]> Git Repo - linux.git/blob - fs/ext4/inode.c
mm: change invalidatepage prototype to accept length
[linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card ([email protected])
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      ([email protected])
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     ext4_find_delalloc_range(inode, map->m_lblk,
630                                              map->m_lblk + map->m_len - 1))
631                         status |= EXTENT_STATUS_DELAYED;
632                 ret = ext4_es_insert_extent(inode, map->m_lblk,
633                                             map->m_len, map->m_pblk, status);
634                 if (ret < 0)
635                         retval = ret;
636         }
637         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638                 up_read((&EXT4_I(inode)->i_data_sem));
639
640 found:
641         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642                 int ret = check_block_validity(inode, map);
643                 if (ret != 0)
644                         return ret;
645         }
646
647         /* If it is only a block(s) look up */
648         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649                 return retval;
650
651         /*
652          * Returns if the blocks have already allocated
653          *
654          * Note that if blocks have been preallocated
655          * ext4_ext_get_block() returns the create = 0
656          * with buffer head unmapped.
657          */
658         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659                 return retval;
660
661         /*
662          * Here we clear m_flags because after allocating an new extent,
663          * it will be set again.
664          */
665         map->m_flags &= ~EXT4_MAP_FLAGS;
666
667         /*
668          * New blocks allocate and/or writing to uninitialized extent
669          * will possibly result in updating i_data, so we take
670          * the write lock of i_data_sem, and call get_blocks()
671          * with create == 1 flag.
672          */
673         down_write((&EXT4_I(inode)->i_data_sem));
674
675         /*
676          * if the caller is from delayed allocation writeout path
677          * we have already reserved fs blocks for allocation
678          * let the underlying get_block() function know to
679          * avoid double accounting
680          */
681         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683         /*
684          * We need to check for EXT4 here because migrate
685          * could have changed the inode type in between
686          */
687         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
689         } else {
690                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
691
692                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693                         /*
694                          * We allocated new blocks which will result in
695                          * i_data's format changing.  Force the migrate
696                          * to fail by clearing migrate flags
697                          */
698                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699                 }
700
701                 /*
702                  * Update reserved blocks/metadata blocks after successful
703                  * block allocation which had been deferred till now. We don't
704                  * support fallocate for non extent files. So we can update
705                  * reserve space here.
706                  */
707                 if ((retval > 0) &&
708                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709                         ext4_da_update_reserve_space(inode, retval, 1);
710         }
711         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713
714         if (retval > 0) {
715                 int ret;
716                 unsigned long long status;
717
718 #ifdef ES_AGGRESSIVE_TEST
719                 if (retval != map->m_len) {
720                         printk("ES len assertation failed for inode: %lu "
721                                "retval %d != map->m_len %d "
722                                "in %s (allocation)\n", inode->i_ino, retval,
723                                map->m_len, __func__);
724                 }
725 #endif
726
727                 /*
728                  * If the extent has been zeroed out, we don't need to update
729                  * extent status tree.
730                  */
731                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733                         if (ext4_es_is_written(&es))
734                                 goto has_zeroout;
735                 }
736                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739                     ext4_find_delalloc_range(inode, map->m_lblk,
740                                              map->m_lblk + map->m_len - 1))
741                         status |= EXTENT_STATUS_DELAYED;
742                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743                                             map->m_pblk, status);
744                 if (ret < 0)
745                         retval = ret;
746         }
747
748 has_zeroout:
749         up_write((&EXT4_I(inode)->i_data_sem));
750         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751                 int ret = check_block_validity(inode, map);
752                 if (ret != 0)
753                         return ret;
754         }
755         return retval;
756 }
757
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         handle_t *handle = ext4_journal_current_handle();
765         struct ext4_map_blocks map;
766         int ret = 0, started = 0;
767         int dio_credits;
768
769         if (ext4_has_inline_data(inode))
770                 return -ERANGE;
771
772         map.m_lblk = iblock;
773         map.m_len = bh->b_size >> inode->i_blkbits;
774
775         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776                 /* Direct IO write... */
777                 if (map.m_len > DIO_MAX_BLOCKS)
778                         map.m_len = DIO_MAX_BLOCKS;
779                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781                                             dio_credits);
782                 if (IS_ERR(handle)) {
783                         ret = PTR_ERR(handle);
784                         return ret;
785                 }
786                 started = 1;
787         }
788
789         ret = ext4_map_blocks(handle, inode, &map, flags);
790         if (ret > 0) {
791                 map_bh(bh, inode->i_sb, map.m_pblk);
792                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794                 ret = 0;
795         }
796         if (started)
797                 ext4_journal_stop(handle);
798         return ret;
799 }
800
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802                    struct buffer_head *bh, int create)
803 {
804         return _ext4_get_block(inode, iblock, bh,
805                                create ? EXT4_GET_BLOCKS_CREATE : 0);
806 }
807
808 /*
809  * `handle' can be NULL if create is zero
810  */
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812                                 ext4_lblk_t block, int create, int *errp)
813 {
814         struct ext4_map_blocks map;
815         struct buffer_head *bh;
816         int fatal = 0, err;
817
818         J_ASSERT(handle != NULL || create == 0);
819
820         map.m_lblk = block;
821         map.m_len = 1;
822         err = ext4_map_blocks(handle, inode, &map,
823                               create ? EXT4_GET_BLOCKS_CREATE : 0);
824
825         /* ensure we send some value back into *errp */
826         *errp = 0;
827
828         if (create && err == 0)
829                 err = -ENOSPC;  /* should never happen */
830         if (err < 0)
831                 *errp = err;
832         if (err <= 0)
833                 return NULL;
834
835         bh = sb_getblk(inode->i_sb, map.m_pblk);
836         if (unlikely(!bh)) {
837                 *errp = -ENOMEM;
838                 return NULL;
839         }
840         if (map.m_flags & EXT4_MAP_NEW) {
841                 J_ASSERT(create != 0);
842                 J_ASSERT(handle != NULL);
843
844                 /*
845                  * Now that we do not always journal data, we should
846                  * keep in mind whether this should always journal the
847                  * new buffer as metadata.  For now, regular file
848                  * writes use ext4_get_block instead, so it's not a
849                  * problem.
850                  */
851                 lock_buffer(bh);
852                 BUFFER_TRACE(bh, "call get_create_access");
853                 fatal = ext4_journal_get_create_access(handle, bh);
854                 if (!fatal && !buffer_uptodate(bh)) {
855                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856                         set_buffer_uptodate(bh);
857                 }
858                 unlock_buffer(bh);
859                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860                 err = ext4_handle_dirty_metadata(handle, inode, bh);
861                 if (!fatal)
862                         fatal = err;
863         } else {
864                 BUFFER_TRACE(bh, "not a new buffer");
865         }
866         if (fatal) {
867                 *errp = fatal;
868                 brelse(bh);
869                 bh = NULL;
870         }
871         return bh;
872 }
873
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875                                ext4_lblk_t block, int create, int *err)
876 {
877         struct buffer_head *bh;
878
879         bh = ext4_getblk(handle, inode, block, create, err);
880         if (!bh)
881                 return bh;
882         if (buffer_uptodate(bh))
883                 return bh;
884         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885         wait_on_buffer(bh);
886         if (buffer_uptodate(bh))
887                 return bh;
888         put_bh(bh);
889         *err = -EIO;
890         return NULL;
891 }
892
893 int ext4_walk_page_buffers(handle_t *handle,
894                            struct buffer_head *head,
895                            unsigned from,
896                            unsigned to,
897                            int *partial,
898                            int (*fn)(handle_t *handle,
899                                      struct buffer_head *bh))
900 {
901         struct buffer_head *bh;
902         unsigned block_start, block_end;
903         unsigned blocksize = head->b_size;
904         int err, ret = 0;
905         struct buffer_head *next;
906
907         for (bh = head, block_start = 0;
908              ret == 0 && (bh != head || !block_start);
909              block_start = block_end, bh = next) {
910                 next = bh->b_this_page;
911                 block_end = block_start + blocksize;
912                 if (block_end <= from || block_start >= to) {
913                         if (partial && !buffer_uptodate(bh))
914                                 *partial = 1;
915                         continue;
916                 }
917                 err = (*fn)(handle, bh);
918                 if (!ret)
919                         ret = err;
920         }
921         return ret;
922 }
923
924 /*
925  * To preserve ordering, it is essential that the hole instantiation and
926  * the data write be encapsulated in a single transaction.  We cannot
927  * close off a transaction and start a new one between the ext4_get_block()
928  * and the commit_write().  So doing the jbd2_journal_start at the start of
929  * prepare_write() is the right place.
930  *
931  * Also, this function can nest inside ext4_writepage().  In that case, we
932  * *know* that ext4_writepage() has generated enough buffer credits to do the
933  * whole page.  So we won't block on the journal in that case, which is good,
934  * because the caller may be PF_MEMALLOC.
935  *
936  * By accident, ext4 can be reentered when a transaction is open via
937  * quota file writes.  If we were to commit the transaction while thus
938  * reentered, there can be a deadlock - we would be holding a quota
939  * lock, and the commit would never complete if another thread had a
940  * transaction open and was blocking on the quota lock - a ranking
941  * violation.
942  *
943  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944  * will _not_ run commit under these circumstances because handle->h_ref
945  * is elevated.  We'll still have enough credits for the tiny quotafile
946  * write.
947  */
948 int do_journal_get_write_access(handle_t *handle,
949                                 struct buffer_head *bh)
950 {
951         int dirty = buffer_dirty(bh);
952         int ret;
953
954         if (!buffer_mapped(bh) || buffer_freed(bh))
955                 return 0;
956         /*
957          * __block_write_begin() could have dirtied some buffers. Clean
958          * the dirty bit as jbd2_journal_get_write_access() could complain
959          * otherwise about fs integrity issues. Setting of the dirty bit
960          * by __block_write_begin() isn't a real problem here as we clear
961          * the bit before releasing a page lock and thus writeback cannot
962          * ever write the buffer.
963          */
964         if (dirty)
965                 clear_buffer_dirty(bh);
966         ret = ext4_journal_get_write_access(handle, bh);
967         if (!ret && dirty)
968                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969         return ret;
970 }
971
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973                    struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975                             loff_t pos, unsigned len, unsigned flags,
976                             struct page **pagep, void **fsdata)
977 {
978         struct inode *inode = mapping->host;
979         int ret, needed_blocks;
980         handle_t *handle;
981         int retries = 0;
982         struct page *page;
983         pgoff_t index;
984         unsigned from, to;
985
986         trace_ext4_write_begin(inode, pos, len, flags);
987         /*
988          * Reserve one block more for addition to orphan list in case
989          * we allocate blocks but write fails for some reason
990          */
991         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992         index = pos >> PAGE_CACHE_SHIFT;
993         from = pos & (PAGE_CACHE_SIZE - 1);
994         to = from + len;
995
996         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998                                                     flags, pagep);
999                 if (ret < 0)
1000                         return ret;
1001                 if (ret == 1)
1002                         return 0;
1003         }
1004
1005         /*
1006          * grab_cache_page_write_begin() can take a long time if the
1007          * system is thrashing due to memory pressure, or if the page
1008          * is being written back.  So grab it first before we start
1009          * the transaction handle.  This also allows us to allocate
1010          * the page (if needed) without using GFP_NOFS.
1011          */
1012 retry_grab:
1013         page = grab_cache_page_write_begin(mapping, index, flags);
1014         if (!page)
1015                 return -ENOMEM;
1016         unlock_page(page);
1017
1018 retry_journal:
1019         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020         if (IS_ERR(handle)) {
1021                 page_cache_release(page);
1022                 return PTR_ERR(handle);
1023         }
1024
1025         lock_page(page);
1026         if (page->mapping != mapping) {
1027                 /* The page got truncated from under us */
1028                 unlock_page(page);
1029                 page_cache_release(page);
1030                 ext4_journal_stop(handle);
1031                 goto retry_grab;
1032         }
1033         wait_on_page_writeback(page);
1034
1035         if (ext4_should_dioread_nolock(inode))
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037         else
1038                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1039
1040         if (!ret && ext4_should_journal_data(inode)) {
1041                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042                                              from, to, NULL,
1043                                              do_journal_get_write_access);
1044         }
1045
1046         if (ret) {
1047                 unlock_page(page);
1048                 /*
1049                  * __block_write_begin may have instantiated a few blocks
1050                  * outside i_size.  Trim these off again. Don't need
1051                  * i_size_read because we hold i_mutex.
1052                  *
1053                  * Add inode to orphan list in case we crash before
1054                  * truncate finishes
1055                  */
1056                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057                         ext4_orphan_add(handle, inode);
1058
1059                 ext4_journal_stop(handle);
1060                 if (pos + len > inode->i_size) {
1061                         ext4_truncate_failed_write(inode);
1062                         /*
1063                          * If truncate failed early the inode might
1064                          * still be on the orphan list; we need to
1065                          * make sure the inode is removed from the
1066                          * orphan list in that case.
1067                          */
1068                         if (inode->i_nlink)
1069                                 ext4_orphan_del(NULL, inode);
1070                 }
1071
1072                 if (ret == -ENOSPC &&
1073                     ext4_should_retry_alloc(inode->i_sb, &retries))
1074                         goto retry_journal;
1075                 page_cache_release(page);
1076                 return ret;
1077         }
1078         *pagep = page;
1079         return ret;
1080 }
1081
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084 {
1085         int ret;
1086         if (!buffer_mapped(bh) || buffer_freed(bh))
1087                 return 0;
1088         set_buffer_uptodate(bh);
1089         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090         clear_buffer_meta(bh);
1091         clear_buffer_prio(bh);
1092         return ret;
1093 }
1094
1095 /*
1096  * We need to pick up the new inode size which generic_commit_write gave us
1097  * `file' can be NULL - eg, when called from page_symlink().
1098  *
1099  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1100  * buffers are managed internally.
1101  */
1102 static int ext4_write_end(struct file *file,
1103                           struct address_space *mapping,
1104                           loff_t pos, unsigned len, unsigned copied,
1105                           struct page *page, void *fsdata)
1106 {
1107         handle_t *handle = ext4_journal_current_handle();
1108         struct inode *inode = mapping->host;
1109         int ret = 0, ret2;
1110         int i_size_changed = 0;
1111
1112         trace_ext4_write_end(inode, pos, len, copied);
1113         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114                 ret = ext4_jbd2_file_inode(handle, inode);
1115                 if (ret) {
1116                         unlock_page(page);
1117                         page_cache_release(page);
1118                         goto errout;
1119                 }
1120         }
1121
1122         if (ext4_has_inline_data(inode))
1123                 copied = ext4_write_inline_data_end(inode, pos, len,
1124                                                     copied, page);
1125         else
1126                 copied = block_write_end(file, mapping, pos,
1127                                          len, copied, page, fsdata);
1128
1129         /*
1130          * No need to use i_size_read() here, the i_size
1131          * cannot change under us because we hole i_mutex.
1132          *
1133          * But it's important to update i_size while still holding page lock:
1134          * page writeout could otherwise come in and zero beyond i_size.
1135          */
1136         if (pos + copied > inode->i_size) {
1137                 i_size_write(inode, pos + copied);
1138                 i_size_changed = 1;
1139         }
1140
1141         if (pos + copied > EXT4_I(inode)->i_disksize) {
1142                 /* We need to mark inode dirty even if
1143                  * new_i_size is less that inode->i_size
1144                  * but greater than i_disksize. (hint delalloc)
1145                  */
1146                 ext4_update_i_disksize(inode, (pos + copied));
1147                 i_size_changed = 1;
1148         }
1149         unlock_page(page);
1150         page_cache_release(page);
1151
1152         /*
1153          * Don't mark the inode dirty under page lock. First, it unnecessarily
1154          * makes the holding time of page lock longer. Second, it forces lock
1155          * ordering of page lock and transaction start for journaling
1156          * filesystems.
1157          */
1158         if (i_size_changed)
1159                 ext4_mark_inode_dirty(handle, inode);
1160
1161         if (copied < 0)
1162                 ret = copied;
1163         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164                 /* if we have allocated more blocks and copied
1165                  * less. We will have blocks allocated outside
1166                  * inode->i_size. So truncate them
1167                  */
1168                 ext4_orphan_add(handle, inode);
1169 errout:
1170         ret2 = ext4_journal_stop(handle);
1171         if (!ret)
1172                 ret = ret2;
1173
1174         if (pos + len > inode->i_size) {
1175                 ext4_truncate_failed_write(inode);
1176                 /*
1177                  * If truncate failed early the inode might still be
1178                  * on the orphan list; we need to make sure the inode
1179                  * is removed from the orphan list in that case.
1180                  */
1181                 if (inode->i_nlink)
1182                         ext4_orphan_del(NULL, inode);
1183         }
1184
1185         return ret ? ret : copied;
1186 }
1187
1188 static int ext4_journalled_write_end(struct file *file,
1189                                      struct address_space *mapping,
1190                                      loff_t pos, unsigned len, unsigned copied,
1191                                      struct page *page, void *fsdata)
1192 {
1193         handle_t *handle = ext4_journal_current_handle();
1194         struct inode *inode = mapping->host;
1195         int ret = 0, ret2;
1196         int partial = 0;
1197         unsigned from, to;
1198         loff_t new_i_size;
1199
1200         trace_ext4_journalled_write_end(inode, pos, len, copied);
1201         from = pos & (PAGE_CACHE_SIZE - 1);
1202         to = from + len;
1203
1204         BUG_ON(!ext4_handle_valid(handle));
1205
1206         if (ext4_has_inline_data(inode))
1207                 copied = ext4_write_inline_data_end(inode, pos, len,
1208                                                     copied, page);
1209         else {
1210                 if (copied < len) {
1211                         if (!PageUptodate(page))
1212                                 copied = 0;
1213                         page_zero_new_buffers(page, from+copied, to);
1214                 }
1215
1216                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1217                                              to, &partial, write_end_fn);
1218                 if (!partial)
1219                         SetPageUptodate(page);
1220         }
1221         new_i_size = pos + copied;
1222         if (new_i_size > inode->i_size)
1223                 i_size_write(inode, pos+copied);
1224         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1225         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1226         if (new_i_size > EXT4_I(inode)->i_disksize) {
1227                 ext4_update_i_disksize(inode, new_i_size);
1228                 ret2 = ext4_mark_inode_dirty(handle, inode);
1229                 if (!ret)
1230                         ret = ret2;
1231         }
1232
1233         unlock_page(page);
1234         page_cache_release(page);
1235         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1236                 /* if we have allocated more blocks and copied
1237                  * less. We will have blocks allocated outside
1238                  * inode->i_size. So truncate them
1239                  */
1240                 ext4_orphan_add(handle, inode);
1241
1242         ret2 = ext4_journal_stop(handle);
1243         if (!ret)
1244                 ret = ret2;
1245         if (pos + len > inode->i_size) {
1246                 ext4_truncate_failed_write(inode);
1247                 /*
1248                  * If truncate failed early the inode might still be
1249                  * on the orphan list; we need to make sure the inode
1250                  * is removed from the orphan list in that case.
1251                  */
1252                 if (inode->i_nlink)
1253                         ext4_orphan_del(NULL, inode);
1254         }
1255
1256         return ret ? ret : copied;
1257 }
1258
1259 /*
1260  * Reserve a metadata for a single block located at lblock
1261  */
1262 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1263 {
1264         int retries = 0;
1265         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1266         struct ext4_inode_info *ei = EXT4_I(inode);
1267         unsigned int md_needed;
1268         ext4_lblk_t save_last_lblock;
1269         int save_len;
1270
1271         /*
1272          * recalculate the amount of metadata blocks to reserve
1273          * in order to allocate nrblocks
1274          * worse case is one extent per block
1275          */
1276 repeat:
1277         spin_lock(&ei->i_block_reservation_lock);
1278         /*
1279          * ext4_calc_metadata_amount() has side effects, which we have
1280          * to be prepared undo if we fail to claim space.
1281          */
1282         save_len = ei->i_da_metadata_calc_len;
1283         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284         md_needed = EXT4_NUM_B2C(sbi,
1285                                  ext4_calc_metadata_amount(inode, lblock));
1286         trace_ext4_da_reserve_space(inode, md_needed);
1287
1288         /*
1289          * We do still charge estimated metadata to the sb though;
1290          * we cannot afford to run out of free blocks.
1291          */
1292         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293                 ei->i_da_metadata_calc_len = save_len;
1294                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295                 spin_unlock(&ei->i_block_reservation_lock);
1296                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297                         cond_resched();
1298                         goto repeat;
1299                 }
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 /*
1309  * Reserve a single cluster located at lblock
1310  */
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313         int retries = 0;
1314         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315         struct ext4_inode_info *ei = EXT4_I(inode);
1316         unsigned int md_needed;
1317         int ret;
1318         ext4_lblk_t save_last_lblock;
1319         int save_len;
1320
1321         /*
1322          * We will charge metadata quota at writeout time; this saves
1323          * us from metadata over-estimation, though we may go over by
1324          * a small amount in the end.  Here we just reserve for data.
1325          */
1326         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1327         if (ret)
1328                 return ret;
1329
1330         /*
1331          * recalculate the amount of metadata blocks to reserve
1332          * in order to allocate nrblocks
1333          * worse case is one extent per block
1334          */
1335 repeat:
1336         spin_lock(&ei->i_block_reservation_lock);
1337         /*
1338          * ext4_calc_metadata_amount() has side effects, which we have
1339          * to be prepared undo if we fail to claim space.
1340          */
1341         save_len = ei->i_da_metadata_calc_len;
1342         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1343         md_needed = EXT4_NUM_B2C(sbi,
1344                                  ext4_calc_metadata_amount(inode, lblock));
1345         trace_ext4_da_reserve_space(inode, md_needed);
1346
1347         /*
1348          * We do still charge estimated metadata to the sb though;
1349          * we cannot afford to run out of free blocks.
1350          */
1351         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1352                 ei->i_da_metadata_calc_len = save_len;
1353                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1354                 spin_unlock(&ei->i_block_reservation_lock);
1355                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1356                         cond_resched();
1357                         goto repeat;
1358                 }
1359                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1360                 return -ENOSPC;
1361         }
1362         ei->i_reserved_data_blocks++;
1363         ei->i_reserved_meta_blocks += md_needed;
1364         spin_unlock(&ei->i_block_reservation_lock);
1365
1366         return 0;       /* success */
1367 }
1368
1369 static void ext4_da_release_space(struct inode *inode, int to_free)
1370 {
1371         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372         struct ext4_inode_info *ei = EXT4_I(inode);
1373
1374         if (!to_free)
1375                 return;         /* Nothing to release, exit */
1376
1377         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1378
1379         trace_ext4_da_release_space(inode, to_free);
1380         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1381                 /*
1382                  * if there aren't enough reserved blocks, then the
1383                  * counter is messed up somewhere.  Since this
1384                  * function is called from invalidate page, it's
1385                  * harmless to return without any action.
1386                  */
1387                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1388                          "ino %lu, to_free %d with only %d reserved "
1389                          "data blocks", inode->i_ino, to_free,
1390                          ei->i_reserved_data_blocks);
1391                 WARN_ON(1);
1392                 to_free = ei->i_reserved_data_blocks;
1393         }
1394         ei->i_reserved_data_blocks -= to_free;
1395
1396         if (ei->i_reserved_data_blocks == 0) {
1397                 /*
1398                  * We can release all of the reserved metadata blocks
1399                  * only when we have written all of the delayed
1400                  * allocation blocks.
1401                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1402                  * i_reserved_data_blocks, etc. refer to number of clusters.
1403                  */
1404                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1405                                    ei->i_reserved_meta_blocks);
1406                 ei->i_reserved_meta_blocks = 0;
1407                 ei->i_da_metadata_calc_len = 0;
1408         }
1409
1410         /* update fs dirty data blocks counter */
1411         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1412
1413         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1414
1415         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1416 }
1417
1418 static void ext4_da_page_release_reservation(struct page *page,
1419                                              unsigned long offset)
1420 {
1421         int to_release = 0;
1422         struct buffer_head *head, *bh;
1423         unsigned int curr_off = 0;
1424         struct inode *inode = page->mapping->host;
1425         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1426         int num_clusters;
1427         ext4_fsblk_t lblk;
1428
1429         head = page_buffers(page);
1430         bh = head;
1431         do {
1432                 unsigned int next_off = curr_off + bh->b_size;
1433
1434                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1435                         to_release++;
1436                         clear_buffer_delay(bh);
1437                 }
1438                 curr_off = next_off;
1439         } while ((bh = bh->b_this_page) != head);
1440
1441         if (to_release) {
1442                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1443                 ext4_es_remove_extent(inode, lblk, to_release);
1444         }
1445
1446         /* If we have released all the blocks belonging to a cluster, then we
1447          * need to release the reserved space for that cluster. */
1448         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1449         while (num_clusters > 0) {
1450                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1451                         ((num_clusters - 1) << sbi->s_cluster_bits);
1452                 if (sbi->s_cluster_ratio == 1 ||
1453                     !ext4_find_delalloc_cluster(inode, lblk))
1454                         ext4_da_release_space(inode, 1);
1455
1456                 num_clusters--;
1457         }
1458 }
1459
1460 /*
1461  * Delayed allocation stuff
1462  */
1463
1464 /*
1465  * mpage_da_submit_io - walks through extent of pages and try to write
1466  * them with writepage() call back
1467  *
1468  * @mpd->inode: inode
1469  * @mpd->first_page: first page of the extent
1470  * @mpd->next_page: page after the last page of the extent
1471  *
1472  * By the time mpage_da_submit_io() is called we expect all blocks
1473  * to be allocated. this may be wrong if allocation failed.
1474  *
1475  * As pages are already locked by write_cache_pages(), we can't use it
1476  */
1477 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1478                               struct ext4_map_blocks *map)
1479 {
1480         struct pagevec pvec;
1481         unsigned long index, end;
1482         int ret = 0, err, nr_pages, i;
1483         struct inode *inode = mpd->inode;
1484         struct address_space *mapping = inode->i_mapping;
1485         loff_t size = i_size_read(inode);
1486         unsigned int len, block_start;
1487         struct buffer_head *bh, *page_bufs = NULL;
1488         sector_t pblock = 0, cur_logical = 0;
1489         struct ext4_io_submit io_submit;
1490
1491         BUG_ON(mpd->next_page <= mpd->first_page);
1492         memset(&io_submit, 0, sizeof(io_submit));
1493         /*
1494          * We need to start from the first_page to the next_page - 1
1495          * to make sure we also write the mapped dirty buffer_heads.
1496          * If we look at mpd->b_blocknr we would only be looking
1497          * at the currently mapped buffer_heads.
1498          */
1499         index = mpd->first_page;
1500         end = mpd->next_page - 1;
1501
1502         pagevec_init(&pvec, 0);
1503         while (index <= end) {
1504                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1505                 if (nr_pages == 0)
1506                         break;
1507                 for (i = 0; i < nr_pages; i++) {
1508                         int skip_page = 0;
1509                         struct page *page = pvec.pages[i];
1510
1511                         index = page->index;
1512                         if (index > end)
1513                                 break;
1514
1515                         if (index == size >> PAGE_CACHE_SHIFT)
1516                                 len = size & ~PAGE_CACHE_MASK;
1517                         else
1518                                 len = PAGE_CACHE_SIZE;
1519                         if (map) {
1520                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1521                                                         inode->i_blkbits);
1522                                 pblock = map->m_pblk + (cur_logical -
1523                                                         map->m_lblk);
1524                         }
1525                         index++;
1526
1527                         BUG_ON(!PageLocked(page));
1528                         BUG_ON(PageWriteback(page));
1529
1530                         bh = page_bufs = page_buffers(page);
1531                         block_start = 0;
1532                         do {
1533                                 if (map && (cur_logical >= map->m_lblk) &&
1534                                     (cur_logical <= (map->m_lblk +
1535                                                      (map->m_len - 1)))) {
1536                                         if (buffer_delay(bh)) {
1537                                                 clear_buffer_delay(bh);
1538                                                 bh->b_blocknr = pblock;
1539                                         }
1540                                         if (buffer_unwritten(bh) ||
1541                                             buffer_mapped(bh))
1542                                                 BUG_ON(bh->b_blocknr != pblock);
1543                                         if (map->m_flags & EXT4_MAP_UNINIT)
1544                                                 set_buffer_uninit(bh);
1545                                         clear_buffer_unwritten(bh);
1546                                 }
1547
1548                                 /*
1549                                  * skip page if block allocation undone and
1550                                  * block is dirty
1551                                  */
1552                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1553                                         skip_page = 1;
1554                                 bh = bh->b_this_page;
1555                                 block_start += bh->b_size;
1556                                 cur_logical++;
1557                                 pblock++;
1558                         } while (bh != page_bufs);
1559
1560                         if (skip_page) {
1561                                 unlock_page(page);
1562                                 continue;
1563                         }
1564
1565                         clear_page_dirty_for_io(page);
1566                         err = ext4_bio_write_page(&io_submit, page, len,
1567                                                   mpd->wbc);
1568                         if (!err)
1569                                 mpd->pages_written++;
1570                         /*
1571                          * In error case, we have to continue because
1572                          * remaining pages are still locked
1573                          */
1574                         if (ret == 0)
1575                                 ret = err;
1576                 }
1577                 pagevec_release(&pvec);
1578         }
1579         ext4_io_submit(&io_submit);
1580         return ret;
1581 }
1582
1583 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1584 {
1585         int nr_pages, i;
1586         pgoff_t index, end;
1587         struct pagevec pvec;
1588         struct inode *inode = mpd->inode;
1589         struct address_space *mapping = inode->i_mapping;
1590         ext4_lblk_t start, last;
1591
1592         index = mpd->first_page;
1593         end   = mpd->next_page - 1;
1594
1595         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1597         ext4_es_remove_extent(inode, start, last - start + 1);
1598
1599         pagevec_init(&pvec, 0);
1600         while (index <= end) {
1601                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1602                 if (nr_pages == 0)
1603                         break;
1604                 for (i = 0; i < nr_pages; i++) {
1605                         struct page *page = pvec.pages[i];
1606                         if (page->index > end)
1607                                 break;
1608                         BUG_ON(!PageLocked(page));
1609                         BUG_ON(PageWriteback(page));
1610                         block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1611                         ClearPageUptodate(page);
1612                         unlock_page(page);
1613                 }
1614                 index = pvec.pages[nr_pages - 1]->index + 1;
1615                 pagevec_release(&pvec);
1616         }
1617         return;
1618 }
1619
1620 static void ext4_print_free_blocks(struct inode *inode)
1621 {
1622         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1623         struct super_block *sb = inode->i_sb;
1624         struct ext4_inode_info *ei = EXT4_I(inode);
1625
1626         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1627                EXT4_C2B(EXT4_SB(inode->i_sb),
1628                         ext4_count_free_clusters(sb)));
1629         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1630         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1631                (long long) EXT4_C2B(EXT4_SB(sb),
1632                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1633         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1634                (long long) EXT4_C2B(EXT4_SB(sb),
1635                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1636         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1637         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1638                  ei->i_reserved_data_blocks);
1639         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1640                ei->i_reserved_meta_blocks);
1641         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1642                ei->i_allocated_meta_blocks);
1643         return;
1644 }
1645
1646 /*
1647  * mpage_da_map_and_submit - go through given space, map them
1648  *       if necessary, and then submit them for I/O
1649  *
1650  * @mpd - bh describing space
1651  *
1652  * The function skips space we know is already mapped to disk blocks.
1653  *
1654  */
1655 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1656 {
1657         int err, blks, get_blocks_flags;
1658         struct ext4_map_blocks map, *mapp = NULL;
1659         sector_t next = mpd->b_blocknr;
1660         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1661         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1662         handle_t *handle = NULL;
1663
1664         /*
1665          * If the blocks are mapped already, or we couldn't accumulate
1666          * any blocks, then proceed immediately to the submission stage.
1667          */
1668         if ((mpd->b_size == 0) ||
1669             ((mpd->b_state  & (1 << BH_Mapped)) &&
1670              !(mpd->b_state & (1 << BH_Delay)) &&
1671              !(mpd->b_state & (1 << BH_Unwritten))))
1672                 goto submit_io;
1673
1674         handle = ext4_journal_current_handle();
1675         BUG_ON(!handle);
1676
1677         /*
1678          * Call ext4_map_blocks() to allocate any delayed allocation
1679          * blocks, or to convert an uninitialized extent to be
1680          * initialized (in the case where we have written into
1681          * one or more preallocated blocks).
1682          *
1683          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1684          * indicate that we are on the delayed allocation path.  This
1685          * affects functions in many different parts of the allocation
1686          * call path.  This flag exists primarily because we don't
1687          * want to change *many* call functions, so ext4_map_blocks()
1688          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1689          * inode's allocation semaphore is taken.
1690          *
1691          * If the blocks in questions were delalloc blocks, set
1692          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1693          * variables are updated after the blocks have been allocated.
1694          */
1695         map.m_lblk = next;
1696         map.m_len = max_blocks;
1697         /*
1698          * We're in delalloc path and it is possible that we're going to
1699          * need more metadata blocks than previously reserved. However
1700          * we must not fail because we're in writeback and there is
1701          * nothing we can do about it so it might result in data loss.
1702          * So use reserved blocks to allocate metadata if possible.
1703          */
1704         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1705                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1706         if (ext4_should_dioread_nolock(mpd->inode))
1707                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1708         if (mpd->b_state & (1 << BH_Delay))
1709                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1710
1711
1712         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1713         if (blks < 0) {
1714                 struct super_block *sb = mpd->inode->i_sb;
1715
1716                 err = blks;
1717                 /*
1718                  * If get block returns EAGAIN or ENOSPC and there
1719                  * appears to be free blocks we will just let
1720                  * mpage_da_submit_io() unlock all of the pages.
1721                  */
1722                 if (err == -EAGAIN)
1723                         goto submit_io;
1724
1725                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1726                         mpd->retval = err;
1727                         goto submit_io;
1728                 }
1729
1730                 /*
1731                  * get block failure will cause us to loop in
1732                  * writepages, because a_ops->writepage won't be able
1733                  * to make progress. The page will be redirtied by
1734                  * writepage and writepages will again try to write
1735                  * the same.
1736                  */
1737                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1738                         ext4_msg(sb, KERN_CRIT,
1739                                  "delayed block allocation failed for inode %lu "
1740                                  "at logical offset %llu with max blocks %zd "
1741                                  "with error %d", mpd->inode->i_ino,
1742                                  (unsigned long long) next,
1743                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1744                         ext4_msg(sb, KERN_CRIT,
1745                                 "This should not happen!! Data will be lost");
1746                         if (err == -ENOSPC)
1747                                 ext4_print_free_blocks(mpd->inode);
1748                 }
1749                 /* invalidate all the pages */
1750                 ext4_da_block_invalidatepages(mpd);
1751
1752                 /* Mark this page range as having been completed */
1753                 mpd->io_done = 1;
1754                 return;
1755         }
1756         BUG_ON(blks == 0);
1757
1758         mapp = &map;
1759         if (map.m_flags & EXT4_MAP_NEW) {
1760                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1761                 int i;
1762
1763                 for (i = 0; i < map.m_len; i++)
1764                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1765         }
1766
1767         /*
1768          * Update on-disk size along with block allocation.
1769          */
1770         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1771         if (disksize > i_size_read(mpd->inode))
1772                 disksize = i_size_read(mpd->inode);
1773         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1774                 ext4_update_i_disksize(mpd->inode, disksize);
1775                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1776                 if (err)
1777                         ext4_error(mpd->inode->i_sb,
1778                                    "Failed to mark inode %lu dirty",
1779                                    mpd->inode->i_ino);
1780         }
1781
1782 submit_io:
1783         mpage_da_submit_io(mpd, mapp);
1784         mpd->io_done = 1;
1785 }
1786
1787 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1788                 (1 << BH_Delay) | (1 << BH_Unwritten))
1789
1790 /*
1791  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1792  *
1793  * @mpd->lbh - extent of blocks
1794  * @logical - logical number of the block in the file
1795  * @b_state - b_state of the buffer head added
1796  *
1797  * the function is used to collect contig. blocks in same state
1798  */
1799 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1800                                    unsigned long b_state)
1801 {
1802         sector_t next;
1803         int blkbits = mpd->inode->i_blkbits;
1804         int nrblocks = mpd->b_size >> blkbits;
1805
1806         /*
1807          * XXX Don't go larger than mballoc is willing to allocate
1808          * This is a stopgap solution.  We eventually need to fold
1809          * mpage_da_submit_io() into this function and then call
1810          * ext4_map_blocks() multiple times in a loop
1811          */
1812         if (nrblocks >= (8*1024*1024 >> blkbits))
1813                 goto flush_it;
1814
1815         /* check if the reserved journal credits might overflow */
1816         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1817                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1818                         /*
1819                          * With non-extent format we are limited by the journal
1820                          * credit available.  Total credit needed to insert
1821                          * nrblocks contiguous blocks is dependent on the
1822                          * nrblocks.  So limit nrblocks.
1823                          */
1824                         goto flush_it;
1825                 }
1826         }
1827         /*
1828          * First block in the extent
1829          */
1830         if (mpd->b_size == 0) {
1831                 mpd->b_blocknr = logical;
1832                 mpd->b_size = 1 << blkbits;
1833                 mpd->b_state = b_state & BH_FLAGS;
1834                 return;
1835         }
1836
1837         next = mpd->b_blocknr + nrblocks;
1838         /*
1839          * Can we merge the block to our big extent?
1840          */
1841         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1842                 mpd->b_size += 1 << blkbits;
1843                 return;
1844         }
1845
1846 flush_it:
1847         /*
1848          * We couldn't merge the block to our extent, so we
1849          * need to flush current  extent and start new one
1850          */
1851         mpage_da_map_and_submit(mpd);
1852         return;
1853 }
1854
1855 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1856 {
1857         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1858 }
1859
1860 /*
1861  * This function is grabs code from the very beginning of
1862  * ext4_map_blocks, but assumes that the caller is from delayed write
1863  * time. This function looks up the requested blocks and sets the
1864  * buffer delay bit under the protection of i_data_sem.
1865  */
1866 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1867                               struct ext4_map_blocks *map,
1868                               struct buffer_head *bh)
1869 {
1870         struct extent_status es;
1871         int retval;
1872         sector_t invalid_block = ~((sector_t) 0xffff);
1873 #ifdef ES_AGGRESSIVE_TEST
1874         struct ext4_map_blocks orig_map;
1875
1876         memcpy(&orig_map, map, sizeof(*map));
1877 #endif
1878
1879         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1880                 invalid_block = ~0;
1881
1882         map->m_flags = 0;
1883         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1884                   "logical block %lu\n", inode->i_ino, map->m_len,
1885                   (unsigned long) map->m_lblk);
1886
1887         /* Lookup extent status tree firstly */
1888         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1889
1890                 if (ext4_es_is_hole(&es)) {
1891                         retval = 0;
1892                         down_read((&EXT4_I(inode)->i_data_sem));
1893                         goto add_delayed;
1894                 }
1895
1896                 /*
1897                  * Delayed extent could be allocated by fallocate.
1898                  * So we need to check it.
1899                  */
1900                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1901                         map_bh(bh, inode->i_sb, invalid_block);
1902                         set_buffer_new(bh);
1903                         set_buffer_delay(bh);
1904                         return 0;
1905                 }
1906
1907                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1908                 retval = es.es_len - (iblock - es.es_lblk);
1909                 if (retval > map->m_len)
1910                         retval = map->m_len;
1911                 map->m_len = retval;
1912                 if (ext4_es_is_written(&es))
1913                         map->m_flags |= EXT4_MAP_MAPPED;
1914                 else if (ext4_es_is_unwritten(&es))
1915                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1916                 else
1917                         BUG_ON(1);
1918
1919 #ifdef ES_AGGRESSIVE_TEST
1920                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1921 #endif
1922                 return retval;
1923         }
1924
1925         /*
1926          * Try to see if we can get the block without requesting a new
1927          * file system block.
1928          */
1929         down_read((&EXT4_I(inode)->i_data_sem));
1930         if (ext4_has_inline_data(inode)) {
1931                 /*
1932                  * We will soon create blocks for this page, and let
1933                  * us pretend as if the blocks aren't allocated yet.
1934                  * In case of clusters, we have to handle the work
1935                  * of mapping from cluster so that the reserved space
1936                  * is calculated properly.
1937                  */
1938                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1939                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1940                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1941                 retval = 0;
1942         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1943                 retval = ext4_ext_map_blocks(NULL, inode, map,
1944                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1945         else
1946                 retval = ext4_ind_map_blocks(NULL, inode, map,
1947                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1948
1949 add_delayed:
1950         if (retval == 0) {
1951                 int ret;
1952                 /*
1953                  * XXX: __block_prepare_write() unmaps passed block,
1954                  * is it OK?
1955                  */
1956                 /*
1957                  * If the block was allocated from previously allocated cluster,
1958                  * then we don't need to reserve it again. However we still need
1959                  * to reserve metadata for every block we're going to write.
1960                  */
1961                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1962                         ret = ext4_da_reserve_space(inode, iblock);
1963                         if (ret) {
1964                                 /* not enough space to reserve */
1965                                 retval = ret;
1966                                 goto out_unlock;
1967                         }
1968                 } else {
1969                         ret = ext4_da_reserve_metadata(inode, iblock);
1970                         if (ret) {
1971                                 /* not enough space to reserve */
1972                                 retval = ret;
1973                                 goto out_unlock;
1974                         }
1975                 }
1976
1977                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1978                                             ~0, EXTENT_STATUS_DELAYED);
1979                 if (ret) {
1980                         retval = ret;
1981                         goto out_unlock;
1982                 }
1983
1984                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1985                  * and it should not appear on the bh->b_state.
1986                  */
1987                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1988
1989                 map_bh(bh, inode->i_sb, invalid_block);
1990                 set_buffer_new(bh);
1991                 set_buffer_delay(bh);
1992         } else if (retval > 0) {
1993                 int ret;
1994                 unsigned long long status;
1995
1996 #ifdef ES_AGGRESSIVE_TEST
1997                 if (retval != map->m_len) {
1998                         printk("ES len assertation failed for inode: %lu "
1999                                "retval %d != map->m_len %d "
2000                                "in %s (lookup)\n", inode->i_ino, retval,
2001                                map->m_len, __func__);
2002                 }
2003 #endif
2004
2005                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2006                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2007                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2008                                             map->m_pblk, status);
2009                 if (ret != 0)
2010                         retval = ret;
2011         }
2012
2013 out_unlock:
2014         up_read((&EXT4_I(inode)->i_data_sem));
2015
2016         return retval;
2017 }
2018
2019 /*
2020  * This is a special get_blocks_t callback which is used by
2021  * ext4_da_write_begin().  It will either return mapped block or
2022  * reserve space for a single block.
2023  *
2024  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2025  * We also have b_blocknr = -1 and b_bdev initialized properly
2026  *
2027  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2028  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2029  * initialized properly.
2030  */
2031 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2032                            struct buffer_head *bh, int create)
2033 {
2034         struct ext4_map_blocks map;
2035         int ret = 0;
2036
2037         BUG_ON(create == 0);
2038         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2039
2040         map.m_lblk = iblock;
2041         map.m_len = 1;
2042
2043         /*
2044          * first, we need to know whether the block is allocated already
2045          * preallocated blocks are unmapped but should treated
2046          * the same as allocated blocks.
2047          */
2048         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2049         if (ret <= 0)
2050                 return ret;
2051
2052         map_bh(bh, inode->i_sb, map.m_pblk);
2053         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2054
2055         if (buffer_unwritten(bh)) {
2056                 /* A delayed write to unwritten bh should be marked
2057                  * new and mapped.  Mapped ensures that we don't do
2058                  * get_block multiple times when we write to the same
2059                  * offset and new ensures that we do proper zero out
2060                  * for partial write.
2061                  */
2062                 set_buffer_new(bh);
2063                 set_buffer_mapped(bh);
2064         }
2065         return 0;
2066 }
2067
2068 static int bget_one(handle_t *handle, struct buffer_head *bh)
2069 {
2070         get_bh(bh);
2071         return 0;
2072 }
2073
2074 static int bput_one(handle_t *handle, struct buffer_head *bh)
2075 {
2076         put_bh(bh);
2077         return 0;
2078 }
2079
2080 static int __ext4_journalled_writepage(struct page *page,
2081                                        unsigned int len)
2082 {
2083         struct address_space *mapping = page->mapping;
2084         struct inode *inode = mapping->host;
2085         struct buffer_head *page_bufs = NULL;
2086         handle_t *handle = NULL;
2087         int ret = 0, err = 0;
2088         int inline_data = ext4_has_inline_data(inode);
2089         struct buffer_head *inode_bh = NULL;
2090
2091         ClearPageChecked(page);
2092
2093         if (inline_data) {
2094                 BUG_ON(page->index != 0);
2095                 BUG_ON(len > ext4_get_max_inline_size(inode));
2096                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2097                 if (inode_bh == NULL)
2098                         goto out;
2099         } else {
2100                 page_bufs = page_buffers(page);
2101                 if (!page_bufs) {
2102                         BUG();
2103                         goto out;
2104                 }
2105                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2106                                        NULL, bget_one);
2107         }
2108         /* As soon as we unlock the page, it can go away, but we have
2109          * references to buffers so we are safe */
2110         unlock_page(page);
2111
2112         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2113                                     ext4_writepage_trans_blocks(inode));
2114         if (IS_ERR(handle)) {
2115                 ret = PTR_ERR(handle);
2116                 goto out;
2117         }
2118
2119         BUG_ON(!ext4_handle_valid(handle));
2120
2121         if (inline_data) {
2122                 ret = ext4_journal_get_write_access(handle, inode_bh);
2123
2124                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2125
2126         } else {
2127                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2128                                              do_journal_get_write_access);
2129
2130                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2131                                              write_end_fn);
2132         }
2133         if (ret == 0)
2134                 ret = err;
2135         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2136         err = ext4_journal_stop(handle);
2137         if (!ret)
2138                 ret = err;
2139
2140         if (!ext4_has_inline_data(inode))
2141                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2142                                        NULL, bput_one);
2143         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2144 out:
2145         brelse(inode_bh);
2146         return ret;
2147 }
2148
2149 /*
2150  * Note that we don't need to start a transaction unless we're journaling data
2151  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2152  * need to file the inode to the transaction's list in ordered mode because if
2153  * we are writing back data added by write(), the inode is already there and if
2154  * we are writing back data modified via mmap(), no one guarantees in which
2155  * transaction the data will hit the disk. In case we are journaling data, we
2156  * cannot start transaction directly because transaction start ranks above page
2157  * lock so we have to do some magic.
2158  *
2159  * This function can get called via...
2160  *   - ext4_da_writepages after taking page lock (have journal handle)
2161  *   - journal_submit_inode_data_buffers (no journal handle)
2162  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2163  *   - grab_page_cache when doing write_begin (have journal handle)
2164  *
2165  * We don't do any block allocation in this function. If we have page with
2166  * multiple blocks we need to write those buffer_heads that are mapped. This
2167  * is important for mmaped based write. So if we do with blocksize 1K
2168  * truncate(f, 1024);
2169  * a = mmap(f, 0, 4096);
2170  * a[0] = 'a';
2171  * truncate(f, 4096);
2172  * we have in the page first buffer_head mapped via page_mkwrite call back
2173  * but other buffer_heads would be unmapped but dirty (dirty done via the
2174  * do_wp_page). So writepage should write the first block. If we modify
2175  * the mmap area beyond 1024 we will again get a page_fault and the
2176  * page_mkwrite callback will do the block allocation and mark the
2177  * buffer_heads mapped.
2178  *
2179  * We redirty the page if we have any buffer_heads that is either delay or
2180  * unwritten in the page.
2181  *
2182  * We can get recursively called as show below.
2183  *
2184  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2185  *              ext4_writepage()
2186  *
2187  * But since we don't do any block allocation we should not deadlock.
2188  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2189  */
2190 static int ext4_writepage(struct page *page,
2191                           struct writeback_control *wbc)
2192 {
2193         int ret = 0;
2194         loff_t size;
2195         unsigned int len;
2196         struct buffer_head *page_bufs = NULL;
2197         struct inode *inode = page->mapping->host;
2198         struct ext4_io_submit io_submit;
2199
2200         trace_ext4_writepage(page);
2201         size = i_size_read(inode);
2202         if (page->index == size >> PAGE_CACHE_SHIFT)
2203                 len = size & ~PAGE_CACHE_MASK;
2204         else
2205                 len = PAGE_CACHE_SIZE;
2206
2207         page_bufs = page_buffers(page);
2208         /*
2209          * We cannot do block allocation or other extent handling in this
2210          * function. If there are buffers needing that, we have to redirty
2211          * the page. But we may reach here when we do a journal commit via
2212          * journal_submit_inode_data_buffers() and in that case we must write
2213          * allocated buffers to achieve data=ordered mode guarantees.
2214          */
2215         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2216                                    ext4_bh_delay_or_unwritten)) {
2217                 redirty_page_for_writepage(wbc, page);
2218                 if (current->flags & PF_MEMALLOC) {
2219                         /*
2220                          * For memory cleaning there's no point in writing only
2221                          * some buffers. So just bail out. Warn if we came here
2222                          * from direct reclaim.
2223                          */
2224                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2225                                                         == PF_MEMALLOC);
2226                         unlock_page(page);
2227                         return 0;
2228                 }
2229         }
2230
2231         if (PageChecked(page) && ext4_should_journal_data(inode))
2232                 /*
2233                  * It's mmapped pagecache.  Add buffers and journal it.  There
2234                  * doesn't seem much point in redirtying the page here.
2235                  */
2236                 return __ext4_journalled_writepage(page, len);
2237
2238         memset(&io_submit, 0, sizeof(io_submit));
2239         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2240         ext4_io_submit(&io_submit);
2241         return ret;
2242 }
2243
2244 /*
2245  * This is called via ext4_da_writepages() to
2246  * calculate the total number of credits to reserve to fit
2247  * a single extent allocation into a single transaction,
2248  * ext4_da_writpeages() will loop calling this before
2249  * the block allocation.
2250  */
2251
2252 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2253 {
2254         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2255
2256         /*
2257          * With non-extent format the journal credit needed to
2258          * insert nrblocks contiguous block is dependent on
2259          * number of contiguous block. So we will limit
2260          * number of contiguous block to a sane value
2261          */
2262         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2263             (max_blocks > EXT4_MAX_TRANS_DATA))
2264                 max_blocks = EXT4_MAX_TRANS_DATA;
2265
2266         return ext4_chunk_trans_blocks(inode, max_blocks);
2267 }
2268
2269 /*
2270  * write_cache_pages_da - walk the list of dirty pages of the given
2271  * address space and accumulate pages that need writing, and call
2272  * mpage_da_map_and_submit to map a single contiguous memory region
2273  * and then write them.
2274  */
2275 static int write_cache_pages_da(handle_t *handle,
2276                                 struct address_space *mapping,
2277                                 struct writeback_control *wbc,
2278                                 struct mpage_da_data *mpd,
2279                                 pgoff_t *done_index)
2280 {
2281         struct buffer_head      *bh, *head;
2282         struct inode            *inode = mapping->host;
2283         struct pagevec          pvec;
2284         unsigned int            nr_pages;
2285         sector_t                logical;
2286         pgoff_t                 index, end;
2287         long                    nr_to_write = wbc->nr_to_write;
2288         int                     i, tag, ret = 0;
2289
2290         memset(mpd, 0, sizeof(struct mpage_da_data));
2291         mpd->wbc = wbc;
2292         mpd->inode = inode;
2293         pagevec_init(&pvec, 0);
2294         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2295         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2296
2297         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2298                 tag = PAGECACHE_TAG_TOWRITE;
2299         else
2300                 tag = PAGECACHE_TAG_DIRTY;
2301
2302         *done_index = index;
2303         while (index <= end) {
2304                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2305                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2306                 if (nr_pages == 0)
2307                         return 0;
2308
2309                 for (i = 0; i < nr_pages; i++) {
2310                         struct page *page = pvec.pages[i];
2311
2312                         /*
2313                          * At this point, the page may be truncated or
2314                          * invalidated (changing page->mapping to NULL), or
2315                          * even swizzled back from swapper_space to tmpfs file
2316                          * mapping. However, page->index will not change
2317                          * because we have a reference on the page.
2318                          */
2319                         if (page->index > end)
2320                                 goto out;
2321
2322                         *done_index = page->index + 1;
2323
2324                         /*
2325                          * If we can't merge this page, and we have
2326                          * accumulated an contiguous region, write it
2327                          */
2328                         if ((mpd->next_page != page->index) &&
2329                             (mpd->next_page != mpd->first_page)) {
2330                                 mpage_da_map_and_submit(mpd);
2331                                 goto ret_extent_tail;
2332                         }
2333
2334                         lock_page(page);
2335
2336                         /*
2337                          * If the page is no longer dirty, or its
2338                          * mapping no longer corresponds to inode we
2339                          * are writing (which means it has been
2340                          * truncated or invalidated), or the page is
2341                          * already under writeback and we are not
2342                          * doing a data integrity writeback, skip the page
2343                          */
2344                         if (!PageDirty(page) ||
2345                             (PageWriteback(page) &&
2346                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2347                             unlikely(page->mapping != mapping)) {
2348                                 unlock_page(page);
2349                                 continue;
2350                         }
2351
2352                         wait_on_page_writeback(page);
2353                         BUG_ON(PageWriteback(page));
2354
2355                         /*
2356                          * If we have inline data and arrive here, it means that
2357                          * we will soon create the block for the 1st page, so
2358                          * we'd better clear the inline data here.
2359                          */
2360                         if (ext4_has_inline_data(inode)) {
2361                                 BUG_ON(ext4_test_inode_state(inode,
2362                                                 EXT4_STATE_MAY_INLINE_DATA));
2363                                 ext4_destroy_inline_data(handle, inode);
2364                         }
2365
2366                         if (mpd->next_page != page->index)
2367                                 mpd->first_page = page->index;
2368                         mpd->next_page = page->index + 1;
2369                         logical = (sector_t) page->index <<
2370                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2371
2372                         /* Add all dirty buffers to mpd */
2373                         head = page_buffers(page);
2374                         bh = head;
2375                         do {
2376                                 BUG_ON(buffer_locked(bh));
2377                                 /*
2378                                  * We need to try to allocate unmapped blocks
2379                                  * in the same page.  Otherwise we won't make
2380                                  * progress with the page in ext4_writepage
2381                                  */
2382                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2383                                         mpage_add_bh_to_extent(mpd, logical,
2384                                                                bh->b_state);
2385                                         if (mpd->io_done)
2386                                                 goto ret_extent_tail;
2387                                 } else if (buffer_dirty(bh) &&
2388                                            buffer_mapped(bh)) {
2389                                         /*
2390                                          * mapped dirty buffer. We need to
2391                                          * update the b_state because we look
2392                                          * at b_state in mpage_da_map_blocks.
2393                                          * We don't update b_size because if we
2394                                          * find an unmapped buffer_head later
2395                                          * we need to use the b_state flag of
2396                                          * that buffer_head.
2397                                          */
2398                                         if (mpd->b_size == 0)
2399                                                 mpd->b_state =
2400                                                         bh->b_state & BH_FLAGS;
2401                                 }
2402                                 logical++;
2403                         } while ((bh = bh->b_this_page) != head);
2404
2405                         if (nr_to_write > 0) {
2406                                 nr_to_write--;
2407                                 if (nr_to_write == 0 &&
2408                                     wbc->sync_mode == WB_SYNC_NONE)
2409                                         /*
2410                                          * We stop writing back only if we are
2411                                          * not doing integrity sync. In case of
2412                                          * integrity sync we have to keep going
2413                                          * because someone may be concurrently
2414                                          * dirtying pages, and we might have
2415                                          * synced a lot of newly appeared dirty
2416                                          * pages, but have not synced all of the
2417                                          * old dirty pages.
2418                                          */
2419                                         goto out;
2420                         }
2421                 }
2422                 pagevec_release(&pvec);
2423                 cond_resched();
2424         }
2425         return 0;
2426 ret_extent_tail:
2427         ret = MPAGE_DA_EXTENT_TAIL;
2428 out:
2429         pagevec_release(&pvec);
2430         cond_resched();
2431         return ret;
2432 }
2433
2434
2435 static int ext4_da_writepages(struct address_space *mapping,
2436                               struct writeback_control *wbc)
2437 {
2438         pgoff_t index;
2439         int range_whole = 0;
2440         handle_t *handle = NULL;
2441         struct mpage_da_data mpd;
2442         struct inode *inode = mapping->host;
2443         int pages_written = 0;
2444         unsigned int max_pages;
2445         int range_cyclic, cycled = 1, io_done = 0;
2446         int needed_blocks, ret = 0;
2447         long desired_nr_to_write, nr_to_writebump = 0;
2448         loff_t range_start = wbc->range_start;
2449         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2450         pgoff_t done_index = 0;
2451         pgoff_t end;
2452         struct blk_plug plug;
2453
2454         trace_ext4_da_writepages(inode, wbc);
2455
2456         /*
2457          * No pages to write? This is mainly a kludge to avoid starting
2458          * a transaction for special inodes like journal inode on last iput()
2459          * because that could violate lock ordering on umount
2460          */
2461         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2462                 return 0;
2463
2464         /*
2465          * If the filesystem has aborted, it is read-only, so return
2466          * right away instead of dumping stack traces later on that
2467          * will obscure the real source of the problem.  We test
2468          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2469          * the latter could be true if the filesystem is mounted
2470          * read-only, and in that case, ext4_da_writepages should
2471          * *never* be called, so if that ever happens, we would want
2472          * the stack trace.
2473          */
2474         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2475                 return -EROFS;
2476
2477         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2478                 range_whole = 1;
2479
2480         range_cyclic = wbc->range_cyclic;
2481         if (wbc->range_cyclic) {
2482                 index = mapping->writeback_index;
2483                 if (index)
2484                         cycled = 0;
2485                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2486                 wbc->range_end  = LLONG_MAX;
2487                 wbc->range_cyclic = 0;
2488                 end = -1;
2489         } else {
2490                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2491                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2492         }
2493
2494         /*
2495          * This works around two forms of stupidity.  The first is in
2496          * the writeback code, which caps the maximum number of pages
2497          * written to be 1024 pages.  This is wrong on multiple
2498          * levels; different architectues have a different page size,
2499          * which changes the maximum amount of data which gets
2500          * written.  Secondly, 4 megabytes is way too small.  XFS
2501          * forces this value to be 16 megabytes by multiplying
2502          * nr_to_write parameter by four, and then relies on its
2503          * allocator to allocate larger extents to make them
2504          * contiguous.  Unfortunately this brings us to the second
2505          * stupidity, which is that ext4's mballoc code only allocates
2506          * at most 2048 blocks.  So we force contiguous writes up to
2507          * the number of dirty blocks in the inode, or
2508          * sbi->max_writeback_mb_bump whichever is smaller.
2509          */
2510         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2511         if (!range_cyclic && range_whole) {
2512                 if (wbc->nr_to_write == LONG_MAX)
2513                         desired_nr_to_write = wbc->nr_to_write;
2514                 else
2515                         desired_nr_to_write = wbc->nr_to_write * 8;
2516         } else
2517                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2518                                                            max_pages);
2519         if (desired_nr_to_write > max_pages)
2520                 desired_nr_to_write = max_pages;
2521
2522         if (wbc->nr_to_write < desired_nr_to_write) {
2523                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2524                 wbc->nr_to_write = desired_nr_to_write;
2525         }
2526
2527 retry:
2528         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2529                 tag_pages_for_writeback(mapping, index, end);
2530
2531         blk_start_plug(&plug);
2532         while (!ret && wbc->nr_to_write > 0) {
2533
2534                 /*
2535                  * we  insert one extent at a time. So we need
2536                  * credit needed for single extent allocation.
2537                  * journalled mode is currently not supported
2538                  * by delalloc
2539                  */
2540                 BUG_ON(ext4_should_journal_data(inode));
2541                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2542
2543                 /* start a new transaction*/
2544                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2545                                             needed_blocks);
2546                 if (IS_ERR(handle)) {
2547                         ret = PTR_ERR(handle);
2548                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2549                                "%ld pages, ino %lu; err %d", __func__,
2550                                 wbc->nr_to_write, inode->i_ino, ret);
2551                         blk_finish_plug(&plug);
2552                         goto out_writepages;
2553                 }
2554
2555                 /*
2556                  * Now call write_cache_pages_da() to find the next
2557                  * contiguous region of logical blocks that need
2558                  * blocks to be allocated by ext4 and submit them.
2559                  */
2560                 ret = write_cache_pages_da(handle, mapping,
2561                                            wbc, &mpd, &done_index);
2562                 /*
2563                  * If we have a contiguous extent of pages and we
2564                  * haven't done the I/O yet, map the blocks and submit
2565                  * them for I/O.
2566                  */
2567                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2568                         mpage_da_map_and_submit(&mpd);
2569                         ret = MPAGE_DA_EXTENT_TAIL;
2570                 }
2571                 trace_ext4_da_write_pages(inode, &mpd);
2572                 wbc->nr_to_write -= mpd.pages_written;
2573
2574                 ext4_journal_stop(handle);
2575
2576                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2577                         /* commit the transaction which would
2578                          * free blocks released in the transaction
2579                          * and try again
2580                          */
2581                         jbd2_journal_force_commit_nested(sbi->s_journal);
2582                         ret = 0;
2583                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2584                         /*
2585                          * Got one extent now try with rest of the pages.
2586                          * If mpd.retval is set -EIO, journal is aborted.
2587                          * So we don't need to write any more.
2588                          */
2589                         pages_written += mpd.pages_written;
2590                         ret = mpd.retval;
2591                         io_done = 1;
2592                 } else if (wbc->nr_to_write)
2593                         /*
2594                          * There is no more writeout needed
2595                          * or we requested for a noblocking writeout
2596                          * and we found the device congested
2597                          */
2598                         break;
2599         }
2600         blk_finish_plug(&plug);
2601         if (!io_done && !cycled) {
2602                 cycled = 1;
2603                 index = 0;
2604                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2605                 wbc->range_end  = mapping->writeback_index - 1;
2606                 goto retry;
2607         }
2608
2609         /* Update index */
2610         wbc->range_cyclic = range_cyclic;
2611         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2612                 /*
2613                  * set the writeback_index so that range_cyclic
2614                  * mode will write it back later
2615                  */
2616                 mapping->writeback_index = done_index;
2617
2618 out_writepages:
2619         wbc->nr_to_write -= nr_to_writebump;
2620         wbc->range_start = range_start;
2621         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2622         return ret;
2623 }
2624
2625 static int ext4_nonda_switch(struct super_block *sb)
2626 {
2627         s64 free_clusters, dirty_clusters;
2628         struct ext4_sb_info *sbi = EXT4_SB(sb);
2629
2630         /*
2631          * switch to non delalloc mode if we are running low
2632          * on free block. The free block accounting via percpu
2633          * counters can get slightly wrong with percpu_counter_batch getting
2634          * accumulated on each CPU without updating global counters
2635          * Delalloc need an accurate free block accounting. So switch
2636          * to non delalloc when we are near to error range.
2637          */
2638         free_clusters =
2639                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2640         dirty_clusters =
2641                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2642         /*
2643          * Start pushing delalloc when 1/2 of free blocks are dirty.
2644          */
2645         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2646                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2647
2648         if (2 * free_clusters < 3 * dirty_clusters ||
2649             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2650                 /*
2651                  * free block count is less than 150% of dirty blocks
2652                  * or free blocks is less than watermark
2653                  */
2654                 return 1;
2655         }
2656         return 0;
2657 }
2658
2659 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2660                                loff_t pos, unsigned len, unsigned flags,
2661                                struct page **pagep, void **fsdata)
2662 {
2663         int ret, retries = 0;
2664         struct page *page;
2665         pgoff_t index;
2666         struct inode *inode = mapping->host;
2667         handle_t *handle;
2668
2669         index = pos >> PAGE_CACHE_SHIFT;
2670
2671         if (ext4_nonda_switch(inode->i_sb)) {
2672                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2673                 return ext4_write_begin(file, mapping, pos,
2674                                         len, flags, pagep, fsdata);
2675         }
2676         *fsdata = (void *)0;
2677         trace_ext4_da_write_begin(inode, pos, len, flags);
2678
2679         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2680                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2681                                                       pos, len, flags,
2682                                                       pagep, fsdata);
2683                 if (ret < 0)
2684                         return ret;
2685                 if (ret == 1)
2686                         return 0;
2687         }
2688
2689         /*
2690          * grab_cache_page_write_begin() can take a long time if the
2691          * system is thrashing due to memory pressure, or if the page
2692          * is being written back.  So grab it first before we start
2693          * the transaction handle.  This also allows us to allocate
2694          * the page (if needed) without using GFP_NOFS.
2695          */
2696 retry_grab:
2697         page = grab_cache_page_write_begin(mapping, index, flags);
2698         if (!page)
2699                 return -ENOMEM;
2700         unlock_page(page);
2701
2702         /*
2703          * With delayed allocation, we don't log the i_disksize update
2704          * if there is delayed block allocation. But we still need
2705          * to journalling the i_disksize update if writes to the end
2706          * of file which has an already mapped buffer.
2707          */
2708 retry_journal:
2709         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2710         if (IS_ERR(handle)) {
2711                 page_cache_release(page);
2712                 return PTR_ERR(handle);
2713         }
2714
2715         lock_page(page);
2716         if (page->mapping != mapping) {
2717                 /* The page got truncated from under us */
2718                 unlock_page(page);
2719                 page_cache_release(page);
2720                 ext4_journal_stop(handle);
2721                 goto retry_grab;
2722         }
2723         /* In case writeback began while the page was unlocked */
2724         wait_on_page_writeback(page);
2725
2726         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2727         if (ret < 0) {
2728                 unlock_page(page);
2729                 ext4_journal_stop(handle);
2730                 /*
2731                  * block_write_begin may have instantiated a few blocks
2732                  * outside i_size.  Trim these off again. Don't need
2733                  * i_size_read because we hold i_mutex.
2734                  */
2735                 if (pos + len > inode->i_size)
2736                         ext4_truncate_failed_write(inode);
2737
2738                 if (ret == -ENOSPC &&
2739                     ext4_should_retry_alloc(inode->i_sb, &retries))
2740                         goto retry_journal;
2741
2742                 page_cache_release(page);
2743                 return ret;
2744         }
2745
2746         *pagep = page;
2747         return ret;
2748 }
2749
2750 /*
2751  * Check if we should update i_disksize
2752  * when write to the end of file but not require block allocation
2753  */
2754 static int ext4_da_should_update_i_disksize(struct page *page,
2755                                             unsigned long offset)
2756 {
2757         struct buffer_head *bh;
2758         struct inode *inode = page->mapping->host;
2759         unsigned int idx;
2760         int i;
2761
2762         bh = page_buffers(page);
2763         idx = offset >> inode->i_blkbits;
2764
2765         for (i = 0; i < idx; i++)
2766                 bh = bh->b_this_page;
2767
2768         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2769                 return 0;
2770         return 1;
2771 }
2772
2773 static int ext4_da_write_end(struct file *file,
2774                              struct address_space *mapping,
2775                              loff_t pos, unsigned len, unsigned copied,
2776                              struct page *page, void *fsdata)
2777 {
2778         struct inode *inode = mapping->host;
2779         int ret = 0, ret2;
2780         handle_t *handle = ext4_journal_current_handle();
2781         loff_t new_i_size;
2782         unsigned long start, end;
2783         int write_mode = (int)(unsigned long)fsdata;
2784
2785         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2786                 return ext4_write_end(file, mapping, pos,
2787                                       len, copied, page, fsdata);
2788
2789         trace_ext4_da_write_end(inode, pos, len, copied);
2790         start = pos & (PAGE_CACHE_SIZE - 1);
2791         end = start + copied - 1;
2792
2793         /*
2794          * generic_write_end() will run mark_inode_dirty() if i_size
2795          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2796          * into that.
2797          */
2798         new_i_size = pos + copied;
2799         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2800                 if (ext4_has_inline_data(inode) ||
2801                     ext4_da_should_update_i_disksize(page, end)) {
2802                         down_write(&EXT4_I(inode)->i_data_sem);
2803                         if (new_i_size > EXT4_I(inode)->i_disksize)
2804                                 EXT4_I(inode)->i_disksize = new_i_size;
2805                         up_write(&EXT4_I(inode)->i_data_sem);
2806                         /* We need to mark inode dirty even if
2807                          * new_i_size is less that inode->i_size
2808                          * bu greater than i_disksize.(hint delalloc)
2809                          */
2810                         ext4_mark_inode_dirty(handle, inode);
2811                 }
2812         }
2813
2814         if (write_mode != CONVERT_INLINE_DATA &&
2815             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2816             ext4_has_inline_data(inode))
2817                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2818                                                      page);
2819         else
2820                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2821                                                         page, fsdata);
2822
2823         copied = ret2;
2824         if (ret2 < 0)
2825                 ret = ret2;
2826         ret2 = ext4_journal_stop(handle);
2827         if (!ret)
2828                 ret = ret2;
2829
2830         return ret ? ret : copied;
2831 }
2832
2833 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2834                                    unsigned int length)
2835 {
2836         /*
2837          * Drop reserved blocks
2838          */
2839         BUG_ON(!PageLocked(page));
2840         if (!page_has_buffers(page))
2841                 goto out;
2842
2843         ext4_da_page_release_reservation(page, offset);
2844
2845 out:
2846         ext4_invalidatepage(page, offset, length);
2847
2848         return;
2849 }
2850
2851 /*
2852  * Force all delayed allocation blocks to be allocated for a given inode.
2853  */
2854 int ext4_alloc_da_blocks(struct inode *inode)
2855 {
2856         trace_ext4_alloc_da_blocks(inode);
2857
2858         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2859             !EXT4_I(inode)->i_reserved_meta_blocks)
2860                 return 0;
2861
2862         /*
2863          * We do something simple for now.  The filemap_flush() will
2864          * also start triggering a write of the data blocks, which is
2865          * not strictly speaking necessary (and for users of
2866          * laptop_mode, not even desirable).  However, to do otherwise
2867          * would require replicating code paths in:
2868          *
2869          * ext4_da_writepages() ->
2870          *    write_cache_pages() ---> (via passed in callback function)
2871          *        __mpage_da_writepage() -->
2872          *           mpage_add_bh_to_extent()
2873          *           mpage_da_map_blocks()
2874          *
2875          * The problem is that write_cache_pages(), located in
2876          * mm/page-writeback.c, marks pages clean in preparation for
2877          * doing I/O, which is not desirable if we're not planning on
2878          * doing I/O at all.
2879          *
2880          * We could call write_cache_pages(), and then redirty all of
2881          * the pages by calling redirty_page_for_writepage() but that
2882          * would be ugly in the extreme.  So instead we would need to
2883          * replicate parts of the code in the above functions,
2884          * simplifying them because we wouldn't actually intend to
2885          * write out the pages, but rather only collect contiguous
2886          * logical block extents, call the multi-block allocator, and
2887          * then update the buffer heads with the block allocations.
2888          *
2889          * For now, though, we'll cheat by calling filemap_flush(),
2890          * which will map the blocks, and start the I/O, but not
2891          * actually wait for the I/O to complete.
2892          */
2893         return filemap_flush(inode->i_mapping);
2894 }
2895
2896 /*
2897  * bmap() is special.  It gets used by applications such as lilo and by
2898  * the swapper to find the on-disk block of a specific piece of data.
2899  *
2900  * Naturally, this is dangerous if the block concerned is still in the
2901  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2902  * filesystem and enables swap, then they may get a nasty shock when the
2903  * data getting swapped to that swapfile suddenly gets overwritten by
2904  * the original zero's written out previously to the journal and
2905  * awaiting writeback in the kernel's buffer cache.
2906  *
2907  * So, if we see any bmap calls here on a modified, data-journaled file,
2908  * take extra steps to flush any blocks which might be in the cache.
2909  */
2910 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2911 {
2912         struct inode *inode = mapping->host;
2913         journal_t *journal;
2914         int err;
2915
2916         /*
2917          * We can get here for an inline file via the FIBMAP ioctl
2918          */
2919         if (ext4_has_inline_data(inode))
2920                 return 0;
2921
2922         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2923                         test_opt(inode->i_sb, DELALLOC)) {
2924                 /*
2925                  * With delalloc we want to sync the file
2926                  * so that we can make sure we allocate
2927                  * blocks for file
2928                  */
2929                 filemap_write_and_wait(mapping);
2930         }
2931
2932         if (EXT4_JOURNAL(inode) &&
2933             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2934                 /*
2935                  * This is a REALLY heavyweight approach, but the use of
2936                  * bmap on dirty files is expected to be extremely rare:
2937                  * only if we run lilo or swapon on a freshly made file
2938                  * do we expect this to happen.
2939                  *
2940                  * (bmap requires CAP_SYS_RAWIO so this does not
2941                  * represent an unprivileged user DOS attack --- we'd be
2942                  * in trouble if mortal users could trigger this path at
2943                  * will.)
2944                  *
2945                  * NB. EXT4_STATE_JDATA is not set on files other than
2946                  * regular files.  If somebody wants to bmap a directory
2947                  * or symlink and gets confused because the buffer
2948                  * hasn't yet been flushed to disk, they deserve
2949                  * everything they get.
2950                  */
2951
2952                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2953                 journal = EXT4_JOURNAL(inode);
2954                 jbd2_journal_lock_updates(journal);
2955                 err = jbd2_journal_flush(journal);
2956                 jbd2_journal_unlock_updates(journal);
2957
2958                 if (err)
2959                         return 0;
2960         }
2961
2962         return generic_block_bmap(mapping, block, ext4_get_block);
2963 }
2964
2965 static int ext4_readpage(struct file *file, struct page *page)
2966 {
2967         int ret = -EAGAIN;
2968         struct inode *inode = page->mapping->host;
2969
2970         trace_ext4_readpage(page);
2971
2972         if (ext4_has_inline_data(inode))
2973                 ret = ext4_readpage_inline(inode, page);
2974
2975         if (ret == -EAGAIN)
2976                 return mpage_readpage(page, ext4_get_block);
2977
2978         return ret;
2979 }
2980
2981 static int
2982 ext4_readpages(struct file *file, struct address_space *mapping,
2983                 struct list_head *pages, unsigned nr_pages)
2984 {
2985         struct inode *inode = mapping->host;
2986
2987         /* If the file has inline data, no need to do readpages. */
2988         if (ext4_has_inline_data(inode))
2989                 return 0;
2990
2991         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2992 }
2993
2994 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2995                                 unsigned int length)
2996 {
2997         trace_ext4_invalidatepage(page, offset);
2998
2999         /* No journalling happens on data buffers when this function is used */
3000         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3001
3002         block_invalidatepage(page, offset, PAGE_CACHE_SIZE - offset);
3003 }
3004
3005 static int __ext4_journalled_invalidatepage(struct page *page,
3006                                             unsigned long offset)
3007 {
3008         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009
3010         trace_ext4_journalled_invalidatepage(page, offset);
3011
3012         /*
3013          * If it's a full truncate we just forget about the pending dirtying
3014          */
3015         if (offset == 0)
3016                 ClearPageChecked(page);
3017
3018         return jbd2_journal_invalidatepage(journal, page, offset);
3019 }
3020
3021 /* Wrapper for aops... */
3022 static void ext4_journalled_invalidatepage(struct page *page,
3023                                            unsigned int offset,
3024                                            unsigned int length)
3025 {
3026         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3027 }
3028
3029 static int ext4_releasepage(struct page *page, gfp_t wait)
3030 {
3031         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3032
3033         trace_ext4_releasepage(page);
3034
3035         /* Page has dirty journalled data -> cannot release */
3036         if (PageChecked(page))
3037                 return 0;
3038         if (journal)
3039                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3040         else
3041                 return try_to_free_buffers(page);
3042 }
3043
3044 /*
3045  * ext4_get_block used when preparing for a DIO write or buffer write.
3046  * We allocate an uinitialized extent if blocks haven't been allocated.
3047  * The extent will be converted to initialized after the IO is complete.
3048  */
3049 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3050                    struct buffer_head *bh_result, int create)
3051 {
3052         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3053                    inode->i_ino, create);
3054         return _ext4_get_block(inode, iblock, bh_result,
3055                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3056 }
3057
3058 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3059                    struct buffer_head *bh_result, int create)
3060 {
3061         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3062                    inode->i_ino, create);
3063         return _ext4_get_block(inode, iblock, bh_result,
3064                                EXT4_GET_BLOCKS_NO_LOCK);
3065 }
3066
3067 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3068                             ssize_t size, void *private, int ret,
3069                             bool is_async)
3070 {
3071         struct inode *inode = file_inode(iocb->ki_filp);
3072         ext4_io_end_t *io_end = iocb->private;
3073
3074         /* if not async direct IO or dio with 0 bytes write, just return */
3075         if (!io_end || !size)
3076                 goto out;
3077
3078         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3079                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3080                   iocb->private, io_end->inode->i_ino, iocb, offset,
3081                   size);
3082
3083         iocb->private = NULL;
3084
3085         /* if not aio dio with unwritten extents, just free io and return */
3086         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3087                 ext4_free_io_end(io_end);
3088 out:
3089                 inode_dio_done(inode);
3090                 if (is_async)
3091                         aio_complete(iocb, ret, 0);
3092                 return;
3093         }
3094
3095         io_end->offset = offset;
3096         io_end->size = size;
3097         if (is_async) {
3098                 io_end->iocb = iocb;
3099                 io_end->result = ret;
3100         }
3101
3102         ext4_add_complete_io(io_end);
3103 }
3104
3105 /*
3106  * For ext4 extent files, ext4 will do direct-io write to holes,
3107  * preallocated extents, and those write extend the file, no need to
3108  * fall back to buffered IO.
3109  *
3110  * For holes, we fallocate those blocks, mark them as uninitialized
3111  * If those blocks were preallocated, we mark sure they are split, but
3112  * still keep the range to write as uninitialized.
3113  *
3114  * The unwritten extents will be converted to written when DIO is completed.
3115  * For async direct IO, since the IO may still pending when return, we
3116  * set up an end_io call back function, which will do the conversion
3117  * when async direct IO completed.
3118  *
3119  * If the O_DIRECT write will extend the file then add this inode to the
3120  * orphan list.  So recovery will truncate it back to the original size
3121  * if the machine crashes during the write.
3122  *
3123  */
3124 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3125                               const struct iovec *iov, loff_t offset,
3126                               unsigned long nr_segs)
3127 {
3128         struct file *file = iocb->ki_filp;
3129         struct inode *inode = file->f_mapping->host;
3130         ssize_t ret;
3131         size_t count = iov_length(iov, nr_segs);
3132         int overwrite = 0;
3133         get_block_t *get_block_func = NULL;
3134         int dio_flags = 0;
3135         loff_t final_size = offset + count;
3136
3137         /* Use the old path for reads and writes beyond i_size. */
3138         if (rw != WRITE || final_size > inode->i_size)
3139                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3140
3141         BUG_ON(iocb->private == NULL);
3142
3143         /* If we do a overwrite dio, i_mutex locking can be released */
3144         overwrite = *((int *)iocb->private);
3145
3146         if (overwrite) {
3147                 atomic_inc(&inode->i_dio_count);
3148                 down_read(&EXT4_I(inode)->i_data_sem);
3149                 mutex_unlock(&inode->i_mutex);
3150         }
3151
3152         /*
3153          * We could direct write to holes and fallocate.
3154          *
3155          * Allocated blocks to fill the hole are marked as
3156          * uninitialized to prevent parallel buffered read to expose
3157          * the stale data before DIO complete the data IO.
3158          *
3159          * As to previously fallocated extents, ext4 get_block will
3160          * just simply mark the buffer mapped but still keep the
3161          * extents uninitialized.
3162          *
3163          * For non AIO case, we will convert those unwritten extents
3164          * to written after return back from blockdev_direct_IO.
3165          *
3166          * For async DIO, the conversion needs to be deferred when the
3167          * IO is completed. The ext4 end_io callback function will be
3168          * called to take care of the conversion work.  Here for async
3169          * case, we allocate an io_end structure to hook to the iocb.
3170          */
3171         iocb->private = NULL;
3172         ext4_inode_aio_set(inode, NULL);
3173         if (!is_sync_kiocb(iocb)) {
3174                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3175                 if (!io_end) {
3176                         ret = -ENOMEM;
3177                         goto retake_lock;
3178                 }
3179                 io_end->flag |= EXT4_IO_END_DIRECT;
3180                 iocb->private = io_end;
3181                 /*
3182                  * we save the io structure for current async direct
3183                  * IO, so that later ext4_map_blocks() could flag the
3184                  * io structure whether there is a unwritten extents
3185                  * needs to be converted when IO is completed.
3186                  */
3187                 ext4_inode_aio_set(inode, io_end);
3188         }
3189
3190         if (overwrite) {
3191                 get_block_func = ext4_get_block_write_nolock;
3192         } else {
3193                 get_block_func = ext4_get_block_write;
3194                 dio_flags = DIO_LOCKING;
3195         }
3196         ret = __blockdev_direct_IO(rw, iocb, inode,
3197                                    inode->i_sb->s_bdev, iov,
3198                                    offset, nr_segs,
3199                                    get_block_func,
3200                                    ext4_end_io_dio,
3201                                    NULL,
3202                                    dio_flags);
3203
3204         if (iocb->private)
3205                 ext4_inode_aio_set(inode, NULL);
3206         /*
3207          * The io_end structure takes a reference to the inode, that
3208          * structure needs to be destroyed and the reference to the
3209          * inode need to be dropped, when IO is complete, even with 0
3210          * byte write, or failed.
3211          *
3212          * In the successful AIO DIO case, the io_end structure will
3213          * be destroyed and the reference to the inode will be dropped
3214          * after the end_io call back function is called.
3215          *
3216          * In the case there is 0 byte write, or error case, since VFS
3217          * direct IO won't invoke the end_io call back function, we
3218          * need to free the end_io structure here.
3219          */
3220         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3221                 ext4_free_io_end(iocb->private);
3222                 iocb->private = NULL;
3223         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3224                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3225                 int err;
3226                 /*
3227                  * for non AIO case, since the IO is already
3228                  * completed, we could do the conversion right here
3229                  */
3230                 err = ext4_convert_unwritten_extents(inode,
3231                                                      offset, ret);
3232                 if (err < 0)
3233                         ret = err;
3234                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3235         }
3236
3237 retake_lock:
3238         /* take i_mutex locking again if we do a ovewrite dio */
3239         if (overwrite) {
3240                 inode_dio_done(inode);
3241                 up_read(&EXT4_I(inode)->i_data_sem);
3242                 mutex_lock(&inode->i_mutex);
3243         }
3244
3245         return ret;
3246 }
3247
3248 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3249                               const struct iovec *iov, loff_t offset,
3250                               unsigned long nr_segs)
3251 {
3252         struct file *file = iocb->ki_filp;
3253         struct inode *inode = file->f_mapping->host;
3254         ssize_t ret;
3255
3256         /*
3257          * If we are doing data journalling we don't support O_DIRECT
3258          */
3259         if (ext4_should_journal_data(inode))
3260                 return 0;
3261
3262         /* Let buffer I/O handle the inline data case. */
3263         if (ext4_has_inline_data(inode))
3264                 return 0;
3265
3266         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3267         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3268                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3269         else
3270                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3271         trace_ext4_direct_IO_exit(inode, offset,
3272                                 iov_length(iov, nr_segs), rw, ret);
3273         return ret;
3274 }
3275
3276 /*
3277  * Pages can be marked dirty completely asynchronously from ext4's journalling
3278  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3279  * much here because ->set_page_dirty is called under VFS locks.  The page is
3280  * not necessarily locked.
3281  *
3282  * We cannot just dirty the page and leave attached buffers clean, because the
3283  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3284  * or jbddirty because all the journalling code will explode.
3285  *
3286  * So what we do is to mark the page "pending dirty" and next time writepage
3287  * is called, propagate that into the buffers appropriately.
3288  */
3289 static int ext4_journalled_set_page_dirty(struct page *page)
3290 {
3291         SetPageChecked(page);
3292         return __set_page_dirty_nobuffers(page);
3293 }
3294
3295 static const struct address_space_operations ext4_aops = {
3296         .readpage               = ext4_readpage,
3297         .readpages              = ext4_readpages,
3298         .writepage              = ext4_writepage,
3299         .write_begin            = ext4_write_begin,
3300         .write_end              = ext4_write_end,
3301         .bmap                   = ext4_bmap,
3302         .invalidatepage         = ext4_invalidatepage,
3303         .releasepage            = ext4_releasepage,
3304         .direct_IO              = ext4_direct_IO,
3305         .migratepage            = buffer_migrate_page,
3306         .is_partially_uptodate  = block_is_partially_uptodate,
3307         .error_remove_page      = generic_error_remove_page,
3308 };
3309
3310 static const struct address_space_operations ext4_journalled_aops = {
3311         .readpage               = ext4_readpage,
3312         .readpages              = ext4_readpages,
3313         .writepage              = ext4_writepage,
3314         .write_begin            = ext4_write_begin,
3315         .write_end              = ext4_journalled_write_end,
3316         .set_page_dirty         = ext4_journalled_set_page_dirty,
3317         .bmap                   = ext4_bmap,
3318         .invalidatepage         = ext4_journalled_invalidatepage,
3319         .releasepage            = ext4_releasepage,
3320         .direct_IO              = ext4_direct_IO,
3321         .is_partially_uptodate  = block_is_partially_uptodate,
3322         .error_remove_page      = generic_error_remove_page,
3323 };
3324
3325 static const struct address_space_operations ext4_da_aops = {
3326         .readpage               = ext4_readpage,
3327         .readpages              = ext4_readpages,
3328         .writepage              = ext4_writepage,
3329         .writepages             = ext4_da_writepages,
3330         .write_begin            = ext4_da_write_begin,
3331         .write_end              = ext4_da_write_end,
3332         .bmap                   = ext4_bmap,
3333         .invalidatepage         = ext4_da_invalidatepage,
3334         .releasepage            = ext4_releasepage,
3335         .direct_IO              = ext4_direct_IO,
3336         .migratepage            = buffer_migrate_page,
3337         .is_partially_uptodate  = block_is_partially_uptodate,
3338         .error_remove_page      = generic_error_remove_page,
3339 };
3340
3341 void ext4_set_aops(struct inode *inode)
3342 {
3343         switch (ext4_inode_journal_mode(inode)) {
3344         case EXT4_INODE_ORDERED_DATA_MODE:
3345                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3346                 break;
3347         case EXT4_INODE_WRITEBACK_DATA_MODE:
3348                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3349                 break;
3350         case EXT4_INODE_JOURNAL_DATA_MODE:
3351                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3352                 return;
3353         default:
3354                 BUG();
3355         }
3356         if (test_opt(inode->i_sb, DELALLOC))
3357                 inode->i_mapping->a_ops = &ext4_da_aops;
3358         else
3359                 inode->i_mapping->a_ops = &ext4_aops;
3360 }
3361
3362
3363 /*
3364  * ext4_discard_partial_page_buffers()
3365  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3366  * This function finds and locks the page containing the offset
3367  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3368  * Calling functions that already have the page locked should call
3369  * ext4_discard_partial_page_buffers_no_lock directly.
3370  */
3371 int ext4_discard_partial_page_buffers(handle_t *handle,
3372                 struct address_space *mapping, loff_t from,
3373                 loff_t length, int flags)
3374 {
3375         struct inode *inode = mapping->host;
3376         struct page *page;
3377         int err = 0;
3378
3379         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3380                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3381         if (!page)
3382                 return -ENOMEM;
3383
3384         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3385                 from, length, flags);
3386
3387         unlock_page(page);
3388         page_cache_release(page);
3389         return err;
3390 }
3391
3392 /*
3393  * ext4_discard_partial_page_buffers_no_lock()
3394  * Zeros a page range of length 'length' starting from offset 'from'.
3395  * Buffer heads that correspond to the block aligned regions of the
3396  * zeroed range will be unmapped.  Unblock aligned regions
3397  * will have the corresponding buffer head mapped if needed so that
3398  * that region of the page can be updated with the partial zero out.
3399  *
3400  * This function assumes that the page has already been  locked.  The
3401  * The range to be discarded must be contained with in the given page.
3402  * If the specified range exceeds the end of the page it will be shortened
3403  * to the end of the page that corresponds to 'from'.  This function is
3404  * appropriate for updating a page and it buffer heads to be unmapped and
3405  * zeroed for blocks that have been either released, or are going to be
3406  * released.
3407  *
3408  * handle: The journal handle
3409  * inode:  The files inode
3410  * page:   A locked page that contains the offset "from"
3411  * from:   The starting byte offset (from the beginning of the file)
3412  *         to begin discarding
3413  * len:    The length of bytes to discard
3414  * flags:  Optional flags that may be used:
3415  *
3416  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3417  *         Only zero the regions of the page whose buffer heads
3418  *         have already been unmapped.  This flag is appropriate
3419  *         for updating the contents of a page whose blocks may
3420  *         have already been released, and we only want to zero
3421  *         out the regions that correspond to those released blocks.
3422  *
3423  * Returns zero on success or negative on failure.
3424  */
3425 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3426                 struct inode *inode, struct page *page, loff_t from,
3427                 loff_t length, int flags)
3428 {
3429         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3430         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3431         unsigned int blocksize, max, pos;
3432         ext4_lblk_t iblock;
3433         struct buffer_head *bh;
3434         int err = 0;
3435
3436         blocksize = inode->i_sb->s_blocksize;
3437         max = PAGE_CACHE_SIZE - offset;
3438
3439         if (index != page->index)
3440                 return -EINVAL;
3441
3442         /*
3443          * correct length if it does not fall between
3444          * 'from' and the end of the page
3445          */
3446         if (length > max || length < 0)
3447                 length = max;
3448
3449         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3450
3451         if (!page_has_buffers(page))
3452                 create_empty_buffers(page, blocksize, 0);
3453
3454         /* Find the buffer that contains "offset" */
3455         bh = page_buffers(page);
3456         pos = blocksize;
3457         while (offset >= pos) {
3458                 bh = bh->b_this_page;
3459                 iblock++;
3460                 pos += blocksize;
3461         }
3462
3463         pos = offset;
3464         while (pos < offset + length) {
3465                 unsigned int end_of_block, range_to_discard;
3466
3467                 err = 0;
3468
3469                 /* The length of space left to zero and unmap */
3470                 range_to_discard = offset + length - pos;
3471
3472                 /* The length of space until the end of the block */
3473                 end_of_block = blocksize - (pos & (blocksize-1));
3474
3475                 /*
3476                  * Do not unmap or zero past end of block
3477                  * for this buffer head
3478                  */
3479                 if (range_to_discard > end_of_block)
3480                         range_to_discard = end_of_block;
3481
3482
3483                 /*
3484                  * Skip this buffer head if we are only zeroing unampped
3485                  * regions of the page
3486                  */
3487                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3488                         buffer_mapped(bh))
3489                                 goto next;
3490
3491                 /* If the range is block aligned, unmap */
3492                 if (range_to_discard == blocksize) {
3493                         clear_buffer_dirty(bh);
3494                         bh->b_bdev = NULL;
3495                         clear_buffer_mapped(bh);
3496                         clear_buffer_req(bh);
3497                         clear_buffer_new(bh);
3498                         clear_buffer_delay(bh);
3499                         clear_buffer_unwritten(bh);
3500                         clear_buffer_uptodate(bh);
3501                         zero_user(page, pos, range_to_discard);
3502                         BUFFER_TRACE(bh, "Buffer discarded");
3503                         goto next;
3504                 }
3505
3506                 /*
3507                  * If this block is not completely contained in the range
3508                  * to be discarded, then it is not going to be released. Because
3509                  * we need to keep this block, we need to make sure this part
3510                  * of the page is uptodate before we modify it by writeing
3511                  * partial zeros on it.
3512                  */
3513                 if (!buffer_mapped(bh)) {
3514                         /*
3515                          * Buffer head must be mapped before we can read
3516                          * from the block
3517                          */
3518                         BUFFER_TRACE(bh, "unmapped");
3519                         ext4_get_block(inode, iblock, bh, 0);
3520                         /* unmapped? It's a hole - nothing to do */
3521                         if (!buffer_mapped(bh)) {
3522                                 BUFFER_TRACE(bh, "still unmapped");
3523                                 goto next;
3524                         }
3525                 }
3526
3527                 /* Ok, it's mapped. Make sure it's up-to-date */
3528                 if (PageUptodate(page))
3529                         set_buffer_uptodate(bh);
3530
3531                 if (!buffer_uptodate(bh)) {
3532                         err = -EIO;
3533                         ll_rw_block(READ, 1, &bh);
3534                         wait_on_buffer(bh);
3535                         /* Uhhuh. Read error. Complain and punt.*/
3536                         if (!buffer_uptodate(bh))
3537                                 goto next;
3538                 }
3539
3540                 if (ext4_should_journal_data(inode)) {
3541                         BUFFER_TRACE(bh, "get write access");
3542                         err = ext4_journal_get_write_access(handle, bh);
3543                         if (err)
3544                                 goto next;
3545                 }
3546
3547                 zero_user(page, pos, range_to_discard);
3548
3549                 err = 0;
3550                 if (ext4_should_journal_data(inode)) {
3551                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3552                 } else
3553                         mark_buffer_dirty(bh);
3554
3555                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3556 next:
3557                 bh = bh->b_this_page;
3558                 iblock++;
3559                 pos += range_to_discard;
3560         }
3561
3562         return err;
3563 }
3564
3565 int ext4_can_truncate(struct inode *inode)
3566 {
3567         if (S_ISREG(inode->i_mode))
3568                 return 1;
3569         if (S_ISDIR(inode->i_mode))
3570                 return 1;
3571         if (S_ISLNK(inode->i_mode))
3572                 return !ext4_inode_is_fast_symlink(inode);
3573         return 0;
3574 }
3575
3576 /*
3577  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3578  * associated with the given offset and length
3579  *
3580  * @inode:  File inode
3581  * @offset: The offset where the hole will begin
3582  * @len:    The length of the hole
3583  *
3584  * Returns: 0 on success or negative on failure
3585  */
3586
3587 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3588 {
3589         struct inode *inode = file_inode(file);
3590         struct super_block *sb = inode->i_sb;
3591         ext4_lblk_t first_block, stop_block;
3592         struct address_space *mapping = inode->i_mapping;
3593         loff_t first_page, last_page, page_len;
3594         loff_t first_page_offset, last_page_offset;
3595         handle_t *handle;
3596         unsigned int credits;
3597         int ret = 0;
3598
3599         if (!S_ISREG(inode->i_mode))
3600                 return -EOPNOTSUPP;
3601
3602         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3603                 /* TODO: Add support for bigalloc file systems */
3604                 return -EOPNOTSUPP;
3605         }
3606
3607         trace_ext4_punch_hole(inode, offset, length);
3608
3609         /*
3610          * Write out all dirty pages to avoid race conditions
3611          * Then release them.
3612          */
3613         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3614                 ret = filemap_write_and_wait_range(mapping, offset,
3615                                                    offset + length - 1);
3616                 if (ret)
3617                         return ret;
3618         }
3619
3620         mutex_lock(&inode->i_mutex);
3621         /* It's not possible punch hole on append only file */
3622         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3623                 ret = -EPERM;
3624                 goto out_mutex;
3625         }
3626         if (IS_SWAPFILE(inode)) {
3627                 ret = -ETXTBSY;
3628                 goto out_mutex;
3629         }
3630
3631         /* No need to punch hole beyond i_size */
3632         if (offset >= inode->i_size)
3633                 goto out_mutex;
3634
3635         /*
3636          * If the hole extends beyond i_size, set the hole
3637          * to end after the page that contains i_size
3638          */
3639         if (offset + length > inode->i_size) {
3640                 length = inode->i_size +
3641                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3642                    offset;
3643         }
3644
3645         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3646         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3647
3648         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3649         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3650
3651         /* Now release the pages */
3652         if (last_page_offset > first_page_offset) {
3653                 truncate_pagecache_range(inode, first_page_offset,
3654                                          last_page_offset - 1);
3655         }
3656
3657         /* Wait all existing dio workers, newcomers will block on i_mutex */
3658         ext4_inode_block_unlocked_dio(inode);
3659         ret = ext4_flush_unwritten_io(inode);
3660         if (ret)
3661                 goto out_dio;
3662         inode_dio_wait(inode);
3663
3664         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3665                 credits = ext4_writepage_trans_blocks(inode);
3666         else
3667                 credits = ext4_blocks_for_truncate(inode);
3668         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3669         if (IS_ERR(handle)) {
3670                 ret = PTR_ERR(handle);
3671                 ext4_std_error(sb, ret);
3672                 goto out_dio;
3673         }
3674
3675         /*
3676          * Now we need to zero out the non-page-aligned data in the
3677          * pages at the start and tail of the hole, and unmap the
3678          * buffer heads for the block aligned regions of the page that
3679          * were completely zeroed.
3680          */
3681         if (first_page > last_page) {
3682                 /*
3683                  * If the file space being truncated is contained
3684                  * within a page just zero out and unmap the middle of
3685                  * that page
3686                  */
3687                 ret = ext4_discard_partial_page_buffers(handle,
3688                         mapping, offset, length, 0);
3689
3690                 if (ret)
3691                         goto out_stop;
3692         } else {
3693                 /*
3694                  * zero out and unmap the partial page that contains
3695                  * the start of the hole
3696                  */
3697                 page_len = first_page_offset - offset;
3698                 if (page_len > 0) {
3699                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3700                                                 offset, page_len, 0);
3701                         if (ret)
3702                                 goto out_stop;
3703                 }
3704
3705                 /*
3706                  * zero out and unmap the partial page that contains
3707                  * the end of the hole
3708                  */
3709                 page_len = offset + length - last_page_offset;
3710                 if (page_len > 0) {
3711                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3712                                         last_page_offset, page_len, 0);
3713                         if (ret)
3714                                 goto out_stop;
3715                 }
3716         }
3717
3718         /*
3719          * If i_size is contained in the last page, we need to
3720          * unmap and zero the partial page after i_size
3721          */
3722         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3723            inode->i_size % PAGE_CACHE_SIZE != 0) {
3724                 page_len = PAGE_CACHE_SIZE -
3725                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3726
3727                 if (page_len > 0) {
3728                         ret = ext4_discard_partial_page_buffers(handle,
3729                                         mapping, inode->i_size, page_len, 0);
3730
3731                         if (ret)
3732                                 goto out_stop;
3733                 }
3734         }
3735
3736         first_block = (offset + sb->s_blocksize - 1) >>
3737                 EXT4_BLOCK_SIZE_BITS(sb);
3738         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3739
3740         /* If there are no blocks to remove, return now */
3741         if (first_block >= stop_block)
3742                 goto out_stop;
3743
3744         down_write(&EXT4_I(inode)->i_data_sem);
3745         ext4_discard_preallocations(inode);
3746
3747         ret = ext4_es_remove_extent(inode, first_block,
3748                                     stop_block - first_block);
3749         if (ret) {
3750                 up_write(&EXT4_I(inode)->i_data_sem);
3751                 goto out_stop;
3752         }
3753
3754         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3755                 ret = ext4_ext_remove_space(inode, first_block,
3756                                             stop_block - 1);
3757         else
3758                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3759                                             stop_block);
3760
3761         ext4_discard_preallocations(inode);
3762         up_write(&EXT4_I(inode)->i_data_sem);
3763         if (IS_SYNC(inode))
3764                 ext4_handle_sync(handle);
3765         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3766         ext4_mark_inode_dirty(handle, inode);
3767 out_stop:
3768         ext4_journal_stop(handle);
3769 out_dio:
3770         ext4_inode_resume_unlocked_dio(inode);
3771 out_mutex:
3772         mutex_unlock(&inode->i_mutex);
3773         return ret;
3774 }
3775
3776 /*
3777  * ext4_truncate()
3778  *
3779  * We block out ext4_get_block() block instantiations across the entire
3780  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3781  * simultaneously on behalf of the same inode.
3782  *
3783  * As we work through the truncate and commit bits of it to the journal there
3784  * is one core, guiding principle: the file's tree must always be consistent on
3785  * disk.  We must be able to restart the truncate after a crash.
3786  *
3787  * The file's tree may be transiently inconsistent in memory (although it
3788  * probably isn't), but whenever we close off and commit a journal transaction,
3789  * the contents of (the filesystem + the journal) must be consistent and
3790  * restartable.  It's pretty simple, really: bottom up, right to left (although
3791  * left-to-right works OK too).
3792  *
3793  * Note that at recovery time, journal replay occurs *before* the restart of
3794  * truncate against the orphan inode list.
3795  *
3796  * The committed inode has the new, desired i_size (which is the same as
3797  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3798  * that this inode's truncate did not complete and it will again call
3799  * ext4_truncate() to have another go.  So there will be instantiated blocks
3800  * to the right of the truncation point in a crashed ext4 filesystem.  But
3801  * that's fine - as long as they are linked from the inode, the post-crash
3802  * ext4_truncate() run will find them and release them.
3803  */
3804 void ext4_truncate(struct inode *inode)
3805 {
3806         struct ext4_inode_info *ei = EXT4_I(inode);
3807         unsigned int credits;
3808         handle_t *handle;
3809         struct address_space *mapping = inode->i_mapping;
3810         loff_t page_len;
3811
3812         /*
3813          * There is a possibility that we're either freeing the inode
3814          * or it completely new indode. In those cases we might not
3815          * have i_mutex locked because it's not necessary.
3816          */
3817         if (!(inode->i_state & (I_NEW|I_FREEING)))
3818                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3819         trace_ext4_truncate_enter(inode);
3820
3821         if (!ext4_can_truncate(inode))
3822                 return;
3823
3824         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3825
3826         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3827                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3828
3829         if (ext4_has_inline_data(inode)) {
3830                 int has_inline = 1;
3831
3832                 ext4_inline_data_truncate(inode, &has_inline);
3833                 if (has_inline)
3834                         return;
3835         }
3836
3837         /*
3838          * finish any pending end_io work so we won't run the risk of
3839          * converting any truncated blocks to initialized later
3840          */
3841         ext4_flush_unwritten_io(inode);
3842
3843         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3844                 credits = ext4_writepage_trans_blocks(inode);
3845         else
3846                 credits = ext4_blocks_for_truncate(inode);
3847
3848         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3849         if (IS_ERR(handle)) {
3850                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3851                 return;
3852         }
3853
3854         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3855                 page_len = PAGE_CACHE_SIZE -
3856                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3857
3858                 if (ext4_discard_partial_page_buffers(handle,
3859                                 mapping, inode->i_size, page_len, 0))
3860                         goto out_stop;
3861         }
3862
3863         /*
3864          * We add the inode to the orphan list, so that if this
3865          * truncate spans multiple transactions, and we crash, we will
3866          * resume the truncate when the filesystem recovers.  It also
3867          * marks the inode dirty, to catch the new size.
3868          *
3869          * Implication: the file must always be in a sane, consistent
3870          * truncatable state while each transaction commits.
3871          */
3872         if (ext4_orphan_add(handle, inode))
3873                 goto out_stop;
3874
3875         down_write(&EXT4_I(inode)->i_data_sem);
3876
3877         ext4_discard_preallocations(inode);
3878
3879         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3880                 ext4_ext_truncate(handle, inode);
3881         else
3882                 ext4_ind_truncate(handle, inode);
3883
3884         up_write(&ei->i_data_sem);
3885
3886         if (IS_SYNC(inode))
3887                 ext4_handle_sync(handle);
3888
3889 out_stop:
3890         /*
3891          * If this was a simple ftruncate() and the file will remain alive,
3892          * then we need to clear up the orphan record which we created above.
3893          * However, if this was a real unlink then we were called by
3894          * ext4_delete_inode(), and we allow that function to clean up the
3895          * orphan info for us.
3896          */
3897         if (inode->i_nlink)
3898                 ext4_orphan_del(handle, inode);
3899
3900         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3901         ext4_mark_inode_dirty(handle, inode);
3902         ext4_journal_stop(handle);
3903
3904         trace_ext4_truncate_exit(inode);
3905 }
3906
3907 /*
3908  * ext4_get_inode_loc returns with an extra refcount against the inode's
3909  * underlying buffer_head on success. If 'in_mem' is true, we have all
3910  * data in memory that is needed to recreate the on-disk version of this
3911  * inode.
3912  */
3913 static int __ext4_get_inode_loc(struct inode *inode,
3914                                 struct ext4_iloc *iloc, int in_mem)
3915 {
3916         struct ext4_group_desc  *gdp;
3917         struct buffer_head      *bh;
3918         struct super_block      *sb = inode->i_sb;
3919         ext4_fsblk_t            block;
3920         int                     inodes_per_block, inode_offset;
3921
3922         iloc->bh = NULL;
3923         if (!ext4_valid_inum(sb, inode->i_ino))
3924                 return -EIO;
3925
3926         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3927         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3928         if (!gdp)
3929                 return -EIO;
3930
3931         /*
3932          * Figure out the offset within the block group inode table
3933          */
3934         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3935         inode_offset = ((inode->i_ino - 1) %
3936                         EXT4_INODES_PER_GROUP(sb));
3937         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3938         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3939
3940         bh = sb_getblk(sb, block);
3941         if (unlikely(!bh))
3942                 return -ENOMEM;
3943         if (!buffer_uptodate(bh)) {
3944                 lock_buffer(bh);
3945
3946                 /*
3947                  * If the buffer has the write error flag, we have failed
3948                  * to write out another inode in the same block.  In this
3949                  * case, we don't have to read the block because we may
3950                  * read the old inode data successfully.
3951                  */
3952                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3953                         set_buffer_uptodate(bh);
3954
3955                 if (buffer_uptodate(bh)) {
3956                         /* someone brought it uptodate while we waited */
3957                         unlock_buffer(bh);
3958                         goto has_buffer;
3959                 }
3960
3961                 /*
3962                  * If we have all information of the inode in memory and this
3963                  * is the only valid inode in the block, we need not read the
3964                  * block.
3965                  */
3966                 if (in_mem) {
3967                         struct buffer_head *bitmap_bh;
3968                         int i, start;
3969
3970                         start = inode_offset & ~(inodes_per_block - 1);
3971
3972                         /* Is the inode bitmap in cache? */
3973                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3974                         if (unlikely(!bitmap_bh))
3975                                 goto make_io;
3976
3977                         /*
3978                          * If the inode bitmap isn't in cache then the
3979                          * optimisation may end up performing two reads instead
3980                          * of one, so skip it.
3981                          */
3982                         if (!buffer_uptodate(bitmap_bh)) {
3983                                 brelse(bitmap_bh);
3984                                 goto make_io;
3985                         }
3986                         for (i = start; i < start + inodes_per_block; i++) {
3987                                 if (i == inode_offset)
3988                                         continue;
3989                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3990                                         break;
3991                         }
3992                         brelse(bitmap_bh);
3993                         if (i == start + inodes_per_block) {
3994                                 /* all other inodes are free, so skip I/O */
3995                                 memset(bh->b_data, 0, bh->b_size);
3996                                 set_buffer_uptodate(bh);
3997                                 unlock_buffer(bh);
3998                                 goto has_buffer;
3999                         }
4000                 }
4001
4002 make_io:
4003                 /*
4004                  * If we need to do any I/O, try to pre-readahead extra
4005                  * blocks from the inode table.
4006                  */
4007                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4008                         ext4_fsblk_t b, end, table;
4009                         unsigned num;
4010                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4011
4012                         table = ext4_inode_table(sb, gdp);
4013                         /* s_inode_readahead_blks is always a power of 2 */
4014                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4015                         if (table > b)
4016                                 b = table;
4017                         end = b + ra_blks;
4018                         num = EXT4_INODES_PER_GROUP(sb);
4019                         if (ext4_has_group_desc_csum(sb))
4020                                 num -= ext4_itable_unused_count(sb, gdp);
4021                         table += num / inodes_per_block;
4022                         if (end > table)
4023                                 end = table;
4024                         while (b <= end)
4025                                 sb_breadahead(sb, b++);
4026                 }
4027
4028                 /*
4029                  * There are other valid inodes in the buffer, this inode
4030                  * has in-inode xattrs, or we don't have this inode in memory.
4031                  * Read the block from disk.
4032                  */
4033                 trace_ext4_load_inode(inode);
4034                 get_bh(bh);
4035                 bh->b_end_io = end_buffer_read_sync;
4036                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4037                 wait_on_buffer(bh);
4038                 if (!buffer_uptodate(bh)) {
4039                         EXT4_ERROR_INODE_BLOCK(inode, block,
4040                                                "unable to read itable block");
4041                         brelse(bh);
4042                         return -EIO;
4043                 }
4044         }
4045 has_buffer:
4046         iloc->bh = bh;
4047         return 0;
4048 }
4049
4050 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4051 {
4052         /* We have all inode data except xattrs in memory here. */
4053         return __ext4_get_inode_loc(inode, iloc,
4054                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4055 }
4056
4057 void ext4_set_inode_flags(struct inode *inode)
4058 {
4059         unsigned int flags = EXT4_I(inode)->i_flags;
4060
4061         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4062         if (flags & EXT4_SYNC_FL)
4063                 inode->i_flags |= S_SYNC;
4064         if (flags & EXT4_APPEND_FL)
4065                 inode->i_flags |= S_APPEND;
4066         if (flags & EXT4_IMMUTABLE_FL)
4067                 inode->i_flags |= S_IMMUTABLE;
4068         if (flags & EXT4_NOATIME_FL)
4069                 inode->i_flags |= S_NOATIME;
4070         if (flags & EXT4_DIRSYNC_FL)
4071                 inode->i_flags |= S_DIRSYNC;
4072 }
4073
4074 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4075 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4076 {
4077         unsigned int vfs_fl;
4078         unsigned long old_fl, new_fl;
4079
4080         do {
4081                 vfs_fl = ei->vfs_inode.i_flags;
4082                 old_fl = ei->i_flags;
4083                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4084                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4085                                 EXT4_DIRSYNC_FL);
4086                 if (vfs_fl & S_SYNC)
4087                         new_fl |= EXT4_SYNC_FL;
4088                 if (vfs_fl & S_APPEND)
4089                         new_fl |= EXT4_APPEND_FL;
4090                 if (vfs_fl & S_IMMUTABLE)
4091                         new_fl |= EXT4_IMMUTABLE_FL;
4092                 if (vfs_fl & S_NOATIME)
4093                         new_fl |= EXT4_NOATIME_FL;
4094                 if (vfs_fl & S_DIRSYNC)
4095                         new_fl |= EXT4_DIRSYNC_FL;
4096         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4097 }
4098
4099 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4100                                   struct ext4_inode_info *ei)
4101 {
4102         blkcnt_t i_blocks ;
4103         struct inode *inode = &(ei->vfs_inode);
4104         struct super_block *sb = inode->i_sb;
4105
4106         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4107                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4108                 /* we are using combined 48 bit field */
4109                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4110                                         le32_to_cpu(raw_inode->i_blocks_lo);
4111                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4112                         /* i_blocks represent file system block size */
4113                         return i_blocks  << (inode->i_blkbits - 9);
4114                 } else {
4115                         return i_blocks;
4116                 }
4117         } else {
4118                 return le32_to_cpu(raw_inode->i_blocks_lo);
4119         }
4120 }
4121
4122 static inline void ext4_iget_extra_inode(struct inode *inode,
4123                                          struct ext4_inode *raw_inode,
4124                                          struct ext4_inode_info *ei)
4125 {
4126         __le32 *magic = (void *)raw_inode +
4127                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4128         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4129                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4130                 ext4_find_inline_data_nolock(inode);
4131         } else
4132                 EXT4_I(inode)->i_inline_off = 0;
4133 }
4134
4135 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4136 {
4137         struct ext4_iloc iloc;
4138         struct ext4_inode *raw_inode;
4139         struct ext4_inode_info *ei;
4140         struct inode *inode;
4141         journal_t *journal = EXT4_SB(sb)->s_journal;
4142         long ret;
4143         int block;
4144         uid_t i_uid;
4145         gid_t i_gid;
4146
4147         inode = iget_locked(sb, ino);
4148         if (!inode)
4149                 return ERR_PTR(-ENOMEM);
4150         if (!(inode->i_state & I_NEW))
4151                 return inode;
4152
4153         ei = EXT4_I(inode);
4154         iloc.bh = NULL;
4155
4156         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4157         if (ret < 0)
4158                 goto bad_inode;
4159         raw_inode = ext4_raw_inode(&iloc);
4160
4161         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4162                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4163                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4164                     EXT4_INODE_SIZE(inode->i_sb)) {
4165                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4166                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4167                                 EXT4_INODE_SIZE(inode->i_sb));
4168                         ret = -EIO;
4169                         goto bad_inode;
4170                 }
4171         } else
4172                 ei->i_extra_isize = 0;
4173
4174         /* Precompute checksum seed for inode metadata */
4175         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4176                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4177                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4178                 __u32 csum;
4179                 __le32 inum = cpu_to_le32(inode->i_ino);
4180                 __le32 gen = raw_inode->i_generation;
4181                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4182                                    sizeof(inum));
4183                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4184                                               sizeof(gen));
4185         }
4186
4187         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4188                 EXT4_ERROR_INODE(inode, "checksum invalid");
4189                 ret = -EIO;
4190                 goto bad_inode;
4191         }
4192
4193         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4194         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4195         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4196         if (!(test_opt(inode->i_sb, NO_UID32))) {
4197                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4198                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4199         }
4200         i_uid_write(inode, i_uid);
4201         i_gid_write(inode, i_gid);
4202         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4203
4204         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4205         ei->i_inline_off = 0;
4206         ei->i_dir_start_lookup = 0;
4207         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4208         /* We now have enough fields to check if the inode was active or not.
4209          * This is needed because nfsd might try to access dead inodes
4210          * the test is that same one that e2fsck uses
4211          * NeilBrown 1999oct15
4212          */
4213         if (inode->i_nlink == 0) {
4214                 if ((inode->i_mode == 0 ||
4215                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4216                     ino != EXT4_BOOT_LOADER_INO) {
4217                         /* this inode is deleted */
4218                         ret = -ESTALE;
4219                         goto bad_inode;
4220                 }
4221                 /* The only unlinked inodes we let through here have
4222                  * valid i_mode and are being read by the orphan
4223                  * recovery code: that's fine, we're about to complete
4224                  * the process of deleting those.
4225                  * OR it is the EXT4_BOOT_LOADER_INO which is
4226                  * not initialized on a new filesystem. */
4227         }
4228         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4229         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4230         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4231         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4232                 ei->i_file_acl |=
4233                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4234         inode->i_size = ext4_isize(raw_inode);
4235         ei->i_disksize = inode->i_size;
4236 #ifdef CONFIG_QUOTA
4237         ei->i_reserved_quota = 0;
4238 #endif
4239         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4240         ei->i_block_group = iloc.block_group;
4241         ei->i_last_alloc_group = ~0;
4242         /*
4243          * NOTE! The in-memory inode i_data array is in little-endian order
4244          * even on big-endian machines: we do NOT byteswap the block numbers!
4245          */
4246         for (block = 0; block < EXT4_N_BLOCKS; block++)
4247                 ei->i_data[block] = raw_inode->i_block[block];
4248         INIT_LIST_HEAD(&ei->i_orphan);
4249
4250         /*
4251          * Set transaction id's of transactions that have to be committed
4252          * to finish f[data]sync. We set them to currently running transaction
4253          * as we cannot be sure that the inode or some of its metadata isn't
4254          * part of the transaction - the inode could have been reclaimed and
4255          * now it is reread from disk.
4256          */
4257         if (journal) {
4258                 transaction_t *transaction;
4259                 tid_t tid;
4260
4261                 read_lock(&journal->j_state_lock);
4262                 if (journal->j_running_transaction)
4263                         transaction = journal->j_running_transaction;
4264                 else
4265                         transaction = journal->j_committing_transaction;
4266                 if (transaction)
4267                         tid = transaction->t_tid;
4268                 else
4269                         tid = journal->j_commit_sequence;
4270                 read_unlock(&journal->j_state_lock);
4271                 ei->i_sync_tid = tid;
4272                 ei->i_datasync_tid = tid;
4273         }
4274
4275         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4276                 if (ei->i_extra_isize == 0) {
4277                         /* The extra space is currently unused. Use it. */
4278                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4279                                             EXT4_GOOD_OLD_INODE_SIZE;
4280                 } else {
4281                         ext4_iget_extra_inode(inode, raw_inode, ei);
4282                 }
4283         }
4284
4285         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4286         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4287         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4288         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4289
4290         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4291         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4292                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4293                         inode->i_version |=
4294                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4295         }
4296
4297         ret = 0;
4298         if (ei->i_file_acl &&
4299             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4300                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4301                                  ei->i_file_acl);
4302                 ret = -EIO;
4303                 goto bad_inode;
4304         } else if (!ext4_has_inline_data(inode)) {
4305                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4306                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4307                             (S_ISLNK(inode->i_mode) &&
4308                              !ext4_inode_is_fast_symlink(inode))))
4309                                 /* Validate extent which is part of inode */
4310                                 ret = ext4_ext_check_inode(inode);
4311                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4312                            (S_ISLNK(inode->i_mode) &&
4313                             !ext4_inode_is_fast_symlink(inode))) {
4314                         /* Validate block references which are part of inode */
4315                         ret = ext4_ind_check_inode(inode);
4316                 }
4317         }
4318         if (ret)
4319                 goto bad_inode;
4320
4321         if (S_ISREG(inode->i_mode)) {
4322                 inode->i_op = &ext4_file_inode_operations;
4323                 inode->i_fop = &ext4_file_operations;
4324                 ext4_set_aops(inode);
4325         } else if (S_ISDIR(inode->i_mode)) {
4326                 inode->i_op = &ext4_dir_inode_operations;
4327                 inode->i_fop = &ext4_dir_operations;
4328         } else if (S_ISLNK(inode->i_mode)) {
4329                 if (ext4_inode_is_fast_symlink(inode)) {
4330                         inode->i_op = &ext4_fast_symlink_inode_operations;
4331                         nd_terminate_link(ei->i_data, inode->i_size,
4332                                 sizeof(ei->i_data) - 1);
4333                 } else {
4334                         inode->i_op = &ext4_symlink_inode_operations;
4335                         ext4_set_aops(inode);
4336                 }
4337         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4338               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4339                 inode->i_op = &ext4_special_inode_operations;
4340                 if (raw_inode->i_block[0])
4341                         init_special_inode(inode, inode->i_mode,
4342                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4343                 else
4344                         init_special_inode(inode, inode->i_mode,
4345                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4346         } else if (ino == EXT4_BOOT_LOADER_INO) {
4347                 make_bad_inode(inode);
4348         } else {
4349                 ret = -EIO;
4350                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4351                 goto bad_inode;
4352         }
4353         brelse(iloc.bh);
4354         ext4_set_inode_flags(inode);
4355         unlock_new_inode(inode);
4356         return inode;
4357
4358 bad_inode:
4359         brelse(iloc.bh);
4360         iget_failed(inode);
4361         return ERR_PTR(ret);
4362 }
4363
4364 static int ext4_inode_blocks_set(handle_t *handle,
4365                                 struct ext4_inode *raw_inode,
4366                                 struct ext4_inode_info *ei)
4367 {
4368         struct inode *inode = &(ei->vfs_inode);
4369         u64 i_blocks = inode->i_blocks;
4370         struct super_block *sb = inode->i_sb;
4371
4372         if (i_blocks <= ~0U) {
4373                 /*
4374                  * i_blocks can be represented in a 32 bit variable
4375                  * as multiple of 512 bytes
4376                  */
4377                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4378                 raw_inode->i_blocks_high = 0;
4379                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4380                 return 0;
4381         }
4382         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4383                 return -EFBIG;
4384
4385         if (i_blocks <= 0xffffffffffffULL) {
4386                 /*
4387                  * i_blocks can be represented in a 48 bit variable
4388                  * as multiple of 512 bytes
4389                  */
4390                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4391                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4392                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4393         } else {
4394                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4395                 /* i_block is stored in file system block size */
4396                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4397                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4398                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4399         }
4400         return 0;
4401 }
4402
4403 /*
4404  * Post the struct inode info into an on-disk inode location in the
4405  * buffer-cache.  This gobbles the caller's reference to the
4406  * buffer_head in the inode location struct.
4407  *
4408  * The caller must have write access to iloc->bh.
4409  */
4410 static int ext4_do_update_inode(handle_t *handle,
4411                                 struct inode *inode,
4412                                 struct ext4_iloc *iloc)
4413 {
4414         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4415         struct ext4_inode_info *ei = EXT4_I(inode);
4416         struct buffer_head *bh = iloc->bh;
4417         int err = 0, rc, block;
4418         int need_datasync = 0;
4419         uid_t i_uid;
4420         gid_t i_gid;
4421
4422         /* For fields not not tracking in the in-memory inode,
4423          * initialise them to zero for new inodes. */
4424         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4425                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4426
4427         ext4_get_inode_flags(ei);
4428         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4429         i_uid = i_uid_read(inode);
4430         i_gid = i_gid_read(inode);
4431         if (!(test_opt(inode->i_sb, NO_UID32))) {
4432                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4433                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4434 /*
4435  * Fix up interoperability with old kernels. Otherwise, old inodes get
4436  * re-used with the upper 16 bits of the uid/gid intact
4437  */
4438                 if (!ei->i_dtime) {
4439                         raw_inode->i_uid_high =
4440                                 cpu_to_le16(high_16_bits(i_uid));
4441                         raw_inode->i_gid_high =
4442                                 cpu_to_le16(high_16_bits(i_gid));
4443                 } else {
4444                         raw_inode->i_uid_high = 0;
4445                         raw_inode->i_gid_high = 0;
4446                 }
4447         } else {
4448                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4449                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4450                 raw_inode->i_uid_high = 0;
4451                 raw_inode->i_gid_high = 0;
4452         }
4453         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4454
4455         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4456         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4457         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4458         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4459
4460         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4461                 goto out_brelse;
4462         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4463         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4464         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4465             cpu_to_le32(EXT4_OS_HURD))
4466                 raw_inode->i_file_acl_high =
4467                         cpu_to_le16(ei->i_file_acl >> 32);
4468         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4469         if (ei->i_disksize != ext4_isize(raw_inode)) {
4470                 ext4_isize_set(raw_inode, ei->i_disksize);
4471                 need_datasync = 1;
4472         }
4473         if (ei->i_disksize > 0x7fffffffULL) {
4474                 struct super_block *sb = inode->i_sb;
4475                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4476                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4477                                 EXT4_SB(sb)->s_es->s_rev_level ==
4478                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4479                         /* If this is the first large file
4480                          * created, add a flag to the superblock.
4481                          */
4482                         err = ext4_journal_get_write_access(handle,
4483                                         EXT4_SB(sb)->s_sbh);
4484                         if (err)
4485                                 goto out_brelse;
4486                         ext4_update_dynamic_rev(sb);
4487                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4488                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4489                         ext4_handle_sync(handle);
4490                         err = ext4_handle_dirty_super(handle, sb);
4491                 }
4492         }
4493         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4494         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4495                 if (old_valid_dev(inode->i_rdev)) {
4496                         raw_inode->i_block[0] =
4497                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4498                         raw_inode->i_block[1] = 0;
4499                 } else {
4500                         raw_inode->i_block[0] = 0;
4501                         raw_inode->i_block[1] =
4502                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4503                         raw_inode->i_block[2] = 0;
4504                 }
4505         } else if (!ext4_has_inline_data(inode)) {
4506                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4507                         raw_inode->i_block[block] = ei->i_data[block];
4508         }
4509
4510         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4511         if (ei->i_extra_isize) {
4512                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4513                         raw_inode->i_version_hi =
4514                         cpu_to_le32(inode->i_version >> 32);
4515                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4516         }
4517
4518         ext4_inode_csum_set(inode, raw_inode, ei);
4519
4520         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4521         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4522         if (!err)
4523                 err = rc;
4524         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4525
4526         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4527 out_brelse:
4528         brelse(bh);
4529         ext4_std_error(inode->i_sb, err);
4530         return err;
4531 }
4532
4533 /*
4534  * ext4_write_inode()
4535  *
4536  * We are called from a few places:
4537  *
4538  * - Within generic_file_write() for O_SYNC files.
4539  *   Here, there will be no transaction running. We wait for any running
4540  *   transaction to commit.
4541  *
4542  * - Within sys_sync(), kupdate and such.
4543  *   We wait on commit, if tol to.
4544  *
4545  * - Within prune_icache() (PF_MEMALLOC == true)
4546  *   Here we simply return.  We can't afford to block kswapd on the
4547  *   journal commit.
4548  *
4549  * In all cases it is actually safe for us to return without doing anything,
4550  * because the inode has been copied into a raw inode buffer in
4551  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4552  * knfsd.
4553  *
4554  * Note that we are absolutely dependent upon all inode dirtiers doing the
4555  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4556  * which we are interested.
4557  *
4558  * It would be a bug for them to not do this.  The code:
4559  *
4560  *      mark_inode_dirty(inode)
4561  *      stuff();
4562  *      inode->i_size = expr;
4563  *
4564  * is in error because a kswapd-driven write_inode() could occur while
4565  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4566  * will no longer be on the superblock's dirty inode list.
4567  */
4568 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4569 {
4570         int err;
4571
4572         if (current->flags & PF_MEMALLOC)
4573                 return 0;
4574
4575         if (EXT4_SB(inode->i_sb)->s_journal) {
4576                 if (ext4_journal_current_handle()) {
4577                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4578                         dump_stack();
4579                         return -EIO;
4580                 }
4581
4582                 if (wbc->sync_mode != WB_SYNC_ALL)
4583                         return 0;
4584
4585                 err = ext4_force_commit(inode->i_sb);
4586         } else {
4587                 struct ext4_iloc iloc;
4588
4589                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4590                 if (err)
4591                         return err;
4592                 if (wbc->sync_mode == WB_SYNC_ALL)
4593                         sync_dirty_buffer(iloc.bh);
4594                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4595                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4596                                          "IO error syncing inode");
4597                         err = -EIO;
4598                 }
4599                 brelse(iloc.bh);
4600         }
4601         return err;
4602 }
4603
4604 /*
4605  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4606  * buffers that are attached to a page stradding i_size and are undergoing
4607  * commit. In that case we have to wait for commit to finish and try again.
4608  */
4609 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4610 {
4611         struct page *page;
4612         unsigned offset;
4613         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4614         tid_t commit_tid = 0;
4615         int ret;
4616
4617         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4618         /*
4619          * All buffers in the last page remain valid? Then there's nothing to
4620          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4621          * blocksize case
4622          */
4623         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4624                 return;
4625         while (1) {
4626                 page = find_lock_page(inode->i_mapping,
4627                                       inode->i_size >> PAGE_CACHE_SHIFT);
4628                 if (!page)
4629                         return;
4630                 ret = __ext4_journalled_invalidatepage(page, offset);
4631                 unlock_page(page);
4632                 page_cache_release(page);
4633                 if (ret != -EBUSY)
4634                         return;
4635                 commit_tid = 0;
4636                 read_lock(&journal->j_state_lock);
4637                 if (journal->j_committing_transaction)
4638                         commit_tid = journal->j_committing_transaction->t_tid;
4639                 read_unlock(&journal->j_state_lock);
4640                 if (commit_tid)
4641                         jbd2_log_wait_commit(journal, commit_tid);
4642         }
4643 }
4644
4645 /*
4646  * ext4_setattr()
4647  *
4648  * Called from notify_change.
4649  *
4650  * We want to trap VFS attempts to truncate the file as soon as
4651  * possible.  In particular, we want to make sure that when the VFS
4652  * shrinks i_size, we put the inode on the orphan list and modify
4653  * i_disksize immediately, so that during the subsequent flushing of
4654  * dirty pages and freeing of disk blocks, we can guarantee that any
4655  * commit will leave the blocks being flushed in an unused state on
4656  * disk.  (On recovery, the inode will get truncated and the blocks will
4657  * be freed, so we have a strong guarantee that no future commit will
4658  * leave these blocks visible to the user.)
4659  *
4660  * Another thing we have to assure is that if we are in ordered mode
4661  * and inode is still attached to the committing transaction, we must
4662  * we start writeout of all the dirty pages which are being truncated.
4663  * This way we are sure that all the data written in the previous
4664  * transaction are already on disk (truncate waits for pages under
4665  * writeback).
4666  *
4667  * Called with inode->i_mutex down.
4668  */
4669 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4670 {
4671         struct inode *inode = dentry->d_inode;
4672         int error, rc = 0;
4673         int orphan = 0;
4674         const unsigned int ia_valid = attr->ia_valid;
4675
4676         error = inode_change_ok(inode, attr);
4677         if (error)
4678                 return error;
4679
4680         if (is_quota_modification(inode, attr))
4681                 dquot_initialize(inode);
4682         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4683             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4684                 handle_t *handle;
4685
4686                 /* (user+group)*(old+new) structure, inode write (sb,
4687                  * inode block, ? - but truncate inode update has it) */
4688                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4689                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4690                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4691                 if (IS_ERR(handle)) {
4692                         error = PTR_ERR(handle);
4693                         goto err_out;
4694                 }
4695                 error = dquot_transfer(inode, attr);
4696                 if (error) {
4697                         ext4_journal_stop(handle);
4698                         return error;
4699                 }
4700                 /* Update corresponding info in inode so that everything is in
4701                  * one transaction */
4702                 if (attr->ia_valid & ATTR_UID)
4703                         inode->i_uid = attr->ia_uid;
4704                 if (attr->ia_valid & ATTR_GID)
4705                         inode->i_gid = attr->ia_gid;
4706                 error = ext4_mark_inode_dirty(handle, inode);
4707                 ext4_journal_stop(handle);
4708         }
4709
4710         if (attr->ia_valid & ATTR_SIZE) {
4711
4712                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4713                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4714
4715                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4716                                 return -EFBIG;
4717                 }
4718         }
4719
4720         if (S_ISREG(inode->i_mode) &&
4721             attr->ia_valid & ATTR_SIZE &&
4722             (attr->ia_size < inode->i_size)) {
4723                 handle_t *handle;
4724
4725                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4726                 if (IS_ERR(handle)) {
4727                         error = PTR_ERR(handle);
4728                         goto err_out;
4729                 }
4730                 if (ext4_handle_valid(handle)) {
4731                         error = ext4_orphan_add(handle, inode);
4732                         orphan = 1;
4733                 }
4734                 EXT4_I(inode)->i_disksize = attr->ia_size;
4735                 rc = ext4_mark_inode_dirty(handle, inode);
4736                 if (!error)
4737                         error = rc;
4738                 ext4_journal_stop(handle);
4739
4740                 if (ext4_should_order_data(inode)) {
4741                         error = ext4_begin_ordered_truncate(inode,
4742                                                             attr->ia_size);
4743                         if (error) {
4744                                 /* Do as much error cleanup as possible */
4745                                 handle = ext4_journal_start(inode,
4746                                                             EXT4_HT_INODE, 3);
4747                                 if (IS_ERR(handle)) {
4748                                         ext4_orphan_del(NULL, inode);
4749                                         goto err_out;
4750                                 }
4751                                 ext4_orphan_del(handle, inode);
4752                                 orphan = 0;
4753                                 ext4_journal_stop(handle);
4754                                 goto err_out;
4755                         }
4756                 }
4757         }
4758
4759         if (attr->ia_valid & ATTR_SIZE) {
4760                 if (attr->ia_size != inode->i_size) {
4761                         loff_t oldsize = inode->i_size;
4762
4763                         i_size_write(inode, attr->ia_size);
4764                         /*
4765                          * Blocks are going to be removed from the inode. Wait
4766                          * for dio in flight.  Temporarily disable
4767                          * dioread_nolock to prevent livelock.
4768                          */
4769                         if (orphan) {
4770                                 if (!ext4_should_journal_data(inode)) {
4771                                         ext4_inode_block_unlocked_dio(inode);
4772                                         inode_dio_wait(inode);
4773                                         ext4_inode_resume_unlocked_dio(inode);
4774                                 } else
4775                                         ext4_wait_for_tail_page_commit(inode);
4776                         }
4777                         /*
4778                          * Truncate pagecache after we've waited for commit
4779                          * in data=journal mode to make pages freeable.
4780                          */
4781                         truncate_pagecache(inode, oldsize, inode->i_size);
4782                 }
4783                 ext4_truncate(inode);
4784         }
4785
4786         if (!rc) {
4787                 setattr_copy(inode, attr);
4788                 mark_inode_dirty(inode);
4789         }
4790
4791         /*
4792          * If the call to ext4_truncate failed to get a transaction handle at
4793          * all, we need to clean up the in-core orphan list manually.
4794          */
4795         if (orphan && inode->i_nlink)
4796                 ext4_orphan_del(NULL, inode);
4797
4798         if (!rc && (ia_valid & ATTR_MODE))
4799                 rc = ext4_acl_chmod(inode);
4800
4801 err_out:
4802         ext4_std_error(inode->i_sb, error);
4803         if (!error)
4804                 error = rc;
4805         return error;
4806 }
4807
4808 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4809                  struct kstat *stat)
4810 {
4811         struct inode *inode;
4812         unsigned long delalloc_blocks;
4813
4814         inode = dentry->d_inode;
4815         generic_fillattr(inode, stat);
4816
4817         /*
4818          * We can't update i_blocks if the block allocation is delayed
4819          * otherwise in the case of system crash before the real block
4820          * allocation is done, we will have i_blocks inconsistent with
4821          * on-disk file blocks.
4822          * We always keep i_blocks updated together with real
4823          * allocation. But to not confuse with user, stat
4824          * will return the blocks that include the delayed allocation
4825          * blocks for this file.
4826          */
4827         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4828                                 EXT4_I(inode)->i_reserved_data_blocks);
4829
4830         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4831         return 0;
4832 }
4833
4834 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4835 {
4836         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4837                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4838         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4839 }
4840
4841 /*
4842  * Account for index blocks, block groups bitmaps and block group
4843  * descriptor blocks if modify datablocks and index blocks
4844  * worse case, the indexs blocks spread over different block groups
4845  *
4846  * If datablocks are discontiguous, they are possible to spread over
4847  * different block groups too. If they are contiguous, with flexbg,
4848  * they could still across block group boundary.
4849  *
4850  * Also account for superblock, inode, quota and xattr blocks
4851  */
4852 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4853 {
4854         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4855         int gdpblocks;
4856         int idxblocks;
4857         int ret = 0;
4858
4859         /*
4860          * How many index blocks need to touch to modify nrblocks?
4861          * The "Chunk" flag indicating whether the nrblocks is
4862          * physically contiguous on disk
4863          *
4864          * For Direct IO and fallocate, they calls get_block to allocate
4865          * one single extent at a time, so they could set the "Chunk" flag
4866          */
4867         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4868
4869         ret = idxblocks;
4870
4871         /*
4872          * Now let's see how many group bitmaps and group descriptors need
4873          * to account
4874          */
4875         groups = idxblocks;
4876         if (chunk)
4877                 groups += 1;
4878         else
4879                 groups += nrblocks;
4880
4881         gdpblocks = groups;
4882         if (groups > ngroups)
4883                 groups = ngroups;
4884         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4885                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4886
4887         /* bitmaps and block group descriptor blocks */
4888         ret += groups + gdpblocks;
4889
4890         /* Blocks for super block, inode, quota and xattr blocks */
4891         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4892
4893         return ret;
4894 }
4895
4896 /*
4897  * Calculate the total number of credits to reserve to fit
4898  * the modification of a single pages into a single transaction,
4899  * which may include multiple chunks of block allocations.
4900  *
4901  * This could be called via ext4_write_begin()
4902  *
4903  * We need to consider the worse case, when
4904  * one new block per extent.
4905  */
4906 int ext4_writepage_trans_blocks(struct inode *inode)
4907 {
4908         int bpp = ext4_journal_blocks_per_page(inode);
4909         int ret;
4910
4911         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4912
4913         /* Account for data blocks for journalled mode */
4914         if (ext4_should_journal_data(inode))
4915                 ret += bpp;
4916         return ret;
4917 }
4918
4919 /*
4920  * Calculate the journal credits for a chunk of data modification.
4921  *
4922  * This is called from DIO, fallocate or whoever calling
4923  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4924  *
4925  * journal buffers for data blocks are not included here, as DIO
4926  * and fallocate do no need to journal data buffers.
4927  */
4928 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4929 {
4930         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4931 }
4932
4933 /*
4934  * The caller must have previously called ext4_reserve_inode_write().
4935  * Give this, we know that the caller already has write access to iloc->bh.
4936  */
4937 int ext4_mark_iloc_dirty(handle_t *handle,
4938                          struct inode *inode, struct ext4_iloc *iloc)
4939 {
4940         int err = 0;
4941
4942         if (IS_I_VERSION(inode))
4943                 inode_inc_iversion(inode);
4944
4945         /* the do_update_inode consumes one bh->b_count */
4946         get_bh(iloc->bh);
4947
4948         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4949         err = ext4_do_update_inode(handle, inode, iloc);
4950         put_bh(iloc->bh);
4951         return err;
4952 }
4953
4954 /*
4955  * On success, We end up with an outstanding reference count against
4956  * iloc->bh.  This _must_ be cleaned up later.
4957  */
4958
4959 int
4960 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4961                          struct ext4_iloc *iloc)
4962 {
4963         int err;
4964
4965         err = ext4_get_inode_loc(inode, iloc);
4966         if (!err) {
4967                 BUFFER_TRACE(iloc->bh, "get_write_access");
4968                 err = ext4_journal_get_write_access(handle, iloc->bh);
4969                 if (err) {
4970                         brelse(iloc->bh);
4971                         iloc->bh = NULL;
4972                 }
4973         }
4974         ext4_std_error(inode->i_sb, err);
4975         return err;
4976 }
4977
4978 /*
4979  * Expand an inode by new_extra_isize bytes.
4980  * Returns 0 on success or negative error number on failure.
4981  */
4982 static int ext4_expand_extra_isize(struct inode *inode,
4983                                    unsigned int new_extra_isize,
4984                                    struct ext4_iloc iloc,
4985                                    handle_t *handle)
4986 {
4987         struct ext4_inode *raw_inode;
4988         struct ext4_xattr_ibody_header *header;
4989
4990         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4991                 return 0;
4992
4993         raw_inode = ext4_raw_inode(&iloc);
4994
4995         header = IHDR(inode, raw_inode);
4996
4997         /* No extended attributes present */
4998         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4999             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5000                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5001                         new_extra_isize);
5002                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5003                 return 0;
5004         }
5005
5006         /* try to expand with EAs present */
5007         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5008                                           raw_inode, handle);
5009 }
5010
5011 /*
5012  * What we do here is to mark the in-core inode as clean with respect to inode
5013  * dirtiness (it may still be data-dirty).
5014  * This means that the in-core inode may be reaped by prune_icache
5015  * without having to perform any I/O.  This is a very good thing,
5016  * because *any* task may call prune_icache - even ones which
5017  * have a transaction open against a different journal.
5018  *
5019  * Is this cheating?  Not really.  Sure, we haven't written the
5020  * inode out, but prune_icache isn't a user-visible syncing function.
5021  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5022  * we start and wait on commits.
5023  */
5024 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5025 {
5026         struct ext4_iloc iloc;
5027         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5028         static unsigned int mnt_count;
5029         int err, ret;
5030
5031         might_sleep();
5032         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5033         err = ext4_reserve_inode_write(handle, inode, &iloc);
5034         if (ext4_handle_valid(handle) &&
5035             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5036             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5037                 /*
5038                  * We need extra buffer credits since we may write into EA block
5039                  * with this same handle. If journal_extend fails, then it will
5040                  * only result in a minor loss of functionality for that inode.
5041                  * If this is felt to be critical, then e2fsck should be run to
5042                  * force a large enough s_min_extra_isize.
5043                  */
5044                 if ((jbd2_journal_extend(handle,
5045                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5046                         ret = ext4_expand_extra_isize(inode,
5047                                                       sbi->s_want_extra_isize,
5048                                                       iloc, handle);
5049                         if (ret) {
5050                                 ext4_set_inode_state(inode,
5051                                                      EXT4_STATE_NO_EXPAND);
5052                                 if (mnt_count !=
5053                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5054                                         ext4_warning(inode->i_sb,
5055                                         "Unable to expand inode %lu. Delete"
5056                                         " some EAs or run e2fsck.",
5057                                         inode->i_ino);
5058                                         mnt_count =
5059                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5060                                 }
5061                         }
5062                 }
5063         }
5064         if (!err)
5065                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5066         return err;
5067 }
5068
5069 /*
5070  * ext4_dirty_inode() is called from __mark_inode_dirty()
5071  *
5072  * We're really interested in the case where a file is being extended.
5073  * i_size has been changed by generic_commit_write() and we thus need
5074  * to include the updated inode in the current transaction.
5075  *
5076  * Also, dquot_alloc_block() will always dirty the inode when blocks
5077  * are allocated to the file.
5078  *
5079  * If the inode is marked synchronous, we don't honour that here - doing
5080  * so would cause a commit on atime updates, which we don't bother doing.
5081  * We handle synchronous inodes at the highest possible level.
5082  */
5083 void ext4_dirty_inode(struct inode *inode, int flags)
5084 {
5085         handle_t *handle;
5086
5087         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5088         if (IS_ERR(handle))
5089                 goto out;
5090
5091         ext4_mark_inode_dirty(handle, inode);
5092
5093         ext4_journal_stop(handle);
5094 out:
5095         return;
5096 }
5097
5098 #if 0
5099 /*
5100  * Bind an inode's backing buffer_head into this transaction, to prevent
5101  * it from being flushed to disk early.  Unlike
5102  * ext4_reserve_inode_write, this leaves behind no bh reference and
5103  * returns no iloc structure, so the caller needs to repeat the iloc
5104  * lookup to mark the inode dirty later.
5105  */
5106 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5107 {
5108         struct ext4_iloc iloc;
5109
5110         int err = 0;
5111         if (handle) {
5112                 err = ext4_get_inode_loc(inode, &iloc);
5113                 if (!err) {
5114                         BUFFER_TRACE(iloc.bh, "get_write_access");
5115                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5116                         if (!err)
5117                                 err = ext4_handle_dirty_metadata(handle,
5118                                                                  NULL,
5119                                                                  iloc.bh);
5120                         brelse(iloc.bh);
5121                 }
5122         }
5123         ext4_std_error(inode->i_sb, err);
5124         return err;
5125 }
5126 #endif
5127
5128 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5129 {
5130         journal_t *journal;
5131         handle_t *handle;
5132         int err;
5133
5134         /*
5135          * We have to be very careful here: changing a data block's
5136          * journaling status dynamically is dangerous.  If we write a
5137          * data block to the journal, change the status and then delete
5138          * that block, we risk forgetting to revoke the old log record
5139          * from the journal and so a subsequent replay can corrupt data.
5140          * So, first we make sure that the journal is empty and that
5141          * nobody is changing anything.
5142          */
5143
5144         journal = EXT4_JOURNAL(inode);
5145         if (!journal)
5146                 return 0;
5147         if (is_journal_aborted(journal))
5148                 return -EROFS;
5149         /* We have to allocate physical blocks for delalloc blocks
5150          * before flushing journal. otherwise delalloc blocks can not
5151          * be allocated any more. even more truncate on delalloc blocks
5152          * could trigger BUG by flushing delalloc blocks in journal.
5153          * There is no delalloc block in non-journal data mode.
5154          */
5155         if (val && test_opt(inode->i_sb, DELALLOC)) {
5156                 err = ext4_alloc_da_blocks(inode);
5157                 if (err < 0)
5158                         return err;
5159         }
5160
5161         /* Wait for all existing dio workers */
5162         ext4_inode_block_unlocked_dio(inode);
5163         inode_dio_wait(inode);
5164
5165         jbd2_journal_lock_updates(journal);
5166
5167         /*
5168          * OK, there are no updates running now, and all cached data is
5169          * synced to disk.  We are now in a completely consistent state
5170          * which doesn't have anything in the journal, and we know that
5171          * no filesystem updates are running, so it is safe to modify
5172          * the inode's in-core data-journaling state flag now.
5173          */
5174
5175         if (val)
5176                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5177         else {
5178                 jbd2_journal_flush(journal);
5179                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5180         }
5181         ext4_set_aops(inode);
5182
5183         jbd2_journal_unlock_updates(journal);
5184         ext4_inode_resume_unlocked_dio(inode);
5185
5186         /* Finally we can mark the inode as dirty. */
5187
5188         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5189         if (IS_ERR(handle))
5190                 return PTR_ERR(handle);
5191
5192         err = ext4_mark_inode_dirty(handle, inode);
5193         ext4_handle_sync(handle);
5194         ext4_journal_stop(handle);
5195         ext4_std_error(inode->i_sb, err);
5196
5197         return err;
5198 }
5199
5200 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5201 {
5202         return !buffer_mapped(bh);
5203 }
5204
5205 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5206 {
5207         struct page *page = vmf->page;
5208         loff_t size;
5209         unsigned long len;
5210         int ret;
5211         struct file *file = vma->vm_file;
5212         struct inode *inode = file_inode(file);
5213         struct address_space *mapping = inode->i_mapping;
5214         handle_t *handle;
5215         get_block_t *get_block;
5216         int retries = 0;
5217
5218         sb_start_pagefault(inode->i_sb);
5219         file_update_time(vma->vm_file);
5220         /* Delalloc case is easy... */
5221         if (test_opt(inode->i_sb, DELALLOC) &&
5222             !ext4_should_journal_data(inode) &&
5223             !ext4_nonda_switch(inode->i_sb)) {
5224                 do {
5225                         ret = __block_page_mkwrite(vma, vmf,
5226                                                    ext4_da_get_block_prep);
5227                 } while (ret == -ENOSPC &&
5228                        ext4_should_retry_alloc(inode->i_sb, &retries));
5229                 goto out_ret;
5230         }
5231
5232         lock_page(page);
5233         size = i_size_read(inode);
5234         /* Page got truncated from under us? */
5235         if (page->mapping != mapping || page_offset(page) > size) {
5236                 unlock_page(page);
5237                 ret = VM_FAULT_NOPAGE;
5238                 goto out;
5239         }
5240
5241         if (page->index == size >> PAGE_CACHE_SHIFT)
5242                 len = size & ~PAGE_CACHE_MASK;
5243         else
5244                 len = PAGE_CACHE_SIZE;
5245         /*
5246          * Return if we have all the buffers mapped. This avoids the need to do
5247          * journal_start/journal_stop which can block and take a long time
5248          */
5249         if (page_has_buffers(page)) {
5250                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5251                                             0, len, NULL,
5252                                             ext4_bh_unmapped)) {
5253                         /* Wait so that we don't change page under IO */
5254                         wait_for_stable_page(page);
5255                         ret = VM_FAULT_LOCKED;
5256                         goto out;
5257                 }
5258         }
5259         unlock_page(page);
5260         /* OK, we need to fill the hole... */
5261         if (ext4_should_dioread_nolock(inode))
5262                 get_block = ext4_get_block_write;
5263         else
5264                 get_block = ext4_get_block;
5265 retry_alloc:
5266         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5267                                     ext4_writepage_trans_blocks(inode));
5268         if (IS_ERR(handle)) {
5269                 ret = VM_FAULT_SIGBUS;
5270                 goto out;
5271         }
5272         ret = __block_page_mkwrite(vma, vmf, get_block);
5273         if (!ret && ext4_should_journal_data(inode)) {
5274                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5275                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5276                         unlock_page(page);
5277                         ret = VM_FAULT_SIGBUS;
5278                         ext4_journal_stop(handle);
5279                         goto out;
5280                 }
5281                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5282         }
5283         ext4_journal_stop(handle);
5284         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5285                 goto retry_alloc;
5286 out_ret:
5287         ret = block_page_mkwrite_return(ret);
5288 out:
5289         sb_end_pagefault(inode->i_sb);
5290         return ret;
5291 }
This page took 0.329799 seconds and 4 git commands to generate.