2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
86 __u32 provided, calculated;
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 return provided == calculated;
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 trace_ext4_begin_ordered_truncate(inode, new_size);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode)->jinode)
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
182 * Called at the last iput() if i_nlink is zero.
184 void ext4_evict_inode(struct inode *inode)
188 int extra_credits = 3;
189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
191 trace_ext4_evict_inode(inode);
193 if (inode->i_nlink) {
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
209 * Note that directories do not have this problem because they
210 * don't use page cache.
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
227 if (is_bad_inode(inode))
229 dquot_initialize(inode);
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode->i_sb);
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
259 ext4_handle_sync(handle);
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
271 err = ext4_mark_inode_dirty(handle, inode);
273 ext4_warning(inode->i_sb,
274 "couldn't mark inode dirty (err %d)", err);
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
301 * Kill off the orphan record which ext4_truncate created.
302 * AKPM: I think this can be inside the above `if'.
303 * Note that ext4_orphan_del() has to be able to cope with the
304 * deletion of a non-existent orphan - this is because we don't
305 * know if ext4_truncate() actually created an orphan record.
306 * (Well, we could do this if we need to, but heck - it works)
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
318 if (ext4_mark_inode_dirty(handle, inode))
319 /* If that failed, just do the required in-core inode clear. */
320 ext4_clear_inode(inode);
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
324 sb_end_intwrite(inode->i_sb);
325 ext4_xattr_inode_array_free(ea_inode_array);
328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
334 return &EXT4_I(inode)->i_reserved_quota;
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
342 void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 struct ext4_inode_info *ei = EXT4_I(inode);
348 spin_lock(&ei->i_block_reservation_lock);
349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 if (unlikely(used > ei->i_reserved_data_blocks)) {
351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 "with only %d reserved data blocks",
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
356 used = ei->i_reserved_data_blocks;
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
365 /* Update quota subsystem for data blocks */
367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
372 * not re-claim the quota for fallocated blocks.
374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
384 ext4_discard_preallocations(inode);
387 static int __check_block_validity(struct inode *inode, const char *func,
389 struct ext4_map_blocks *map)
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
397 return -EFSCORRUPTED;
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
407 if (ext4_encrypted_inode(inode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
445 up_read((&EXT4_I(inode)->i_data_sem));
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
454 printk("ES cache assertion failed for inode: %lu "
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
463 #endif /* ES_AGGRESSIVE_TEST */
466 * The ext4_map_blocks() function tries to look up the requested blocks,
467 * and returns if the blocks are already mapped.
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
485 * It returns the error in case of allocation failure.
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
490 struct extent_status es;
493 #ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
496 memcpy(&orig_map, map, sizeof(*map));
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 return -EFSCORRUPTED;
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
543 * Try to see if we can get the block without requesting a new
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
577 up_read((&EXT4_I(inode)->i_data_sem));
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
591 * Returns if the blocks have already allocated
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
610 map->m_flags &= ~EXT4_MAP_FLAGS;
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
618 down_write(&EXT4_I(inode)->i_data_sem);
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 !(status & EXTENT_STATUS_WRITTEN) &&
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
724 ret = ext4_jbd2_inode_add_write(handle, inode);
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 unsigned long old_state;
739 unsigned long new_state;
741 flags &= EXT4_MAP_FLAGS;
743 /* Dummy buffer_head? Set non-atomically. */
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
763 struct ext4_map_blocks map;
766 if (ext4_has_inline_data(inode))
770 map.m_len = bh->b_size >> inode->i_blkbits;
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831 return PTR_ERR(handle);
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
854 * Get block function for AIO DIO writes when we create unwritten extent if
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
886 set_buffer_defer_completion(bh_result);
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
895 * after IO is complete by ext4_direct_IO_write().
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
909 * Mark inode as having pending DIO writes to unwritten extents.
910 * ext4_direct_IO_write() checks this flag and converts extents to
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
941 * `handle' can be NULL if create is zero
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 ext4_lblk_t block, int map_flags)
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
951 J_ASSERT(handle != NULL || create == 0);
955 err = ext4_map_blocks(handle, inode, &map, map_flags);
958 return create ? ERR_PTR(-ENOSPC) : NULL;
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
964 return ERR_PTR(-ENOMEM);
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
977 BUFFER_TRACE(bh, "call get_create_access");
978 err = ext4_journal_get_create_access(handle, bh);
983 if (!buffer_uptodate(bh)) {
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
993 BUFFER_TRACE(bh, "not a new buffer");
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 ext4_lblk_t block, int map_flags)
1003 struct buffer_head *bh;
1005 bh = ext4_getblk(handle, inode, block, map_flags);
1008 if (!bh || buffer_uptodate(bh))
1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012 if (buffer_uptodate(bh))
1015 return ERR_PTR(-EIO);
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 bool wait, struct buffer_head **bhs)
1024 for (i = 0; i < bh_count; i++) {
1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 if (IS_ERR(bhs[i])) {
1027 err = PTR_ERR(bhs[i]);
1033 for (i = 0; i < bh_count; i++)
1034 /* Note that NULL bhs[i] is valid because of holes. */
1035 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1042 for (i = 0; i < bh_count; i++)
1044 wait_on_buffer(bhs[i]);
1046 for (i = 0; i < bh_count; i++) {
1047 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1055 for (i = 0; i < bh_count; i++) {
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 struct buffer_head *head,
1067 int (*fn)(handle_t *handle,
1068 struct buffer_head *bh))
1070 struct buffer_head *bh;
1071 unsigned block_start, block_end;
1072 unsigned blocksize = head->b_size;
1074 struct buffer_head *next;
1076 for (bh = head, block_start = 0;
1077 ret == 0 && (bh != head || !block_start);
1078 block_start = block_end, bh = next) {
1079 next = bh->b_this_page;
1080 block_end = block_start + blocksize;
1081 if (block_end <= from || block_start >= to) {
1082 if (partial && !buffer_uptodate(bh))
1086 err = (*fn)(handle, bh);
1094 * To preserve ordering, it is essential that the hole instantiation and
1095 * the data write be encapsulated in a single transaction. We cannot
1096 * close off a transaction and start a new one between the ext4_get_block()
1097 * and the commit_write(). So doing the jbd2_journal_start at the start of
1098 * prepare_write() is the right place.
1100 * Also, this function can nest inside ext4_writepage(). In that case, we
1101 * *know* that ext4_writepage() has generated enough buffer credits to do the
1102 * whole page. So we won't block on the journal in that case, which is good,
1103 * because the caller may be PF_MEMALLOC.
1105 * By accident, ext4 can be reentered when a transaction is open via
1106 * quota file writes. If we were to commit the transaction while thus
1107 * reentered, there can be a deadlock - we would be holding a quota
1108 * lock, and the commit would never complete if another thread had a
1109 * transaction open and was blocking on the quota lock - a ranking
1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113 * will _not_ run commit under these circumstances because handle->h_ref
1114 * is elevated. We'll still have enough credits for the tiny quotafile
1117 int do_journal_get_write_access(handle_t *handle,
1118 struct buffer_head *bh)
1120 int dirty = buffer_dirty(bh);
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1126 * __block_write_begin() could have dirtied some buffers. Clean
1127 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 * otherwise about fs integrity issues. Setting of the dirty bit
1129 * by __block_write_begin() isn't a real problem here as we clear
1130 * the bit before releasing a page lock and thus writeback cannot
1131 * ever write the buffer.
1134 clear_buffer_dirty(bh);
1135 BUFFER_TRACE(bh, "get write access");
1136 ret = ext4_journal_get_write_access(handle, bh);
1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 get_block_t *get_block)
1146 unsigned from = pos & (PAGE_SIZE - 1);
1147 unsigned to = from + len;
1148 struct inode *inode = page->mapping->host;
1149 unsigned block_start, block_end;
1152 unsigned blocksize = inode->i_sb->s_blocksize;
1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 bool decrypt = false;
1157 BUG_ON(!PageLocked(page));
1158 BUG_ON(from > PAGE_SIZE);
1159 BUG_ON(to > PAGE_SIZE);
1162 if (!page_has_buffers(page))
1163 create_empty_buffers(page, blocksize, 0);
1164 head = page_buffers(page);
1165 bbits = ilog2(blocksize);
1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168 for (bh = head, block_start = 0; bh != head || !block_start;
1169 block++, block_start = block_end, bh = bh->b_this_page) {
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (PageUptodate(page)) {
1173 if (!buffer_uptodate(bh))
1174 set_buffer_uptodate(bh);
1179 clear_buffer_new(bh);
1180 if (!buffer_mapped(bh)) {
1181 WARN_ON(bh->b_size != blocksize);
1182 err = get_block(inode, block, bh, 1);
1185 if (buffer_new(bh)) {
1186 clean_bdev_bh_alias(bh);
1187 if (PageUptodate(page)) {
1188 clear_buffer_new(bh);
1189 set_buffer_uptodate(bh);
1190 mark_buffer_dirty(bh);
1193 if (block_end > to || block_start < from)
1194 zero_user_segments(page, to, block_end,
1199 if (PageUptodate(page)) {
1200 if (!buffer_uptodate(bh))
1201 set_buffer_uptodate(bh);
1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 !buffer_unwritten(bh) &&
1206 (block_start < from || block_end > to)) {
1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209 decrypt = ext4_encrypted_inode(inode) &&
1210 S_ISREG(inode->i_mode);
1214 * If we issued read requests, let them complete.
1216 while (wait_bh > wait) {
1217 wait_on_buffer(*--wait_bh);
1218 if (!buffer_uptodate(*wait_bh))
1222 page_zero_new_buffers(page, from, to);
1224 err = fscrypt_decrypt_page(page->mapping->host, page,
1225 PAGE_SIZE, 0, page->index);
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 loff_t pos, unsigned len, unsigned flags,
1232 struct page **pagep, void **fsdata)
1234 struct inode *inode = mapping->host;
1235 int ret, needed_blocks;
1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1245 trace_ext4_write_begin(inode, pos, len, flags);
1247 * Reserve one block more for addition to orphan list in case
1248 * we allocate blocks but write fails for some reason
1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 index = pos >> PAGE_SHIFT;
1252 from = pos & (PAGE_SIZE - 1);
1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1265 * grab_cache_page_write_begin() can take a long time if the
1266 * system is thrashing due to memory pressure, or if the page
1267 * is being written back. So grab it first before we start
1268 * the transaction handle. This also allows us to allocate
1269 * the page (if needed) without using GFP_NOFS.
1272 page = grab_cache_page_write_begin(mapping, index, flags);
1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 if (IS_ERR(handle)) {
1281 return PTR_ERR(handle);
1285 if (page->mapping != mapping) {
1286 /* The page got truncated from under us */
1289 ext4_journal_stop(handle);
1292 /* In case writeback began while the page was unlocked */
1293 wait_for_stable_page(page);
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 if (ext4_should_dioread_nolock(inode))
1297 ret = ext4_block_write_begin(page, pos, len,
1298 ext4_get_block_unwritten);
1300 ret = ext4_block_write_begin(page, pos, len,
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = __block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1307 ret = __block_write_begin(page, pos, len, ext4_get_block);
1309 if (!ret && ext4_should_journal_data(inode)) {
1310 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312 do_journal_get_write_access);
1318 * __block_write_begin may have instantiated a few blocks
1319 * outside i_size. Trim these off again. Don't need
1320 * i_size_read because we hold i_mutex.
1322 * Add inode to orphan list in case we crash before
1325 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 ext4_orphan_add(handle, inode);
1328 ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size) {
1330 ext4_truncate_failed_write(inode);
1332 * If truncate failed early the inode might
1333 * still be on the orphan list; we need to
1334 * make sure the inode is removed from the
1335 * orphan list in that case.
1338 ext4_orphan_del(NULL, inode);
1341 if (ret == -ENOSPC &&
1342 ext4_should_retry_alloc(inode->i_sb, &retries))
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1355 if (!buffer_mapped(bh) || buffer_freed(bh))
1357 set_buffer_uptodate(bh);
1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 clear_buffer_meta(bh);
1360 clear_buffer_prio(bh);
1365 * We need to pick up the new inode size which generic_commit_write gave us
1366 * `file' can be NULL - eg, when called from page_symlink().
1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1369 * buffers are managed internally.
1371 static int ext4_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1376 handle_t *handle = ext4_journal_current_handle();
1377 struct inode *inode = mapping->host;
1378 loff_t old_size = inode->i_size;
1380 int i_size_changed = 0;
1382 trace_ext4_write_end(inode, pos, len, copied);
1383 if (ext4_has_inline_data(inode)) {
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1393 copied = block_write_end(file, mapping, pos,
1394 len, copied, page, fsdata);
1396 * it's important to update i_size while still holding page lock:
1397 * page writeout could otherwise come in and zero beyond i_size.
1399 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1404 pagecache_isize_extended(inode, old_size, pos);
1406 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 * makes the holding time of page lock longer. Second, it forces lock
1408 * ordering of page lock and transaction start for journaling
1412 ext4_mark_inode_dirty(handle, inode);
1414 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 /* if we have allocated more blocks and copied
1416 * less. We will have blocks allocated outside
1417 * inode->i_size. So truncate them
1419 ext4_orphan_add(handle, inode);
1421 ret2 = ext4_journal_stop(handle);
1425 if (pos + len > inode->i_size) {
1426 ext4_truncate_failed_write(inode);
1428 * If truncate failed early the inode might still be
1429 * on the orphan list; we need to make sure the inode
1430 * is removed from the orphan list in that case.
1433 ext4_orphan_del(NULL, inode);
1436 return ret ? ret : copied;
1440 * This is a private version of page_zero_new_buffers() which doesn't
1441 * set the buffer to be dirty, since in data=journalled mode we need
1442 * to call ext4_handle_dirty_metadata() instead.
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446 unsigned from, unsigned to)
1448 unsigned int block_start = 0, block_end;
1449 struct buffer_head *head, *bh;
1451 bh = head = page_buffers(page);
1453 block_end = block_start + bh->b_size;
1454 if (buffer_new(bh)) {
1455 if (block_end > from && block_start < to) {
1456 if (!PageUptodate(page)) {
1457 unsigned start, size;
1459 start = max(from, block_start);
1460 size = min(to, block_end) - start;
1462 zero_user(page, start, size);
1463 write_end_fn(handle, bh);
1465 clear_buffer_new(bh);
1468 block_start = block_end;
1469 bh = bh->b_this_page;
1470 } while (bh != head);
1473 static int ext4_journalled_write_end(struct file *file,
1474 struct address_space *mapping,
1475 loff_t pos, unsigned len, unsigned copied,
1476 struct page *page, void *fsdata)
1478 handle_t *handle = ext4_journal_current_handle();
1479 struct inode *inode = mapping->host;
1480 loff_t old_size = inode->i_size;
1484 int size_changed = 0;
1486 trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 from = pos & (PAGE_SIZE - 1);
1490 BUG_ON(!ext4_handle_valid(handle));
1492 if (ext4_has_inline_data(inode)) {
1493 ret = ext4_write_inline_data_end(inode, pos, len,
1501 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505 if (unlikely(copied < len))
1506 ext4_journalled_zero_new_buffers(handle, page,
1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 from + copied, &partial,
1512 SetPageUptodate(page);
1514 size_changed = ext4_update_inode_size(inode, pos + copied);
1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1521 pagecache_isize_extended(inode, old_size, pos);
1524 ret2 = ext4_mark_inode_dirty(handle, inode);
1529 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 /* if we have allocated more blocks and copied
1531 * less. We will have blocks allocated outside
1532 * inode->i_size. So truncate them
1534 ext4_orphan_add(handle, inode);
1537 ret2 = ext4_journal_stop(handle);
1540 if (pos + len > inode->i_size) {
1541 ext4_truncate_failed_write(inode);
1543 * If truncate failed early the inode might still be
1544 * on the orphan list; we need to make sure the inode
1545 * is removed from the orphan list in that case.
1548 ext4_orphan_del(NULL, inode);
1551 return ret ? ret : copied;
1555 * Reserve space for a single cluster
1557 static int ext4_da_reserve_space(struct inode *inode)
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 struct ext4_inode_info *ei = EXT4_I(inode);
1564 * We will charge metadata quota at writeout time; this saves
1565 * us from metadata over-estimation, though we may go over by
1566 * a small amount in the end. Here we just reserve for data.
1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1572 spin_lock(&ei->i_block_reservation_lock);
1573 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 spin_unlock(&ei->i_block_reservation_lock);
1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1578 ei->i_reserved_data_blocks++;
1579 trace_ext4_da_reserve_space(inode);
1580 spin_unlock(&ei->i_block_reservation_lock);
1582 return 0; /* success */
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 struct ext4_inode_info *ei = EXT4_I(inode);
1591 return; /* Nothing to release, exit */
1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595 trace_ext4_da_release_space(inode, to_free);
1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598 * if there aren't enough reserved blocks, then the
1599 * counter is messed up somewhere. Since this
1600 * function is called from invalidate page, it's
1601 * harmless to return without any action.
1603 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 "ino %lu, to_free %d with only %d reserved "
1605 "data blocks", inode->i_ino, to_free,
1606 ei->i_reserved_data_blocks);
1608 to_free = ei->i_reserved_data_blocks;
1610 ei->i_reserved_data_blocks -= to_free;
1612 /* update fs dirty data blocks counter */
1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 unsigned int offset,
1622 unsigned int length)
1624 int to_release = 0, contiguous_blks = 0;
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
1627 struct inode *inode = page->mapping->host;
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 unsigned int stop = offset + length;
1633 BUG_ON(stop > PAGE_SIZE || stop < length);
1635 head = page_buffers(page);
1638 unsigned int next_off = curr_off + bh->b_size;
1640 if (next_off > stop)
1643 if ((offset <= curr_off) && (buffer_delay(bh))) {
1646 clear_buffer_delay(bh);
1647 } else if (contiguous_blks) {
1648 lblk = page->index <<
1649 (PAGE_SHIFT - inode->i_blkbits);
1650 lblk += (curr_off >> inode->i_blkbits) -
1652 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 contiguous_blks = 0;
1655 curr_off = next_off;
1656 } while ((bh = bh->b_this_page) != head);
1658 if (contiguous_blks) {
1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 /* If we have released all the blocks belonging to a cluster, then we
1665 * need to release the reserved space for that cluster. */
1666 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 while (num_clusters > 0) {
1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 ((num_clusters - 1) << sbi->s_cluster_bits);
1670 if (sbi->s_cluster_ratio == 1 ||
1671 !ext4_find_delalloc_cluster(inode, lblk))
1672 ext4_da_release_space(inode, 1);
1679 * Delayed allocation stuff
1682 struct mpage_da_data {
1683 struct inode *inode;
1684 struct writeback_control *wbc;
1686 pgoff_t first_page; /* The first page to write */
1687 pgoff_t next_page; /* Current page to examine */
1688 pgoff_t last_page; /* Last page to examine */
1690 * Extent to map - this can be after first_page because that can be
1691 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 * is delalloc or unwritten.
1694 struct ext4_map_blocks map;
1695 struct ext4_io_submit io_submit; /* IO submission data */
1696 unsigned int do_map:1;
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1704 struct pagevec pvec;
1705 struct inode *inode = mpd->inode;
1706 struct address_space *mapping = inode->i_mapping;
1708 /* This is necessary when next_page == 0. */
1709 if (mpd->first_page >= mpd->next_page)
1712 index = mpd->first_page;
1713 end = mpd->next_page - 1;
1715 ext4_lblk_t start, last;
1716 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 ext4_es_remove_extent(inode, start, last - start + 1);
1721 pagevec_init(&pvec, 0);
1722 while (index <= end) {
1723 nr_pages = pagevec_lookup(&pvec, mapping, &index, PAGEVEC_SIZE);
1726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
1728 if (page->index > end)
1730 BUG_ON(!PageLocked(page));
1731 BUG_ON(PageWriteback(page));
1733 if (page_mapped(page))
1734 clear_page_dirty_for_io(page);
1735 block_invalidatepage(page, 0, PAGE_SIZE);
1736 ClearPageUptodate(page);
1740 pagevec_release(&pvec);
1744 static void ext4_print_free_blocks(struct inode *inode)
1746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1747 struct super_block *sb = inode->i_sb;
1748 struct ext4_inode_info *ei = EXT4_I(inode);
1750 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1751 EXT4_C2B(EXT4_SB(inode->i_sb),
1752 ext4_count_free_clusters(sb)));
1753 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1755 (long long) EXT4_C2B(EXT4_SB(sb),
1756 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1757 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1758 (long long) EXT4_C2B(EXT4_SB(sb),
1759 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1760 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1762 ei->i_reserved_data_blocks);
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1772 * This function is grabs code from the very beginning of
1773 * ext4_map_blocks, but assumes that the caller is from delayed write
1774 * time. This function looks up the requested blocks and sets the
1775 * buffer delay bit under the protection of i_data_sem.
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778 struct ext4_map_blocks *map,
1779 struct buffer_head *bh)
1781 struct extent_status es;
1783 sector_t invalid_block = ~((sector_t) 0xffff);
1784 #ifdef ES_AGGRESSIVE_TEST
1785 struct ext4_map_blocks orig_map;
1787 memcpy(&orig_map, map, sizeof(*map));
1790 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1794 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795 "logical block %lu\n", inode->i_ino, map->m_len,
1796 (unsigned long) map->m_lblk);
1798 /* Lookup extent status tree firstly */
1799 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1800 if (ext4_es_is_hole(&es)) {
1802 down_read(&EXT4_I(inode)->i_data_sem);
1807 * Delayed extent could be allocated by fallocate.
1808 * So we need to check it.
1810 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811 map_bh(bh, inode->i_sb, invalid_block);
1813 set_buffer_delay(bh);
1817 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818 retval = es.es_len - (iblock - es.es_lblk);
1819 if (retval > map->m_len)
1820 retval = map->m_len;
1821 map->m_len = retval;
1822 if (ext4_es_is_written(&es))
1823 map->m_flags |= EXT4_MAP_MAPPED;
1824 else if (ext4_es_is_unwritten(&es))
1825 map->m_flags |= EXT4_MAP_UNWRITTEN;
1829 #ifdef ES_AGGRESSIVE_TEST
1830 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1836 * Try to see if we can get the block without requesting a new
1837 * file system block.
1839 down_read(&EXT4_I(inode)->i_data_sem);
1840 if (ext4_has_inline_data(inode))
1842 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1843 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1845 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1851 * XXX: __block_prepare_write() unmaps passed block,
1855 * If the block was allocated from previously allocated cluster,
1856 * then we don't need to reserve it again. However we still need
1857 * to reserve metadata for every block we're going to write.
1859 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1860 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1861 ret = ext4_da_reserve_space(inode);
1863 /* not enough space to reserve */
1869 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870 ~0, EXTENT_STATUS_DELAYED);
1876 map_bh(bh, inode->i_sb, invalid_block);
1878 set_buffer_delay(bh);
1879 } else if (retval > 0) {
1881 unsigned int status;
1883 if (unlikely(retval != map->m_len)) {
1884 ext4_warning(inode->i_sb,
1885 "ES len assertion failed for inode "
1886 "%lu: retval %d != map->m_len %d",
1887 inode->i_ino, retval, map->m_len);
1891 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894 map->m_pblk, status);
1900 up_read((&EXT4_I(inode)->i_data_sem));
1906 * This is a special get_block_t callback which is used by
1907 * ext4_da_write_begin(). It will either return mapped block or
1908 * reserve space for a single block.
1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911 * We also have b_blocknr = -1 and b_bdev initialized properly
1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915 * initialized properly.
1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918 struct buffer_head *bh, int create)
1920 struct ext4_map_blocks map;
1923 BUG_ON(create == 0);
1924 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1926 map.m_lblk = iblock;
1930 * first, we need to know whether the block is allocated already
1931 * preallocated blocks are unmapped but should treated
1932 * the same as allocated blocks.
1934 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1938 map_bh(bh, inode->i_sb, map.m_pblk);
1939 ext4_update_bh_state(bh, map.m_flags);
1941 if (buffer_unwritten(bh)) {
1942 /* A delayed write to unwritten bh should be marked
1943 * new and mapped. Mapped ensures that we don't do
1944 * get_block multiple times when we write to the same
1945 * offset and new ensures that we do proper zero out
1946 * for partial write.
1949 set_buffer_mapped(bh);
1954 static int bget_one(handle_t *handle, struct buffer_head *bh)
1960 static int bput_one(handle_t *handle, struct buffer_head *bh)
1966 static int __ext4_journalled_writepage(struct page *page,
1969 struct address_space *mapping = page->mapping;
1970 struct inode *inode = mapping->host;
1971 struct buffer_head *page_bufs = NULL;
1972 handle_t *handle = NULL;
1973 int ret = 0, err = 0;
1974 int inline_data = ext4_has_inline_data(inode);
1975 struct buffer_head *inode_bh = NULL;
1977 ClearPageChecked(page);
1980 BUG_ON(page->index != 0);
1981 BUG_ON(len > ext4_get_max_inline_size(inode));
1982 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983 if (inode_bh == NULL)
1986 page_bufs = page_buffers(page);
1991 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1995 * We need to release the page lock before we start the
1996 * journal, so grab a reference so the page won't disappear
1997 * out from under us.
2002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003 ext4_writepage_trans_blocks(inode));
2004 if (IS_ERR(handle)) {
2005 ret = PTR_ERR(handle);
2007 goto out_no_pagelock;
2009 BUG_ON(!ext4_handle_valid(handle));
2013 if (page->mapping != mapping) {
2014 /* The page got truncated from under us */
2015 ext4_journal_stop(handle);
2021 BUFFER_TRACE(inode_bh, "get write access");
2022 ret = ext4_journal_get_write_access(handle, inode_bh);
2024 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2027 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028 do_journal_get_write_access);
2030 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2035 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2036 err = ext4_journal_stop(handle);
2040 if (!ext4_has_inline_data(inode))
2041 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2043 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2052 * Note that we don't need to start a transaction unless we're journaling data
2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054 * need to file the inode to the transaction's list in ordered mode because if
2055 * we are writing back data added by write(), the inode is already there and if
2056 * we are writing back data modified via mmap(), no one guarantees in which
2057 * transaction the data will hit the disk. In case we are journaling data, we
2058 * cannot start transaction directly because transaction start ranks above page
2059 * lock so we have to do some magic.
2061 * This function can get called via...
2062 * - ext4_writepages after taking page lock (have journal handle)
2063 * - journal_submit_inode_data_buffers (no journal handle)
2064 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2065 * - grab_page_cache when doing write_begin (have journal handle)
2067 * We don't do any block allocation in this function. If we have page with
2068 * multiple blocks we need to write those buffer_heads that are mapped. This
2069 * is important for mmaped based write. So if we do with blocksize 1K
2070 * truncate(f, 1024);
2071 * a = mmap(f, 0, 4096);
2073 * truncate(f, 4096);
2074 * we have in the page first buffer_head mapped via page_mkwrite call back
2075 * but other buffer_heads would be unmapped but dirty (dirty done via the
2076 * do_wp_page). So writepage should write the first block. If we modify
2077 * the mmap area beyond 1024 we will again get a page_fault and the
2078 * page_mkwrite callback will do the block allocation and mark the
2079 * buffer_heads mapped.
2081 * We redirty the page if we have any buffer_heads that is either delay or
2082 * unwritten in the page.
2084 * We can get recursively called as show below.
2086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2089 * But since we don't do any block allocation we should not deadlock.
2090 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2092 static int ext4_writepage(struct page *page,
2093 struct writeback_control *wbc)
2098 struct buffer_head *page_bufs = NULL;
2099 struct inode *inode = page->mapping->host;
2100 struct ext4_io_submit io_submit;
2101 bool keep_towrite = false;
2103 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104 ext4_invalidatepage(page, 0, PAGE_SIZE);
2109 trace_ext4_writepage(page);
2110 size = i_size_read(inode);
2111 if (page->index == size >> PAGE_SHIFT)
2112 len = size & ~PAGE_MASK;
2116 page_bufs = page_buffers(page);
2118 * We cannot do block allocation or other extent handling in this
2119 * function. If there are buffers needing that, we have to redirty
2120 * the page. But we may reach here when we do a journal commit via
2121 * journal_submit_inode_data_buffers() and in that case we must write
2122 * allocated buffers to achieve data=ordered mode guarantees.
2124 * Also, if there is only one buffer per page (the fs block
2125 * size == the page size), if one buffer needs block
2126 * allocation or needs to modify the extent tree to clear the
2127 * unwritten flag, we know that the page can't be written at
2128 * all, so we might as well refuse the write immediately.
2129 * Unfortunately if the block size != page size, we can't as
2130 * easily detect this case using ext4_walk_page_buffers(), but
2131 * for the extremely common case, this is an optimization that
2132 * skips a useless round trip through ext4_bio_write_page().
2134 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135 ext4_bh_delay_or_unwritten)) {
2136 redirty_page_for_writepage(wbc, page);
2137 if ((current->flags & PF_MEMALLOC) ||
2138 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2140 * For memory cleaning there's no point in writing only
2141 * some buffers. So just bail out. Warn if we came here
2142 * from direct reclaim.
2144 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2149 keep_towrite = true;
2152 if (PageChecked(page) && ext4_should_journal_data(inode))
2154 * It's mmapped pagecache. Add buffers and journal it. There
2155 * doesn't seem much point in redirtying the page here.
2157 return __ext4_journalled_writepage(page, len);
2159 ext4_io_submit_init(&io_submit, wbc);
2160 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161 if (!io_submit.io_end) {
2162 redirty_page_for_writepage(wbc, page);
2166 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2167 ext4_io_submit(&io_submit);
2168 /* Drop io_end reference we got from init */
2169 ext4_put_io_end_defer(io_submit.io_end);
2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2179 BUG_ON(page->index != mpd->first_page);
2180 clear_page_dirty_for_io(page);
2182 * We have to be very careful here! Nothing protects writeback path
2183 * against i_size changes and the page can be writeably mapped into
2184 * page tables. So an application can be growing i_size and writing
2185 * data through mmap while writeback runs. clear_page_dirty_for_io()
2186 * write-protects our page in page tables and the page cannot get
2187 * written to again until we release page lock. So only after
2188 * clear_page_dirty_for_io() we are safe to sample i_size for
2189 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190 * on the barrier provided by TestClearPageDirty in
2191 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192 * after page tables are updated.
2194 size = i_size_read(mpd->inode);
2195 if (page->index == size >> PAGE_SHIFT)
2196 len = size & ~PAGE_MASK;
2199 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2201 mpd->wbc->nr_to_write--;
2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2210 * mballoc gives us at most this number of blocks...
2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2212 * The rest of mballoc seems to handle chunks up to full group size.
2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2219 * @mpd - extent of blocks
2220 * @lblk - logical number of the block in the file
2221 * @bh - buffer head we want to add to the extent
2223 * The function is used to collect contig. blocks in the same state. If the
2224 * buffer doesn't require mapping for writeback and we haven't started the
2225 * extent of buffers to map yet, the function returns 'true' immediately - the
2226 * caller can write the buffer right away. Otherwise the function returns true
2227 * if the block has been added to the extent, false if the block couldn't be
2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231 struct buffer_head *bh)
2233 struct ext4_map_blocks *map = &mpd->map;
2235 /* Buffer that doesn't need mapping for writeback? */
2236 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238 /* So far no extent to map => we write the buffer right away */
2239 if (map->m_len == 0)
2244 /* First block in the extent? */
2245 if (map->m_len == 0) {
2246 /* We cannot map unless handle is started... */
2251 map->m_flags = bh->b_state & BH_FLAGS;
2255 /* Don't go larger than mballoc is willing to allocate */
2256 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2259 /* Can we merge the block to our big extent? */
2260 if (lblk == map->m_lblk + map->m_len &&
2261 (bh->b_state & BH_FLAGS) == map->m_flags) {
2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2271 * @mpd - extent of blocks for mapping
2272 * @head - the first buffer in the page
2273 * @bh - buffer we should start processing from
2274 * @lblk - logical number of the block in the file corresponding to @bh
2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277 * the page for IO if all buffers in this page were mapped and there's no
2278 * accumulated extent of buffers to map or add buffers in the page to the
2279 * extent of buffers to map. The function returns 1 if the caller can continue
2280 * by processing the next page, 0 if it should stop adding buffers to the
2281 * extent to map because we cannot extend it anymore. It can also return value
2282 * < 0 in case of error during IO submission.
2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285 struct buffer_head *head,
2286 struct buffer_head *bh,
2289 struct inode *inode = mpd->inode;
2291 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2292 >> inode->i_blkbits;
2295 BUG_ON(buffer_locked(bh));
2297 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2298 /* Found extent to map? */
2301 /* Buffer needs mapping and handle is not started? */
2304 /* Everything mapped so far and we hit EOF */
2307 } while (lblk++, (bh = bh->b_this_page) != head);
2308 /* So far everything mapped? Submit the page for IO. */
2309 if (mpd->map.m_len == 0) {
2310 err = mpage_submit_page(mpd, head->b_page);
2314 return lblk < blocks;
2318 * mpage_map_buffers - update buffers corresponding to changed extent and
2319 * submit fully mapped pages for IO
2321 * @mpd - description of extent to map, on return next extent to map
2323 * Scan buffers corresponding to changed extent (we expect corresponding pages
2324 * to be already locked) and update buffer state according to new extent state.
2325 * We map delalloc buffers to their physical location, clear unwritten bits,
2326 * and mark buffers as uninit when we perform writes to unwritten extents
2327 * and do extent conversion after IO is finished. If the last page is not fully
2328 * mapped, we update @map to the next extent in the last page that needs
2329 * mapping. Otherwise we submit the page for IO.
2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2333 struct pagevec pvec;
2335 struct inode *inode = mpd->inode;
2336 struct buffer_head *head, *bh;
2337 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2343 start = mpd->map.m_lblk >> bpp_bits;
2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345 lblk = start << bpp_bits;
2346 pblock = mpd->map.m_pblk;
2348 pagevec_init(&pvec, 0);
2349 while (start <= end) {
2350 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, &start,
2354 for (i = 0; i < nr_pages; i++) {
2355 struct page *page = pvec.pages[i];
2357 if (page->index > end)
2359 bh = head = page_buffers(page);
2361 if (lblk < mpd->map.m_lblk)
2363 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2365 * Buffer after end of mapped extent.
2366 * Find next buffer in the page to map.
2369 mpd->map.m_flags = 0;
2371 * FIXME: If dioread_nolock supports
2372 * blocksize < pagesize, we need to make
2373 * sure we add size mapped so far to
2374 * io_end->size as the following call
2375 * can submit the page for IO.
2377 err = mpage_process_page_bufs(mpd, head,
2379 pagevec_release(&pvec);
2384 if (buffer_delay(bh)) {
2385 clear_buffer_delay(bh);
2386 bh->b_blocknr = pblock++;
2388 clear_buffer_unwritten(bh);
2389 } while (lblk++, (bh = bh->b_this_page) != head);
2392 * FIXME: This is going to break if dioread_nolock
2393 * supports blocksize < pagesize as we will try to
2394 * convert potentially unmapped parts of inode.
2396 mpd->io_submit.io_end->size += PAGE_SIZE;
2397 /* Page fully mapped - let IO run! */
2398 err = mpage_submit_page(mpd, page);
2400 pagevec_release(&pvec);
2404 pagevec_release(&pvec);
2406 /* Extent fully mapped and matches with page boundary. We are done. */
2408 mpd->map.m_flags = 0;
2412 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2414 struct inode *inode = mpd->inode;
2415 struct ext4_map_blocks *map = &mpd->map;
2416 int get_blocks_flags;
2417 int err, dioread_nolock;
2419 trace_ext4_da_write_pages_extent(inode, map);
2421 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2422 * to convert an unwritten extent to be initialized (in the case
2423 * where we have written into one or more preallocated blocks). It is
2424 * possible that we're going to need more metadata blocks than
2425 * previously reserved. However we must not fail because we're in
2426 * writeback and there is nothing we can do about it so it might result
2427 * in data loss. So use reserved blocks to allocate metadata if
2430 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2431 * the blocks in question are delalloc blocks. This indicates
2432 * that the blocks and quotas has already been checked when
2433 * the data was copied into the page cache.
2435 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2436 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2437 EXT4_GET_BLOCKS_IO_SUBMIT;
2438 dioread_nolock = ext4_should_dioread_nolock(inode);
2440 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2441 if (map->m_flags & (1 << BH_Delay))
2442 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2444 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2447 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2448 if (!mpd->io_submit.io_end->handle &&
2449 ext4_handle_valid(handle)) {
2450 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2451 handle->h_rsv_handle = NULL;
2453 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2456 BUG_ON(map->m_len == 0);
2457 if (map->m_flags & EXT4_MAP_NEW) {
2458 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2465 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2466 * mpd->len and submit pages underlying it for IO
2468 * @handle - handle for journal operations
2469 * @mpd - extent to map
2470 * @give_up_on_write - we set this to true iff there is a fatal error and there
2471 * is no hope of writing the data. The caller should discard
2472 * dirty pages to avoid infinite loops.
2474 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2475 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2476 * them to initialized or split the described range from larger unwritten
2477 * extent. Note that we need not map all the described range since allocation
2478 * can return less blocks or the range is covered by more unwritten extents. We
2479 * cannot map more because we are limited by reserved transaction credits. On
2480 * the other hand we always make sure that the last touched page is fully
2481 * mapped so that it can be written out (and thus forward progress is
2482 * guaranteed). After mapping we submit all mapped pages for IO.
2484 static int mpage_map_and_submit_extent(handle_t *handle,
2485 struct mpage_da_data *mpd,
2486 bool *give_up_on_write)
2488 struct inode *inode = mpd->inode;
2489 struct ext4_map_blocks *map = &mpd->map;
2494 mpd->io_submit.io_end->offset =
2495 ((loff_t)map->m_lblk) << inode->i_blkbits;
2497 err = mpage_map_one_extent(handle, mpd);
2499 struct super_block *sb = inode->i_sb;
2501 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2502 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2503 goto invalidate_dirty_pages;
2505 * Let the uper layers retry transient errors.
2506 * In the case of ENOSPC, if ext4_count_free_blocks()
2507 * is non-zero, a commit should free up blocks.
2509 if ((err == -ENOMEM) ||
2510 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2512 goto update_disksize;
2515 ext4_msg(sb, KERN_CRIT,
2516 "Delayed block allocation failed for "
2517 "inode %lu at logical offset %llu with"
2518 " max blocks %u with error %d",
2520 (unsigned long long)map->m_lblk,
2521 (unsigned)map->m_len, -err);
2522 ext4_msg(sb, KERN_CRIT,
2523 "This should not happen!! Data will "
2526 ext4_print_free_blocks(inode);
2527 invalidate_dirty_pages:
2528 *give_up_on_write = true;
2533 * Update buffer state, submit mapped pages, and get us new
2536 err = mpage_map_and_submit_buffers(mpd);
2538 goto update_disksize;
2539 } while (map->m_len);
2543 * Update on-disk size after IO is submitted. Races with
2544 * truncate are avoided by checking i_size under i_data_sem.
2546 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2547 if (disksize > EXT4_I(inode)->i_disksize) {
2551 down_write(&EXT4_I(inode)->i_data_sem);
2552 i_size = i_size_read(inode);
2553 if (disksize > i_size)
2555 if (disksize > EXT4_I(inode)->i_disksize)
2556 EXT4_I(inode)->i_disksize = disksize;
2557 up_write(&EXT4_I(inode)->i_data_sem);
2558 err2 = ext4_mark_inode_dirty(handle, inode);
2560 ext4_error(inode->i_sb,
2561 "Failed to mark inode %lu dirty",
2570 * Calculate the total number of credits to reserve for one writepages
2571 * iteration. This is called from ext4_writepages(). We map an extent of
2572 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2573 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2574 * bpp - 1 blocks in bpp different extents.
2576 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2578 int bpp = ext4_journal_blocks_per_page(inode);
2580 return ext4_meta_trans_blocks(inode,
2581 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2585 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2586 * and underlying extent to map
2588 * @mpd - where to look for pages
2590 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2591 * IO immediately. When we find a page which isn't mapped we start accumulating
2592 * extent of buffers underlying these pages that needs mapping (formed by
2593 * either delayed or unwritten buffers). We also lock the pages containing
2594 * these buffers. The extent found is returned in @mpd structure (starting at
2595 * mpd->lblk with length mpd->len blocks).
2597 * Note that this function can attach bios to one io_end structure which are
2598 * neither logically nor physically contiguous. Although it may seem as an
2599 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2600 * case as we need to track IO to all buffers underlying a page in one io_end.
2602 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2604 struct address_space *mapping = mpd->inode->i_mapping;
2605 struct pagevec pvec;
2606 unsigned int nr_pages;
2607 long left = mpd->wbc->nr_to_write;
2608 pgoff_t index = mpd->first_page;
2609 pgoff_t end = mpd->last_page;
2612 int blkbits = mpd->inode->i_blkbits;
2614 struct buffer_head *head;
2616 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2617 tag = PAGECACHE_TAG_TOWRITE;
2619 tag = PAGECACHE_TAG_DIRTY;
2621 pagevec_init(&pvec, 0);
2623 mpd->next_page = index;
2624 while (index <= end) {
2625 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2626 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2630 for (i = 0; i < nr_pages; i++) {
2631 struct page *page = pvec.pages[i];
2634 * At this point, the page may be truncated or
2635 * invalidated (changing page->mapping to NULL), or
2636 * even swizzled back from swapper_space to tmpfs file
2637 * mapping. However, page->index will not change
2638 * because we have a reference on the page.
2640 if (page->index > end)
2644 * Accumulated enough dirty pages? This doesn't apply
2645 * to WB_SYNC_ALL mode. For integrity sync we have to
2646 * keep going because someone may be concurrently
2647 * dirtying pages, and we might have synced a lot of
2648 * newly appeared dirty pages, but have not synced all
2649 * of the old dirty pages.
2651 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2654 /* If we can't merge this page, we are done. */
2655 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2660 * If the page is no longer dirty, or its mapping no
2661 * longer corresponds to inode we are writing (which
2662 * means it has been truncated or invalidated), or the
2663 * page is already under writeback and we are not doing
2664 * a data integrity writeback, skip the page
2666 if (!PageDirty(page) ||
2667 (PageWriteback(page) &&
2668 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2669 unlikely(page->mapping != mapping)) {
2674 wait_on_page_writeback(page);
2675 BUG_ON(PageWriteback(page));
2677 if (mpd->map.m_len == 0)
2678 mpd->first_page = page->index;
2679 mpd->next_page = page->index + 1;
2680 /* Add all dirty buffers to mpd */
2681 lblk = ((ext4_lblk_t)page->index) <<
2682 (PAGE_SHIFT - blkbits);
2683 head = page_buffers(page);
2684 err = mpage_process_page_bufs(mpd, head, head, lblk);
2690 pagevec_release(&pvec);
2695 pagevec_release(&pvec);
2699 static int __writepage(struct page *page, struct writeback_control *wbc,
2702 struct address_space *mapping = data;
2703 int ret = ext4_writepage(page, wbc);
2704 mapping_set_error(mapping, ret);
2708 static int ext4_writepages(struct address_space *mapping,
2709 struct writeback_control *wbc)
2711 pgoff_t writeback_index = 0;
2712 long nr_to_write = wbc->nr_to_write;
2713 int range_whole = 0;
2715 handle_t *handle = NULL;
2716 struct mpage_da_data mpd;
2717 struct inode *inode = mapping->host;
2718 int needed_blocks, rsv_blocks = 0, ret = 0;
2719 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2721 struct blk_plug plug;
2722 bool give_up_on_write = false;
2724 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2727 percpu_down_read(&sbi->s_journal_flag_rwsem);
2728 trace_ext4_writepages(inode, wbc);
2730 if (dax_mapping(mapping)) {
2731 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2733 goto out_writepages;
2737 * No pages to write? This is mainly a kludge to avoid starting
2738 * a transaction for special inodes like journal inode on last iput()
2739 * because that could violate lock ordering on umount
2741 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2742 goto out_writepages;
2744 if (ext4_should_journal_data(inode)) {
2745 struct blk_plug plug;
2747 blk_start_plug(&plug);
2748 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2749 blk_finish_plug(&plug);
2750 goto out_writepages;
2754 * If the filesystem has aborted, it is read-only, so return
2755 * right away instead of dumping stack traces later on that
2756 * will obscure the real source of the problem. We test
2757 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2758 * the latter could be true if the filesystem is mounted
2759 * read-only, and in that case, ext4_writepages should
2760 * *never* be called, so if that ever happens, we would want
2763 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2766 goto out_writepages;
2769 if (ext4_should_dioread_nolock(inode)) {
2771 * We may need to convert up to one extent per block in
2772 * the page and we may dirty the inode.
2774 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2778 * If we have inline data and arrive here, it means that
2779 * we will soon create the block for the 1st page, so
2780 * we'd better clear the inline data here.
2782 if (ext4_has_inline_data(inode)) {
2783 /* Just inode will be modified... */
2784 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2785 if (IS_ERR(handle)) {
2786 ret = PTR_ERR(handle);
2787 goto out_writepages;
2789 BUG_ON(ext4_test_inode_state(inode,
2790 EXT4_STATE_MAY_INLINE_DATA));
2791 ext4_destroy_inline_data(handle, inode);
2792 ext4_journal_stop(handle);
2795 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2798 if (wbc->range_cyclic) {
2799 writeback_index = mapping->writeback_index;
2800 if (writeback_index)
2802 mpd.first_page = writeback_index;
2805 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2806 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811 ext4_io_submit_init(&mpd.io_submit, wbc);
2813 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2816 blk_start_plug(&plug);
2819 * First writeback pages that don't need mapping - we can avoid
2820 * starting a transaction unnecessarily and also avoid being blocked
2821 * in the block layer on device congestion while having transaction
2825 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826 if (!mpd.io_submit.io_end) {
2830 ret = mpage_prepare_extent_to_map(&mpd);
2831 /* Submit prepared bio */
2832 ext4_io_submit(&mpd.io_submit);
2833 ext4_put_io_end_defer(mpd.io_submit.io_end);
2834 mpd.io_submit.io_end = NULL;
2835 /* Unlock pages we didn't use */
2836 mpage_release_unused_pages(&mpd, false);
2840 while (!done && mpd.first_page <= mpd.last_page) {
2841 /* For each extent of pages we use new io_end */
2842 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843 if (!mpd.io_submit.io_end) {
2849 * We have two constraints: We find one extent to map and we
2850 * must always write out whole page (makes a difference when
2851 * blocksize < pagesize) so that we don't block on IO when we
2852 * try to write out the rest of the page. Journalled mode is
2853 * not supported by delalloc.
2855 BUG_ON(ext4_should_journal_data(inode));
2856 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858 /* start a new transaction */
2859 handle = ext4_journal_start_with_reserve(inode,
2860 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861 if (IS_ERR(handle)) {
2862 ret = PTR_ERR(handle);
2863 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864 "%ld pages, ino %lu; err %d", __func__,
2865 wbc->nr_to_write, inode->i_ino, ret);
2866 /* Release allocated io_end */
2867 ext4_put_io_end(mpd.io_submit.io_end);
2868 mpd.io_submit.io_end = NULL;
2873 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2874 ret = mpage_prepare_extent_to_map(&mpd);
2877 ret = mpage_map_and_submit_extent(handle, &mpd,
2881 * We scanned the whole range (or exhausted
2882 * nr_to_write), submitted what was mapped and
2883 * didn't find anything needing mapping. We are
2890 * Caution: If the handle is synchronous,
2891 * ext4_journal_stop() can wait for transaction commit
2892 * to finish which may depend on writeback of pages to
2893 * complete or on page lock to be released. In that
2894 * case, we have to wait until after after we have
2895 * submitted all the IO, released page locks we hold,
2896 * and dropped io_end reference (for extent conversion
2897 * to be able to complete) before stopping the handle.
2899 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2900 ext4_journal_stop(handle);
2904 /* Submit prepared bio */
2905 ext4_io_submit(&mpd.io_submit);
2906 /* Unlock pages we didn't use */
2907 mpage_release_unused_pages(&mpd, give_up_on_write);
2909 * Drop our io_end reference we got from init. We have
2910 * to be careful and use deferred io_end finishing if
2911 * we are still holding the transaction as we can
2912 * release the last reference to io_end which may end
2913 * up doing unwritten extent conversion.
2916 ext4_put_io_end_defer(mpd.io_submit.io_end);
2917 ext4_journal_stop(handle);
2919 ext4_put_io_end(mpd.io_submit.io_end);
2920 mpd.io_submit.io_end = NULL;
2922 if (ret == -ENOSPC && sbi->s_journal) {
2924 * Commit the transaction which would
2925 * free blocks released in the transaction
2928 jbd2_journal_force_commit_nested(sbi->s_journal);
2932 /* Fatal error - ENOMEM, EIO... */
2937 blk_finish_plug(&plug);
2938 if (!ret && !cycled && wbc->nr_to_write > 0) {
2940 mpd.last_page = writeback_index - 1;
2946 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2948 * Set the writeback_index so that range_cyclic
2949 * mode will write it back later
2951 mapping->writeback_index = mpd.first_page;
2954 trace_ext4_writepages_result(inode, wbc, ret,
2955 nr_to_write - wbc->nr_to_write);
2956 percpu_up_read(&sbi->s_journal_flag_rwsem);
2960 static int ext4_nonda_switch(struct super_block *sb)
2962 s64 free_clusters, dirty_clusters;
2963 struct ext4_sb_info *sbi = EXT4_SB(sb);
2966 * switch to non delalloc mode if we are running low
2967 * on free block. The free block accounting via percpu
2968 * counters can get slightly wrong with percpu_counter_batch getting
2969 * accumulated on each CPU without updating global counters
2970 * Delalloc need an accurate free block accounting. So switch
2971 * to non delalloc when we are near to error range.
2974 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2976 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2978 * Start pushing delalloc when 1/2 of free blocks are dirty.
2980 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2983 if (2 * free_clusters < 3 * dirty_clusters ||
2984 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2986 * free block count is less than 150% of dirty blocks
2987 * or free blocks is less than watermark
2994 /* We always reserve for an inode update; the superblock could be there too */
2995 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2997 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3000 if (pos + len <= 0x7fffffffULL)
3003 /* We might need to update the superblock to set LARGE_FILE */
3007 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008 loff_t pos, unsigned len, unsigned flags,
3009 struct page **pagep, void **fsdata)
3011 int ret, retries = 0;
3014 struct inode *inode = mapping->host;
3017 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3020 index = pos >> PAGE_SHIFT;
3022 if (ext4_nonda_switch(inode->i_sb) ||
3023 S_ISLNK(inode->i_mode)) {
3024 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025 return ext4_write_begin(file, mapping, pos,
3026 len, flags, pagep, fsdata);
3028 *fsdata = (void *)0;
3029 trace_ext4_da_write_begin(inode, pos, len, flags);
3031 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032 ret = ext4_da_write_inline_data_begin(mapping, inode,
3042 * grab_cache_page_write_begin() can take a long time if the
3043 * system is thrashing due to memory pressure, or if the page
3044 * is being written back. So grab it first before we start
3045 * the transaction handle. This also allows us to allocate
3046 * the page (if needed) without using GFP_NOFS.
3049 page = grab_cache_page_write_begin(mapping, index, flags);
3055 * With delayed allocation, we don't log the i_disksize update
3056 * if there is delayed block allocation. But we still need
3057 * to journalling the i_disksize update if writes to the end
3058 * of file which has an already mapped buffer.
3061 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062 ext4_da_write_credits(inode, pos, len));
3063 if (IS_ERR(handle)) {
3065 return PTR_ERR(handle);
3069 if (page->mapping != mapping) {
3070 /* The page got truncated from under us */
3073 ext4_journal_stop(handle);
3076 /* In case writeback began while the page was unlocked */
3077 wait_for_stable_page(page);
3079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3080 ret = ext4_block_write_begin(page, pos, len,
3081 ext4_da_get_block_prep);
3083 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3087 ext4_journal_stop(handle);
3089 * block_write_begin may have instantiated a few blocks
3090 * outside i_size. Trim these off again. Don't need
3091 * i_size_read because we hold i_mutex.
3093 if (pos + len > inode->i_size)
3094 ext4_truncate_failed_write(inode);
3096 if (ret == -ENOSPC &&
3097 ext4_should_retry_alloc(inode->i_sb, &retries))
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3112 static int ext4_da_should_update_i_disksize(struct page *page,
3113 unsigned long offset)
3115 struct buffer_head *bh;
3116 struct inode *inode = page->mapping->host;
3120 bh = page_buffers(page);
3121 idx = offset >> inode->i_blkbits;
3123 for (i = 0; i < idx; i++)
3124 bh = bh->b_this_page;
3126 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3131 static int ext4_da_write_end(struct file *file,
3132 struct address_space *mapping,
3133 loff_t pos, unsigned len, unsigned copied,
3134 struct page *page, void *fsdata)
3136 struct inode *inode = mapping->host;
3138 handle_t *handle = ext4_journal_current_handle();
3140 unsigned long start, end;
3141 int write_mode = (int)(unsigned long)fsdata;
3143 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144 return ext4_write_end(file, mapping, pos,
3145 len, copied, page, fsdata);
3147 trace_ext4_da_write_end(inode, pos, len, copied);
3148 start = pos & (PAGE_SIZE - 1);
3149 end = start + copied - 1;
3152 * generic_write_end() will run mark_inode_dirty() if i_size
3153 * changes. So let's piggyback the i_disksize mark_inode_dirty
3156 new_i_size = pos + copied;
3157 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158 if (ext4_has_inline_data(inode) ||
3159 ext4_da_should_update_i_disksize(page, end)) {
3160 ext4_update_i_disksize(inode, new_i_size);
3161 /* We need to mark inode dirty even if
3162 * new_i_size is less that inode->i_size
3163 * bu greater than i_disksize.(hint delalloc)
3165 ext4_mark_inode_dirty(handle, inode);
3169 if (write_mode != CONVERT_INLINE_DATA &&
3170 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171 ext4_has_inline_data(inode))
3172 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3175 ret2 = generic_write_end(file, mapping, pos, len, copied,
3181 ret2 = ext4_journal_stop(handle);
3185 return ret ? ret : copied;
3188 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189 unsigned int length)
3192 * Drop reserved blocks
3194 BUG_ON(!PageLocked(page));
3195 if (!page_has_buffers(page))
3198 ext4_da_page_release_reservation(page, offset, length);
3201 ext4_invalidatepage(page, offset, length);
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3209 int ext4_alloc_da_blocks(struct inode *inode)
3211 trace_ext4_alloc_da_blocks(inode);
3213 if (!EXT4_I(inode)->i_reserved_data_blocks)
3217 * We do something simple for now. The filemap_flush() will
3218 * also start triggering a write of the data blocks, which is
3219 * not strictly speaking necessary (and for users of
3220 * laptop_mode, not even desirable). However, to do otherwise
3221 * would require replicating code paths in:
3223 * ext4_writepages() ->
3224 * write_cache_pages() ---> (via passed in callback function)
3225 * __mpage_da_writepage() -->
3226 * mpage_add_bh_to_extent()
3227 * mpage_da_map_blocks()
3229 * The problem is that write_cache_pages(), located in
3230 * mm/page-writeback.c, marks pages clean in preparation for
3231 * doing I/O, which is not desirable if we're not planning on
3234 * We could call write_cache_pages(), and then redirty all of
3235 * the pages by calling redirty_page_for_writepage() but that
3236 * would be ugly in the extreme. So instead we would need to
3237 * replicate parts of the code in the above functions,
3238 * simplifying them because we wouldn't actually intend to
3239 * write out the pages, but rather only collect contiguous
3240 * logical block extents, call the multi-block allocator, and
3241 * then update the buffer heads with the block allocations.
3243 * For now, though, we'll cheat by calling filemap_flush(),
3244 * which will map the blocks, and start the I/O, but not
3245 * actually wait for the I/O to complete.
3247 return filemap_flush(inode->i_mapping);
3251 * bmap() is special. It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal. If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3264 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3266 struct inode *inode = mapping->host;
3271 * We can get here for an inline file via the FIBMAP ioctl
3273 if (ext4_has_inline_data(inode))
3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277 test_opt(inode->i_sb, DELALLOC)) {
3279 * With delalloc we want to sync the file
3280 * so that we can make sure we allocate
3283 filemap_write_and_wait(mapping);
3286 if (EXT4_JOURNAL(inode) &&
3287 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3289 * This is a REALLY heavyweight approach, but the use of
3290 * bmap on dirty files is expected to be extremely rare:
3291 * only if we run lilo or swapon on a freshly made file
3292 * do we expect this to happen.
3294 * (bmap requires CAP_SYS_RAWIO so this does not
3295 * represent an unprivileged user DOS attack --- we'd be
3296 * in trouble if mortal users could trigger this path at
3299 * NB. EXT4_STATE_JDATA is not set on files other than
3300 * regular files. If somebody wants to bmap a directory
3301 * or symlink and gets confused because the buffer
3302 * hasn't yet been flushed to disk, they deserve
3303 * everything they get.
3306 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307 journal = EXT4_JOURNAL(inode);
3308 jbd2_journal_lock_updates(journal);
3309 err = jbd2_journal_flush(journal);
3310 jbd2_journal_unlock_updates(journal);
3316 return generic_block_bmap(mapping, block, ext4_get_block);
3319 static int ext4_readpage(struct file *file, struct page *page)
3322 struct inode *inode = page->mapping->host;
3324 trace_ext4_readpage(page);
3326 if (ext4_has_inline_data(inode))
3327 ret = ext4_readpage_inline(inode, page);
3330 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3336 ext4_readpages(struct file *file, struct address_space *mapping,
3337 struct list_head *pages, unsigned nr_pages)
3339 struct inode *inode = mapping->host;
3341 /* If the file has inline data, no need to do readpages. */
3342 if (ext4_has_inline_data(inode))
3345 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3348 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349 unsigned int length)
3351 trace_ext4_invalidatepage(page, offset, length);
3353 /* No journalling happens on data buffers when this function is used */
3354 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3356 block_invalidatepage(page, offset, length);
3359 static int __ext4_journalled_invalidatepage(struct page *page,
3360 unsigned int offset,
3361 unsigned int length)
3363 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3365 trace_ext4_journalled_invalidatepage(page, offset, length);
3368 * If it's a full truncate we just forget about the pending dirtying
3370 if (offset == 0 && length == PAGE_SIZE)
3371 ClearPageChecked(page);
3373 return jbd2_journal_invalidatepage(journal, page, offset, length);
3376 /* Wrapper for aops... */
3377 static void ext4_journalled_invalidatepage(struct page *page,
3378 unsigned int offset,
3379 unsigned int length)
3381 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3384 static int ext4_releasepage(struct page *page, gfp_t wait)
3386 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3388 trace_ext4_releasepage(page);
3390 /* Page has dirty journalled data -> cannot release */
3391 if (PageChecked(page))
3394 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3396 return try_to_free_buffers(page);
3399 #ifdef CONFIG_FS_DAX
3400 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3401 unsigned flags, struct iomap *iomap)
3403 struct block_device *bdev;
3404 unsigned int blkbits = inode->i_blkbits;
3405 unsigned long first_block = offset >> blkbits;
3406 unsigned long last_block = (offset + length - 1) >> blkbits;
3407 struct ext4_map_blocks map;
3410 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3413 map.m_lblk = first_block;
3414 map.m_len = last_block - first_block + 1;
3416 if (!(flags & IOMAP_WRITE)) {
3417 ret = ext4_map_blocks(NULL, inode, &map, 0);
3423 /* Trim mapping request to maximum we can map at once for DIO */
3424 if (map.m_len > DIO_MAX_BLOCKS)
3425 map.m_len = DIO_MAX_BLOCKS;
3426 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3429 * Either we allocate blocks and then we don't get unwritten
3430 * extent so we have reserved enough credits, or the blocks
3431 * are already allocated and unwritten and in that case
3432 * extent conversion fits in the credits as well.
3434 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3437 return PTR_ERR(handle);
3439 ret = ext4_map_blocks(handle, inode, &map,
3440 EXT4_GET_BLOCKS_CREATE_ZERO);
3442 ext4_journal_stop(handle);
3443 if (ret == -ENOSPC &&
3444 ext4_should_retry_alloc(inode->i_sb, &retries))
3450 * If we added blocks beyond i_size, we need to make sure they
3451 * will get truncated if we crash before updating i_size in
3452 * ext4_iomap_end(). For faults we don't need to do that (and
3453 * even cannot because for orphan list operations inode_lock is
3454 * required) - if we happen to instantiate block beyond i_size,
3455 * it is because we race with truncate which has already added
3456 * the inode to the orphan list.
3458 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3459 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3462 err = ext4_orphan_add(handle, inode);
3464 ext4_journal_stop(handle);
3468 ext4_journal_stop(handle);
3472 bdev = inode->i_sb->s_bdev;
3474 if (blk_queue_dax(bdev->bd_queue))
3475 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3477 iomap->dax_dev = NULL;
3478 iomap->offset = first_block << blkbits;
3481 iomap->type = IOMAP_HOLE;
3482 iomap->blkno = IOMAP_NULL_BLOCK;
3483 iomap->length = (u64)map.m_len << blkbits;
3485 if (map.m_flags & EXT4_MAP_MAPPED) {
3486 iomap->type = IOMAP_MAPPED;
3487 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3488 iomap->type = IOMAP_UNWRITTEN;
3493 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3494 iomap->length = (u64)map.m_len << blkbits;
3497 if (map.m_flags & EXT4_MAP_NEW)
3498 iomap->flags |= IOMAP_F_NEW;
3502 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3503 ssize_t written, unsigned flags, struct iomap *iomap)
3507 int blkbits = inode->i_blkbits;
3508 bool truncate = false;
3510 fs_put_dax(iomap->dax_dev);
3511 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3514 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3515 if (IS_ERR(handle)) {
3516 ret = PTR_ERR(handle);
3519 if (ext4_update_inode_size(inode, offset + written))
3520 ext4_mark_inode_dirty(handle, inode);
3522 * We may need to truncate allocated but not written blocks beyond EOF.
3524 if (iomap->offset + iomap->length >
3525 ALIGN(inode->i_size, 1 << blkbits)) {
3526 ext4_lblk_t written_blk, end_blk;
3528 written_blk = (offset + written) >> blkbits;
3529 end_blk = (offset + length) >> blkbits;
3530 if (written_blk < end_blk && ext4_can_truncate(inode))
3534 * Remove inode from orphan list if we were extending a inode and
3535 * everything went fine.
3537 if (!truncate && inode->i_nlink &&
3538 !list_empty(&EXT4_I(inode)->i_orphan))
3539 ext4_orphan_del(handle, inode);
3540 ext4_journal_stop(handle);
3542 ext4_truncate_failed_write(inode);
3545 * If truncate failed early the inode might still be on the
3546 * orphan list; we need to make sure the inode is removed from
3547 * the orphan list in that case.
3550 ext4_orphan_del(NULL, inode);
3555 const struct iomap_ops ext4_iomap_ops = {
3556 .iomap_begin = ext4_iomap_begin,
3557 .iomap_end = ext4_iomap_end,
3562 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3563 ssize_t size, void *private)
3565 ext4_io_end_t *io_end = private;
3567 /* if not async direct IO just return */
3571 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3572 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3573 io_end, io_end->inode->i_ino, iocb, offset, size);
3576 * Error during AIO DIO. We cannot convert unwritten extents as the
3577 * data was not written. Just clear the unwritten flag and drop io_end.
3580 ext4_clear_io_unwritten_flag(io_end);
3583 io_end->offset = offset;
3584 io_end->size = size;
3585 ext4_put_io_end(io_end);
3591 * Handling of direct IO writes.
3593 * For ext4 extent files, ext4 will do direct-io write even to holes,
3594 * preallocated extents, and those write extend the file, no need to
3595 * fall back to buffered IO.
3597 * For holes, we fallocate those blocks, mark them as unwritten
3598 * If those blocks were preallocated, we mark sure they are split, but
3599 * still keep the range to write as unwritten.
3601 * The unwritten extents will be converted to written when DIO is completed.
3602 * For async direct IO, since the IO may still pending when return, we
3603 * set up an end_io call back function, which will do the conversion
3604 * when async direct IO completed.
3606 * If the O_DIRECT write will extend the file then add this inode to the
3607 * orphan list. So recovery will truncate it back to the original size
3608 * if the machine crashes during the write.
3611 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3613 struct file *file = iocb->ki_filp;
3614 struct inode *inode = file->f_mapping->host;
3615 struct ext4_inode_info *ei = EXT4_I(inode);
3617 loff_t offset = iocb->ki_pos;
3618 size_t count = iov_iter_count(iter);
3620 get_block_t *get_block_func = NULL;
3622 loff_t final_size = offset + count;
3626 if (final_size > inode->i_size) {
3627 /* Credits for sb + inode write */
3628 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3629 if (IS_ERR(handle)) {
3630 ret = PTR_ERR(handle);
3633 ret = ext4_orphan_add(handle, inode);
3635 ext4_journal_stop(handle);
3639 ei->i_disksize = inode->i_size;
3640 ext4_journal_stop(handle);
3643 BUG_ON(iocb->private == NULL);
3646 * Make all waiters for direct IO properly wait also for extent
3647 * conversion. This also disallows race between truncate() and
3648 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3650 inode_dio_begin(inode);
3652 /* If we do a overwrite dio, i_mutex locking can be released */
3653 overwrite = *((int *)iocb->private);
3656 inode_unlock(inode);
3659 * For extent mapped files we could direct write to holes and fallocate.
3661 * Allocated blocks to fill the hole are marked as unwritten to prevent
3662 * parallel buffered read to expose the stale data before DIO complete
3665 * As to previously fallocated extents, ext4 get_block will just simply
3666 * mark the buffer mapped but still keep the extents unwritten.
3668 * For non AIO case, we will convert those unwritten extents to written
3669 * after return back from blockdev_direct_IO. That way we save us from
3670 * allocating io_end structure and also the overhead of offloading
3671 * the extent convertion to a workqueue.
3673 * For async DIO, the conversion needs to be deferred when the
3674 * IO is completed. The ext4 end_io callback function will be
3675 * called to take care of the conversion work. Here for async
3676 * case, we allocate an io_end structure to hook to the iocb.
3678 iocb->private = NULL;
3680 get_block_func = ext4_dio_get_block_overwrite;
3681 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3682 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3683 get_block_func = ext4_dio_get_block;
3684 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3685 } else if (is_sync_kiocb(iocb)) {
3686 get_block_func = ext4_dio_get_block_unwritten_sync;
3687 dio_flags = DIO_LOCKING;
3689 get_block_func = ext4_dio_get_block_unwritten_async;
3690 dio_flags = DIO_LOCKING;
3692 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3693 get_block_func, ext4_end_io_dio, NULL,
3696 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3697 EXT4_STATE_DIO_UNWRITTEN)) {
3700 * for non AIO case, since the IO is already
3701 * completed, we could do the conversion right here
3703 err = ext4_convert_unwritten_extents(NULL, inode,
3707 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3710 inode_dio_end(inode);
3711 /* take i_mutex locking again if we do a ovewrite dio */
3715 if (ret < 0 && final_size > inode->i_size)
3716 ext4_truncate_failed_write(inode);
3718 /* Handle extending of i_size after direct IO write */
3722 /* Credits for sb + inode write */
3723 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3724 if (IS_ERR(handle)) {
3725 /* This is really bad luck. We've written the data
3726 * but cannot extend i_size. Bail out and pretend
3727 * the write failed... */
3728 ret = PTR_ERR(handle);
3730 ext4_orphan_del(NULL, inode);
3735 ext4_orphan_del(handle, inode);
3737 loff_t end = offset + ret;
3738 if (end > inode->i_size) {
3739 ei->i_disksize = end;
3740 i_size_write(inode, end);
3742 * We're going to return a positive `ret'
3743 * here due to non-zero-length I/O, so there's
3744 * no way of reporting error returns from
3745 * ext4_mark_inode_dirty() to userspace. So
3748 ext4_mark_inode_dirty(handle, inode);
3751 err = ext4_journal_stop(handle);
3759 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3761 struct address_space *mapping = iocb->ki_filp->f_mapping;
3762 struct inode *inode = mapping->host;
3763 size_t count = iov_iter_count(iter);
3767 * Shared inode_lock is enough for us - it protects against concurrent
3768 * writes & truncates and since we take care of writing back page cache,
3769 * we are protected against page writeback as well.
3771 inode_lock_shared(inode);
3772 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3773 iocb->ki_pos + count - 1);
3776 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3777 iter, ext4_dio_get_block, NULL, NULL, 0);
3779 inode_unlock_shared(inode);
3783 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3785 struct file *file = iocb->ki_filp;
3786 struct inode *inode = file->f_mapping->host;
3787 size_t count = iov_iter_count(iter);
3788 loff_t offset = iocb->ki_pos;
3791 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3792 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3797 * If we are doing data journalling we don't support O_DIRECT
3799 if (ext4_should_journal_data(inode))
3802 /* Let buffer I/O handle the inline data case. */
3803 if (ext4_has_inline_data(inode))
3806 /* DAX uses iomap path now */
3807 if (WARN_ON_ONCE(IS_DAX(inode)))
3810 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3811 if (iov_iter_rw(iter) == READ)
3812 ret = ext4_direct_IO_read(iocb, iter);
3814 ret = ext4_direct_IO_write(iocb, iter);
3815 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3820 * Pages can be marked dirty completely asynchronously from ext4's journalling
3821 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3822 * much here because ->set_page_dirty is called under VFS locks. The page is
3823 * not necessarily locked.
3825 * We cannot just dirty the page and leave attached buffers clean, because the
3826 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3827 * or jbddirty because all the journalling code will explode.
3829 * So what we do is to mark the page "pending dirty" and next time writepage
3830 * is called, propagate that into the buffers appropriately.
3832 static int ext4_journalled_set_page_dirty(struct page *page)
3834 SetPageChecked(page);
3835 return __set_page_dirty_nobuffers(page);
3838 static int ext4_set_page_dirty(struct page *page)
3840 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3841 WARN_ON_ONCE(!page_has_buffers(page));
3842 return __set_page_dirty_buffers(page);
3845 static const struct address_space_operations ext4_aops = {
3846 .readpage = ext4_readpage,
3847 .readpages = ext4_readpages,
3848 .writepage = ext4_writepage,
3849 .writepages = ext4_writepages,
3850 .write_begin = ext4_write_begin,
3851 .write_end = ext4_write_end,
3852 .set_page_dirty = ext4_set_page_dirty,
3854 .invalidatepage = ext4_invalidatepage,
3855 .releasepage = ext4_releasepage,
3856 .direct_IO = ext4_direct_IO,
3857 .migratepage = buffer_migrate_page,
3858 .is_partially_uptodate = block_is_partially_uptodate,
3859 .error_remove_page = generic_error_remove_page,
3862 static const struct address_space_operations ext4_journalled_aops = {
3863 .readpage = ext4_readpage,
3864 .readpages = ext4_readpages,
3865 .writepage = ext4_writepage,
3866 .writepages = ext4_writepages,
3867 .write_begin = ext4_write_begin,
3868 .write_end = ext4_journalled_write_end,
3869 .set_page_dirty = ext4_journalled_set_page_dirty,
3871 .invalidatepage = ext4_journalled_invalidatepage,
3872 .releasepage = ext4_releasepage,
3873 .direct_IO = ext4_direct_IO,
3874 .is_partially_uptodate = block_is_partially_uptodate,
3875 .error_remove_page = generic_error_remove_page,
3878 static const struct address_space_operations ext4_da_aops = {
3879 .readpage = ext4_readpage,
3880 .readpages = ext4_readpages,
3881 .writepage = ext4_writepage,
3882 .writepages = ext4_writepages,
3883 .write_begin = ext4_da_write_begin,
3884 .write_end = ext4_da_write_end,
3885 .set_page_dirty = ext4_set_page_dirty,
3887 .invalidatepage = ext4_da_invalidatepage,
3888 .releasepage = ext4_releasepage,
3889 .direct_IO = ext4_direct_IO,
3890 .migratepage = buffer_migrate_page,
3891 .is_partially_uptodate = block_is_partially_uptodate,
3892 .error_remove_page = generic_error_remove_page,
3895 void ext4_set_aops(struct inode *inode)
3897 switch (ext4_inode_journal_mode(inode)) {
3898 case EXT4_INODE_ORDERED_DATA_MODE:
3899 case EXT4_INODE_WRITEBACK_DATA_MODE:
3901 case EXT4_INODE_JOURNAL_DATA_MODE:
3902 inode->i_mapping->a_ops = &ext4_journalled_aops;
3907 if (test_opt(inode->i_sb, DELALLOC))
3908 inode->i_mapping->a_ops = &ext4_da_aops;
3910 inode->i_mapping->a_ops = &ext4_aops;
3913 static int __ext4_block_zero_page_range(handle_t *handle,
3914 struct address_space *mapping, loff_t from, loff_t length)
3916 ext4_fsblk_t index = from >> PAGE_SHIFT;
3917 unsigned offset = from & (PAGE_SIZE-1);
3918 unsigned blocksize, pos;
3920 struct inode *inode = mapping->host;
3921 struct buffer_head *bh;
3925 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3926 mapping_gfp_constraint(mapping, ~__GFP_FS));
3930 blocksize = inode->i_sb->s_blocksize;
3932 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3934 if (!page_has_buffers(page))
3935 create_empty_buffers(page, blocksize, 0);
3937 /* Find the buffer that contains "offset" */
3938 bh = page_buffers(page);
3940 while (offset >= pos) {
3941 bh = bh->b_this_page;
3945 if (buffer_freed(bh)) {
3946 BUFFER_TRACE(bh, "freed: skip");
3949 if (!buffer_mapped(bh)) {
3950 BUFFER_TRACE(bh, "unmapped");
3951 ext4_get_block(inode, iblock, bh, 0);
3952 /* unmapped? It's a hole - nothing to do */
3953 if (!buffer_mapped(bh)) {
3954 BUFFER_TRACE(bh, "still unmapped");
3959 /* Ok, it's mapped. Make sure it's up-to-date */
3960 if (PageUptodate(page))
3961 set_buffer_uptodate(bh);
3963 if (!buffer_uptodate(bh)) {
3965 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3967 /* Uhhuh. Read error. Complain and punt. */
3968 if (!buffer_uptodate(bh))
3970 if (S_ISREG(inode->i_mode) &&
3971 ext4_encrypted_inode(inode)) {
3972 /* We expect the key to be set. */
3973 BUG_ON(!fscrypt_has_encryption_key(inode));
3974 BUG_ON(blocksize != PAGE_SIZE);
3975 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3976 page, PAGE_SIZE, 0, page->index));
3979 if (ext4_should_journal_data(inode)) {
3980 BUFFER_TRACE(bh, "get write access");
3981 err = ext4_journal_get_write_access(handle, bh);
3985 zero_user(page, offset, length);
3986 BUFFER_TRACE(bh, "zeroed end of block");
3988 if (ext4_should_journal_data(inode)) {
3989 err = ext4_handle_dirty_metadata(handle, inode, bh);
3992 mark_buffer_dirty(bh);
3993 if (ext4_should_order_data(inode))
3994 err = ext4_jbd2_inode_add_write(handle, inode);
4004 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4005 * starting from file offset 'from'. The range to be zero'd must
4006 * be contained with in one block. If the specified range exceeds
4007 * the end of the block it will be shortened to end of the block
4008 * that cooresponds to 'from'
4010 static int ext4_block_zero_page_range(handle_t *handle,
4011 struct address_space *mapping, loff_t from, loff_t length)
4013 struct inode *inode = mapping->host;
4014 unsigned offset = from & (PAGE_SIZE-1);
4015 unsigned blocksize = inode->i_sb->s_blocksize;
4016 unsigned max = blocksize - (offset & (blocksize - 1));
4019 * correct length if it does not fall between
4020 * 'from' and the end of the block
4022 if (length > max || length < 0)
4025 if (IS_DAX(inode)) {
4026 return iomap_zero_range(inode, from, length, NULL,
4029 return __ext4_block_zero_page_range(handle, mapping, from, length);
4033 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4034 * up to the end of the block which corresponds to `from'.
4035 * This required during truncate. We need to physically zero the tail end
4036 * of that block so it doesn't yield old data if the file is later grown.
4038 static int ext4_block_truncate_page(handle_t *handle,
4039 struct address_space *mapping, loff_t from)
4041 unsigned offset = from & (PAGE_SIZE-1);
4044 struct inode *inode = mapping->host;
4046 /* If we are processing an encrypted inode during orphan list handling */
4047 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4050 blocksize = inode->i_sb->s_blocksize;
4051 length = blocksize - (offset & (blocksize - 1));
4053 return ext4_block_zero_page_range(handle, mapping, from, length);
4056 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4057 loff_t lstart, loff_t length)
4059 struct super_block *sb = inode->i_sb;
4060 struct address_space *mapping = inode->i_mapping;
4061 unsigned partial_start, partial_end;
4062 ext4_fsblk_t start, end;
4063 loff_t byte_end = (lstart + length - 1);
4066 partial_start = lstart & (sb->s_blocksize - 1);
4067 partial_end = byte_end & (sb->s_blocksize - 1);
4069 start = lstart >> sb->s_blocksize_bits;
4070 end = byte_end >> sb->s_blocksize_bits;
4072 /* Handle partial zero within the single block */
4074 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4075 err = ext4_block_zero_page_range(handle, mapping,
4079 /* Handle partial zero out on the start of the range */
4080 if (partial_start) {
4081 err = ext4_block_zero_page_range(handle, mapping,
4082 lstart, sb->s_blocksize);
4086 /* Handle partial zero out on the end of the range */
4087 if (partial_end != sb->s_blocksize - 1)
4088 err = ext4_block_zero_page_range(handle, mapping,
4089 byte_end - partial_end,
4094 int ext4_can_truncate(struct inode *inode)
4096 if (S_ISREG(inode->i_mode))
4098 if (S_ISDIR(inode->i_mode))
4100 if (S_ISLNK(inode->i_mode))
4101 return !ext4_inode_is_fast_symlink(inode);
4106 * We have to make sure i_disksize gets properly updated before we truncate
4107 * page cache due to hole punching or zero range. Otherwise i_disksize update
4108 * can get lost as it may have been postponed to submission of writeback but
4109 * that will never happen after we truncate page cache.
4111 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4115 loff_t size = i_size_read(inode);
4117 WARN_ON(!inode_is_locked(inode));
4118 if (offset > size || offset + len < size)
4121 if (EXT4_I(inode)->i_disksize >= size)
4124 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4126 return PTR_ERR(handle);
4127 ext4_update_i_disksize(inode, size);
4128 ext4_mark_inode_dirty(handle, inode);
4129 ext4_journal_stop(handle);
4135 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4136 * associated with the given offset and length
4138 * @inode: File inode
4139 * @offset: The offset where the hole will begin
4140 * @len: The length of the hole
4142 * Returns: 0 on success or negative on failure
4145 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4147 struct super_block *sb = inode->i_sb;
4148 ext4_lblk_t first_block, stop_block;
4149 struct address_space *mapping = inode->i_mapping;
4150 loff_t first_block_offset, last_block_offset;
4152 unsigned int credits;
4155 if (!S_ISREG(inode->i_mode))
4158 trace_ext4_punch_hole(inode, offset, length, 0);
4161 * Write out all dirty pages to avoid race conditions
4162 * Then release them.
4164 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4165 ret = filemap_write_and_wait_range(mapping, offset,
4166 offset + length - 1);
4173 /* No need to punch hole beyond i_size */
4174 if (offset >= inode->i_size)
4178 * If the hole extends beyond i_size, set the hole
4179 * to end after the page that contains i_size
4181 if (offset + length > inode->i_size) {
4182 length = inode->i_size +
4183 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4187 if (offset & (sb->s_blocksize - 1) ||
4188 (offset + length) & (sb->s_blocksize - 1)) {
4190 * Attach jinode to inode for jbd2 if we do any zeroing of
4193 ret = ext4_inode_attach_jinode(inode);
4199 /* Wait all existing dio workers, newcomers will block on i_mutex */
4200 ext4_inode_block_unlocked_dio(inode);
4201 inode_dio_wait(inode);
4204 * Prevent page faults from reinstantiating pages we have released from
4207 down_write(&EXT4_I(inode)->i_mmap_sem);
4208 first_block_offset = round_up(offset, sb->s_blocksize);
4209 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4211 /* Now release the pages and zero block aligned part of pages*/
4212 if (last_block_offset > first_block_offset) {
4213 ret = ext4_update_disksize_before_punch(inode, offset, length);
4216 truncate_pagecache_range(inode, first_block_offset,
4220 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4221 credits = ext4_writepage_trans_blocks(inode);
4223 credits = ext4_blocks_for_truncate(inode);
4224 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4225 if (IS_ERR(handle)) {
4226 ret = PTR_ERR(handle);
4227 ext4_std_error(sb, ret);
4231 ret = ext4_zero_partial_blocks(handle, inode, offset,
4236 first_block = (offset + sb->s_blocksize - 1) >>
4237 EXT4_BLOCK_SIZE_BITS(sb);
4238 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4240 /* If there are no blocks to remove, return now */
4241 if (first_block >= stop_block)
4244 down_write(&EXT4_I(inode)->i_data_sem);
4245 ext4_discard_preallocations(inode);
4247 ret = ext4_es_remove_extent(inode, first_block,
4248 stop_block - first_block);
4250 up_write(&EXT4_I(inode)->i_data_sem);
4254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4255 ret = ext4_ext_remove_space(inode, first_block,
4258 ret = ext4_ind_remove_space(handle, inode, first_block,
4261 up_write(&EXT4_I(inode)->i_data_sem);
4263 ext4_handle_sync(handle);
4265 inode->i_mtime = inode->i_ctime = current_time(inode);
4266 ext4_mark_inode_dirty(handle, inode);
4268 ext4_update_inode_fsync_trans(handle, inode, 1);
4270 ext4_journal_stop(handle);
4272 up_write(&EXT4_I(inode)->i_mmap_sem);
4273 ext4_inode_resume_unlocked_dio(inode);
4275 inode_unlock(inode);
4279 int ext4_inode_attach_jinode(struct inode *inode)
4281 struct ext4_inode_info *ei = EXT4_I(inode);
4282 struct jbd2_inode *jinode;
4284 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4287 jinode = jbd2_alloc_inode(GFP_KERNEL);
4288 spin_lock(&inode->i_lock);
4291 spin_unlock(&inode->i_lock);
4294 ei->jinode = jinode;
4295 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4298 spin_unlock(&inode->i_lock);
4299 if (unlikely(jinode != NULL))
4300 jbd2_free_inode(jinode);
4307 * We block out ext4_get_block() block instantiations across the entire
4308 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4309 * simultaneously on behalf of the same inode.
4311 * As we work through the truncate and commit bits of it to the journal there
4312 * is one core, guiding principle: the file's tree must always be consistent on
4313 * disk. We must be able to restart the truncate after a crash.
4315 * The file's tree may be transiently inconsistent in memory (although it
4316 * probably isn't), but whenever we close off and commit a journal transaction,
4317 * the contents of (the filesystem + the journal) must be consistent and
4318 * restartable. It's pretty simple, really: bottom up, right to left (although
4319 * left-to-right works OK too).
4321 * Note that at recovery time, journal replay occurs *before* the restart of
4322 * truncate against the orphan inode list.
4324 * The committed inode has the new, desired i_size (which is the same as
4325 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4326 * that this inode's truncate did not complete and it will again call
4327 * ext4_truncate() to have another go. So there will be instantiated blocks
4328 * to the right of the truncation point in a crashed ext4 filesystem. But
4329 * that's fine - as long as they are linked from the inode, the post-crash
4330 * ext4_truncate() run will find them and release them.
4332 int ext4_truncate(struct inode *inode)
4334 struct ext4_inode_info *ei = EXT4_I(inode);
4335 unsigned int credits;
4338 struct address_space *mapping = inode->i_mapping;
4341 * There is a possibility that we're either freeing the inode
4342 * or it's a completely new inode. In those cases we might not
4343 * have i_mutex locked because it's not necessary.
4345 if (!(inode->i_state & (I_NEW|I_FREEING)))
4346 WARN_ON(!inode_is_locked(inode));
4347 trace_ext4_truncate_enter(inode);
4349 if (!ext4_can_truncate(inode))
4352 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4354 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4355 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4357 if (ext4_has_inline_data(inode)) {
4360 err = ext4_inline_data_truncate(inode, &has_inline);
4367 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4368 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4369 if (ext4_inode_attach_jinode(inode) < 0)
4373 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4374 credits = ext4_writepage_trans_blocks(inode);
4376 credits = ext4_blocks_for_truncate(inode);
4378 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4380 return PTR_ERR(handle);
4382 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4383 ext4_block_truncate_page(handle, mapping, inode->i_size);
4386 * We add the inode to the orphan list, so that if this
4387 * truncate spans multiple transactions, and we crash, we will
4388 * resume the truncate when the filesystem recovers. It also
4389 * marks the inode dirty, to catch the new size.
4391 * Implication: the file must always be in a sane, consistent
4392 * truncatable state while each transaction commits.
4394 err = ext4_orphan_add(handle, inode);
4398 down_write(&EXT4_I(inode)->i_data_sem);
4400 ext4_discard_preallocations(inode);
4402 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4403 err = ext4_ext_truncate(handle, inode);
4405 ext4_ind_truncate(handle, inode);
4407 up_write(&ei->i_data_sem);
4412 ext4_handle_sync(handle);
4416 * If this was a simple ftruncate() and the file will remain alive,
4417 * then we need to clear up the orphan record which we created above.
4418 * However, if this was a real unlink then we were called by
4419 * ext4_evict_inode(), and we allow that function to clean up the
4420 * orphan info for us.
4423 ext4_orphan_del(handle, inode);
4425 inode->i_mtime = inode->i_ctime = current_time(inode);
4426 ext4_mark_inode_dirty(handle, inode);
4427 ext4_journal_stop(handle);
4429 trace_ext4_truncate_exit(inode);
4434 * ext4_get_inode_loc returns with an extra refcount against the inode's
4435 * underlying buffer_head on success. If 'in_mem' is true, we have all
4436 * data in memory that is needed to recreate the on-disk version of this
4439 static int __ext4_get_inode_loc(struct inode *inode,
4440 struct ext4_iloc *iloc, int in_mem)
4442 struct ext4_group_desc *gdp;
4443 struct buffer_head *bh;
4444 struct super_block *sb = inode->i_sb;
4446 int inodes_per_block, inode_offset;
4449 if (!ext4_valid_inum(sb, inode->i_ino))
4450 return -EFSCORRUPTED;
4452 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4453 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4458 * Figure out the offset within the block group inode table
4460 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4461 inode_offset = ((inode->i_ino - 1) %
4462 EXT4_INODES_PER_GROUP(sb));
4463 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4464 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4466 bh = sb_getblk(sb, block);
4469 if (!buffer_uptodate(bh)) {
4473 * If the buffer has the write error flag, we have failed
4474 * to write out another inode in the same block. In this
4475 * case, we don't have to read the block because we may
4476 * read the old inode data successfully.
4478 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4479 set_buffer_uptodate(bh);
4481 if (buffer_uptodate(bh)) {
4482 /* someone brought it uptodate while we waited */
4488 * If we have all information of the inode in memory and this
4489 * is the only valid inode in the block, we need not read the
4493 struct buffer_head *bitmap_bh;
4496 start = inode_offset & ~(inodes_per_block - 1);
4498 /* Is the inode bitmap in cache? */
4499 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4500 if (unlikely(!bitmap_bh))
4504 * If the inode bitmap isn't in cache then the
4505 * optimisation may end up performing two reads instead
4506 * of one, so skip it.
4508 if (!buffer_uptodate(bitmap_bh)) {
4512 for (i = start; i < start + inodes_per_block; i++) {
4513 if (i == inode_offset)
4515 if (ext4_test_bit(i, bitmap_bh->b_data))
4519 if (i == start + inodes_per_block) {
4520 /* all other inodes are free, so skip I/O */
4521 memset(bh->b_data, 0, bh->b_size);
4522 set_buffer_uptodate(bh);
4530 * If we need to do any I/O, try to pre-readahead extra
4531 * blocks from the inode table.
4533 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4534 ext4_fsblk_t b, end, table;
4536 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4538 table = ext4_inode_table(sb, gdp);
4539 /* s_inode_readahead_blks is always a power of 2 */
4540 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4544 num = EXT4_INODES_PER_GROUP(sb);
4545 if (ext4_has_group_desc_csum(sb))
4546 num -= ext4_itable_unused_count(sb, gdp);
4547 table += num / inodes_per_block;
4551 sb_breadahead(sb, b++);
4555 * There are other valid inodes in the buffer, this inode
4556 * has in-inode xattrs, or we don't have this inode in memory.
4557 * Read the block from disk.
4559 trace_ext4_load_inode(inode);
4561 bh->b_end_io = end_buffer_read_sync;
4562 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4564 if (!buffer_uptodate(bh)) {
4565 EXT4_ERROR_INODE_BLOCK(inode, block,
4566 "unable to read itable block");
4576 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4578 /* We have all inode data except xattrs in memory here. */
4579 return __ext4_get_inode_loc(inode, iloc,
4580 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4583 void ext4_set_inode_flags(struct inode *inode)
4585 unsigned int flags = EXT4_I(inode)->i_flags;
4586 unsigned int new_fl = 0;
4588 if (flags & EXT4_SYNC_FL)
4590 if (flags & EXT4_APPEND_FL)
4592 if (flags & EXT4_IMMUTABLE_FL)
4593 new_fl |= S_IMMUTABLE;
4594 if (flags & EXT4_NOATIME_FL)
4595 new_fl |= S_NOATIME;
4596 if (flags & EXT4_DIRSYNC_FL)
4597 new_fl |= S_DIRSYNC;
4598 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4599 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4600 !ext4_encrypted_inode(inode))
4602 inode_set_flags(inode, new_fl,
4603 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4606 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4607 struct ext4_inode_info *ei)
4610 struct inode *inode = &(ei->vfs_inode);
4611 struct super_block *sb = inode->i_sb;
4613 if (ext4_has_feature_huge_file(sb)) {
4614 /* we are using combined 48 bit field */
4615 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4616 le32_to_cpu(raw_inode->i_blocks_lo);
4617 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4618 /* i_blocks represent file system block size */
4619 return i_blocks << (inode->i_blkbits - 9);
4624 return le32_to_cpu(raw_inode->i_blocks_lo);
4628 static inline void ext4_iget_extra_inode(struct inode *inode,
4629 struct ext4_inode *raw_inode,
4630 struct ext4_inode_info *ei)
4632 __le32 *magic = (void *)raw_inode +
4633 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4634 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4635 EXT4_INODE_SIZE(inode->i_sb) &&
4636 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4637 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4638 ext4_find_inline_data_nolock(inode);
4640 EXT4_I(inode)->i_inline_off = 0;
4643 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4645 if (!ext4_has_feature_project(inode->i_sb))
4647 *projid = EXT4_I(inode)->i_projid;
4651 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4653 struct ext4_iloc iloc;
4654 struct ext4_inode *raw_inode;
4655 struct ext4_inode_info *ei;
4656 struct inode *inode;
4657 journal_t *journal = EXT4_SB(sb)->s_journal;
4665 inode = iget_locked(sb, ino);
4667 return ERR_PTR(-ENOMEM);
4668 if (!(inode->i_state & I_NEW))
4674 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4677 raw_inode = ext4_raw_inode(&iloc);
4679 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4680 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4681 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4682 EXT4_INODE_SIZE(inode->i_sb) ||
4683 (ei->i_extra_isize & 3)) {
4684 EXT4_ERROR_INODE(inode,
4685 "bad extra_isize %u (inode size %u)",
4687 EXT4_INODE_SIZE(inode->i_sb));
4688 ret = -EFSCORRUPTED;
4692 ei->i_extra_isize = 0;
4694 /* Precompute checksum seed for inode metadata */
4695 if (ext4_has_metadata_csum(sb)) {
4696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4698 __le32 inum = cpu_to_le32(inode->i_ino);
4699 __le32 gen = raw_inode->i_generation;
4700 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4702 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4706 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4707 EXT4_ERROR_INODE(inode, "checksum invalid");
4712 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4713 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4714 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4715 if (ext4_has_feature_project(sb) &&
4716 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4717 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4718 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4720 i_projid = EXT4_DEF_PROJID;
4722 if (!(test_opt(inode->i_sb, NO_UID32))) {
4723 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4724 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4726 i_uid_write(inode, i_uid);
4727 i_gid_write(inode, i_gid);
4728 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4729 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4731 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4732 ei->i_inline_off = 0;
4733 ei->i_dir_start_lookup = 0;
4734 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4735 /* We now have enough fields to check if the inode was active or not.
4736 * This is needed because nfsd might try to access dead inodes
4737 * the test is that same one that e2fsck uses
4738 * NeilBrown 1999oct15
4740 if (inode->i_nlink == 0) {
4741 if ((inode->i_mode == 0 ||
4742 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4743 ino != EXT4_BOOT_LOADER_INO) {
4744 /* this inode is deleted */
4748 /* The only unlinked inodes we let through here have
4749 * valid i_mode and are being read by the orphan
4750 * recovery code: that's fine, we're about to complete
4751 * the process of deleting those.
4752 * OR it is the EXT4_BOOT_LOADER_INO which is
4753 * not initialized on a new filesystem. */
4755 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4756 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4757 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4758 if (ext4_has_feature_64bit(sb))
4760 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4761 inode->i_size = ext4_isize(sb, raw_inode);
4762 if ((size = i_size_read(inode)) < 0) {
4763 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4764 ret = -EFSCORRUPTED;
4767 ei->i_disksize = inode->i_size;
4769 ei->i_reserved_quota = 0;
4771 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4772 ei->i_block_group = iloc.block_group;
4773 ei->i_last_alloc_group = ~0;
4775 * NOTE! The in-memory inode i_data array is in little-endian order
4776 * even on big-endian machines: we do NOT byteswap the block numbers!
4778 for (block = 0; block < EXT4_N_BLOCKS; block++)
4779 ei->i_data[block] = raw_inode->i_block[block];
4780 INIT_LIST_HEAD(&ei->i_orphan);
4783 * Set transaction id's of transactions that have to be committed
4784 * to finish f[data]sync. We set them to currently running transaction
4785 * as we cannot be sure that the inode or some of its metadata isn't
4786 * part of the transaction - the inode could have been reclaimed and
4787 * now it is reread from disk.
4790 transaction_t *transaction;
4793 read_lock(&journal->j_state_lock);
4794 if (journal->j_running_transaction)
4795 transaction = journal->j_running_transaction;
4797 transaction = journal->j_committing_transaction;
4799 tid = transaction->t_tid;
4801 tid = journal->j_commit_sequence;
4802 read_unlock(&journal->j_state_lock);
4803 ei->i_sync_tid = tid;
4804 ei->i_datasync_tid = tid;
4807 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4808 if (ei->i_extra_isize == 0) {
4809 /* The extra space is currently unused. Use it. */
4810 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4811 ei->i_extra_isize = sizeof(struct ext4_inode) -
4812 EXT4_GOOD_OLD_INODE_SIZE;
4814 ext4_iget_extra_inode(inode, raw_inode, ei);
4818 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4819 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4820 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4821 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4823 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4824 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4825 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4826 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4828 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4833 if (ei->i_file_acl &&
4834 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4835 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4837 ret = -EFSCORRUPTED;
4839 } else if (!ext4_has_inline_data(inode)) {
4840 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4841 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4842 (S_ISLNK(inode->i_mode) &&
4843 !ext4_inode_is_fast_symlink(inode))))
4844 /* Validate extent which is part of inode */
4845 ret = ext4_ext_check_inode(inode);
4846 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4847 (S_ISLNK(inode->i_mode) &&
4848 !ext4_inode_is_fast_symlink(inode))) {
4849 /* Validate block references which are part of inode */
4850 ret = ext4_ind_check_inode(inode);
4856 if (S_ISREG(inode->i_mode)) {
4857 inode->i_op = &ext4_file_inode_operations;
4858 inode->i_fop = &ext4_file_operations;
4859 ext4_set_aops(inode);
4860 } else if (S_ISDIR(inode->i_mode)) {
4861 inode->i_op = &ext4_dir_inode_operations;
4862 inode->i_fop = &ext4_dir_operations;
4863 } else if (S_ISLNK(inode->i_mode)) {
4864 if (ext4_encrypted_inode(inode)) {
4865 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4866 ext4_set_aops(inode);
4867 } else if (ext4_inode_is_fast_symlink(inode)) {
4868 inode->i_link = (char *)ei->i_data;
4869 inode->i_op = &ext4_fast_symlink_inode_operations;
4870 nd_terminate_link(ei->i_data, inode->i_size,
4871 sizeof(ei->i_data) - 1);
4873 inode->i_op = &ext4_symlink_inode_operations;
4874 ext4_set_aops(inode);
4876 inode_nohighmem(inode);
4877 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4878 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4879 inode->i_op = &ext4_special_inode_operations;
4880 if (raw_inode->i_block[0])
4881 init_special_inode(inode, inode->i_mode,
4882 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4884 init_special_inode(inode, inode->i_mode,
4885 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4886 } else if (ino == EXT4_BOOT_LOADER_INO) {
4887 make_bad_inode(inode);
4889 ret = -EFSCORRUPTED;
4890 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4894 ext4_set_inode_flags(inode);
4896 if (ei->i_flags & EXT4_EA_INODE_FL) {
4897 ext4_xattr_inode_set_class(inode);
4900 inode->i_flags |= S_NOQUOTA;
4901 inode_unlock(inode);
4904 unlock_new_inode(inode);
4910 return ERR_PTR(ret);
4913 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4915 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4916 return ERR_PTR(-EFSCORRUPTED);
4917 return ext4_iget(sb, ino);
4920 static int ext4_inode_blocks_set(handle_t *handle,
4921 struct ext4_inode *raw_inode,
4922 struct ext4_inode_info *ei)
4924 struct inode *inode = &(ei->vfs_inode);
4925 u64 i_blocks = inode->i_blocks;
4926 struct super_block *sb = inode->i_sb;
4928 if (i_blocks <= ~0U) {
4930 * i_blocks can be represented in a 32 bit variable
4931 * as multiple of 512 bytes
4933 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4934 raw_inode->i_blocks_high = 0;
4935 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4938 if (!ext4_has_feature_huge_file(sb))
4941 if (i_blocks <= 0xffffffffffffULL) {
4943 * i_blocks can be represented in a 48 bit variable
4944 * as multiple of 512 bytes
4946 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4947 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4948 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4950 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4951 /* i_block is stored in file system block size */
4952 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4953 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4954 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4959 struct other_inode {
4960 unsigned long orig_ino;
4961 struct ext4_inode *raw_inode;
4964 static int other_inode_match(struct inode * inode, unsigned long ino,
4967 struct other_inode *oi = (struct other_inode *) data;
4969 if ((inode->i_ino != ino) ||
4970 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4971 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4972 ((inode->i_state & I_DIRTY_TIME) == 0))
4974 spin_lock(&inode->i_lock);
4975 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4976 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4977 (inode->i_state & I_DIRTY_TIME)) {
4978 struct ext4_inode_info *ei = EXT4_I(inode);
4980 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4981 spin_unlock(&inode->i_lock);
4983 spin_lock(&ei->i_raw_lock);
4984 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4985 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4986 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4987 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4988 spin_unlock(&ei->i_raw_lock);
4989 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4992 spin_unlock(&inode->i_lock);
4997 * Opportunistically update the other time fields for other inodes in
4998 * the same inode table block.
5000 static void ext4_update_other_inodes_time(struct super_block *sb,
5001 unsigned long orig_ino, char *buf)
5003 struct other_inode oi;
5005 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5006 int inode_size = EXT4_INODE_SIZE(sb);
5008 oi.orig_ino = orig_ino;
5010 * Calculate the first inode in the inode table block. Inode
5011 * numbers are one-based. That is, the first inode in a block
5012 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5014 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5015 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5016 if (ino == orig_ino)
5018 oi.raw_inode = (struct ext4_inode *) buf;
5019 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5024 * Post the struct inode info into an on-disk inode location in the
5025 * buffer-cache. This gobbles the caller's reference to the
5026 * buffer_head in the inode location struct.
5028 * The caller must have write access to iloc->bh.
5030 static int ext4_do_update_inode(handle_t *handle,
5031 struct inode *inode,
5032 struct ext4_iloc *iloc)
5034 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5035 struct ext4_inode_info *ei = EXT4_I(inode);
5036 struct buffer_head *bh = iloc->bh;
5037 struct super_block *sb = inode->i_sb;
5038 int err = 0, rc, block;
5039 int need_datasync = 0, set_large_file = 0;
5044 spin_lock(&ei->i_raw_lock);
5046 /* For fields not tracked in the in-memory inode,
5047 * initialise them to zero for new inodes. */
5048 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5049 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5051 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052 i_uid = i_uid_read(inode);
5053 i_gid = i_gid_read(inode);
5054 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5055 if (!(test_opt(inode->i_sb, NO_UID32))) {
5056 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5057 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5059 * Fix up interoperability with old kernels. Otherwise, old inodes get
5060 * re-used with the upper 16 bits of the uid/gid intact
5062 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5063 raw_inode->i_uid_high = 0;
5064 raw_inode->i_gid_high = 0;
5066 raw_inode->i_uid_high =
5067 cpu_to_le16(high_16_bits(i_uid));
5068 raw_inode->i_gid_high =
5069 cpu_to_le16(high_16_bits(i_gid));
5072 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5073 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5074 raw_inode->i_uid_high = 0;
5075 raw_inode->i_gid_high = 0;
5077 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5079 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5080 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5081 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5082 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5084 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5086 spin_unlock(&ei->i_raw_lock);
5089 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5090 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5091 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5092 raw_inode->i_file_acl_high =
5093 cpu_to_le16(ei->i_file_acl >> 32);
5094 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5095 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5096 ext4_isize_set(raw_inode, ei->i_disksize);
5099 if (ei->i_disksize > 0x7fffffffULL) {
5100 if (!ext4_has_feature_large_file(sb) ||
5101 EXT4_SB(sb)->s_es->s_rev_level ==
5102 cpu_to_le32(EXT4_GOOD_OLD_REV))
5105 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5106 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5107 if (old_valid_dev(inode->i_rdev)) {
5108 raw_inode->i_block[0] =
5109 cpu_to_le32(old_encode_dev(inode->i_rdev));
5110 raw_inode->i_block[1] = 0;
5112 raw_inode->i_block[0] = 0;
5113 raw_inode->i_block[1] =
5114 cpu_to_le32(new_encode_dev(inode->i_rdev));
5115 raw_inode->i_block[2] = 0;
5117 } else if (!ext4_has_inline_data(inode)) {
5118 for (block = 0; block < EXT4_N_BLOCKS; block++)
5119 raw_inode->i_block[block] = ei->i_data[block];
5122 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5123 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5124 if (ei->i_extra_isize) {
5125 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5126 raw_inode->i_version_hi =
5127 cpu_to_le32(inode->i_version >> 32);
5128 raw_inode->i_extra_isize =
5129 cpu_to_le16(ei->i_extra_isize);
5133 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5134 i_projid != EXT4_DEF_PROJID);
5136 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5137 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5138 raw_inode->i_projid = cpu_to_le32(i_projid);
5140 ext4_inode_csum_set(inode, raw_inode, ei);
5141 spin_unlock(&ei->i_raw_lock);
5142 if (inode->i_sb->s_flags & MS_LAZYTIME)
5143 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5147 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5151 if (set_large_file) {
5152 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5153 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5156 ext4_update_dynamic_rev(sb);
5157 ext4_set_feature_large_file(sb);
5158 ext4_handle_sync(handle);
5159 err = ext4_handle_dirty_super(handle, sb);
5161 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5164 ext4_std_error(inode->i_sb, err);
5169 * ext4_write_inode()
5171 * We are called from a few places:
5173 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5174 * Here, there will be no transaction running. We wait for any running
5175 * transaction to commit.
5177 * - Within flush work (sys_sync(), kupdate and such).
5178 * We wait on commit, if told to.
5180 * - Within iput_final() -> write_inode_now()
5181 * We wait on commit, if told to.
5183 * In all cases it is actually safe for us to return without doing anything,
5184 * because the inode has been copied into a raw inode buffer in
5185 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5188 * Note that we are absolutely dependent upon all inode dirtiers doing the
5189 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5190 * which we are interested.
5192 * It would be a bug for them to not do this. The code:
5194 * mark_inode_dirty(inode)
5196 * inode->i_size = expr;
5198 * is in error because write_inode() could occur while `stuff()' is running,
5199 * and the new i_size will be lost. Plus the inode will no longer be on the
5200 * superblock's dirty inode list.
5202 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5206 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5209 if (EXT4_SB(inode->i_sb)->s_journal) {
5210 if (ext4_journal_current_handle()) {
5211 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5217 * No need to force transaction in WB_SYNC_NONE mode. Also
5218 * ext4_sync_fs() will force the commit after everything is
5221 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5224 err = ext4_force_commit(inode->i_sb);
5226 struct ext4_iloc iloc;
5228 err = __ext4_get_inode_loc(inode, &iloc, 0);
5232 * sync(2) will flush the whole buffer cache. No need to do
5233 * it here separately for each inode.
5235 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5236 sync_dirty_buffer(iloc.bh);
5237 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5238 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5239 "IO error syncing inode");
5248 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5249 * buffers that are attached to a page stradding i_size and are undergoing
5250 * commit. In that case we have to wait for commit to finish and try again.
5252 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5256 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5257 tid_t commit_tid = 0;
5260 offset = inode->i_size & (PAGE_SIZE - 1);
5262 * All buffers in the last page remain valid? Then there's nothing to
5263 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5266 if (offset > PAGE_SIZE - i_blocksize(inode))
5269 page = find_lock_page(inode->i_mapping,
5270 inode->i_size >> PAGE_SHIFT);
5273 ret = __ext4_journalled_invalidatepage(page, offset,
5274 PAGE_SIZE - offset);
5280 read_lock(&journal->j_state_lock);
5281 if (journal->j_committing_transaction)
5282 commit_tid = journal->j_committing_transaction->t_tid;
5283 read_unlock(&journal->j_state_lock);
5285 jbd2_log_wait_commit(journal, commit_tid);
5292 * Called from notify_change.
5294 * We want to trap VFS attempts to truncate the file as soon as
5295 * possible. In particular, we want to make sure that when the VFS
5296 * shrinks i_size, we put the inode on the orphan list and modify
5297 * i_disksize immediately, so that during the subsequent flushing of
5298 * dirty pages and freeing of disk blocks, we can guarantee that any
5299 * commit will leave the blocks being flushed in an unused state on
5300 * disk. (On recovery, the inode will get truncated and the blocks will
5301 * be freed, so we have a strong guarantee that no future commit will
5302 * leave these blocks visible to the user.)
5304 * Another thing we have to assure is that if we are in ordered mode
5305 * and inode is still attached to the committing transaction, we must
5306 * we start writeout of all the dirty pages which are being truncated.
5307 * This way we are sure that all the data written in the previous
5308 * transaction are already on disk (truncate waits for pages under
5311 * Called with inode->i_mutex down.
5313 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5315 struct inode *inode = d_inode(dentry);
5318 const unsigned int ia_valid = attr->ia_valid;
5320 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5323 error = setattr_prepare(dentry, attr);
5327 if (is_quota_modification(inode, attr)) {
5328 error = dquot_initialize(inode);
5332 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5333 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5336 /* (user+group)*(old+new) structure, inode write (sb,
5337 * inode block, ? - but truncate inode update has it) */
5338 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5339 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5340 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5341 if (IS_ERR(handle)) {
5342 error = PTR_ERR(handle);
5346 /* dquot_transfer() calls back ext4_get_inode_usage() which
5347 * counts xattr inode references.
5349 down_read(&EXT4_I(inode)->xattr_sem);
5350 error = dquot_transfer(inode, attr);
5351 up_read(&EXT4_I(inode)->xattr_sem);
5354 ext4_journal_stop(handle);
5357 /* Update corresponding info in inode so that everything is in
5358 * one transaction */
5359 if (attr->ia_valid & ATTR_UID)
5360 inode->i_uid = attr->ia_uid;
5361 if (attr->ia_valid & ATTR_GID)
5362 inode->i_gid = attr->ia_gid;
5363 error = ext4_mark_inode_dirty(handle, inode);
5364 ext4_journal_stop(handle);
5367 if (attr->ia_valid & ATTR_SIZE) {
5369 loff_t oldsize = inode->i_size;
5370 int shrink = (attr->ia_size <= inode->i_size);
5372 if (ext4_encrypted_inode(inode)) {
5373 error = fscrypt_get_encryption_info(inode);
5376 if (!fscrypt_has_encryption_key(inode))
5380 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5381 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5383 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5386 if (!S_ISREG(inode->i_mode))
5389 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5390 inode_inc_iversion(inode);
5392 if (ext4_should_order_data(inode) &&
5393 (attr->ia_size < inode->i_size)) {
5394 error = ext4_begin_ordered_truncate(inode,
5399 if (attr->ia_size != inode->i_size) {
5400 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5401 if (IS_ERR(handle)) {
5402 error = PTR_ERR(handle);
5405 if (ext4_handle_valid(handle) && shrink) {
5406 error = ext4_orphan_add(handle, inode);
5410 * Update c/mtime on truncate up, ext4_truncate() will
5411 * update c/mtime in shrink case below
5414 inode->i_mtime = current_time(inode);
5415 inode->i_ctime = inode->i_mtime;
5417 down_write(&EXT4_I(inode)->i_data_sem);
5418 EXT4_I(inode)->i_disksize = attr->ia_size;
5419 rc = ext4_mark_inode_dirty(handle, inode);
5423 * We have to update i_size under i_data_sem together
5424 * with i_disksize to avoid races with writeback code
5425 * running ext4_wb_update_i_disksize().
5428 i_size_write(inode, attr->ia_size);
5429 up_write(&EXT4_I(inode)->i_data_sem);
5430 ext4_journal_stop(handle);
5433 ext4_orphan_del(NULL, inode);
5438 pagecache_isize_extended(inode, oldsize, inode->i_size);
5441 * Blocks are going to be removed from the inode. Wait
5442 * for dio in flight. Temporarily disable
5443 * dioread_nolock to prevent livelock.
5446 if (!ext4_should_journal_data(inode)) {
5447 ext4_inode_block_unlocked_dio(inode);
5448 inode_dio_wait(inode);
5449 ext4_inode_resume_unlocked_dio(inode);
5451 ext4_wait_for_tail_page_commit(inode);
5453 down_write(&EXT4_I(inode)->i_mmap_sem);
5455 * Truncate pagecache after we've waited for commit
5456 * in data=journal mode to make pages freeable.
5458 truncate_pagecache(inode, inode->i_size);
5460 rc = ext4_truncate(inode);
5464 up_write(&EXT4_I(inode)->i_mmap_sem);
5468 setattr_copy(inode, attr);
5469 mark_inode_dirty(inode);
5473 * If the call to ext4_truncate failed to get a transaction handle at
5474 * all, we need to clean up the in-core orphan list manually.
5476 if (orphan && inode->i_nlink)
5477 ext4_orphan_del(NULL, inode);
5479 if (!error && (ia_valid & ATTR_MODE))
5480 rc = posix_acl_chmod(inode, inode->i_mode);
5483 ext4_std_error(inode->i_sb, error);
5489 int ext4_getattr(const struct path *path, struct kstat *stat,
5490 u32 request_mask, unsigned int query_flags)
5492 struct inode *inode = d_inode(path->dentry);
5493 struct ext4_inode *raw_inode;
5494 struct ext4_inode_info *ei = EXT4_I(inode);
5497 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5498 stat->result_mask |= STATX_BTIME;
5499 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5500 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5503 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5504 if (flags & EXT4_APPEND_FL)
5505 stat->attributes |= STATX_ATTR_APPEND;
5506 if (flags & EXT4_COMPR_FL)
5507 stat->attributes |= STATX_ATTR_COMPRESSED;
5508 if (flags & EXT4_ENCRYPT_FL)
5509 stat->attributes |= STATX_ATTR_ENCRYPTED;
5510 if (flags & EXT4_IMMUTABLE_FL)
5511 stat->attributes |= STATX_ATTR_IMMUTABLE;
5512 if (flags & EXT4_NODUMP_FL)
5513 stat->attributes |= STATX_ATTR_NODUMP;
5515 stat->attributes_mask |= (STATX_ATTR_APPEND |
5516 STATX_ATTR_COMPRESSED |
5517 STATX_ATTR_ENCRYPTED |
5518 STATX_ATTR_IMMUTABLE |
5521 generic_fillattr(inode, stat);
5525 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5526 u32 request_mask, unsigned int query_flags)
5528 struct inode *inode = d_inode(path->dentry);
5529 u64 delalloc_blocks;
5531 ext4_getattr(path, stat, request_mask, query_flags);
5534 * If there is inline data in the inode, the inode will normally not
5535 * have data blocks allocated (it may have an external xattr block).
5536 * Report at least one sector for such files, so tools like tar, rsync,
5537 * others don't incorrectly think the file is completely sparse.
5539 if (unlikely(ext4_has_inline_data(inode)))
5540 stat->blocks += (stat->size + 511) >> 9;
5543 * We can't update i_blocks if the block allocation is delayed
5544 * otherwise in the case of system crash before the real block
5545 * allocation is done, we will have i_blocks inconsistent with
5546 * on-disk file blocks.
5547 * We always keep i_blocks updated together with real
5548 * allocation. But to not confuse with user, stat
5549 * will return the blocks that include the delayed allocation
5550 * blocks for this file.
5552 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5553 EXT4_I(inode)->i_reserved_data_blocks);
5554 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5558 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5561 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5562 return ext4_ind_trans_blocks(inode, lblocks);
5563 return ext4_ext_index_trans_blocks(inode, pextents);
5567 * Account for index blocks, block groups bitmaps and block group
5568 * descriptor blocks if modify datablocks and index blocks
5569 * worse case, the indexs blocks spread over different block groups
5571 * If datablocks are discontiguous, they are possible to spread over
5572 * different block groups too. If they are contiguous, with flexbg,
5573 * they could still across block group boundary.
5575 * Also account for superblock, inode, quota and xattr blocks
5577 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5580 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5586 * How many index blocks need to touch to map @lblocks logical blocks
5587 * to @pextents physical extents?
5589 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5594 * Now let's see how many group bitmaps and group descriptors need
5597 groups = idxblocks + pextents;
5599 if (groups > ngroups)
5601 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5602 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5604 /* bitmaps and block group descriptor blocks */
5605 ret += groups + gdpblocks;
5607 /* Blocks for super block, inode, quota and xattr blocks */
5608 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5614 * Calculate the total number of credits to reserve to fit
5615 * the modification of a single pages into a single transaction,
5616 * which may include multiple chunks of block allocations.
5618 * This could be called via ext4_write_begin()
5620 * We need to consider the worse case, when
5621 * one new block per extent.
5623 int ext4_writepage_trans_blocks(struct inode *inode)
5625 int bpp = ext4_journal_blocks_per_page(inode);
5628 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5630 /* Account for data blocks for journalled mode */
5631 if (ext4_should_journal_data(inode))
5637 * Calculate the journal credits for a chunk of data modification.
5639 * This is called from DIO, fallocate or whoever calling
5640 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5642 * journal buffers for data blocks are not included here, as DIO
5643 * and fallocate do no need to journal data buffers.
5645 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5647 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5651 * The caller must have previously called ext4_reserve_inode_write().
5652 * Give this, we know that the caller already has write access to iloc->bh.
5654 int ext4_mark_iloc_dirty(handle_t *handle,
5655 struct inode *inode, struct ext4_iloc *iloc)
5659 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5662 if (IS_I_VERSION(inode))
5663 inode_inc_iversion(inode);
5665 /* the do_update_inode consumes one bh->b_count */
5668 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5669 err = ext4_do_update_inode(handle, inode, iloc);
5675 * On success, We end up with an outstanding reference count against
5676 * iloc->bh. This _must_ be cleaned up later.
5680 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5681 struct ext4_iloc *iloc)
5685 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5688 err = ext4_get_inode_loc(inode, iloc);
5690 BUFFER_TRACE(iloc->bh, "get_write_access");
5691 err = ext4_journal_get_write_access(handle, iloc->bh);
5697 ext4_std_error(inode->i_sb, err);
5701 static int __ext4_expand_extra_isize(struct inode *inode,
5702 unsigned int new_extra_isize,
5703 struct ext4_iloc *iloc,
5704 handle_t *handle, int *no_expand)
5706 struct ext4_inode *raw_inode;
5707 struct ext4_xattr_ibody_header *header;
5710 raw_inode = ext4_raw_inode(iloc);
5712 header = IHDR(inode, raw_inode);
5714 /* No extended attributes present */
5715 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5716 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5717 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5718 EXT4_I(inode)->i_extra_isize, 0,
5719 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5720 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5724 /* try to expand with EAs present */
5725 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5729 * Inode size expansion failed; don't try again
5738 * Expand an inode by new_extra_isize bytes.
5739 * Returns 0 on success or negative error number on failure.
5741 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5742 unsigned int new_extra_isize,
5743 struct ext4_iloc iloc,
5749 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5753 * In nojournal mode, we can immediately attempt to expand
5754 * the inode. When journaled, we first need to obtain extra
5755 * buffer credits since we may write into the EA block
5756 * with this same handle. If journal_extend fails, then it will
5757 * only result in a minor loss of functionality for that inode.
5758 * If this is felt to be critical, then e2fsck should be run to
5759 * force a large enough s_min_extra_isize.
5761 if (ext4_handle_valid(handle) &&
5762 jbd2_journal_extend(handle,
5763 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5766 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5769 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5770 handle, &no_expand);
5771 ext4_write_unlock_xattr(inode, &no_expand);
5776 int ext4_expand_extra_isize(struct inode *inode,
5777 unsigned int new_extra_isize,
5778 struct ext4_iloc *iloc)
5784 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5789 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5790 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5791 if (IS_ERR(handle)) {
5792 error = PTR_ERR(handle);
5797 ext4_write_lock_xattr(inode, &no_expand);
5799 BUFFER_TRACE(iloc.bh, "get_write_access");
5800 error = ext4_journal_get_write_access(handle, iloc->bh);
5806 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5807 handle, &no_expand);
5809 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5813 ext4_write_unlock_xattr(inode, &no_expand);
5815 ext4_journal_stop(handle);
5820 * What we do here is to mark the in-core inode as clean with respect to inode
5821 * dirtiness (it may still be data-dirty).
5822 * This means that the in-core inode may be reaped by prune_icache
5823 * without having to perform any I/O. This is a very good thing,
5824 * because *any* task may call prune_icache - even ones which
5825 * have a transaction open against a different journal.
5827 * Is this cheating? Not really. Sure, we haven't written the
5828 * inode out, but prune_icache isn't a user-visible syncing function.
5829 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5830 * we start and wait on commits.
5832 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5834 struct ext4_iloc iloc;
5835 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5839 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5840 err = ext4_reserve_inode_write(handle, inode, &iloc);
5844 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5845 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5848 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5852 * ext4_dirty_inode() is called from __mark_inode_dirty()
5854 * We're really interested in the case where a file is being extended.
5855 * i_size has been changed by generic_commit_write() and we thus need
5856 * to include the updated inode in the current transaction.
5858 * Also, dquot_alloc_block() will always dirty the inode when blocks
5859 * are allocated to the file.
5861 * If the inode is marked synchronous, we don't honour that here - doing
5862 * so would cause a commit on atime updates, which we don't bother doing.
5863 * We handle synchronous inodes at the highest possible level.
5865 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5866 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5867 * to copy into the on-disk inode structure are the timestamp files.
5869 void ext4_dirty_inode(struct inode *inode, int flags)
5873 if (flags == I_DIRTY_TIME)
5875 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5879 ext4_mark_inode_dirty(handle, inode);
5881 ext4_journal_stop(handle);
5888 * Bind an inode's backing buffer_head into this transaction, to prevent
5889 * it from being flushed to disk early. Unlike
5890 * ext4_reserve_inode_write, this leaves behind no bh reference and
5891 * returns no iloc structure, so the caller needs to repeat the iloc
5892 * lookup to mark the inode dirty later.
5894 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5896 struct ext4_iloc iloc;
5900 err = ext4_get_inode_loc(inode, &iloc);
5902 BUFFER_TRACE(iloc.bh, "get_write_access");
5903 err = jbd2_journal_get_write_access(handle, iloc.bh);
5905 err = ext4_handle_dirty_metadata(handle,
5911 ext4_std_error(inode->i_sb, err);
5916 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5921 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5924 * We have to be very careful here: changing a data block's
5925 * journaling status dynamically is dangerous. If we write a
5926 * data block to the journal, change the status and then delete
5927 * that block, we risk forgetting to revoke the old log record
5928 * from the journal and so a subsequent replay can corrupt data.
5929 * So, first we make sure that the journal is empty and that
5930 * nobody is changing anything.
5933 journal = EXT4_JOURNAL(inode);
5936 if (is_journal_aborted(journal))
5939 /* Wait for all existing dio workers */
5940 ext4_inode_block_unlocked_dio(inode);
5941 inode_dio_wait(inode);
5944 * Before flushing the journal and switching inode's aops, we have
5945 * to flush all dirty data the inode has. There can be outstanding
5946 * delayed allocations, there can be unwritten extents created by
5947 * fallocate or buffered writes in dioread_nolock mode covered by
5948 * dirty data which can be converted only after flushing the dirty
5949 * data (and journalled aops don't know how to handle these cases).
5952 down_write(&EXT4_I(inode)->i_mmap_sem);
5953 err = filemap_write_and_wait(inode->i_mapping);
5955 up_write(&EXT4_I(inode)->i_mmap_sem);
5956 ext4_inode_resume_unlocked_dio(inode);
5961 percpu_down_write(&sbi->s_journal_flag_rwsem);
5962 jbd2_journal_lock_updates(journal);
5965 * OK, there are no updates running now, and all cached data is
5966 * synced to disk. We are now in a completely consistent state
5967 * which doesn't have anything in the journal, and we know that
5968 * no filesystem updates are running, so it is safe to modify
5969 * the inode's in-core data-journaling state flag now.
5973 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5975 err = jbd2_journal_flush(journal);
5977 jbd2_journal_unlock_updates(journal);
5978 percpu_up_write(&sbi->s_journal_flag_rwsem);
5979 ext4_inode_resume_unlocked_dio(inode);
5982 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5984 ext4_set_aops(inode);
5986 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5987 * E.g. S_DAX may get cleared / set.
5989 ext4_set_inode_flags(inode);
5991 jbd2_journal_unlock_updates(journal);
5992 percpu_up_write(&sbi->s_journal_flag_rwsem);
5995 up_write(&EXT4_I(inode)->i_mmap_sem);
5996 ext4_inode_resume_unlocked_dio(inode);
5998 /* Finally we can mark the inode as dirty. */
6000 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6002 return PTR_ERR(handle);
6004 err = ext4_mark_inode_dirty(handle, inode);
6005 ext4_handle_sync(handle);
6006 ext4_journal_stop(handle);
6007 ext4_std_error(inode->i_sb, err);
6012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6014 return !buffer_mapped(bh);
6017 int ext4_page_mkwrite(struct vm_fault *vmf)
6019 struct vm_area_struct *vma = vmf->vma;
6020 struct page *page = vmf->page;
6024 struct file *file = vma->vm_file;
6025 struct inode *inode = file_inode(file);
6026 struct address_space *mapping = inode->i_mapping;
6028 get_block_t *get_block;
6031 sb_start_pagefault(inode->i_sb);
6032 file_update_time(vma->vm_file);
6034 down_read(&EXT4_I(inode)->i_mmap_sem);
6036 ret = ext4_convert_inline_data(inode);
6040 /* Delalloc case is easy... */
6041 if (test_opt(inode->i_sb, DELALLOC) &&
6042 !ext4_should_journal_data(inode) &&
6043 !ext4_nonda_switch(inode->i_sb)) {
6045 ret = block_page_mkwrite(vma, vmf,
6046 ext4_da_get_block_prep);
6047 } while (ret == -ENOSPC &&
6048 ext4_should_retry_alloc(inode->i_sb, &retries));
6053 size = i_size_read(inode);
6054 /* Page got truncated from under us? */
6055 if (page->mapping != mapping || page_offset(page) > size) {
6057 ret = VM_FAULT_NOPAGE;
6061 if (page->index == size >> PAGE_SHIFT)
6062 len = size & ~PAGE_MASK;
6066 * Return if we have all the buffers mapped. This avoids the need to do
6067 * journal_start/journal_stop which can block and take a long time
6069 if (page_has_buffers(page)) {
6070 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6072 ext4_bh_unmapped)) {
6073 /* Wait so that we don't change page under IO */
6074 wait_for_stable_page(page);
6075 ret = VM_FAULT_LOCKED;
6080 /* OK, we need to fill the hole... */
6081 if (ext4_should_dioread_nolock(inode))
6082 get_block = ext4_get_block_unwritten;
6084 get_block = ext4_get_block;
6086 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6087 ext4_writepage_trans_blocks(inode));
6088 if (IS_ERR(handle)) {
6089 ret = VM_FAULT_SIGBUS;
6092 ret = block_page_mkwrite(vma, vmf, get_block);
6093 if (!ret && ext4_should_journal_data(inode)) {
6094 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6095 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6097 ret = VM_FAULT_SIGBUS;
6098 ext4_journal_stop(handle);
6101 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6103 ext4_journal_stop(handle);
6104 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6107 ret = block_page_mkwrite_return(ret);
6109 up_read(&EXT4_I(inode)->i_mmap_sem);
6110 sb_end_pagefault(inode->i_sb);
6114 int ext4_filemap_fault(struct vm_fault *vmf)
6116 struct inode *inode = file_inode(vmf->vma->vm_file);
6119 down_read(&EXT4_I(inode)->i_mmap_sem);
6120 err = filemap_fault(vmf);
6121 up_read(&EXT4_I(inode)->i_mmap_sem);
6127 * Find the first extent at or after @lblk in an inode that is not a hole.
6128 * Search for @map_len blocks at most. The extent is returned in @result.
6130 * The function returns 1 if we found an extent. The function returns 0 in
6131 * case there is no extent at or after @lblk and in that case also sets
6132 * @result->es_len to 0. In case of error, the error code is returned.
6134 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6135 unsigned int map_len, struct extent_status *result)
6137 struct ext4_map_blocks map;
6138 struct extent_status es = {};
6142 map.m_len = map_len;
6145 * For non-extent based files this loop may iterate several times since
6146 * we do not determine full hole size.
6148 while (map.m_len > 0) {
6149 ret = ext4_map_blocks(NULL, inode, &map, 0);
6152 /* There's extent covering m_lblk? Just return it. */
6156 ext4_es_store_pblock(result, map.m_pblk);
6157 result->es_lblk = map.m_lblk;
6158 result->es_len = map.m_len;
6159 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6160 status = EXTENT_STATUS_UNWRITTEN;
6162 status = EXTENT_STATUS_WRITTEN;
6163 ext4_es_store_status(result, status);
6166 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6167 map.m_lblk + map.m_len - 1,
6169 /* Is delalloc data before next block in extent tree? */
6170 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6171 ext4_lblk_t offset = 0;
6173 if (es.es_lblk < lblk)
6174 offset = lblk - es.es_lblk;
6175 result->es_lblk = es.es_lblk + offset;
6176 ext4_es_store_pblock(result,
6177 ext4_es_pblock(&es) + offset);
6178 result->es_len = es.es_len - offset;
6179 ext4_es_store_status(result, ext4_es_status(&es));
6183 /* There's a hole at m_lblk, advance us after it */
6184 map.m_lblk += map.m_len;
6185 map_len -= map.m_len;
6186 map.m_len = map_len;