]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_execlists_submission.c
Merge remote-tracking branch 'spi/for-5.14' into spi-linus
[linux.git] / drivers / gpu / drm / i915 / gt / intel_execlists_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_pm.h"
118 #include "intel_engine_stats.h"
119 #include "intel_execlists_submission.h"
120 #include "intel_gt.h"
121 #include "intel_gt_irq.h"
122 #include "intel_gt_pm.h"
123 #include "intel_gt_requests.h"
124 #include "intel_lrc.h"
125 #include "intel_lrc_reg.h"
126 #include "intel_mocs.h"
127 #include "intel_reset.h"
128 #include "intel_ring.h"
129 #include "intel_workarounds.h"
130 #include "shmem_utils.h"
131
132 #define RING_EXECLIST_QFULL             (1 << 0x2)
133 #define RING_EXECLIST1_VALID            (1 << 0x3)
134 #define RING_EXECLIST0_VALID            (1 << 0x4)
135 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
136 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
137 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
138
139 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
140 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
141 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
142 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
143 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
144 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
145
146 #define GEN8_CTX_STATUS_COMPLETED_MASK \
147          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
148
149 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
150 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
151 #define GEN12_CSB_SW_CTX_ID_MASK                GENMASK(25, 15)
152 #define GEN12_IDLE_CTX_ID               0x7FF
153 #define GEN12_CSB_CTX_VALID(csb_dw) \
154         (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
155
156 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
157 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
158
159 struct virtual_engine {
160         struct intel_engine_cs base;
161         struct intel_context context;
162         struct rcu_work rcu;
163
164         /*
165          * We allow only a single request through the virtual engine at a time
166          * (each request in the timeline waits for the completion fence of
167          * the previous before being submitted). By restricting ourselves to
168          * only submitting a single request, each request is placed on to a
169          * physical to maximise load spreading (by virtue of the late greedy
170          * scheduling -- each real engine takes the next available request
171          * upon idling).
172          */
173         struct i915_request *request;
174
175         /*
176          * We keep a rbtree of available virtual engines inside each physical
177          * engine, sorted by priority. Here we preallocate the nodes we need
178          * for the virtual engine, indexed by physical_engine->id.
179          */
180         struct ve_node {
181                 struct rb_node rb;
182                 int prio;
183         } nodes[I915_NUM_ENGINES];
184
185         /*
186          * Keep track of bonded pairs -- restrictions upon on our selection
187          * of physical engines any particular request may be submitted to.
188          * If we receive a submit-fence from a master engine, we will only
189          * use one of sibling_mask physical engines.
190          */
191         struct ve_bond {
192                 const struct intel_engine_cs *master;
193                 intel_engine_mask_t sibling_mask;
194         } *bonds;
195         unsigned int num_bonds;
196
197         /* And finally, which physical engines this virtual engine maps onto. */
198         unsigned int num_siblings;
199         struct intel_engine_cs *siblings[];
200 };
201
202 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
203 {
204         GEM_BUG_ON(!intel_engine_is_virtual(engine));
205         return container_of(engine, struct virtual_engine, base);
206 }
207
208 static struct i915_request *
209 __active_request(const struct intel_timeline * const tl,
210                  struct i915_request *rq,
211                  int error)
212 {
213         struct i915_request *active = rq;
214
215         list_for_each_entry_from_reverse(rq, &tl->requests, link) {
216                 if (__i915_request_is_complete(rq))
217                         break;
218
219                 if (error) {
220                         i915_request_set_error_once(rq, error);
221                         __i915_request_skip(rq);
222                 }
223                 active = rq;
224         }
225
226         return active;
227 }
228
229 static struct i915_request *
230 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
231 {
232         return __active_request(tl, rq, 0);
233 }
234
235 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
236 {
237         /*
238          * We inspect HWS_PREEMPT with a semaphore inside
239          * engine->emit_fini_breadcrumb. If the dword is true,
240          * the ring is paused as the semaphore will busywait
241          * until the dword is false.
242          */
243         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
244         if (state)
245                 wmb();
246 }
247
248 static struct i915_priolist *to_priolist(struct rb_node *rb)
249 {
250         return rb_entry(rb, struct i915_priolist, node);
251 }
252
253 static int rq_prio(const struct i915_request *rq)
254 {
255         return READ_ONCE(rq->sched.attr.priority);
256 }
257
258 static int effective_prio(const struct i915_request *rq)
259 {
260         int prio = rq_prio(rq);
261
262         /*
263          * If this request is special and must not be interrupted at any
264          * cost, so be it. Note we are only checking the most recent request
265          * in the context and so may be masking an earlier vip request. It
266          * is hoped that under the conditions where nopreempt is used, this
267          * will not matter (i.e. all requests to that context will be
268          * nopreempt for as long as desired).
269          */
270         if (i915_request_has_nopreempt(rq))
271                 prio = I915_PRIORITY_UNPREEMPTABLE;
272
273         return prio;
274 }
275
276 static int queue_prio(const struct intel_engine_execlists *execlists)
277 {
278         struct rb_node *rb;
279
280         rb = rb_first_cached(&execlists->queue);
281         if (!rb)
282                 return INT_MIN;
283
284         return to_priolist(rb)->priority;
285 }
286
287 static int virtual_prio(const struct intel_engine_execlists *el)
288 {
289         struct rb_node *rb = rb_first_cached(&el->virtual);
290
291         return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
292 }
293
294 static bool need_preempt(const struct intel_engine_cs *engine,
295                          const struct i915_request *rq)
296 {
297         int last_prio;
298
299         if (!intel_engine_has_semaphores(engine))
300                 return false;
301
302         /*
303          * Check if the current priority hint merits a preemption attempt.
304          *
305          * We record the highest value priority we saw during rescheduling
306          * prior to this dequeue, therefore we know that if it is strictly
307          * less than the current tail of ESLP[0], we do not need to force
308          * a preempt-to-idle cycle.
309          *
310          * However, the priority hint is a mere hint that we may need to
311          * preempt. If that hint is stale or we may be trying to preempt
312          * ourselves, ignore the request.
313          *
314          * More naturally we would write
315          *      prio >= max(0, last);
316          * except that we wish to prevent triggering preemption at the same
317          * priority level: the task that is running should remain running
318          * to preserve FIFO ordering of dependencies.
319          */
320         last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
321         if (engine->execlists.queue_priority_hint <= last_prio)
322                 return false;
323
324         /*
325          * Check against the first request in ELSP[1], it will, thanks to the
326          * power of PI, be the highest priority of that context.
327          */
328         if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
329             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
330                 return true;
331
332         /*
333          * If the inflight context did not trigger the preemption, then maybe
334          * it was the set of queued requests? Pick the highest priority in
335          * the queue (the first active priolist) and see if it deserves to be
336          * running instead of ELSP[0].
337          *
338          * The highest priority request in the queue can not be either
339          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
340          * context, it's priority would not exceed ELSP[0] aka last_prio.
341          */
342         return max(virtual_prio(&engine->execlists),
343                    queue_prio(&engine->execlists)) > last_prio;
344 }
345
346 __maybe_unused static bool
347 assert_priority_queue(const struct i915_request *prev,
348                       const struct i915_request *next)
349 {
350         /*
351          * Without preemption, the prev may refer to the still active element
352          * which we refuse to let go.
353          *
354          * Even with preemption, there are times when we think it is better not
355          * to preempt and leave an ostensibly lower priority request in flight.
356          */
357         if (i915_request_is_active(prev))
358                 return true;
359
360         return rq_prio(prev) >= rq_prio(next);
361 }
362
363 static struct i915_request *
364 __unwind_incomplete_requests(struct intel_engine_cs *engine)
365 {
366         struct i915_request *rq, *rn, *active = NULL;
367         struct list_head *pl;
368         int prio = I915_PRIORITY_INVALID;
369
370         lockdep_assert_held(&engine->active.lock);
371
372         list_for_each_entry_safe_reverse(rq, rn,
373                                          &engine->active.requests,
374                                          sched.link) {
375                 if (__i915_request_is_complete(rq)) {
376                         list_del_init(&rq->sched.link);
377                         continue;
378                 }
379
380                 __i915_request_unsubmit(rq);
381
382                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
383                 if (rq_prio(rq) != prio) {
384                         prio = rq_prio(rq);
385                         pl = i915_sched_lookup_priolist(engine, prio);
386                 }
387                 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
388
389                 list_move(&rq->sched.link, pl);
390                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
391
392                 /* Check in case we rollback so far we wrap [size/2] */
393                 if (intel_ring_direction(rq->ring,
394                                          rq->tail,
395                                          rq->ring->tail + 8) > 0)
396                         rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
397
398                 active = rq;
399         }
400
401         return active;
402 }
403
404 struct i915_request *
405 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
406 {
407         struct intel_engine_cs *engine =
408                 container_of(execlists, typeof(*engine), execlists);
409
410         return __unwind_incomplete_requests(engine);
411 }
412
413 static void
414 execlists_context_status_change(struct i915_request *rq, unsigned long status)
415 {
416         /*
417          * Only used when GVT-g is enabled now. When GVT-g is disabled,
418          * The compiler should eliminate this function as dead-code.
419          */
420         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
421                 return;
422
423         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
424                                    status, rq);
425 }
426
427 static void reset_active(struct i915_request *rq,
428                          struct intel_engine_cs *engine)
429 {
430         struct intel_context * const ce = rq->context;
431         u32 head;
432
433         /*
434          * The executing context has been cancelled. We want to prevent
435          * further execution along this context and propagate the error on
436          * to anything depending on its results.
437          *
438          * In __i915_request_submit(), we apply the -EIO and remove the
439          * requests' payloads for any banned requests. But first, we must
440          * rewind the context back to the start of the incomplete request so
441          * that we do not jump back into the middle of the batch.
442          *
443          * We preserve the breadcrumbs and semaphores of the incomplete
444          * requests so that inter-timeline dependencies (i.e other timelines)
445          * remain correctly ordered. And we defer to __i915_request_submit()
446          * so that all asynchronous waits are correctly handled.
447          */
448         ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
449                      rq->fence.context, rq->fence.seqno);
450
451         /* On resubmission of the active request, payload will be scrubbed */
452         if (__i915_request_is_complete(rq))
453                 head = rq->tail;
454         else
455                 head = __active_request(ce->timeline, rq, -EIO)->head;
456         head = intel_ring_wrap(ce->ring, head);
457
458         /* Scrub the context image to prevent replaying the previous batch */
459         lrc_init_regs(ce, engine, true);
460
461         /* We've switched away, so this should be a no-op, but intent matters */
462         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
463 }
464
465 static bool bad_request(const struct i915_request *rq)
466 {
467         return rq->fence.error && i915_request_started(rq);
468 }
469
470 static struct intel_engine_cs *
471 __execlists_schedule_in(struct i915_request *rq)
472 {
473         struct intel_engine_cs * const engine = rq->engine;
474         struct intel_context * const ce = rq->context;
475
476         intel_context_get(ce);
477
478         if (unlikely(intel_context_is_closed(ce) &&
479                      !intel_engine_has_heartbeat(engine)))
480                 intel_context_set_banned(ce);
481
482         if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
483                 reset_active(rq, engine);
484
485         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
486                 lrc_check_regs(ce, engine, "before");
487
488         if (ce->tag) {
489                 /* Use a fixed tag for OA and friends */
490                 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
491                 ce->lrc.ccid = ce->tag;
492         } else {
493                 /* We don't need a strict matching tag, just different values */
494                 unsigned int tag = __ffs(engine->context_tag);
495
496                 GEM_BUG_ON(tag >= BITS_PER_LONG);
497                 __clear_bit(tag, &engine->context_tag);
498                 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
499
500                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
501         }
502
503         ce->lrc.ccid |= engine->execlists.ccid;
504
505         __intel_gt_pm_get(engine->gt);
506         if (engine->fw_domain && !engine->fw_active++)
507                 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
508         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
509         intel_engine_context_in(engine);
510
511         CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
512
513         return engine;
514 }
515
516 static void execlists_schedule_in(struct i915_request *rq, int idx)
517 {
518         struct intel_context * const ce = rq->context;
519         struct intel_engine_cs *old;
520
521         GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
522         trace_i915_request_in(rq, idx);
523
524         old = ce->inflight;
525         if (!old)
526                 old = __execlists_schedule_in(rq);
527         WRITE_ONCE(ce->inflight, ptr_inc(old));
528
529         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
530 }
531
532 static void
533 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
534 {
535         struct intel_engine_cs *engine = rq->engine;
536
537         spin_lock_irq(&engine->active.lock);
538
539         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
540         WRITE_ONCE(rq->engine, &ve->base);
541         ve->base.submit_request(rq);
542
543         spin_unlock_irq(&engine->active.lock);
544 }
545
546 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
547 {
548         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
549         struct intel_engine_cs *engine = rq->engine;
550
551         /*
552          * After this point, the rq may be transferred to a new sibling, so
553          * before we clear ce->inflight make sure that the context has been
554          * removed from the b->signalers and furthermore we need to make sure
555          * that the concurrent iterator in signal_irq_work is no longer
556          * following ce->signal_link.
557          */
558         if (!list_empty(&ce->signals))
559                 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
560
561         /*
562          * This engine is now too busy to run this virtual request, so
563          * see if we can find an alternative engine for it to execute on.
564          * Once a request has become bonded to this engine, we treat it the
565          * same as other native request.
566          */
567         if (i915_request_in_priority_queue(rq) &&
568             rq->execution_mask != engine->mask)
569                 resubmit_virtual_request(rq, ve);
570
571         if (READ_ONCE(ve->request))
572                 tasklet_hi_schedule(&ve->base.execlists.tasklet);
573 }
574
575 static void __execlists_schedule_out(struct i915_request * const rq,
576                                      struct intel_context * const ce)
577 {
578         struct intel_engine_cs * const engine = rq->engine;
579         unsigned int ccid;
580
581         /*
582          * NB process_csb() is not under the engine->active.lock and hence
583          * schedule_out can race with schedule_in meaning that we should
584          * refrain from doing non-trivial work here.
585          */
586
587         CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
588         GEM_BUG_ON(ce->inflight != engine);
589
590         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
591                 lrc_check_regs(ce, engine, "after");
592
593         /*
594          * If we have just completed this context, the engine may now be
595          * idle and we want to re-enter powersaving.
596          */
597         if (intel_timeline_is_last(ce->timeline, rq) &&
598             __i915_request_is_complete(rq))
599                 intel_engine_add_retire(engine, ce->timeline);
600
601         ccid = ce->lrc.ccid;
602         ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
603         ccid &= GEN12_MAX_CONTEXT_HW_ID;
604         if (ccid < BITS_PER_LONG) {
605                 GEM_BUG_ON(ccid == 0);
606                 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
607                 __set_bit(ccid - 1, &engine->context_tag);
608         }
609
610         lrc_update_runtime(ce);
611         intel_engine_context_out(engine);
612         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
613         if (engine->fw_domain && !--engine->fw_active)
614                 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
615         intel_gt_pm_put_async(engine->gt);
616
617         /*
618          * If this is part of a virtual engine, its next request may
619          * have been blocked waiting for access to the active context.
620          * We have to kick all the siblings again in case we need to
621          * switch (e.g. the next request is not runnable on this
622          * engine). Hopefully, we will already have submitted the next
623          * request before the tasklet runs and do not need to rebuild
624          * each virtual tree and kick everyone again.
625          */
626         if (ce->engine != engine)
627                 kick_siblings(rq, ce);
628
629         WRITE_ONCE(ce->inflight, NULL);
630         intel_context_put(ce);
631 }
632
633 static inline void execlists_schedule_out(struct i915_request *rq)
634 {
635         struct intel_context * const ce = rq->context;
636
637         trace_i915_request_out(rq);
638
639         GEM_BUG_ON(!ce->inflight);
640         ce->inflight = ptr_dec(ce->inflight);
641         if (!__intel_context_inflight_count(ce->inflight))
642                 __execlists_schedule_out(rq, ce);
643
644         i915_request_put(rq);
645 }
646
647 static u64 execlists_update_context(struct i915_request *rq)
648 {
649         struct intel_context *ce = rq->context;
650         u64 desc = ce->lrc.desc;
651         u32 tail, prev;
652
653         /*
654          * WaIdleLiteRestore:bdw,skl
655          *
656          * We should never submit the context with the same RING_TAIL twice
657          * just in case we submit an empty ring, which confuses the HW.
658          *
659          * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
660          * the normal request to be able to always advance the RING_TAIL on
661          * subsequent resubmissions (for lite restore). Should that fail us,
662          * and we try and submit the same tail again, force the context
663          * reload.
664          *
665          * If we need to return to a preempted context, we need to skip the
666          * lite-restore and force it to reload the RING_TAIL. Otherwise, the
667          * HW has a tendency to ignore us rewinding the TAIL to the end of
668          * an earlier request.
669          */
670         GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
671         prev = rq->ring->tail;
672         tail = intel_ring_set_tail(rq->ring, rq->tail);
673         if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
674                 desc |= CTX_DESC_FORCE_RESTORE;
675         ce->lrc_reg_state[CTX_RING_TAIL] = tail;
676         rq->tail = rq->wa_tail;
677
678         /*
679          * Make sure the context image is complete before we submit it to HW.
680          *
681          * Ostensibly, writes (including the WCB) should be flushed prior to
682          * an uncached write such as our mmio register access, the empirical
683          * evidence (esp. on Braswell) suggests that the WC write into memory
684          * may not be visible to the HW prior to the completion of the UC
685          * register write and that we may begin execution from the context
686          * before its image is complete leading to invalid PD chasing.
687          */
688         wmb();
689
690         ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
691         return desc;
692 }
693
694 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
695 {
696         if (execlists->ctrl_reg) {
697                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
698                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
699         } else {
700                 writel(upper_32_bits(desc), execlists->submit_reg);
701                 writel(lower_32_bits(desc), execlists->submit_reg);
702         }
703 }
704
705 static __maybe_unused char *
706 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
707 {
708         if (!rq)
709                 return "";
710
711         snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
712                  prefix,
713                  rq->context->lrc.ccid,
714                  rq->fence.context, rq->fence.seqno,
715                  __i915_request_is_complete(rq) ? "!" :
716                  __i915_request_has_started(rq) ? "*" :
717                  "",
718                  rq_prio(rq));
719
720         return buf;
721 }
722
723 static __maybe_unused noinline void
724 trace_ports(const struct intel_engine_execlists *execlists,
725             const char *msg,
726             struct i915_request * const *ports)
727 {
728         const struct intel_engine_cs *engine =
729                 container_of(execlists, typeof(*engine), execlists);
730         char __maybe_unused p0[40], p1[40];
731
732         if (!ports[0])
733                 return;
734
735         ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
736                      dump_port(p0, sizeof(p0), "", ports[0]),
737                      dump_port(p1, sizeof(p1), ", ", ports[1]));
738 }
739
740 static bool
741 reset_in_progress(const struct intel_engine_execlists *execlists)
742 {
743         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
744 }
745
746 static __maybe_unused noinline bool
747 assert_pending_valid(const struct intel_engine_execlists *execlists,
748                      const char *msg)
749 {
750         struct intel_engine_cs *engine =
751                 container_of(execlists, typeof(*engine), execlists);
752         struct i915_request * const *port, *rq, *prev = NULL;
753         struct intel_context *ce = NULL;
754         u32 ccid = -1;
755
756         trace_ports(execlists, msg, execlists->pending);
757
758         /* We may be messing around with the lists during reset, lalala */
759         if (reset_in_progress(execlists))
760                 return true;
761
762         if (!execlists->pending[0]) {
763                 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
764                               engine->name);
765                 return false;
766         }
767
768         if (execlists->pending[execlists_num_ports(execlists)]) {
769                 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
770                               engine->name, execlists_num_ports(execlists));
771                 return false;
772         }
773
774         for (port = execlists->pending; (rq = *port); port++) {
775                 unsigned long flags;
776                 bool ok = true;
777
778                 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
779                 GEM_BUG_ON(!i915_request_is_active(rq));
780
781                 if (ce == rq->context) {
782                         GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
783                                       engine->name,
784                                       ce->timeline->fence_context,
785                                       port - execlists->pending);
786                         return false;
787                 }
788                 ce = rq->context;
789
790                 if (ccid == ce->lrc.ccid) {
791                         GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
792                                       engine->name,
793                                       ccid, ce->timeline->fence_context,
794                                       port - execlists->pending);
795                         return false;
796                 }
797                 ccid = ce->lrc.ccid;
798
799                 /*
800                  * Sentinels are supposed to be the last request so they flush
801                  * the current execution off the HW. Check that they are the only
802                  * request in the pending submission.
803                  *
804                  * NB: Due to the async nature of preempt-to-busy and request
805                  * cancellation we need to handle the case where request
806                  * becomes a sentinel in parallel to CSB processing.
807                  */
808                 if (prev && i915_request_has_sentinel(prev) &&
809                     !READ_ONCE(prev->fence.error)) {
810                         GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
811                                       engine->name,
812                                       ce->timeline->fence_context,
813                                       port - execlists->pending);
814                         return false;
815                 }
816                 prev = rq;
817
818                 /*
819                  * We want virtual requests to only be in the first slot so
820                  * that they are never stuck behind a hog and can be immediately
821                  * transferred onto the next idle engine.
822                  */
823                 if (rq->execution_mask != engine->mask &&
824                     port != execlists->pending) {
825                         GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
826                                       engine->name,
827                                       ce->timeline->fence_context,
828                                       port - execlists->pending);
829                         return false;
830                 }
831
832                 /* Hold tightly onto the lock to prevent concurrent retires! */
833                 if (!spin_trylock_irqsave(&rq->lock, flags))
834                         continue;
835
836                 if (__i915_request_is_complete(rq))
837                         goto unlock;
838
839                 if (i915_active_is_idle(&ce->active) &&
840                     !intel_context_is_barrier(ce)) {
841                         GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
842                                       engine->name,
843                                       ce->timeline->fence_context,
844                                       port - execlists->pending);
845                         ok = false;
846                         goto unlock;
847                 }
848
849                 if (!i915_vma_is_pinned(ce->state)) {
850                         GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
851                                       engine->name,
852                                       ce->timeline->fence_context,
853                                       port - execlists->pending);
854                         ok = false;
855                         goto unlock;
856                 }
857
858                 if (!i915_vma_is_pinned(ce->ring->vma)) {
859                         GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
860                                       engine->name,
861                                       ce->timeline->fence_context,
862                                       port - execlists->pending);
863                         ok = false;
864                         goto unlock;
865                 }
866
867 unlock:
868                 spin_unlock_irqrestore(&rq->lock, flags);
869                 if (!ok)
870                         return false;
871         }
872
873         return ce;
874 }
875
876 static void execlists_submit_ports(struct intel_engine_cs *engine)
877 {
878         struct intel_engine_execlists *execlists = &engine->execlists;
879         unsigned int n;
880
881         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
882
883         /*
884          * We can skip acquiring intel_runtime_pm_get() here as it was taken
885          * on our behalf by the request (see i915_gem_mark_busy()) and it will
886          * not be relinquished until the device is idle (see
887          * i915_gem_idle_work_handler()). As a precaution, we make sure
888          * that all ELSP are drained i.e. we have processed the CSB,
889          * before allowing ourselves to idle and calling intel_runtime_pm_put().
890          */
891         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
892
893         /*
894          * ELSQ note: the submit queue is not cleared after being submitted
895          * to the HW so we need to make sure we always clean it up. This is
896          * currently ensured by the fact that we always write the same number
897          * of elsq entries, keep this in mind before changing the loop below.
898          */
899         for (n = execlists_num_ports(execlists); n--; ) {
900                 struct i915_request *rq = execlists->pending[n];
901
902                 write_desc(execlists,
903                            rq ? execlists_update_context(rq) : 0,
904                            n);
905         }
906
907         /* we need to manually load the submit queue */
908         if (execlists->ctrl_reg)
909                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
910 }
911
912 static bool ctx_single_port_submission(const struct intel_context *ce)
913 {
914         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
915                 intel_context_force_single_submission(ce));
916 }
917
918 static bool can_merge_ctx(const struct intel_context *prev,
919                           const struct intel_context *next)
920 {
921         if (prev != next)
922                 return false;
923
924         if (ctx_single_port_submission(prev))
925                 return false;
926
927         return true;
928 }
929
930 static unsigned long i915_request_flags(const struct i915_request *rq)
931 {
932         return READ_ONCE(rq->fence.flags);
933 }
934
935 static bool can_merge_rq(const struct i915_request *prev,
936                          const struct i915_request *next)
937 {
938         GEM_BUG_ON(prev == next);
939         GEM_BUG_ON(!assert_priority_queue(prev, next));
940
941         /*
942          * We do not submit known completed requests. Therefore if the next
943          * request is already completed, we can pretend to merge it in
944          * with the previous context (and we will skip updating the ELSP
945          * and tracking). Thus hopefully keeping the ELSP full with active
946          * contexts, despite the best efforts of preempt-to-busy to confuse
947          * us.
948          */
949         if (__i915_request_is_complete(next))
950                 return true;
951
952         if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
953                      (BIT(I915_FENCE_FLAG_NOPREEMPT) |
954                       BIT(I915_FENCE_FLAG_SENTINEL))))
955                 return false;
956
957         if (!can_merge_ctx(prev->context, next->context))
958                 return false;
959
960         GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
961         return true;
962 }
963
964 static bool virtual_matches(const struct virtual_engine *ve,
965                             const struct i915_request *rq,
966                             const struct intel_engine_cs *engine)
967 {
968         const struct intel_engine_cs *inflight;
969
970         if (!rq)
971                 return false;
972
973         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
974                 return false;
975
976         /*
977          * We track when the HW has completed saving the context image
978          * (i.e. when we have seen the final CS event switching out of
979          * the context) and must not overwrite the context image before
980          * then. This restricts us to only using the active engine
981          * while the previous virtualized request is inflight (so
982          * we reuse the register offsets). This is a very small
983          * hystersis on the greedy seelction algorithm.
984          */
985         inflight = intel_context_inflight(&ve->context);
986         if (inflight && inflight != engine)
987                 return false;
988
989         return true;
990 }
991
992 static struct virtual_engine *
993 first_virtual_engine(struct intel_engine_cs *engine)
994 {
995         struct intel_engine_execlists *el = &engine->execlists;
996         struct rb_node *rb = rb_first_cached(&el->virtual);
997
998         while (rb) {
999                 struct virtual_engine *ve =
1000                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1001                 struct i915_request *rq = READ_ONCE(ve->request);
1002
1003                 /* lazily cleanup after another engine handled rq */
1004                 if (!rq || !virtual_matches(ve, rq, engine)) {
1005                         rb_erase_cached(rb, &el->virtual);
1006                         RB_CLEAR_NODE(rb);
1007                         rb = rb_first_cached(&el->virtual);
1008                         continue;
1009                 }
1010
1011                 return ve;
1012         }
1013
1014         return NULL;
1015 }
1016
1017 static void virtual_xfer_context(struct virtual_engine *ve,
1018                                  struct intel_engine_cs *engine)
1019 {
1020         unsigned int n;
1021
1022         if (likely(engine == ve->siblings[0]))
1023                 return;
1024
1025         GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1026         if (!intel_engine_has_relative_mmio(engine))
1027                 lrc_update_offsets(&ve->context, engine);
1028
1029         /*
1030          * Move the bound engine to the top of the list for
1031          * future execution. We then kick this tasklet first
1032          * before checking others, so that we preferentially
1033          * reuse this set of bound registers.
1034          */
1035         for (n = 1; n < ve->num_siblings; n++) {
1036                 if (ve->siblings[n] == engine) {
1037                         swap(ve->siblings[n], ve->siblings[0]);
1038                         break;
1039                 }
1040         }
1041 }
1042
1043 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1044 {
1045         LIST_HEAD(list);
1046
1047         /*
1048          * We want to move the interrupted request to the back of
1049          * the round-robin list (i.e. its priority level), but
1050          * in doing so, we must then move all requests that were in
1051          * flight and were waiting for the interrupted request to
1052          * be run after it again.
1053          */
1054         do {
1055                 struct i915_dependency *p;
1056
1057                 GEM_BUG_ON(i915_request_is_active(rq));
1058                 list_move_tail(&rq->sched.link, pl);
1059
1060                 for_each_waiter(p, rq) {
1061                         struct i915_request *w =
1062                                 container_of(p->waiter, typeof(*w), sched);
1063
1064                         if (p->flags & I915_DEPENDENCY_WEAK)
1065                                 continue;
1066
1067                         /* Leave semaphores spinning on the other engines */
1068                         if (w->engine != rq->engine)
1069                                 continue;
1070
1071                         /* No waiter should start before its signaler */
1072                         GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1073                                    __i915_request_has_started(w) &&
1074                                    !__i915_request_is_complete(rq));
1075
1076                         if (!i915_request_is_ready(w))
1077                                 continue;
1078
1079                         if (rq_prio(w) < rq_prio(rq))
1080                                 continue;
1081
1082                         GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1083                         GEM_BUG_ON(i915_request_is_active(w));
1084                         list_move_tail(&w->sched.link, &list);
1085                 }
1086
1087                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1088         } while (rq);
1089 }
1090
1091 static void defer_active(struct intel_engine_cs *engine)
1092 {
1093         struct i915_request *rq;
1094
1095         rq = __unwind_incomplete_requests(engine);
1096         if (!rq)
1097                 return;
1098
1099         defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1100 }
1101
1102 static bool
1103 timeslice_yield(const struct intel_engine_execlists *el,
1104                 const struct i915_request *rq)
1105 {
1106         /*
1107          * Once bitten, forever smitten!
1108          *
1109          * If the active context ever busy-waited on a semaphore,
1110          * it will be treated as a hog until the end of its timeslice (i.e.
1111          * until it is scheduled out and replaced by a new submission,
1112          * possibly even its own lite-restore). The HW only sends an interrupt
1113          * on the first miss, and we do know if that semaphore has been
1114          * signaled, or even if it is now stuck on another semaphore. Play
1115          * safe, yield if it might be stuck -- it will be given a fresh
1116          * timeslice in the near future.
1117          */
1118         return rq->context->lrc.ccid == READ_ONCE(el->yield);
1119 }
1120
1121 static bool needs_timeslice(const struct intel_engine_cs *engine,
1122                             const struct i915_request *rq)
1123 {
1124         if (!intel_engine_has_timeslices(engine))
1125                 return false;
1126
1127         /* If not currently active, or about to switch, wait for next event */
1128         if (!rq || __i915_request_is_complete(rq))
1129                 return false;
1130
1131         /* We do not need to start the timeslice until after the ACK */
1132         if (READ_ONCE(engine->execlists.pending[0]))
1133                 return false;
1134
1135         /* If ELSP[1] is occupied, always check to see if worth slicing */
1136         if (!list_is_last_rcu(&rq->sched.link, &engine->active.requests)) {
1137                 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1138                 return true;
1139         }
1140
1141         /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1142         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) {
1143                 ENGINE_TRACE(engine, "timeslice required for queue\n");
1144                 return true;
1145         }
1146
1147         if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1148                 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1149                 return true;
1150         }
1151
1152         return false;
1153 }
1154
1155 static bool
1156 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1157 {
1158         const struct intel_engine_execlists *el = &engine->execlists;
1159
1160         if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1161                 return false;
1162
1163         if (!needs_timeslice(engine, rq))
1164                 return false;
1165
1166         return timer_expired(&el->timer) || timeslice_yield(el, rq);
1167 }
1168
1169 static unsigned long timeslice(const struct intel_engine_cs *engine)
1170 {
1171         return READ_ONCE(engine->props.timeslice_duration_ms);
1172 }
1173
1174 static void start_timeslice(struct intel_engine_cs *engine)
1175 {
1176         struct intel_engine_execlists *el = &engine->execlists;
1177         unsigned long duration;
1178
1179         /* Disable the timer if there is nothing to switch to */
1180         duration = 0;
1181         if (needs_timeslice(engine, *el->active)) {
1182                 /* Avoid continually prolonging an active timeslice */
1183                 if (timer_active(&el->timer)) {
1184                         /*
1185                          * If we just submitted a new ELSP after an old
1186                          * context, that context may have already consumed
1187                          * its timeslice, so recheck.
1188                          */
1189                         if (!timer_pending(&el->timer))
1190                                 tasklet_hi_schedule(&el->tasklet);
1191                         return;
1192                 }
1193
1194                 duration = timeslice(engine);
1195         }
1196
1197         set_timer_ms(&el->timer, duration);
1198 }
1199
1200 static void record_preemption(struct intel_engine_execlists *execlists)
1201 {
1202         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1203 }
1204
1205 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1206                                             const struct i915_request *rq)
1207 {
1208         if (!rq)
1209                 return 0;
1210
1211         /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1212         if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1213                 return 1;
1214
1215         return READ_ONCE(engine->props.preempt_timeout_ms);
1216 }
1217
1218 static void set_preempt_timeout(struct intel_engine_cs *engine,
1219                                 const struct i915_request *rq)
1220 {
1221         if (!intel_engine_has_preempt_reset(engine))
1222                 return;
1223
1224         set_timer_ms(&engine->execlists.preempt,
1225                      active_preempt_timeout(engine, rq));
1226 }
1227
1228 static bool completed(const struct i915_request *rq)
1229 {
1230         if (i915_request_has_sentinel(rq))
1231                 return false;
1232
1233         return __i915_request_is_complete(rq);
1234 }
1235
1236 static void execlists_dequeue(struct intel_engine_cs *engine)
1237 {
1238         struct intel_engine_execlists * const execlists = &engine->execlists;
1239         struct i915_request **port = execlists->pending;
1240         struct i915_request ** const last_port = port + execlists->port_mask;
1241         struct i915_request *last, * const *active;
1242         struct virtual_engine *ve;
1243         struct rb_node *rb;
1244         bool submit = false;
1245
1246         /*
1247          * Hardware submission is through 2 ports. Conceptually each port
1248          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1249          * static for a context, and unique to each, so we only execute
1250          * requests belonging to a single context from each ring. RING_HEAD
1251          * is maintained by the CS in the context image, it marks the place
1252          * where it got up to last time, and through RING_TAIL we tell the CS
1253          * where we want to execute up to this time.
1254          *
1255          * In this list the requests are in order of execution. Consecutive
1256          * requests from the same context are adjacent in the ringbuffer. We
1257          * can combine these requests into a single RING_TAIL update:
1258          *
1259          *              RING_HEAD...req1...req2
1260          *                                    ^- RING_TAIL
1261          * since to execute req2 the CS must first execute req1.
1262          *
1263          * Our goal then is to point each port to the end of a consecutive
1264          * sequence of requests as being the most optimal (fewest wake ups
1265          * and context switches) submission.
1266          */
1267
1268         spin_lock(&engine->active.lock);
1269
1270         /*
1271          * If the queue is higher priority than the last
1272          * request in the currently active context, submit afresh.
1273          * We will resubmit again afterwards in case we need to split
1274          * the active context to interject the preemption request,
1275          * i.e. we will retrigger preemption following the ack in case
1276          * of trouble.
1277          *
1278          */
1279         active = execlists->active;
1280         while ((last = *active) && completed(last))
1281                 active++;
1282
1283         if (last) {
1284                 if (need_preempt(engine, last)) {
1285                         ENGINE_TRACE(engine,
1286                                      "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1287                                      last->fence.context,
1288                                      last->fence.seqno,
1289                                      last->sched.attr.priority,
1290                                      execlists->queue_priority_hint);
1291                         record_preemption(execlists);
1292
1293                         /*
1294                          * Don't let the RING_HEAD advance past the breadcrumb
1295                          * as we unwind (and until we resubmit) so that we do
1296                          * not accidentally tell it to go backwards.
1297                          */
1298                         ring_set_paused(engine, 1);
1299
1300                         /*
1301                          * Note that we have not stopped the GPU at this point,
1302                          * so we are unwinding the incomplete requests as they
1303                          * remain inflight and so by the time we do complete
1304                          * the preemption, some of the unwound requests may
1305                          * complete!
1306                          */
1307                         __unwind_incomplete_requests(engine);
1308
1309                         last = NULL;
1310                 } else if (timeslice_expired(engine, last)) {
1311                         ENGINE_TRACE(engine,
1312                                      "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1313                                      yesno(timer_expired(&execlists->timer)),
1314                                      last->fence.context, last->fence.seqno,
1315                                      rq_prio(last),
1316                                      execlists->queue_priority_hint,
1317                                      yesno(timeslice_yield(execlists, last)));
1318
1319                         /*
1320                          * Consume this timeslice; ensure we start a new one.
1321                          *
1322                          * The timeslice expired, and we will unwind the
1323                          * running contexts and recompute the next ELSP.
1324                          * If that submit will be the same pair of contexts
1325                          * (due to dependency ordering), we will skip the
1326                          * submission. If we don't cancel the timer now,
1327                          * we will see that the timer has expired and
1328                          * reschedule the tasklet; continually until the
1329                          * next context switch or other preeemption event.
1330                          *
1331                          * Since we have decided to reschedule based on
1332                          * consumption of this timeslice, if we submit the
1333                          * same context again, grant it a full timeslice.
1334                          */
1335                         cancel_timer(&execlists->timer);
1336                         ring_set_paused(engine, 1);
1337                         defer_active(engine);
1338
1339                         /*
1340                          * Unlike for preemption, if we rewind and continue
1341                          * executing the same context as previously active,
1342                          * the order of execution will remain the same and
1343                          * the tail will only advance. We do not need to
1344                          * force a full context restore, as a lite-restore
1345                          * is sufficient to resample the monotonic TAIL.
1346                          *
1347                          * If we switch to any other context, similarly we
1348                          * will not rewind TAIL of current context, and
1349                          * normal save/restore will preserve state and allow
1350                          * us to later continue executing the same request.
1351                          */
1352                         last = NULL;
1353                 } else {
1354                         /*
1355                          * Otherwise if we already have a request pending
1356                          * for execution after the current one, we can
1357                          * just wait until the next CS event before
1358                          * queuing more. In either case we will force a
1359                          * lite-restore preemption event, but if we wait
1360                          * we hopefully coalesce several updates into a single
1361                          * submission.
1362                          */
1363                         if (active[1]) {
1364                                 /*
1365                                  * Even if ELSP[1] is occupied and not worthy
1366                                  * of timeslices, our queue might be.
1367                                  */
1368                                 spin_unlock(&engine->active.lock);
1369                                 return;
1370                         }
1371                 }
1372         }
1373
1374         /* XXX virtual is always taking precedence */
1375         while ((ve = first_virtual_engine(engine))) {
1376                 struct i915_request *rq;
1377
1378                 spin_lock(&ve->base.active.lock);
1379
1380                 rq = ve->request;
1381                 if (unlikely(!virtual_matches(ve, rq, engine)))
1382                         goto unlock; /* lost the race to a sibling */
1383
1384                 GEM_BUG_ON(rq->engine != &ve->base);
1385                 GEM_BUG_ON(rq->context != &ve->context);
1386
1387                 if (unlikely(rq_prio(rq) < queue_prio(execlists))) {
1388                         spin_unlock(&ve->base.active.lock);
1389                         break;
1390                 }
1391
1392                 if (last && !can_merge_rq(last, rq)) {
1393                         spin_unlock(&ve->base.active.lock);
1394                         spin_unlock(&engine->active.lock);
1395                         return; /* leave this for another sibling */
1396                 }
1397
1398                 ENGINE_TRACE(engine,
1399                              "virtual rq=%llx:%lld%s, new engine? %s\n",
1400                              rq->fence.context,
1401                              rq->fence.seqno,
1402                              __i915_request_is_complete(rq) ? "!" :
1403                              __i915_request_has_started(rq) ? "*" :
1404                              "",
1405                              yesno(engine != ve->siblings[0]));
1406
1407                 WRITE_ONCE(ve->request, NULL);
1408                 WRITE_ONCE(ve->base.execlists.queue_priority_hint, INT_MIN);
1409
1410                 rb = &ve->nodes[engine->id].rb;
1411                 rb_erase_cached(rb, &execlists->virtual);
1412                 RB_CLEAR_NODE(rb);
1413
1414                 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1415                 WRITE_ONCE(rq->engine, engine);
1416
1417                 if (__i915_request_submit(rq)) {
1418                         /*
1419                          * Only after we confirm that we will submit
1420                          * this request (i.e. it has not already
1421                          * completed), do we want to update the context.
1422                          *
1423                          * This serves two purposes. It avoids
1424                          * unnecessary work if we are resubmitting an
1425                          * already completed request after timeslicing.
1426                          * But more importantly, it prevents us altering
1427                          * ve->siblings[] on an idle context, where
1428                          * we may be using ve->siblings[] in
1429                          * virtual_context_enter / virtual_context_exit.
1430                          */
1431                         virtual_xfer_context(ve, engine);
1432                         GEM_BUG_ON(ve->siblings[0] != engine);
1433
1434                         submit = true;
1435                         last = rq;
1436                 }
1437
1438                 i915_request_put(rq);
1439 unlock:
1440                 spin_unlock(&ve->base.active.lock);
1441
1442                 /*
1443                  * Hmm, we have a bunch of virtual engine requests,
1444                  * but the first one was already completed (thanks
1445                  * preempt-to-busy!). Keep looking at the veng queue
1446                  * until we have no more relevant requests (i.e.
1447                  * the normal submit queue has higher priority).
1448                  */
1449                 if (submit)
1450                         break;
1451         }
1452
1453         while ((rb = rb_first_cached(&execlists->queue))) {
1454                 struct i915_priolist *p = to_priolist(rb);
1455                 struct i915_request *rq, *rn;
1456
1457                 priolist_for_each_request_consume(rq, rn, p) {
1458                         bool merge = true;
1459
1460                         /*
1461                          * Can we combine this request with the current port?
1462                          * It has to be the same context/ringbuffer and not
1463                          * have any exceptions (e.g. GVT saying never to
1464                          * combine contexts).
1465                          *
1466                          * If we can combine the requests, we can execute both
1467                          * by updating the RING_TAIL to point to the end of the
1468                          * second request, and so we never need to tell the
1469                          * hardware about the first.
1470                          */
1471                         if (last && !can_merge_rq(last, rq)) {
1472                                 /*
1473                                  * If we are on the second port and cannot
1474                                  * combine this request with the last, then we
1475                                  * are done.
1476                                  */
1477                                 if (port == last_port)
1478                                         goto done;
1479
1480                                 /*
1481                                  * We must not populate both ELSP[] with the
1482                                  * same LRCA, i.e. we must submit 2 different
1483                                  * contexts if we submit 2 ELSP.
1484                                  */
1485                                 if (last->context == rq->context)
1486                                         goto done;
1487
1488                                 if (i915_request_has_sentinel(last))
1489                                         goto done;
1490
1491                                 /*
1492                                  * We avoid submitting virtual requests into
1493                                  * the secondary ports so that we can migrate
1494                                  * the request immediately to another engine
1495                                  * rather than wait for the primary request.
1496                                  */
1497                                 if (rq->execution_mask != engine->mask)
1498                                         goto done;
1499
1500                                 /*
1501                                  * If GVT overrides us we only ever submit
1502                                  * port[0], leaving port[1] empty. Note that we
1503                                  * also have to be careful that we don't queue
1504                                  * the same context (even though a different
1505                                  * request) to the second port.
1506                                  */
1507                                 if (ctx_single_port_submission(last->context) ||
1508                                     ctx_single_port_submission(rq->context))
1509                                         goto done;
1510
1511                                 merge = false;
1512                         }
1513
1514                         if (__i915_request_submit(rq)) {
1515                                 if (!merge) {
1516                                         *port++ = i915_request_get(last);
1517                                         last = NULL;
1518                                 }
1519
1520                                 GEM_BUG_ON(last &&
1521                                            !can_merge_ctx(last->context,
1522                                                           rq->context));
1523                                 GEM_BUG_ON(last &&
1524                                            i915_seqno_passed(last->fence.seqno,
1525                                                              rq->fence.seqno));
1526
1527                                 submit = true;
1528                                 last = rq;
1529                         }
1530                 }
1531
1532                 rb_erase_cached(&p->node, &execlists->queue);
1533                 i915_priolist_free(p);
1534         }
1535 done:
1536         *port++ = i915_request_get(last);
1537
1538         /*
1539          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1540          *
1541          * We choose the priority hint such that if we add a request of greater
1542          * priority than this, we kick the submission tasklet to decide on
1543          * the right order of submitting the requests to hardware. We must
1544          * also be prepared to reorder requests as they are in-flight on the
1545          * HW. We derive the priority hint then as the first "hole" in
1546          * the HW submission ports and if there are no available slots,
1547          * the priority of the lowest executing request, i.e. last.
1548          *
1549          * When we do receive a higher priority request ready to run from the
1550          * user, see queue_request(), the priority hint is bumped to that
1551          * request triggering preemption on the next dequeue (or subsequent
1552          * interrupt for secondary ports).
1553          */
1554         execlists->queue_priority_hint = queue_prio(execlists);
1555         spin_unlock(&engine->active.lock);
1556
1557         /*
1558          * We can skip poking the HW if we ended up with exactly the same set
1559          * of requests as currently running, e.g. trying to timeslice a pair
1560          * of ordered contexts.
1561          */
1562         if (submit &&
1563             memcmp(active,
1564                    execlists->pending,
1565                    (port - execlists->pending) * sizeof(*port))) {
1566                 *port = NULL;
1567                 while (port-- != execlists->pending)
1568                         execlists_schedule_in(*port, port - execlists->pending);
1569
1570                 WRITE_ONCE(execlists->yield, -1);
1571                 set_preempt_timeout(engine, *active);
1572                 execlists_submit_ports(engine);
1573         } else {
1574                 ring_set_paused(engine, 0);
1575                 while (port-- != execlists->pending)
1576                         i915_request_put(*port);
1577                 *execlists->pending = NULL;
1578         }
1579 }
1580
1581 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1582 {
1583         local_irq_disable(); /* Suspend interrupts across request submission */
1584         execlists_dequeue(engine);
1585         local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1586 }
1587
1588 static void clear_ports(struct i915_request **ports, int count)
1589 {
1590         memset_p((void **)ports, NULL, count);
1591 }
1592
1593 static void
1594 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1595 {
1596         /* A memcpy_p() would be very useful here! */
1597         while (count--)
1598                 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1599 }
1600
1601 static struct i915_request **
1602 cancel_port_requests(struct intel_engine_execlists * const execlists,
1603                      struct i915_request **inactive)
1604 {
1605         struct i915_request * const *port;
1606
1607         for (port = execlists->pending; *port; port++)
1608                 *inactive++ = *port;
1609         clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1610
1611         /* Mark the end of active before we overwrite *active */
1612         for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1613                 *inactive++ = *port;
1614         clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1615
1616         smp_wmb(); /* complete the seqlock for execlists_active() */
1617         WRITE_ONCE(execlists->active, execlists->inflight);
1618
1619         /* Having cancelled all outstanding process_csb(), stop their timers */
1620         GEM_BUG_ON(execlists->pending[0]);
1621         cancel_timer(&execlists->timer);
1622         cancel_timer(&execlists->preempt);
1623
1624         return inactive;
1625 }
1626
1627 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1628 {
1629         clflush((void *)first);
1630         clflush((void *)last);
1631 }
1632
1633 /*
1634  * Starting with Gen12, the status has a new format:
1635  *
1636  *     bit  0:     switched to new queue
1637  *     bit  1:     reserved
1638  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1639  *                 switch detail is set to "wait on semaphore"
1640  *     bits 3-5:   engine class
1641  *     bits 6-11:  engine instance
1642  *     bits 12-14: reserved
1643  *     bits 15-25: sw context id of the lrc the GT switched to
1644  *     bits 26-31: sw counter of the lrc the GT switched to
1645  *     bits 32-35: context switch detail
1646  *                  - 0: ctx complete
1647  *                  - 1: wait on sync flip
1648  *                  - 2: wait on vblank
1649  *                  - 3: wait on scanline
1650  *                  - 4: wait on semaphore
1651  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1652  *                       WAIT_FOR_EVENT)
1653  *     bit  36:    reserved
1654  *     bits 37-43: wait detail (for switch detail 1 to 4)
1655  *     bits 44-46: reserved
1656  *     bits 47-57: sw context id of the lrc the GT switched away from
1657  *     bits 58-63: sw counter of the lrc the GT switched away from
1658  */
1659 static bool gen12_csb_parse(const u64 csb)
1660 {
1661         bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
1662         bool new_queue =
1663                 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1664
1665         /*
1666          * The context switch detail is not guaranteed to be 5 when a preemption
1667          * occurs, so we can't just check for that. The check below works for
1668          * all the cases we care about, including preemptions of WAIT
1669          * instructions and lite-restore. Preempt-to-idle via the CTRL register
1670          * would require some extra handling, but we don't support that.
1671          */
1672         if (!ctx_away_valid || new_queue) {
1673                 GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
1674                 return true;
1675         }
1676
1677         /*
1678          * switch detail = 5 is covered by the case above and we do not expect a
1679          * context switch on an unsuccessful wait instruction since we always
1680          * use polling mode.
1681          */
1682         GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1683         return false;
1684 }
1685
1686 static bool gen8_csb_parse(const u64 csb)
1687 {
1688         return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1689 }
1690
1691 static noinline u64
1692 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1693 {
1694         u64 entry;
1695
1696         /*
1697          * Reading from the HWSP has one particular advantage: we can detect
1698          * a stale entry. Since the write into HWSP is broken, we have no reason
1699          * to trust the HW at all, the mmio entry may equally be unordered, so
1700          * we prefer the path that is self-checking and as a last resort,
1701          * return the mmio value.
1702          *
1703          * tgl,dg1:HSDES#22011327657
1704          */
1705         preempt_disable();
1706         if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1707                 int idx = csb - engine->execlists.csb_status;
1708                 int status;
1709
1710                 status = GEN8_EXECLISTS_STATUS_BUF;
1711                 if (idx >= 6) {
1712                         status = GEN11_EXECLISTS_STATUS_BUF2;
1713                         idx -= 6;
1714                 }
1715                 status += sizeof(u64) * idx;
1716
1717                 entry = intel_uncore_read64(engine->uncore,
1718                                             _MMIO(engine->mmio_base + status));
1719         }
1720         preempt_enable();
1721
1722         return entry;
1723 }
1724
1725 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1726 {
1727         u64 entry = READ_ONCE(*csb);
1728
1729         /*
1730          * Unfortunately, the GPU does not always serialise its write
1731          * of the CSB entries before its write of the CSB pointer, at least
1732          * from the perspective of the CPU, using what is known as a Global
1733          * Observation Point. We may read a new CSB tail pointer, but then
1734          * read the stale CSB entries, causing us to misinterpret the
1735          * context-switch events, and eventually declare the GPU hung.
1736          *
1737          * icl:HSDES#1806554093
1738          * tgl:HSDES#22011248461
1739          */
1740         if (unlikely(entry == -1))
1741                 entry = wa_csb_read(engine, csb);
1742
1743         /* Consume this entry so that we can spot its future reuse. */
1744         WRITE_ONCE(*csb, -1);
1745
1746         /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1747         return entry;
1748 }
1749
1750 static void new_timeslice(struct intel_engine_execlists *el)
1751 {
1752         /* By cancelling, we will start afresh in start_timeslice() */
1753         cancel_timer(&el->timer);
1754 }
1755
1756 static struct i915_request **
1757 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1758 {
1759         struct intel_engine_execlists * const execlists = &engine->execlists;
1760         u64 * const buf = execlists->csb_status;
1761         const u8 num_entries = execlists->csb_size;
1762         struct i915_request **prev;
1763         u8 head, tail;
1764
1765         /*
1766          * As we modify our execlists state tracking we require exclusive
1767          * access. Either we are inside the tasklet, or the tasklet is disabled
1768          * and we assume that is only inside the reset paths and so serialised.
1769          */
1770         GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
1771                    !reset_in_progress(execlists));
1772
1773         /*
1774          * Note that csb_write, csb_status may be either in HWSP or mmio.
1775          * When reading from the csb_write mmio register, we have to be
1776          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1777          * the low 4bits. As it happens we know the next 4bits are always
1778          * zero and so we can simply masked off the low u8 of the register
1779          * and treat it identically to reading from the HWSP (without having
1780          * to use explicit shifting and masking, and probably bifurcating
1781          * the code to handle the legacy mmio read).
1782          */
1783         head = execlists->csb_head;
1784         tail = READ_ONCE(*execlists->csb_write);
1785         if (unlikely(head == tail))
1786                 return inactive;
1787
1788         /*
1789          * We will consume all events from HW, or at least pretend to.
1790          *
1791          * The sequence of events from the HW is deterministic, and derived
1792          * from our writes to the ELSP, with a smidgen of variability for
1793          * the arrival of the asynchronous requests wrt to the inflight
1794          * execution. If the HW sends an event that does not correspond with
1795          * the one we are expecting, we have to abandon all hope as we lose
1796          * all tracking of what the engine is actually executing. We will
1797          * only detect we are out of sequence with the HW when we get an
1798          * 'impossible' event because we have already drained our own
1799          * preemption/promotion queue. If this occurs, we know that we likely
1800          * lost track of execution earlier and must unwind and restart, the
1801          * simplest way is by stop processing the event queue and force the
1802          * engine to reset.
1803          */
1804         execlists->csb_head = tail;
1805         ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1806
1807         /*
1808          * Hopefully paired with a wmb() in HW!
1809          *
1810          * We must complete the read of the write pointer before any reads
1811          * from the CSB, so that we do not see stale values. Without an rmb
1812          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1813          * we perform the READ_ONCE(*csb_write).
1814          */
1815         rmb();
1816
1817         /* Remember who was last running under the timer */
1818         prev = inactive;
1819         *prev = NULL;
1820
1821         do {
1822                 bool promote;
1823                 u64 csb;
1824
1825                 if (++head == num_entries)
1826                         head = 0;
1827
1828                 /*
1829                  * We are flying near dragons again.
1830                  *
1831                  * We hold a reference to the request in execlist_port[]
1832                  * but no more than that. We are operating in softirq
1833                  * context and so cannot hold any mutex or sleep. That
1834                  * prevents us stopping the requests we are processing
1835                  * in port[] from being retired simultaneously (the
1836                  * breadcrumb will be complete before we see the
1837                  * context-switch). As we only hold the reference to the
1838                  * request, any pointer chasing underneath the request
1839                  * is subject to a potential use-after-free. Thus we
1840                  * store all of the bookkeeping within port[] as
1841                  * required, and avoid using unguarded pointers beneath
1842                  * request itself. The same applies to the atomic
1843                  * status notifier.
1844                  */
1845
1846                 csb = csb_read(engine, buf + head);
1847                 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1848                              head, upper_32_bits(csb), lower_32_bits(csb));
1849
1850                 if (GRAPHICS_VER(engine->i915) >= 12)
1851                         promote = gen12_csb_parse(csb);
1852                 else
1853                         promote = gen8_csb_parse(csb);
1854                 if (promote) {
1855                         struct i915_request * const *old = execlists->active;
1856
1857                         if (GEM_WARN_ON(!*execlists->pending)) {
1858                                 execlists->error_interrupt |= ERROR_CSB;
1859                                 break;
1860                         }
1861
1862                         ring_set_paused(engine, 0);
1863
1864                         /* Point active to the new ELSP; prevent overwriting */
1865                         WRITE_ONCE(execlists->active, execlists->pending);
1866                         smp_wmb(); /* notify execlists_active() */
1867
1868                         /* cancel old inflight, prepare for switch */
1869                         trace_ports(execlists, "preempted", old);
1870                         while (*old)
1871                                 *inactive++ = *old++;
1872
1873                         /* switch pending to inflight */
1874                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1875                         copy_ports(execlists->inflight,
1876                                    execlists->pending,
1877                                    execlists_num_ports(execlists));
1878                         smp_wmb(); /* complete the seqlock */
1879                         WRITE_ONCE(execlists->active, execlists->inflight);
1880
1881                         /* XXX Magic delay for tgl */
1882                         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1883
1884                         WRITE_ONCE(execlists->pending[0], NULL);
1885                 } else {
1886                         if (GEM_WARN_ON(!*execlists->active)) {
1887                                 execlists->error_interrupt |= ERROR_CSB;
1888                                 break;
1889                         }
1890
1891                         /* port0 completed, advanced to port1 */
1892                         trace_ports(execlists, "completed", execlists->active);
1893
1894                         /*
1895                          * We rely on the hardware being strongly
1896                          * ordered, that the breadcrumb write is
1897                          * coherent (visible from the CPU) before the
1898                          * user interrupt is processed. One might assume
1899                          * that the breadcrumb write being before the
1900                          * user interrupt and the CS event for the context
1901                          * switch would therefore be before the CS event
1902                          * itself...
1903                          */
1904                         if (GEM_SHOW_DEBUG() &&
1905                             !__i915_request_is_complete(*execlists->active)) {
1906                                 struct i915_request *rq = *execlists->active;
1907                                 const u32 *regs __maybe_unused =
1908                                         rq->context->lrc_reg_state;
1909
1910                                 ENGINE_TRACE(engine,
1911                                              "context completed before request!\n");
1912                                 ENGINE_TRACE(engine,
1913                                              "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1914                                              ENGINE_READ(engine, RING_START),
1915                                              ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1916                                              ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1917                                              ENGINE_READ(engine, RING_CTL),
1918                                              ENGINE_READ(engine, RING_MI_MODE));
1919                                 ENGINE_TRACE(engine,
1920                                              "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1921                                              i915_ggtt_offset(rq->ring->vma),
1922                                              rq->head, rq->tail,
1923                                              rq->fence.context,
1924                                              lower_32_bits(rq->fence.seqno),
1925                                              hwsp_seqno(rq));
1926                                 ENGINE_TRACE(engine,
1927                                              "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1928                                              regs[CTX_RING_START],
1929                                              regs[CTX_RING_HEAD],
1930                                              regs[CTX_RING_TAIL]);
1931                         }
1932
1933                         *inactive++ = *execlists->active++;
1934
1935                         GEM_BUG_ON(execlists->active - execlists->inflight >
1936                                    execlists_num_ports(execlists));
1937                 }
1938         } while (head != tail);
1939
1940         /*
1941          * Gen11 has proven to fail wrt global observation point between
1942          * entry and tail update, failing on the ordering and thus
1943          * we see an old entry in the context status buffer.
1944          *
1945          * Forcibly evict out entries for the next gpu csb update,
1946          * to increase the odds that we get a fresh entries with non
1947          * working hardware. The cost for doing so comes out mostly with
1948          * the wash as hardware, working or not, will need to do the
1949          * invalidation before.
1950          */
1951         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1952
1953         /*
1954          * We assume that any event reflects a change in context flow
1955          * and merits a fresh timeslice. We reinstall the timer after
1956          * inspecting the queue to see if we need to resumbit.
1957          */
1958         if (*prev != *execlists->active) /* elide lite-restores */
1959                 new_timeslice(execlists);
1960
1961         return inactive;
1962 }
1963
1964 static void post_process_csb(struct i915_request **port,
1965                              struct i915_request **last)
1966 {
1967         while (port != last)
1968                 execlists_schedule_out(*port++);
1969 }
1970
1971 static void __execlists_hold(struct i915_request *rq)
1972 {
1973         LIST_HEAD(list);
1974
1975         do {
1976                 struct i915_dependency *p;
1977
1978                 if (i915_request_is_active(rq))
1979                         __i915_request_unsubmit(rq);
1980
1981                 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1982                 list_move_tail(&rq->sched.link, &rq->engine->active.hold);
1983                 i915_request_set_hold(rq);
1984                 RQ_TRACE(rq, "on hold\n");
1985
1986                 for_each_waiter(p, rq) {
1987                         struct i915_request *w =
1988                                 container_of(p->waiter, typeof(*w), sched);
1989
1990                         if (p->flags & I915_DEPENDENCY_WEAK)
1991                                 continue;
1992
1993                         /* Leave semaphores spinning on the other engines */
1994                         if (w->engine != rq->engine)
1995                                 continue;
1996
1997                         if (!i915_request_is_ready(w))
1998                                 continue;
1999
2000                         if (__i915_request_is_complete(w))
2001                                 continue;
2002
2003                         if (i915_request_on_hold(w))
2004                                 continue;
2005
2006                         list_move_tail(&w->sched.link, &list);
2007                 }
2008
2009                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2010         } while (rq);
2011 }
2012
2013 static bool execlists_hold(struct intel_engine_cs *engine,
2014                            struct i915_request *rq)
2015 {
2016         if (i915_request_on_hold(rq))
2017                 return false;
2018
2019         spin_lock_irq(&engine->active.lock);
2020
2021         if (__i915_request_is_complete(rq)) { /* too late! */
2022                 rq = NULL;
2023                 goto unlock;
2024         }
2025
2026         /*
2027          * Transfer this request onto the hold queue to prevent it
2028          * being resumbitted to HW (and potentially completed) before we have
2029          * released it. Since we may have already submitted following
2030          * requests, we need to remove those as well.
2031          */
2032         GEM_BUG_ON(i915_request_on_hold(rq));
2033         GEM_BUG_ON(rq->engine != engine);
2034         __execlists_hold(rq);
2035         GEM_BUG_ON(list_empty(&engine->active.hold));
2036
2037 unlock:
2038         spin_unlock_irq(&engine->active.lock);
2039         return rq;
2040 }
2041
2042 static bool hold_request(const struct i915_request *rq)
2043 {
2044         struct i915_dependency *p;
2045         bool result = false;
2046
2047         /*
2048          * If one of our ancestors is on hold, we must also be on hold,
2049          * otherwise we will bypass it and execute before it.
2050          */
2051         rcu_read_lock();
2052         for_each_signaler(p, rq) {
2053                 const struct i915_request *s =
2054                         container_of(p->signaler, typeof(*s), sched);
2055
2056                 if (s->engine != rq->engine)
2057                         continue;
2058
2059                 result = i915_request_on_hold(s);
2060                 if (result)
2061                         break;
2062         }
2063         rcu_read_unlock();
2064
2065         return result;
2066 }
2067
2068 static void __execlists_unhold(struct i915_request *rq)
2069 {
2070         LIST_HEAD(list);
2071
2072         do {
2073                 struct i915_dependency *p;
2074
2075                 RQ_TRACE(rq, "hold release\n");
2076
2077                 GEM_BUG_ON(!i915_request_on_hold(rq));
2078                 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2079
2080                 i915_request_clear_hold(rq);
2081                 list_move_tail(&rq->sched.link,
2082                                i915_sched_lookup_priolist(rq->engine,
2083                                                           rq_prio(rq)));
2084                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2085
2086                 /* Also release any children on this engine that are ready */
2087                 for_each_waiter(p, rq) {
2088                         struct i915_request *w =
2089                                 container_of(p->waiter, typeof(*w), sched);
2090
2091                         if (p->flags & I915_DEPENDENCY_WEAK)
2092                                 continue;
2093
2094                         /* Propagate any change in error status */
2095                         if (rq->fence.error)
2096                                 i915_request_set_error_once(w, rq->fence.error);
2097
2098                         if (w->engine != rq->engine)
2099                                 continue;
2100
2101                         if (!i915_request_on_hold(w))
2102                                 continue;
2103
2104                         /* Check that no other parents are also on hold */
2105                         if (hold_request(w))
2106                                 continue;
2107
2108                         list_move_tail(&w->sched.link, &list);
2109                 }
2110
2111                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2112         } while (rq);
2113 }
2114
2115 static void execlists_unhold(struct intel_engine_cs *engine,
2116                              struct i915_request *rq)
2117 {
2118         spin_lock_irq(&engine->active.lock);
2119
2120         /*
2121          * Move this request back to the priority queue, and all of its
2122          * children and grandchildren that were suspended along with it.
2123          */
2124         __execlists_unhold(rq);
2125
2126         if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2127                 engine->execlists.queue_priority_hint = rq_prio(rq);
2128                 tasklet_hi_schedule(&engine->execlists.tasklet);
2129         }
2130
2131         spin_unlock_irq(&engine->active.lock);
2132 }
2133
2134 struct execlists_capture {
2135         struct work_struct work;
2136         struct i915_request *rq;
2137         struct i915_gpu_coredump *error;
2138 };
2139
2140 static void execlists_capture_work(struct work_struct *work)
2141 {
2142         struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2143         const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2144         struct intel_engine_cs *engine = cap->rq->engine;
2145         struct intel_gt_coredump *gt = cap->error->gt;
2146         struct intel_engine_capture_vma *vma;
2147
2148         /* Compress all the objects attached to the request, slow! */
2149         vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2150         if (vma) {
2151                 struct i915_vma_compress *compress =
2152                         i915_vma_capture_prepare(gt);
2153
2154                 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2155                 i915_vma_capture_finish(gt, compress);
2156         }
2157
2158         gt->simulated = gt->engine->simulated;
2159         cap->error->simulated = gt->simulated;
2160
2161         /* Publish the error state, and announce it to the world */
2162         i915_error_state_store(cap->error);
2163         i915_gpu_coredump_put(cap->error);
2164
2165         /* Return this request and all that depend upon it for signaling */
2166         execlists_unhold(engine, cap->rq);
2167         i915_request_put(cap->rq);
2168
2169         kfree(cap);
2170 }
2171
2172 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2173 {
2174         const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2175         struct execlists_capture *cap;
2176
2177         cap = kmalloc(sizeof(*cap), gfp);
2178         if (!cap)
2179                 return NULL;
2180
2181         cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2182         if (!cap->error)
2183                 goto err_cap;
2184
2185         cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2186         if (!cap->error->gt)
2187                 goto err_gpu;
2188
2189         cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2190         if (!cap->error->gt->engine)
2191                 goto err_gt;
2192
2193         cap->error->gt->engine->hung = true;
2194
2195         return cap;
2196
2197 err_gt:
2198         kfree(cap->error->gt);
2199 err_gpu:
2200         kfree(cap->error);
2201 err_cap:
2202         kfree(cap);
2203         return NULL;
2204 }
2205
2206 static struct i915_request *
2207 active_context(struct intel_engine_cs *engine, u32 ccid)
2208 {
2209         const struct intel_engine_execlists * const el = &engine->execlists;
2210         struct i915_request * const *port, *rq;
2211
2212         /*
2213          * Use the most recent result from process_csb(), but just in case
2214          * we trigger an error (via interrupt) before the first CS event has
2215          * been written, peek at the next submission.
2216          */
2217
2218         for (port = el->active; (rq = *port); port++) {
2219                 if (rq->context->lrc.ccid == ccid) {
2220                         ENGINE_TRACE(engine,
2221                                      "ccid:%x found at active:%zd\n",
2222                                      ccid, port - el->active);
2223                         return rq;
2224                 }
2225         }
2226
2227         for (port = el->pending; (rq = *port); port++) {
2228                 if (rq->context->lrc.ccid == ccid) {
2229                         ENGINE_TRACE(engine,
2230                                      "ccid:%x found at pending:%zd\n",
2231                                      ccid, port - el->pending);
2232                         return rq;
2233                 }
2234         }
2235
2236         ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2237         return NULL;
2238 }
2239
2240 static u32 active_ccid(struct intel_engine_cs *engine)
2241 {
2242         return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2243 }
2244
2245 static void execlists_capture(struct intel_engine_cs *engine)
2246 {
2247         struct execlists_capture *cap;
2248
2249         if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2250                 return;
2251
2252         /*
2253          * We need to _quickly_ capture the engine state before we reset.
2254          * We are inside an atomic section (softirq) here and we are delaying
2255          * the forced preemption event.
2256          */
2257         cap = capture_regs(engine);
2258         if (!cap)
2259                 return;
2260
2261         spin_lock_irq(&engine->active.lock);
2262         cap->rq = active_context(engine, active_ccid(engine));
2263         if (cap->rq) {
2264                 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2265                 cap->rq = i915_request_get_rcu(cap->rq);
2266         }
2267         spin_unlock_irq(&engine->active.lock);
2268         if (!cap->rq)
2269                 goto err_free;
2270
2271         /*
2272          * Remove the request from the execlists queue, and take ownership
2273          * of the request. We pass it to our worker who will _slowly_ compress
2274          * all the pages the _user_ requested for debugging their batch, after
2275          * which we return it to the queue for signaling.
2276          *
2277          * By removing them from the execlists queue, we also remove the
2278          * requests from being processed by __unwind_incomplete_requests()
2279          * during the intel_engine_reset(), and so they will *not* be replayed
2280          * afterwards.
2281          *
2282          * Note that because we have not yet reset the engine at this point,
2283          * it is possible for the request that we have identified as being
2284          * guilty, did in fact complete and we will then hit an arbitration
2285          * point allowing the outstanding preemption to succeed. The likelihood
2286          * of that is very low (as capturing of the engine registers should be
2287          * fast enough to run inside an irq-off atomic section!), so we will
2288          * simply hold that request accountable for being non-preemptible
2289          * long enough to force the reset.
2290          */
2291         if (!execlists_hold(engine, cap->rq))
2292                 goto err_rq;
2293
2294         INIT_WORK(&cap->work, execlists_capture_work);
2295         schedule_work(&cap->work);
2296         return;
2297
2298 err_rq:
2299         i915_request_put(cap->rq);
2300 err_free:
2301         i915_gpu_coredump_put(cap->error);
2302         kfree(cap);
2303 }
2304
2305 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2306 {
2307         const unsigned int bit = I915_RESET_ENGINE + engine->id;
2308         unsigned long *lock = &engine->gt->reset.flags;
2309
2310         if (!intel_has_reset_engine(engine->gt))
2311                 return;
2312
2313         if (test_and_set_bit(bit, lock))
2314                 return;
2315
2316         ENGINE_TRACE(engine, "reset for %s\n", msg);
2317
2318         /* Mark this tasklet as disabled to avoid waiting for it to complete */
2319         tasklet_disable_nosync(&engine->execlists.tasklet);
2320
2321         ring_set_paused(engine, 1); /* Freeze the current request in place */
2322         execlists_capture(engine);
2323         intel_engine_reset(engine, msg);
2324
2325         tasklet_enable(&engine->execlists.tasklet);
2326         clear_and_wake_up_bit(bit, lock);
2327 }
2328
2329 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2330 {
2331         const struct timer_list *t = &engine->execlists.preempt;
2332
2333         if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2334                 return false;
2335
2336         if (!timer_expired(t))
2337                 return false;
2338
2339         return engine->execlists.pending[0];
2340 }
2341
2342 /*
2343  * Check the unread Context Status Buffers and manage the submission of new
2344  * contexts to the ELSP accordingly.
2345  */
2346 static void execlists_submission_tasklet(struct tasklet_struct *t)
2347 {
2348         struct intel_engine_cs * const engine =
2349                 from_tasklet(engine, t, execlists.tasklet);
2350         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2351         struct i915_request **inactive;
2352
2353         rcu_read_lock();
2354         inactive = process_csb(engine, post);
2355         GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2356
2357         if (unlikely(preempt_timeout(engine))) {
2358                 cancel_timer(&engine->execlists.preempt);
2359                 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2360         }
2361
2362         if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2363                 const char *msg;
2364
2365                 /* Generate the error message in priority wrt to the user! */
2366                 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2367                         msg = "CS error"; /* thrown by a user payload */
2368                 else if (engine->execlists.error_interrupt & ERROR_CSB)
2369                         msg = "invalid CSB event";
2370                 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2371                         msg = "preemption time out";
2372                 else
2373                         msg = "internal error";
2374
2375                 engine->execlists.error_interrupt = 0;
2376                 execlists_reset(engine, msg);
2377         }
2378
2379         if (!engine->execlists.pending[0]) {
2380                 execlists_dequeue_irq(engine);
2381                 start_timeslice(engine);
2382         }
2383
2384         post_process_csb(post, inactive);
2385         rcu_read_unlock();
2386 }
2387
2388 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2389 {
2390         bool tasklet = false;
2391
2392         if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2393                 u32 eir;
2394
2395                 /* Upper 16b are the enabling mask, rsvd for internal errors */
2396                 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2397                 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2398
2399                 /* Disable the error interrupt until after the reset */
2400                 if (likely(eir)) {
2401                         ENGINE_WRITE(engine, RING_EMR, ~0u);
2402                         ENGINE_WRITE(engine, RING_EIR, eir);
2403                         WRITE_ONCE(engine->execlists.error_interrupt, eir);
2404                         tasklet = true;
2405                 }
2406         }
2407
2408         if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2409                 WRITE_ONCE(engine->execlists.yield,
2410                            ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2411                 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2412                              engine->execlists.yield);
2413                 if (del_timer(&engine->execlists.timer))
2414                         tasklet = true;
2415         }
2416
2417         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2418                 tasklet = true;
2419
2420         if (iir & GT_RENDER_USER_INTERRUPT)
2421                 intel_engine_signal_breadcrumbs(engine);
2422
2423         if (tasklet)
2424                 tasklet_hi_schedule(&engine->execlists.tasklet);
2425 }
2426
2427 static void __execlists_kick(struct intel_engine_execlists *execlists)
2428 {
2429         /* Kick the tasklet for some interrupt coalescing and reset handling */
2430         tasklet_hi_schedule(&execlists->tasklet);
2431 }
2432
2433 #define execlists_kick(t, member) \
2434         __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2435
2436 static void execlists_timeslice(struct timer_list *timer)
2437 {
2438         execlists_kick(timer, timer);
2439 }
2440
2441 static void execlists_preempt(struct timer_list *timer)
2442 {
2443         execlists_kick(timer, preempt);
2444 }
2445
2446 static void queue_request(struct intel_engine_cs *engine,
2447                           struct i915_request *rq)
2448 {
2449         GEM_BUG_ON(!list_empty(&rq->sched.link));
2450         list_add_tail(&rq->sched.link,
2451                       i915_sched_lookup_priolist(engine, rq_prio(rq)));
2452         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2453 }
2454
2455 static bool submit_queue(struct intel_engine_cs *engine,
2456                          const struct i915_request *rq)
2457 {
2458         struct intel_engine_execlists *execlists = &engine->execlists;
2459
2460         if (rq_prio(rq) <= execlists->queue_priority_hint)
2461                 return false;
2462
2463         execlists->queue_priority_hint = rq_prio(rq);
2464         return true;
2465 }
2466
2467 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2468                              const struct i915_request *rq)
2469 {
2470         GEM_BUG_ON(i915_request_on_hold(rq));
2471         return !list_empty(&engine->active.hold) && hold_request(rq);
2472 }
2473
2474 static void execlists_submit_request(struct i915_request *request)
2475 {
2476         struct intel_engine_cs *engine = request->engine;
2477         unsigned long flags;
2478
2479         /* Will be called from irq-context when using foreign fences. */
2480         spin_lock_irqsave(&engine->active.lock, flags);
2481
2482         if (unlikely(ancestor_on_hold(engine, request))) {
2483                 RQ_TRACE(request, "ancestor on hold\n");
2484                 list_add_tail(&request->sched.link, &engine->active.hold);
2485                 i915_request_set_hold(request);
2486         } else {
2487                 queue_request(engine, request);
2488
2489                 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
2490                 GEM_BUG_ON(list_empty(&request->sched.link));
2491
2492                 if (submit_queue(engine, request))
2493                         __execlists_kick(&engine->execlists);
2494         }
2495
2496         spin_unlock_irqrestore(&engine->active.lock, flags);
2497 }
2498
2499 static int
2500 __execlists_context_pre_pin(struct intel_context *ce,
2501                             struct intel_engine_cs *engine,
2502                             struct i915_gem_ww_ctx *ww, void **vaddr)
2503 {
2504         int err;
2505
2506         err = lrc_pre_pin(ce, engine, ww, vaddr);
2507         if (err)
2508                 return err;
2509
2510         if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2511                 lrc_init_state(ce, engine, *vaddr);
2512
2513                  __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2514         }
2515
2516         return 0;
2517 }
2518
2519 static int execlists_context_pre_pin(struct intel_context *ce,
2520                                      struct i915_gem_ww_ctx *ww,
2521                                      void **vaddr)
2522 {
2523         return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2524 }
2525
2526 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2527 {
2528         return lrc_pin(ce, ce->engine, vaddr);
2529 }
2530
2531 static int execlists_context_alloc(struct intel_context *ce)
2532 {
2533         return lrc_alloc(ce, ce->engine);
2534 }
2535
2536 static const struct intel_context_ops execlists_context_ops = {
2537         .flags = COPS_HAS_INFLIGHT,
2538
2539         .alloc = execlists_context_alloc,
2540
2541         .pre_pin = execlists_context_pre_pin,
2542         .pin = execlists_context_pin,
2543         .unpin = lrc_unpin,
2544         .post_unpin = lrc_post_unpin,
2545
2546         .enter = intel_context_enter_engine,
2547         .exit = intel_context_exit_engine,
2548
2549         .reset = lrc_reset,
2550         .destroy = lrc_destroy,
2551 };
2552
2553 static int emit_pdps(struct i915_request *rq)
2554 {
2555         const struct intel_engine_cs * const engine = rq->engine;
2556         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2557         int err, i;
2558         u32 *cs;
2559
2560         GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2561
2562         /*
2563          * Beware ye of the dragons, this sequence is magic!
2564          *
2565          * Small changes to this sequence can cause anything from
2566          * GPU hangs to forcewake errors and machine lockups!
2567          */
2568
2569         cs = intel_ring_begin(rq, 2);
2570         if (IS_ERR(cs))
2571                 return PTR_ERR(cs);
2572
2573         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2574         *cs++ = MI_NOOP;
2575         intel_ring_advance(rq, cs);
2576
2577         /* Flush any residual operations from the context load */
2578         err = engine->emit_flush(rq, EMIT_FLUSH);
2579         if (err)
2580                 return err;
2581
2582         /* Magic required to prevent forcewake errors! */
2583         err = engine->emit_flush(rq, EMIT_INVALIDATE);
2584         if (err)
2585                 return err;
2586
2587         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2588         if (IS_ERR(cs))
2589                 return PTR_ERR(cs);
2590
2591         /* Ensure the LRI have landed before we invalidate & continue */
2592         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2593         for (i = GEN8_3LVL_PDPES; i--; ) {
2594                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2595                 u32 base = engine->mmio_base;
2596
2597                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2598                 *cs++ = upper_32_bits(pd_daddr);
2599                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2600                 *cs++ = lower_32_bits(pd_daddr);
2601         }
2602         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2603         intel_ring_advance(rq, cs);
2604
2605         intel_ring_advance(rq, cs);
2606
2607         return 0;
2608 }
2609
2610 static int execlists_request_alloc(struct i915_request *request)
2611 {
2612         int ret;
2613
2614         GEM_BUG_ON(!intel_context_is_pinned(request->context));
2615
2616         /*
2617          * Flush enough space to reduce the likelihood of waiting after
2618          * we start building the request - in which case we will just
2619          * have to repeat work.
2620          */
2621         request->reserved_space += EXECLISTS_REQUEST_SIZE;
2622
2623         /*
2624          * Note that after this point, we have committed to using
2625          * this request as it is being used to both track the
2626          * state of engine initialisation and liveness of the
2627          * golden renderstate above. Think twice before you try
2628          * to cancel/unwind this request now.
2629          */
2630
2631         if (!i915_vm_is_4lvl(request->context->vm)) {
2632                 ret = emit_pdps(request);
2633                 if (ret)
2634                         return ret;
2635         }
2636
2637         /* Unconditionally invalidate GPU caches and TLBs. */
2638         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2639         if (ret)
2640                 return ret;
2641
2642         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2643         return 0;
2644 }
2645
2646 static void reset_csb_pointers(struct intel_engine_cs *engine)
2647 {
2648         struct intel_engine_execlists * const execlists = &engine->execlists;
2649         const unsigned int reset_value = execlists->csb_size - 1;
2650
2651         ring_set_paused(engine, 0);
2652
2653         /*
2654          * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2655          * Bludgeon them with a mmio update to be sure.
2656          */
2657         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2658                      0xffff << 16 | reset_value << 8 | reset_value);
2659         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2660
2661         /*
2662          * After a reset, the HW starts writing into CSB entry [0]. We
2663          * therefore have to set our HEAD pointer back one entry so that
2664          * the *first* entry we check is entry 0. To complicate this further,
2665          * as we don't wait for the first interrupt after reset, we have to
2666          * fake the HW write to point back to the last entry so that our
2667          * inline comparison of our cached head position against the last HW
2668          * write works even before the first interrupt.
2669          */
2670         execlists->csb_head = reset_value;
2671         WRITE_ONCE(*execlists->csb_write, reset_value);
2672         wmb(); /* Make sure this is visible to HW (paranoia?) */
2673
2674         /* Check that the GPU does indeed update the CSB entries! */
2675         memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2676         invalidate_csb_entries(&execlists->csb_status[0],
2677                                &execlists->csb_status[reset_value]);
2678
2679         /* Once more for luck and our trusty paranoia */
2680         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2681                      0xffff << 16 | reset_value << 8 | reset_value);
2682         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2683
2684         GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2685 }
2686
2687 static void sanitize_hwsp(struct intel_engine_cs *engine)
2688 {
2689         struct intel_timeline *tl;
2690
2691         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2692                 intel_timeline_reset_seqno(tl);
2693 }
2694
2695 static void execlists_sanitize(struct intel_engine_cs *engine)
2696 {
2697         GEM_BUG_ON(execlists_active(&engine->execlists));
2698
2699         /*
2700          * Poison residual state on resume, in case the suspend didn't!
2701          *
2702          * We have to assume that across suspend/resume (or other loss
2703          * of control) that the contents of our pinned buffers has been
2704          * lost, replaced by garbage. Since this doesn't always happen,
2705          * let's poison such state so that we more quickly spot when
2706          * we falsely assume it has been preserved.
2707          */
2708         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2709                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2710
2711         reset_csb_pointers(engine);
2712
2713         /*
2714          * The kernel_context HWSP is stored in the status_page. As above,
2715          * that may be lost on resume/initialisation, and so we need to
2716          * reset the value in the HWSP.
2717          */
2718         sanitize_hwsp(engine);
2719
2720         /* And scrub the dirty cachelines for the HWSP */
2721         clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2722 }
2723
2724 static void enable_error_interrupt(struct intel_engine_cs *engine)
2725 {
2726         u32 status;
2727
2728         engine->execlists.error_interrupt = 0;
2729         ENGINE_WRITE(engine, RING_EMR, ~0u);
2730         ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2731
2732         status = ENGINE_READ(engine, RING_ESR);
2733         if (unlikely(status)) {
2734                 drm_err(&engine->i915->drm,
2735                         "engine '%s' resumed still in error: %08x\n",
2736                         engine->name, status);
2737                 __intel_gt_reset(engine->gt, engine->mask);
2738         }
2739
2740         /*
2741          * On current gen8+, we have 2 signals to play with
2742          *
2743          * - I915_ERROR_INSTUCTION (bit 0)
2744          *
2745          *    Generate an error if the command parser encounters an invalid
2746          *    instruction
2747          *
2748          *    This is a fatal error.
2749          *
2750          * - CP_PRIV (bit 2)
2751          *
2752          *    Generate an error on privilege violation (where the CP replaces
2753          *    the instruction with a no-op). This also fires for writes into
2754          *    read-only scratch pages.
2755          *
2756          *    This is a non-fatal error, parsing continues.
2757          *
2758          * * there are a few others defined for odd HW that we do not use
2759          *
2760          * Since CP_PRIV fires for cases where we have chosen to ignore the
2761          * error (as the HW is validating and suppressing the mistakes), we
2762          * only unmask the instruction error bit.
2763          */
2764         ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2765 }
2766
2767 static void enable_execlists(struct intel_engine_cs *engine)
2768 {
2769         u32 mode;
2770
2771         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2772
2773         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2774
2775         if (GRAPHICS_VER(engine->i915) >= 11)
2776                 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2777         else
2778                 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2779         ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2780
2781         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2782
2783         ENGINE_WRITE_FW(engine,
2784                         RING_HWS_PGA,
2785                         i915_ggtt_offset(engine->status_page.vma));
2786         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2787
2788         enable_error_interrupt(engine);
2789 }
2790
2791 static int execlists_resume(struct intel_engine_cs *engine)
2792 {
2793         intel_mocs_init_engine(engine);
2794         intel_breadcrumbs_reset(engine->breadcrumbs);
2795
2796         enable_execlists(engine);
2797
2798         return 0;
2799 }
2800
2801 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2802 {
2803         struct intel_engine_execlists * const execlists = &engine->execlists;
2804
2805         ENGINE_TRACE(engine, "depth<-%d\n",
2806                      atomic_read(&execlists->tasklet.count));
2807
2808         /*
2809          * Prevent request submission to the hardware until we have
2810          * completed the reset in i915_gem_reset_finish(). If a request
2811          * is completed by one engine, it may then queue a request
2812          * to a second via its execlists->tasklet *just* as we are
2813          * calling engine->resume() and also writing the ELSP.
2814          * Turning off the execlists->tasklet until the reset is over
2815          * prevents the race.
2816          */
2817         __tasklet_disable_sync_once(&execlists->tasklet);
2818         GEM_BUG_ON(!reset_in_progress(execlists));
2819
2820         /*
2821          * We stop engines, otherwise we might get failed reset and a
2822          * dead gpu (on elk). Also as modern gpu as kbl can suffer
2823          * from system hang if batchbuffer is progressing when
2824          * the reset is issued, regardless of READY_TO_RESET ack.
2825          * Thus assume it is best to stop engines on all gens
2826          * where we have a gpu reset.
2827          *
2828          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2829          *
2830          * FIXME: Wa for more modern gens needs to be validated
2831          */
2832         ring_set_paused(engine, 1);
2833         intel_engine_stop_cs(engine);
2834
2835         engine->execlists.reset_ccid = active_ccid(engine);
2836 }
2837
2838 static struct i915_request **
2839 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2840 {
2841         struct intel_engine_execlists * const execlists = &engine->execlists;
2842
2843         mb(); /* paranoia: read the CSB pointers from after the reset */
2844         clflush(execlists->csb_write);
2845         mb();
2846
2847         inactive = process_csb(engine, inactive); /* drain preemption events */
2848
2849         /* Following the reset, we need to reload the CSB read/write pointers */
2850         reset_csb_pointers(engine);
2851
2852         return inactive;
2853 }
2854
2855 static void
2856 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2857 {
2858         struct intel_context *ce;
2859         struct i915_request *rq;
2860         u32 head;
2861
2862         /*
2863          * Save the currently executing context, even if we completed
2864          * its request, it was still running at the time of the
2865          * reset and will have been clobbered.
2866          */
2867         rq = active_context(engine, engine->execlists.reset_ccid);
2868         if (!rq)
2869                 return;
2870
2871         ce = rq->context;
2872         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2873
2874         if (__i915_request_is_complete(rq)) {
2875                 /* Idle context; tidy up the ring so we can restart afresh */
2876                 head = intel_ring_wrap(ce->ring, rq->tail);
2877                 goto out_replay;
2878         }
2879
2880         /* We still have requests in-flight; the engine should be active */
2881         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2882
2883         /* Context has requests still in-flight; it should not be idle! */
2884         GEM_BUG_ON(i915_active_is_idle(&ce->active));
2885
2886         rq = active_request(ce->timeline, rq);
2887         head = intel_ring_wrap(ce->ring, rq->head);
2888         GEM_BUG_ON(head == ce->ring->tail);
2889
2890         /*
2891          * If this request hasn't started yet, e.g. it is waiting on a
2892          * semaphore, we need to avoid skipping the request or else we
2893          * break the signaling chain. However, if the context is corrupt
2894          * the request will not restart and we will be stuck with a wedged
2895          * device. It is quite often the case that if we issue a reset
2896          * while the GPU is loading the context image, that the context
2897          * image becomes corrupt.
2898          *
2899          * Otherwise, if we have not started yet, the request should replay
2900          * perfectly and we do not need to flag the result as being erroneous.
2901          */
2902         if (!__i915_request_has_started(rq))
2903                 goto out_replay;
2904
2905         /*
2906          * If the request was innocent, we leave the request in the ELSP
2907          * and will try to replay it on restarting. The context image may
2908          * have been corrupted by the reset, in which case we may have
2909          * to service a new GPU hang, but more likely we can continue on
2910          * without impact.
2911          *
2912          * If the request was guilty, we presume the context is corrupt
2913          * and have to at least restore the RING register in the context
2914          * image back to the expected values to skip over the guilty request.
2915          */
2916         __i915_request_reset(rq, stalled);
2917
2918         /*
2919          * We want a simple context + ring to execute the breadcrumb update.
2920          * We cannot rely on the context being intact across the GPU hang,
2921          * so clear it and rebuild just what we need for the breadcrumb.
2922          * All pending requests for this context will be zapped, and any
2923          * future request will be after userspace has had the opportunity
2924          * to recreate its own state.
2925          */
2926 out_replay:
2927         ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2928                      head, ce->ring->tail);
2929         lrc_reset_regs(ce, engine);
2930         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
2931 }
2932
2933 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
2934 {
2935         struct intel_engine_execlists * const execlists = &engine->execlists;
2936         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2937         struct i915_request **inactive;
2938
2939         rcu_read_lock();
2940         inactive = reset_csb(engine, post);
2941
2942         execlists_reset_active(engine, true);
2943
2944         inactive = cancel_port_requests(execlists, inactive);
2945         post_process_csb(post, inactive);
2946         rcu_read_unlock();
2947 }
2948
2949 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
2950 {
2951         unsigned long flags;
2952
2953         ENGINE_TRACE(engine, "\n");
2954
2955         /* Process the csb, find the guilty context and throw away */
2956         execlists_reset_csb(engine, stalled);
2957
2958         /* Push back any incomplete requests for replay after the reset. */
2959         rcu_read_lock();
2960         spin_lock_irqsave(&engine->active.lock, flags);
2961         __unwind_incomplete_requests(engine);
2962         spin_unlock_irqrestore(&engine->active.lock, flags);
2963         rcu_read_unlock();
2964 }
2965
2966 static void nop_submission_tasklet(struct tasklet_struct *t)
2967 {
2968         struct intel_engine_cs * const engine =
2969                 from_tasklet(engine, t, execlists.tasklet);
2970
2971         /* The driver is wedged; don't process any more events. */
2972         WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
2973 }
2974
2975 static void execlists_reset_cancel(struct intel_engine_cs *engine)
2976 {
2977         struct intel_engine_execlists * const execlists = &engine->execlists;
2978         struct i915_request *rq, *rn;
2979         struct rb_node *rb;
2980         unsigned long flags;
2981
2982         ENGINE_TRACE(engine, "\n");
2983
2984         /*
2985          * Before we call engine->cancel_requests(), we should have exclusive
2986          * access to the submission state. This is arranged for us by the
2987          * caller disabling the interrupt generation, the tasklet and other
2988          * threads that may then access the same state, giving us a free hand
2989          * to reset state. However, we still need to let lockdep be aware that
2990          * we know this state may be accessed in hardirq context, so we
2991          * disable the irq around this manipulation and we want to keep
2992          * the spinlock focused on its duties and not accidentally conflate
2993          * coverage to the submission's irq state. (Similarly, although we
2994          * shouldn't need to disable irq around the manipulation of the
2995          * submission's irq state, we also wish to remind ourselves that
2996          * it is irq state.)
2997          */
2998         execlists_reset_csb(engine, true);
2999
3000         rcu_read_lock();
3001         spin_lock_irqsave(&engine->active.lock, flags);
3002
3003         /* Mark all executing requests as skipped. */
3004         list_for_each_entry(rq, &engine->active.requests, sched.link)
3005                 i915_request_put(i915_request_mark_eio(rq));
3006         intel_engine_signal_breadcrumbs(engine);
3007
3008         /* Flush the queued requests to the timeline list (for retiring). */
3009         while ((rb = rb_first_cached(&execlists->queue))) {
3010                 struct i915_priolist *p = to_priolist(rb);
3011
3012                 priolist_for_each_request_consume(rq, rn, p) {
3013                         if (i915_request_mark_eio(rq)) {
3014                                 __i915_request_submit(rq);
3015                                 i915_request_put(rq);
3016                         }
3017                 }
3018
3019                 rb_erase_cached(&p->node, &execlists->queue);
3020                 i915_priolist_free(p);
3021         }
3022
3023         /* On-hold requests will be flushed to timeline upon their release */
3024         list_for_each_entry(rq, &engine->active.hold, sched.link)
3025                 i915_request_put(i915_request_mark_eio(rq));
3026
3027         /* Cancel all attached virtual engines */
3028         while ((rb = rb_first_cached(&execlists->virtual))) {
3029                 struct virtual_engine *ve =
3030                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3031
3032                 rb_erase_cached(rb, &execlists->virtual);
3033                 RB_CLEAR_NODE(rb);
3034
3035                 spin_lock(&ve->base.active.lock);
3036                 rq = fetch_and_zero(&ve->request);
3037                 if (rq) {
3038                         if (i915_request_mark_eio(rq)) {
3039                                 rq->engine = engine;
3040                                 __i915_request_submit(rq);
3041                                 i915_request_put(rq);
3042                         }
3043                         i915_request_put(rq);
3044
3045                         ve->base.execlists.queue_priority_hint = INT_MIN;
3046                 }
3047                 spin_unlock(&ve->base.active.lock);
3048         }
3049
3050         /* Remaining _unready_ requests will be nop'ed when submitted */
3051
3052         execlists->queue_priority_hint = INT_MIN;
3053         execlists->queue = RB_ROOT_CACHED;
3054
3055         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
3056         execlists->tasklet.callback = nop_submission_tasklet;
3057
3058         spin_unlock_irqrestore(&engine->active.lock, flags);
3059         rcu_read_unlock();
3060 }
3061
3062 static void execlists_reset_finish(struct intel_engine_cs *engine)
3063 {
3064         struct intel_engine_execlists * const execlists = &engine->execlists;
3065
3066         /*
3067          * After a GPU reset, we may have requests to replay. Do so now while
3068          * we still have the forcewake to be sure that the GPU is not allowed
3069          * to sleep before we restart and reload a context.
3070          *
3071          * If the GPU reset fails, the engine may still be alive with requests
3072          * inflight. We expect those to complete, or for the device to be
3073          * reset as the next level of recovery, and as a final resort we
3074          * will declare the device wedged.
3075          */
3076         GEM_BUG_ON(!reset_in_progress(execlists));
3077
3078         /* And kick in case we missed a new request submission. */
3079         if (__tasklet_enable(&execlists->tasklet))
3080                 __execlists_kick(execlists);
3081
3082         ENGINE_TRACE(engine, "depth->%d\n",
3083                      atomic_read(&execlists->tasklet.count));
3084 }
3085
3086 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3087 {
3088         ENGINE_WRITE(engine, RING_IMR,
3089                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
3090         ENGINE_POSTING_READ(engine, RING_IMR);
3091 }
3092
3093 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3094 {
3095         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3096 }
3097
3098 static void execlists_park(struct intel_engine_cs *engine)
3099 {
3100         cancel_timer(&engine->execlists.timer);
3101         cancel_timer(&engine->execlists.preempt);
3102 }
3103
3104 static bool can_preempt(struct intel_engine_cs *engine)
3105 {
3106         if (GRAPHICS_VER(engine->i915) > 8)
3107                 return true;
3108
3109         /* GPGPU on bdw requires extra w/a; not implemented */
3110         return engine->class != RENDER_CLASS;
3111 }
3112
3113 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3114 {
3115         engine->submit_request = execlists_submit_request;
3116         engine->schedule = i915_schedule;
3117         engine->execlists.tasklet.callback = execlists_submission_tasklet;
3118 }
3119
3120 static void execlists_shutdown(struct intel_engine_cs *engine)
3121 {
3122         /* Synchronise with residual timers and any softirq they raise */
3123         del_timer_sync(&engine->execlists.timer);
3124         del_timer_sync(&engine->execlists.preempt);
3125         tasklet_kill(&engine->execlists.tasklet);
3126 }
3127
3128 static void execlists_release(struct intel_engine_cs *engine)
3129 {
3130         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3131
3132         execlists_shutdown(engine);
3133
3134         intel_engine_cleanup_common(engine);
3135         lrc_fini_wa_ctx(engine);
3136 }
3137
3138 static void
3139 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3140 {
3141         /* Default vfuncs which can be overridden by each engine. */
3142
3143         engine->resume = execlists_resume;
3144
3145         engine->cops = &execlists_context_ops;
3146         engine->request_alloc = execlists_request_alloc;
3147
3148         engine->reset.prepare = execlists_reset_prepare;
3149         engine->reset.rewind = execlists_reset_rewind;
3150         engine->reset.cancel = execlists_reset_cancel;
3151         engine->reset.finish = execlists_reset_finish;
3152
3153         engine->park = execlists_park;
3154         engine->unpark = NULL;
3155
3156         engine->emit_flush = gen8_emit_flush_xcs;
3157         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3158         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3159         if (GRAPHICS_VER(engine->i915) >= 12) {
3160                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3161                 engine->emit_flush = gen12_emit_flush_xcs;
3162         }
3163         engine->set_default_submission = execlists_set_default_submission;
3164
3165         if (GRAPHICS_VER(engine->i915) < 11) {
3166                 engine->irq_enable = gen8_logical_ring_enable_irq;
3167                 engine->irq_disable = gen8_logical_ring_disable_irq;
3168         } else {
3169                 /*
3170                  * TODO: On Gen11 interrupt masks need to be clear
3171                  * to allow C6 entry. Keep interrupts enabled at
3172                  * and take the hit of generating extra interrupts
3173                  * until a more refined solution exists.
3174                  */
3175         }
3176         intel_engine_set_irq_handler(engine, execlists_irq_handler);
3177
3178         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3179         if (!intel_vgpu_active(engine->i915)) {
3180                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3181                 if (can_preempt(engine)) {
3182                         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3183                         if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3184                                 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3185                 }
3186         }
3187
3188         if (intel_engine_has_preemption(engine))
3189                 engine->emit_bb_start = gen8_emit_bb_start;
3190         else
3191                 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3192 }
3193
3194 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3195 {
3196         unsigned int shift = 0;
3197
3198         if (GRAPHICS_VER(engine->i915) < 11) {
3199                 const u8 irq_shifts[] = {
3200                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3201                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3202                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3203                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3204                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
3205                 };
3206
3207                 shift = irq_shifts[engine->id];
3208         }
3209
3210         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3211         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3212         engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3213         engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3214 }
3215
3216 static void rcs_submission_override(struct intel_engine_cs *engine)
3217 {
3218         switch (GRAPHICS_VER(engine->i915)) {
3219         case 12:
3220                 engine->emit_flush = gen12_emit_flush_rcs;
3221                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3222                 break;
3223         case 11:
3224                 engine->emit_flush = gen11_emit_flush_rcs;
3225                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3226                 break;
3227         default:
3228                 engine->emit_flush = gen8_emit_flush_rcs;
3229                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3230                 break;
3231         }
3232 }
3233
3234 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3235 {
3236         struct intel_engine_execlists * const execlists = &engine->execlists;
3237         struct drm_i915_private *i915 = engine->i915;
3238         struct intel_uncore *uncore = engine->uncore;
3239         u32 base = engine->mmio_base;
3240
3241         tasklet_setup(&engine->execlists.tasklet, execlists_submission_tasklet);
3242         timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3243         timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3244
3245         logical_ring_default_vfuncs(engine);
3246         logical_ring_default_irqs(engine);
3247
3248         if (engine->class == RENDER_CLASS)
3249                 rcs_submission_override(engine);
3250
3251         lrc_init_wa_ctx(engine);
3252
3253         if (HAS_LOGICAL_RING_ELSQ(i915)) {
3254                 execlists->submit_reg = uncore->regs +
3255                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3256                 execlists->ctrl_reg = uncore->regs +
3257                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3258         } else {
3259                 execlists->submit_reg = uncore->regs +
3260                         i915_mmio_reg_offset(RING_ELSP(base));
3261         }
3262
3263         execlists->csb_status =
3264                 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3265
3266         execlists->csb_write =
3267                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
3268
3269         if (GRAPHICS_VER(i915) < 11)
3270                 execlists->csb_size = GEN8_CSB_ENTRIES;
3271         else
3272                 execlists->csb_size = GEN11_CSB_ENTRIES;
3273
3274         engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3275         if (GRAPHICS_VER(engine->i915) >= 11) {
3276                 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3277                 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3278         }
3279
3280         /* Finally, take ownership and responsibility for cleanup! */
3281         engine->sanitize = execlists_sanitize;
3282         engine->release = execlists_release;
3283
3284         return 0;
3285 }
3286
3287 static struct list_head *virtual_queue(struct virtual_engine *ve)
3288 {
3289         return &ve->base.execlists.default_priolist.requests;
3290 }
3291
3292 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3293 {
3294         struct virtual_engine *ve =
3295                 container_of(wrk, typeof(*ve), rcu.work);
3296         unsigned int n;
3297
3298         GEM_BUG_ON(ve->context.inflight);
3299
3300         /* Preempt-to-busy may leave a stale request behind. */
3301         if (unlikely(ve->request)) {
3302                 struct i915_request *old;
3303
3304                 spin_lock_irq(&ve->base.active.lock);
3305
3306                 old = fetch_and_zero(&ve->request);
3307                 if (old) {
3308                         GEM_BUG_ON(!__i915_request_is_complete(old));
3309                         __i915_request_submit(old);
3310                         i915_request_put(old);
3311                 }
3312
3313                 spin_unlock_irq(&ve->base.active.lock);
3314         }
3315
3316         /*
3317          * Flush the tasklet in case it is still running on another core.
3318          *
3319          * This needs to be done before we remove ourselves from the siblings'
3320          * rbtrees as in the case it is running in parallel, it may reinsert
3321          * the rb_node into a sibling.
3322          */
3323         tasklet_kill(&ve->base.execlists.tasklet);
3324
3325         /* Decouple ourselves from the siblings, no more access allowed. */
3326         for (n = 0; n < ve->num_siblings; n++) {
3327                 struct intel_engine_cs *sibling = ve->siblings[n];
3328                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3329
3330                 if (RB_EMPTY_NODE(node))
3331                         continue;
3332
3333                 spin_lock_irq(&sibling->active.lock);
3334
3335                 /* Detachment is lazily performed in the execlists tasklet */
3336                 if (!RB_EMPTY_NODE(node))
3337                         rb_erase_cached(node, &sibling->execlists.virtual);
3338
3339                 spin_unlock_irq(&sibling->active.lock);
3340         }
3341         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3342         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3343
3344         lrc_fini(&ve->context);
3345         intel_context_fini(&ve->context);
3346
3347         intel_breadcrumbs_free(ve->base.breadcrumbs);
3348         intel_engine_free_request_pool(&ve->base);
3349
3350         kfree(ve->bonds);
3351         kfree(ve);
3352 }
3353
3354 static void virtual_context_destroy(struct kref *kref)
3355 {
3356         struct virtual_engine *ve =
3357                 container_of(kref, typeof(*ve), context.ref);
3358
3359         GEM_BUG_ON(!list_empty(&ve->context.signals));
3360
3361         /*
3362          * When destroying the virtual engine, we have to be aware that
3363          * it may still be in use from an hardirq/softirq context causing
3364          * the resubmission of a completed request (background completion
3365          * due to preempt-to-busy). Before we can free the engine, we need
3366          * to flush the submission code and tasklets that are still potentially
3367          * accessing the engine. Flushing the tasklets requires process context,
3368          * and since we can guard the resubmit onto the engine with an RCU read
3369          * lock, we can delegate the free of the engine to an RCU worker.
3370          */
3371         INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3372         queue_rcu_work(system_wq, &ve->rcu);
3373 }
3374
3375 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3376 {
3377         int swp;
3378
3379         /*
3380          * Pick a random sibling on starting to help spread the load around.
3381          *
3382          * New contexts are typically created with exactly the same order
3383          * of siblings, and often started in batches. Due to the way we iterate
3384          * the array of sibling when submitting requests, sibling[0] is
3385          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3386          * randomised across the system, we also help spread the load by the
3387          * first engine we inspect being different each time.
3388          *
3389          * NB This does not force us to execute on this engine, it will just
3390          * typically be the first we inspect for submission.
3391          */
3392         swp = prandom_u32_max(ve->num_siblings);
3393         if (swp)
3394                 swap(ve->siblings[swp], ve->siblings[0]);
3395 }
3396
3397 static int virtual_context_alloc(struct intel_context *ce)
3398 {
3399         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3400
3401         return lrc_alloc(ce, ve->siblings[0]);
3402 }
3403
3404 static int virtual_context_pre_pin(struct intel_context *ce,
3405                                    struct i915_gem_ww_ctx *ww,
3406                                    void **vaddr)
3407 {
3408         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3409
3410          /* Note: we must use a real engine class for setting up reg state */
3411         return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3412 }
3413
3414 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3415 {
3416         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3417
3418         return lrc_pin(ce, ve->siblings[0], vaddr);
3419 }
3420
3421 static void virtual_context_enter(struct intel_context *ce)
3422 {
3423         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3424         unsigned int n;
3425
3426         for (n = 0; n < ve->num_siblings; n++)
3427                 intel_engine_pm_get(ve->siblings[n]);
3428
3429         intel_timeline_enter(ce->timeline);
3430 }
3431
3432 static void virtual_context_exit(struct intel_context *ce)
3433 {
3434         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3435         unsigned int n;
3436
3437         intel_timeline_exit(ce->timeline);
3438
3439         for (n = 0; n < ve->num_siblings; n++)
3440                 intel_engine_pm_put(ve->siblings[n]);
3441 }
3442
3443 static const struct intel_context_ops virtual_context_ops = {
3444         .flags = COPS_HAS_INFLIGHT,
3445
3446         .alloc = virtual_context_alloc,
3447
3448         .pre_pin = virtual_context_pre_pin,
3449         .pin = virtual_context_pin,
3450         .unpin = lrc_unpin,
3451         .post_unpin = lrc_post_unpin,
3452
3453         .enter = virtual_context_enter,
3454         .exit = virtual_context_exit,
3455
3456         .destroy = virtual_context_destroy,
3457 };
3458
3459 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3460 {
3461         struct i915_request *rq;
3462         intel_engine_mask_t mask;
3463
3464         rq = READ_ONCE(ve->request);
3465         if (!rq)
3466                 return 0;
3467
3468         /* The rq is ready for submission; rq->execution_mask is now stable. */
3469         mask = rq->execution_mask;
3470         if (unlikely(!mask)) {
3471                 /* Invalid selection, submit to a random engine in error */
3472                 i915_request_set_error_once(rq, -ENODEV);
3473                 mask = ve->siblings[0]->mask;
3474         }
3475
3476         ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3477                      rq->fence.context, rq->fence.seqno,
3478                      mask, ve->base.execlists.queue_priority_hint);
3479
3480         return mask;
3481 }
3482
3483 static void virtual_submission_tasklet(struct tasklet_struct *t)
3484 {
3485         struct virtual_engine * const ve =
3486                 from_tasklet(ve, t, base.execlists.tasklet);
3487         const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
3488         intel_engine_mask_t mask;
3489         unsigned int n;
3490
3491         rcu_read_lock();
3492         mask = virtual_submission_mask(ve);
3493         rcu_read_unlock();
3494         if (unlikely(!mask))
3495                 return;
3496
3497         for (n = 0; n < ve->num_siblings; n++) {
3498                 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3499                 struct ve_node * const node = &ve->nodes[sibling->id];
3500                 struct rb_node **parent, *rb;
3501                 bool first;
3502
3503                 if (!READ_ONCE(ve->request))
3504                         break; /* already handled by a sibling's tasklet */
3505
3506                 spin_lock_irq(&sibling->active.lock);
3507
3508                 if (unlikely(!(mask & sibling->mask))) {
3509                         if (!RB_EMPTY_NODE(&node->rb)) {
3510                                 rb_erase_cached(&node->rb,
3511                                                 &sibling->execlists.virtual);
3512                                 RB_CLEAR_NODE(&node->rb);
3513                         }
3514
3515                         goto unlock_engine;
3516                 }
3517
3518                 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3519                         /*
3520                          * Cheat and avoid rebalancing the tree if we can
3521                          * reuse this node in situ.
3522                          */
3523                         first = rb_first_cached(&sibling->execlists.virtual) ==
3524                                 &node->rb;
3525                         if (prio == node->prio || (prio > node->prio && first))
3526                                 goto submit_engine;
3527
3528                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3529                 }
3530
3531                 rb = NULL;
3532                 first = true;
3533                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3534                 while (*parent) {
3535                         struct ve_node *other;
3536
3537                         rb = *parent;
3538                         other = rb_entry(rb, typeof(*other), rb);
3539                         if (prio > other->prio) {
3540                                 parent = &rb->rb_left;
3541                         } else {
3542                                 parent = &rb->rb_right;
3543                                 first = false;
3544                         }
3545                 }
3546
3547                 rb_link_node(&node->rb, rb, parent);
3548                 rb_insert_color_cached(&node->rb,
3549                                        &sibling->execlists.virtual,
3550                                        first);
3551
3552 submit_engine:
3553                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3554                 node->prio = prio;
3555                 if (first && prio > sibling->execlists.queue_priority_hint)
3556                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3557
3558 unlock_engine:
3559                 spin_unlock_irq(&sibling->active.lock);
3560
3561                 if (intel_context_inflight(&ve->context))
3562                         break;
3563         }
3564 }
3565
3566 static void virtual_submit_request(struct i915_request *rq)
3567 {
3568         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3569         unsigned long flags;
3570
3571         ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3572                      rq->fence.context,
3573                      rq->fence.seqno);
3574
3575         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3576
3577         spin_lock_irqsave(&ve->base.active.lock, flags);
3578
3579         /* By the time we resubmit a request, it may be completed */
3580         if (__i915_request_is_complete(rq)) {
3581                 __i915_request_submit(rq);
3582                 goto unlock;
3583         }
3584
3585         if (ve->request) { /* background completion from preempt-to-busy */
3586                 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3587                 __i915_request_submit(ve->request);
3588                 i915_request_put(ve->request);
3589         }
3590
3591         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3592         ve->request = i915_request_get(rq);
3593
3594         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3595         list_move_tail(&rq->sched.link, virtual_queue(ve));
3596
3597         tasklet_hi_schedule(&ve->base.execlists.tasklet);
3598
3599 unlock:
3600         spin_unlock_irqrestore(&ve->base.active.lock, flags);
3601 }
3602
3603 static struct ve_bond *
3604 virtual_find_bond(struct virtual_engine *ve,
3605                   const struct intel_engine_cs *master)
3606 {
3607         int i;
3608
3609         for (i = 0; i < ve->num_bonds; i++) {
3610                 if (ve->bonds[i].master == master)
3611                         return &ve->bonds[i];
3612         }
3613
3614         return NULL;
3615 }
3616
3617 static void
3618 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3619 {
3620         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3621         intel_engine_mask_t allowed, exec;
3622         struct ve_bond *bond;
3623
3624         allowed = ~to_request(signal)->engine->mask;
3625
3626         bond = virtual_find_bond(ve, to_request(signal)->engine);
3627         if (bond)
3628                 allowed &= bond->sibling_mask;
3629
3630         /* Restrict the bonded request to run on only the available engines */
3631         exec = READ_ONCE(rq->execution_mask);
3632         while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3633                 ;
3634
3635         /* Prevent the master from being re-run on the bonded engines */
3636         to_request(signal)->execution_mask &= ~allowed;
3637 }
3638
3639 struct intel_context *
3640 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
3641                                unsigned int count)
3642 {
3643         struct virtual_engine *ve;
3644         unsigned int n;
3645         int err;
3646
3647         if (count == 0)
3648                 return ERR_PTR(-EINVAL);
3649
3650         if (count == 1)
3651                 return intel_context_create(siblings[0]);
3652
3653         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3654         if (!ve)
3655                 return ERR_PTR(-ENOMEM);
3656
3657         ve->base.i915 = siblings[0]->i915;
3658         ve->base.gt = siblings[0]->gt;
3659         ve->base.uncore = siblings[0]->uncore;
3660         ve->base.id = -1;
3661
3662         ve->base.class = OTHER_CLASS;
3663         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3664         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3665         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3666
3667         /*
3668          * The decision on whether to submit a request using semaphores
3669          * depends on the saturated state of the engine. We only compute
3670          * this during HW submission of the request, and we need for this
3671          * state to be globally applied to all requests being submitted
3672          * to this engine. Virtual engines encompass more than one physical
3673          * engine and so we cannot accurately tell in advance if one of those
3674          * engines is already saturated and so cannot afford to use a semaphore
3675          * and be pessimized in priority for doing so -- if we are the only
3676          * context using semaphores after all other clients have stopped, we
3677          * will be starved on the saturated system. Such a global switch for
3678          * semaphores is less than ideal, but alas is the current compromise.
3679          */
3680         ve->base.saturated = ALL_ENGINES;
3681
3682         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3683
3684         intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3685         intel_engine_init_execlists(&ve->base);
3686
3687         ve->base.cops = &virtual_context_ops;
3688         ve->base.request_alloc = execlists_request_alloc;
3689
3690         ve->base.schedule = i915_schedule;
3691         ve->base.submit_request = virtual_submit_request;
3692         ve->base.bond_execute = virtual_bond_execute;
3693
3694         INIT_LIST_HEAD(virtual_queue(ve));
3695         ve->base.execlists.queue_priority_hint = INT_MIN;
3696         tasklet_setup(&ve->base.execlists.tasklet, virtual_submission_tasklet);
3697
3698         intel_context_init(&ve->context, &ve->base);
3699
3700         ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3701         if (!ve->base.breadcrumbs) {
3702                 err = -ENOMEM;
3703                 goto err_put;
3704         }
3705
3706         for (n = 0; n < count; n++) {
3707                 struct intel_engine_cs *sibling = siblings[n];
3708
3709                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3710                 if (sibling->mask & ve->base.mask) {
3711                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3712                                   sibling->name);
3713                         err = -EINVAL;
3714                         goto err_put;
3715                 }
3716
3717                 /*
3718                  * The virtual engine implementation is tightly coupled to
3719                  * the execlists backend -- we push out request directly
3720                  * into a tree inside each physical engine. We could support
3721                  * layering if we handle cloning of the requests and
3722                  * submitting a copy into each backend.
3723                  */
3724                 if (sibling->execlists.tasklet.callback !=
3725                     execlists_submission_tasklet) {
3726                         err = -ENODEV;
3727                         goto err_put;
3728                 }
3729
3730                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3731                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3732
3733                 ve->siblings[ve->num_siblings++] = sibling;
3734                 ve->base.mask |= sibling->mask;
3735
3736                 /*
3737                  * All physical engines must be compatible for their emission
3738                  * functions (as we build the instructions during request
3739                  * construction and do not alter them before submission
3740                  * on the physical engine). We use the engine class as a guide
3741                  * here, although that could be refined.
3742                  */
3743                 if (ve->base.class != OTHER_CLASS) {
3744                         if (ve->base.class != sibling->class) {
3745                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3746                                           sibling->class, ve->base.class);
3747                                 err = -EINVAL;
3748                                 goto err_put;
3749                         }
3750                         continue;
3751                 }
3752
3753                 ve->base.class = sibling->class;
3754                 ve->base.uabi_class = sibling->uabi_class;
3755                 snprintf(ve->base.name, sizeof(ve->base.name),
3756                          "v%dx%d", ve->base.class, count);
3757                 ve->base.context_size = sibling->context_size;
3758
3759                 ve->base.emit_bb_start = sibling->emit_bb_start;
3760                 ve->base.emit_flush = sibling->emit_flush;
3761                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3762                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3763                 ve->base.emit_fini_breadcrumb_dw =
3764                         sibling->emit_fini_breadcrumb_dw;
3765
3766                 ve->base.flags = sibling->flags;
3767         }
3768
3769         ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3770
3771         virtual_engine_initial_hint(ve);
3772         return &ve->context;
3773
3774 err_put:
3775         intel_context_put(&ve->context);
3776         return ERR_PTR(err);
3777 }
3778
3779 struct intel_context *
3780 intel_execlists_clone_virtual(struct intel_engine_cs *src)
3781 {
3782         struct virtual_engine *se = to_virtual_engine(src);
3783         struct intel_context *dst;
3784
3785         dst = intel_execlists_create_virtual(se->siblings,
3786                                              se->num_siblings);
3787         if (IS_ERR(dst))
3788                 return dst;
3789
3790         if (se->num_bonds) {
3791                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3792
3793                 de->bonds = kmemdup(se->bonds,
3794                                     sizeof(*se->bonds) * se->num_bonds,
3795                                     GFP_KERNEL);
3796                 if (!de->bonds) {
3797                         intel_context_put(dst);
3798                         return ERR_PTR(-ENOMEM);
3799                 }
3800
3801                 de->num_bonds = se->num_bonds;
3802         }
3803
3804         return dst;
3805 }
3806
3807 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3808                                      const struct intel_engine_cs *master,
3809                                      const struct intel_engine_cs *sibling)
3810 {
3811         struct virtual_engine *ve = to_virtual_engine(engine);
3812         struct ve_bond *bond;
3813         int n;
3814
3815         /* Sanity check the sibling is part of the virtual engine */
3816         for (n = 0; n < ve->num_siblings; n++)
3817                 if (sibling == ve->siblings[n])
3818                         break;
3819         if (n == ve->num_siblings)
3820                 return -EINVAL;
3821
3822         bond = virtual_find_bond(ve, master);
3823         if (bond) {
3824                 bond->sibling_mask |= sibling->mask;
3825                 return 0;
3826         }
3827
3828         bond = krealloc(ve->bonds,
3829                         sizeof(*bond) * (ve->num_bonds + 1),
3830                         GFP_KERNEL);
3831         if (!bond)
3832                 return -ENOMEM;
3833
3834         bond[ve->num_bonds].master = master;
3835         bond[ve->num_bonds].sibling_mask = sibling->mask;
3836
3837         ve->bonds = bond;
3838         ve->num_bonds++;
3839
3840         return 0;
3841 }
3842
3843 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3844                                    struct drm_printer *m,
3845                                    void (*show_request)(struct drm_printer *m,
3846                                                         const struct i915_request *rq,
3847                                                         const char *prefix,
3848                                                         int indent),
3849                                    unsigned int max)
3850 {
3851         const struct intel_engine_execlists *execlists = &engine->execlists;
3852         struct i915_request *rq, *last;
3853         unsigned long flags;
3854         unsigned int count;
3855         struct rb_node *rb;
3856
3857         spin_lock_irqsave(&engine->active.lock, flags);
3858
3859         last = NULL;
3860         count = 0;
3861         list_for_each_entry(rq, &engine->active.requests, sched.link) {
3862                 if (count++ < max - 1)
3863                         show_request(m, rq, "\t\t", 0);
3864                 else
3865                         last = rq;
3866         }
3867         if (last) {
3868                 if (count > max) {
3869                         drm_printf(m,
3870                                    "\t\t...skipping %d executing requests...\n",
3871                                    count - max);
3872                 }
3873                 show_request(m, last, "\t\t", 0);
3874         }
3875
3876         if (execlists->queue_priority_hint != INT_MIN)
3877                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3878                            READ_ONCE(execlists->queue_priority_hint));
3879
3880         last = NULL;
3881         count = 0;
3882         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3883                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3884
3885                 priolist_for_each_request(rq, p) {
3886                         if (count++ < max - 1)
3887                                 show_request(m, rq, "\t\t", 0);
3888                         else
3889                                 last = rq;
3890                 }
3891         }
3892         if (last) {
3893                 if (count > max) {
3894                         drm_printf(m,
3895                                    "\t\t...skipping %d queued requests...\n",
3896                                    count - max);
3897                 }
3898                 show_request(m, last, "\t\t", 0);
3899         }
3900
3901         last = NULL;
3902         count = 0;
3903         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3904                 struct virtual_engine *ve =
3905                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3906                 struct i915_request *rq = READ_ONCE(ve->request);
3907
3908                 if (rq) {
3909                         if (count++ < max - 1)
3910                                 show_request(m, rq, "\t\t", 0);
3911                         else
3912                                 last = rq;
3913                 }
3914         }
3915         if (last) {
3916                 if (count > max) {
3917                         drm_printf(m,
3918                                    "\t\t...skipping %d virtual requests...\n",
3919                                    count - max);
3920                 }
3921                 show_request(m, last, "\t\t", 0);
3922         }
3923
3924         spin_unlock_irqrestore(&engine->active.lock, flags);
3925 }
3926
3927 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3928 #include "selftest_execlists.c"
3929 #endif
This page took 0.286093 seconds and 4 git commands to generate.