2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
81 __u32 provided, calculated;
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 return provided == calculated;
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 trace_ext4_begin_ordered_truncate(inode, new_size);
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
128 if (!EXT4_I(inode)->jinode)
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 struct inode *inode, struct page *page, loff_t from,
141 loff_t length, int flags);
144 * Test whether an inode is a fast symlink.
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 (inode->i_sb->s_blocksize >> 9) : 0;
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
181 * Called at the last iput() if i_nlink is zero.
183 void ext4_evict_inode(struct inode *inode)
188 trace_ext4_evict_inode(inode);
190 if (inode->i_nlink) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215 jbd2_complete_transaction(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
218 truncate_inode_pages(&inode->i_data, 0);
219 ext4_ioend_shutdown(inode);
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229 ext4_ioend_shutdown(inode);
231 if (is_bad_inode(inode))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
254 ext4_handle_sync(handle);
256 err = ext4_mark_inode_dirty(handle, inode);
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
263 ext4_truncate(inode);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
274 err = ext4_journal_restart(handle, 3);
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 return &EXT4_I(inode)->i_reserved_quota;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
332 return ext4_ind_calc_metadata_amount(inode, lblock);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
353 used = ei->i_reserved_data_blocks;
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
374 if (ei->i_reserved_data_blocks == 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
409 static int __check_block_validity(struct inode *inode, const char *func,
411 struct ext4_map_blocks *map)
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432 unsigned int max_pages)
434 struct address_space *mapping = inode->i_mapping;
438 int i, nr_pages, done = 0;
442 pagevec_init(&pvec, 0);
445 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
447 (pgoff_t)PAGEVEC_SIZE);
450 for (i = 0; i < nr_pages; i++) {
451 struct page *page = pvec.pages[i];
452 struct buffer_head *bh, *head;
455 if (unlikely(page->mapping != mapping) ||
457 PageWriteback(page) ||
458 page->index != idx) {
463 if (page_has_buffers(page)) {
464 bh = head = page_buffers(page);
466 if (!buffer_delay(bh) &&
467 !buffer_unwritten(bh))
469 bh = bh->b_this_page;
470 } while (!done && (bh != head));
477 if (num >= max_pages) {
482 pagevec_release(&pvec);
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
490 struct ext4_map_blocks *es_map,
491 struct ext4_map_blocks *map,
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
504 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505 down_read((&EXT4_I(inode)->i_data_sem));
506 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508 EXT4_GET_BLOCKS_KEEP_SIZE);
510 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511 EXT4_GET_BLOCKS_KEEP_SIZE);
513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 up_read((&EXT4_I(inode)->i_data_sem));
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
519 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
525 if (es_map->m_lblk != map->m_lblk ||
526 es_map->m_flags != map->m_flags ||
527 es_map->m_pblk != map->m_pblk) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode->i_ino, es_map->m_lblk, es_map->m_len,
532 es_map->m_pblk, es_map->m_flags, map->m_lblk,
533 map->m_len, map->m_pblk, map->m_flags,
537 #endif /* ES_AGGRESSIVE_TEST */
540 * The ext4_map_blocks() function tries to look up the requested blocks,
541 * and returns if the blocks are already mapped.
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
557 * that case, buffer head is unmapped
559 * It returns the error in case of allocation failure.
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562 struct ext4_map_blocks *map, int flags)
564 struct extent_status es;
566 #ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map;
569 memcpy(&orig_map, map, sizeof(*map));
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode->i_ino, flags, map->m_len,
575 (unsigned long) map->m_lblk);
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580 map->m_pblk = ext4_es_pblock(&es) +
581 map->m_lblk - es.es_lblk;
582 map->m_flags |= ext4_es_is_written(&es) ?
583 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584 retval = es.es_len - (map->m_lblk - es.es_lblk);
585 if (retval > map->m_len)
588 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
593 #ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle, inode, map,
601 * Try to see if we can get the block without requesting a new
604 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605 down_read((&EXT4_I(inode)->i_data_sem));
606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608 EXT4_GET_BLOCKS_KEEP_SIZE);
610 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611 EXT4_GET_BLOCKS_KEEP_SIZE);
615 unsigned long long status;
617 #ifdef ES_AGGRESSIVE_TEST
618 if (retval != map->m_len) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode->i_ino, retval,
622 map->m_len, __func__);
626 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629 ext4_find_delalloc_range(inode, map->m_lblk,
630 map->m_lblk + map->m_len - 1))
631 status |= EXTENT_STATUS_DELAYED;
632 ret = ext4_es_insert_extent(inode, map->m_lblk,
633 map->m_len, map->m_pblk, status);
637 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638 up_read((&EXT4_I(inode)->i_data_sem));
641 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642 int ret = check_block_validity(inode, map);
647 /* If it is only a block(s) look up */
648 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
652 * Returns if the blocks have already allocated
654 * Note that if blocks have been preallocated
655 * ext4_ext_get_block() returns the create = 0
656 * with buffer head unmapped.
658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
662 * Here we clear m_flags because after allocating an new extent,
663 * it will be set again.
665 map->m_flags &= ~EXT4_MAP_FLAGS;
668 * New blocks allocate and/or writing to uninitialized extent
669 * will possibly result in updating i_data, so we take
670 * the write lock of i_data_sem, and call get_blocks()
671 * with create == 1 flag.
673 down_write((&EXT4_I(inode)->i_data_sem));
676 * if the caller is from delayed allocation writeout path
677 * we have already reserved fs blocks for allocation
678 * let the underlying get_block() function know to
679 * avoid double accounting
681 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684 * We need to check for EXT4 here because migrate
685 * could have changed the inode type in between
687 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694 * We allocated new blocks which will result in
695 * i_data's format changing. Force the migrate
696 * to fail by clearing migrate flags
698 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
702 * Update reserved blocks/metadata blocks after successful
703 * block allocation which had been deferred till now. We don't
704 * support fallocate for non extent files. So we can update
705 * reserve space here.
708 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709 ext4_da_update_reserve_space(inode, retval, 1);
711 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
716 unsigned long long status;
718 #ifdef ES_AGGRESSIVE_TEST
719 if (retval != map->m_len) {
720 printk("ES len assertation failed for inode: %lu "
721 "retval %d != map->m_len %d "
722 "in %s (allocation)\n", inode->i_ino, retval,
723 map->m_len, __func__);
728 * If the extent has been zeroed out, we don't need to update
729 * extent status tree.
731 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733 if (ext4_es_is_written(&es))
736 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739 ext4_find_delalloc_range(inode, map->m_lblk,
740 map->m_lblk + map->m_len - 1))
741 status |= EXTENT_STATUS_DELAYED;
742 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743 map->m_pblk, status);
749 up_write((&EXT4_I(inode)->i_data_sem));
750 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751 int ret = check_block_validity(inode, map);
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 struct buffer_head *bh, int flags)
764 handle_t *handle = ext4_journal_current_handle();
765 struct ext4_map_blocks map;
766 int ret = 0, started = 0;
769 if (ext4_has_inline_data(inode))
773 map.m_len = bh->b_size >> inode->i_blkbits;
775 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776 /* Direct IO write... */
777 if (map.m_len > DIO_MAX_BLOCKS)
778 map.m_len = DIO_MAX_BLOCKS;
779 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
782 if (IS_ERR(handle)) {
783 ret = PTR_ERR(handle);
789 ret = ext4_map_blocks(handle, inode, &map, flags);
791 map_bh(bh, inode->i_sb, map.m_pblk);
792 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 ext4_journal_stop(handle);
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802 struct buffer_head *bh, int create)
804 return _ext4_get_block(inode, iblock, bh,
805 create ? EXT4_GET_BLOCKS_CREATE : 0);
809 * `handle' can be NULL if create is zero
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812 ext4_lblk_t block, int create, int *errp)
814 struct ext4_map_blocks map;
815 struct buffer_head *bh;
818 J_ASSERT(handle != NULL || create == 0);
822 err = ext4_map_blocks(handle, inode, &map,
823 create ? EXT4_GET_BLOCKS_CREATE : 0);
825 /* ensure we send some value back into *errp */
828 if (create && err == 0)
829 err = -ENOSPC; /* should never happen */
835 bh = sb_getblk(inode->i_sb, map.m_pblk);
840 if (map.m_flags & EXT4_MAP_NEW) {
841 J_ASSERT(create != 0);
842 J_ASSERT(handle != NULL);
845 * Now that we do not always journal data, we should
846 * keep in mind whether this should always journal the
847 * new buffer as metadata. For now, regular file
848 * writes use ext4_get_block instead, so it's not a
852 BUFFER_TRACE(bh, "call get_create_access");
853 fatal = ext4_journal_get_create_access(handle, bh);
854 if (!fatal && !buffer_uptodate(bh)) {
855 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856 set_buffer_uptodate(bh);
859 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860 err = ext4_handle_dirty_metadata(handle, inode, bh);
864 BUFFER_TRACE(bh, "not a new buffer");
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875 ext4_lblk_t block, int create, int *err)
877 struct buffer_head *bh;
879 bh = ext4_getblk(handle, inode, block, create, err);
882 if (buffer_uptodate(bh))
884 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
886 if (buffer_uptodate(bh))
893 int ext4_walk_page_buffers(handle_t *handle,
894 struct buffer_head *head,
898 int (*fn)(handle_t *handle,
899 struct buffer_head *bh))
901 struct buffer_head *bh;
902 unsigned block_start, block_end;
903 unsigned blocksize = head->b_size;
905 struct buffer_head *next;
907 for (bh = head, block_start = 0;
908 ret == 0 && (bh != head || !block_start);
909 block_start = block_end, bh = next) {
910 next = bh->b_this_page;
911 block_end = block_start + blocksize;
912 if (block_end <= from || block_start >= to) {
913 if (partial && !buffer_uptodate(bh))
917 err = (*fn)(handle, bh);
925 * To preserve ordering, it is essential that the hole instantiation and
926 * the data write be encapsulated in a single transaction. We cannot
927 * close off a transaction and start a new one between the ext4_get_block()
928 * and the commit_write(). So doing the jbd2_journal_start at the start of
929 * prepare_write() is the right place.
931 * Also, this function can nest inside ext4_writepage(). In that case, we
932 * *know* that ext4_writepage() has generated enough buffer credits to do the
933 * whole page. So we won't block on the journal in that case, which is good,
934 * because the caller may be PF_MEMALLOC.
936 * By accident, ext4 can be reentered when a transaction is open via
937 * quota file writes. If we were to commit the transaction while thus
938 * reentered, there can be a deadlock - we would be holding a quota
939 * lock, and the commit would never complete if another thread had a
940 * transaction open and was blocking on the quota lock - a ranking
943 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944 * will _not_ run commit under these circumstances because handle->h_ref
945 * is elevated. We'll still have enough credits for the tiny quotafile
948 int do_journal_get_write_access(handle_t *handle,
949 struct buffer_head *bh)
951 int dirty = buffer_dirty(bh);
954 if (!buffer_mapped(bh) || buffer_freed(bh))
957 * __block_write_begin() could have dirtied some buffers. Clean
958 * the dirty bit as jbd2_journal_get_write_access() could complain
959 * otherwise about fs integrity issues. Setting of the dirty bit
960 * by __block_write_begin() isn't a real problem here as we clear
961 * the bit before releasing a page lock and thus writeback cannot
962 * ever write the buffer.
965 clear_buffer_dirty(bh);
966 ret = ext4_journal_get_write_access(handle, bh);
968 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973 struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned flags,
976 struct page **pagep, void **fsdata)
978 struct inode *inode = mapping->host;
979 int ret, needed_blocks;
986 trace_ext4_write_begin(inode, pos, len, flags);
988 * Reserve one block more for addition to orphan list in case
989 * we allocate blocks but write fails for some reason
991 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992 index = pos >> PAGE_CACHE_SHIFT;
993 from = pos & (PAGE_CACHE_SIZE - 1);
996 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1006 * grab_cache_page_write_begin() can take a long time if the
1007 * system is thrashing due to memory pressure, or if the page
1008 * is being written back. So grab it first before we start
1009 * the transaction handle. This also allows us to allocate
1010 * the page (if needed) without using GFP_NOFS.
1013 page = grab_cache_page_write_begin(mapping, index, flags);
1019 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020 if (IS_ERR(handle)) {
1021 page_cache_release(page);
1022 return PTR_ERR(handle);
1026 if (page->mapping != mapping) {
1027 /* The page got truncated from under us */
1029 page_cache_release(page);
1030 ext4_journal_stop(handle);
1033 wait_on_page_writeback(page);
1035 if (ext4_should_dioread_nolock(inode))
1036 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1038 ret = __block_write_begin(page, pos, len, ext4_get_block);
1040 if (!ret && ext4_should_journal_data(inode)) {
1041 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1043 do_journal_get_write_access);
1049 * __block_write_begin may have instantiated a few blocks
1050 * outside i_size. Trim these off again. Don't need
1051 * i_size_read because we hold i_mutex.
1053 * Add inode to orphan list in case we crash before
1056 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057 ext4_orphan_add(handle, inode);
1059 ext4_journal_stop(handle);
1060 if (pos + len > inode->i_size) {
1061 ext4_truncate_failed_write(inode);
1063 * If truncate failed early the inode might
1064 * still be on the orphan list; we need to
1065 * make sure the inode is removed from the
1066 * orphan list in that case.
1069 ext4_orphan_del(NULL, inode);
1072 if (ret == -ENOSPC &&
1073 ext4_should_retry_alloc(inode->i_sb, &retries))
1075 page_cache_release(page);
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1086 if (!buffer_mapped(bh) || buffer_freed(bh))
1088 set_buffer_uptodate(bh);
1089 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090 clear_buffer_meta(bh);
1091 clear_buffer_prio(bh);
1096 * We need to pick up the new inode size which generic_commit_write gave us
1097 * `file' can be NULL - eg, when called from page_symlink().
1099 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1100 * buffers are managed internally.
1102 static int ext4_write_end(struct file *file,
1103 struct address_space *mapping,
1104 loff_t pos, unsigned len, unsigned copied,
1105 struct page *page, void *fsdata)
1107 handle_t *handle = ext4_journal_current_handle();
1108 struct inode *inode = mapping->host;
1110 int i_size_changed = 0;
1112 trace_ext4_write_end(inode, pos, len, copied);
1113 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114 ret = ext4_jbd2_file_inode(handle, inode);
1117 page_cache_release(page);
1122 if (ext4_has_inline_data(inode))
1123 copied = ext4_write_inline_data_end(inode, pos, len,
1126 copied = block_write_end(file, mapping, pos,
1127 len, copied, page, fsdata);
1130 * No need to use i_size_read() here, the i_size
1131 * cannot change under us because we hole i_mutex.
1133 * But it's important to update i_size while still holding page lock:
1134 * page writeout could otherwise come in and zero beyond i_size.
1136 if (pos + copied > inode->i_size) {
1137 i_size_write(inode, pos + copied);
1141 if (pos + copied > EXT4_I(inode)->i_disksize) {
1142 /* We need to mark inode dirty even if
1143 * new_i_size is less that inode->i_size
1144 * but greater than i_disksize. (hint delalloc)
1146 ext4_update_i_disksize(inode, (pos + copied));
1150 page_cache_release(page);
1153 * Don't mark the inode dirty under page lock. First, it unnecessarily
1154 * makes the holding time of page lock longer. Second, it forces lock
1155 * ordering of page lock and transaction start for journaling
1159 ext4_mark_inode_dirty(handle, inode);
1163 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1168 ext4_orphan_add(handle, inode);
1170 ret2 = ext4_journal_stop(handle);
1174 if (pos + len > inode->i_size) {
1175 ext4_truncate_failed_write(inode);
1177 * If truncate failed early the inode might still be
1178 * on the orphan list; we need to make sure the inode
1179 * is removed from the orphan list in that case.
1182 ext4_orphan_del(NULL, inode);
1185 return ret ? ret : copied;
1188 static int ext4_journalled_write_end(struct file *file,
1189 struct address_space *mapping,
1190 loff_t pos, unsigned len, unsigned copied,
1191 struct page *page, void *fsdata)
1193 handle_t *handle = ext4_journal_current_handle();
1194 struct inode *inode = mapping->host;
1200 trace_ext4_journalled_write_end(inode, pos, len, copied);
1201 from = pos & (PAGE_CACHE_SIZE - 1);
1204 BUG_ON(!ext4_handle_valid(handle));
1206 if (ext4_has_inline_data(inode))
1207 copied = ext4_write_inline_data_end(inode, pos, len,
1211 if (!PageUptodate(page))
1213 page_zero_new_buffers(page, from+copied, to);
1216 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1217 to, &partial, write_end_fn);
1219 SetPageUptodate(page);
1221 new_i_size = pos + copied;
1222 if (new_i_size > inode->i_size)
1223 i_size_write(inode, pos+copied);
1224 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1225 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1226 if (new_i_size > EXT4_I(inode)->i_disksize) {
1227 ext4_update_i_disksize(inode, new_i_size);
1228 ret2 = ext4_mark_inode_dirty(handle, inode);
1234 page_cache_release(page);
1235 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1236 /* if we have allocated more blocks and copied
1237 * less. We will have blocks allocated outside
1238 * inode->i_size. So truncate them
1240 ext4_orphan_add(handle, inode);
1242 ret2 = ext4_journal_stop(handle);
1245 if (pos + len > inode->i_size) {
1246 ext4_truncate_failed_write(inode);
1248 * If truncate failed early the inode might still be
1249 * on the orphan list; we need to make sure the inode
1250 * is removed from the orphan list in that case.
1253 ext4_orphan_del(NULL, inode);
1256 return ret ? ret : copied;
1260 * Reserve a metadata for a single block located at lblock
1262 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1265 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1266 struct ext4_inode_info *ei = EXT4_I(inode);
1267 unsigned int md_needed;
1268 ext4_lblk_t save_last_lblock;
1272 * recalculate the amount of metadata blocks to reserve
1273 * in order to allocate nrblocks
1274 * worse case is one extent per block
1277 spin_lock(&ei->i_block_reservation_lock);
1279 * ext4_calc_metadata_amount() has side effects, which we have
1280 * to be prepared undo if we fail to claim space.
1282 save_len = ei->i_da_metadata_calc_len;
1283 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284 md_needed = EXT4_NUM_B2C(sbi,
1285 ext4_calc_metadata_amount(inode, lblock));
1286 trace_ext4_da_reserve_space(inode, md_needed);
1289 * We do still charge estimated metadata to the sb though;
1290 * we cannot afford to run out of free blocks.
1292 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293 ei->i_da_metadata_calc_len = save_len;
1294 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295 spin_unlock(&ei->i_block_reservation_lock);
1296 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
1305 return 0; /* success */
1309 * Reserve a single cluster located at lblock
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315 struct ext4_inode_info *ei = EXT4_I(inode);
1316 unsigned int md_needed;
1318 ext4_lblk_t save_last_lblock;
1322 * We will charge metadata quota at writeout time; this saves
1323 * us from metadata over-estimation, though we may go over by
1324 * a small amount in the end. Here we just reserve for data.
1326 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1331 * recalculate the amount of metadata blocks to reserve
1332 * in order to allocate nrblocks
1333 * worse case is one extent per block
1336 spin_lock(&ei->i_block_reservation_lock);
1338 * ext4_calc_metadata_amount() has side effects, which we have
1339 * to be prepared undo if we fail to claim space.
1341 save_len = ei->i_da_metadata_calc_len;
1342 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1343 md_needed = EXT4_NUM_B2C(sbi,
1344 ext4_calc_metadata_amount(inode, lblock));
1345 trace_ext4_da_reserve_space(inode, md_needed);
1348 * We do still charge estimated metadata to the sb though;
1349 * we cannot afford to run out of free blocks.
1351 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1352 ei->i_da_metadata_calc_len = save_len;
1353 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1354 spin_unlock(&ei->i_block_reservation_lock);
1355 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1362 ei->i_reserved_data_blocks++;
1363 ei->i_reserved_meta_blocks += md_needed;
1364 spin_unlock(&ei->i_block_reservation_lock);
1366 return 0; /* success */
1369 static void ext4_da_release_space(struct inode *inode, int to_free)
1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372 struct ext4_inode_info *ei = EXT4_I(inode);
1375 return; /* Nothing to release, exit */
1377 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1379 trace_ext4_da_release_space(inode, to_free);
1380 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1382 * if there aren't enough reserved blocks, then the
1383 * counter is messed up somewhere. Since this
1384 * function is called from invalidate page, it's
1385 * harmless to return without any action.
1387 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1388 "ino %lu, to_free %d with only %d reserved "
1389 "data blocks", inode->i_ino, to_free,
1390 ei->i_reserved_data_blocks);
1392 to_free = ei->i_reserved_data_blocks;
1394 ei->i_reserved_data_blocks -= to_free;
1396 if (ei->i_reserved_data_blocks == 0) {
1398 * We can release all of the reserved metadata blocks
1399 * only when we have written all of the delayed
1400 * allocation blocks.
1401 * Note that in case of bigalloc, i_reserved_meta_blocks,
1402 * i_reserved_data_blocks, etc. refer to number of clusters.
1404 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1405 ei->i_reserved_meta_blocks);
1406 ei->i_reserved_meta_blocks = 0;
1407 ei->i_da_metadata_calc_len = 0;
1410 /* update fs dirty data blocks counter */
1411 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1415 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1418 static void ext4_da_page_release_reservation(struct page *page,
1419 unsigned long offset)
1422 struct buffer_head *head, *bh;
1423 unsigned int curr_off = 0;
1424 struct inode *inode = page->mapping->host;
1425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1429 head = page_buffers(page);
1432 unsigned int next_off = curr_off + bh->b_size;
1434 if ((offset <= curr_off) && (buffer_delay(bh))) {
1436 clear_buffer_delay(bh);
1438 curr_off = next_off;
1439 } while ((bh = bh->b_this_page) != head);
1442 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1443 ext4_es_remove_extent(inode, lblk, to_release);
1446 /* If we have released all the blocks belonging to a cluster, then we
1447 * need to release the reserved space for that cluster. */
1448 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1449 while (num_clusters > 0) {
1450 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1451 ((num_clusters - 1) << sbi->s_cluster_bits);
1452 if (sbi->s_cluster_ratio == 1 ||
1453 !ext4_find_delalloc_cluster(inode, lblk))
1454 ext4_da_release_space(inode, 1);
1461 * Delayed allocation stuff
1465 * mpage_da_submit_io - walks through extent of pages and try to write
1466 * them with writepage() call back
1468 * @mpd->inode: inode
1469 * @mpd->first_page: first page of the extent
1470 * @mpd->next_page: page after the last page of the extent
1472 * By the time mpage_da_submit_io() is called we expect all blocks
1473 * to be allocated. this may be wrong if allocation failed.
1475 * As pages are already locked by write_cache_pages(), we can't use it
1477 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1478 struct ext4_map_blocks *map)
1480 struct pagevec pvec;
1481 unsigned long index, end;
1482 int ret = 0, err, nr_pages, i;
1483 struct inode *inode = mpd->inode;
1484 struct address_space *mapping = inode->i_mapping;
1485 loff_t size = i_size_read(inode);
1486 unsigned int len, block_start;
1487 struct buffer_head *bh, *page_bufs = NULL;
1488 sector_t pblock = 0, cur_logical = 0;
1489 struct ext4_io_submit io_submit;
1491 BUG_ON(mpd->next_page <= mpd->first_page);
1492 memset(&io_submit, 0, sizeof(io_submit));
1494 * We need to start from the first_page to the next_page - 1
1495 * to make sure we also write the mapped dirty buffer_heads.
1496 * If we look at mpd->b_blocknr we would only be looking
1497 * at the currently mapped buffer_heads.
1499 index = mpd->first_page;
1500 end = mpd->next_page - 1;
1502 pagevec_init(&pvec, 0);
1503 while (index <= end) {
1504 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507 for (i = 0; i < nr_pages; i++) {
1509 struct page *page = pvec.pages[i];
1511 index = page->index;
1515 if (index == size >> PAGE_CACHE_SHIFT)
1516 len = size & ~PAGE_CACHE_MASK;
1518 len = PAGE_CACHE_SIZE;
1520 cur_logical = index << (PAGE_CACHE_SHIFT -
1522 pblock = map->m_pblk + (cur_logical -
1527 BUG_ON(!PageLocked(page));
1528 BUG_ON(PageWriteback(page));
1530 bh = page_bufs = page_buffers(page);
1533 if (map && (cur_logical >= map->m_lblk) &&
1534 (cur_logical <= (map->m_lblk +
1535 (map->m_len - 1)))) {
1536 if (buffer_delay(bh)) {
1537 clear_buffer_delay(bh);
1538 bh->b_blocknr = pblock;
1540 if (buffer_unwritten(bh) ||
1542 BUG_ON(bh->b_blocknr != pblock);
1543 if (map->m_flags & EXT4_MAP_UNINIT)
1544 set_buffer_uninit(bh);
1545 clear_buffer_unwritten(bh);
1549 * skip page if block allocation undone and
1552 if (ext4_bh_delay_or_unwritten(NULL, bh))
1554 bh = bh->b_this_page;
1555 block_start += bh->b_size;
1558 } while (bh != page_bufs);
1565 clear_page_dirty_for_io(page);
1566 err = ext4_bio_write_page(&io_submit, page, len,
1569 mpd->pages_written++;
1571 * In error case, we have to continue because
1572 * remaining pages are still locked
1577 pagevec_release(&pvec);
1579 ext4_io_submit(&io_submit);
1583 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1587 struct pagevec pvec;
1588 struct inode *inode = mpd->inode;
1589 struct address_space *mapping = inode->i_mapping;
1590 ext4_lblk_t start, last;
1592 index = mpd->first_page;
1593 end = mpd->next_page - 1;
1595 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1597 ext4_es_remove_extent(inode, start, last - start + 1);
1599 pagevec_init(&pvec, 0);
1600 while (index <= end) {
1601 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1604 for (i = 0; i < nr_pages; i++) {
1605 struct page *page = pvec.pages[i];
1606 if (page->index > end)
1608 BUG_ON(!PageLocked(page));
1609 BUG_ON(PageWriteback(page));
1610 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1611 ClearPageUptodate(page);
1614 index = pvec.pages[nr_pages - 1]->index + 1;
1615 pagevec_release(&pvec);
1620 static void ext4_print_free_blocks(struct inode *inode)
1622 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1623 struct super_block *sb = inode->i_sb;
1624 struct ext4_inode_info *ei = EXT4_I(inode);
1626 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1627 EXT4_C2B(EXT4_SB(inode->i_sb),
1628 ext4_count_free_clusters(sb)));
1629 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1630 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1631 (long long) EXT4_C2B(EXT4_SB(sb),
1632 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1633 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1634 (long long) EXT4_C2B(EXT4_SB(sb),
1635 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1636 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1637 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1638 ei->i_reserved_data_blocks);
1639 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1640 ei->i_reserved_meta_blocks);
1641 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1642 ei->i_allocated_meta_blocks);
1647 * mpage_da_map_and_submit - go through given space, map them
1648 * if necessary, and then submit them for I/O
1650 * @mpd - bh describing space
1652 * The function skips space we know is already mapped to disk blocks.
1655 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1657 int err, blks, get_blocks_flags;
1658 struct ext4_map_blocks map, *mapp = NULL;
1659 sector_t next = mpd->b_blocknr;
1660 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1661 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1662 handle_t *handle = NULL;
1665 * If the blocks are mapped already, or we couldn't accumulate
1666 * any blocks, then proceed immediately to the submission stage.
1668 if ((mpd->b_size == 0) ||
1669 ((mpd->b_state & (1 << BH_Mapped)) &&
1670 !(mpd->b_state & (1 << BH_Delay)) &&
1671 !(mpd->b_state & (1 << BH_Unwritten))))
1674 handle = ext4_journal_current_handle();
1678 * Call ext4_map_blocks() to allocate any delayed allocation
1679 * blocks, or to convert an uninitialized extent to be
1680 * initialized (in the case where we have written into
1681 * one or more preallocated blocks).
1683 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1684 * indicate that we are on the delayed allocation path. This
1685 * affects functions in many different parts of the allocation
1686 * call path. This flag exists primarily because we don't
1687 * want to change *many* call functions, so ext4_map_blocks()
1688 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1689 * inode's allocation semaphore is taken.
1691 * If the blocks in questions were delalloc blocks, set
1692 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1693 * variables are updated after the blocks have been allocated.
1696 map.m_len = max_blocks;
1698 * We're in delalloc path and it is possible that we're going to
1699 * need more metadata blocks than previously reserved. However
1700 * we must not fail because we're in writeback and there is
1701 * nothing we can do about it so it might result in data loss.
1702 * So use reserved blocks to allocate metadata if possible.
1704 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1705 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1706 if (ext4_should_dioread_nolock(mpd->inode))
1707 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1708 if (mpd->b_state & (1 << BH_Delay))
1709 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1712 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1714 struct super_block *sb = mpd->inode->i_sb;
1718 * If get block returns EAGAIN or ENOSPC and there
1719 * appears to be free blocks we will just let
1720 * mpage_da_submit_io() unlock all of the pages.
1725 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1731 * get block failure will cause us to loop in
1732 * writepages, because a_ops->writepage won't be able
1733 * to make progress. The page will be redirtied by
1734 * writepage and writepages will again try to write
1737 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1738 ext4_msg(sb, KERN_CRIT,
1739 "delayed block allocation failed for inode %lu "
1740 "at logical offset %llu with max blocks %zd "
1741 "with error %d", mpd->inode->i_ino,
1742 (unsigned long long) next,
1743 mpd->b_size >> mpd->inode->i_blkbits, err);
1744 ext4_msg(sb, KERN_CRIT,
1745 "This should not happen!! Data will be lost");
1747 ext4_print_free_blocks(mpd->inode);
1749 /* invalidate all the pages */
1750 ext4_da_block_invalidatepages(mpd);
1752 /* Mark this page range as having been completed */
1759 if (map.m_flags & EXT4_MAP_NEW) {
1760 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1763 for (i = 0; i < map.m_len; i++)
1764 unmap_underlying_metadata(bdev, map.m_pblk + i);
1768 * Update on-disk size along with block allocation.
1770 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1771 if (disksize > i_size_read(mpd->inode))
1772 disksize = i_size_read(mpd->inode);
1773 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1774 ext4_update_i_disksize(mpd->inode, disksize);
1775 err = ext4_mark_inode_dirty(handle, mpd->inode);
1777 ext4_error(mpd->inode->i_sb,
1778 "Failed to mark inode %lu dirty",
1783 mpage_da_submit_io(mpd, mapp);
1787 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1788 (1 << BH_Delay) | (1 << BH_Unwritten))
1791 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1793 * @mpd->lbh - extent of blocks
1794 * @logical - logical number of the block in the file
1795 * @b_state - b_state of the buffer head added
1797 * the function is used to collect contig. blocks in same state
1799 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1800 unsigned long b_state)
1803 int blkbits = mpd->inode->i_blkbits;
1804 int nrblocks = mpd->b_size >> blkbits;
1807 * XXX Don't go larger than mballoc is willing to allocate
1808 * This is a stopgap solution. We eventually need to fold
1809 * mpage_da_submit_io() into this function and then call
1810 * ext4_map_blocks() multiple times in a loop
1812 if (nrblocks >= (8*1024*1024 >> blkbits))
1815 /* check if the reserved journal credits might overflow */
1816 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1817 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1819 * With non-extent format we are limited by the journal
1820 * credit available. Total credit needed to insert
1821 * nrblocks contiguous blocks is dependent on the
1822 * nrblocks. So limit nrblocks.
1828 * First block in the extent
1830 if (mpd->b_size == 0) {
1831 mpd->b_blocknr = logical;
1832 mpd->b_size = 1 << blkbits;
1833 mpd->b_state = b_state & BH_FLAGS;
1837 next = mpd->b_blocknr + nrblocks;
1839 * Can we merge the block to our big extent?
1841 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1842 mpd->b_size += 1 << blkbits;
1848 * We couldn't merge the block to our extent, so we
1849 * need to flush current extent and start new one
1851 mpage_da_map_and_submit(mpd);
1855 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1857 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1861 * This function is grabs code from the very beginning of
1862 * ext4_map_blocks, but assumes that the caller is from delayed write
1863 * time. This function looks up the requested blocks and sets the
1864 * buffer delay bit under the protection of i_data_sem.
1866 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1867 struct ext4_map_blocks *map,
1868 struct buffer_head *bh)
1870 struct extent_status es;
1872 sector_t invalid_block = ~((sector_t) 0xffff);
1873 #ifdef ES_AGGRESSIVE_TEST
1874 struct ext4_map_blocks orig_map;
1876 memcpy(&orig_map, map, sizeof(*map));
1879 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1883 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1884 "logical block %lu\n", inode->i_ino, map->m_len,
1885 (unsigned long) map->m_lblk);
1887 /* Lookup extent status tree firstly */
1888 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1890 if (ext4_es_is_hole(&es)) {
1892 down_read((&EXT4_I(inode)->i_data_sem));
1897 * Delayed extent could be allocated by fallocate.
1898 * So we need to check it.
1900 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1901 map_bh(bh, inode->i_sb, invalid_block);
1903 set_buffer_delay(bh);
1907 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1908 retval = es.es_len - (iblock - es.es_lblk);
1909 if (retval > map->m_len)
1910 retval = map->m_len;
1911 map->m_len = retval;
1912 if (ext4_es_is_written(&es))
1913 map->m_flags |= EXT4_MAP_MAPPED;
1914 else if (ext4_es_is_unwritten(&es))
1915 map->m_flags |= EXT4_MAP_UNWRITTEN;
1919 #ifdef ES_AGGRESSIVE_TEST
1920 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1926 * Try to see if we can get the block without requesting a new
1927 * file system block.
1929 down_read((&EXT4_I(inode)->i_data_sem));
1930 if (ext4_has_inline_data(inode)) {
1932 * We will soon create blocks for this page, and let
1933 * us pretend as if the blocks aren't allocated yet.
1934 * In case of clusters, we have to handle the work
1935 * of mapping from cluster so that the reserved space
1936 * is calculated properly.
1938 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1939 ext4_find_delalloc_cluster(inode, map->m_lblk))
1940 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1942 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1943 retval = ext4_ext_map_blocks(NULL, inode, map,
1944 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1946 retval = ext4_ind_map_blocks(NULL, inode, map,
1947 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1953 * XXX: __block_prepare_write() unmaps passed block,
1957 * If the block was allocated from previously allocated cluster,
1958 * then we don't need to reserve it again. However we still need
1959 * to reserve metadata for every block we're going to write.
1961 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1962 ret = ext4_da_reserve_space(inode, iblock);
1964 /* not enough space to reserve */
1969 ret = ext4_da_reserve_metadata(inode, iblock);
1971 /* not enough space to reserve */
1977 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1978 ~0, EXTENT_STATUS_DELAYED);
1984 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1985 * and it should not appear on the bh->b_state.
1987 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1989 map_bh(bh, inode->i_sb, invalid_block);
1991 set_buffer_delay(bh);
1992 } else if (retval > 0) {
1994 unsigned long long status;
1996 #ifdef ES_AGGRESSIVE_TEST
1997 if (retval != map->m_len) {
1998 printk("ES len assertation failed for inode: %lu "
1999 "retval %d != map->m_len %d "
2000 "in %s (lookup)\n", inode->i_ino, retval,
2001 map->m_len, __func__);
2005 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2006 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2007 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2008 map->m_pblk, status);
2014 up_read((&EXT4_I(inode)->i_data_sem));
2020 * This is a special get_blocks_t callback which is used by
2021 * ext4_da_write_begin(). It will either return mapped block or
2022 * reserve space for a single block.
2024 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2025 * We also have b_blocknr = -1 and b_bdev initialized properly
2027 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2028 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2029 * initialized properly.
2031 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2032 struct buffer_head *bh, int create)
2034 struct ext4_map_blocks map;
2037 BUG_ON(create == 0);
2038 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2040 map.m_lblk = iblock;
2044 * first, we need to know whether the block is allocated already
2045 * preallocated blocks are unmapped but should treated
2046 * the same as allocated blocks.
2048 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2052 map_bh(bh, inode->i_sb, map.m_pblk);
2053 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2055 if (buffer_unwritten(bh)) {
2056 /* A delayed write to unwritten bh should be marked
2057 * new and mapped. Mapped ensures that we don't do
2058 * get_block multiple times when we write to the same
2059 * offset and new ensures that we do proper zero out
2060 * for partial write.
2063 set_buffer_mapped(bh);
2068 static int bget_one(handle_t *handle, struct buffer_head *bh)
2074 static int bput_one(handle_t *handle, struct buffer_head *bh)
2080 static int __ext4_journalled_writepage(struct page *page,
2083 struct address_space *mapping = page->mapping;
2084 struct inode *inode = mapping->host;
2085 struct buffer_head *page_bufs = NULL;
2086 handle_t *handle = NULL;
2087 int ret = 0, err = 0;
2088 int inline_data = ext4_has_inline_data(inode);
2089 struct buffer_head *inode_bh = NULL;
2091 ClearPageChecked(page);
2094 BUG_ON(page->index != 0);
2095 BUG_ON(len > ext4_get_max_inline_size(inode));
2096 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2097 if (inode_bh == NULL)
2100 page_bufs = page_buffers(page);
2105 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2108 /* As soon as we unlock the page, it can go away, but we have
2109 * references to buffers so we are safe */
2112 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2113 ext4_writepage_trans_blocks(inode));
2114 if (IS_ERR(handle)) {
2115 ret = PTR_ERR(handle);
2119 BUG_ON(!ext4_handle_valid(handle));
2122 ret = ext4_journal_get_write_access(handle, inode_bh);
2124 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2127 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2128 do_journal_get_write_access);
2130 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2136 err = ext4_journal_stop(handle);
2140 if (!ext4_has_inline_data(inode))
2141 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2143 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2150 * Note that we don't need to start a transaction unless we're journaling data
2151 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2152 * need to file the inode to the transaction's list in ordered mode because if
2153 * we are writing back data added by write(), the inode is already there and if
2154 * we are writing back data modified via mmap(), no one guarantees in which
2155 * transaction the data will hit the disk. In case we are journaling data, we
2156 * cannot start transaction directly because transaction start ranks above page
2157 * lock so we have to do some magic.
2159 * This function can get called via...
2160 * - ext4_da_writepages after taking page lock (have journal handle)
2161 * - journal_submit_inode_data_buffers (no journal handle)
2162 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2163 * - grab_page_cache when doing write_begin (have journal handle)
2165 * We don't do any block allocation in this function. If we have page with
2166 * multiple blocks we need to write those buffer_heads that are mapped. This
2167 * is important for mmaped based write. So if we do with blocksize 1K
2168 * truncate(f, 1024);
2169 * a = mmap(f, 0, 4096);
2171 * truncate(f, 4096);
2172 * we have in the page first buffer_head mapped via page_mkwrite call back
2173 * but other buffer_heads would be unmapped but dirty (dirty done via the
2174 * do_wp_page). So writepage should write the first block. If we modify
2175 * the mmap area beyond 1024 we will again get a page_fault and the
2176 * page_mkwrite callback will do the block allocation and mark the
2177 * buffer_heads mapped.
2179 * We redirty the page if we have any buffer_heads that is either delay or
2180 * unwritten in the page.
2182 * We can get recursively called as show below.
2184 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2187 * But since we don't do any block allocation we should not deadlock.
2188 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2190 static int ext4_writepage(struct page *page,
2191 struct writeback_control *wbc)
2196 struct buffer_head *page_bufs = NULL;
2197 struct inode *inode = page->mapping->host;
2198 struct ext4_io_submit io_submit;
2200 trace_ext4_writepage(page);
2201 size = i_size_read(inode);
2202 if (page->index == size >> PAGE_CACHE_SHIFT)
2203 len = size & ~PAGE_CACHE_MASK;
2205 len = PAGE_CACHE_SIZE;
2207 page_bufs = page_buffers(page);
2209 * We cannot do block allocation or other extent handling in this
2210 * function. If there are buffers needing that, we have to redirty
2211 * the page. But we may reach here when we do a journal commit via
2212 * journal_submit_inode_data_buffers() and in that case we must write
2213 * allocated buffers to achieve data=ordered mode guarantees.
2215 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2216 ext4_bh_delay_or_unwritten)) {
2217 redirty_page_for_writepage(wbc, page);
2218 if (current->flags & PF_MEMALLOC) {
2220 * For memory cleaning there's no point in writing only
2221 * some buffers. So just bail out. Warn if we came here
2222 * from direct reclaim.
2224 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2231 if (PageChecked(page) && ext4_should_journal_data(inode))
2233 * It's mmapped pagecache. Add buffers and journal it. There
2234 * doesn't seem much point in redirtying the page here.
2236 return __ext4_journalled_writepage(page, len);
2238 memset(&io_submit, 0, sizeof(io_submit));
2239 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2240 ext4_io_submit(&io_submit);
2245 * This is called via ext4_da_writepages() to
2246 * calculate the total number of credits to reserve to fit
2247 * a single extent allocation into a single transaction,
2248 * ext4_da_writpeages() will loop calling this before
2249 * the block allocation.
2252 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2254 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2257 * With non-extent format the journal credit needed to
2258 * insert nrblocks contiguous block is dependent on
2259 * number of contiguous block. So we will limit
2260 * number of contiguous block to a sane value
2262 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2263 (max_blocks > EXT4_MAX_TRANS_DATA))
2264 max_blocks = EXT4_MAX_TRANS_DATA;
2266 return ext4_chunk_trans_blocks(inode, max_blocks);
2270 * write_cache_pages_da - walk the list of dirty pages of the given
2271 * address space and accumulate pages that need writing, and call
2272 * mpage_da_map_and_submit to map a single contiguous memory region
2273 * and then write them.
2275 static int write_cache_pages_da(handle_t *handle,
2276 struct address_space *mapping,
2277 struct writeback_control *wbc,
2278 struct mpage_da_data *mpd,
2279 pgoff_t *done_index)
2281 struct buffer_head *bh, *head;
2282 struct inode *inode = mapping->host;
2283 struct pagevec pvec;
2284 unsigned int nr_pages;
2287 long nr_to_write = wbc->nr_to_write;
2288 int i, tag, ret = 0;
2290 memset(mpd, 0, sizeof(struct mpage_da_data));
2293 pagevec_init(&pvec, 0);
2294 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2295 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2297 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2298 tag = PAGECACHE_TAG_TOWRITE;
2300 tag = PAGECACHE_TAG_DIRTY;
2302 *done_index = index;
2303 while (index <= end) {
2304 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2305 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2309 for (i = 0; i < nr_pages; i++) {
2310 struct page *page = pvec.pages[i];
2313 * At this point, the page may be truncated or
2314 * invalidated (changing page->mapping to NULL), or
2315 * even swizzled back from swapper_space to tmpfs file
2316 * mapping. However, page->index will not change
2317 * because we have a reference on the page.
2319 if (page->index > end)
2322 *done_index = page->index + 1;
2325 * If we can't merge this page, and we have
2326 * accumulated an contiguous region, write it
2328 if ((mpd->next_page != page->index) &&
2329 (mpd->next_page != mpd->first_page)) {
2330 mpage_da_map_and_submit(mpd);
2331 goto ret_extent_tail;
2337 * If the page is no longer dirty, or its
2338 * mapping no longer corresponds to inode we
2339 * are writing (which means it has been
2340 * truncated or invalidated), or the page is
2341 * already under writeback and we are not
2342 * doing a data integrity writeback, skip the page
2344 if (!PageDirty(page) ||
2345 (PageWriteback(page) &&
2346 (wbc->sync_mode == WB_SYNC_NONE)) ||
2347 unlikely(page->mapping != mapping)) {
2352 wait_on_page_writeback(page);
2353 BUG_ON(PageWriteback(page));
2356 * If we have inline data and arrive here, it means that
2357 * we will soon create the block for the 1st page, so
2358 * we'd better clear the inline data here.
2360 if (ext4_has_inline_data(inode)) {
2361 BUG_ON(ext4_test_inode_state(inode,
2362 EXT4_STATE_MAY_INLINE_DATA));
2363 ext4_destroy_inline_data(handle, inode);
2366 if (mpd->next_page != page->index)
2367 mpd->first_page = page->index;
2368 mpd->next_page = page->index + 1;
2369 logical = (sector_t) page->index <<
2370 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2372 /* Add all dirty buffers to mpd */
2373 head = page_buffers(page);
2376 BUG_ON(buffer_locked(bh));
2378 * We need to try to allocate unmapped blocks
2379 * in the same page. Otherwise we won't make
2380 * progress with the page in ext4_writepage
2382 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2383 mpage_add_bh_to_extent(mpd, logical,
2386 goto ret_extent_tail;
2387 } else if (buffer_dirty(bh) &&
2388 buffer_mapped(bh)) {
2390 * mapped dirty buffer. We need to
2391 * update the b_state because we look
2392 * at b_state in mpage_da_map_blocks.
2393 * We don't update b_size because if we
2394 * find an unmapped buffer_head later
2395 * we need to use the b_state flag of
2398 if (mpd->b_size == 0)
2400 bh->b_state & BH_FLAGS;
2403 } while ((bh = bh->b_this_page) != head);
2405 if (nr_to_write > 0) {
2407 if (nr_to_write == 0 &&
2408 wbc->sync_mode == WB_SYNC_NONE)
2410 * We stop writing back only if we are
2411 * not doing integrity sync. In case of
2412 * integrity sync we have to keep going
2413 * because someone may be concurrently
2414 * dirtying pages, and we might have
2415 * synced a lot of newly appeared dirty
2416 * pages, but have not synced all of the
2422 pagevec_release(&pvec);
2427 ret = MPAGE_DA_EXTENT_TAIL;
2429 pagevec_release(&pvec);
2435 static int ext4_da_writepages(struct address_space *mapping,
2436 struct writeback_control *wbc)
2439 int range_whole = 0;
2440 handle_t *handle = NULL;
2441 struct mpage_da_data mpd;
2442 struct inode *inode = mapping->host;
2443 int pages_written = 0;
2444 unsigned int max_pages;
2445 int range_cyclic, cycled = 1, io_done = 0;
2446 int needed_blocks, ret = 0;
2447 long desired_nr_to_write, nr_to_writebump = 0;
2448 loff_t range_start = wbc->range_start;
2449 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2450 pgoff_t done_index = 0;
2452 struct blk_plug plug;
2454 trace_ext4_da_writepages(inode, wbc);
2457 * No pages to write? This is mainly a kludge to avoid starting
2458 * a transaction for special inodes like journal inode on last iput()
2459 * because that could violate lock ordering on umount
2461 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2465 * If the filesystem has aborted, it is read-only, so return
2466 * right away instead of dumping stack traces later on that
2467 * will obscure the real source of the problem. We test
2468 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2469 * the latter could be true if the filesystem is mounted
2470 * read-only, and in that case, ext4_da_writepages should
2471 * *never* be called, so if that ever happens, we would want
2474 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2477 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2480 range_cyclic = wbc->range_cyclic;
2481 if (wbc->range_cyclic) {
2482 index = mapping->writeback_index;
2485 wbc->range_start = index << PAGE_CACHE_SHIFT;
2486 wbc->range_end = LLONG_MAX;
2487 wbc->range_cyclic = 0;
2490 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2491 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2495 * This works around two forms of stupidity. The first is in
2496 * the writeback code, which caps the maximum number of pages
2497 * written to be 1024 pages. This is wrong on multiple
2498 * levels; different architectues have a different page size,
2499 * which changes the maximum amount of data which gets
2500 * written. Secondly, 4 megabytes is way too small. XFS
2501 * forces this value to be 16 megabytes by multiplying
2502 * nr_to_write parameter by four, and then relies on its
2503 * allocator to allocate larger extents to make them
2504 * contiguous. Unfortunately this brings us to the second
2505 * stupidity, which is that ext4's mballoc code only allocates
2506 * at most 2048 blocks. So we force contiguous writes up to
2507 * the number of dirty blocks in the inode, or
2508 * sbi->max_writeback_mb_bump whichever is smaller.
2510 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2511 if (!range_cyclic && range_whole) {
2512 if (wbc->nr_to_write == LONG_MAX)
2513 desired_nr_to_write = wbc->nr_to_write;
2515 desired_nr_to_write = wbc->nr_to_write * 8;
2517 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2519 if (desired_nr_to_write > max_pages)
2520 desired_nr_to_write = max_pages;
2522 if (wbc->nr_to_write < desired_nr_to_write) {
2523 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2524 wbc->nr_to_write = desired_nr_to_write;
2528 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2529 tag_pages_for_writeback(mapping, index, end);
2531 blk_start_plug(&plug);
2532 while (!ret && wbc->nr_to_write > 0) {
2535 * we insert one extent at a time. So we need
2536 * credit needed for single extent allocation.
2537 * journalled mode is currently not supported
2540 BUG_ON(ext4_should_journal_data(inode));
2541 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2543 /* start a new transaction*/
2544 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2546 if (IS_ERR(handle)) {
2547 ret = PTR_ERR(handle);
2548 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2549 "%ld pages, ino %lu; err %d", __func__,
2550 wbc->nr_to_write, inode->i_ino, ret);
2551 blk_finish_plug(&plug);
2552 goto out_writepages;
2556 * Now call write_cache_pages_da() to find the next
2557 * contiguous region of logical blocks that need
2558 * blocks to be allocated by ext4 and submit them.
2560 ret = write_cache_pages_da(handle, mapping,
2561 wbc, &mpd, &done_index);
2563 * If we have a contiguous extent of pages and we
2564 * haven't done the I/O yet, map the blocks and submit
2567 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2568 mpage_da_map_and_submit(&mpd);
2569 ret = MPAGE_DA_EXTENT_TAIL;
2571 trace_ext4_da_write_pages(inode, &mpd);
2572 wbc->nr_to_write -= mpd.pages_written;
2574 ext4_journal_stop(handle);
2576 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2577 /* commit the transaction which would
2578 * free blocks released in the transaction
2581 jbd2_journal_force_commit_nested(sbi->s_journal);
2583 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2585 * Got one extent now try with rest of the pages.
2586 * If mpd.retval is set -EIO, journal is aborted.
2587 * So we don't need to write any more.
2589 pages_written += mpd.pages_written;
2592 } else if (wbc->nr_to_write)
2594 * There is no more writeout needed
2595 * or we requested for a noblocking writeout
2596 * and we found the device congested
2600 blk_finish_plug(&plug);
2601 if (!io_done && !cycled) {
2604 wbc->range_start = index << PAGE_CACHE_SHIFT;
2605 wbc->range_end = mapping->writeback_index - 1;
2610 wbc->range_cyclic = range_cyclic;
2611 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2613 * set the writeback_index so that range_cyclic
2614 * mode will write it back later
2616 mapping->writeback_index = done_index;
2619 wbc->nr_to_write -= nr_to_writebump;
2620 wbc->range_start = range_start;
2621 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2625 static int ext4_nonda_switch(struct super_block *sb)
2627 s64 free_clusters, dirty_clusters;
2628 struct ext4_sb_info *sbi = EXT4_SB(sb);
2631 * switch to non delalloc mode if we are running low
2632 * on free block. The free block accounting via percpu
2633 * counters can get slightly wrong with percpu_counter_batch getting
2634 * accumulated on each CPU without updating global counters
2635 * Delalloc need an accurate free block accounting. So switch
2636 * to non delalloc when we are near to error range.
2639 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2641 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2643 * Start pushing delalloc when 1/2 of free blocks are dirty.
2645 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2646 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2648 if (2 * free_clusters < 3 * dirty_clusters ||
2649 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2651 * free block count is less than 150% of dirty blocks
2652 * or free blocks is less than watermark
2659 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2660 loff_t pos, unsigned len, unsigned flags,
2661 struct page **pagep, void **fsdata)
2663 int ret, retries = 0;
2666 struct inode *inode = mapping->host;
2669 index = pos >> PAGE_CACHE_SHIFT;
2671 if (ext4_nonda_switch(inode->i_sb)) {
2672 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2673 return ext4_write_begin(file, mapping, pos,
2674 len, flags, pagep, fsdata);
2676 *fsdata = (void *)0;
2677 trace_ext4_da_write_begin(inode, pos, len, flags);
2679 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2680 ret = ext4_da_write_inline_data_begin(mapping, inode,
2690 * grab_cache_page_write_begin() can take a long time if the
2691 * system is thrashing due to memory pressure, or if the page
2692 * is being written back. So grab it first before we start
2693 * the transaction handle. This also allows us to allocate
2694 * the page (if needed) without using GFP_NOFS.
2697 page = grab_cache_page_write_begin(mapping, index, flags);
2703 * With delayed allocation, we don't log the i_disksize update
2704 * if there is delayed block allocation. But we still need
2705 * to journalling the i_disksize update if writes to the end
2706 * of file which has an already mapped buffer.
2709 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2710 if (IS_ERR(handle)) {
2711 page_cache_release(page);
2712 return PTR_ERR(handle);
2716 if (page->mapping != mapping) {
2717 /* The page got truncated from under us */
2719 page_cache_release(page);
2720 ext4_journal_stop(handle);
2723 /* In case writeback began while the page was unlocked */
2724 wait_on_page_writeback(page);
2726 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2729 ext4_journal_stop(handle);
2731 * block_write_begin may have instantiated a few blocks
2732 * outside i_size. Trim these off again. Don't need
2733 * i_size_read because we hold i_mutex.
2735 if (pos + len > inode->i_size)
2736 ext4_truncate_failed_write(inode);
2738 if (ret == -ENOSPC &&
2739 ext4_should_retry_alloc(inode->i_sb, &retries))
2742 page_cache_release(page);
2751 * Check if we should update i_disksize
2752 * when write to the end of file but not require block allocation
2754 static int ext4_da_should_update_i_disksize(struct page *page,
2755 unsigned long offset)
2757 struct buffer_head *bh;
2758 struct inode *inode = page->mapping->host;
2762 bh = page_buffers(page);
2763 idx = offset >> inode->i_blkbits;
2765 for (i = 0; i < idx; i++)
2766 bh = bh->b_this_page;
2768 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2773 static int ext4_da_write_end(struct file *file,
2774 struct address_space *mapping,
2775 loff_t pos, unsigned len, unsigned copied,
2776 struct page *page, void *fsdata)
2778 struct inode *inode = mapping->host;
2780 handle_t *handle = ext4_journal_current_handle();
2782 unsigned long start, end;
2783 int write_mode = (int)(unsigned long)fsdata;
2785 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2786 return ext4_write_end(file, mapping, pos,
2787 len, copied, page, fsdata);
2789 trace_ext4_da_write_end(inode, pos, len, copied);
2790 start = pos & (PAGE_CACHE_SIZE - 1);
2791 end = start + copied - 1;
2794 * generic_write_end() will run mark_inode_dirty() if i_size
2795 * changes. So let's piggyback the i_disksize mark_inode_dirty
2798 new_i_size = pos + copied;
2799 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2800 if (ext4_has_inline_data(inode) ||
2801 ext4_da_should_update_i_disksize(page, end)) {
2802 down_write(&EXT4_I(inode)->i_data_sem);
2803 if (new_i_size > EXT4_I(inode)->i_disksize)
2804 EXT4_I(inode)->i_disksize = new_i_size;
2805 up_write(&EXT4_I(inode)->i_data_sem);
2806 /* We need to mark inode dirty even if
2807 * new_i_size is less that inode->i_size
2808 * bu greater than i_disksize.(hint delalloc)
2810 ext4_mark_inode_dirty(handle, inode);
2814 if (write_mode != CONVERT_INLINE_DATA &&
2815 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2816 ext4_has_inline_data(inode))
2817 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2820 ret2 = generic_write_end(file, mapping, pos, len, copied,
2826 ret2 = ext4_journal_stop(handle);
2830 return ret ? ret : copied;
2833 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2834 unsigned int length)
2837 * Drop reserved blocks
2839 BUG_ON(!PageLocked(page));
2840 if (!page_has_buffers(page))
2843 ext4_da_page_release_reservation(page, offset);
2846 ext4_invalidatepage(page, offset, length);
2852 * Force all delayed allocation blocks to be allocated for a given inode.
2854 int ext4_alloc_da_blocks(struct inode *inode)
2856 trace_ext4_alloc_da_blocks(inode);
2858 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2859 !EXT4_I(inode)->i_reserved_meta_blocks)
2863 * We do something simple for now. The filemap_flush() will
2864 * also start triggering a write of the data blocks, which is
2865 * not strictly speaking necessary (and for users of
2866 * laptop_mode, not even desirable). However, to do otherwise
2867 * would require replicating code paths in:
2869 * ext4_da_writepages() ->
2870 * write_cache_pages() ---> (via passed in callback function)
2871 * __mpage_da_writepage() -->
2872 * mpage_add_bh_to_extent()
2873 * mpage_da_map_blocks()
2875 * The problem is that write_cache_pages(), located in
2876 * mm/page-writeback.c, marks pages clean in preparation for
2877 * doing I/O, which is not desirable if we're not planning on
2880 * We could call write_cache_pages(), and then redirty all of
2881 * the pages by calling redirty_page_for_writepage() but that
2882 * would be ugly in the extreme. So instead we would need to
2883 * replicate parts of the code in the above functions,
2884 * simplifying them because we wouldn't actually intend to
2885 * write out the pages, but rather only collect contiguous
2886 * logical block extents, call the multi-block allocator, and
2887 * then update the buffer heads with the block allocations.
2889 * For now, though, we'll cheat by calling filemap_flush(),
2890 * which will map the blocks, and start the I/O, but not
2891 * actually wait for the I/O to complete.
2893 return filemap_flush(inode->i_mapping);
2897 * bmap() is special. It gets used by applications such as lilo and by
2898 * the swapper to find the on-disk block of a specific piece of data.
2900 * Naturally, this is dangerous if the block concerned is still in the
2901 * journal. If somebody makes a swapfile on an ext4 data-journaling
2902 * filesystem and enables swap, then they may get a nasty shock when the
2903 * data getting swapped to that swapfile suddenly gets overwritten by
2904 * the original zero's written out previously to the journal and
2905 * awaiting writeback in the kernel's buffer cache.
2907 * So, if we see any bmap calls here on a modified, data-journaled file,
2908 * take extra steps to flush any blocks which might be in the cache.
2910 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2912 struct inode *inode = mapping->host;
2917 * We can get here for an inline file via the FIBMAP ioctl
2919 if (ext4_has_inline_data(inode))
2922 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2923 test_opt(inode->i_sb, DELALLOC)) {
2925 * With delalloc we want to sync the file
2926 * so that we can make sure we allocate
2929 filemap_write_and_wait(mapping);
2932 if (EXT4_JOURNAL(inode) &&
2933 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2935 * This is a REALLY heavyweight approach, but the use of
2936 * bmap on dirty files is expected to be extremely rare:
2937 * only if we run lilo or swapon on a freshly made file
2938 * do we expect this to happen.
2940 * (bmap requires CAP_SYS_RAWIO so this does not
2941 * represent an unprivileged user DOS attack --- we'd be
2942 * in trouble if mortal users could trigger this path at
2945 * NB. EXT4_STATE_JDATA is not set on files other than
2946 * regular files. If somebody wants to bmap a directory
2947 * or symlink and gets confused because the buffer
2948 * hasn't yet been flushed to disk, they deserve
2949 * everything they get.
2952 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2953 journal = EXT4_JOURNAL(inode);
2954 jbd2_journal_lock_updates(journal);
2955 err = jbd2_journal_flush(journal);
2956 jbd2_journal_unlock_updates(journal);
2962 return generic_block_bmap(mapping, block, ext4_get_block);
2965 static int ext4_readpage(struct file *file, struct page *page)
2968 struct inode *inode = page->mapping->host;
2970 trace_ext4_readpage(page);
2972 if (ext4_has_inline_data(inode))
2973 ret = ext4_readpage_inline(inode, page);
2976 return mpage_readpage(page, ext4_get_block);
2982 ext4_readpages(struct file *file, struct address_space *mapping,
2983 struct list_head *pages, unsigned nr_pages)
2985 struct inode *inode = mapping->host;
2987 /* If the file has inline data, no need to do readpages. */
2988 if (ext4_has_inline_data(inode))
2991 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2994 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2995 unsigned int length)
2997 trace_ext4_invalidatepage(page, offset);
2999 /* No journalling happens on data buffers when this function is used */
3000 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3002 block_invalidatepage(page, offset, PAGE_CACHE_SIZE - offset);
3005 static int __ext4_journalled_invalidatepage(struct page *page,
3006 unsigned long offset)
3008 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3010 trace_ext4_journalled_invalidatepage(page, offset);
3013 * If it's a full truncate we just forget about the pending dirtying
3016 ClearPageChecked(page);
3018 return jbd2_journal_invalidatepage(journal, page, offset);
3021 /* Wrapper for aops... */
3022 static void ext4_journalled_invalidatepage(struct page *page,
3023 unsigned int offset,
3024 unsigned int length)
3026 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3029 static int ext4_releasepage(struct page *page, gfp_t wait)
3031 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3033 trace_ext4_releasepage(page);
3035 /* Page has dirty journalled data -> cannot release */
3036 if (PageChecked(page))
3039 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3041 return try_to_free_buffers(page);
3045 * ext4_get_block used when preparing for a DIO write or buffer write.
3046 * We allocate an uinitialized extent if blocks haven't been allocated.
3047 * The extent will be converted to initialized after the IO is complete.
3049 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3050 struct buffer_head *bh_result, int create)
3052 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3053 inode->i_ino, create);
3054 return _ext4_get_block(inode, iblock, bh_result,
3055 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3058 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3059 struct buffer_head *bh_result, int create)
3061 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3062 inode->i_ino, create);
3063 return _ext4_get_block(inode, iblock, bh_result,
3064 EXT4_GET_BLOCKS_NO_LOCK);
3067 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3068 ssize_t size, void *private, int ret,
3071 struct inode *inode = file_inode(iocb->ki_filp);
3072 ext4_io_end_t *io_end = iocb->private;
3074 /* if not async direct IO or dio with 0 bytes write, just return */
3075 if (!io_end || !size)
3078 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3079 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3080 iocb->private, io_end->inode->i_ino, iocb, offset,
3083 iocb->private = NULL;
3085 /* if not aio dio with unwritten extents, just free io and return */
3086 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3087 ext4_free_io_end(io_end);
3089 inode_dio_done(inode);
3091 aio_complete(iocb, ret, 0);
3095 io_end->offset = offset;
3096 io_end->size = size;
3098 io_end->iocb = iocb;
3099 io_end->result = ret;
3102 ext4_add_complete_io(io_end);
3106 * For ext4 extent files, ext4 will do direct-io write to holes,
3107 * preallocated extents, and those write extend the file, no need to
3108 * fall back to buffered IO.
3110 * For holes, we fallocate those blocks, mark them as uninitialized
3111 * If those blocks were preallocated, we mark sure they are split, but
3112 * still keep the range to write as uninitialized.
3114 * The unwritten extents will be converted to written when DIO is completed.
3115 * For async direct IO, since the IO may still pending when return, we
3116 * set up an end_io call back function, which will do the conversion
3117 * when async direct IO completed.
3119 * If the O_DIRECT write will extend the file then add this inode to the
3120 * orphan list. So recovery will truncate it back to the original size
3121 * if the machine crashes during the write.
3124 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3125 const struct iovec *iov, loff_t offset,
3126 unsigned long nr_segs)
3128 struct file *file = iocb->ki_filp;
3129 struct inode *inode = file->f_mapping->host;
3131 size_t count = iov_length(iov, nr_segs);
3133 get_block_t *get_block_func = NULL;
3135 loff_t final_size = offset + count;
3137 /* Use the old path for reads and writes beyond i_size. */
3138 if (rw != WRITE || final_size > inode->i_size)
3139 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3141 BUG_ON(iocb->private == NULL);
3143 /* If we do a overwrite dio, i_mutex locking can be released */
3144 overwrite = *((int *)iocb->private);
3147 atomic_inc(&inode->i_dio_count);
3148 down_read(&EXT4_I(inode)->i_data_sem);
3149 mutex_unlock(&inode->i_mutex);
3153 * We could direct write to holes and fallocate.
3155 * Allocated blocks to fill the hole are marked as
3156 * uninitialized to prevent parallel buffered read to expose
3157 * the stale data before DIO complete the data IO.
3159 * As to previously fallocated extents, ext4 get_block will
3160 * just simply mark the buffer mapped but still keep the
3161 * extents uninitialized.
3163 * For non AIO case, we will convert those unwritten extents
3164 * to written after return back from blockdev_direct_IO.
3166 * For async DIO, the conversion needs to be deferred when the
3167 * IO is completed. The ext4 end_io callback function will be
3168 * called to take care of the conversion work. Here for async
3169 * case, we allocate an io_end structure to hook to the iocb.
3171 iocb->private = NULL;
3172 ext4_inode_aio_set(inode, NULL);
3173 if (!is_sync_kiocb(iocb)) {
3174 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3179 io_end->flag |= EXT4_IO_END_DIRECT;
3180 iocb->private = io_end;
3182 * we save the io structure for current async direct
3183 * IO, so that later ext4_map_blocks() could flag the
3184 * io structure whether there is a unwritten extents
3185 * needs to be converted when IO is completed.
3187 ext4_inode_aio_set(inode, io_end);
3191 get_block_func = ext4_get_block_write_nolock;
3193 get_block_func = ext4_get_block_write;
3194 dio_flags = DIO_LOCKING;
3196 ret = __blockdev_direct_IO(rw, iocb, inode,
3197 inode->i_sb->s_bdev, iov,
3205 ext4_inode_aio_set(inode, NULL);
3207 * The io_end structure takes a reference to the inode, that
3208 * structure needs to be destroyed and the reference to the
3209 * inode need to be dropped, when IO is complete, even with 0
3210 * byte write, or failed.
3212 * In the successful AIO DIO case, the io_end structure will
3213 * be destroyed and the reference to the inode will be dropped
3214 * after the end_io call back function is called.
3216 * In the case there is 0 byte write, or error case, since VFS
3217 * direct IO won't invoke the end_io call back function, we
3218 * need to free the end_io structure here.
3220 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3221 ext4_free_io_end(iocb->private);
3222 iocb->private = NULL;
3223 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3224 EXT4_STATE_DIO_UNWRITTEN)) {
3227 * for non AIO case, since the IO is already
3228 * completed, we could do the conversion right here
3230 err = ext4_convert_unwritten_extents(inode,
3234 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3238 /* take i_mutex locking again if we do a ovewrite dio */
3240 inode_dio_done(inode);
3241 up_read(&EXT4_I(inode)->i_data_sem);
3242 mutex_lock(&inode->i_mutex);
3248 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3249 const struct iovec *iov, loff_t offset,
3250 unsigned long nr_segs)
3252 struct file *file = iocb->ki_filp;
3253 struct inode *inode = file->f_mapping->host;
3257 * If we are doing data journalling we don't support O_DIRECT
3259 if (ext4_should_journal_data(inode))
3262 /* Let buffer I/O handle the inline data case. */
3263 if (ext4_has_inline_data(inode))
3266 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3267 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3268 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3270 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3271 trace_ext4_direct_IO_exit(inode, offset,
3272 iov_length(iov, nr_segs), rw, ret);
3277 * Pages can be marked dirty completely asynchronously from ext4's journalling
3278 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3279 * much here because ->set_page_dirty is called under VFS locks. The page is
3280 * not necessarily locked.
3282 * We cannot just dirty the page and leave attached buffers clean, because the
3283 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3284 * or jbddirty because all the journalling code will explode.
3286 * So what we do is to mark the page "pending dirty" and next time writepage
3287 * is called, propagate that into the buffers appropriately.
3289 static int ext4_journalled_set_page_dirty(struct page *page)
3291 SetPageChecked(page);
3292 return __set_page_dirty_nobuffers(page);
3295 static const struct address_space_operations ext4_aops = {
3296 .readpage = ext4_readpage,
3297 .readpages = ext4_readpages,
3298 .writepage = ext4_writepage,
3299 .write_begin = ext4_write_begin,
3300 .write_end = ext4_write_end,
3302 .invalidatepage = ext4_invalidatepage,
3303 .releasepage = ext4_releasepage,
3304 .direct_IO = ext4_direct_IO,
3305 .migratepage = buffer_migrate_page,
3306 .is_partially_uptodate = block_is_partially_uptodate,
3307 .error_remove_page = generic_error_remove_page,
3310 static const struct address_space_operations ext4_journalled_aops = {
3311 .readpage = ext4_readpage,
3312 .readpages = ext4_readpages,
3313 .writepage = ext4_writepage,
3314 .write_begin = ext4_write_begin,
3315 .write_end = ext4_journalled_write_end,
3316 .set_page_dirty = ext4_journalled_set_page_dirty,
3318 .invalidatepage = ext4_journalled_invalidatepage,
3319 .releasepage = ext4_releasepage,
3320 .direct_IO = ext4_direct_IO,
3321 .is_partially_uptodate = block_is_partially_uptodate,
3322 .error_remove_page = generic_error_remove_page,
3325 static const struct address_space_operations ext4_da_aops = {
3326 .readpage = ext4_readpage,
3327 .readpages = ext4_readpages,
3328 .writepage = ext4_writepage,
3329 .writepages = ext4_da_writepages,
3330 .write_begin = ext4_da_write_begin,
3331 .write_end = ext4_da_write_end,
3333 .invalidatepage = ext4_da_invalidatepage,
3334 .releasepage = ext4_releasepage,
3335 .direct_IO = ext4_direct_IO,
3336 .migratepage = buffer_migrate_page,
3337 .is_partially_uptodate = block_is_partially_uptodate,
3338 .error_remove_page = generic_error_remove_page,
3341 void ext4_set_aops(struct inode *inode)
3343 switch (ext4_inode_journal_mode(inode)) {
3344 case EXT4_INODE_ORDERED_DATA_MODE:
3345 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3347 case EXT4_INODE_WRITEBACK_DATA_MODE:
3348 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3350 case EXT4_INODE_JOURNAL_DATA_MODE:
3351 inode->i_mapping->a_ops = &ext4_journalled_aops;
3356 if (test_opt(inode->i_sb, DELALLOC))
3357 inode->i_mapping->a_ops = &ext4_da_aops;
3359 inode->i_mapping->a_ops = &ext4_aops;
3364 * ext4_discard_partial_page_buffers()
3365 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3366 * This function finds and locks the page containing the offset
3367 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3368 * Calling functions that already have the page locked should call
3369 * ext4_discard_partial_page_buffers_no_lock directly.
3371 int ext4_discard_partial_page_buffers(handle_t *handle,
3372 struct address_space *mapping, loff_t from,
3373 loff_t length, int flags)
3375 struct inode *inode = mapping->host;
3379 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3380 mapping_gfp_mask(mapping) & ~__GFP_FS);
3384 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3385 from, length, flags);
3388 page_cache_release(page);
3393 * ext4_discard_partial_page_buffers_no_lock()
3394 * Zeros a page range of length 'length' starting from offset 'from'.
3395 * Buffer heads that correspond to the block aligned regions of the
3396 * zeroed range will be unmapped. Unblock aligned regions
3397 * will have the corresponding buffer head mapped if needed so that
3398 * that region of the page can be updated with the partial zero out.
3400 * This function assumes that the page has already been locked. The
3401 * The range to be discarded must be contained with in the given page.
3402 * If the specified range exceeds the end of the page it will be shortened
3403 * to the end of the page that corresponds to 'from'. This function is
3404 * appropriate for updating a page and it buffer heads to be unmapped and
3405 * zeroed for blocks that have been either released, or are going to be
3408 * handle: The journal handle
3409 * inode: The files inode
3410 * page: A locked page that contains the offset "from"
3411 * from: The starting byte offset (from the beginning of the file)
3412 * to begin discarding
3413 * len: The length of bytes to discard
3414 * flags: Optional flags that may be used:
3416 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3417 * Only zero the regions of the page whose buffer heads
3418 * have already been unmapped. This flag is appropriate
3419 * for updating the contents of a page whose blocks may
3420 * have already been released, and we only want to zero
3421 * out the regions that correspond to those released blocks.
3423 * Returns zero on success or negative on failure.
3425 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3426 struct inode *inode, struct page *page, loff_t from,
3427 loff_t length, int flags)
3429 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3430 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3431 unsigned int blocksize, max, pos;
3433 struct buffer_head *bh;
3436 blocksize = inode->i_sb->s_blocksize;
3437 max = PAGE_CACHE_SIZE - offset;
3439 if (index != page->index)
3443 * correct length if it does not fall between
3444 * 'from' and the end of the page
3446 if (length > max || length < 0)
3449 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3451 if (!page_has_buffers(page))
3452 create_empty_buffers(page, blocksize, 0);
3454 /* Find the buffer that contains "offset" */
3455 bh = page_buffers(page);
3457 while (offset >= pos) {
3458 bh = bh->b_this_page;
3464 while (pos < offset + length) {
3465 unsigned int end_of_block, range_to_discard;
3469 /* The length of space left to zero and unmap */
3470 range_to_discard = offset + length - pos;
3472 /* The length of space until the end of the block */
3473 end_of_block = blocksize - (pos & (blocksize-1));
3476 * Do not unmap or zero past end of block
3477 * for this buffer head
3479 if (range_to_discard > end_of_block)
3480 range_to_discard = end_of_block;
3484 * Skip this buffer head if we are only zeroing unampped
3485 * regions of the page
3487 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3491 /* If the range is block aligned, unmap */
3492 if (range_to_discard == blocksize) {
3493 clear_buffer_dirty(bh);
3495 clear_buffer_mapped(bh);
3496 clear_buffer_req(bh);
3497 clear_buffer_new(bh);
3498 clear_buffer_delay(bh);
3499 clear_buffer_unwritten(bh);
3500 clear_buffer_uptodate(bh);
3501 zero_user(page, pos, range_to_discard);
3502 BUFFER_TRACE(bh, "Buffer discarded");
3507 * If this block is not completely contained in the range
3508 * to be discarded, then it is not going to be released. Because
3509 * we need to keep this block, we need to make sure this part
3510 * of the page is uptodate before we modify it by writeing
3511 * partial zeros on it.
3513 if (!buffer_mapped(bh)) {
3515 * Buffer head must be mapped before we can read
3518 BUFFER_TRACE(bh, "unmapped");
3519 ext4_get_block(inode, iblock, bh, 0);
3520 /* unmapped? It's a hole - nothing to do */
3521 if (!buffer_mapped(bh)) {
3522 BUFFER_TRACE(bh, "still unmapped");
3527 /* Ok, it's mapped. Make sure it's up-to-date */
3528 if (PageUptodate(page))
3529 set_buffer_uptodate(bh);
3531 if (!buffer_uptodate(bh)) {
3533 ll_rw_block(READ, 1, &bh);
3535 /* Uhhuh. Read error. Complain and punt.*/
3536 if (!buffer_uptodate(bh))
3540 if (ext4_should_journal_data(inode)) {
3541 BUFFER_TRACE(bh, "get write access");
3542 err = ext4_journal_get_write_access(handle, bh);
3547 zero_user(page, pos, range_to_discard);
3550 if (ext4_should_journal_data(inode)) {
3551 err = ext4_handle_dirty_metadata(handle, inode, bh);
3553 mark_buffer_dirty(bh);
3555 BUFFER_TRACE(bh, "Partial buffer zeroed");
3557 bh = bh->b_this_page;
3559 pos += range_to_discard;
3565 int ext4_can_truncate(struct inode *inode)
3567 if (S_ISREG(inode->i_mode))
3569 if (S_ISDIR(inode->i_mode))
3571 if (S_ISLNK(inode->i_mode))
3572 return !ext4_inode_is_fast_symlink(inode);
3577 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3578 * associated with the given offset and length
3580 * @inode: File inode
3581 * @offset: The offset where the hole will begin
3582 * @len: The length of the hole
3584 * Returns: 0 on success or negative on failure
3587 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3589 struct inode *inode = file_inode(file);
3590 struct super_block *sb = inode->i_sb;
3591 ext4_lblk_t first_block, stop_block;
3592 struct address_space *mapping = inode->i_mapping;
3593 loff_t first_page, last_page, page_len;
3594 loff_t first_page_offset, last_page_offset;
3596 unsigned int credits;
3599 if (!S_ISREG(inode->i_mode))
3602 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3603 /* TODO: Add support for bigalloc file systems */
3607 trace_ext4_punch_hole(inode, offset, length);
3610 * Write out all dirty pages to avoid race conditions
3611 * Then release them.
3613 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3614 ret = filemap_write_and_wait_range(mapping, offset,
3615 offset + length - 1);
3620 mutex_lock(&inode->i_mutex);
3621 /* It's not possible punch hole on append only file */
3622 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3626 if (IS_SWAPFILE(inode)) {
3631 /* No need to punch hole beyond i_size */
3632 if (offset >= inode->i_size)
3636 * If the hole extends beyond i_size, set the hole
3637 * to end after the page that contains i_size
3639 if (offset + length > inode->i_size) {
3640 length = inode->i_size +
3641 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3645 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3646 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3648 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3649 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3651 /* Now release the pages */
3652 if (last_page_offset > first_page_offset) {
3653 truncate_pagecache_range(inode, first_page_offset,
3654 last_page_offset - 1);
3657 /* Wait all existing dio workers, newcomers will block on i_mutex */
3658 ext4_inode_block_unlocked_dio(inode);
3659 ret = ext4_flush_unwritten_io(inode);
3662 inode_dio_wait(inode);
3664 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3665 credits = ext4_writepage_trans_blocks(inode);
3667 credits = ext4_blocks_for_truncate(inode);
3668 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3669 if (IS_ERR(handle)) {
3670 ret = PTR_ERR(handle);
3671 ext4_std_error(sb, ret);
3676 * Now we need to zero out the non-page-aligned data in the
3677 * pages at the start and tail of the hole, and unmap the
3678 * buffer heads for the block aligned regions of the page that
3679 * were completely zeroed.
3681 if (first_page > last_page) {
3683 * If the file space being truncated is contained
3684 * within a page just zero out and unmap the middle of
3687 ret = ext4_discard_partial_page_buffers(handle,
3688 mapping, offset, length, 0);
3694 * zero out and unmap the partial page that contains
3695 * the start of the hole
3697 page_len = first_page_offset - offset;
3699 ret = ext4_discard_partial_page_buffers(handle, mapping,
3700 offset, page_len, 0);
3706 * zero out and unmap the partial page that contains
3707 * the end of the hole
3709 page_len = offset + length - last_page_offset;
3711 ret = ext4_discard_partial_page_buffers(handle, mapping,
3712 last_page_offset, page_len, 0);
3719 * If i_size is contained in the last page, we need to
3720 * unmap and zero the partial page after i_size
3722 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3723 inode->i_size % PAGE_CACHE_SIZE != 0) {
3724 page_len = PAGE_CACHE_SIZE -
3725 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3728 ret = ext4_discard_partial_page_buffers(handle,
3729 mapping, inode->i_size, page_len, 0);
3736 first_block = (offset + sb->s_blocksize - 1) >>
3737 EXT4_BLOCK_SIZE_BITS(sb);
3738 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3740 /* If there are no blocks to remove, return now */
3741 if (first_block >= stop_block)
3744 down_write(&EXT4_I(inode)->i_data_sem);
3745 ext4_discard_preallocations(inode);
3747 ret = ext4_es_remove_extent(inode, first_block,
3748 stop_block - first_block);
3750 up_write(&EXT4_I(inode)->i_data_sem);
3754 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3755 ret = ext4_ext_remove_space(inode, first_block,
3758 ret = ext4_free_hole_blocks(handle, inode, first_block,
3761 ext4_discard_preallocations(inode);
3762 up_write(&EXT4_I(inode)->i_data_sem);
3764 ext4_handle_sync(handle);
3765 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3766 ext4_mark_inode_dirty(handle, inode);
3768 ext4_journal_stop(handle);
3770 ext4_inode_resume_unlocked_dio(inode);
3772 mutex_unlock(&inode->i_mutex);
3779 * We block out ext4_get_block() block instantiations across the entire
3780 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3781 * simultaneously on behalf of the same inode.
3783 * As we work through the truncate and commit bits of it to the journal there
3784 * is one core, guiding principle: the file's tree must always be consistent on
3785 * disk. We must be able to restart the truncate after a crash.
3787 * The file's tree may be transiently inconsistent in memory (although it
3788 * probably isn't), but whenever we close off and commit a journal transaction,
3789 * the contents of (the filesystem + the journal) must be consistent and
3790 * restartable. It's pretty simple, really: bottom up, right to left (although
3791 * left-to-right works OK too).
3793 * Note that at recovery time, journal replay occurs *before* the restart of
3794 * truncate against the orphan inode list.
3796 * The committed inode has the new, desired i_size (which is the same as
3797 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3798 * that this inode's truncate did not complete and it will again call
3799 * ext4_truncate() to have another go. So there will be instantiated blocks
3800 * to the right of the truncation point in a crashed ext4 filesystem. But
3801 * that's fine - as long as they are linked from the inode, the post-crash
3802 * ext4_truncate() run will find them and release them.
3804 void ext4_truncate(struct inode *inode)
3806 struct ext4_inode_info *ei = EXT4_I(inode);
3807 unsigned int credits;
3809 struct address_space *mapping = inode->i_mapping;
3813 * There is a possibility that we're either freeing the inode
3814 * or it completely new indode. In those cases we might not
3815 * have i_mutex locked because it's not necessary.
3817 if (!(inode->i_state & (I_NEW|I_FREEING)))
3818 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3819 trace_ext4_truncate_enter(inode);
3821 if (!ext4_can_truncate(inode))
3824 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3826 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3827 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3829 if (ext4_has_inline_data(inode)) {
3832 ext4_inline_data_truncate(inode, &has_inline);
3838 * finish any pending end_io work so we won't run the risk of
3839 * converting any truncated blocks to initialized later
3841 ext4_flush_unwritten_io(inode);
3843 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3844 credits = ext4_writepage_trans_blocks(inode);
3846 credits = ext4_blocks_for_truncate(inode);
3848 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3849 if (IS_ERR(handle)) {
3850 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3854 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3855 page_len = PAGE_CACHE_SIZE -
3856 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3858 if (ext4_discard_partial_page_buffers(handle,
3859 mapping, inode->i_size, page_len, 0))
3864 * We add the inode to the orphan list, so that if this
3865 * truncate spans multiple transactions, and we crash, we will
3866 * resume the truncate when the filesystem recovers. It also
3867 * marks the inode dirty, to catch the new size.
3869 * Implication: the file must always be in a sane, consistent
3870 * truncatable state while each transaction commits.
3872 if (ext4_orphan_add(handle, inode))
3875 down_write(&EXT4_I(inode)->i_data_sem);
3877 ext4_discard_preallocations(inode);
3879 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3880 ext4_ext_truncate(handle, inode);
3882 ext4_ind_truncate(handle, inode);
3884 up_write(&ei->i_data_sem);
3887 ext4_handle_sync(handle);
3891 * If this was a simple ftruncate() and the file will remain alive,
3892 * then we need to clear up the orphan record which we created above.
3893 * However, if this was a real unlink then we were called by
3894 * ext4_delete_inode(), and we allow that function to clean up the
3895 * orphan info for us.
3898 ext4_orphan_del(handle, inode);
3900 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3901 ext4_mark_inode_dirty(handle, inode);
3902 ext4_journal_stop(handle);
3904 trace_ext4_truncate_exit(inode);
3908 * ext4_get_inode_loc returns with an extra refcount against the inode's
3909 * underlying buffer_head on success. If 'in_mem' is true, we have all
3910 * data in memory that is needed to recreate the on-disk version of this
3913 static int __ext4_get_inode_loc(struct inode *inode,
3914 struct ext4_iloc *iloc, int in_mem)
3916 struct ext4_group_desc *gdp;
3917 struct buffer_head *bh;
3918 struct super_block *sb = inode->i_sb;
3920 int inodes_per_block, inode_offset;
3923 if (!ext4_valid_inum(sb, inode->i_ino))
3926 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3927 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3932 * Figure out the offset within the block group inode table
3934 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3935 inode_offset = ((inode->i_ino - 1) %
3936 EXT4_INODES_PER_GROUP(sb));
3937 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3938 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3940 bh = sb_getblk(sb, block);
3943 if (!buffer_uptodate(bh)) {
3947 * If the buffer has the write error flag, we have failed
3948 * to write out another inode in the same block. In this
3949 * case, we don't have to read the block because we may
3950 * read the old inode data successfully.
3952 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3953 set_buffer_uptodate(bh);
3955 if (buffer_uptodate(bh)) {
3956 /* someone brought it uptodate while we waited */
3962 * If we have all information of the inode in memory and this
3963 * is the only valid inode in the block, we need not read the
3967 struct buffer_head *bitmap_bh;
3970 start = inode_offset & ~(inodes_per_block - 1);
3972 /* Is the inode bitmap in cache? */
3973 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3974 if (unlikely(!bitmap_bh))
3978 * If the inode bitmap isn't in cache then the
3979 * optimisation may end up performing two reads instead
3980 * of one, so skip it.
3982 if (!buffer_uptodate(bitmap_bh)) {
3986 for (i = start; i < start + inodes_per_block; i++) {
3987 if (i == inode_offset)
3989 if (ext4_test_bit(i, bitmap_bh->b_data))
3993 if (i == start + inodes_per_block) {
3994 /* all other inodes are free, so skip I/O */
3995 memset(bh->b_data, 0, bh->b_size);
3996 set_buffer_uptodate(bh);
4004 * If we need to do any I/O, try to pre-readahead extra
4005 * blocks from the inode table.
4007 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4008 ext4_fsblk_t b, end, table;
4010 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4012 table = ext4_inode_table(sb, gdp);
4013 /* s_inode_readahead_blks is always a power of 2 */
4014 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4018 num = EXT4_INODES_PER_GROUP(sb);
4019 if (ext4_has_group_desc_csum(sb))
4020 num -= ext4_itable_unused_count(sb, gdp);
4021 table += num / inodes_per_block;
4025 sb_breadahead(sb, b++);
4029 * There are other valid inodes in the buffer, this inode
4030 * has in-inode xattrs, or we don't have this inode in memory.
4031 * Read the block from disk.
4033 trace_ext4_load_inode(inode);
4035 bh->b_end_io = end_buffer_read_sync;
4036 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4038 if (!buffer_uptodate(bh)) {
4039 EXT4_ERROR_INODE_BLOCK(inode, block,
4040 "unable to read itable block");
4050 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4052 /* We have all inode data except xattrs in memory here. */
4053 return __ext4_get_inode_loc(inode, iloc,
4054 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4057 void ext4_set_inode_flags(struct inode *inode)
4059 unsigned int flags = EXT4_I(inode)->i_flags;
4061 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4062 if (flags & EXT4_SYNC_FL)
4063 inode->i_flags |= S_SYNC;
4064 if (flags & EXT4_APPEND_FL)
4065 inode->i_flags |= S_APPEND;
4066 if (flags & EXT4_IMMUTABLE_FL)
4067 inode->i_flags |= S_IMMUTABLE;
4068 if (flags & EXT4_NOATIME_FL)
4069 inode->i_flags |= S_NOATIME;
4070 if (flags & EXT4_DIRSYNC_FL)
4071 inode->i_flags |= S_DIRSYNC;
4074 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4075 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4077 unsigned int vfs_fl;
4078 unsigned long old_fl, new_fl;
4081 vfs_fl = ei->vfs_inode.i_flags;
4082 old_fl = ei->i_flags;
4083 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4084 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4086 if (vfs_fl & S_SYNC)
4087 new_fl |= EXT4_SYNC_FL;
4088 if (vfs_fl & S_APPEND)
4089 new_fl |= EXT4_APPEND_FL;
4090 if (vfs_fl & S_IMMUTABLE)
4091 new_fl |= EXT4_IMMUTABLE_FL;
4092 if (vfs_fl & S_NOATIME)
4093 new_fl |= EXT4_NOATIME_FL;
4094 if (vfs_fl & S_DIRSYNC)
4095 new_fl |= EXT4_DIRSYNC_FL;
4096 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4099 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4100 struct ext4_inode_info *ei)
4103 struct inode *inode = &(ei->vfs_inode);
4104 struct super_block *sb = inode->i_sb;
4106 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4107 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4108 /* we are using combined 48 bit field */
4109 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4110 le32_to_cpu(raw_inode->i_blocks_lo);
4111 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4112 /* i_blocks represent file system block size */
4113 return i_blocks << (inode->i_blkbits - 9);
4118 return le32_to_cpu(raw_inode->i_blocks_lo);
4122 static inline void ext4_iget_extra_inode(struct inode *inode,
4123 struct ext4_inode *raw_inode,
4124 struct ext4_inode_info *ei)
4126 __le32 *magic = (void *)raw_inode +
4127 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4128 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4129 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4130 ext4_find_inline_data_nolock(inode);
4132 EXT4_I(inode)->i_inline_off = 0;
4135 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4137 struct ext4_iloc iloc;
4138 struct ext4_inode *raw_inode;
4139 struct ext4_inode_info *ei;
4140 struct inode *inode;
4141 journal_t *journal = EXT4_SB(sb)->s_journal;
4147 inode = iget_locked(sb, ino);
4149 return ERR_PTR(-ENOMEM);
4150 if (!(inode->i_state & I_NEW))
4156 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4159 raw_inode = ext4_raw_inode(&iloc);
4161 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4162 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4163 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4164 EXT4_INODE_SIZE(inode->i_sb)) {
4165 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4166 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4167 EXT4_INODE_SIZE(inode->i_sb));
4172 ei->i_extra_isize = 0;
4174 /* Precompute checksum seed for inode metadata */
4175 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4176 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4177 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4179 __le32 inum = cpu_to_le32(inode->i_ino);
4180 __le32 gen = raw_inode->i_generation;
4181 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4183 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4187 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4188 EXT4_ERROR_INODE(inode, "checksum invalid");
4193 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4194 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4195 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4196 if (!(test_opt(inode->i_sb, NO_UID32))) {
4197 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4198 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4200 i_uid_write(inode, i_uid);
4201 i_gid_write(inode, i_gid);
4202 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4204 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4205 ei->i_inline_off = 0;
4206 ei->i_dir_start_lookup = 0;
4207 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4208 /* We now have enough fields to check if the inode was active or not.
4209 * This is needed because nfsd might try to access dead inodes
4210 * the test is that same one that e2fsck uses
4211 * NeilBrown 1999oct15
4213 if (inode->i_nlink == 0) {
4214 if ((inode->i_mode == 0 ||
4215 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4216 ino != EXT4_BOOT_LOADER_INO) {
4217 /* this inode is deleted */
4221 /* The only unlinked inodes we let through here have
4222 * valid i_mode and are being read by the orphan
4223 * recovery code: that's fine, we're about to complete
4224 * the process of deleting those.
4225 * OR it is the EXT4_BOOT_LOADER_INO which is
4226 * not initialized on a new filesystem. */
4228 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4229 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4230 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4231 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4233 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4234 inode->i_size = ext4_isize(raw_inode);
4235 ei->i_disksize = inode->i_size;
4237 ei->i_reserved_quota = 0;
4239 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4240 ei->i_block_group = iloc.block_group;
4241 ei->i_last_alloc_group = ~0;
4243 * NOTE! The in-memory inode i_data array is in little-endian order
4244 * even on big-endian machines: we do NOT byteswap the block numbers!
4246 for (block = 0; block < EXT4_N_BLOCKS; block++)
4247 ei->i_data[block] = raw_inode->i_block[block];
4248 INIT_LIST_HEAD(&ei->i_orphan);
4251 * Set transaction id's of transactions that have to be committed
4252 * to finish f[data]sync. We set them to currently running transaction
4253 * as we cannot be sure that the inode or some of its metadata isn't
4254 * part of the transaction - the inode could have been reclaimed and
4255 * now it is reread from disk.
4258 transaction_t *transaction;
4261 read_lock(&journal->j_state_lock);
4262 if (journal->j_running_transaction)
4263 transaction = journal->j_running_transaction;
4265 transaction = journal->j_committing_transaction;
4267 tid = transaction->t_tid;
4269 tid = journal->j_commit_sequence;
4270 read_unlock(&journal->j_state_lock);
4271 ei->i_sync_tid = tid;
4272 ei->i_datasync_tid = tid;
4275 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4276 if (ei->i_extra_isize == 0) {
4277 /* The extra space is currently unused. Use it. */
4278 ei->i_extra_isize = sizeof(struct ext4_inode) -
4279 EXT4_GOOD_OLD_INODE_SIZE;
4281 ext4_iget_extra_inode(inode, raw_inode, ei);
4285 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4286 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4287 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4288 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4290 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4291 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4292 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4294 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4298 if (ei->i_file_acl &&
4299 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4300 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4304 } else if (!ext4_has_inline_data(inode)) {
4305 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4306 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4307 (S_ISLNK(inode->i_mode) &&
4308 !ext4_inode_is_fast_symlink(inode))))
4309 /* Validate extent which is part of inode */
4310 ret = ext4_ext_check_inode(inode);
4311 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4312 (S_ISLNK(inode->i_mode) &&
4313 !ext4_inode_is_fast_symlink(inode))) {
4314 /* Validate block references which are part of inode */
4315 ret = ext4_ind_check_inode(inode);
4321 if (S_ISREG(inode->i_mode)) {
4322 inode->i_op = &ext4_file_inode_operations;
4323 inode->i_fop = &ext4_file_operations;
4324 ext4_set_aops(inode);
4325 } else if (S_ISDIR(inode->i_mode)) {
4326 inode->i_op = &ext4_dir_inode_operations;
4327 inode->i_fop = &ext4_dir_operations;
4328 } else if (S_ISLNK(inode->i_mode)) {
4329 if (ext4_inode_is_fast_symlink(inode)) {
4330 inode->i_op = &ext4_fast_symlink_inode_operations;
4331 nd_terminate_link(ei->i_data, inode->i_size,
4332 sizeof(ei->i_data) - 1);
4334 inode->i_op = &ext4_symlink_inode_operations;
4335 ext4_set_aops(inode);
4337 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4338 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4339 inode->i_op = &ext4_special_inode_operations;
4340 if (raw_inode->i_block[0])
4341 init_special_inode(inode, inode->i_mode,
4342 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4344 init_special_inode(inode, inode->i_mode,
4345 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4346 } else if (ino == EXT4_BOOT_LOADER_INO) {
4347 make_bad_inode(inode);
4350 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4354 ext4_set_inode_flags(inode);
4355 unlock_new_inode(inode);
4361 return ERR_PTR(ret);
4364 static int ext4_inode_blocks_set(handle_t *handle,
4365 struct ext4_inode *raw_inode,
4366 struct ext4_inode_info *ei)
4368 struct inode *inode = &(ei->vfs_inode);
4369 u64 i_blocks = inode->i_blocks;
4370 struct super_block *sb = inode->i_sb;
4372 if (i_blocks <= ~0U) {
4374 * i_blocks can be represented in a 32 bit variable
4375 * as multiple of 512 bytes
4377 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4378 raw_inode->i_blocks_high = 0;
4379 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4382 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4385 if (i_blocks <= 0xffffffffffffULL) {
4387 * i_blocks can be represented in a 48 bit variable
4388 * as multiple of 512 bytes
4390 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4391 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4392 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4394 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4395 /* i_block is stored in file system block size */
4396 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4397 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4398 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4404 * Post the struct inode info into an on-disk inode location in the
4405 * buffer-cache. This gobbles the caller's reference to the
4406 * buffer_head in the inode location struct.
4408 * The caller must have write access to iloc->bh.
4410 static int ext4_do_update_inode(handle_t *handle,
4411 struct inode *inode,
4412 struct ext4_iloc *iloc)
4414 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4415 struct ext4_inode_info *ei = EXT4_I(inode);
4416 struct buffer_head *bh = iloc->bh;
4417 int err = 0, rc, block;
4418 int need_datasync = 0;
4422 /* For fields not not tracking in the in-memory inode,
4423 * initialise them to zero for new inodes. */
4424 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4425 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4427 ext4_get_inode_flags(ei);
4428 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4429 i_uid = i_uid_read(inode);
4430 i_gid = i_gid_read(inode);
4431 if (!(test_opt(inode->i_sb, NO_UID32))) {
4432 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4433 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4435 * Fix up interoperability with old kernels. Otherwise, old inodes get
4436 * re-used with the upper 16 bits of the uid/gid intact
4439 raw_inode->i_uid_high =
4440 cpu_to_le16(high_16_bits(i_uid));
4441 raw_inode->i_gid_high =
4442 cpu_to_le16(high_16_bits(i_gid));
4444 raw_inode->i_uid_high = 0;
4445 raw_inode->i_gid_high = 0;
4448 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4449 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4450 raw_inode->i_uid_high = 0;
4451 raw_inode->i_gid_high = 0;
4453 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4455 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4456 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4457 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4458 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4460 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4462 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4463 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4464 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4465 cpu_to_le32(EXT4_OS_HURD))
4466 raw_inode->i_file_acl_high =
4467 cpu_to_le16(ei->i_file_acl >> 32);
4468 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4469 if (ei->i_disksize != ext4_isize(raw_inode)) {
4470 ext4_isize_set(raw_inode, ei->i_disksize);
4473 if (ei->i_disksize > 0x7fffffffULL) {
4474 struct super_block *sb = inode->i_sb;
4475 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4476 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4477 EXT4_SB(sb)->s_es->s_rev_level ==
4478 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4479 /* If this is the first large file
4480 * created, add a flag to the superblock.
4482 err = ext4_journal_get_write_access(handle,
4483 EXT4_SB(sb)->s_sbh);
4486 ext4_update_dynamic_rev(sb);
4487 EXT4_SET_RO_COMPAT_FEATURE(sb,
4488 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4489 ext4_handle_sync(handle);
4490 err = ext4_handle_dirty_super(handle, sb);
4493 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4494 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4495 if (old_valid_dev(inode->i_rdev)) {
4496 raw_inode->i_block[0] =
4497 cpu_to_le32(old_encode_dev(inode->i_rdev));
4498 raw_inode->i_block[1] = 0;
4500 raw_inode->i_block[0] = 0;
4501 raw_inode->i_block[1] =
4502 cpu_to_le32(new_encode_dev(inode->i_rdev));
4503 raw_inode->i_block[2] = 0;
4505 } else if (!ext4_has_inline_data(inode)) {
4506 for (block = 0; block < EXT4_N_BLOCKS; block++)
4507 raw_inode->i_block[block] = ei->i_data[block];
4510 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4511 if (ei->i_extra_isize) {
4512 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4513 raw_inode->i_version_hi =
4514 cpu_to_le32(inode->i_version >> 32);
4515 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4518 ext4_inode_csum_set(inode, raw_inode, ei);
4520 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4521 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4524 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4526 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4529 ext4_std_error(inode->i_sb, err);
4534 * ext4_write_inode()
4536 * We are called from a few places:
4538 * - Within generic_file_write() for O_SYNC files.
4539 * Here, there will be no transaction running. We wait for any running
4540 * transaction to commit.
4542 * - Within sys_sync(), kupdate and such.
4543 * We wait on commit, if tol to.
4545 * - Within prune_icache() (PF_MEMALLOC == true)
4546 * Here we simply return. We can't afford to block kswapd on the
4549 * In all cases it is actually safe for us to return without doing anything,
4550 * because the inode has been copied into a raw inode buffer in
4551 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4554 * Note that we are absolutely dependent upon all inode dirtiers doing the
4555 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4556 * which we are interested.
4558 * It would be a bug for them to not do this. The code:
4560 * mark_inode_dirty(inode)
4562 * inode->i_size = expr;
4564 * is in error because a kswapd-driven write_inode() could occur while
4565 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4566 * will no longer be on the superblock's dirty inode list.
4568 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4572 if (current->flags & PF_MEMALLOC)
4575 if (EXT4_SB(inode->i_sb)->s_journal) {
4576 if (ext4_journal_current_handle()) {
4577 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4582 if (wbc->sync_mode != WB_SYNC_ALL)
4585 err = ext4_force_commit(inode->i_sb);
4587 struct ext4_iloc iloc;
4589 err = __ext4_get_inode_loc(inode, &iloc, 0);
4592 if (wbc->sync_mode == WB_SYNC_ALL)
4593 sync_dirty_buffer(iloc.bh);
4594 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4595 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4596 "IO error syncing inode");
4605 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4606 * buffers that are attached to a page stradding i_size and are undergoing
4607 * commit. In that case we have to wait for commit to finish and try again.
4609 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4613 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4614 tid_t commit_tid = 0;
4617 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4619 * All buffers in the last page remain valid? Then there's nothing to
4620 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4623 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4626 page = find_lock_page(inode->i_mapping,
4627 inode->i_size >> PAGE_CACHE_SHIFT);
4630 ret = __ext4_journalled_invalidatepage(page, offset);
4632 page_cache_release(page);
4636 read_lock(&journal->j_state_lock);
4637 if (journal->j_committing_transaction)
4638 commit_tid = journal->j_committing_transaction->t_tid;
4639 read_unlock(&journal->j_state_lock);
4641 jbd2_log_wait_commit(journal, commit_tid);
4648 * Called from notify_change.
4650 * We want to trap VFS attempts to truncate the file as soon as
4651 * possible. In particular, we want to make sure that when the VFS
4652 * shrinks i_size, we put the inode on the orphan list and modify
4653 * i_disksize immediately, so that during the subsequent flushing of
4654 * dirty pages and freeing of disk blocks, we can guarantee that any
4655 * commit will leave the blocks being flushed in an unused state on
4656 * disk. (On recovery, the inode will get truncated and the blocks will
4657 * be freed, so we have a strong guarantee that no future commit will
4658 * leave these blocks visible to the user.)
4660 * Another thing we have to assure is that if we are in ordered mode
4661 * and inode is still attached to the committing transaction, we must
4662 * we start writeout of all the dirty pages which are being truncated.
4663 * This way we are sure that all the data written in the previous
4664 * transaction are already on disk (truncate waits for pages under
4667 * Called with inode->i_mutex down.
4669 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4671 struct inode *inode = dentry->d_inode;
4674 const unsigned int ia_valid = attr->ia_valid;
4676 error = inode_change_ok(inode, attr);
4680 if (is_quota_modification(inode, attr))
4681 dquot_initialize(inode);
4682 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4683 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4686 /* (user+group)*(old+new) structure, inode write (sb,
4687 * inode block, ? - but truncate inode update has it) */
4688 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4689 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4690 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4691 if (IS_ERR(handle)) {
4692 error = PTR_ERR(handle);
4695 error = dquot_transfer(inode, attr);
4697 ext4_journal_stop(handle);
4700 /* Update corresponding info in inode so that everything is in
4701 * one transaction */
4702 if (attr->ia_valid & ATTR_UID)
4703 inode->i_uid = attr->ia_uid;
4704 if (attr->ia_valid & ATTR_GID)
4705 inode->i_gid = attr->ia_gid;
4706 error = ext4_mark_inode_dirty(handle, inode);
4707 ext4_journal_stop(handle);
4710 if (attr->ia_valid & ATTR_SIZE) {
4712 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4713 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4715 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4720 if (S_ISREG(inode->i_mode) &&
4721 attr->ia_valid & ATTR_SIZE &&
4722 (attr->ia_size < inode->i_size)) {
4725 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4726 if (IS_ERR(handle)) {
4727 error = PTR_ERR(handle);
4730 if (ext4_handle_valid(handle)) {
4731 error = ext4_orphan_add(handle, inode);
4734 EXT4_I(inode)->i_disksize = attr->ia_size;
4735 rc = ext4_mark_inode_dirty(handle, inode);
4738 ext4_journal_stop(handle);
4740 if (ext4_should_order_data(inode)) {
4741 error = ext4_begin_ordered_truncate(inode,
4744 /* Do as much error cleanup as possible */
4745 handle = ext4_journal_start(inode,
4747 if (IS_ERR(handle)) {
4748 ext4_orphan_del(NULL, inode);
4751 ext4_orphan_del(handle, inode);
4753 ext4_journal_stop(handle);
4759 if (attr->ia_valid & ATTR_SIZE) {
4760 if (attr->ia_size != inode->i_size) {
4761 loff_t oldsize = inode->i_size;
4763 i_size_write(inode, attr->ia_size);
4765 * Blocks are going to be removed from the inode. Wait
4766 * for dio in flight. Temporarily disable
4767 * dioread_nolock to prevent livelock.
4770 if (!ext4_should_journal_data(inode)) {
4771 ext4_inode_block_unlocked_dio(inode);
4772 inode_dio_wait(inode);
4773 ext4_inode_resume_unlocked_dio(inode);
4775 ext4_wait_for_tail_page_commit(inode);
4778 * Truncate pagecache after we've waited for commit
4779 * in data=journal mode to make pages freeable.
4781 truncate_pagecache(inode, oldsize, inode->i_size);
4783 ext4_truncate(inode);
4787 setattr_copy(inode, attr);
4788 mark_inode_dirty(inode);
4792 * If the call to ext4_truncate failed to get a transaction handle at
4793 * all, we need to clean up the in-core orphan list manually.
4795 if (orphan && inode->i_nlink)
4796 ext4_orphan_del(NULL, inode);
4798 if (!rc && (ia_valid & ATTR_MODE))
4799 rc = ext4_acl_chmod(inode);
4802 ext4_std_error(inode->i_sb, error);
4808 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4811 struct inode *inode;
4812 unsigned long delalloc_blocks;
4814 inode = dentry->d_inode;
4815 generic_fillattr(inode, stat);
4818 * We can't update i_blocks if the block allocation is delayed
4819 * otherwise in the case of system crash before the real block
4820 * allocation is done, we will have i_blocks inconsistent with
4821 * on-disk file blocks.
4822 * We always keep i_blocks updated together with real
4823 * allocation. But to not confuse with user, stat
4824 * will return the blocks that include the delayed allocation
4825 * blocks for this file.
4827 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4828 EXT4_I(inode)->i_reserved_data_blocks);
4830 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4834 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4836 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4837 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4838 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4842 * Account for index blocks, block groups bitmaps and block group
4843 * descriptor blocks if modify datablocks and index blocks
4844 * worse case, the indexs blocks spread over different block groups
4846 * If datablocks are discontiguous, they are possible to spread over
4847 * different block groups too. If they are contiguous, with flexbg,
4848 * they could still across block group boundary.
4850 * Also account for superblock, inode, quota and xattr blocks
4852 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4854 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4860 * How many index blocks need to touch to modify nrblocks?
4861 * The "Chunk" flag indicating whether the nrblocks is
4862 * physically contiguous on disk
4864 * For Direct IO and fallocate, they calls get_block to allocate
4865 * one single extent at a time, so they could set the "Chunk" flag
4867 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4872 * Now let's see how many group bitmaps and group descriptors need
4882 if (groups > ngroups)
4884 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4885 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4887 /* bitmaps and block group descriptor blocks */
4888 ret += groups + gdpblocks;
4890 /* Blocks for super block, inode, quota and xattr blocks */
4891 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4897 * Calculate the total number of credits to reserve to fit
4898 * the modification of a single pages into a single transaction,
4899 * which may include multiple chunks of block allocations.
4901 * This could be called via ext4_write_begin()
4903 * We need to consider the worse case, when
4904 * one new block per extent.
4906 int ext4_writepage_trans_blocks(struct inode *inode)
4908 int bpp = ext4_journal_blocks_per_page(inode);
4911 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4913 /* Account for data blocks for journalled mode */
4914 if (ext4_should_journal_data(inode))
4920 * Calculate the journal credits for a chunk of data modification.
4922 * This is called from DIO, fallocate or whoever calling
4923 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4925 * journal buffers for data blocks are not included here, as DIO
4926 * and fallocate do no need to journal data buffers.
4928 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4930 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4934 * The caller must have previously called ext4_reserve_inode_write().
4935 * Give this, we know that the caller already has write access to iloc->bh.
4937 int ext4_mark_iloc_dirty(handle_t *handle,
4938 struct inode *inode, struct ext4_iloc *iloc)
4942 if (IS_I_VERSION(inode))
4943 inode_inc_iversion(inode);
4945 /* the do_update_inode consumes one bh->b_count */
4948 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4949 err = ext4_do_update_inode(handle, inode, iloc);
4955 * On success, We end up with an outstanding reference count against
4956 * iloc->bh. This _must_ be cleaned up later.
4960 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4961 struct ext4_iloc *iloc)
4965 err = ext4_get_inode_loc(inode, iloc);
4967 BUFFER_TRACE(iloc->bh, "get_write_access");
4968 err = ext4_journal_get_write_access(handle, iloc->bh);
4974 ext4_std_error(inode->i_sb, err);
4979 * Expand an inode by new_extra_isize bytes.
4980 * Returns 0 on success or negative error number on failure.
4982 static int ext4_expand_extra_isize(struct inode *inode,
4983 unsigned int new_extra_isize,
4984 struct ext4_iloc iloc,
4987 struct ext4_inode *raw_inode;
4988 struct ext4_xattr_ibody_header *header;
4990 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4993 raw_inode = ext4_raw_inode(&iloc);
4995 header = IHDR(inode, raw_inode);
4997 /* No extended attributes present */
4998 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4999 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5000 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5002 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5006 /* try to expand with EAs present */
5007 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5012 * What we do here is to mark the in-core inode as clean with respect to inode
5013 * dirtiness (it may still be data-dirty).
5014 * This means that the in-core inode may be reaped by prune_icache
5015 * without having to perform any I/O. This is a very good thing,
5016 * because *any* task may call prune_icache - even ones which
5017 * have a transaction open against a different journal.
5019 * Is this cheating? Not really. Sure, we haven't written the
5020 * inode out, but prune_icache isn't a user-visible syncing function.
5021 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5022 * we start and wait on commits.
5024 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5026 struct ext4_iloc iloc;
5027 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5028 static unsigned int mnt_count;
5032 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5033 err = ext4_reserve_inode_write(handle, inode, &iloc);
5034 if (ext4_handle_valid(handle) &&
5035 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5036 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5038 * We need extra buffer credits since we may write into EA block
5039 * with this same handle. If journal_extend fails, then it will
5040 * only result in a minor loss of functionality for that inode.
5041 * If this is felt to be critical, then e2fsck should be run to
5042 * force a large enough s_min_extra_isize.
5044 if ((jbd2_journal_extend(handle,
5045 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5046 ret = ext4_expand_extra_isize(inode,
5047 sbi->s_want_extra_isize,
5050 ext4_set_inode_state(inode,
5051 EXT4_STATE_NO_EXPAND);
5053 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5054 ext4_warning(inode->i_sb,
5055 "Unable to expand inode %lu. Delete"
5056 " some EAs or run e2fsck.",
5059 le16_to_cpu(sbi->s_es->s_mnt_count);
5065 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5070 * ext4_dirty_inode() is called from __mark_inode_dirty()
5072 * We're really interested in the case where a file is being extended.
5073 * i_size has been changed by generic_commit_write() and we thus need
5074 * to include the updated inode in the current transaction.
5076 * Also, dquot_alloc_block() will always dirty the inode when blocks
5077 * are allocated to the file.
5079 * If the inode is marked synchronous, we don't honour that here - doing
5080 * so would cause a commit on atime updates, which we don't bother doing.
5081 * We handle synchronous inodes at the highest possible level.
5083 void ext4_dirty_inode(struct inode *inode, int flags)
5087 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5091 ext4_mark_inode_dirty(handle, inode);
5093 ext4_journal_stop(handle);
5100 * Bind an inode's backing buffer_head into this transaction, to prevent
5101 * it from being flushed to disk early. Unlike
5102 * ext4_reserve_inode_write, this leaves behind no bh reference and
5103 * returns no iloc structure, so the caller needs to repeat the iloc
5104 * lookup to mark the inode dirty later.
5106 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5108 struct ext4_iloc iloc;
5112 err = ext4_get_inode_loc(inode, &iloc);
5114 BUFFER_TRACE(iloc.bh, "get_write_access");
5115 err = jbd2_journal_get_write_access(handle, iloc.bh);
5117 err = ext4_handle_dirty_metadata(handle,
5123 ext4_std_error(inode->i_sb, err);
5128 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5135 * We have to be very careful here: changing a data block's
5136 * journaling status dynamically is dangerous. If we write a
5137 * data block to the journal, change the status and then delete
5138 * that block, we risk forgetting to revoke the old log record
5139 * from the journal and so a subsequent replay can corrupt data.
5140 * So, first we make sure that the journal is empty and that
5141 * nobody is changing anything.
5144 journal = EXT4_JOURNAL(inode);
5147 if (is_journal_aborted(journal))
5149 /* We have to allocate physical blocks for delalloc blocks
5150 * before flushing journal. otherwise delalloc blocks can not
5151 * be allocated any more. even more truncate on delalloc blocks
5152 * could trigger BUG by flushing delalloc blocks in journal.
5153 * There is no delalloc block in non-journal data mode.
5155 if (val && test_opt(inode->i_sb, DELALLOC)) {
5156 err = ext4_alloc_da_blocks(inode);
5161 /* Wait for all existing dio workers */
5162 ext4_inode_block_unlocked_dio(inode);
5163 inode_dio_wait(inode);
5165 jbd2_journal_lock_updates(journal);
5168 * OK, there are no updates running now, and all cached data is
5169 * synced to disk. We are now in a completely consistent state
5170 * which doesn't have anything in the journal, and we know that
5171 * no filesystem updates are running, so it is safe to modify
5172 * the inode's in-core data-journaling state flag now.
5176 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5178 jbd2_journal_flush(journal);
5179 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5181 ext4_set_aops(inode);
5183 jbd2_journal_unlock_updates(journal);
5184 ext4_inode_resume_unlocked_dio(inode);
5186 /* Finally we can mark the inode as dirty. */
5188 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5190 return PTR_ERR(handle);
5192 err = ext4_mark_inode_dirty(handle, inode);
5193 ext4_handle_sync(handle);
5194 ext4_journal_stop(handle);
5195 ext4_std_error(inode->i_sb, err);
5200 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5202 return !buffer_mapped(bh);
5205 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5207 struct page *page = vmf->page;
5211 struct file *file = vma->vm_file;
5212 struct inode *inode = file_inode(file);
5213 struct address_space *mapping = inode->i_mapping;
5215 get_block_t *get_block;
5218 sb_start_pagefault(inode->i_sb);
5219 file_update_time(vma->vm_file);
5220 /* Delalloc case is easy... */
5221 if (test_opt(inode->i_sb, DELALLOC) &&
5222 !ext4_should_journal_data(inode) &&
5223 !ext4_nonda_switch(inode->i_sb)) {
5225 ret = __block_page_mkwrite(vma, vmf,
5226 ext4_da_get_block_prep);
5227 } while (ret == -ENOSPC &&
5228 ext4_should_retry_alloc(inode->i_sb, &retries));
5233 size = i_size_read(inode);
5234 /* Page got truncated from under us? */
5235 if (page->mapping != mapping || page_offset(page) > size) {
5237 ret = VM_FAULT_NOPAGE;
5241 if (page->index == size >> PAGE_CACHE_SHIFT)
5242 len = size & ~PAGE_CACHE_MASK;
5244 len = PAGE_CACHE_SIZE;
5246 * Return if we have all the buffers mapped. This avoids the need to do
5247 * journal_start/journal_stop which can block and take a long time
5249 if (page_has_buffers(page)) {
5250 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5252 ext4_bh_unmapped)) {
5253 /* Wait so that we don't change page under IO */
5254 wait_for_stable_page(page);
5255 ret = VM_FAULT_LOCKED;
5260 /* OK, we need to fill the hole... */
5261 if (ext4_should_dioread_nolock(inode))
5262 get_block = ext4_get_block_write;
5264 get_block = ext4_get_block;
5266 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5267 ext4_writepage_trans_blocks(inode));
5268 if (IS_ERR(handle)) {
5269 ret = VM_FAULT_SIGBUS;
5272 ret = __block_page_mkwrite(vma, vmf, get_block);
5273 if (!ret && ext4_should_journal_data(inode)) {
5274 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5275 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5277 ret = VM_FAULT_SIGBUS;
5278 ext4_journal_stop(handle);
5281 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5283 ext4_journal_stop(handle);
5284 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5287 ret = block_page_mkwrite_return(ret);
5289 sb_end_pagefault(inode->i_sb);