ext4 extent files, ext4 will do direct-io write even to holes,
3594  * preallocated extents, and those write extend the file, no need to
3595  * fall back to buffered IO.
3596  *
3597  * For holes, we fallocate those blocks, mark them as unwritten
3598  * If those blocks were preallocated, we mark sure they are split, but
3599  * still keep the range to write as unwritten.
3600  *
3601  * The unwritten extents will be converted to written when DIO is completed.
3602  * For async direct IO, since the IO may still pending when return, we
3603  * set up an end_io call back function, which will do the conversion
3604  * when async direct IO completed.
3605  *
3606  * If the O_DIRECT write will extend the file then add this inode to the
3607  * orphan list.  So recovery will truncate it back to the original size
3608  * if the machine crashes during the write.
3609  *
3610  */
3611 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3612 {
3613         struct file *file = iocb->ki_filp;
3614         struct inode *inode = file->f_mapping->host;
3615         struct ext4_inode_info *ei = EXT4_I(inode);
3616         ssize_t ret;
3617         loff_t offset = iocb->ki_pos;
3618         size_t count = iov_iter_count(iter);
3619         int overwrite = 0;
3620         get_block_t *get_block_func = NULL;
3621         int dio_flags = 0;
3622         loff_t final_size = offset + count;
3623         int orphan = 0;
3624         handle_t *handle;
3625
3626         if (final_size > inode->i_size) {
3627                 /* Credits for sb + inode write */
3628                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3629                 if (IS_ERR(handle)) {
3630                         ret = PTR_ERR(handle);
3631                         goto out;
3632                 }
3633                 ret = ext4_orphan_add(handle, inode);
3634                 if (ret) {
3635                         ext4_journal_stop(handle);
3636                         goto out;
3637                 }
3638                 orphan = 1;
3639                 ei->i_disksize = inode->i_size;
3640                 ext4_journal_stop(handle);
3641         }
3642
3643         BUG_ON(iocb->private == NULL);
3644
3645         /*
3646          * Make all waiters for direct IO properly wait also for extent
3647          * conversion. This also disallows race between truncate() and
3648          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3649          */
3650         inode_dio_begin(inode);
3651
3652         /* If we do a overwrite dio, i_mutex locking can be released */
3653         overwrite = *((int *)iocb->private);
3654
3655         if (overwrite)
3656                 inode_unlock(inode);
3657
3658         /*
3659          * For extent mapped files we could direct write to holes and fallocate.
3660          *
3661          * Allocated blocks to fill the hole are marked as unwritten to prevent
3662          * parallel buffered read to expose the stale data before DIO complete
3663          * the data IO.
3664          *
3665          * As to previously fallocated extents, ext4 get_block will just simply
3666          * mark the buffer mapped but still keep the extents unwritten.
3667          *
3668          * For non AIO case, we will convert those unwritten extents to written
3669          * after return back from blockdev_direct_IO. That way we save us from
3670          * allocating io_end structure and also the overhead of offloading
3671          * the extent convertion to a workqueue.
3672          *
3673          * For async DIO, the conversion needs to be deferred when the
3674          * IO is completed. The ext4 end_io callback function will be
3675          * called to take care of the conversion work.  Here for async
3676          * case, we allocate an io_end structure to hook to the iocb.
3677          */
3678         iocb->private = NULL;
3679         if (overwrite)
3680                 get_block_func = ext4_dio_get_block_overwrite;
3681         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3682                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3683                 get_block_func = ext4_dio_get_block;
3684                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3685         } else if (is_sync_kiocb(iocb)) {
3686                 get_block_func = ext4_dio_get_block_unwritten_sync;
3687                 dio_flags = DIO_LOCKING;
3688         } else {
3689                 get_block_func = ext4_dio_get_block_unwritten_async;
3690                 dio_flags = DIO_LOCKING;
3691         }
3692         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3693                                    get_block_func, ext4_end_io_dio, NULL,
3694                                    dio_flags);
3695
3696         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3697                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3698                 int err;
3699                 /*
3700                  * for non AIO case, since the IO is already
3701                  * completed, we could do the conversion right here
3702                  */
3703                 err = ext4_convert_unwritten_extents(NULL, inode,
3704                                                      offset, ret);
3705                 if (err < 0)
3706                         ret = err;
3707                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3708         }
3709
3710         inode_dio_end(inode);
3711         /* take i_mutex locking again if we do a ovewrite dio */
3712         if (overwrite)
3713                 inode_lock(inode);
3714
3715         if (ret < 0 && final_size > inode->i_size)
3716                 ext4_truncate_failed_write(inode);
3717
3718         /* Handle extending of i_size after direct IO write */
3719         if (orphan) {
3720                 int err;
3721
3722                 /* Credits for sb + inode write */
3723                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3724                 if (IS_ERR(handle)) {
3725                         /* This is really bad luck. We've written the data
3726                          * but cannot extend i_size. Bail out and pretend
3727                          * the write failed... */
3728                         ret = PTR_ERR(handle);
3729                         if (inode->i_nlink)
3730                                 ext4_orphan_del(NULL, inode);
3731
3732                         goto out;
3733                 }
3734                 if (inode->i_nlink)
3735                         ext4_orphan_del(handle, inode);
3736                 if (ret > 0) {
3737                         loff_t end = offset + ret;
3738                         if (end > inode->i_size) {
3739                                 ei->i_disksize = end;
3740                                 i_size_write(inode, end);
3741                                 /*
3742                                  * We're going to return a positive `ret'
3743                                  * here due to non-zero-length I/O, so there's
3744                                  * no way of reporting error returns from
3745                                  * ext4_mark_inode_dirty() to userspace.  So
3746                                  * ignore it.
3747                                  */
3748                                 ext4_mark_inode_dirty(handle, inode);
3749                         }
3750                 }
3751                 err = ext4_journal_stop(handle);
3752                 if (ret == 0)
3753                         ret = err;
3754         }
3755 out:
3756         return ret;
3757 }
3758
3759 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3760 {
3761         struct address_space *mapping = iocb->ki_filp->f_mapping;
3762         struct inode *inode = mapping->host;
3763         size_t count = iov_iter_count(iter);
3764         ssize_t ret;
3765
3766         /*
3767          * Shared inode_lock is enough for us - it protects against concurrent
3768          * writes & truncates and since we take care of writing back page cache,
3769          * we are protected against page writeback as well.
3770          */
3771         inode_lock_shared(inode);
3772         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3773                                            iocb->ki_pos + count - 1);
3774         if (ret)
3775                 goto out_unlock;
3776         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3777                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3778 out_unlock:
3779         inode_unlock_shared(inode);
3780         return ret;
3781 }
3782
3783 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3784 {
3785         struct file *file = iocb->ki_filp;
3786         struct inode *inode = file->f_mapping->host;
3787         size_t count = iov_iter_count(iter);
3788         loff_t offset = iocb->ki_pos;
3789         ssize_t ret;
3790
3791 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3792         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3793                 return 0;
3794 #endif
3795
3796         /*
3797          * If we are doing data journalling we don't support O_DIRECT
3798          */
3799         if (ext4_should_journal_data(inode))
3800                 return 0;
3801
3802         /* Let buffer I/O handle the inline data case. */
3803         if (ext4_has_inline_data(inode))
3804                 return 0;
3805
3806         /* DAX uses iomap path now */
3807         if (WARN_ON_ONCE(IS_DAX(inode)))
3808                 return 0;
3809
3810         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3811         if (iov_iter_rw(iter) == READ)
3812                 ret = ext4_direct_IO_read(iocb, iter);
3813         else
3814                 ret = ext4_direct_IO_write(iocb, iter);
3815         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3816         return ret;
3817 }
3818
3819 /*
3820  * Pages can be marked dirty completely asynchronously from ext4's journalling
3821  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3822  * much here because ->set_page_dirty is called under VFS locks.  The page is
3823  * not necessarily locked.
3824  *
3825  * We cannot just dirty the page and leave attached buffers clean, because the
3826  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3827  * or jbddirty because all the journalling code will explode.
3828  *
3829  * So what we do is to mark the page "pending dirty" and next time writepage
3830  * is called, propagate that into the buffers appropriately.
3831  */
3832 static int ext4_journalled_set_page_dirty(struct page *page)
3833 {
3834         SetPageChecked(page);
3835         return __set_page_dirty_nobuffers(page);
3836 }
3837
3838 static int ext4_set_page_dirty(struct page *page)
3839 {
3840         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3841         WARN_ON_ONCE(!page_has_buffers(page));
3842         return __set_page_dirty_buffers(page);
3843 }
3844
3845 static const struct address_space_operations ext4_aops = {
3846         .readpage               = ext4_readpage,
3847         .readpages              = ext4_readpages,
3848         .writepage              = ext4_writepage,
3849         .writepages             = ext4_writepages,
3850         .write_begin            = ext4_write_begin,
3851         .write_end              = ext4_write_end,
3852         .set_page_dirty         = ext4_set_page_dirty,
3853         .bmap                   = ext4_bmap,
3854         .invalidatepage         = ext4_invalidatepage,
3855         .releasepage            = ext4_releasepage,
3856         .direct_IO              = ext4_direct_IO,
3857         .migratepage            = buffer_migrate_page,
3858         .is_partially_uptodate  = block_is_partially_uptodate,
3859         .error_remove_page      = generic_error_remove_page,
3860 };
3861
3862 static const struct address_space_operations ext4_journalled_aops = {
3863         .readpage               = ext4_readpage,
3864         .readpages              = ext4_readpages,
3865         .writepage              = ext4_writepage,
3866         .writepages             = ext4_writepages,
3867         .write_begin            = ext4_write_begin,
3868         .write_end              = ext4_journalled_write_end,
3869         .set_page_dirty         = ext4_journalled_set_page_dirty,
3870         .bmap                   = ext4_bmap,
3871         .invalidatepage         = ext4_journalled_invalidatepage,
3872         .releasepage            = ext4_releasepage,
3873         .direct_IO              = ext4_direct_IO,
3874         .is_partially_uptodate  = block_is_partially_uptodate,
3875         .error_remove_page      = generic_error_remove_page,
3876 };
3877
3878 static const struct address_space_operations ext4_da_aops = {
3879         .readpage               = ext4_readpage,
3880         .readpages              = ext4_readpages,
3881         .writepage              = ext4_writepage,
3882         .writepages             = ext4_writepages,
3883         .write_begin            = ext4_da_write_begin,
3884         .write_end              = ext4_da_write_end,
3885         .set_page_dirty         = ext4_set_page_dirty,
3886         .bmap                   = ext4_bmap,
3887         .invalidatepage         = ext4_da_invalidatepage,
3888         .releasepage            = ext4_releasepage,
3889         .direct_IO              = ext4_direct_IO,
3890         .migratepage            = buffer_migrate_page,
3891         .is_partially_uptodate  = block_is_partially_uptodate,
3892         .error_remove_page      = generic_error_remove_page,
3893 };
3894
3895 void ext4_set_aops(struct inode *inode)
3896 {
3897         switch (ext4_inode_journal_mode(inode)) {
3898         case EXT4_INODE_ORDERED_DATA_MODE:
3899         case EXT4_INODE_WRITEBACK_DATA_MODE:
3900                 break;
3901         case EXT4_INODE_JOURNAL_DATA_MODE:
3902                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3903                 return;
3904         default:
3905                 BUG();
3906         }
3907         if (test_opt(inode->i_sb, DELALLOC))
3908                 inode->i_mapping->a_ops = &ext4_da_aops;
3909         else
3910                 inode->i_mapping->a_ops = &ext4_aops;
3911 }
3912
3913 static int __ext4_block_zero_page_range(handle_t *handle,
3914                 struct address_space *mapping, loff_t from, loff_t length)
3915 {
3916         ext4_fsblk_t index = from >> PAGE_SHIFT;
3917         unsigned offset = from & (PAGE_SIZE-1);
3918         unsigned blocksize, pos;
3919         ext4_lblk_t iblock;
3920         struct inode *inode = mapping->host;
3921         struct buffer_head *bh;
3922         struct page *page;
3923         int err = 0;
3924
3925         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3926                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3927         if (!page)
3928                 return -ENOMEM;
3929
3930         blocksize = inode->i_sb->s_blocksize;
3931
3932         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3933
3934         if (!page_has_buffers(page))
3935                 create_empty_buffers(page, blocksize, 0);
3936
3937         /* Find the buffer that contains "offset" */
3938         bh = page_buffers(page);
3939         pos = blocksize;
3940         while (offset >= pos) {
3941                 bh = bh->b_this_page;
3942                 iblock++;
3943                 pos += blocksize;
3944         }
3945         if (buffer_freed(bh)) {
3946                 BUFFER_TRACE(bh, "freed: skip");
3947                 goto unlock;
3948         }
3949         if (!buffer_mapped(bh)) {
3950                 BUFFER_TRACE(bh, "unmapped");
3951                 ext4_get_block(inode, iblock, bh, 0);
3952                 /* unmapped? It's a hole - nothing to do */
3953                 if (!buffer_mapped(bh)) {
3954                         BUFFER_TRACE(bh, "still unmapped");
3955                         goto unlock;
3956                 }
3957         }
3958
3959         /* Ok, it's mapped. Make sure it's up-to-date */
3960         if (PageUptodate(page))
3961                 set_buffer_uptodate(bh);
3962
3963         if (!buffer_uptodate(bh)) {
3964                 err = -EIO;
3965                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3966                 wait_on_buffer(bh);
3967                 /* Uhhuh. Read error. Complain and punt. */
3968                 if (!buffer_uptodate(bh))
3969                         goto unlock;
3970                 if (S_ISREG(inode->i_mode) &&
3971                     ext4_encrypted_inode(inode)) {
3972                         /* We expect the key to be set. */
3973                         BUG_ON(!fscrypt_has_encryption_key(inode));
3974                         BUG_ON(blocksize != PAGE_SIZE);
3975                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3976                                                 page, PAGE_SIZE, 0, page->index));
3977                 }
3978         }
3979         if (ext4_should_journal_data(inode)) {
3980                 BUFFER_TRACE(bh, "get write access");
3981                 err = ext4_journal_get_write_access(handle, bh);
3982                 if (err)
3983                         goto unlock;
3984         }
3985         zero_user(page, offset, length);
3986         BUFFER_TRACE(bh, "zeroed end of block");
3987
3988         if (ext4_should_journal_data(inode)) {
3989                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3990         } else {
3991                 err = 0;
3992                 mark_buffer_dirty(bh);
3993                 if (ext4_should_order_data(inode))
3994                         err = ext4_jbd2_inode_add_write(handle, inode);
3995         }
3996
3997 unlock:
3998         unlock_page(page);
3999         put_page(page);
4000         return err;
4001 }
4002
4003 /*
4004  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4005  * starting from file offset 'from'.  The range to be zero'd must
4006  * be contained with in one block.  If the specified range exceeds
4007  * the end of the block it will be shortened to end of the block
4008  * that cooresponds to 'from'
4009  */
4010 static int ext4_block_zero_page_range(handle_t *handle,
4011                 struct address_space *mapping, loff_t from, loff_t length)
4012 {
4013         struct inode *inode = mapping->host;
4014         unsigned offset = from & (PAGE_SIZE-1);
4015         unsigned blocksize = inode->i_sb->s_blocksize;
4016         unsigned max = blocksize - (offset & (blocksize - 1));
4017
4018         /*
4019          * correct length if it does not fall between
4020          * 'from' and the end of the block
4021          */
4022         if (length > max || length < 0)
4023                 length = max;
4024
4025         if (IS_DAX(inode)) {
4026                 return iomap_zero_range(inode, from, length, NULL,
4027                                         &ext4_iomap_ops);
4028         }
4029         return __ext4_block_zero_page_range(handle, mapping, from, length);
4030 }
4031
4032 /*
4033  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4034  * up to the end of the block which corresponds to `from'.
4035  * This required during truncate. We need to physically zero the tail end
4036  * of that block so it doesn't yield old data if the file is later grown.
4037  */
4038 static int ext4_block_truncate_page(handle_t *handle,
4039                 struct address_space *mapping, loff_t from)
4040 {
4041         unsigned offset = from & (PAGE_SIZE-1);
4042         unsigned length;
4043         unsigned blocksize;
4044         struct inode *inode = mapping->host;
4045
4046         /* If we are processing an encrypted inode during orphan list handling */
4047         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4048                 return 0;
4049
4050         blocksize = inode->i_sb->s_blocksize;
4051         length = blocksize - (offset & (blocksize - 1));
4052
4053         return ext4_block_zero_page_range(handle, mapping, from, length);
4054 }
4055
4056 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4057                              loff_t lstart, loff_t length)
4058 {
4059         struct super_block *sb = inode->i_sb;
4060         struct address_space *mapping = inode->i_mapping;
4061         unsigned partial_start, partial_end;
4062         ext4_fsblk_t start, end;
4063         loff_t byte_end = (lstart + length - 1);
4064         int err = 0;
4065
4066         partial_start = lstart & (sb->s_blocksize - 1);
4067         partial_end = byte_end & (sb->s_blocksize - 1);
4068
4069         start = lstart >> sb->s_blocksize_bits;
4070         end = byte_end >> sb->s_blocksize_bits;
4071
4072         /* Handle partial zero within the single block */
4073         if (start == end &&
4074             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4075                 err = ext4_block_zero_page_range(handle, mapping,
4076                                                  lstart, length);
4077                 return err;
4078         }
4079         /* Handle partial zero out on the start of the range */
4080         if (partial_start) {
4081                 err = ext4_block_zero_page_range(handle, mapping,
4082                                                  lstart, sb->s_blocksize);
4083                 if (err)
4084                         return err;
4085         }
4086         /* Handle partial zero out on the end of the range */
4087         if (partial_end != sb->s_blocksize - 1)
4088                 err = ext4_block_zero_page_range(handle, mapping,
4089                                                  byte_end - partial_end,
4090                                                  partial_end + 1);
4091         return err;
4092 }
4093
4094 int ext4_can_truncate(struct inode *inode)
4095 {
4096         if (S_ISREG(inode->i_mode))
4097                 return 1;
4098         if (S_ISDIR(inode->i_mode))
4099                 return 1;
4100         if (S_ISLNK(inode->i_mode))
4101                 return !ext4_inode_is_fast_symlink(inode);
4102         return 0;
4103 }
4104
4105 /*
4106  * We have to make sure i_disksize gets properly updated before we truncate
4107  * page cache due to hole punching or zero range. Otherwise i_disksize update
4108  * can get lost as it may have been postponed to submission of writeback but
4109  * that will never happen after we truncate page cache.
4110  */
4111 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4112                                       loff_t len)
4113 {
4114         handle_t *handle;
4115         loff_t size = i_size_read(inode);
4116
4117         WARN_ON(!inode_is_locked(inode));
4118         if (offset > size || offset + len < size)
4119                 return 0;
4120
4121         if (EXT4_I(inode)->i_disksize >= size)
4122                 return 0;
4123
4124         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4125         if (IS_ERR(handle))
4126                 return PTR_ERR(handle);
4127         ext4_update_i_disksize(inode, size);
4128         ext4_mark_inode_dirty(handle, inode);
4129         ext4_journal_stop(handle);
4130
4131         return 0;
4132 }
4133
4134 /*
4135  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4136  * associated with the given offset and length
4137  *
4138  * @inode:  File inode
4139  * @offset: The offset where the hole will begin
4140  * @len:    The length of the hole
4141  *
4142  * Returns: 0 on success or negative on failure
4143  */
4144
4145 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4146 {
4147         struct super_block *sb = inode->i_sb;
4148         ext4_lblk_t first_block, stop_block;
4149         struct address_space *mapping = inode->i_mapping;
4150         loff_t first_block_offset, last_block_offset;
4151         handle_t *handle;
4152         unsigned int credits;
4153         int ret = 0;
4154
4155         if (!S_ISREG(inode->i_mode))
4156                 return -EOPNOTSUPP;
4157
4158         trace_ext4_punch_hole(inode, offset, length, 0);
4159
4160         /*
4161          * Write out all dirty pages to avoid race conditions
4162          * Then release them.
4163          */
4164         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4165                 ret = filemap_write_and_wait_range(mapping, offset,
4166                                                    offset + length - 1);
4167                 if (ret)
4168                         return ret;
4169         }
4170
4171         inode_lock(inode);
4172
4173         /* No need to punch hole beyond i_size */
4174         if (offset >= inode->i_size)
4175                 goto out_mutex;
4176
4177         /*
4178          * If the hole extends beyond i_size, set the hole
4179          * to end after the page that contains i_size
4180          */
4181         if (offset + length > inode->i_size) {
4182                 length = inode->i_size +
4183                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4184                    offset;
4185         }
4186
4187         if (offset & (sb->s_blocksize - 1) ||
4188             (offset + length) & (sb->s_blocksize - 1)) {
4189                 /*
4190                  * Attach jinode to inode for jbd2 if we do any zeroing of
4191                  * partial block
4192                  */
4193                 ret = ext4_inode_attach_jinode(inode);
4194                 if (ret < 0)
4195                         goto out_mutex;
4196
4197         }
4198
4199         /* Wait all existing dio workers, newcomers will block on i_mutex */
4200         ext4_inode_block_unlocked_dio(inode);
4201         inode_dio_wait(inode);
4202
4203         /*
4204          * Prevent page faults from reinstantiating pages we have released from
4205          * page cache.
4206          */
4207         down_write(&EXT4_I(inode)->i_mmap_sem);
4208         first_block_offset = round_up(offset, sb->s_blocksize);
4209         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4210
4211         /* Now release the pages and zero block aligned part of pages*/
4212         if (last_block_offset > first_block_offset) {
4213                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4214                 if (ret)
4215                         goto out_dio;
4216                 truncate_pagecache_range(inode, first_block_offset,
4217                                          last_block_offset);
4218         }
4219
4220         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4221                 credits = ext4_writepage_trans_blocks(inode);
4222         else
4223                 credits = ext4_blocks_for_truncate(inode);
4224         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4225         if (IS_ERR(handle)) {
4226                 ret = PTR_ERR(handle);
4227                 ext4_std_error(sb, ret);
4228                 goto out_dio;
4229         }
4230
4231         ret = ext4_zero_partial_blocks(handle, inode, offset,
4232                                        length);
4233         if (ret)
4234                 goto out_stop;
4235
4236         first_block = (offset + sb->s_blocksize - 1) >>
4237                 EXT4_BLOCK_SIZE_BITS(sb);
4238         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4239
4240         /* If there are no blocks to remove, return now */
4241         if (first_block >= stop_block)
4242                 goto out_stop;
4243
4244         down_write(&EXT4_I(inode)->i_data_sem);
4245         ext4_discard_preallocations(inode);
4246
4247         ret = ext4_es_remove_extent(inode, first_block,
4248                                     stop_block - first_block);
4249         if (ret) {
4250                 up_write(&EXT4_I(inode)->i_data_sem);
4251                 goto out_stop;
4252         }
4253
4254         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4255                 ret = ext4_ext_remove_space(inode, first_block,
4256                                             stop_block - 1);
4257         else
4258                 ret = ext4_ind_remove_space(handle, inode, first_block,
4259                                             stop_block);
4260
4261         up_write(&EXT4_I(inode)->i_data_sem);
4262         if (IS_SYNC(inode))
4263                 ext4_handle_sync(handle);
4264
4265         inode->i_mtime = inode->i_ctime = current_time(inode);
4266         ext4_mark_inode_dirty(handle, inode);
4267         if (ret >= 0)
4268                 ext4_update_inode_fsync_trans(handle, inode, 1);
4269 out_stop:
4270         ext4_journal_stop(handle);
4271 out_dio:
4272         up_write(&EXT4_I(inode)->i_mmap_sem);
4273         ext4_inode_resume_unlocked_dio(inode);
4274 out_mutex:
4275         inode_unlock(inode);
4276         return ret;
4277 }
4278
4279 int ext4_inode_attach_jinode(struct inode *inode)
4280 {
4281         struct ext4_inode_info *ei = EXT4_I(inode);
4282         struct jbd2_inode *jinode;
4283
4284         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4285                 return 0;
4286
4287         jinode = jbd2_alloc_inode(GFP_KERNEL);
4288         spin_lock(&inode->i_lock);
4289         if (!ei->jinode) {
4290                 if (!jinode) {
4291                         spin_unlock(&inode->i_lock);
4292                         return -ENOMEM;
4293                 }
4294                 ei->jinode = jinode;
4295                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4296                 jinode = NULL;
4297         }
4298         spin_unlock(&inode->i_lock);
4299         if (unlikely(jinode != NULL))
4300                 jbd2_free_inode(jinode);
4301         return 0;
4302 }
4303
4304 /*
4305  * ext4_truncate()
4306  *
4307  * We block out ext4_get_block() block instantiations across the entire
4308  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4309  * simultaneously on behalf of the same inode.
4310  *
4311  * As we work through the truncate and commit bits of it to the journal there
4312  * is one core, guiding principle: the file's tree must always be consistent on
4313  * disk.  We must be able to restart the truncate after a crash.
4314  *
4315  * The file's tree may be transiently inconsistent in memory (although it
4316  * probably isn't), but whenever we close off and commit a journal transaction,
4317  * the contents of (the filesystem + the journal) must be consistent and
4318  * restartable.  It's pretty simple, really: bottom up, right to left (although
4319  * left-to-right works OK too).
4320  *
4321  * Note that at recovery time, journal replay occurs *before* the restart of
4322  * truncate against the orphan inode list.
4323  *
4324  * The committed inode has the new, desired i_size (which is the same as
4325  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4326  * that this inode's truncate did not complete and it will again call
4327  * ext4_truncate() to have another go.  So there will be instantiated blocks
4328  * to the right of the truncation point in a crashed ext4 filesystem.  But
4329  * that's fine - as long as they are linked from the inode, the post-crash
4330  * ext4_truncate() run will find them and release them.
4331  */
4332 int ext4_truncate(struct inode *inode)
4333 {
4334         struct ext4_inode_info *ei = EXT4_I(inode);
4335         unsigned int credits;
4336         int err = 0;
4337         handle_t *handle;
4338         struct address_space *mapping = inode->i_mapping;
4339
4340         /*
4341          * There is a possibility that we're either freeing the inode
4342          * or it's a completely new inode. In those cases we might not
4343          * have i_mutex locked because it's not necessary.
4344          */
4345         if (!(inode->i_state & (I_NEW|I_FREEING)))
4346                 WARN_ON(!inode_is_locked(inode));
4347         trace_ext4_truncate_enter(inode);
4348
4349         if (!ext4_can_truncate(inode))
4350                 return 0;
4351
4352         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4353
4354         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4355                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4356
4357         if (ext4_has_inline_data(inode)) {
4358                 int has_inline = 1;
4359
4360                 err = ext4_inline_data_truncate(inode, &has_inline);
4361                 if (err)
4362                         return err;
4363                 if (has_inline)
4364                         return 0;
4365         }
4366
4367         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4368         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4369                 if (ext4_inode_attach_jinode(inode) < 0)
4370                         return 0;
4371         }
4372
4373         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4374                 credits = ext4_writepage_trans_blocks(inode);
4375         else
4376                 credits = ext4_blocks_for_truncate(inode);
4377
4378         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4379         if (IS_ERR(handle))
4380                 return PTR_ERR(handle);
4381
4382         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4383                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4384
4385         /*
4386          * We add the inode to the orphan list, so that if this
4387          * truncate spans multiple transactions, and we crash, we will
4388          * resume the truncate when the filesystem recovers.  It also
4389          * marks the inode dirty, to catch the new size.
4390          *
4391          * Implication: the file must always be in a sane, consistent
4392          * truncatable state while each transaction commits.
4393          */
4394         err = ext4_orphan_add(handle, inode);
4395         if (err)
4396                 goto out_stop;
4397
4398         down_write(&EXT4_I(inode)->i_data_sem);
4399
4400         ext4_discard_preallocations(inode);
4401
4402         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4403                 err = ext4_ext_truncate(handle, inode);
4404         else
4405                 ext4_ind_truncate(handle, inode);
4406
4407         up_write(&ei->i_data_sem);
4408         if (err)
4409                 goto out_stop;
4410
4411         if (IS_SYNC(inode))
4412                 ext4_handle_sync(handle);
4413
4414 out_stop:
4415         /*
4416          * If this was a simple ftruncate() and the file will remain alive,
4417          * then we need to clear up the orphan record which we created above.
4418          * However, if this was a real unlink then we were called by
4419          * ext4_evict_inode(), and we allow that function to clean up the
4420          * orphan info for us.
4421          */
4422         if (inode->i_nlink)
4423                 ext4_orphan_del(handle, inode);
4424
4425         inode->i_mtime = inode->i_ctime = current_time(inode);
4426         ext4_mark_inode_dirty(handle, inode);
4427         ext4_journal_stop(handle);
4428
4429         trace_ext4_truncate_exit(inode);
4430         return err;
4431 }
4432
4433 /*
4434  * ext4_get_inode_loc returns with an extra refcount against the inode's
4435  * underlying buffer_head on success. If 'in_mem' is true, we have all
4436  * data in memory that is needed to recreate the on-disk version of this
4437  * inode.
4438  */
4439 static int __ext4_get_inode_loc(struct inode *inode,
4440                                 struct ext4_iloc *iloc, int in_mem)
4441 {
4442         struct ext4_group_desc  *gdp;
4443         struct buffer_head      *bh;
4444         struct super_block      *sb = inode->i_sb;
4445         ext4_fsblk_t            block;
4446         int                     inodes_per_block, inode_offset;
4447
4448         iloc->bh = NULL;
4449         if (!ext4_valid_inum(sb, inode->i_ino))
4450                 return -EFSCORRUPTED;
4451
4452         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4453         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4454         if (!gdp)
4455                 return -EIO;
4456
4457         /*
4458          * Figure out the offset within the block group inode table
4459          */
4460         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4461         inode_offset = ((inode->i_ino - 1) %
4462                         EXT4_INODES_PER_GROUP(sb));
4463         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4464         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4465
4466         bh = sb_getblk(sb, block);
4467         if (unlikely(!bh))
4468                 return -ENOMEM;
4469         if (!buffer_uptodate(bh)) {
4470                 lock_buffer(bh);
4471
4472                 /*
4473                  * If the buffer has the write error flag, we have failed
4474                  * to write out another inode in the same block.  In this
4475                  * case, we don't have to read the block because we may
4476                  * read the old inode data successfully.
4477                  */
4478                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4479                         set_buffer_uptodate(bh);
4480
4481                 if (buffer_uptodate(bh)) {
4482                         /* someone brought it uptodate while we waited */
4483                         unlock_buffer(bh);
4484                         goto has_buffer;
4485                 }
4486
4487                 /*
4488                  * If we have all information of the inode in memory and this
4489                  * is the only valid inode in the block, we need not read the
4490                  * block.
4491                  */
4492                 if (in_mem) {
4493                         struct buffer_head *bitmap_bh;
4494                         int i, start;
4495
4496                         start = inode_offset & ~(inodes_per_block - 1);
4497
4498                         /* Is the inode bitmap in cache? */
4499                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4500                         if (unlikely(!bitmap_bh))
4501                                 goto make_io;
4502
4503                         /*
4504                          * If the inode bitmap isn't in cache then the
4505                          * optimisation may end up performing two reads instead
4506                          * of one, so skip it.
4507                          */
4508                         if (!buffer_uptodate(bitmap_bh)) {
4509                                 brelse(bitmap_bh);
4510                                 goto make_io;
4511                         }
4512                         for (i = start; i < start + inodes_per_block; i++) {
4513                                 if (i == inode_offset)
4514                                         continue;
4515                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4516                                         break;
4517                         }
4518                         brelse(bitmap_bh);
4519                         if (i == start + inodes_per_block) {
4520                                 /* all other inodes are free, so skip I/O */
4521                                 memset(bh->b_data, 0, bh->b_size);
4522                                 set_buffer_uptodate(bh);
4523                                 unlock_buffer(bh);
4524                                 goto has_buffer;
4525                         }
4526                 }
4527
4528 make_io:
4529                 /*
4530                  * If we need to do any I/O, try to pre-readahead extra
4531                  * blocks from the inode table.
4532                  */
4533                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4534                         ext4_fsblk_t b, end, table;
4535                         unsigned num;
4536                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4537
4538                         table = ext4_inode_table(sb, gdp);
4539                         /* s_inode_readahead_blks is always a power of 2 */
4540                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4541                         if (table > b)
4542                                 b = table;
4543                         end = b + ra_blks;
4544                         num = EXT4_INODES_PER_GROUP(sb);
4545                         if (ext4_has_group_desc_csum(sb))
4546                                 num -= ext4_itable_unused_count(sb, gdp);
4547                         table += num / inodes_per_block;
4548                         if (end > table)
4549                                 end = table;
4550                         while (b <= end)
4551                                 sb_breadahead(sb, b++);
4552                 }
4553
4554                 /*
4555                  * There are other valid inodes in the buffer, this inode
4556                  * has in-inode xattrs, or we don't have this inode in memory.
4557                  * Read the block from disk.
4558                  */
4559                 trace_ext4_load_inode(inode);
4560                 get_bh(bh);
4561                 bh->b_end_io = end_buffer_read_sync;
4562                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4563                 wait_on_buffer(bh);
4564                 if (!buffer_uptodate(bh)) {
4565                         EXT4_ERROR_INODE_BLOCK(inode, block,
4566                                                "unable to read itable block");
4567                         brelse(bh);
4568                         return -EIO;
4569                 }
4570         }
4571 has_buffer:
4572         iloc->bh = bh;
4573         return 0;
4574 }
4575
4576 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4577 {
4578         /* We have all inode data except xattrs in memory here. */
4579         return __ext4_get_inode_loc(inode, iloc,
4580                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4581 }
4582
4583 void ext4_set_inode_flags(struct inode *inode)
4584 {
4585         unsigned int flags = EXT4_I(inode)->i_flags;
4586         unsigned int new_fl = 0;
4587
4588         if (flags & EXT4_SYNC_FL)
4589                 new_fl |= S_SYNC;
4590         if (flags & EXT4_APPEND_FL)
4591                 new_fl |= S_APPEND;
4592         if (flags & EXT4_IMMUTABLE_FL)
4593                 new_fl |= S_IMMUTABLE;
4594         if (flags & EXT4_NOATIME_FL)
4595                 new_fl |= S_NOATIME;
4596         if (flags & EXT4_DIRSYNC_FL)
4597                 new_fl |= S_DIRSYNC;
4598         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4599             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4600             !ext4_encrypted_inode(inode))
4601                 new_fl |= S_DAX;
4602         inode_set_flags(inode, new_fl,
4603                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4604 }
4605
4606 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4607                                   struct ext4_inode_info *ei)
4608 {
4609         blkcnt_t i_blocks ;
4610         struct inode *inode = &(ei->vfs_inode);
4611         struct super_block *sb = inode->i_sb;
4612
4613         if (ext4_has_feature_huge_file(sb)) {
4614                 /* we are using combined 48 bit field */
4615                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4616                                         le32_to_cpu(raw_inode->i_blocks_lo);
4617                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4618                         /* i_blocks represent file system block size */
4619                         return i_blocks  << (inode->i_blkbits - 9);
4620                 } else {
4621                         return i_blocks;
4622                 }
4623         } else {
4624                 return le32_to_cpu(raw_inode->i_blocks_lo);
4625         }
4626 }
4627
4628 static inline void ext4_iget_extra_inode(struct inode *inode,
4629                                          struct ext4_inode *raw_inode,
4630                                          struct ext4_inode_info *ei)
4631 {
4632         __le32 *magic = (void *)raw_inode +
4633                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4634         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4635             EXT4_INODE_SIZE(inode->i_sb) &&
4636             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4637                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4638                 ext4_find_inline_data_nolock(inode);
4639         } else
4640                 EXT4_I(inode)->i_inline_off = 0;
4641 }
4642
4643 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4644 {
4645         if (!ext4_has_feature_project(inode->i_sb))
4646                 return -EOPNOTSUPP;
4647         *projid = EXT4_I(inode)->i_projid;
4648         return 0;
4649 }
4650
4651 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4652 {
4653         struct ext4_iloc iloc;
4654         struct ext4_inode *raw_inode;
4655         struct ext4_inode_info *ei;
4656         struct inode *inode;
4657         journal_t *journal = EXT4_SB(sb)->s_journal;
4658         long ret;
4659         loff_t size;
4660         int block;
4661         uid_t i_uid;
4662         gid_t i_gid;
4663         projid_t i_projid;
4664
4665         inode = iget_locked(sb, ino);
4666         if (!inode)
4667                 return ERR_PTR(-ENOMEM);
4668         if (!(inode->i_state & I_NEW))
4669                 return inode;
4670
4671         ei = EXT4_I(inode);
4672         iloc.bh = NULL;
4673
4674         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4675         if (ret < 0)
4676                 goto bad_inode;
4677         raw_inode = ext4_raw_inode(&iloc);
4678
4679         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4680                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4681                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4682                         EXT4_INODE_SIZE(inode->i_sb) ||
4683                     (ei->i_extra_isize & 3)) {
4684                         EXT4_ERROR_INODE(inode,
4685                                          "bad extra_isize %u (inode size %u)",
4686                                          ei->i_extra_isize,
4687                                          EXT4_INODE_SIZE(inode->i_sb));
4688                         ret = -EFSCORRUPTED;
4689                         goto bad_inode;
4690                 }
4691         } else
4692                 ei->i_extra_isize = 0;
4693
4694         /* Precompute checksum seed for inode metadata */
4695         if (ext4_has_metadata_csum(sb)) {
4696                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4697                 __u32 csum;
4698                 __le32 inum = cpu_to_le32(inode->i_ino);
4699                 __le32 gen = raw_inode->i_generation;
4700                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4701                                    sizeof(inum));
4702                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4703                                               sizeof(gen));
4704         }
4705
4706         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4707                 EXT4_ERROR_INODE(inode, "checksum invalid");
4708                 ret = -EFSBADCRC;
4709                 goto bad_inode;
4710         }
4711
4712         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4713         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4714         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4715         if (ext4_has_feature_project(sb) &&
4716             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4717             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4718                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4719         else
4720                 i_projid = EXT4_DEF_PROJID;
4721
4722         if (!(test_opt(inode->i_sb, NO_UID32))) {
4723                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4724                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4725         }
4726         i_uid_write(inode, i_uid);
4727         i_gid_write(inode, i_gid);
4728         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4729         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4730
4731         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4732         ei->i_inline_off = 0;
4733         ei->i_dir_start_lookup = 0;
4734         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4735         /* We now have enough fields to check if the inode was active or not.
4736          * This is needed because nfsd might try to access dead inodes
4737          * the test is that same one that e2fsck uses
4738          * NeilBrown 1999oct15
4739          */
4740         if (inode->i_nlink == 0) {
4741                 if ((inode->i_mode == 0 ||
4742                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4743                     ino != EXT4_BOOT_LOADER_INO) {
4744                         /* this inode is deleted */
4745                         ret = -ESTALE;
4746                         goto bad_inode;
4747                 }
4748                 /* The only unlinked inodes we let through here have
4749                  * valid i_mode and are being read by the orphan
4750                  * recovery code: that's fine, we're about to complete
4751                  * the process of deleting those.
4752                  * OR it is the EXT4_BOOT_LOADER_INO which is
4753                  * not initialized on a new filesystem. */
4754         }
4755         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4756         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4757         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4758         if (ext4_has_feature_64bit(sb))
4759                 ei->i_file_acl |=
4760                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4761         inode->i_size = ext4_isize(sb, raw_inode);
4762         if ((size = i_size_read(inode)) < 0) {
4763                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4764                 ret = -EFSCORRUPTED;
4765                 goto bad_inode;
4766         }
4767         ei->i_disksize = inode->i_size;
4768 #ifdef CONFIG_QUOTA
4769         ei->i_reserved_quota = 0;
4770 #endif
4771         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4772         ei->i_block_group = iloc.block_group;
4773         ei->i_last_alloc_group = ~0;
4774         /*
4775          * NOTE! The in-memory inode i_data array is in little-endian order
4776          * even on big-endian machines: we do NOT byteswap the block numbers!
4777          */
4778         for (block = 0; block < EXT4_N_BLOCKS; block++)
4779                 ei->i_data[block] = raw_inode->i_block[block];
4780         INIT_LIST_HEAD(&ei->i_orphan);
4781
4782         /*
4783          * Set transaction id's of transactions that have to be committed
4784          * to finish f[data]sync. We set them to currently running transaction
4785          * as we cannot be sure that the inode or some of its metadata isn't
4786          * part of the transaction - the inode could have been reclaimed and
4787          * now it is reread from disk.
4788          */
4789         if (journal) {
4790                 transaction_t *transaction;
4791                 tid_t tid;
4792
4793                 read_lock(&journal->j_state_lock);
4794                 if (journal->j_running_transaction)
4795                         transaction = journal->j_running_transaction;
4796                 else
4797                         transaction = journal->j_committing_transaction;
4798                 if (transaction)
4799                         tid = transaction->t_tid;
4800                 else
4801                         tid = journal->j_commit_sequence;
4802                 read_unlock(&journal->j_state_lock);
4803                 ei->i_sync_tid = tid;
4804                 ei->i_datasync_tid = tid;
4805         }
4806
4807         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4808                 if (ei->i_extra_isize == 0) {
4809                         /* The extra space is currently unused. Use it. */
4810                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4811                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4812                                             EXT4_GOOD_OLD_INODE_SIZE;
4813                 } else {
4814                         ext4_iget_extra_inode(inode, raw_inode, ei);
4815                 }
4816         }
4817
4818         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4819         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4820         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4821         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4822
4823         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4824                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4825                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4826                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4827                                 inode->i_version |=
4828                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4829                 }
4830         }
4831
4832         ret = 0;
4833         if (ei->i_file_acl &&
4834             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4835                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4836                                  ei->i_file_acl);
4837                 ret = -EFSCORRUPTED;
4838                 goto bad_inode;
4839         } else if (!ext4_has_inline_data(inode)) {
4840                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4841                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4842                             (S_ISLNK(inode->i_mode) &&
4843                              !ext4_inode_is_fast_symlink(inode))))
4844                                 /* Validate extent which is part of inode */
4845                                 ret = ext4_ext_check_inode(inode);
4846                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4847                            (S_ISLNK(inode->i_mode) &&
4848                             !ext4_inode_is_fast_symlink(inode))) {
4849                         /* Validate block references which are part of inode */
4850                         ret = ext4_ind_check_inode(inode);
4851                 }
4852         }
4853         if (ret)
4854                 goto bad_inode;
4855
4856         if (S_ISREG(inode->i_mode)) {
4857                 inode->i_op = &ext4_file_inode_operations;
4858                 inode->i_fop = &ext4_file_operations;
4859                 ext4_set_aops(inode);
4860         } else if (S_ISDIR(inode->i_mode)) {
4861                 inode->i_op = &ext4_dir_inode_operations;
4862                 inode->i_fop = &ext4_dir_operations;
4863         } else if (S_ISLNK(inode->i_mode)) {
4864                 if (ext4_encrypted_inode(inode)) {
4865                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4866                         ext4_set_aops(inode);
4867                 } else if (ext4_inode_is_fast_symlink(inode)) {
4868                         inode->i_link = (char *)ei->i_data;
4869                         inode->i_op = &ext4_fast_symlink_inode_operations;
4870                         nd_terminate_link(ei->i_data, inode->i_size,
4871                                 sizeof(ei->i_data) - 1);
4872                 } else {
4873                         inode->i_op = &ext4_symlink_inode_operations;
4874                         ext4_set_aops(inode);
4875                 }
4876                 inode_nohighmem(inode);
4877         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4878               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4879                 inode->i_op = &ext4_special_inode_operations;
4880                 if (raw_inode->i_block[0])
4881                         init_special_inode(inode, inode->i_mode,
4882                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4883                 else
4884                         init_special_inode(inode, inode->i_mode,
4885                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4886         } else if (ino == EXT4_BOOT_LOADER_INO) {
4887                 make_bad_inode(inode);
4888         } else {
4889                 ret = -EFSCORRUPTED;
4890                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4891                 goto bad_inode;
4892         }
4893         brelse(iloc.bh);
4894         ext4_set_inode_flags(inode);
4895
4896         if (ei->i_flags & EXT4_EA_INODE_FL) {
4897                 ext4_xattr_inode_set_class(inode);
4898
4899                 inode_lock(inode);
4900                 inode->i_flags |= S_NOQUOTA;
4901                 inode_unlock(inode);
4902         }
4903
4904         unlock_new_inode(inode);
4905         return inode;
4906
4907 bad_inode:
4908         brelse(iloc.bh);
4909         iget_failed(inode);
4910         return ERR_PTR(ret);
4911 }
4912
4913 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4914 {
4915         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4916                 return ERR_PTR(-EFSCORRUPTED);
4917         return ext4_iget(sb, ino);
4918 }
4919
4920 static int ext4_inode_blocks_set(handle_t *handle,
4921                                 struct ext4_inode *raw_inode,
4922                                 struct ext4_inode_info *ei)
4923 {
4924         struct inode *inode = &(ei->vfs_inode);
4925         u64 i_blocks = inode->i_blocks;
4926         struct super_block *sb = inode->i_sb;
4927
4928         if (i_blocks <= ~0U) {
4929                 /*
4930                  * i_blocks can be represented in a 32 bit variable
4931                  * as multiple of 512 bytes
4932                  */
4933                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4934                 raw_inode->i_blocks_high = 0;
4935                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4936                 return 0;
4937         }
4938         if (!ext4_has_feature_huge_file(sb))
4939                 return -EFBIG;
4940
4941         if (i_blocks <= 0xffffffffffffULL) {
4942                 /*
4943                  * i_blocks can be represented in a 48 bit variable
4944                  * as multiple of 512 bytes
4945                  */
4946                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4947                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4948                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4949         } else {
4950                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4951                 /* i_block is stored in file system block size */
4952                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4953                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4954                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4955         }
4956         return 0;
4957 }
4958
4959 struct other_inode {
4960         unsigned long           orig_ino;
4961         struct ext4_inode       *raw_inode;
4962 };
4963
4964 static int other_inode_match(struct inode * inode, unsigned long ino,
4965                              void *data)
4966 {
4967         struct other_inode *oi = (struct other_inode *) data;
4968
4969         if ((inode->i_ino != ino) ||
4970             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4971                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4972             ((inode->i_state & I_DIRTY_TIME) == 0))
4973                 return 0;
4974         spin_lock(&inode->i_lock);
4975         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4976                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4977             (inode->i_state & I_DIRTY_TIME)) {
4978                 struct ext4_inode_info  *ei = EXT4_I(inode);
4979
4980                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4981                 spin_unlock(&inode->i_lock);
4982
4983                 spin_lock(&ei->i_raw_lock);
4984                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4985                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4986                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4987                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4988                 spin_unlock(&ei->i_raw_lock);
4989                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4990                 return -1;
4991         }
4992         spin_unlock(&inode->i_lock);
4993         return -1;
4994 }
4995
4996 /*
4997  * Opportunistically update the other time fields for other inodes in
4998  * the same inode table block.
4999  */
5000 static void ext4_update_other_inodes_time(struct super_block *sb,
5001                                           unsigned long orig_ino, char *buf)
5002 {
5003         struct other_inode oi;
5004         unsigned long ino;
5005         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5006         int inode_size = EXT4_INODE_SIZE(sb);
5007
5008         oi.orig_ino = orig_ino;
5009         /*
5010          * Calculate the first inode in the inode table block.  Inode
5011          * numbers are one-based.  That is, the first inode in a block
5012          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5013          */
5014         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5015         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5016                 if (ino == orig_ino)
5017                         continue;
5018                 oi.raw_inode = (struct ext4_inode *) buf;
5019                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5020         }
5021 }
5022
5023 /*
5024  * Post the struct inode info into an on-disk inode location in the
5025  * buffer-cache.  This gobbles the caller's reference to the
5026  * buffer_head in the inode location struct.
5027  *
5028  * The caller must have write access to iloc->bh.
5029  */
5030 static int ext4_do_update_inode(handle_t *handle,
5031                                 struct inode *inode,
5032                                 struct ext4_iloc *iloc)
5033 {
5034         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5035         struct ext4_inode_info *ei = EXT4_I(inode);
5036         struct buffer_head *bh = iloc->bh;
5037         struct super_block *sb = inode->i_sb;
5038         int err = 0, rc, block;
5039         int need_datasync = 0, set_large_file = 0;
5040         uid_t i_uid;
5041         gid_t i_gid;
5042         projid_t i_projid;
5043
5044         spin_lock(&ei->i_raw_lock);
5045
5046         /* For fields not tracked in the in-memory inode,
5047          * initialise them to zero for new inodes. */
5048         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5049                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5050
5051         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052         i_uid = i_uid_read(inode);
5053         i_gid = i_gid_read(inode);
5054         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5055         if (!(test_opt(inode->i_sb, NO_UID32))) {
5056                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5057                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5058 /*
5059  * Fix up interoperability with old kernels. Otherwise, old inodes get
5060  * re-used with the upper 16 bits of the uid/gid intact
5061  */
5062                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5063                         raw_inode->i_uid_high = 0;
5064                         raw_inode->i_gid_high = 0;
5065                 } else {
5066                         raw_inode->i_uid_high =
5067                                 cpu_to_le16(high_16_bits(i_uid));
5068                         raw_inode->i_gid_high =
5069                                 cpu_to_le16(high_16_bits(i_gid));
5070                 }
5071         } else {
5072                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5073                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5074                 raw_inode->i_uid_high = 0;
5075                 raw_inode->i_gid_high = 0;
5076         }
5077         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5078
5079         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5080         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5081         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5082         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5083
5084         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5085         if (err) {
5086                 spin_unlock(&ei->i_raw_lock);
5087                 goto out_brelse;
5088         }
5089         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5090         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5091         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5092                 raw_inode->i_file_acl_high =
5093                         cpu_to_le16(ei->i_file_acl >> 32);
5094         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5095         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5096                 ext4_isize_set(raw_inode, ei->i_disksize);
5097                 need_datasync = 1;
5098         }
5099         if (ei->i_disksize > 0x7fffffffULL) {
5100                 if (!ext4_has_feature_large_file(sb) ||
5101                                 EXT4_SB(sb)->s_es->s_rev_level ==
5102                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5103                         set_large_file = 1;
5104         }
5105         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5106         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5107                 if (old_valid_dev(inode->i_rdev)) {
5108                         raw_inode->i_block[0] =
5109                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5110                         raw_inode->i_block[1] = 0;
5111                 } else {
5112                         raw_inode->i_block[0] = 0;
5113                         raw_inode->i_block[1] =
5114                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5115                         raw_inode->i_block[2] = 0;
5116                 }
5117         } else if (!ext4_has_inline_data(inode)) {
5118                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5119                         raw_inode->i_block[block] = ei->i_data[block];
5120         }
5121
5122         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5123                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5124                 if (ei->i_extra_isize) {
5125                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5126                                 raw_inode->i_version_hi =
5127                                         cpu_to_le32(inode->i_version >> 32);
5128                         raw_inode->i_extra_isize =
5129                                 cpu_to_le16(ei->i_extra_isize);
5130                 }
5131         }
5132
5133         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5134                i_projid != EXT4_DEF_PROJID);
5135
5136         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5137             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5138                 raw_inode->i_projid = cpu_to_le32(i_projid);
5139
5140         ext4_inode_csum_set(inode, raw_inode, ei);
5141         spin_unlock(&ei->i_raw_lock);
5142         if (inode->i_sb->s_flags & MS_LAZYTIME)
5143                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5144                                               bh->b_data);
5145
5146         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5147         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5148         if (!err)
5149                 err = rc;
5150         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5151         if (set_large_file) {
5152                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5153                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5154                 if (err)
5155                         goto out_brelse;
5156                 ext4_update_dynamic_rev(sb);
5157                 ext4_set_feature_large_file(sb);
5158                 ext4_handle_sync(handle);
5159                 err = ext4_handle_dirty_super(handle, sb);
5160         }
5161         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5162 out_brelse:
5163         brelse(bh);
5164         ext4_std_error(inode->i_sb, err);
5165         return err;
5166 }
5167
5168 /*
5169  * ext4_write_inode()
5170  *
5171  * We are called from a few places:
5172  *
5173  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5174  *   Here, there will be no transaction running. We wait for any running
5175  *   transaction to commit.
5176  *
5177  * - Within flush work (sys_sync(), kupdate and such).
5178  *   We wait on commit, if told to.
5179  *
5180  * - Within iput_final() -> write_inode_now()
5181  *   We wait on commit, if told to.
5182  *
5183  * In all cases it is actually safe for us to return without doing anything,
5184  * because the inode has been copied into a raw inode buffer in
5185  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5186  * writeback.
5187  *
5188  * Note that we are absolutely dependent upon all inode dirtiers doing the
5189  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5190  * which we are interested.
5191  *
5192  * It would be a bug for them to not do this.  The code:
5193  *
5194  *      mark_inode_dirty(inode)
5195  *      stuff();
5196  *      inode->i_size = expr;
5197  *
5198  * is in error because write_inode() could occur while `stuff()' is running,
5199  * and the new i_size will be lost.  Plus the inode will no longer be on the
5200  * superblock's dirty inode list.
5201  */
5202 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5203 {
5204         int err;
5205
5206         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5207                 return 0;
5208
5209         if (EXT4_SB(inode->i_sb)->s_journal) {
5210                 if (ext4_journal_current_handle()) {
5211                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5212                         dump_stack();
5213                         return -EIO;
5214                 }
5215
5216                 /*
5217                  * No need to force transaction in WB_SYNC_NONE mode. Also
5218                  * ext4_sync_fs() will force the commit after everything is
5219                  * written.
5220                  */
5221                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5222                         return 0;
5223
5224                 err = ext4_force_commit(inode->i_sb);
5225         } else {
5226                 struct ext4_iloc iloc;
5227
5228                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5229                 if (err)
5230                         return err;
5231                 /*
5232                  * sync(2) will flush the whole buffer cache. No need to do
5233                  * it here separately for each inode.
5234                  */
5235                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5236                         sync_dirty_buffer(iloc.bh);
5237                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5238                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5239                                          "IO error syncing inode");
5240                         err = -EIO;
5241                 }
5242                 brelse(iloc.bh);
5243         }
5244         return err;
5245 }
5246
5247 /*
5248  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5249  * buffers that are attached to a page stradding i_size and are undergoing
5250  * commit. In that case we have to wait for commit to finish and try again.
5251  */
5252 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5253 {
5254         struct page *page;
5255         unsigned offset;
5256         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5257         tid_t commit_tid = 0;
5258         int ret;
5259
5260         offset = inode->i_size & (PAGE_SIZE - 1);
5261         /*
5262          * All buffers in the last page remain valid? Then there's nothing to
5263          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5264          * blocksize case
5265          */
5266         if (offset > PAGE_SIZE - i_blocksize(inode))
5267                 return;
5268         while (1) {
5269                 page = find_lock_page(inode->i_mapping,
5270                                       inode->i_size >> PAGE_SHIFT);
5271                 if (!page)
5272                         return;
5273                 ret = __ext4_journalled_invalidatepage(page, offset,
5274                                                 PAGE_SIZE - offset);
5275                 unlock_page(page);
5276                 put_page(page);
5277                 if (ret != -EBUSY)
5278                         return;
5279                 commit_tid = 0;
5280                 read_lock(&journal->j_state_lock);
5281                 if (journal->j_committing_transaction)
5282                         commit_tid = journal->j_committing_transaction->t_tid;
5283                 read_unlock(&journal->j_state_lock);
5284                 if (commit_tid)
5285                         jbd2_log_wait_commit(journal, commit_tid);
5286         }
5287 }
5288
5289 /*
5290  * ext4_setattr()
5291  *
5292  * Called from notify_change.
5293  *
5294  * We want to trap VFS attempts to truncate the file as soon as
5295  * possible.  In particular, we want to make sure that when the VFS
5296  * shrinks i_size, we put the inode on the orphan list and modify
5297  * i_disksize immediately, so that during the subsequent flushing of
5298  * dirty pages and freeing of disk blocks, we can guarantee that any
5299  * commit will leave the blocks being flushed in an unused state on
5300  * disk.  (On recovery, the inode will get truncated and the blocks will
5301  * be freed, so we have a strong guarantee that no future commit will
5302  * leave these blocks visible to the user.)
5303  *
5304  * Another thing we have to assure is that if we are in ordered mode
5305  * and inode is still attached to the committing transaction, we must
5306  * we start writeout of all the dirty pages which are being truncated.
5307  * This way we are sure that all the data written in the previous
5308  * transaction are already on disk (truncate waits for pages under
5309  * writeback).
5310  *
5311  * Called with inode->i_mutex down.
5312  */
5313 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5314 {
5315         struct inode *inode = d_inode(dentry);
5316         int error, rc = 0;
5317         int orphan = 0;
5318         const unsigned int ia_valid = attr->ia_valid;
5319
5320         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5321                 return -EIO;
5322
5323         error = setattr_prepare(dentry, attr);
5324         if (error)
5325                 return error;
5326
5327         if (is_quota_modification(inode, attr)) {
5328                 error = dquot_initialize(inode);
5329                 if (error)
5330                         return error;
5331         }
5332         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5333             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5334                 handle_t *handle;
5335
5336                 /* (user+group)*(old+new) structure, inode write (sb,
5337                  * inode block, ? - but truncate inode update has it) */
5338                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5339                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5340                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5341                 if (IS_ERR(handle)) {
5342                         error = PTR_ERR(handle);
5343                         goto err_out;
5344                 }
5345
5346                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5347                  * counts xattr inode references.
5348                  */
5349                 down_read(&EXT4_I(inode)->xattr_sem);
5350                 error = dquot_transfer(inode, attr);
5351                 up_read(&EXT4_I(inode)->xattr_sem);
5352
5353                 if (error) {
5354                         ext4_journal_stop(handle);
5355                         return error;
5356                 }
5357                 /* Update corresponding info in inode so that everything is in
5358                  * one transaction */
5359                 if (attr->ia_valid & ATTR_UID)
5360                         inode->i_uid = attr->ia_uid;
5361                 if (attr->ia_valid & ATTR_GID)
5362                         inode->i_gid = attr->ia_gid;
5363                 error = ext4_mark_inode_dirty(handle, inode);
5364                 ext4_journal_stop(handle);
5365         }
5366
5367         if (attr->ia_valid & ATTR_SIZE) {
5368                 handle_t *handle;
5369                 loff_t oldsize = inode->i_size;
5370                 int shrink = (attr->ia_size <= inode->i_size);
5371
5372                 if (ext4_encrypted_inode(inode)) {
5373                         error = fscrypt_get_encryption_info(inode);
5374                         if (error)
5375                                 return error;
5376                         if (!fscrypt_has_encryption_key(inode))
5377                                 return -ENOKEY;
5378                 }
5379
5380                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5381                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5382
5383                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5384                                 return -EFBIG;
5385                 }
5386                 if (!S_ISREG(inode->i_mode))
5387                         return -EINVAL;
5388
5389                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5390                         inode_inc_iversion(inode);
5391
5392                 if (ext4_should_order_data(inode) &&
5393                     (attr->ia_size < inode->i_size)) {
5394                         error = ext4_begin_ordered_truncate(inode,
5395                                                             attr->ia_size);
5396                         if (error)
5397                                 goto err_out;
5398                 }
5399                 if (attr->ia_size != inode->i_size) {
5400                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5401                         if (IS_ERR(handle)) {
5402                                 error = PTR_ERR(handle);
5403                                 goto err_out;
5404                         }
5405                         if (ext4_handle_valid(handle) && shrink) {
5406                                 error = ext4_orphan_add(handle, inode);
5407                                 orphan = 1;
5408                         }
5409                         /*
5410                          * Update c/mtime on truncate up, ext4_truncate() will
5411                          * update c/mtime in shrink case below
5412                          */
5413                         if (!shrink) {
5414                                 inode->i_mtime = current_time(inode);
5415                                 inode->i_ctime = inode->i_mtime;
5416                         }
5417                         down_write(&EXT4_I(inode)->i_data_sem);
5418                         EXT4_I(inode)->i_disksize = attr->ia_size;
5419                         rc = ext4_mark_inode_dirty(handle, inode);
5420                         if (!error)
5421                                 error = rc;
5422                         /*
5423                          * We have to update i_size under i_data_sem together
5424                          * with i_disksize to avoid races with writeback code
5425                          * running ext4_wb_update_i_disksize().
5426                          */
5427                         if (!error)
5428                                 i_size_write(inode, attr->ia_size);
5429                         up_write(&EXT4_I(inode)->i_data_sem);
5430                         ext4_journal_stop(handle);
5431                         if (error) {
5432                                 if (orphan)
5433                                         ext4_orphan_del(NULL, inode);
5434                                 goto err_out;
5435                         }
5436                 }
5437                 if (!shrink)
5438                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5439
5440                 /*
5441                  * Blocks are going to be removed from the inode. Wait
5442                  * for dio in flight.  Temporarily disable
5443                  * dioread_nolock to prevent livelock.
5444                  */
5445                 if (orphan) {
5446                         if (!ext4_should_journal_data(inode)) {
5447                                 ext4_inode_block_unlocked_dio(inode);
5448                                 inode_dio_wait(inode);
5449                                 ext4_inode_resume_unlocked_dio(inode);
5450                         } else
5451                                 ext4_wait_for_tail_page_commit(inode);
5452                 }
5453                 down_write(&EXT4_I(inode)->i_mmap_sem);
5454                 /*
5455                  * Truncate pagecache after we've waited for commit
5456                  * in data=journal mode to make pages freeable.
5457                  */
5458                 truncate_pagecache(inode, inode->i_size);
5459                 if (shrink) {
5460                         rc = ext4_truncate(inode);
5461                         if (rc)
5462                                 error = rc;
5463                 }
5464                 up_write(&EXT4_I(inode)->i_mmap_sem);
5465         }
5466
5467         if (!error) {
5468                 setattr_copy(inode, attr);
5469                 mark_inode_dirty(inode);
5470         }
5471
5472         /*
5473          * If the call to ext4_truncate failed to get a transaction handle at
5474          * all, we need to clean up the in-core orphan list manually.
5475          */
5476         if (orphan && inode->i_nlink)
5477                 ext4_orphan_del(NULL, inode);
5478
5479         if (!error && (ia_valid & ATTR_MODE))
5480                 rc = posix_acl_chmod(inode, inode->i_mode);
5481
5482 err_out:
5483         ext4_std_error(inode->i_sb, error);
5484         if (!error)
5485                 error = rc;
5486         return error;
5487 }
5488
5489 int ext4_getattr(const struct path *path, struct kstat *stat,
5490                  u32 request_mask, unsigned int query_flags)
5491 {
5492         struct inode *inode = d_inode(path->dentry);
5493         struct ext4_inode *raw_inode;
5494         struct ext4_inode_info *ei = EXT4_I(inode);
5495         unsigned int flags;
5496
5497         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5498                 stat->result_mask |= STATX_BTIME;
5499                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5500                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5501         }
5502
5503         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5504         if (flags & EXT4_APPEND_FL)
5505                 stat->attributes |= STATX_ATTR_APPEND;
5506         if (flags & EXT4_COMPR_FL)
5507                 stat->attributes |= STATX_ATTR_COMPRESSED;
5508         if (flags & EXT4_ENCRYPT_FL)
5509                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5510         if (flags & EXT4_IMMUTABLE_FL)
5511                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5512         if (flags & EXT4_NODUMP_FL)
5513                 stat->attributes |= STATX_ATTR_NODUMP;
5514
5515         stat->attributes_mask |= (STATX_ATTR_APPEND |
5516                                   STATX_ATTR_COMPRESSED |
5517                                   STATX_ATTR_ENCRYPTED |
5518                                   STATX_ATTR_IMMUTABLE |
5519                                   STATX_ATTR_NODUMP);
5520
5521         generic_fillattr(inode, stat);
5522         return 0;
5523 }
5524
5525 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5526                       u32 request_mask, unsigned int query_flags)
5527 {
5528         struct inode *inode = d_inode(path->dentry);
5529         u64 delalloc_blocks;
5530
5531         ext4_getattr(path, stat, request_mask, query_flags);
5532
5533         /*
5534          * If there is inline data in the inode, the inode will normally not
5535          * have data blocks allocated (it may have an external xattr block).
5536          * Report at least one sector for such files, so tools like tar, rsync,
5537          * others don't incorrectly think the file is completely sparse.
5538          */
5539         if (unlikely(ext4_has_inline_data(inode)))
5540                 stat->blocks += (stat->size + 511) >> 9;
5541
5542         /*
5543          * We can't update i_blocks if the block allocation is delayed
5544          * otherwise in the case of system crash before the real block
5545          * allocation is done, we will have i_blocks inconsistent with
5546          * on-disk file blocks.
5547          * We always keep i_blocks updated together with real
5548          * allocation. But to not confuse with user, stat
5549          * will return the blocks that include the delayed allocation
5550          * blocks for this file.
5551          */
5552         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5553                                    EXT4_I(inode)->i_reserved_data_blocks);
5554         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5555         return 0;
5556 }
5557
5558 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5559                                    int pextents)
5560 {
5561         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5562                 return ext4_ind_trans_blocks(inode, lblocks);
5563         return ext4_ext_index_trans_blocks(inode, pextents);
5564 }
5565
5566 /*
5567  * Account for index blocks, block groups bitmaps and block group
5568  * descriptor blocks if modify datablocks and index blocks
5569  * worse case, the indexs blocks spread over different block groups
5570  *
5571  * If datablocks are discontiguous, they are possible to spread over
5572  * different block groups too. If they are contiguous, with flexbg,
5573  * they could still across block group boundary.
5574  *
5575  * Also account for superblock, inode, quota and xattr blocks
5576  */
5577 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5578                                   int pextents)
5579 {
5580         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5581         int gdpblocks;
5582         int idxblocks;
5583         int ret = 0;
5584
5585         /*
5586          * How many index blocks need to touch to map @lblocks logical blocks
5587          * to @pextents physical extents?
5588          */
5589         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5590
5591         ret = idxblocks;
5592
5593         /*
5594          * Now let's see how many group bitmaps and group descriptors need
5595          * to account
5596          */
5597         groups = idxblocks + pextents;
5598         gdpblocks = groups;
5599         if (groups > ngroups)
5600                 groups = ngroups;
5601         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5602                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5603
5604         /* bitmaps and block group descriptor blocks */
5605         ret += groups + gdpblocks;
5606
5607         /* Blocks for super block, inode, quota and xattr blocks */
5608         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5609
5610         return ret;
5611 }
5612
5613 /*
5614  * Calculate the total number of credits to reserve to fit
5615  * the modification of a single pages into a single transaction,
5616  * which may include multiple chunks of block allocations.
5617  *
5618  * This could be called via ext4_write_begin()
5619  *
5620  * We need to consider the worse case, when
5621  * one new block per extent.
5622  */
5623 int ext4_writepage_trans_blocks(struct inode *inode)
5624 {
5625         int bpp = ext4_journal_blocks_per_page(inode);
5626         int ret;
5627
5628         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5629
5630         /* Account for data blocks for journalled mode */
5631         if (ext4_should_journal_data(inode))
5632                 ret += bpp;
5633         return ret;
5634 }
5635
5636 /*
5637  * Calculate the journal credits for a chunk of data modification.
5638  *
5639  * This is called from DIO, fallocate or whoever calling
5640  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5641  *
5642  * journal buffers for data blocks are not included here, as DIO
5643  * and fallocate do no need to journal data buffers.
5644  */
5645 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5646 {
5647         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5648 }
5649
5650 /*
5651  * The caller must have previously called ext4_reserve_inode_write().
5652  * Give this, we know that the caller already has write access to iloc->bh.
5653  */
5654 int ext4_mark_iloc_dirty(handle_t *handle,
5655                          struct inode *inode, struct ext4_iloc *iloc)
5656 {
5657         int err = 0;
5658
5659         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5660                 return -EIO;
5661
5662         if (IS_I_VERSION(inode))
5663                 inode_inc_iversion(inode);
5664
5665         /* the do_update_inode consumes one bh->b_count */
5666         get_bh(iloc->bh);
5667
5668         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5669         err = ext4_do_update_inode(handle, inode, iloc);
5670         put_bh(iloc->bh);
5671         return err;
5672 }
5673
5674 /*
5675  * On success, We end up with an outstanding reference count against
5676  * iloc->bh.  This _must_ be cleaned up later.
5677  */
5678
5679 int
5680 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5681                          struct ext4_iloc *iloc)
5682 {
5683         int err;
5684
5685         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5686                 return -EIO;
5687
5688         err = ext4_get_inode_loc(inode, iloc);
5689         if (!err) {
5690                 BUFFER_TRACE(iloc->bh, "get_write_access");
5691                 err = ext4_journal_get_write_access(handle, iloc->bh);
5692                 if (err) {
5693                         brelse(iloc->bh);
5694                         iloc->bh = NULL;
5695                 }
5696         }
5697         ext4_std_error(inode->i_sb, err);
5698         return err;
5699 }
5700
5701 static int __ext4_expand_extra_isize(struct inode *inode,
5702                                      unsigned int new_extra_isize,
5703                                      struct ext4_iloc *iloc,
5704                                      handle_t *handle, int *no_expand)
5705 {
5706         struct ext4_inode *raw_inode;
5707         struct ext4_xattr_ibody_header *header;
5708         int error;
5709
5710         raw_inode = ext4_raw_inode(iloc);
5711
5712         header = IHDR(inode, raw_inode);
5713
5714         /* No extended attributes present */
5715         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5716             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5717                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5718                        EXT4_I(inode)->i_extra_isize, 0,
5719                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5720                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5721                 return 0;
5722         }
5723
5724         /* try to expand with EAs present */
5725         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5726                                            raw_inode, handle);
5727         if (error) {
5728                 /*
5729                  * Inode size expansion failed; don't try again
5730                  */
5731                 *no_expand = 1;
5732         }
5733
5734         return error;
5735 }
5736
5737 /*
5738  * Expand an inode by new_extra_isize bytes.
5739  * Returns 0 on success or negative error number on failure.
5740  */
5741 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5742                                           unsigned int new_extra_isize,
5743                                           struct ext4_iloc iloc,
5744                                           handle_t *handle)
5745 {
5746         int no_expand;
5747         int error;
5748
5749         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5750                 return -EOVERFLOW;
5751
5752         /*
5753          * In nojournal mode, we can immediately attempt to expand
5754          * the inode.  When journaled, we first need to obtain extra
5755          * buffer credits since we may write into the EA block
5756          * with this same handle. If journal_extend fails, then it will
5757          * only result in a minor loss of functionality for that inode.
5758          * If this is felt to be critical, then e2fsck should be run to
5759          * force a large enough s_min_extra_isize.
5760          */
5761         if (ext4_handle_valid(handle) &&
5762             jbd2_journal_extend(handle,
5763                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5764                 return -ENOSPC;
5765
5766         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5767                 return -EBUSY;
5768
5769         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5770                                           handle, &no_expand);
5771         ext4_write_unlock_xattr(inode, &no_expand);
5772
5773         return error;
5774 }
5775
5776 int ext4_expand_extra_isize(struct inode *inode,
5777                             unsigned int new_extra_isize,
5778                             struct ext4_iloc *iloc)
5779 {
5780         handle_t *handle;
5781         int no_expand;
5782         int error, rc;
5783
5784         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5785                 brelse(iloc->bh);
5786                 return -EOVERFLOW;
5787         }
5788
5789         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5790                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5791         if (IS_ERR(handle)) {
5792                 error = PTR_ERR(handle);
5793                 brelse(iloc->bh);
5794                 return error;
5795         }
5796
5797         ext4_write_lock_xattr(inode, &no_expand);
5798
5799         BUFFER_TRACE(iloc.bh, "get_write_access");
5800         error = ext4_journal_get_write_access(handle, iloc->bh);
5801         if (error) {
5802                 brelse(iloc->bh);
5803                 goto out_stop;
5804         }
5805
5806         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5807                                           handle, &no_expand);
5808
5809         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5810         if (!error)
5811                 error = rc;
5812
5813         ext4_write_unlock_xattr(inode, &no_expand);
5814 out_stop:
5815         ext4_journal_stop(handle);
5816         return error;
5817 }
5818
5819 /*
5820  * What we do here is to mark the in-core inode as clean with respect to inode
5821  * dirtiness (it may still be data-dirty).
5822  * This means that the in-core inode may be reaped by prune_icache
5823  * without having to perform any I/O.  This is a very good thing,
5824  * because *any* task may call prune_icache - even ones which
5825  * have a transaction open against a different journal.
5826  *
5827  * Is this cheating?  Not really.  Sure, we haven't written the
5828  * inode out, but prune_icache isn't a user-visible syncing function.
5829  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5830  * we start and wait on commits.
5831  */
5832 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5833 {
5834         struct ext4_iloc iloc;
5835         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5836         int err;
5837
5838         might_sleep();
5839         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5840         err = ext4_reserve_inode_write(handle, inode, &iloc);
5841         if (err)
5842                 return err;
5843
5844         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5845                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5846                                                iloc, handle);
5847
5848         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5849 }
5850
5851 /*
5852  * ext4_dirty_inode() is called from __mark_inode_dirty()
5853  *
5854  * We're really interested in the case where a file is being extended.
5855  * i_size has been changed by generic_commit_write() and we thus need
5856  * to include the updated inode in the current transaction.
5857  *
5858  * Also, dquot_alloc_block() will always dirty the inode when blocks
5859  * are allocated to the file.
5860  *
5861  * If the inode is marked synchronous, we don't honour that here - doing
5862  * so would cause a commit on atime updates, which we don't bother doing.
5863  * We handle synchronous inodes at the highest possible level.
5864  *
5865  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5866  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5867  * to copy into the on-disk inode structure are the timestamp files.
5868  */
5869 void ext4_dirty_inode(struct inode *inode, int flags)
5870 {
5871         handle_t *handle;
5872
5873         if (flags == I_DIRTY_TIME)
5874                 return;
5875         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5876         if (IS_ERR(handle))
5877                 goto out;
5878
5879         ext4_mark_inode_dirty(handle, inode);
5880
5881         ext4_journal_stop(handle);
5882 out:
5883         return;
5884 }
5885
5886 #if 0
5887 /*
5888  * Bind an inode's backing buffer_head into this transaction, to prevent
5889  * it from being flushed to disk early.  Unlike
5890  * ext4_reserve_inode_write, this leaves behind no bh reference and
5891  * returns no iloc structure, so the caller needs to repeat the iloc
5892  * lookup to mark the inode dirty later.
5893  */
5894 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5895 {
5896         struct ext4_iloc iloc;
5897
5898         int err = 0;
5899         if (handle) {
5900                 err = ext4_get_inode_loc(inode, &iloc);
5901                 if (!err) {
5902                         BUFFER_TRACE(iloc.bh, "get_write_access");
5903                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5904                         if (!err)
5905                                 err = ext4_handle_dirty_metadata(handle,
5906                                                                  NULL,
5907                                                                  iloc.bh);
5908                         brelse(iloc.bh);
5909                 }
5910         }
5911         ext4_std_error(inode->i_sb, err);
5912         return err;
5913 }
5914 #endif
5915
5916 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5917 {
5918         journal_t *journal;
5919         handle_t *handle;
5920         int err;
5921         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5922
5923         /*
5924          * We have to be very careful here: changing a data block's
5925          * journaling status dynamically is dangerous.  If we write a
5926          * data block to the journal, change the status and then delete
5927          * that block, we risk forgetting to revoke the old log record
5928          * from the journal and so a subsequent replay can corrupt data.
5929          * So, first we make sure that the journal is empty and that
5930          * nobody is changing anything.
5931          */
5932
5933         journal = EXT4_JOURNAL(inode);
5934         if (!journal)
5935                 return 0;
5936         if (is_journal_aborted(journal))
5937                 return -EROFS;
5938
5939         /* Wait for all existing dio workers */
5940         ext4_inode_block_unlocked_dio(inode);
5941         inode_dio_wait(inode);
5942
5943         /*
5944          * Before flushing the journal and switching inode's aops, we have
5945          * to flush all dirty data the inode has. There can be outstanding
5946          * delayed allocations, there can be unwritten extents created by
5947          * fallocate or buffered writes in dioread_nolock mode covered by
5948          * dirty data which can be converted only after flushing the dirty
5949          * data (and journalled aops don't know how to handle these cases).
5950          */
5951         if (val) {
5952                 down_write(&EXT4_I(inode)->i_mmap_sem);
5953                 err = filemap_write_and_wait(inode->i_mapping);
5954                 if (err < 0) {
5955                         up_write(&EXT4_I(inode)->i_mmap_sem);
5956                         ext4_inode_resume_unlocked_dio(inode);
5957                         return err;
5958                 }
5959         }
5960
5961         percpu_down_write(&sbi->s_journal_flag_rwsem);
5962         jbd2_journal_lock_updates(journal);
5963
5964         /*
5965          * OK, there are no updates running now, and all cached data is
5966          * synced to disk.  We are now in a completely consistent state
5967          * which doesn't have anything in the journal, and we know that
5968          * no filesystem updates are running, so it is safe to modify
5969          * the inode's in-core data-journaling state flag now.
5970          */
5971
5972         if (val)
5973                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5974         else {
5975                 err = jbd2_journal_flush(journal);
5976                 if (err < 0) {
5977                         jbd2_journal_unlock_updates(journal);
5978                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5979                         ext4_inode_resume_unlocked_dio(inode);
5980                         return err;
5981                 }
5982                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5983         }
5984         ext4_set_aops(inode);
5985         /*
5986          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5987          * E.g. S_DAX may get cleared / set.
5988          */
5989         ext4_set_inode_flags(inode);
5990
5991         jbd2_journal_unlock_updates(journal);
5992         percpu_up_write(&sbi->s_journal_flag_rwsem);
5993
5994         if (val)
5995                 up_write(&EXT4_I(inode)->i_mmap_sem);
5996         ext4_inode_resume_unlocked_dio(inode);
5997
5998         /* Finally we can mark the inode as dirty. */
5999
6000         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6001         if (IS_ERR(handle))
6002                 return PTR_ERR(handle);
6003
6004         err = ext4_mark_inode_dirty(handle, inode);
6005         ext4_handle_sync(handle);
6006         ext4_journal_stop(handle);
6007         ext4_std_error(inode->i_sb, err);
6008
6009         return err;
6010 }
6011
6012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6013 {
6014         return !buffer_mapped(bh);
6015 }
6016
6017 int ext4_page_mkwrite(struct vm_fault *vmf)
6018 {
6019         struct vm_area_struct *vma = vmf->vma;
6020         struct page *page = vmf->page;
6021         loff_t size;
6022         unsigned long len;
6023         int ret;
6024         struct file *file = vma->vm_file;
6025         struct inode *inode = file_inode(file);
6026         struct address_space *mapping = inode->i_mapping;
6027         handle_t *handle;
6028         get_block_t *get_block;
6029         int retries = 0;
6030
6031         sb_start_pagefault(inode->i_sb);
6032         file_update_time(vma->vm_file);
6033
6034         down_read(&EXT4_I(inode)->i_mmap_sem);
6035
6036         ret = ext4_convert_inline_data(inode);
6037         if (ret)
6038                 goto out_ret;
6039
6040         /* Delalloc case is easy... */
6041         if (test_opt(inode->i_sb, DELALLOC) &&
6042             !ext4_should_journal_data(inode) &&
6043             !ext4_nonda_switch(inode->i_sb)) {
6044                 do {
6045                         ret = block_page_mkwrite(vma, vmf,
6046                                                    ext4_da_get_block_prep);
6047                 } while (ret == -ENOSPC &&
6048                        ext4_should_retry_alloc(inode->i_sb, &retries));
6049                 goto out_ret;
6050         }
6051
6052         lock_page(page);
6053         size = i_size_read(inode);
6054         /* Page got truncated from under us? */
6055         if (page->mapping != mapping || page_offset(page) > size) {
6056                 unlock_page(page);
6057                 ret = VM_FAULT_NOPAGE;
6058                 goto out;
6059         }
6060
6061         if (page->index == size >> PAGE_SHIFT)
6062                 len = size & ~PAGE_MASK;
6063         else
6064                 len = PAGE_SIZE;
6065         /*
6066          * Return if we have all the buffers mapped. This avoids the need to do
6067          * journal_start/journal_stop which can block and take a long time
6068          */
6069         if (page_has_buffers(page)) {
6070                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6071                                             0, len, NULL,
6072                                             ext4_bh_unmapped)) {
6073                         /* Wait so that we don't change page under IO */
6074                         wait_for_stable_page(page);
6075                         ret = VM_FAULT_LOCKED;
6076                         goto out;
6077                 }
6078         }
6079         unlock_page(page);
6080         /* OK, we need to fill the hole... */
6081         if (ext4_should_dioread_nolock(inode))
6082                 get_block = ext4_get_block_unwritten;
6083         else
6084                 get_block = ext4_get_block;
6085 retry_alloc:
6086         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6087                                     ext4_writepage_trans_blocks(inode));
6088         if (IS_ERR(handle)) {
6089                 ret = VM_FAULT_SIGBUS;
6090                 goto out;
6091         }
6092         ret = block_page_mkwrite(vma, vmf, get_block);
6093         if (!ret && ext4_should_journal_data(inode)) {
6094                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6095                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6096                         unlock_page(page);
6097                         ret = VM_FAULT_SIGBUS;
6098                         ext4_journal_stop(handle);
6099                         goto out;
6100                 }
6101                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6102         }
6103         ext4_journal_stop(handle);
6104         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6105                 goto retry_alloc;
6106 out_ret:
6107         ret = block_page_mkwrite_return(ret);
6108 out:
6109         up_read(&EXT4_I(inode)->i_mmap_sem);
6110         sb_end_pagefault(inode->i_sb);
6111         return ret;
6112 }
6113
6114 int ext4_filemap_fault(struct vm_fault *vmf)
6115 {
6116         struct inode *inode = file_inode(vmf->vma->vm_file);
6117         int err;
6118
6119         down_read(&EXT4_I(inode)->i_mmap_sem);
6120         err = filemap_fault(vmf);
6121         up_read(&EXT4_I(inode)->i_mmap_sem);
6122
6123         return err;
6124 }
6125
6126 /*
6127  * Find the first extent at or after @lblk in an inode that is not a hole.
6128  * Search for @map_len blocks at most. The extent is returned in @result.
6129  *
6130  * The function returns 1 if we found an extent. The function returns 0 in
6131  * case there is no extent at or after @lblk and in that case also sets
6132  * @result->es_len to 0. In case of error, the error code is returned.
6133  */
6134 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6135                          unsigned int map_len, struct extent_status *result)
6136 {
6137         struct ext4_map_blocks map;
6138         struct extent_status es = {};
6139         int ret;
6140
6141         map.m_lblk = lblk;
6142         map.m_len = map_len;
6143
6144         /*
6145          * For non-extent based files this loop may iterate several times since
6146          * we do not determine full hole size.
6147          */
6148         while (map.m_len > 0) {
6149                 ret = ext4_map_blocks(NULL, inode, &map, 0);
6150                 if (ret < 0)
6151                         return ret;
6152                 /* There's extent covering m_lblk? Just return it. */
6153                 if (ret > 0) {
6154                         int status;
6155
6156                         ext4_es_store_pblock(result, map.m_pblk);
6157                         result->es_lblk = map.m_lblk;
6158                         result->es_len = map.m_len;
6159                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
6160                                 status = EXTENT_STATUS_UNWRITTEN;
6161                         else
6162                                 status = EXTENT_STATUS_WRITTEN;
6163                         ext4_es_store_status(result, status);
6164                         return 1;
6165                 }
6166                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6167                                                   map.m_lblk + map.m_len - 1,
6168                                                   &es);
6169                 /* Is delalloc data before next block in extent tree? */
6170                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6171                         ext4_lblk_t offset = 0;
6172
6173                         if (es.es_lblk < lblk)
6174                                 offset = lblk - es.es_lblk;
6175                         result->es_lblk = es.es_lblk + offset;
6176                         ext4_es_store_pblock(result,
6177                                              ext4_es_pblock(&es) + offset);
6178                         result->es_len = es.es_len - offset;
6179                         ext4_es_store_status(result, ext4_es_status(&es));
6180
6181                         return 1;
6182                 }
6183                 /* There's a hole at m_lblk, advance us after it */
6184                 map.m_lblk += map.m_len;
6185                 map_len -= map.m_len;
6186                 map.m_len = map_len;
6187                 cond_resched();
6188         }
6189         result->es_len = 0;
6190         return 0;
6191 }
This page took 0.397918 seconds and 4 git commands to generate.