]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_execlists_submission.c
Linux 6.14-rc3
[linux.git] / drivers / gpu / drm / i915 / gt / intel_execlists_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136
137 #define RING_EXECLIST_QFULL             (1 << 0x2)
138 #define RING_EXECLIST1_VALID            (1 << 0x3)
139 #define RING_EXECLIST0_VALID            (1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
143
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
150
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK                GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID               0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159         (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE   BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK                 GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID                        0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165         (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170 struct virtual_engine {
171         struct intel_engine_cs base;
172         struct intel_context context;
173         struct rcu_work rcu;
174
175         /*
176          * We allow only a single request through the virtual engine at a time
177          * (each request in the timeline waits for the completion fence of
178          * the previous before being submitted). By restricting ourselves to
179          * only submitting a single request, each request is placed on to a
180          * physical to maximise load spreading (by virtue of the late greedy
181          * scheduling -- each real engine takes the next available request
182          * upon idling).
183          */
184         struct i915_request *request;
185
186         /*
187          * We keep a rbtree of available virtual engines inside each physical
188          * engine, sorted by priority. Here we preallocate the nodes we need
189          * for the virtual engine, indexed by physical_engine->id.
190          */
191         struct ve_node {
192                 struct rb_node rb;
193                 int prio;
194         } nodes[I915_NUM_ENGINES];
195
196         /* And finally, which physical engines this virtual engine maps onto. */
197         unsigned int num_siblings;
198         struct intel_engine_cs *siblings[];
199 };
200
201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203         GEM_BUG_ON(!intel_engine_is_virtual(engine));
204         return container_of(engine, struct virtual_engine, base);
205 }
206
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209                          unsigned long flags);
210
211 static struct i915_request *
212 __active_request(const struct intel_timeline * const tl,
213                  struct i915_request *rq,
214                  int error)
215 {
216         struct i915_request *active = rq;
217
218         list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219                 if (__i915_request_is_complete(rq))
220                         break;
221
222                 if (error) {
223                         i915_request_set_error_once(rq, error);
224                         __i915_request_skip(rq);
225                 }
226                 active = rq;
227         }
228
229         return active;
230 }
231
232 static struct i915_request *
233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235         return __active_request(tl, rq, 0);
236 }
237
238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240         /*
241          * We inspect HWS_PREEMPT with a semaphore inside
242          * engine->emit_fini_breadcrumb. If the dword is true,
243          * the ring is paused as the semaphore will busywait
244          * until the dword is false.
245          */
246         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247         if (state)
248                 wmb();
249 }
250
251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253         return rb_entry(rb, struct i915_priolist, node);
254 }
255
256 static int rq_prio(const struct i915_request *rq)
257 {
258         return READ_ONCE(rq->sched.attr.priority);
259 }
260
261 static int effective_prio(const struct i915_request *rq)
262 {
263         int prio = rq_prio(rq);
264
265         /*
266          * If this request is special and must not be interrupted at any
267          * cost, so be it. Note we are only checking the most recent request
268          * in the context and so may be masking an earlier vip request. It
269          * is hoped that under the conditions where nopreempt is used, this
270          * will not matter (i.e. all requests to that context will be
271          * nopreempt for as long as desired).
272          */
273         if (i915_request_has_nopreempt(rq))
274                 prio = I915_PRIORITY_UNPREEMPTABLE;
275
276         return prio;
277 }
278
279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281         struct rb_node *rb;
282
283         rb = rb_first_cached(&sched_engine->queue);
284         if (!rb)
285                 return INT_MIN;
286
287         return to_priolist(rb)->priority;
288 }
289
290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292         struct rb_node *rb = rb_first_cached(&el->virtual);
293
294         return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296
297 static bool need_preempt(const struct intel_engine_cs *engine,
298                          const struct i915_request *rq)
299 {
300         int last_prio;
301
302         if (!intel_engine_has_semaphores(engine))
303                 return false;
304
305         /*
306          * Check if the current priority hint merits a preemption attempt.
307          *
308          * We record the highest value priority we saw during rescheduling
309          * prior to this dequeue, therefore we know that if it is strictly
310          * less than the current tail of ESLP[0], we do not need to force
311          * a preempt-to-idle cycle.
312          *
313          * However, the priority hint is a mere hint that we may need to
314          * preempt. If that hint is stale or we may be trying to preempt
315          * ourselves, ignore the request.
316          *
317          * More naturally we would write
318          *      prio >= max(0, last);
319          * except that we wish to prevent triggering preemption at the same
320          * priority level: the task that is running should remain running
321          * to preserve FIFO ordering of dependencies.
322          */
323         last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324         if (engine->sched_engine->queue_priority_hint <= last_prio)
325                 return false;
326
327         /*
328          * Check against the first request in ELSP[1], it will, thanks to the
329          * power of PI, be the highest priority of that context.
330          */
331         if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333                 return true;
334
335         /*
336          * If the inflight context did not trigger the preemption, then maybe
337          * it was the set of queued requests? Pick the highest priority in
338          * the queue (the first active priolist) and see if it deserves to be
339          * running instead of ELSP[0].
340          *
341          * The highest priority request in the queue can not be either
342          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343          * context, it's priority would not exceed ELSP[0] aka last_prio.
344          */
345         return max(virtual_prio(&engine->execlists),
346                    queue_prio(engine->sched_engine)) > last_prio;
347 }
348
349 __maybe_unused static bool
350 assert_priority_queue(const struct i915_request *prev,
351                       const struct i915_request *next)
352 {
353         /*
354          * Without preemption, the prev may refer to the still active element
355          * which we refuse to let go.
356          *
357          * Even with preemption, there are times when we think it is better not
358          * to preempt and leave an ostensibly lower priority request in flight.
359          */
360         if (i915_request_is_active(prev))
361                 return true;
362
363         return rq_prio(prev) >= rq_prio(next);
364 }
365
366 static struct i915_request *
367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369         struct i915_request *rq, *rn, *active = NULL;
370         struct list_head *pl;
371         int prio = I915_PRIORITY_INVALID;
372
373         lockdep_assert_held(&engine->sched_engine->lock);
374
375         list_for_each_entry_safe_reverse(rq, rn,
376                                          &engine->sched_engine->requests,
377                                          sched.link) {
378                 if (__i915_request_is_complete(rq)) {
379                         list_del_init(&rq->sched.link);
380                         continue;
381                 }
382
383                 __i915_request_unsubmit(rq);
384
385                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386                 if (rq_prio(rq) != prio) {
387                         prio = rq_prio(rq);
388                         pl = i915_sched_lookup_priolist(engine->sched_engine,
389                                                         prio);
390                 }
391                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393                 list_move(&rq->sched.link, pl);
394                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396                 /* Check in case we rollback so far we wrap [size/2] */
397                 if (intel_ring_direction(rq->ring,
398                                          rq->tail,
399                                          rq->ring->tail + 8) > 0)
400                         rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402                 active = rq;
403         }
404
405         return active;
406 }
407
408 static void
409 execlists_context_status_change(struct i915_request *rq, unsigned long status)
410 {
411         /*
412          * Only used when GVT-g is enabled now. When GVT-g is disabled,
413          * The compiler should eliminate this function as dead-code.
414          */
415         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416                 return;
417
418         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
419                                    status, rq);
420 }
421
422 static void reset_active(struct i915_request *rq,
423                          struct intel_engine_cs *engine)
424 {
425         struct intel_context * const ce = rq->context;
426         u32 head;
427
428         /*
429          * The executing context has been cancelled. We want to prevent
430          * further execution along this context and propagate the error on
431          * to anything depending on its results.
432          *
433          * In __i915_request_submit(), we apply the -EIO and remove the
434          * requests' payloads for any banned requests. But first, we must
435          * rewind the context back to the start of the incomplete request so
436          * that we do not jump back into the middle of the batch.
437          *
438          * We preserve the breadcrumbs and semaphores of the incomplete
439          * requests so that inter-timeline dependencies (i.e other timelines)
440          * remain correctly ordered. And we defer to __i915_request_submit()
441          * so that all asynchronous waits are correctly handled.
442          */
443         ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
444                      rq->fence.context, rq->fence.seqno);
445
446         /* On resubmission of the active request, payload will be scrubbed */
447         if (__i915_request_is_complete(rq))
448                 head = rq->tail;
449         else
450                 head = __active_request(ce->timeline, rq, -EIO)->head;
451         head = intel_ring_wrap(ce->ring, head);
452
453         /* Scrub the context image to prevent replaying the previous batch */
454         lrc_init_regs(ce, engine, true);
455
456         /* We've switched away, so this should be a no-op, but intent matters */
457         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
458 }
459
460 static bool bad_request(const struct i915_request *rq)
461 {
462         return rq->fence.error && i915_request_started(rq);
463 }
464
465 static struct intel_engine_cs *
466 __execlists_schedule_in(struct i915_request *rq)
467 {
468         struct intel_engine_cs * const engine = rq->engine;
469         struct intel_context * const ce = rq->context;
470
471         intel_context_get(ce);
472
473         if (unlikely(intel_context_is_closed(ce) &&
474                      !intel_engine_has_heartbeat(engine)))
475                 intel_context_set_exiting(ce);
476
477         if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
478                 reset_active(rq, engine);
479
480         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
481                 lrc_check_regs(ce, engine, "before");
482
483         if (ce->tag) {
484                 /* Use a fixed tag for OA and friends */
485                 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
486                 ce->lrc.ccid = ce->tag;
487         } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
488                 /* We don't need a strict matching tag, just different values */
489                 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
490
491                 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
492                 clear_bit(tag - 1, &engine->context_tag);
493                 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
494
495                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
496
497         } else {
498                 /* We don't need a strict matching tag, just different values */
499                 unsigned int tag = __ffs(engine->context_tag);
500
501                 GEM_BUG_ON(tag >= BITS_PER_LONG);
502                 __clear_bit(tag, &engine->context_tag);
503                 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
504
505                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
506         }
507
508         ce->lrc.ccid |= engine->execlists.ccid;
509
510         __intel_gt_pm_get(engine->gt);
511         if (engine->fw_domain && !engine->fw_active++)
512                 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
513         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
514         intel_engine_context_in(engine);
515
516         CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
517
518         return engine;
519 }
520
521 static void execlists_schedule_in(struct i915_request *rq, int idx)
522 {
523         struct intel_context * const ce = rq->context;
524         struct intel_engine_cs *old;
525
526         GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
527         trace_i915_request_in(rq, idx);
528
529         old = ce->inflight;
530         if (!old)
531                 old = __execlists_schedule_in(rq);
532         WRITE_ONCE(ce->inflight, ptr_inc(old));
533
534         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
535 }
536
537 static void
538 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
539 {
540         struct intel_engine_cs *engine = rq->engine;
541
542         spin_lock_irq(&engine->sched_engine->lock);
543
544         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
545         WRITE_ONCE(rq->engine, &ve->base);
546         ve->base.submit_request(rq);
547
548         spin_unlock_irq(&engine->sched_engine->lock);
549 }
550
551 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
552 {
553         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
554         struct intel_engine_cs *engine = rq->engine;
555
556         /*
557          * After this point, the rq may be transferred to a new sibling, so
558          * before we clear ce->inflight make sure that the context has been
559          * removed from the b->signalers and furthermore we need to make sure
560          * that the concurrent iterator in signal_irq_work is no longer
561          * following ce->signal_link.
562          */
563         if (!list_empty(&ce->signals))
564                 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
565
566         /*
567          * This engine is now too busy to run this virtual request, so
568          * see if we can find an alternative engine for it to execute on.
569          * Once a request has become bonded to this engine, we treat it the
570          * same as other native request.
571          */
572         if (i915_request_in_priority_queue(rq) &&
573             rq->execution_mask != engine->mask)
574                 resubmit_virtual_request(rq, ve);
575
576         if (READ_ONCE(ve->request))
577                 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
578 }
579
580 static void __execlists_schedule_out(struct i915_request * const rq,
581                                      struct intel_context * const ce)
582 {
583         struct intel_engine_cs * const engine = rq->engine;
584         unsigned int ccid;
585
586         /*
587          * NB process_csb() is not under the engine->sched_engine->lock and hence
588          * schedule_out can race with schedule_in meaning that we should
589          * refrain from doing non-trivial work here.
590          */
591
592         CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
593         GEM_BUG_ON(ce->inflight != engine);
594
595         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
596                 lrc_check_regs(ce, engine, "after");
597
598         /*
599          * If we have just completed this context, the engine may now be
600          * idle and we want to re-enter powersaving.
601          */
602         if (intel_timeline_is_last(ce->timeline, rq) &&
603             __i915_request_is_complete(rq))
604                 intel_engine_add_retire(engine, ce->timeline);
605
606         ccid = ce->lrc.ccid;
607         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
608                 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
609                 ccid &= XEHP_MAX_CONTEXT_HW_ID;
610         } else {
611                 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
612                 ccid &= GEN12_MAX_CONTEXT_HW_ID;
613         }
614
615         if (ccid < BITS_PER_LONG) {
616                 GEM_BUG_ON(ccid == 0);
617                 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
618                 __set_bit(ccid - 1, &engine->context_tag);
619         }
620         intel_engine_context_out(engine);
621         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
622         if (engine->fw_domain && !--engine->fw_active)
623                 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
624         intel_gt_pm_put_async_untracked(engine->gt);
625
626         /*
627          * If this is part of a virtual engine, its next request may
628          * have been blocked waiting for access to the active context.
629          * We have to kick all the siblings again in case we need to
630          * switch (e.g. the next request is not runnable on this
631          * engine). Hopefully, we will already have submitted the next
632          * request before the tasklet runs and do not need to rebuild
633          * each virtual tree and kick everyone again.
634          */
635         if (ce->engine != engine)
636                 kick_siblings(rq, ce);
637
638         WRITE_ONCE(ce->inflight, NULL);
639         intel_context_put(ce);
640 }
641
642 static inline void execlists_schedule_out(struct i915_request *rq)
643 {
644         struct intel_context * const ce = rq->context;
645
646         trace_i915_request_out(rq);
647
648         GEM_BUG_ON(!ce->inflight);
649         ce->inflight = ptr_dec(ce->inflight);
650         if (!__intel_context_inflight_count(ce->inflight))
651                 __execlists_schedule_out(rq, ce);
652
653         i915_request_put(rq);
654 }
655
656 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
657 {
658         if (prio > I915_PRIORITY_NORMAL)
659                 return GEN12_CTX_PRIORITY_HIGH;
660         else if (prio < I915_PRIORITY_NORMAL)
661                 return GEN12_CTX_PRIORITY_LOW;
662         else
663                 return GEN12_CTX_PRIORITY_NORMAL;
664 }
665
666 static u64 execlists_update_context(struct i915_request *rq)
667 {
668         struct intel_context *ce = rq->context;
669         u64 desc;
670         u32 tail, prev;
671
672         desc = ce->lrc.desc;
673         if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
674                 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
675
676         /*
677          * WaIdleLiteRestore:bdw,skl
678          *
679          * We should never submit the context with the same RING_TAIL twice
680          * just in case we submit an empty ring, which confuses the HW.
681          *
682          * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
683          * the normal request to be able to always advance the RING_TAIL on
684          * subsequent resubmissions (for lite restore). Should that fail us,
685          * and we try and submit the same tail again, force the context
686          * reload.
687          *
688          * If we need to return to a preempted context, we need to skip the
689          * lite-restore and force it to reload the RING_TAIL. Otherwise, the
690          * HW has a tendency to ignore us rewinding the TAIL to the end of
691          * an earlier request.
692          */
693         GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
694         prev = rq->ring->tail;
695         tail = intel_ring_set_tail(rq->ring, rq->tail);
696         if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
697                 desc |= CTX_DESC_FORCE_RESTORE;
698         ce->lrc_reg_state[CTX_RING_TAIL] = tail;
699         rq->tail = rq->wa_tail;
700
701         /*
702          * Make sure the context image is complete before we submit it to HW.
703          *
704          * Ostensibly, writes (including the WCB) should be flushed prior to
705          * an uncached write such as our mmio register access, the empirical
706          * evidence (esp. on Braswell) suggests that the WC write into memory
707          * may not be visible to the HW prior to the completion of the UC
708          * register write and that we may begin execution from the context
709          * before its image is complete leading to invalid PD chasing.
710          */
711         wmb();
712
713         ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
714         return desc;
715 }
716
717 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
718 {
719         if (execlists->ctrl_reg) {
720                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
721                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
722         } else {
723                 writel(upper_32_bits(desc), execlists->submit_reg);
724                 writel(lower_32_bits(desc), execlists->submit_reg);
725         }
726 }
727
728 static __maybe_unused char *
729 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
730 {
731         if (!rq)
732                 return "";
733
734         snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
735                  prefix,
736                  rq->context->lrc.ccid,
737                  rq->fence.context, rq->fence.seqno,
738                  __i915_request_is_complete(rq) ? "!" :
739                  __i915_request_has_started(rq) ? "*" :
740                  "",
741                  rq_prio(rq));
742
743         return buf;
744 }
745
746 static __maybe_unused noinline void
747 trace_ports(const struct intel_engine_execlists *execlists,
748             const char *msg,
749             struct i915_request * const *ports)
750 {
751         const struct intel_engine_cs *engine =
752                 container_of(execlists, typeof(*engine), execlists);
753         char __maybe_unused p0[40], p1[40];
754
755         if (!ports[0])
756                 return;
757
758         ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
759                      dump_port(p0, sizeof(p0), "", ports[0]),
760                      dump_port(p1, sizeof(p1), ", ", ports[1]));
761 }
762
763 static bool
764 reset_in_progress(const struct intel_engine_cs *engine)
765 {
766         return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
767 }
768
769 static __maybe_unused noinline bool
770 assert_pending_valid(const struct intel_engine_execlists *execlists,
771                      const char *msg)
772 {
773         struct intel_engine_cs *engine =
774                 container_of(execlists, typeof(*engine), execlists);
775         struct i915_request * const *port, *rq, *prev = NULL;
776         struct intel_context *ce = NULL;
777         u32 ccid = -1;
778
779         trace_ports(execlists, msg, execlists->pending);
780
781         /* We may be messing around with the lists during reset, lalala */
782         if (reset_in_progress(engine))
783                 return true;
784
785         if (!execlists->pending[0]) {
786                 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
787                               engine->name);
788                 return false;
789         }
790
791         if (execlists->pending[execlists_num_ports(execlists)]) {
792                 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
793                               engine->name, execlists_num_ports(execlists));
794                 return false;
795         }
796
797         for (port = execlists->pending; (rq = *port); port++) {
798                 unsigned long flags;
799                 bool ok = true;
800
801                 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
802                 GEM_BUG_ON(!i915_request_is_active(rq));
803
804                 if (ce == rq->context) {
805                         GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
806                                       engine->name,
807                                       ce->timeline->fence_context,
808                                       port - execlists->pending);
809                         return false;
810                 }
811                 ce = rq->context;
812
813                 if (ccid == ce->lrc.ccid) {
814                         GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
815                                       engine->name,
816                                       ccid, ce->timeline->fence_context,
817                                       port - execlists->pending);
818                         return false;
819                 }
820                 ccid = ce->lrc.ccid;
821
822                 /*
823                  * Sentinels are supposed to be the last request so they flush
824                  * the current execution off the HW. Check that they are the only
825                  * request in the pending submission.
826                  *
827                  * NB: Due to the async nature of preempt-to-busy and request
828                  * cancellation we need to handle the case where request
829                  * becomes a sentinel in parallel to CSB processing.
830                  */
831                 if (prev && i915_request_has_sentinel(prev) &&
832                     !READ_ONCE(prev->fence.error)) {
833                         GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
834                                       engine->name,
835                                       ce->timeline->fence_context,
836                                       port - execlists->pending);
837                         return false;
838                 }
839                 prev = rq;
840
841                 /*
842                  * We want virtual requests to only be in the first slot so
843                  * that they are never stuck behind a hog and can be immediately
844                  * transferred onto the next idle engine.
845                  */
846                 if (rq->execution_mask != engine->mask &&
847                     port != execlists->pending) {
848                         GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
849                                       engine->name,
850                                       ce->timeline->fence_context,
851                                       port - execlists->pending);
852                         return false;
853                 }
854
855                 /* Hold tightly onto the lock to prevent concurrent retires! */
856                 if (!spin_trylock_irqsave(&rq->lock, flags))
857                         continue;
858
859                 if (__i915_request_is_complete(rq))
860                         goto unlock;
861
862                 if (i915_active_is_idle(&ce->active) &&
863                     !intel_context_is_barrier(ce)) {
864                         GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
865                                       engine->name,
866                                       ce->timeline->fence_context,
867                                       port - execlists->pending);
868                         ok = false;
869                         goto unlock;
870                 }
871
872                 if (!i915_vma_is_pinned(ce->state)) {
873                         GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
874                                       engine->name,
875                                       ce->timeline->fence_context,
876                                       port - execlists->pending);
877                         ok = false;
878                         goto unlock;
879                 }
880
881                 if (!i915_vma_is_pinned(ce->ring->vma)) {
882                         GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
883                                       engine->name,
884                                       ce->timeline->fence_context,
885                                       port - execlists->pending);
886                         ok = false;
887                         goto unlock;
888                 }
889
890 unlock:
891                 spin_unlock_irqrestore(&rq->lock, flags);
892                 if (!ok)
893                         return false;
894         }
895
896         return ce;
897 }
898
899 static void execlists_submit_ports(struct intel_engine_cs *engine)
900 {
901         struct intel_engine_execlists *execlists = &engine->execlists;
902         unsigned int n;
903
904         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
905
906         /*
907          * We can skip acquiring intel_runtime_pm_get() here as it was taken
908          * on our behalf by the request (see i915_gem_mark_busy()) and it will
909          * not be relinquished until the device is idle (see
910          * i915_gem_idle_work_handler()). As a precaution, we make sure
911          * that all ELSP are drained i.e. we have processed the CSB,
912          * before allowing ourselves to idle and calling intel_runtime_pm_put().
913          */
914         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
915
916         /*
917          * ELSQ note: the submit queue is not cleared after being submitted
918          * to the HW so we need to make sure we always clean it up. This is
919          * currently ensured by the fact that we always write the same number
920          * of elsq entries, keep this in mind before changing the loop below.
921          */
922         for (n = execlists_num_ports(execlists); n--; ) {
923                 struct i915_request *rq = execlists->pending[n];
924
925                 write_desc(execlists,
926                            rq ? execlists_update_context(rq) : 0,
927                            n);
928         }
929
930         /* we need to manually load the submit queue */
931         if (execlists->ctrl_reg)
932                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
933 }
934
935 static bool ctx_single_port_submission(const struct intel_context *ce)
936 {
937         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
938                 intel_context_force_single_submission(ce));
939 }
940
941 static bool can_merge_ctx(const struct intel_context *prev,
942                           const struct intel_context *next)
943 {
944         if (prev != next)
945                 return false;
946
947         if (ctx_single_port_submission(prev))
948                 return false;
949
950         return true;
951 }
952
953 static unsigned long i915_request_flags(const struct i915_request *rq)
954 {
955         return READ_ONCE(rq->fence.flags);
956 }
957
958 static bool can_merge_rq(const struct i915_request *prev,
959                          const struct i915_request *next)
960 {
961         GEM_BUG_ON(prev == next);
962         GEM_BUG_ON(!assert_priority_queue(prev, next));
963
964         /*
965          * We do not submit known completed requests. Therefore if the next
966          * request is already completed, we can pretend to merge it in
967          * with the previous context (and we will skip updating the ELSP
968          * and tracking). Thus hopefully keeping the ELSP full with active
969          * contexts, despite the best efforts of preempt-to-busy to confuse
970          * us.
971          */
972         if (__i915_request_is_complete(next))
973                 return true;
974
975         if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
976                      (BIT(I915_FENCE_FLAG_NOPREEMPT) |
977                       BIT(I915_FENCE_FLAG_SENTINEL))))
978                 return false;
979
980         if (!can_merge_ctx(prev->context, next->context))
981                 return false;
982
983         GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
984         return true;
985 }
986
987 static bool virtual_matches(const struct virtual_engine *ve,
988                             const struct i915_request *rq,
989                             const struct intel_engine_cs *engine)
990 {
991         const struct intel_engine_cs *inflight;
992
993         if (!rq)
994                 return false;
995
996         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
997                 return false;
998
999         /*
1000          * We track when the HW has completed saving the context image
1001          * (i.e. when we have seen the final CS event switching out of
1002          * the context) and must not overwrite the context image before
1003          * then. This restricts us to only using the active engine
1004          * while the previous virtualized request is inflight (so
1005          * we reuse the register offsets). This is a very small
1006          * hystersis on the greedy seelction algorithm.
1007          */
1008         inflight = intel_context_inflight(&ve->context);
1009         if (inflight && inflight != engine)
1010                 return false;
1011
1012         return true;
1013 }
1014
1015 static struct virtual_engine *
1016 first_virtual_engine(struct intel_engine_cs *engine)
1017 {
1018         struct intel_engine_execlists *el = &engine->execlists;
1019         struct rb_node *rb = rb_first_cached(&el->virtual);
1020
1021         while (rb) {
1022                 struct virtual_engine *ve =
1023                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1024                 struct i915_request *rq = READ_ONCE(ve->request);
1025
1026                 /* lazily cleanup after another engine handled rq */
1027                 if (!rq || !virtual_matches(ve, rq, engine)) {
1028                         rb_erase_cached(rb, &el->virtual);
1029                         RB_CLEAR_NODE(rb);
1030                         rb = rb_first_cached(&el->virtual);
1031                         continue;
1032                 }
1033
1034                 return ve;
1035         }
1036
1037         return NULL;
1038 }
1039
1040 static void virtual_xfer_context(struct virtual_engine *ve,
1041                                  struct intel_engine_cs *engine)
1042 {
1043         unsigned int n;
1044
1045         if (likely(engine == ve->siblings[0]))
1046                 return;
1047
1048         GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1049         if (!intel_engine_has_relative_mmio(engine))
1050                 lrc_update_offsets(&ve->context, engine);
1051
1052         /*
1053          * Move the bound engine to the top of the list for
1054          * future execution. We then kick this tasklet first
1055          * before checking others, so that we preferentially
1056          * reuse this set of bound registers.
1057          */
1058         for (n = 1; n < ve->num_siblings; n++) {
1059                 if (ve->siblings[n] == engine) {
1060                         swap(ve->siblings[n], ve->siblings[0]);
1061                         break;
1062                 }
1063         }
1064 }
1065
1066 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1067 {
1068         LIST_HEAD(list);
1069
1070         /*
1071          * We want to move the interrupted request to the back of
1072          * the round-robin list (i.e. its priority level), but
1073          * in doing so, we must then move all requests that were in
1074          * flight and were waiting for the interrupted request to
1075          * be run after it again.
1076          */
1077         do {
1078                 struct i915_dependency *p;
1079
1080                 GEM_BUG_ON(i915_request_is_active(rq));
1081                 list_move_tail(&rq->sched.link, pl);
1082
1083                 for_each_waiter(p, rq) {
1084                         struct i915_request *w =
1085                                 container_of(p->waiter, typeof(*w), sched);
1086
1087                         if (p->flags & I915_DEPENDENCY_WEAK)
1088                                 continue;
1089
1090                         /* Leave semaphores spinning on the other engines */
1091                         if (w->engine != rq->engine)
1092                                 continue;
1093
1094                         /* No waiter should start before its signaler */
1095                         GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1096                                    __i915_request_has_started(w) &&
1097                                    !__i915_request_is_complete(rq));
1098
1099                         if (!i915_request_is_ready(w))
1100                                 continue;
1101
1102                         if (rq_prio(w) < rq_prio(rq))
1103                                 continue;
1104
1105                         GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1106                         GEM_BUG_ON(i915_request_is_active(w));
1107                         list_move_tail(&w->sched.link, &list);
1108                 }
1109
1110                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1111         } while (rq);
1112 }
1113
1114 static void defer_active(struct intel_engine_cs *engine)
1115 {
1116         struct i915_request *rq;
1117
1118         rq = __unwind_incomplete_requests(engine);
1119         if (!rq)
1120                 return;
1121
1122         defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1123                                                      rq_prio(rq)));
1124 }
1125
1126 static bool
1127 timeslice_yield(const struct intel_engine_execlists *el,
1128                 const struct i915_request *rq)
1129 {
1130         /*
1131          * Once bitten, forever smitten!
1132          *
1133          * If the active context ever busy-waited on a semaphore,
1134          * it will be treated as a hog until the end of its timeslice (i.e.
1135          * until it is scheduled out and replaced by a new submission,
1136          * possibly even its own lite-restore). The HW only sends an interrupt
1137          * on the first miss, and we do know if that semaphore has been
1138          * signaled, or even if it is now stuck on another semaphore. Play
1139          * safe, yield if it might be stuck -- it will be given a fresh
1140          * timeslice in the near future.
1141          */
1142         return rq->context->lrc.ccid == READ_ONCE(el->yield);
1143 }
1144
1145 static bool needs_timeslice(const struct intel_engine_cs *engine,
1146                             const struct i915_request *rq)
1147 {
1148         if (!intel_engine_has_timeslices(engine))
1149                 return false;
1150
1151         /* If not currently active, or about to switch, wait for next event */
1152         if (!rq || __i915_request_is_complete(rq))
1153                 return false;
1154
1155         /* We do not need to start the timeslice until after the ACK */
1156         if (READ_ONCE(engine->execlists.pending[0]))
1157                 return false;
1158
1159         /* If ELSP[1] is occupied, always check to see if worth slicing */
1160         if (!list_is_last_rcu(&rq->sched.link,
1161                               &engine->sched_engine->requests)) {
1162                 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1163                 return true;
1164         }
1165
1166         /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1167         if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1168                 ENGINE_TRACE(engine, "timeslice required for queue\n");
1169                 return true;
1170         }
1171
1172         if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1173                 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1174                 return true;
1175         }
1176
1177         return false;
1178 }
1179
1180 static bool
1181 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1182 {
1183         const struct intel_engine_execlists *el = &engine->execlists;
1184
1185         if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1186                 return false;
1187
1188         if (!needs_timeslice(engine, rq))
1189                 return false;
1190
1191         return timer_expired(&el->timer) || timeslice_yield(el, rq);
1192 }
1193
1194 static unsigned long timeslice(const struct intel_engine_cs *engine)
1195 {
1196         return READ_ONCE(engine->props.timeslice_duration_ms);
1197 }
1198
1199 static void start_timeslice(struct intel_engine_cs *engine)
1200 {
1201         struct intel_engine_execlists *el = &engine->execlists;
1202         unsigned long duration;
1203
1204         /* Disable the timer if there is nothing to switch to */
1205         duration = 0;
1206         if (needs_timeslice(engine, *el->active)) {
1207                 /* Avoid continually prolonging an active timeslice */
1208                 if (timer_active(&el->timer)) {
1209                         /*
1210                          * If we just submitted a new ELSP after an old
1211                          * context, that context may have already consumed
1212                          * its timeslice, so recheck.
1213                          */
1214                         if (!timer_pending(&el->timer))
1215                                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1216                         return;
1217                 }
1218
1219                 duration = timeslice(engine);
1220         }
1221
1222         set_timer_ms(&el->timer, duration);
1223 }
1224
1225 static void record_preemption(struct intel_engine_execlists *execlists)
1226 {
1227         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1228 }
1229
1230 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1231                                             const struct i915_request *rq)
1232 {
1233         if (!rq)
1234                 return 0;
1235
1236         /* Only allow ourselves to force reset the currently active context */
1237         engine->execlists.preempt_target = rq;
1238
1239         /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1240         if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1241                 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1242
1243         return READ_ONCE(engine->props.preempt_timeout_ms);
1244 }
1245
1246 static void set_preempt_timeout(struct intel_engine_cs *engine,
1247                                 const struct i915_request *rq)
1248 {
1249         if (!intel_engine_has_preempt_reset(engine))
1250                 return;
1251
1252         set_timer_ms(&engine->execlists.preempt,
1253                      active_preempt_timeout(engine, rq));
1254 }
1255
1256 static bool completed(const struct i915_request *rq)
1257 {
1258         if (i915_request_has_sentinel(rq))
1259                 return false;
1260
1261         return __i915_request_is_complete(rq);
1262 }
1263
1264 static void execlists_dequeue(struct intel_engine_cs *engine)
1265 {
1266         struct intel_engine_execlists * const execlists = &engine->execlists;
1267         struct i915_sched_engine * const sched_engine = engine->sched_engine;
1268         struct i915_request **port = execlists->pending;
1269         struct i915_request ** const last_port = port + execlists->port_mask;
1270         struct i915_request *last, * const *active;
1271         struct virtual_engine *ve;
1272         struct rb_node *rb;
1273         bool submit = false;
1274
1275         /*
1276          * Hardware submission is through 2 ports. Conceptually each port
1277          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1278          * static for a context, and unique to each, so we only execute
1279          * requests belonging to a single context from each ring. RING_HEAD
1280          * is maintained by the CS in the context image, it marks the place
1281          * where it got up to last time, and through RING_TAIL we tell the CS
1282          * where we want to execute up to this time.
1283          *
1284          * In this list the requests are in order of execution. Consecutive
1285          * requests from the same context are adjacent in the ringbuffer. We
1286          * can combine these requests into a single RING_TAIL update:
1287          *
1288          *              RING_HEAD...req1...req2
1289          *                                    ^- RING_TAIL
1290          * since to execute req2 the CS must first execute req1.
1291          *
1292          * Our goal then is to point each port to the end of a consecutive
1293          * sequence of requests as being the most optimal (fewest wake ups
1294          * and context switches) submission.
1295          */
1296
1297         spin_lock(&sched_engine->lock);
1298
1299         /*
1300          * If the queue is higher priority than the last
1301          * request in the currently active context, submit afresh.
1302          * We will resubmit again afterwards in case we need to split
1303          * the active context to interject the preemption request,
1304          * i.e. we will retrigger preemption following the ack in case
1305          * of trouble.
1306          *
1307          */
1308         active = execlists->active;
1309         while ((last = *active) && completed(last))
1310                 active++;
1311
1312         if (last) {
1313                 if (need_preempt(engine, last)) {
1314                         ENGINE_TRACE(engine,
1315                                      "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1316                                      last->fence.context,
1317                                      last->fence.seqno,
1318                                      last->sched.attr.priority,
1319                                      sched_engine->queue_priority_hint);
1320                         record_preemption(execlists);
1321
1322                         /*
1323                          * Don't let the RING_HEAD advance past the breadcrumb
1324                          * as we unwind (and until we resubmit) so that we do
1325                          * not accidentally tell it to go backwards.
1326                          */
1327                         ring_set_paused(engine, 1);
1328
1329                         /*
1330                          * Note that we have not stopped the GPU at this point,
1331                          * so we are unwinding the incomplete requests as they
1332                          * remain inflight and so by the time we do complete
1333                          * the preemption, some of the unwound requests may
1334                          * complete!
1335                          */
1336                         __unwind_incomplete_requests(engine);
1337
1338                         last = NULL;
1339                 } else if (timeslice_expired(engine, last)) {
1340                         ENGINE_TRACE(engine,
1341                                      "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1342                                      str_yes_no(timer_expired(&execlists->timer)),
1343                                      last->fence.context, last->fence.seqno,
1344                                      rq_prio(last),
1345                                      sched_engine->queue_priority_hint,
1346                                      str_yes_no(timeslice_yield(execlists, last)));
1347
1348                         /*
1349                          * Consume this timeslice; ensure we start a new one.
1350                          *
1351                          * The timeslice expired, and we will unwind the
1352                          * running contexts and recompute the next ELSP.
1353                          * If that submit will be the same pair of contexts
1354                          * (due to dependency ordering), we will skip the
1355                          * submission. If we don't cancel the timer now,
1356                          * we will see that the timer has expired and
1357                          * reschedule the tasklet; continually until the
1358                          * next context switch or other preemption event.
1359                          *
1360                          * Since we have decided to reschedule based on
1361                          * consumption of this timeslice, if we submit the
1362                          * same context again, grant it a full timeslice.
1363                          */
1364                         cancel_timer(&execlists->timer);
1365                         ring_set_paused(engine, 1);
1366                         defer_active(engine);
1367
1368                         /*
1369                          * Unlike for preemption, if we rewind and continue
1370                          * executing the same context as previously active,
1371                          * the order of execution will remain the same and
1372                          * the tail will only advance. We do not need to
1373                          * force a full context restore, as a lite-restore
1374                          * is sufficient to resample the monotonic TAIL.
1375                          *
1376                          * If we switch to any other context, similarly we
1377                          * will not rewind TAIL of current context, and
1378                          * normal save/restore will preserve state and allow
1379                          * us to later continue executing the same request.
1380                          */
1381                         last = NULL;
1382                 } else {
1383                         /*
1384                          * Otherwise if we already have a request pending
1385                          * for execution after the current one, we can
1386                          * just wait until the next CS event before
1387                          * queuing more. In either case we will force a
1388                          * lite-restore preemption event, but if we wait
1389                          * we hopefully coalesce several updates into a single
1390                          * submission.
1391                          */
1392                         if (active[1]) {
1393                                 /*
1394                                  * Even if ELSP[1] is occupied and not worthy
1395                                  * of timeslices, our queue might be.
1396                                  */
1397                                 spin_unlock(&sched_engine->lock);
1398                                 return;
1399                         }
1400                 }
1401         }
1402
1403         /* XXX virtual is always taking precedence */
1404         while ((ve = first_virtual_engine(engine))) {
1405                 struct i915_request *rq;
1406
1407                 spin_lock(&ve->base.sched_engine->lock);
1408
1409                 rq = ve->request;
1410                 if (unlikely(!virtual_matches(ve, rq, engine)))
1411                         goto unlock; /* lost the race to a sibling */
1412
1413                 GEM_BUG_ON(rq->engine != &ve->base);
1414                 GEM_BUG_ON(rq->context != &ve->context);
1415
1416                 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1417                         spin_unlock(&ve->base.sched_engine->lock);
1418                         break;
1419                 }
1420
1421                 if (last && !can_merge_rq(last, rq)) {
1422                         spin_unlock(&ve->base.sched_engine->lock);
1423                         spin_unlock(&engine->sched_engine->lock);
1424                         return; /* leave this for another sibling */
1425                 }
1426
1427                 ENGINE_TRACE(engine,
1428                              "virtual rq=%llx:%lld%s, new engine? %s\n",
1429                              rq->fence.context,
1430                              rq->fence.seqno,
1431                              __i915_request_is_complete(rq) ? "!" :
1432                              __i915_request_has_started(rq) ? "*" :
1433                              "",
1434                              str_yes_no(engine != ve->siblings[0]));
1435
1436                 WRITE_ONCE(ve->request, NULL);
1437                 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1438
1439                 rb = &ve->nodes[engine->id].rb;
1440                 rb_erase_cached(rb, &execlists->virtual);
1441                 RB_CLEAR_NODE(rb);
1442
1443                 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1444                 WRITE_ONCE(rq->engine, engine);
1445
1446                 if (__i915_request_submit(rq)) {
1447                         /*
1448                          * Only after we confirm that we will submit
1449                          * this request (i.e. it has not already
1450                          * completed), do we want to update the context.
1451                          *
1452                          * This serves two purposes. It avoids
1453                          * unnecessary work if we are resubmitting an
1454                          * already completed request after timeslicing.
1455                          * But more importantly, it prevents us altering
1456                          * ve->siblings[] on an idle context, where
1457                          * we may be using ve->siblings[] in
1458                          * virtual_context_enter / virtual_context_exit.
1459                          */
1460                         virtual_xfer_context(ve, engine);
1461                         GEM_BUG_ON(ve->siblings[0] != engine);
1462
1463                         submit = true;
1464                         last = rq;
1465                 }
1466
1467                 i915_request_put(rq);
1468 unlock:
1469                 spin_unlock(&ve->base.sched_engine->lock);
1470
1471                 /*
1472                  * Hmm, we have a bunch of virtual engine requests,
1473                  * but the first one was already completed (thanks
1474                  * preempt-to-busy!). Keep looking at the veng queue
1475                  * until we have no more relevant requests (i.e.
1476                  * the normal submit queue has higher priority).
1477                  */
1478                 if (submit)
1479                         break;
1480         }
1481
1482         while ((rb = rb_first_cached(&sched_engine->queue))) {
1483                 struct i915_priolist *p = to_priolist(rb);
1484                 struct i915_request *rq, *rn;
1485
1486                 priolist_for_each_request_consume(rq, rn, p) {
1487                         bool merge = true;
1488
1489                         /*
1490                          * Can we combine this request with the current port?
1491                          * It has to be the same context/ringbuffer and not
1492                          * have any exceptions (e.g. GVT saying never to
1493                          * combine contexts).
1494                          *
1495                          * If we can combine the requests, we can execute both
1496                          * by updating the RING_TAIL to point to the end of the
1497                          * second request, and so we never need to tell the
1498                          * hardware about the first.
1499                          */
1500                         if (last && !can_merge_rq(last, rq)) {
1501                                 /*
1502                                  * If we are on the second port and cannot
1503                                  * combine this request with the last, then we
1504                                  * are done.
1505                                  */
1506                                 if (port == last_port)
1507                                         goto done;
1508
1509                                 /*
1510                                  * We must not populate both ELSP[] with the
1511                                  * same LRCA, i.e. we must submit 2 different
1512                                  * contexts if we submit 2 ELSP.
1513                                  */
1514                                 if (last->context == rq->context)
1515                                         goto done;
1516
1517                                 if (i915_request_has_sentinel(last))
1518                                         goto done;
1519
1520                                 /*
1521                                  * We avoid submitting virtual requests into
1522                                  * the secondary ports so that we can migrate
1523                                  * the request immediately to another engine
1524                                  * rather than wait for the primary request.
1525                                  */
1526                                 if (rq->execution_mask != engine->mask)
1527                                         goto done;
1528
1529                                 /*
1530                                  * If GVT overrides us we only ever submit
1531                                  * port[0], leaving port[1] empty. Note that we
1532                                  * also have to be careful that we don't queue
1533                                  * the same context (even though a different
1534                                  * request) to the second port.
1535                                  */
1536                                 if (ctx_single_port_submission(last->context) ||
1537                                     ctx_single_port_submission(rq->context))
1538                                         goto done;
1539
1540                                 merge = false;
1541                         }
1542
1543                         if (__i915_request_submit(rq)) {
1544                                 if (!merge) {
1545                                         *port++ = i915_request_get(last);
1546                                         last = NULL;
1547                                 }
1548
1549                                 GEM_BUG_ON(last &&
1550                                            !can_merge_ctx(last->context,
1551                                                           rq->context));
1552                                 GEM_BUG_ON(last &&
1553                                            i915_seqno_passed(last->fence.seqno,
1554                                                              rq->fence.seqno));
1555
1556                                 submit = true;
1557                                 last = rq;
1558                         }
1559                 }
1560
1561                 rb_erase_cached(&p->node, &sched_engine->queue);
1562                 i915_priolist_free(p);
1563         }
1564 done:
1565         *port++ = i915_request_get(last);
1566
1567         /*
1568          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1569          *
1570          * We choose the priority hint such that if we add a request of greater
1571          * priority than this, we kick the submission tasklet to decide on
1572          * the right order of submitting the requests to hardware. We must
1573          * also be prepared to reorder requests as they are in-flight on the
1574          * HW. We derive the priority hint then as the first "hole" in
1575          * the HW submission ports and if there are no available slots,
1576          * the priority of the lowest executing request, i.e. last.
1577          *
1578          * When we do receive a higher priority request ready to run from the
1579          * user, see queue_request(), the priority hint is bumped to that
1580          * request triggering preemption on the next dequeue (or subsequent
1581          * interrupt for secondary ports).
1582          */
1583         sched_engine->queue_priority_hint = queue_prio(sched_engine);
1584         i915_sched_engine_reset_on_empty(sched_engine);
1585         spin_unlock(&sched_engine->lock);
1586
1587         /*
1588          * We can skip poking the HW if we ended up with exactly the same set
1589          * of requests as currently running, e.g. trying to timeslice a pair
1590          * of ordered contexts.
1591          */
1592         if (submit &&
1593             memcmp(active,
1594                    execlists->pending,
1595                    (port - execlists->pending) * sizeof(*port))) {
1596                 *port = NULL;
1597                 while (port-- != execlists->pending)
1598                         execlists_schedule_in(*port, port - execlists->pending);
1599
1600                 WRITE_ONCE(execlists->yield, -1);
1601                 set_preempt_timeout(engine, *active);
1602                 execlists_submit_ports(engine);
1603         } else {
1604                 ring_set_paused(engine, 0);
1605                 while (port-- != execlists->pending)
1606                         i915_request_put(*port);
1607                 *execlists->pending = NULL;
1608         }
1609 }
1610
1611 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1612 {
1613         local_irq_disable(); /* Suspend interrupts across request submission */
1614         execlists_dequeue(engine);
1615         local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1616 }
1617
1618 static void clear_ports(struct i915_request **ports, int count)
1619 {
1620         memset_p((void **)ports, NULL, count);
1621 }
1622
1623 static void
1624 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1625 {
1626         /* A memcpy_p() would be very useful here! */
1627         while (count--)
1628                 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1629 }
1630
1631 static struct i915_request **
1632 cancel_port_requests(struct intel_engine_execlists * const execlists,
1633                      struct i915_request **inactive)
1634 {
1635         struct i915_request * const *port;
1636
1637         for (port = execlists->pending; *port; port++)
1638                 *inactive++ = *port;
1639         clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1640
1641         /* Mark the end of active before we overwrite *active */
1642         for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1643                 *inactive++ = *port;
1644         clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1645
1646         smp_wmb(); /* complete the seqlock for execlists_active() */
1647         WRITE_ONCE(execlists->active, execlists->inflight);
1648
1649         /* Having cancelled all outstanding process_csb(), stop their timers */
1650         GEM_BUG_ON(execlists->pending[0]);
1651         cancel_timer(&execlists->timer);
1652         cancel_timer(&execlists->preempt);
1653
1654         return inactive;
1655 }
1656
1657 /*
1658  * Starting with Gen12, the status has a new format:
1659  *
1660  *     bit  0:     switched to new queue
1661  *     bit  1:     reserved
1662  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1663  *                 switch detail is set to "wait on semaphore"
1664  *     bits 3-5:   engine class
1665  *     bits 6-11:  engine instance
1666  *     bits 12-14: reserved
1667  *     bits 15-25: sw context id of the lrc the GT switched to
1668  *     bits 26-31: sw counter of the lrc the GT switched to
1669  *     bits 32-35: context switch detail
1670  *                  - 0: ctx complete
1671  *                  - 1: wait on sync flip
1672  *                  - 2: wait on vblank
1673  *                  - 3: wait on scanline
1674  *                  - 4: wait on semaphore
1675  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1676  *                       WAIT_FOR_EVENT)
1677  *     bit  36:    reserved
1678  *     bits 37-43: wait detail (for switch detail 1 to 4)
1679  *     bits 44-46: reserved
1680  *     bits 47-57: sw context id of the lrc the GT switched away from
1681  *     bits 58-63: sw counter of the lrc the GT switched away from
1682  *
1683  * Xe_HP csb shuffles things around compared to TGL:
1684  *
1685  *     bits 0-3:   context switch detail (same possible values as TGL)
1686  *     bits 4-9:   engine instance
1687  *     bits 10-25: sw context id of the lrc the GT switched to
1688  *     bits 26-31: sw counter of the lrc the GT switched to
1689  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1690  *                 switch detail is set to "wait on semaphore"
1691  *     bit  33:    switched to new queue
1692  *     bits 34-41: wait detail (for switch detail 1 to 4)
1693  *     bits 42-57: sw context id of the lrc the GT switched away from
1694  *     bits 58-63: sw counter of the lrc the GT switched away from
1695  */
1696 static inline bool
1697 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1698                   u8 switch_detail)
1699 {
1700         /*
1701          * The context switch detail is not guaranteed to be 5 when a preemption
1702          * occurs, so we can't just check for that. The check below works for
1703          * all the cases we care about, including preemptions of WAIT
1704          * instructions and lite-restore. Preempt-to-idle via the CTRL register
1705          * would require some extra handling, but we don't support that.
1706          */
1707         if (!ctx_away_valid || new_queue) {
1708                 GEM_BUG_ON(!ctx_to_valid);
1709                 return true;
1710         }
1711
1712         /*
1713          * switch detail = 5 is covered by the case above and we do not expect a
1714          * context switch on an unsuccessful wait instruction since we always
1715          * use polling mode.
1716          */
1717         GEM_BUG_ON(switch_detail);
1718         return false;
1719 }
1720
1721 static bool xehp_csb_parse(const u64 csb)
1722 {
1723         return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1724                                  XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1725                                  upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1726                                  GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1727 }
1728
1729 static bool gen12_csb_parse(const u64 csb)
1730 {
1731         return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1732                                  GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1733                                  lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1734                                  GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1735 }
1736
1737 static bool gen8_csb_parse(const u64 csb)
1738 {
1739         return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1740 }
1741
1742 static noinline u64
1743 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1744 {
1745         u64 entry;
1746
1747         /*
1748          * Reading from the HWSP has one particular advantage: we can detect
1749          * a stale entry. Since the write into HWSP is broken, we have no reason
1750          * to trust the HW at all, the mmio entry may equally be unordered, so
1751          * we prefer the path that is self-checking and as a last resort,
1752          * return the mmio value.
1753          *
1754          * tgl,dg1:HSDES#22011327657
1755          */
1756         preempt_disable();
1757         if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1758                 int idx = csb - engine->execlists.csb_status;
1759                 int status;
1760
1761                 status = GEN8_EXECLISTS_STATUS_BUF;
1762                 if (idx >= 6) {
1763                         status = GEN11_EXECLISTS_STATUS_BUF2;
1764                         idx -= 6;
1765                 }
1766                 status += sizeof(u64) * idx;
1767
1768                 entry = intel_uncore_read64(engine->uncore,
1769                                             _MMIO(engine->mmio_base + status));
1770         }
1771         preempt_enable();
1772
1773         return entry;
1774 }
1775
1776 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1777 {
1778         u64 entry = READ_ONCE(*csb);
1779
1780         /*
1781          * Unfortunately, the GPU does not always serialise its write
1782          * of the CSB entries before its write of the CSB pointer, at least
1783          * from the perspective of the CPU, using what is known as a Global
1784          * Observation Point. We may read a new CSB tail pointer, but then
1785          * read the stale CSB entries, causing us to misinterpret the
1786          * context-switch events, and eventually declare the GPU hung.
1787          *
1788          * icl:HSDES#1806554093
1789          * tgl:HSDES#22011248461
1790          */
1791         if (unlikely(entry == -1))
1792                 entry = wa_csb_read(engine, csb);
1793
1794         /* Consume this entry so that we can spot its future reuse. */
1795         WRITE_ONCE(*csb, -1);
1796
1797         /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1798         return entry;
1799 }
1800
1801 static void new_timeslice(struct intel_engine_execlists *el)
1802 {
1803         /* By cancelling, we will start afresh in start_timeslice() */
1804         cancel_timer(&el->timer);
1805 }
1806
1807 static struct i915_request **
1808 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1809 {
1810         struct intel_engine_execlists * const execlists = &engine->execlists;
1811         u64 * const buf = execlists->csb_status;
1812         const u8 num_entries = execlists->csb_size;
1813         struct i915_request **prev;
1814         u8 head, tail;
1815
1816         /*
1817          * As we modify our execlists state tracking we require exclusive
1818          * access. Either we are inside the tasklet, or the tasklet is disabled
1819          * and we assume that is only inside the reset paths and so serialised.
1820          */
1821         GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1822                    !reset_in_progress(engine));
1823
1824         /*
1825          * Note that csb_write, csb_status may be either in HWSP or mmio.
1826          * When reading from the csb_write mmio register, we have to be
1827          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1828          * the low 4bits. As it happens we know the next 4bits are always
1829          * zero and so we can simply masked off the low u8 of the register
1830          * and treat it identically to reading from the HWSP (without having
1831          * to use explicit shifting and masking, and probably bifurcating
1832          * the code to handle the legacy mmio read).
1833          */
1834         head = execlists->csb_head;
1835         tail = READ_ONCE(*execlists->csb_write);
1836         if (unlikely(head == tail))
1837                 return inactive;
1838
1839         /*
1840          * We will consume all events from HW, or at least pretend to.
1841          *
1842          * The sequence of events from the HW is deterministic, and derived
1843          * from our writes to the ELSP, with a smidgen of variability for
1844          * the arrival of the asynchronous requests wrt to the inflight
1845          * execution. If the HW sends an event that does not correspond with
1846          * the one we are expecting, we have to abandon all hope as we lose
1847          * all tracking of what the engine is actually executing. We will
1848          * only detect we are out of sequence with the HW when we get an
1849          * 'impossible' event because we have already drained our own
1850          * preemption/promotion queue. If this occurs, we know that we likely
1851          * lost track of execution earlier and must unwind and restart, the
1852          * simplest way is by stop processing the event queue and force the
1853          * engine to reset.
1854          */
1855         execlists->csb_head = tail;
1856         ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1857
1858         /*
1859          * Hopefully paired with a wmb() in HW!
1860          *
1861          * We must complete the read of the write pointer before any reads
1862          * from the CSB, so that we do not see stale values. Without an rmb
1863          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1864          * we perform the READ_ONCE(*csb_write).
1865          */
1866         rmb();
1867
1868         /* Remember who was last running under the timer */
1869         prev = inactive;
1870         *prev = NULL;
1871
1872         do {
1873                 bool promote;
1874                 u64 csb;
1875
1876                 if (++head == num_entries)
1877                         head = 0;
1878
1879                 /*
1880                  * We are flying near dragons again.
1881                  *
1882                  * We hold a reference to the request in execlist_port[]
1883                  * but no more than that. We are operating in softirq
1884                  * context and so cannot hold any mutex or sleep. That
1885                  * prevents us stopping the requests we are processing
1886                  * in port[] from being retired simultaneously (the
1887                  * breadcrumb will be complete before we see the
1888                  * context-switch). As we only hold the reference to the
1889                  * request, any pointer chasing underneath the request
1890                  * is subject to a potential use-after-free. Thus we
1891                  * store all of the bookkeeping within port[] as
1892                  * required, and avoid using unguarded pointers beneath
1893                  * request itself. The same applies to the atomic
1894                  * status notifier.
1895                  */
1896
1897                 csb = csb_read(engine, buf + head);
1898                 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1899                              head, upper_32_bits(csb), lower_32_bits(csb));
1900
1901                 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
1902                         promote = xehp_csb_parse(csb);
1903                 else if (GRAPHICS_VER(engine->i915) >= 12)
1904                         promote = gen12_csb_parse(csb);
1905                 else
1906                         promote = gen8_csb_parse(csb);
1907                 if (promote) {
1908                         struct i915_request * const *old = execlists->active;
1909
1910                         if (GEM_WARN_ON(!*execlists->pending)) {
1911                                 execlists->error_interrupt |= ERROR_CSB;
1912                                 break;
1913                         }
1914
1915                         ring_set_paused(engine, 0);
1916
1917                         /* Point active to the new ELSP; prevent overwriting */
1918                         WRITE_ONCE(execlists->active, execlists->pending);
1919                         smp_wmb(); /* notify execlists_active() */
1920
1921                         /* cancel old inflight, prepare for switch */
1922                         trace_ports(execlists, "preempted", old);
1923                         while (*old)
1924                                 *inactive++ = *old++;
1925
1926                         /* switch pending to inflight */
1927                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1928                         copy_ports(execlists->inflight,
1929                                    execlists->pending,
1930                                    execlists_num_ports(execlists));
1931                         smp_wmb(); /* complete the seqlock */
1932                         WRITE_ONCE(execlists->active, execlists->inflight);
1933
1934                         /* XXX Magic delay for tgl */
1935                         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1936
1937                         WRITE_ONCE(execlists->pending[0], NULL);
1938                 } else {
1939                         if (GEM_WARN_ON(!*execlists->active)) {
1940                                 execlists->error_interrupt |= ERROR_CSB;
1941                                 break;
1942                         }
1943
1944                         /* port0 completed, advanced to port1 */
1945                         trace_ports(execlists, "completed", execlists->active);
1946
1947                         /*
1948                          * We rely on the hardware being strongly
1949                          * ordered, that the breadcrumb write is
1950                          * coherent (visible from the CPU) before the
1951                          * user interrupt is processed. One might assume
1952                          * that the breadcrumb write being before the
1953                          * user interrupt and the CS event for the context
1954                          * switch would therefore be before the CS event
1955                          * itself...
1956                          */
1957                         if (GEM_SHOW_DEBUG() &&
1958                             !__i915_request_is_complete(*execlists->active)) {
1959                                 struct i915_request *rq = *execlists->active;
1960                                 const u32 *regs __maybe_unused =
1961                                         rq->context->lrc_reg_state;
1962
1963                                 ENGINE_TRACE(engine,
1964                                              "context completed before request!\n");
1965                                 ENGINE_TRACE(engine,
1966                                              "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1967                                              ENGINE_READ(engine, RING_START),
1968                                              ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1969                                              ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1970                                              ENGINE_READ(engine, RING_CTL),
1971                                              ENGINE_READ(engine, RING_MI_MODE));
1972                                 ENGINE_TRACE(engine,
1973                                              "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1974                                              i915_ggtt_offset(rq->ring->vma),
1975                                              rq->head, rq->tail,
1976                                              rq->fence.context,
1977                                              lower_32_bits(rq->fence.seqno),
1978                                              hwsp_seqno(rq));
1979                                 ENGINE_TRACE(engine,
1980                                              "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1981                                              regs[CTX_RING_START],
1982                                              regs[CTX_RING_HEAD],
1983                                              regs[CTX_RING_TAIL]);
1984                         }
1985
1986                         *inactive++ = *execlists->active++;
1987
1988                         GEM_BUG_ON(execlists->active - execlists->inflight >
1989                                    execlists_num_ports(execlists));
1990                 }
1991         } while (head != tail);
1992
1993         /*
1994          * Gen11 has proven to fail wrt global observation point between
1995          * entry and tail update, failing on the ordering and thus
1996          * we see an old entry in the context status buffer.
1997          *
1998          * Forcibly evict out entries for the next gpu csb update,
1999          * to increase the odds that we get a fresh entries with non
2000          * working hardware. The cost for doing so comes out mostly with
2001          * the wash as hardware, working or not, will need to do the
2002          * invalidation before.
2003          */
2004         drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2005
2006         /*
2007          * We assume that any event reflects a change in context flow
2008          * and merits a fresh timeslice. We reinstall the timer after
2009          * inspecting the queue to see if we need to resumbit.
2010          */
2011         if (*prev != *execlists->active) { /* elide lite-restores */
2012                 struct intel_context *prev_ce = NULL, *active_ce = NULL;
2013
2014                 /*
2015                  * Note the inherent discrepancy between the HW runtime,
2016                  * recorded as part of the context switch, and the CPU
2017                  * adjustment for active contexts. We have to hope that
2018                  * the delay in processing the CS event is very small
2019                  * and consistent. It works to our advantage to have
2020                  * the CPU adjustment _undershoot_ (i.e. start later than)
2021                  * the CS timestamp so we never overreport the runtime
2022                  * and correct overselves later when updating from HW.
2023                  */
2024                 if (*prev)
2025                         prev_ce = (*prev)->context;
2026                 if (*execlists->active)
2027                         active_ce = (*execlists->active)->context;
2028                 if (prev_ce != active_ce) {
2029                         if (prev_ce)
2030                                 lrc_runtime_stop(prev_ce);
2031                         if (active_ce)
2032                                 lrc_runtime_start(active_ce);
2033                 }
2034                 new_timeslice(execlists);
2035         }
2036
2037         return inactive;
2038 }
2039
2040 static void post_process_csb(struct i915_request **port,
2041                              struct i915_request **last)
2042 {
2043         while (port != last)
2044                 execlists_schedule_out(*port++);
2045 }
2046
2047 static void __execlists_hold(struct i915_request *rq)
2048 {
2049         LIST_HEAD(list);
2050
2051         do {
2052                 struct i915_dependency *p;
2053
2054                 if (i915_request_is_active(rq))
2055                         __i915_request_unsubmit(rq);
2056
2057                 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2058                 list_move_tail(&rq->sched.link,
2059                                &rq->engine->sched_engine->hold);
2060                 i915_request_set_hold(rq);
2061                 RQ_TRACE(rq, "on hold\n");
2062
2063                 for_each_waiter(p, rq) {
2064                         struct i915_request *w =
2065                                 container_of(p->waiter, typeof(*w), sched);
2066
2067                         if (p->flags & I915_DEPENDENCY_WEAK)
2068                                 continue;
2069
2070                         /* Leave semaphores spinning on the other engines */
2071                         if (w->engine != rq->engine)
2072                                 continue;
2073
2074                         if (!i915_request_is_ready(w))
2075                                 continue;
2076
2077                         if (__i915_request_is_complete(w))
2078                                 continue;
2079
2080                         if (i915_request_on_hold(w))
2081                                 continue;
2082
2083                         list_move_tail(&w->sched.link, &list);
2084                 }
2085
2086                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2087         } while (rq);
2088 }
2089
2090 static bool execlists_hold(struct intel_engine_cs *engine,
2091                            struct i915_request *rq)
2092 {
2093         if (i915_request_on_hold(rq))
2094                 return false;
2095
2096         spin_lock_irq(&engine->sched_engine->lock);
2097
2098         if (__i915_request_is_complete(rq)) { /* too late! */
2099                 rq = NULL;
2100                 goto unlock;
2101         }
2102
2103         /*
2104          * Transfer this request onto the hold queue to prevent it
2105          * being resumbitted to HW (and potentially completed) before we have
2106          * released it. Since we may have already submitted following
2107          * requests, we need to remove those as well.
2108          */
2109         GEM_BUG_ON(i915_request_on_hold(rq));
2110         GEM_BUG_ON(rq->engine != engine);
2111         __execlists_hold(rq);
2112         GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2113
2114 unlock:
2115         spin_unlock_irq(&engine->sched_engine->lock);
2116         return rq;
2117 }
2118
2119 static bool hold_request(const struct i915_request *rq)
2120 {
2121         struct i915_dependency *p;
2122         bool result = false;
2123
2124         /*
2125          * If one of our ancestors is on hold, we must also be on hold,
2126          * otherwise we will bypass it and execute before it.
2127          */
2128         rcu_read_lock();
2129         for_each_signaler(p, rq) {
2130                 const struct i915_request *s =
2131                         container_of(p->signaler, typeof(*s), sched);
2132
2133                 if (s->engine != rq->engine)
2134                         continue;
2135
2136                 result = i915_request_on_hold(s);
2137                 if (result)
2138                         break;
2139         }
2140         rcu_read_unlock();
2141
2142         return result;
2143 }
2144
2145 static void __execlists_unhold(struct i915_request *rq)
2146 {
2147         LIST_HEAD(list);
2148
2149         do {
2150                 struct i915_dependency *p;
2151
2152                 RQ_TRACE(rq, "hold release\n");
2153
2154                 GEM_BUG_ON(!i915_request_on_hold(rq));
2155                 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2156
2157                 i915_request_clear_hold(rq);
2158                 list_move_tail(&rq->sched.link,
2159                                i915_sched_lookup_priolist(rq->engine->sched_engine,
2160                                                           rq_prio(rq)));
2161                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2162
2163                 /* Also release any children on this engine that are ready */
2164                 for_each_waiter(p, rq) {
2165                         struct i915_request *w =
2166                                 container_of(p->waiter, typeof(*w), sched);
2167
2168                         if (p->flags & I915_DEPENDENCY_WEAK)
2169                                 continue;
2170
2171                         if (w->engine != rq->engine)
2172                                 continue;
2173
2174                         if (!i915_request_on_hold(w))
2175                                 continue;
2176
2177                         /* Check that no other parents are also on hold */
2178                         if (hold_request(w))
2179                                 continue;
2180
2181                         list_move_tail(&w->sched.link, &list);
2182                 }
2183
2184                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2185         } while (rq);
2186 }
2187
2188 static void execlists_unhold(struct intel_engine_cs *engine,
2189                              struct i915_request *rq)
2190 {
2191         spin_lock_irq(&engine->sched_engine->lock);
2192
2193         /*
2194          * Move this request back to the priority queue, and all of its
2195          * children and grandchildren that were suspended along with it.
2196          */
2197         __execlists_unhold(rq);
2198
2199         if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2200                 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2201                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2202         }
2203
2204         spin_unlock_irq(&engine->sched_engine->lock);
2205 }
2206
2207 struct execlists_capture {
2208         struct work_struct work;
2209         struct i915_request *rq;
2210         struct i915_gpu_coredump *error;
2211 };
2212
2213 static void execlists_capture_work(struct work_struct *work)
2214 {
2215         struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2216         const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2217                 __GFP_NOWARN;
2218         struct intel_engine_cs *engine = cap->rq->engine;
2219         struct intel_gt_coredump *gt = cap->error->gt;
2220         struct intel_engine_capture_vma *vma;
2221
2222         /* Compress all the objects attached to the request, slow! */
2223         vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2224         if (vma) {
2225                 struct i915_vma_compress *compress =
2226                         i915_vma_capture_prepare(gt);
2227
2228                 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2229                 i915_vma_capture_finish(gt, compress);
2230         }
2231
2232         gt->simulated = gt->engine->simulated;
2233         cap->error->simulated = gt->simulated;
2234
2235         /* Publish the error state, and announce it to the world */
2236         i915_error_state_store(cap->error);
2237         i915_gpu_coredump_put(cap->error);
2238
2239         /* Return this request and all that depend upon it for signaling */
2240         execlists_unhold(engine, cap->rq);
2241         i915_request_put(cap->rq);
2242
2243         kfree(cap);
2244 }
2245
2246 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2247 {
2248         const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2249         struct execlists_capture *cap;
2250
2251         cap = kmalloc(sizeof(*cap), gfp);
2252         if (!cap)
2253                 return NULL;
2254
2255         cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2256         if (!cap->error)
2257                 goto err_cap;
2258
2259         cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2260         if (!cap->error->gt)
2261                 goto err_gpu;
2262
2263         cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2264         if (!cap->error->gt->engine)
2265                 goto err_gt;
2266
2267         cap->error->gt->engine->hung = true;
2268
2269         return cap;
2270
2271 err_gt:
2272         kfree(cap->error->gt);
2273 err_gpu:
2274         kfree(cap->error);
2275 err_cap:
2276         kfree(cap);
2277         return NULL;
2278 }
2279
2280 static struct i915_request *
2281 active_context(struct intel_engine_cs *engine, u32 ccid)
2282 {
2283         const struct intel_engine_execlists * const el = &engine->execlists;
2284         struct i915_request * const *port, *rq;
2285
2286         /*
2287          * Use the most recent result from process_csb(), but just in case
2288          * we trigger an error (via interrupt) before the first CS event has
2289          * been written, peek at the next submission.
2290          */
2291
2292         for (port = el->active; (rq = *port); port++) {
2293                 if (rq->context->lrc.ccid == ccid) {
2294                         ENGINE_TRACE(engine,
2295                                      "ccid:%x found at active:%zd\n",
2296                                      ccid, port - el->active);
2297                         return rq;
2298                 }
2299         }
2300
2301         for (port = el->pending; (rq = *port); port++) {
2302                 if (rq->context->lrc.ccid == ccid) {
2303                         ENGINE_TRACE(engine,
2304                                      "ccid:%x found at pending:%zd\n",
2305                                      ccid, port - el->pending);
2306                         return rq;
2307                 }
2308         }
2309
2310         ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2311         return NULL;
2312 }
2313
2314 static u32 active_ccid(struct intel_engine_cs *engine)
2315 {
2316         return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2317 }
2318
2319 static void execlists_capture(struct intel_engine_cs *engine)
2320 {
2321         struct drm_i915_private *i915 = engine->i915;
2322         struct execlists_capture *cap;
2323
2324         if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2325                 return;
2326
2327         /*
2328          * We need to _quickly_ capture the engine state before we reset.
2329          * We are inside an atomic section (softirq) here and we are delaying
2330          * the forced preemption event.
2331          */
2332         cap = capture_regs(engine);
2333         if (!cap)
2334                 return;
2335
2336         spin_lock_irq(&engine->sched_engine->lock);
2337         cap->rq = active_context(engine, active_ccid(engine));
2338         if (cap->rq) {
2339                 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2340                 cap->rq = i915_request_get_rcu(cap->rq);
2341         }
2342         spin_unlock_irq(&engine->sched_engine->lock);
2343         if (!cap->rq)
2344                 goto err_free;
2345
2346         /*
2347          * Remove the request from the execlists queue, and take ownership
2348          * of the request. We pass it to our worker who will _slowly_ compress
2349          * all the pages the _user_ requested for debugging their batch, after
2350          * which we return it to the queue for signaling.
2351          *
2352          * By removing them from the execlists queue, we also remove the
2353          * requests from being processed by __unwind_incomplete_requests()
2354          * during the intel_engine_reset(), and so they will *not* be replayed
2355          * afterwards.
2356          *
2357          * Note that because we have not yet reset the engine at this point,
2358          * it is possible for the request that we have identified as being
2359          * guilty, did in fact complete and we will then hit an arbitration
2360          * point allowing the outstanding preemption to succeed. The likelihood
2361          * of that is very low (as capturing of the engine registers should be
2362          * fast enough to run inside an irq-off atomic section!), so we will
2363          * simply hold that request accountable for being non-preemptible
2364          * long enough to force the reset.
2365          */
2366         if (!execlists_hold(engine, cap->rq))
2367                 goto err_rq;
2368
2369         INIT_WORK(&cap->work, execlists_capture_work);
2370         queue_work(i915->unordered_wq, &cap->work);
2371         return;
2372
2373 err_rq:
2374         i915_request_put(cap->rq);
2375 err_free:
2376         i915_gpu_coredump_put(cap->error);
2377         kfree(cap);
2378 }
2379
2380 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2381 {
2382         const unsigned int bit = I915_RESET_ENGINE + engine->id;
2383         unsigned long *lock = &engine->gt->reset.flags;
2384
2385         if (!intel_has_reset_engine(engine->gt))
2386                 return;
2387
2388         if (test_and_set_bit(bit, lock))
2389                 return;
2390
2391         ENGINE_TRACE(engine, "reset for %s\n", msg);
2392
2393         /* Mark this tasklet as disabled to avoid waiting for it to complete */
2394         tasklet_disable_nosync(&engine->sched_engine->tasklet);
2395
2396         ring_set_paused(engine, 1); /* Freeze the current request in place */
2397         execlists_capture(engine);
2398         intel_engine_reset(engine, msg);
2399
2400         tasklet_enable(&engine->sched_engine->tasklet);
2401         clear_and_wake_up_bit(bit, lock);
2402 }
2403
2404 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2405 {
2406         const struct timer_list *t = &engine->execlists.preempt;
2407
2408         if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2409                 return false;
2410
2411         if (!timer_expired(t))
2412                 return false;
2413
2414         return engine->execlists.pending[0];
2415 }
2416
2417 /*
2418  * Check the unread Context Status Buffers and manage the submission of new
2419  * contexts to the ELSP accordingly.
2420  */
2421 static void execlists_submission_tasklet(struct tasklet_struct *t)
2422 {
2423         struct i915_sched_engine *sched_engine =
2424                 from_tasklet(sched_engine, t, tasklet);
2425         struct intel_engine_cs * const engine = sched_engine->private_data;
2426         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2427         struct i915_request **inactive;
2428
2429         rcu_read_lock();
2430         inactive = process_csb(engine, post);
2431         GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2432
2433         if (unlikely(preempt_timeout(engine))) {
2434                 const struct i915_request *rq = *engine->execlists.active;
2435
2436                 /*
2437                  * If after the preempt-timeout expired, we are still on the
2438                  * same active request/context as before we initiated the
2439                  * preemption, reset the engine.
2440                  *
2441                  * However, if we have processed a CS event to switch contexts,
2442                  * but not yet processed the CS event for the pending
2443                  * preemption, reset the timer allowing the new context to
2444                  * gracefully exit.
2445                  */
2446                 cancel_timer(&engine->execlists.preempt);
2447                 if (rq == engine->execlists.preempt_target)
2448                         engine->execlists.error_interrupt |= ERROR_PREEMPT;
2449                 else
2450                         set_timer_ms(&engine->execlists.preempt,
2451                                      active_preempt_timeout(engine, rq));
2452         }
2453
2454         if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2455                 const char *msg;
2456
2457                 /* Generate the error message in priority wrt to the user! */
2458                 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2459                         msg = "CS error"; /* thrown by a user payload */
2460                 else if (engine->execlists.error_interrupt & ERROR_CSB)
2461                         msg = "invalid CSB event";
2462                 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2463                         msg = "preemption time out";
2464                 else
2465                         msg = "internal error";
2466
2467                 engine->execlists.error_interrupt = 0;
2468                 execlists_reset(engine, msg);
2469         }
2470
2471         if (!engine->execlists.pending[0]) {
2472                 execlists_dequeue_irq(engine);
2473                 start_timeslice(engine);
2474         }
2475
2476         post_process_csb(post, inactive);
2477         rcu_read_unlock();
2478 }
2479
2480 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2481 {
2482         bool tasklet = false;
2483
2484         if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2485                 u32 eir;
2486
2487                 /* Upper 16b are the enabling mask, rsvd for internal errors */
2488                 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2489                 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2490
2491                 /* Disable the error interrupt until after the reset */
2492                 if (likely(eir)) {
2493                         ENGINE_WRITE(engine, RING_EMR, ~0u);
2494                         ENGINE_WRITE(engine, RING_EIR, eir);
2495                         WRITE_ONCE(engine->execlists.error_interrupt, eir);
2496                         tasklet = true;
2497                 }
2498         }
2499
2500         if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2501                 WRITE_ONCE(engine->execlists.yield,
2502                            ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2503                 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2504                              engine->execlists.yield);
2505                 if (del_timer(&engine->execlists.timer))
2506                         tasklet = true;
2507         }
2508
2509         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2510                 tasklet = true;
2511
2512         if (iir & GT_RENDER_USER_INTERRUPT)
2513                 intel_engine_signal_breadcrumbs(engine);
2514
2515         if (tasklet)
2516                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2517 }
2518
2519 static void __execlists_kick(struct intel_engine_execlists *execlists)
2520 {
2521         struct intel_engine_cs *engine =
2522                 container_of(execlists, typeof(*engine), execlists);
2523
2524         /* Kick the tasklet for some interrupt coalescing and reset handling */
2525         tasklet_hi_schedule(&engine->sched_engine->tasklet);
2526 }
2527
2528 #define execlists_kick(t, member) \
2529         __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2530
2531 static void execlists_timeslice(struct timer_list *timer)
2532 {
2533         execlists_kick(timer, timer);
2534 }
2535
2536 static void execlists_preempt(struct timer_list *timer)
2537 {
2538         execlists_kick(timer, preempt);
2539 }
2540
2541 static void queue_request(struct intel_engine_cs *engine,
2542                           struct i915_request *rq)
2543 {
2544         GEM_BUG_ON(!list_empty(&rq->sched.link));
2545         list_add_tail(&rq->sched.link,
2546                       i915_sched_lookup_priolist(engine->sched_engine,
2547                                                  rq_prio(rq)));
2548         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2549 }
2550
2551 static bool submit_queue(struct intel_engine_cs *engine,
2552                          const struct i915_request *rq)
2553 {
2554         struct i915_sched_engine *sched_engine = engine->sched_engine;
2555
2556         if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2557                 return false;
2558
2559         sched_engine->queue_priority_hint = rq_prio(rq);
2560         return true;
2561 }
2562
2563 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2564                              const struct i915_request *rq)
2565 {
2566         GEM_BUG_ON(i915_request_on_hold(rq));
2567         return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2568 }
2569
2570 static void execlists_submit_request(struct i915_request *request)
2571 {
2572         struct intel_engine_cs *engine = request->engine;
2573         unsigned long flags;
2574
2575         /* Will be called from irq-context when using foreign fences. */
2576         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2577
2578         if (unlikely(ancestor_on_hold(engine, request))) {
2579                 RQ_TRACE(request, "ancestor on hold\n");
2580                 list_add_tail(&request->sched.link,
2581                               &engine->sched_engine->hold);
2582                 i915_request_set_hold(request);
2583         } else {
2584                 queue_request(engine, request);
2585
2586                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2587                 GEM_BUG_ON(list_empty(&request->sched.link));
2588
2589                 if (submit_queue(engine, request))
2590                         __execlists_kick(&engine->execlists);
2591         }
2592
2593         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2594 }
2595
2596 static int
2597 __execlists_context_pre_pin(struct intel_context *ce,
2598                             struct intel_engine_cs *engine,
2599                             struct i915_gem_ww_ctx *ww, void **vaddr)
2600 {
2601         int err;
2602
2603         err = lrc_pre_pin(ce, engine, ww, vaddr);
2604         if (err)
2605                 return err;
2606
2607         if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2608                 lrc_init_state(ce, engine, *vaddr);
2609
2610                 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2611         }
2612
2613         return 0;
2614 }
2615
2616 static int execlists_context_pre_pin(struct intel_context *ce,
2617                                      struct i915_gem_ww_ctx *ww,
2618                                      void **vaddr)
2619 {
2620         return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2621 }
2622
2623 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2624 {
2625         return lrc_pin(ce, ce->engine, vaddr);
2626 }
2627
2628 static int execlists_context_alloc(struct intel_context *ce)
2629 {
2630         return lrc_alloc(ce, ce->engine);
2631 }
2632
2633 static void execlists_context_cancel_request(struct intel_context *ce,
2634                                              struct i915_request *rq)
2635 {
2636         struct intel_engine_cs *engine = NULL;
2637
2638         i915_request_active_engine(rq, &engine);
2639
2640         if (engine && intel_engine_pulse(engine))
2641                 intel_gt_handle_error(engine->gt, engine->mask, 0,
2642                                       "request cancellation by %s",
2643                                       current->comm);
2644 }
2645
2646 static struct intel_context *
2647 execlists_create_parallel(struct intel_engine_cs **engines,
2648                           unsigned int num_siblings,
2649                           unsigned int width)
2650 {
2651         struct intel_context *parent = NULL, *ce, *err;
2652         int i;
2653
2654         GEM_BUG_ON(num_siblings != 1);
2655
2656         for (i = 0; i < width; ++i) {
2657                 ce = intel_context_create(engines[i]);
2658                 if (IS_ERR(ce)) {
2659                         err = ce;
2660                         goto unwind;
2661                 }
2662
2663                 if (i == 0)
2664                         parent = ce;
2665                 else
2666                         intel_context_bind_parent_child(parent, ce);
2667         }
2668
2669         parent->parallel.fence_context = dma_fence_context_alloc(1);
2670
2671         intel_context_set_nopreempt(parent);
2672         for_each_child(parent, ce)
2673                 intel_context_set_nopreempt(ce);
2674
2675         return parent;
2676
2677 unwind:
2678         if (parent)
2679                 intel_context_put(parent);
2680         return err;
2681 }
2682
2683 static const struct intel_context_ops execlists_context_ops = {
2684         .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2685
2686         .alloc = execlists_context_alloc,
2687
2688         .cancel_request = execlists_context_cancel_request,
2689
2690         .pre_pin = execlists_context_pre_pin,
2691         .pin = execlists_context_pin,
2692         .unpin = lrc_unpin,
2693         .post_unpin = lrc_post_unpin,
2694
2695         .enter = intel_context_enter_engine,
2696         .exit = intel_context_exit_engine,
2697
2698         .reset = lrc_reset,
2699         .destroy = lrc_destroy,
2700
2701         .create_parallel = execlists_create_parallel,
2702         .create_virtual = execlists_create_virtual,
2703 };
2704
2705 static int emit_pdps(struct i915_request *rq)
2706 {
2707         const struct intel_engine_cs * const engine = rq->engine;
2708         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2709         int err, i;
2710         u32 *cs;
2711
2712         GEM_BUG_ON(intel_vgpu_active(rq->i915));
2713
2714         /*
2715          * Beware ye of the dragons, this sequence is magic!
2716          *
2717          * Small changes to this sequence can cause anything from
2718          * GPU hangs to forcewake errors and machine lockups!
2719          */
2720
2721         cs = intel_ring_begin(rq, 2);
2722         if (IS_ERR(cs))
2723                 return PTR_ERR(cs);
2724
2725         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2726         *cs++ = MI_NOOP;
2727         intel_ring_advance(rq, cs);
2728
2729         /* Flush any residual operations from the context load */
2730         err = engine->emit_flush(rq, EMIT_FLUSH);
2731         if (err)
2732                 return err;
2733
2734         /* Magic required to prevent forcewake errors! */
2735         err = engine->emit_flush(rq, EMIT_INVALIDATE);
2736         if (err)
2737                 return err;
2738
2739         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2740         if (IS_ERR(cs))
2741                 return PTR_ERR(cs);
2742
2743         /* Ensure the LRI have landed before we invalidate & continue */
2744         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2745         for (i = GEN8_3LVL_PDPES; i--; ) {
2746                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2747                 u32 base = engine->mmio_base;
2748
2749                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2750                 *cs++ = upper_32_bits(pd_daddr);
2751                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2752                 *cs++ = lower_32_bits(pd_daddr);
2753         }
2754         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2755         intel_ring_advance(rq, cs);
2756
2757         intel_ring_advance(rq, cs);
2758
2759         return 0;
2760 }
2761
2762 static int execlists_request_alloc(struct i915_request *request)
2763 {
2764         int ret;
2765
2766         GEM_BUG_ON(!intel_context_is_pinned(request->context));
2767
2768         /*
2769          * Flush enough space to reduce the likelihood of waiting after
2770          * we start building the request - in which case we will just
2771          * have to repeat work.
2772          */
2773         request->reserved_space += EXECLISTS_REQUEST_SIZE;
2774
2775         /*
2776          * Note that after this point, we have committed to using
2777          * this request as it is being used to both track the
2778          * state of engine initialisation and liveness of the
2779          * golden renderstate above. Think twice before you try
2780          * to cancel/unwind this request now.
2781          */
2782
2783         if (!i915_vm_is_4lvl(request->context->vm)) {
2784                 ret = emit_pdps(request);
2785                 if (ret)
2786                         return ret;
2787         }
2788
2789         /* Unconditionally invalidate GPU caches and TLBs. */
2790         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2791         if (ret)
2792                 return ret;
2793
2794         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2795         return 0;
2796 }
2797
2798 static void reset_csb_pointers(struct intel_engine_cs *engine)
2799 {
2800         struct intel_engine_execlists * const execlists = &engine->execlists;
2801         const unsigned int reset_value = execlists->csb_size - 1;
2802
2803         ring_set_paused(engine, 0);
2804
2805         /*
2806          * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2807          * Bludgeon them with a mmio update to be sure.
2808          */
2809         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2810                      0xffff << 16 | reset_value << 8 | reset_value);
2811         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2812
2813         /*
2814          * After a reset, the HW starts writing into CSB entry [0]. We
2815          * therefore have to set our HEAD pointer back one entry so that
2816          * the *first* entry we check is entry 0. To complicate this further,
2817          * as we don't wait for the first interrupt after reset, we have to
2818          * fake the HW write to point back to the last entry so that our
2819          * inline comparison of our cached head position against the last HW
2820          * write works even before the first interrupt.
2821          */
2822         execlists->csb_head = reset_value;
2823         WRITE_ONCE(*execlists->csb_write, reset_value);
2824         wmb(); /* Make sure this is visible to HW (paranoia?) */
2825
2826         /* Check that the GPU does indeed update the CSB entries! */
2827         memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2828         drm_clflush_virt_range(execlists->csb_status,
2829                                execlists->csb_size *
2830                                sizeof(execlists->csb_status));
2831
2832         /* Once more for luck and our trusty paranoia */
2833         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2834                      0xffff << 16 | reset_value << 8 | reset_value);
2835         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2836
2837         GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2838 }
2839
2840 static void sanitize_hwsp(struct intel_engine_cs *engine)
2841 {
2842         struct intel_timeline *tl;
2843
2844         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2845                 intel_timeline_reset_seqno(tl);
2846 }
2847
2848 static void execlists_sanitize(struct intel_engine_cs *engine)
2849 {
2850         GEM_BUG_ON(execlists_active(&engine->execlists));
2851
2852         /*
2853          * Poison residual state on resume, in case the suspend didn't!
2854          *
2855          * We have to assume that across suspend/resume (or other loss
2856          * of control) that the contents of our pinned buffers has been
2857          * lost, replaced by garbage. Since this doesn't always happen,
2858          * let's poison such state so that we more quickly spot when
2859          * we falsely assume it has been preserved.
2860          */
2861         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2862                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2863
2864         reset_csb_pointers(engine);
2865
2866         /*
2867          * The kernel_context HWSP is stored in the status_page. As above,
2868          * that may be lost on resume/initialisation, and so we need to
2869          * reset the value in the HWSP.
2870          */
2871         sanitize_hwsp(engine);
2872
2873         /* And scrub the dirty cachelines for the HWSP */
2874         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2875
2876         intel_engine_reset_pinned_contexts(engine);
2877 }
2878
2879 static void enable_error_interrupt(struct intel_engine_cs *engine)
2880 {
2881         u32 status;
2882
2883         engine->execlists.error_interrupt = 0;
2884         ENGINE_WRITE(engine, RING_EMR, ~0u);
2885         ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2886
2887         status = ENGINE_READ(engine, RING_ESR);
2888         if (unlikely(status)) {
2889                 drm_err(&engine->i915->drm,
2890                         "engine '%s' resumed still in error: %08x\n",
2891                         engine->name, status);
2892                 intel_gt_reset_engine(engine);
2893         }
2894
2895         /*
2896          * On current gen8+, we have 2 signals to play with
2897          *
2898          * - I915_ERROR_INSTUCTION (bit 0)
2899          *
2900          *    Generate an error if the command parser encounters an invalid
2901          *    instruction
2902          *
2903          *    This is a fatal error.
2904          *
2905          * - CP_PRIV (bit 2)
2906          *
2907          *    Generate an error on privilege violation (where the CP replaces
2908          *    the instruction with a no-op). This also fires for writes into
2909          *    read-only scratch pages.
2910          *
2911          *    This is a non-fatal error, parsing continues.
2912          *
2913          * * there are a few others defined for odd HW that we do not use
2914          *
2915          * Since CP_PRIV fires for cases where we have chosen to ignore the
2916          * error (as the HW is validating and suppressing the mistakes), we
2917          * only unmask the instruction error bit.
2918          */
2919         ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2920 }
2921
2922 static void enable_execlists(struct intel_engine_cs *engine)
2923 {
2924         u32 mode;
2925
2926         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2927
2928         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2929
2930         if (GRAPHICS_VER(engine->i915) >= 11)
2931                 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2932         else
2933                 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2934         ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2935
2936         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2937
2938         ENGINE_WRITE_FW(engine,
2939                         RING_HWS_PGA,
2940                         i915_ggtt_offset(engine->status_page.vma));
2941         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2942
2943         enable_error_interrupt(engine);
2944 }
2945
2946 static int execlists_resume(struct intel_engine_cs *engine)
2947 {
2948         intel_mocs_init_engine(engine);
2949         intel_breadcrumbs_reset(engine->breadcrumbs);
2950
2951         enable_execlists(engine);
2952
2953         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2954                 xehp_enable_ccs_engines(engine);
2955
2956         return 0;
2957 }
2958
2959 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2960 {
2961         ENGINE_TRACE(engine, "depth<-%d\n",
2962                      atomic_read(&engine->sched_engine->tasklet.count));
2963
2964         /*
2965          * Prevent request submission to the hardware until we have
2966          * completed the reset in i915_gem_reset_finish(). If a request
2967          * is completed by one engine, it may then queue a request
2968          * to a second via its execlists->tasklet *just* as we are
2969          * calling engine->resume() and also writing the ELSP.
2970          * Turning off the execlists->tasklet until the reset is over
2971          * prevents the race.
2972          */
2973         __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2974         GEM_BUG_ON(!reset_in_progress(engine));
2975
2976         /*
2977          * We stop engines, otherwise we might get failed reset and a
2978          * dead gpu (on elk). Also as modern gpu as kbl can suffer
2979          * from system hang if batchbuffer is progressing when
2980          * the reset is issued, regardless of READY_TO_RESET ack.
2981          * Thus assume it is best to stop engines on all gens
2982          * where we have a gpu reset.
2983          *
2984          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2985          *
2986          * FIXME: Wa for more modern gens needs to be validated
2987          */
2988         ring_set_paused(engine, 1);
2989         intel_engine_stop_cs(engine);
2990
2991         /*
2992          * Wa_22011802037: In addition to stopping the cs, we need
2993          * to wait for any pending mi force wakeups
2994          */
2995         if (intel_engine_reset_needs_wa_22011802037(engine->gt))
2996                 intel_engine_wait_for_pending_mi_fw(engine);
2997
2998         engine->execlists.reset_ccid = active_ccid(engine);
2999 }
3000
3001 static struct i915_request **
3002 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3003 {
3004         struct intel_engine_execlists * const execlists = &engine->execlists;
3005
3006         drm_clflush_virt_range(execlists->csb_write,
3007                                sizeof(execlists->csb_write[0]));
3008
3009         inactive = process_csb(engine, inactive); /* drain preemption events */
3010
3011         /* Following the reset, we need to reload the CSB read/write pointers */
3012         reset_csb_pointers(engine);
3013
3014         return inactive;
3015 }
3016
3017 static void
3018 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3019 {
3020         struct intel_context *ce;
3021         struct i915_request *rq;
3022         u32 head;
3023
3024         /*
3025          * Save the currently executing context, even if we completed
3026          * its request, it was still running at the time of the
3027          * reset and will have been clobbered.
3028          */
3029         rq = active_context(engine, engine->execlists.reset_ccid);
3030         if (!rq)
3031                 return;
3032
3033         ce = rq->context;
3034         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3035
3036         if (__i915_request_is_complete(rq)) {
3037                 /* Idle context; tidy up the ring so we can restart afresh */
3038                 head = intel_ring_wrap(ce->ring, rq->tail);
3039                 goto out_replay;
3040         }
3041
3042         /* We still have requests in-flight; the engine should be active */
3043         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3044
3045         /* Context has requests still in-flight; it should not be idle! */
3046         GEM_BUG_ON(i915_active_is_idle(&ce->active));
3047
3048         rq = active_request(ce->timeline, rq);
3049         head = intel_ring_wrap(ce->ring, rq->head);
3050         GEM_BUG_ON(head == ce->ring->tail);
3051
3052         /*
3053          * If this request hasn't started yet, e.g. it is waiting on a
3054          * semaphore, we need to avoid skipping the request or else we
3055          * break the signaling chain. However, if the context is corrupt
3056          * the request will not restart and we will be stuck with a wedged
3057          * device. It is quite often the case that if we issue a reset
3058          * while the GPU is loading the context image, that the context
3059          * image becomes corrupt.
3060          *
3061          * Otherwise, if we have not started yet, the request should replay
3062          * perfectly and we do not need to flag the result as being erroneous.
3063          */
3064         if (!__i915_request_has_started(rq))
3065                 goto out_replay;
3066
3067         /*
3068          * If the request was innocent, we leave the request in the ELSP
3069          * and will try to replay it on restarting. The context image may
3070          * have been corrupted by the reset, in which case we may have
3071          * to service a new GPU hang, but more likely we can continue on
3072          * without impact.
3073          *
3074          * If the request was guilty, we presume the context is corrupt
3075          * and have to at least restore the RING register in the context
3076          * image back to the expected values to skip over the guilty request.
3077          */
3078         __i915_request_reset(rq, stalled);
3079
3080         /*
3081          * We want a simple context + ring to execute the breadcrumb update.
3082          * We cannot rely on the context being intact across the GPU hang,
3083          * so clear it and rebuild just what we need for the breadcrumb.
3084          * All pending requests for this context will be zapped, and any
3085          * future request will be after userspace has had the opportunity
3086          * to recreate its own state.
3087          */
3088 out_replay:
3089         ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3090                      head, ce->ring->tail);
3091         lrc_reset_regs(ce, engine);
3092         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3093 }
3094
3095 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3096 {
3097         struct intel_engine_execlists * const execlists = &engine->execlists;
3098         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3099         struct i915_request **inactive;
3100
3101         rcu_read_lock();
3102         inactive = reset_csb(engine, post);
3103
3104         execlists_reset_active(engine, true);
3105
3106         inactive = cancel_port_requests(execlists, inactive);
3107         post_process_csb(post, inactive);
3108         rcu_read_unlock();
3109 }
3110
3111 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3112 {
3113         unsigned long flags;
3114
3115         ENGINE_TRACE(engine, "\n");
3116
3117         /* Process the csb, find the guilty context and throw away */
3118         execlists_reset_csb(engine, stalled);
3119
3120         /* Push back any incomplete requests for replay after the reset. */
3121         rcu_read_lock();
3122         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3123         __unwind_incomplete_requests(engine);
3124         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3125         rcu_read_unlock();
3126 }
3127
3128 static void nop_submission_tasklet(struct tasklet_struct *t)
3129 {
3130         struct i915_sched_engine *sched_engine =
3131                 from_tasklet(sched_engine, t, tasklet);
3132         struct intel_engine_cs * const engine = sched_engine->private_data;
3133
3134         /* The driver is wedged; don't process any more events. */
3135         WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3136 }
3137
3138 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3139 {
3140         struct intel_engine_execlists * const execlists = &engine->execlists;
3141         struct i915_sched_engine * const sched_engine = engine->sched_engine;
3142         struct i915_request *rq, *rn;
3143         struct rb_node *rb;
3144         unsigned long flags;
3145
3146         ENGINE_TRACE(engine, "\n");
3147
3148         /*
3149          * Before we call engine->cancel_requests(), we should have exclusive
3150          * access to the submission state. This is arranged for us by the
3151          * caller disabling the interrupt generation, the tasklet and other
3152          * threads that may then access the same state, giving us a free hand
3153          * to reset state. However, we still need to let lockdep be aware that
3154          * we know this state may be accessed in hardirq context, so we
3155          * disable the irq around this manipulation and we want to keep
3156          * the spinlock focused on its duties and not accidentally conflate
3157          * coverage to the submission's irq state. (Similarly, although we
3158          * shouldn't need to disable irq around the manipulation of the
3159          * submission's irq state, we also wish to remind ourselves that
3160          * it is irq state.)
3161          */
3162         execlists_reset_csb(engine, true);
3163
3164         rcu_read_lock();
3165         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3166
3167         /* Mark all executing requests as skipped. */
3168         list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3169                 i915_request_put(i915_request_mark_eio(rq));
3170         intel_engine_signal_breadcrumbs(engine);
3171
3172         /* Flush the queued requests to the timeline list (for retiring). */
3173         while ((rb = rb_first_cached(&sched_engine->queue))) {
3174                 struct i915_priolist *p = to_priolist(rb);
3175
3176                 priolist_for_each_request_consume(rq, rn, p) {
3177                         if (i915_request_mark_eio(rq)) {
3178                                 __i915_request_submit(rq);
3179                                 i915_request_put(rq);
3180                         }
3181                 }
3182
3183                 rb_erase_cached(&p->node, &sched_engine->queue);
3184                 i915_priolist_free(p);
3185         }
3186
3187         /* On-hold requests will be flushed to timeline upon their release */
3188         list_for_each_entry(rq, &sched_engine->hold, sched.link)
3189                 i915_request_put(i915_request_mark_eio(rq));
3190
3191         /* Cancel all attached virtual engines */
3192         while ((rb = rb_first_cached(&execlists->virtual))) {
3193                 struct virtual_engine *ve =
3194                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3195
3196                 rb_erase_cached(rb, &execlists->virtual);
3197                 RB_CLEAR_NODE(rb);
3198
3199                 spin_lock(&ve->base.sched_engine->lock);
3200                 rq = fetch_and_zero(&ve->request);
3201                 if (rq) {
3202                         if (i915_request_mark_eio(rq)) {
3203                                 rq->engine = engine;
3204                                 __i915_request_submit(rq);
3205                                 i915_request_put(rq);
3206                         }
3207                         i915_request_put(rq);
3208
3209                         ve->base.sched_engine->queue_priority_hint = INT_MIN;
3210                 }
3211                 spin_unlock(&ve->base.sched_engine->lock);
3212         }
3213
3214         /* Remaining _unready_ requests will be nop'ed when submitted */
3215
3216         sched_engine->queue_priority_hint = INT_MIN;
3217         sched_engine->queue = RB_ROOT_CACHED;
3218
3219         GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3220         engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3221
3222         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3223         rcu_read_unlock();
3224 }
3225
3226 static void execlists_reset_finish(struct intel_engine_cs *engine)
3227 {
3228         struct intel_engine_execlists * const execlists = &engine->execlists;
3229
3230         /*
3231          * After a GPU reset, we may have requests to replay. Do so now while
3232          * we still have the forcewake to be sure that the GPU is not allowed
3233          * to sleep before we restart and reload a context.
3234          *
3235          * If the GPU reset fails, the engine may still be alive with requests
3236          * inflight. We expect those to complete, or for the device to be
3237          * reset as the next level of recovery, and as a final resort we
3238          * will declare the device wedged.
3239          */
3240         GEM_BUG_ON(!reset_in_progress(engine));
3241
3242         /* And kick in case we missed a new request submission. */
3243         if (__tasklet_enable(&engine->sched_engine->tasklet))
3244                 __execlists_kick(execlists);
3245
3246         ENGINE_TRACE(engine, "depth->%d\n",
3247                      atomic_read(&engine->sched_engine->tasklet.count));
3248 }
3249
3250 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3251 {
3252         ENGINE_WRITE(engine, RING_IMR,
3253                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
3254         ENGINE_POSTING_READ(engine, RING_IMR);
3255 }
3256
3257 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3258 {
3259         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3260 }
3261
3262 static void execlists_park(struct intel_engine_cs *engine)
3263 {
3264         cancel_timer(&engine->execlists.timer);
3265         cancel_timer(&engine->execlists.preempt);
3266
3267         /* Reset upon idling, or we may delay the busy wakeup. */
3268         WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3269 }
3270
3271 static void add_to_engine(struct i915_request *rq)
3272 {
3273         lockdep_assert_held(&rq->engine->sched_engine->lock);
3274         list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3275 }
3276
3277 static void remove_from_engine(struct i915_request *rq)
3278 {
3279         struct intel_engine_cs *engine, *locked;
3280
3281         /*
3282          * Virtual engines complicate acquiring the engine timeline lock,
3283          * as their rq->engine pointer is not stable until under that
3284          * engine lock. The simple ploy we use is to take the lock then
3285          * check that the rq still belongs to the newly locked engine.
3286          */
3287         locked = READ_ONCE(rq->engine);
3288         spin_lock_irq(&locked->sched_engine->lock);
3289         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3290                 spin_unlock(&locked->sched_engine->lock);
3291                 spin_lock(&engine->sched_engine->lock);
3292                 locked = engine;
3293         }
3294         list_del_init(&rq->sched.link);
3295
3296         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3297         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3298
3299         /* Prevent further __await_execution() registering a cb, then flush */
3300         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3301
3302         spin_unlock_irq(&locked->sched_engine->lock);
3303
3304         i915_request_notify_execute_cb_imm(rq);
3305 }
3306
3307 static bool can_preempt(struct intel_engine_cs *engine)
3308 {
3309         return GRAPHICS_VER(engine->i915) > 8;
3310 }
3311
3312 static void kick_execlists(const struct i915_request *rq, int prio)
3313 {
3314         struct intel_engine_cs *engine = rq->engine;
3315         struct i915_sched_engine *sched_engine = engine->sched_engine;
3316         const struct i915_request *inflight;
3317
3318         /*
3319          * We only need to kick the tasklet once for the high priority
3320          * new context we add into the queue.
3321          */
3322         if (prio <= sched_engine->queue_priority_hint)
3323                 return;
3324
3325         rcu_read_lock();
3326
3327         /* Nothing currently active? We're overdue for a submission! */
3328         inflight = execlists_active(&engine->execlists);
3329         if (!inflight)
3330                 goto unlock;
3331
3332         /*
3333          * If we are already the currently executing context, don't
3334          * bother evaluating if we should preempt ourselves.
3335          */
3336         if (inflight->context == rq->context)
3337                 goto unlock;
3338
3339         ENGINE_TRACE(engine,
3340                      "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3341                      prio,
3342                      rq->fence.context, rq->fence.seqno,
3343                      inflight->fence.context, inflight->fence.seqno,
3344                      inflight->sched.attr.priority);
3345
3346         sched_engine->queue_priority_hint = prio;
3347
3348         /*
3349          * Allow preemption of low -> normal -> high, but we do
3350          * not allow low priority tasks to preempt other low priority
3351          * tasks under the impression that latency for low priority
3352          * tasks does not matter (as much as background throughput),
3353          * so kiss.
3354          */
3355         if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3356                 tasklet_hi_schedule(&sched_engine->tasklet);
3357
3358 unlock:
3359         rcu_read_unlock();
3360 }
3361
3362 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3363 {
3364         engine->submit_request = execlists_submit_request;
3365         engine->sched_engine->schedule = i915_schedule;
3366         engine->sched_engine->kick_backend = kick_execlists;
3367         engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3368 }
3369
3370 static void execlists_shutdown(struct intel_engine_cs *engine)
3371 {
3372         /* Synchronise with residual timers and any softirq they raise */
3373         del_timer_sync(&engine->execlists.timer);
3374         del_timer_sync(&engine->execlists.preempt);
3375         tasklet_kill(&engine->sched_engine->tasklet);
3376 }
3377
3378 static void execlists_release(struct intel_engine_cs *engine)
3379 {
3380         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3381
3382         execlists_shutdown(engine);
3383
3384         intel_engine_cleanup_common(engine);
3385         lrc_fini_wa_ctx(engine);
3386 }
3387
3388 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3389                                            ktime_t *now)
3390 {
3391         struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3392         ktime_t total = stats->total;
3393
3394         /*
3395          * If the engine is executing something at the moment
3396          * add it to the total.
3397          */
3398         *now = ktime_get();
3399         if (READ_ONCE(stats->active))
3400                 total = ktime_add(total, ktime_sub(*now, stats->start));
3401
3402         return total;
3403 }
3404
3405 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3406                                          ktime_t *now)
3407 {
3408         struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3409         unsigned int seq;
3410         ktime_t total;
3411
3412         do {
3413                 seq = read_seqcount_begin(&stats->lock);
3414                 total = __execlists_engine_busyness(engine, now);
3415         } while (read_seqcount_retry(&stats->lock, seq));
3416
3417         return total;
3418 }
3419
3420 static void
3421 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3422 {
3423         /* Default vfuncs which can be overridden by each engine. */
3424
3425         engine->resume = execlists_resume;
3426
3427         engine->cops = &execlists_context_ops;
3428         engine->request_alloc = execlists_request_alloc;
3429         engine->add_active_request = add_to_engine;
3430         engine->remove_active_request = remove_from_engine;
3431
3432         engine->reset.prepare = execlists_reset_prepare;
3433         engine->reset.rewind = execlists_reset_rewind;
3434         engine->reset.cancel = execlists_reset_cancel;
3435         engine->reset.finish = execlists_reset_finish;
3436
3437         engine->park = execlists_park;
3438         engine->unpark = NULL;
3439
3440         engine->emit_flush = gen8_emit_flush_xcs;
3441         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3442         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3443         if (GRAPHICS_VER(engine->i915) >= 12) {
3444                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3445                 engine->emit_flush = gen12_emit_flush_xcs;
3446         }
3447         engine->set_default_submission = execlists_set_default_submission;
3448
3449         if (GRAPHICS_VER(engine->i915) < 11) {
3450                 engine->irq_enable = gen8_logical_ring_enable_irq;
3451                 engine->irq_disable = gen8_logical_ring_disable_irq;
3452         } else {
3453                 /*
3454                  * TODO: On Gen11 interrupt masks need to be clear
3455                  * to allow C6 entry. Keep interrupts enabled at
3456                  * and take the hit of generating extra interrupts
3457                  * until a more refined solution exists.
3458                  */
3459         }
3460         intel_engine_set_irq_handler(engine, execlists_irq_handler);
3461
3462         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3463         if (!intel_vgpu_active(engine->i915)) {
3464                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3465                 if (can_preempt(engine)) {
3466                         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3467                         if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3468                                 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3469                 }
3470         }
3471
3472         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
3473                 if (intel_engine_has_preemption(engine))
3474                         engine->emit_bb_start = xehp_emit_bb_start;
3475                 else
3476                         engine->emit_bb_start = xehp_emit_bb_start_noarb;
3477         } else {
3478                 if (intel_engine_has_preemption(engine))
3479                         engine->emit_bb_start = gen8_emit_bb_start;
3480                 else
3481                         engine->emit_bb_start = gen8_emit_bb_start_noarb;
3482         }
3483
3484         engine->busyness = execlists_engine_busyness;
3485 }
3486
3487 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3488 {
3489         unsigned int shift = 0;
3490
3491         if (GRAPHICS_VER(engine->i915) < 11) {
3492                 const u8 irq_shifts[] = {
3493                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3494                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3495                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3496                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3497                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
3498                 };
3499
3500                 shift = irq_shifts[engine->id];
3501         }
3502
3503         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3504         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3505         engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3506         engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3507 }
3508
3509 static void rcs_submission_override(struct intel_engine_cs *engine)
3510 {
3511         switch (GRAPHICS_VER(engine->i915)) {
3512         case 12:
3513                 engine->emit_flush = gen12_emit_flush_rcs;
3514                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3515                 break;
3516         case 11:
3517                 engine->emit_flush = gen11_emit_flush_rcs;
3518                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3519                 break;
3520         default:
3521                 engine->emit_flush = gen8_emit_flush_rcs;
3522                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3523                 break;
3524         }
3525 }
3526
3527 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3528 {
3529         struct intel_engine_execlists * const execlists = &engine->execlists;
3530         struct drm_i915_private *i915 = engine->i915;
3531         struct intel_uncore *uncore = engine->uncore;
3532         u32 base = engine->mmio_base;
3533
3534         tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3535         timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3536         timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3537
3538         logical_ring_default_vfuncs(engine);
3539         logical_ring_default_irqs(engine);
3540
3541         seqcount_init(&engine->stats.execlists.lock);
3542
3543         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3544                 rcs_submission_override(engine);
3545
3546         lrc_init_wa_ctx(engine);
3547
3548         if (HAS_LOGICAL_RING_ELSQ(i915)) {
3549                 execlists->submit_reg = intel_uncore_regs(uncore) +
3550                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3551                 execlists->ctrl_reg = intel_uncore_regs(uncore) +
3552                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3553
3554                 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3555                                     RING_EXECLIST_CONTROL(engine->mmio_base),
3556                                     FW_REG_WRITE);
3557         } else {
3558                 execlists->submit_reg = intel_uncore_regs(uncore) +
3559                         i915_mmio_reg_offset(RING_ELSP(base));
3560         }
3561
3562         execlists->csb_status =
3563                 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3564
3565         execlists->csb_write =
3566                 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3567
3568         if (GRAPHICS_VER(i915) < 11)
3569                 execlists->csb_size = GEN8_CSB_ENTRIES;
3570         else
3571                 execlists->csb_size = GEN11_CSB_ENTRIES;
3572
3573         engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3574         if (GRAPHICS_VER(engine->i915) >= 11 &&
3575             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 55)) {
3576                 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3577                 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3578         }
3579
3580         /* Finally, take ownership and responsibility for cleanup! */
3581         engine->sanitize = execlists_sanitize;
3582         engine->release = execlists_release;
3583
3584         return 0;
3585 }
3586
3587 static struct list_head *virtual_queue(struct virtual_engine *ve)
3588 {
3589         return &ve->base.sched_engine->default_priolist.requests;
3590 }
3591
3592 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3593 {
3594         struct virtual_engine *ve =
3595                 container_of(wrk, typeof(*ve), rcu.work);
3596         unsigned int n;
3597
3598         GEM_BUG_ON(ve->context.inflight);
3599
3600         /* Preempt-to-busy may leave a stale request behind. */
3601         if (unlikely(ve->request)) {
3602                 struct i915_request *old;
3603
3604                 spin_lock_irq(&ve->base.sched_engine->lock);
3605
3606                 old = fetch_and_zero(&ve->request);
3607                 if (old) {
3608                         GEM_BUG_ON(!__i915_request_is_complete(old));
3609                         __i915_request_submit(old);
3610                         i915_request_put(old);
3611                 }
3612
3613                 spin_unlock_irq(&ve->base.sched_engine->lock);
3614         }
3615
3616         /*
3617          * Flush the tasklet in case it is still running on another core.
3618          *
3619          * This needs to be done before we remove ourselves from the siblings'
3620          * rbtrees as in the case it is running in parallel, it may reinsert
3621          * the rb_node into a sibling.
3622          */
3623         tasklet_kill(&ve->base.sched_engine->tasklet);
3624
3625         /* Decouple ourselves from the siblings, no more access allowed. */
3626         for (n = 0; n < ve->num_siblings; n++) {
3627                 struct intel_engine_cs *sibling = ve->siblings[n];
3628                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3629
3630                 if (RB_EMPTY_NODE(node))
3631                         continue;
3632
3633                 spin_lock_irq(&sibling->sched_engine->lock);
3634
3635                 /* Detachment is lazily performed in the sched_engine->tasklet */
3636                 if (!RB_EMPTY_NODE(node))
3637                         rb_erase_cached(node, &sibling->execlists.virtual);
3638
3639                 spin_unlock_irq(&sibling->sched_engine->lock);
3640         }
3641         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3642         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3643
3644         lrc_fini(&ve->context);
3645         intel_context_fini(&ve->context);
3646
3647         if (ve->base.breadcrumbs)
3648                 intel_breadcrumbs_put(ve->base.breadcrumbs);
3649         if (ve->base.sched_engine)
3650                 i915_sched_engine_put(ve->base.sched_engine);
3651         intel_engine_free_request_pool(&ve->base);
3652
3653         kfree(ve);
3654 }
3655
3656 static void virtual_context_destroy(struct kref *kref)
3657 {
3658         struct virtual_engine *ve =
3659                 container_of(kref, typeof(*ve), context.ref);
3660
3661         GEM_BUG_ON(!list_empty(&ve->context.signals));
3662
3663         /*
3664          * When destroying the virtual engine, we have to be aware that
3665          * it may still be in use from an hardirq/softirq context causing
3666          * the resubmission of a completed request (background completion
3667          * due to preempt-to-busy). Before we can free the engine, we need
3668          * to flush the submission code and tasklets that are still potentially
3669          * accessing the engine. Flushing the tasklets requires process context,
3670          * and since we can guard the resubmit onto the engine with an RCU read
3671          * lock, we can delegate the free of the engine to an RCU worker.
3672          */
3673         INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3674         queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3675 }
3676
3677 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3678 {
3679         int swp;
3680
3681         /*
3682          * Pick a random sibling on starting to help spread the load around.
3683          *
3684          * New contexts are typically created with exactly the same order
3685          * of siblings, and often started in batches. Due to the way we iterate
3686          * the array of sibling when submitting requests, sibling[0] is
3687          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3688          * randomised across the system, we also help spread the load by the
3689          * first engine we inspect being different each time.
3690          *
3691          * NB This does not force us to execute on this engine, it will just
3692          * typically be the first we inspect for submission.
3693          */
3694         swp = get_random_u32_below(ve->num_siblings);
3695         if (swp)
3696                 swap(ve->siblings[swp], ve->siblings[0]);
3697 }
3698
3699 static int virtual_context_alloc(struct intel_context *ce)
3700 {
3701         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3702
3703         return lrc_alloc(ce, ve->siblings[0]);
3704 }
3705
3706 static int virtual_context_pre_pin(struct intel_context *ce,
3707                                    struct i915_gem_ww_ctx *ww,
3708                                    void **vaddr)
3709 {
3710         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3711
3712          /* Note: we must use a real engine class for setting up reg state */
3713         return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3714 }
3715
3716 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3717 {
3718         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3719
3720         return lrc_pin(ce, ve->siblings[0], vaddr);
3721 }
3722
3723 static void virtual_context_enter(struct intel_context *ce)
3724 {
3725         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3726         unsigned int n;
3727
3728         for (n = 0; n < ve->num_siblings; n++)
3729                 intel_engine_pm_get(ve->siblings[n]);
3730
3731         intel_timeline_enter(ce->timeline);
3732 }
3733
3734 static void virtual_context_exit(struct intel_context *ce)
3735 {
3736         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3737         unsigned int n;
3738
3739         intel_timeline_exit(ce->timeline);
3740
3741         for (n = 0; n < ve->num_siblings; n++)
3742                 intel_engine_pm_put(ve->siblings[n]);
3743 }
3744
3745 static struct intel_engine_cs *
3746 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3747 {
3748         struct virtual_engine *ve = to_virtual_engine(engine);
3749
3750         if (sibling >= ve->num_siblings)
3751                 return NULL;
3752
3753         return ve->siblings[sibling];
3754 }
3755
3756 static const struct intel_context_ops virtual_context_ops = {
3757         .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3758
3759         .alloc = virtual_context_alloc,
3760
3761         .cancel_request = execlists_context_cancel_request,
3762
3763         .pre_pin = virtual_context_pre_pin,
3764         .pin = virtual_context_pin,
3765         .unpin = lrc_unpin,
3766         .post_unpin = lrc_post_unpin,
3767
3768         .enter = virtual_context_enter,
3769         .exit = virtual_context_exit,
3770
3771         .destroy = virtual_context_destroy,
3772
3773         .get_sibling = virtual_get_sibling,
3774 };
3775
3776 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3777 {
3778         struct i915_request *rq;
3779         intel_engine_mask_t mask;
3780
3781         rq = READ_ONCE(ve->request);
3782         if (!rq)
3783                 return 0;
3784
3785         /* The rq is ready for submission; rq->execution_mask is now stable. */
3786         mask = rq->execution_mask;
3787         if (unlikely(!mask)) {
3788                 /* Invalid selection, submit to a random engine in error */
3789                 i915_request_set_error_once(rq, -ENODEV);
3790                 mask = ve->siblings[0]->mask;
3791         }
3792
3793         ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3794                      rq->fence.context, rq->fence.seqno,
3795                      mask, ve->base.sched_engine->queue_priority_hint);
3796
3797         return mask;
3798 }
3799
3800 static void virtual_submission_tasklet(struct tasklet_struct *t)
3801 {
3802         struct i915_sched_engine *sched_engine =
3803                 from_tasklet(sched_engine, t, tasklet);
3804         struct virtual_engine * const ve =
3805                 (struct virtual_engine *)sched_engine->private_data;
3806         const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3807         intel_engine_mask_t mask;
3808         unsigned int n;
3809
3810         rcu_read_lock();
3811         mask = virtual_submission_mask(ve);
3812         rcu_read_unlock();
3813         if (unlikely(!mask))
3814                 return;
3815
3816         for (n = 0; n < ve->num_siblings; n++) {
3817                 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3818                 struct ve_node * const node = &ve->nodes[sibling->id];
3819                 struct rb_node **parent, *rb;
3820                 bool first;
3821
3822                 if (!READ_ONCE(ve->request))
3823                         break; /* already handled by a sibling's tasklet */
3824
3825                 spin_lock_irq(&sibling->sched_engine->lock);
3826
3827                 if (unlikely(!(mask & sibling->mask))) {
3828                         if (!RB_EMPTY_NODE(&node->rb)) {
3829                                 rb_erase_cached(&node->rb,
3830                                                 &sibling->execlists.virtual);
3831                                 RB_CLEAR_NODE(&node->rb);
3832                         }
3833
3834                         goto unlock_engine;
3835                 }
3836
3837                 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3838                         /*
3839                          * Cheat and avoid rebalancing the tree if we can
3840                          * reuse this node in situ.
3841                          */
3842                         first = rb_first_cached(&sibling->execlists.virtual) ==
3843                                 &node->rb;
3844                         if (prio == node->prio || (prio > node->prio && first))
3845                                 goto submit_engine;
3846
3847                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3848                 }
3849
3850                 rb = NULL;
3851                 first = true;
3852                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3853                 while (*parent) {
3854                         struct ve_node *other;
3855
3856                         rb = *parent;
3857                         other = rb_entry(rb, typeof(*other), rb);
3858                         if (prio > other->prio) {
3859                                 parent = &rb->rb_left;
3860                         } else {
3861                                 parent = &rb->rb_right;
3862                                 first = false;
3863                         }
3864                 }
3865
3866                 rb_link_node(&node->rb, rb, parent);
3867                 rb_insert_color_cached(&node->rb,
3868                                        &sibling->execlists.virtual,
3869                                        first);
3870
3871 submit_engine:
3872                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3873                 node->prio = prio;
3874                 if (first && prio > sibling->sched_engine->queue_priority_hint)
3875                         tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3876
3877 unlock_engine:
3878                 spin_unlock_irq(&sibling->sched_engine->lock);
3879
3880                 if (intel_context_inflight(&ve->context))
3881                         break;
3882         }
3883 }
3884
3885 static void virtual_submit_request(struct i915_request *rq)
3886 {
3887         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3888         unsigned long flags;
3889
3890         ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3891                      rq->fence.context,
3892                      rq->fence.seqno);
3893
3894         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3895
3896         spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3897
3898         /* By the time we resubmit a request, it may be completed */
3899         if (__i915_request_is_complete(rq)) {
3900                 __i915_request_submit(rq);
3901                 goto unlock;
3902         }
3903
3904         if (ve->request) { /* background completion from preempt-to-busy */
3905                 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3906                 __i915_request_submit(ve->request);
3907                 i915_request_put(ve->request);
3908         }
3909
3910         ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3911         ve->request = i915_request_get(rq);
3912
3913         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3914         list_move_tail(&rq->sched.link, virtual_queue(ve));
3915
3916         tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3917
3918 unlock:
3919         spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3920 }
3921
3922 static struct intel_context *
3923 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3924                          unsigned long flags)
3925 {
3926         struct drm_i915_private *i915 = siblings[0]->i915;
3927         struct virtual_engine *ve;
3928         unsigned int n;
3929         int err;
3930
3931         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3932         if (!ve)
3933                 return ERR_PTR(-ENOMEM);
3934
3935         ve->base.i915 = i915;
3936         ve->base.gt = siblings[0]->gt;
3937         ve->base.uncore = siblings[0]->uncore;
3938         ve->base.id = -1;
3939
3940         ve->base.class = OTHER_CLASS;
3941         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3942         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3943         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3944
3945         /*
3946          * The decision on whether to submit a request using semaphores
3947          * depends on the saturated state of the engine. We only compute
3948          * this during HW submission of the request, and we need for this
3949          * state to be globally applied to all requests being submitted
3950          * to this engine. Virtual engines encompass more than one physical
3951          * engine and so we cannot accurately tell in advance if one of those
3952          * engines is already saturated and so cannot afford to use a semaphore
3953          * and be pessimized in priority for doing so -- if we are the only
3954          * context using semaphores after all other clients have stopped, we
3955          * will be starved on the saturated system. Such a global switch for
3956          * semaphores is less than ideal, but alas is the current compromise.
3957          */
3958         ve->base.saturated = ALL_ENGINES;
3959
3960         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3961
3962         intel_engine_init_execlists(&ve->base);
3963
3964         ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3965         if (!ve->base.sched_engine) {
3966                 err = -ENOMEM;
3967                 goto err_put;
3968         }
3969         ve->base.sched_engine->private_data = &ve->base;
3970
3971         ve->base.cops = &virtual_context_ops;
3972         ve->base.request_alloc = execlists_request_alloc;
3973
3974         ve->base.sched_engine->schedule = i915_schedule;
3975         ve->base.sched_engine->kick_backend = kick_execlists;
3976         ve->base.submit_request = virtual_submit_request;
3977
3978         INIT_LIST_HEAD(virtual_queue(ve));
3979         tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3980
3981         intel_context_init(&ve->context, &ve->base);
3982
3983         ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3984         if (!ve->base.breadcrumbs) {
3985                 err = -ENOMEM;
3986                 goto err_put;
3987         }
3988
3989         for (n = 0; n < count; n++) {
3990                 struct intel_engine_cs *sibling = siblings[n];
3991
3992                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3993                 if (sibling->mask & ve->base.mask) {
3994                         drm_dbg(&i915->drm,
3995                                 "duplicate %s entry in load balancer\n",
3996                                 sibling->name);
3997                         err = -EINVAL;
3998                         goto err_put;
3999                 }
4000
4001                 /*
4002                  * The virtual engine implementation is tightly coupled to
4003                  * the execlists backend -- we push out request directly
4004                  * into a tree inside each physical engine. We could support
4005                  * layering if we handle cloning of the requests and
4006                  * submitting a copy into each backend.
4007                  */
4008                 if (sibling->sched_engine->tasklet.callback !=
4009                     execlists_submission_tasklet) {
4010                         err = -ENODEV;
4011                         goto err_put;
4012                 }
4013
4014                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4015                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4016
4017                 ve->siblings[ve->num_siblings++] = sibling;
4018                 ve->base.mask |= sibling->mask;
4019                 ve->base.logical_mask |= sibling->logical_mask;
4020
4021                 /*
4022                  * All physical engines must be compatible for their emission
4023                  * functions (as we build the instructions during request
4024                  * construction and do not alter them before submission
4025                  * on the physical engine). We use the engine class as a guide
4026                  * here, although that could be refined.
4027                  */
4028                 if (ve->base.class != OTHER_CLASS) {
4029                         if (ve->base.class != sibling->class) {
4030                                 drm_dbg(&i915->drm,
4031                                         "invalid mixing of engine class, sibling %d, already %d\n",
4032                                         sibling->class, ve->base.class);
4033                                 err = -EINVAL;
4034                                 goto err_put;
4035                         }
4036                         continue;
4037                 }
4038
4039                 ve->base.class = sibling->class;
4040                 ve->base.uabi_class = sibling->uabi_class;
4041                 snprintf(ve->base.name, sizeof(ve->base.name),
4042                          "v%dx%d", ve->base.class, count);
4043                 ve->base.context_size = sibling->context_size;
4044
4045                 ve->base.add_active_request = sibling->add_active_request;
4046                 ve->base.remove_active_request = sibling->remove_active_request;
4047                 ve->base.emit_bb_start = sibling->emit_bb_start;
4048                 ve->base.emit_flush = sibling->emit_flush;
4049                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4050                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4051                 ve->base.emit_fini_breadcrumb_dw =
4052                         sibling->emit_fini_breadcrumb_dw;
4053
4054                 ve->base.flags = sibling->flags;
4055         }
4056
4057         ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4058
4059         virtual_engine_initial_hint(ve);
4060         return &ve->context;
4061
4062 err_put:
4063         intel_context_put(&ve->context);
4064         return ERR_PTR(err);
4065 }
4066
4067 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4068                                    struct drm_printer *m,
4069                                    void (*show_request)(struct drm_printer *m,
4070                                                         const struct i915_request *rq,
4071                                                         const char *prefix,
4072                                                         int indent),
4073                                    unsigned int max)
4074 {
4075         const struct intel_engine_execlists *execlists = &engine->execlists;
4076         struct i915_sched_engine *sched_engine = engine->sched_engine;
4077         struct i915_request *rq, *last;
4078         unsigned long flags;
4079         unsigned int count;
4080         struct rb_node *rb;
4081
4082         spin_lock_irqsave(&sched_engine->lock, flags);
4083
4084         last = NULL;
4085         count = 0;
4086         list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4087                 if (count++ < max - 1)
4088                         show_request(m, rq, "\t\t", 0);
4089                 else
4090                         last = rq;
4091         }
4092         if (last) {
4093                 if (count > max) {
4094                         drm_printf(m,
4095                                    "\t\t...skipping %d executing requests...\n",
4096                                    count - max);
4097                 }
4098                 show_request(m, last, "\t\t", 0);
4099         }
4100
4101         if (sched_engine->queue_priority_hint != INT_MIN)
4102                 drm_printf(m, "\t\tQueue priority hint: %d\n",
4103                            READ_ONCE(sched_engine->queue_priority_hint));
4104
4105         last = NULL;
4106         count = 0;
4107         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4108                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4109
4110                 priolist_for_each_request(rq, p) {
4111                         if (count++ < max - 1)
4112                                 show_request(m, rq, "\t\t", 0);
4113                         else
4114                                 last = rq;
4115                 }
4116         }
4117         if (last) {
4118                 if (count > max) {
4119                         drm_printf(m,
4120                                    "\t\t...skipping %d queued requests...\n",
4121                                    count - max);
4122                 }
4123                 show_request(m, last, "\t\t", 0);
4124         }
4125
4126         last = NULL;
4127         count = 0;
4128         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4129                 struct virtual_engine *ve =
4130                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4131                 struct i915_request *rq = READ_ONCE(ve->request);
4132
4133                 if (rq) {
4134                         if (count++ < max - 1)
4135                                 show_request(m, rq, "\t\t", 0);
4136                         else
4137                                 last = rq;
4138                 }
4139         }
4140         if (last) {
4141                 if (count > max) {
4142                         drm_printf(m,
4143                                    "\t\t...skipping %d virtual requests...\n",
4144                                    count - max);
4145                 }
4146                 show_request(m, last, "\t\t", 0);
4147         }
4148
4149         spin_unlock_irqrestore(&sched_engine->lock, flags);
4150 }
4151
4152 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4153                                           struct i915_request *hung_rq,
4154                                           struct drm_printer *m)
4155 {
4156         unsigned long flags;
4157
4158         spin_lock_irqsave(&engine->sched_engine->lock, flags);
4159
4160         intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4161
4162         drm_printf(m, "\tOn hold?: %zu\n",
4163                    list_count_nodes(&engine->sched_engine->hold));
4164
4165         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4166 }
4167
4168 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4169 #include "selftest_execlists.c"
4170 #endif
This page took 0.269467 seconds and 4 git commands to generate.