1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode *inode)
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 if (ext4_has_inline_data(inode))
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
167 * Called at the last iput() if i_nlink is zero.
169 void ext4_evict_inode(struct inode *inode)
174 * Credits for final inode cleanup and freeing:
175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 int extra_credits = 6;
179 struct ext4_xattr_inode_array *ea_inode_array = NULL;
181 trace_ext4_evict_inode(inode);
183 if (inode->i_nlink) {
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
199 * Note that directories do not have this problem because they
200 * don't use page cache.
202 if (inode->i_ino != EXT4_JOURNAL_INO &&
203 ext4_should_journal_data(inode) &&
204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 inode->i_data.nrpages) {
206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209 jbd2_complete_transaction(journal, commit_tid);
210 filemap_write_and_wait(&inode->i_data);
212 truncate_inode_pages_final(&inode->i_data);
217 if (is_bad_inode(inode))
219 dquot_initialize(inode);
221 if (ext4_should_order_data(inode))
222 ext4_begin_ordered_truncate(inode, 0);
223 truncate_inode_pages_final(&inode->i_data);
226 * Protect us against freezing - iput() caller didn't have to have any
227 * protection against it
229 sb_start_intwrite(inode->i_sb);
231 if (!IS_NOQUOTA(inode))
232 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
235 * Block bitmap, group descriptor, and inode are accounted in both
236 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode) + extra_credits - 3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
253 ext4_handle_sync(handle);
256 * Set inode->i_size to 0 before calling ext4_truncate(). We need
257 * special handling of symlinks here because i_size is used to
258 * determine whether ext4_inode_info->i_data contains symlink data or
259 * block mappings. Setting i_size to 0 will remove its fast symlink
260 * status. Erase i_data so that it becomes a valid empty block map.
262 if (ext4_inode_is_fast_symlink(inode))
263 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
265 err = ext4_mark_inode_dirty(handle, inode);
267 ext4_warning(inode->i_sb,
268 "couldn't mark inode dirty (err %d)", err);
271 if (inode->i_blocks) {
272 err = ext4_truncate(inode);
274 ext4_error(inode->i_sb,
275 "couldn't truncate inode %lu (err %d)",
281 /* Remove xattr references. */
282 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
285 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
287 ext4_journal_stop(handle);
288 ext4_orphan_del(NULL, inode);
289 sb_end_intwrite(inode->i_sb);
290 ext4_xattr_inode_array_free(ea_inode_array);
295 * Kill off the orphan record which ext4_truncate created.
296 * AKPM: I think this can be inside the above `if'.
297 * Note that ext4_orphan_del() has to be able to cope with the
298 * deletion of a non-existent orphan - this is because we don't
299 * know if ext4_truncate() actually created an orphan record.
300 * (Well, we could do this if we need to, but heck - it works)
302 ext4_orphan_del(handle, inode);
303 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
306 * One subtle ordering requirement: if anything has gone wrong
307 * (transaction abort, IO errors, whatever), then we can still
308 * do these next steps (the fs will already have been marked as
309 * having errors), but we can't free the inode if the mark_dirty
312 if (ext4_mark_inode_dirty(handle, inode))
313 /* If that failed, just do the required in-core inode clear. */
314 ext4_clear_inode(inode);
316 ext4_free_inode(handle, inode);
317 ext4_journal_stop(handle);
318 sb_end_intwrite(inode->i_sb);
319 ext4_xattr_inode_array_free(ea_inode_array);
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 return &EXT4_I(inode)->i_reserved_quota;
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
350 used = ei->i_reserved_data_blocks;
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
359 /* Update quota subsystem for data blocks */
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
376 if ((ei->i_reserved_data_blocks == 0) &&
377 !inode_is_open_for_write(inode))
378 ext4_discard_preallocations(inode);
381 static int __check_block_validity(struct inode *inode, const char *func,
383 struct ext4_map_blocks *map)
385 if (ext4_has_feature_journal(inode->i_sb) &&
387 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
391 ext4_error_inode(inode, func, line, map->m_pblk,
392 "lblock %lu mapped to illegal pblock %llu "
393 "(length %d)", (unsigned long) map->m_lblk,
394 map->m_pblk, map->m_len);
395 return -EFSCORRUPTED;
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
405 if (IS_ENCRYPTED(inode))
406 return fscrypt_zeroout_range(inode, lblk, pblk, len);
408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
415 #define check_block_validity(inode, map) \
416 __check_block_validity((inode), __func__, __LINE__, (map))
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
421 struct ext4_map_blocks *es_map,
422 struct ext4_map_blocks *map,
429 * There is a race window that the result is not the same.
430 * e.g. xfstests #223 when dioread_nolock enables. The reason
431 * is that we lookup a block mapping in extent status tree with
432 * out taking i_data_sem. So at the time the unwritten extent
433 * could be converted.
435 down_read(&EXT4_I(inode)->i_data_sem);
436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 retval = ext4_ext_map_blocks(handle, inode, map, flags &
438 EXT4_GET_BLOCKS_KEEP_SIZE);
440 retval = ext4_ind_map_blocks(handle, inode, map, flags &
441 EXT4_GET_BLOCKS_KEEP_SIZE);
443 up_read((&EXT4_I(inode)->i_data_sem));
446 * We don't check m_len because extent will be collpased in status
447 * tree. So the m_len might not equal.
449 if (es_map->m_lblk != map->m_lblk ||
450 es_map->m_flags != map->m_flags ||
451 es_map->m_pblk != map->m_pblk) {
452 printk("ES cache assertion failed for inode: %lu "
453 "es_cached ex [%d/%d/%llu/%x] != "
454 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
455 inode->i_ino, es_map->m_lblk, es_map->m_len,
456 es_map->m_pblk, es_map->m_flags, map->m_lblk,
457 map->m_len, map->m_pblk, map->m_flags,
461 #endif /* ES_AGGRESSIVE_TEST */
464 * The ext4_map_blocks() function tries to look up the requested blocks,
465 * and returns if the blocks are already mapped.
467 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
468 * and store the allocated blocks in the result buffer head and mark it
471 * If file type is extents based, it will call ext4_ext_map_blocks(),
472 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475 * On success, it returns the number of blocks being mapped or allocated. if
476 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
477 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
479 * It returns 0 if plain look up failed (blocks have not been allocated), in
480 * that case, @map is returned as unmapped but we still do fill map->m_len to
481 * indicate the length of a hole starting at map->m_lblk.
483 * It returns the error in case of allocation failure.
485 int ext4_map_blocks(handle_t *handle, struct inode *inode,
486 struct ext4_map_blocks *map, int flags)
488 struct extent_status es;
491 #ifdef ES_AGGRESSIVE_TEST
492 struct ext4_map_blocks orig_map;
494 memcpy(&orig_map, map, sizeof(*map));
498 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
499 "logical block %lu\n", inode->i_ino, flags, map->m_len,
500 (unsigned long) map->m_lblk);
503 * ext4_map_blocks returns an int, and m_len is an unsigned int
505 if (unlikely(map->m_len > INT_MAX))
506 map->m_len = INT_MAX;
508 /* We can handle the block number less than EXT_MAX_BLOCKS */
509 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
510 return -EFSCORRUPTED;
512 /* Lookup extent status tree firstly */
513 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
514 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
515 map->m_pblk = ext4_es_pblock(&es) +
516 map->m_lblk - es.es_lblk;
517 map->m_flags |= ext4_es_is_written(&es) ?
518 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
519 retval = es.es_len - (map->m_lblk - es.es_lblk);
520 if (retval > map->m_len)
523 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
533 #ifdef ES_AGGRESSIVE_TEST
534 ext4_map_blocks_es_recheck(handle, inode, map,
541 * Try to see if we can get the block without requesting a new
544 down_read(&EXT4_I(inode)->i_data_sem);
545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
546 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547 EXT4_GET_BLOCKS_KEEP_SIZE);
549 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
555 if (unlikely(retval != map->m_len)) {
556 ext4_warning(inode->i_sb,
557 "ES len assertion failed for inode "
558 "%lu: retval %d != map->m_len %d",
559 inode->i_ino, retval, map->m_len);
563 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 !(status & EXTENT_STATUS_WRITTEN) &&
567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568 map->m_lblk + map->m_len - 1))
569 status |= EXTENT_STATUS_DELAYED;
570 ret = ext4_es_insert_extent(inode, map->m_lblk,
571 map->m_len, map->m_pblk, status);
575 up_read((&EXT4_I(inode)->i_data_sem));
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 ret = check_block_validity(inode, map);
584 /* If it is only a block(s) look up */
585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 * Returns if the blocks have already allocated
591 * Note that if blocks have been preallocated
592 * ext4_ext_get_block() returns the create = 0
593 * with buffer head unmapped.
595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
597 * If we need to convert extent to unwritten
598 * we continue and do the actual work in
599 * ext4_ext_map_blocks()
601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605 * Here we clear m_flags because after allocating an new extent,
606 * it will be set again.
608 map->m_flags &= ~EXT4_MAP_FLAGS;
611 * New blocks allocate and/or writing to unwritten extent
612 * will possibly result in updating i_data, so we take
613 * the write lock of i_data_sem, and call get_block()
614 * with create == 1 flag.
616 down_write(&EXT4_I(inode)->i_data_sem);
619 * We need to check for EXT4 here because migrate
620 * could have changed the inode type in between
622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623 retval = ext4_ext_map_blocks(handle, inode, map, flags);
625 retval = ext4_ind_map_blocks(handle, inode, map, flags);
627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
629 * We allocated new blocks which will result in
630 * i_data's format changing. Force the migrate
631 * to fail by clearing migrate flags
633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637 * Update reserved blocks/metadata blocks after successful
638 * block allocation which had been deferred till now. We don't
639 * support fallocate for non extent files. So we can update
640 * reserve space here.
643 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
644 ext4_da_update_reserve_space(inode, retval, 1);
650 if (unlikely(retval != map->m_len)) {
651 ext4_warning(inode->i_sb,
652 "ES len assertion failed for inode "
653 "%lu: retval %d != map->m_len %d",
654 inode->i_ino, retval, map->m_len);
659 * We have to zeroout blocks before inserting them into extent
660 * status tree. Otherwise someone could look them up there and
661 * use them before they are really zeroed. We also have to
662 * unmap metadata before zeroing as otherwise writeback can
663 * overwrite zeros with stale data from block device.
665 if (flags & EXT4_GET_BLOCKS_ZERO &&
666 map->m_flags & EXT4_MAP_MAPPED &&
667 map->m_flags & EXT4_MAP_NEW) {
668 ret = ext4_issue_zeroout(inode, map->m_lblk,
669 map->m_pblk, map->m_len);
677 * If the extent has been zeroed out, we don't need to update
678 * extent status tree.
680 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
681 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
682 if (ext4_es_is_written(&es))
685 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
686 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
687 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
688 !(status & EXTENT_STATUS_WRITTEN) &&
689 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
690 map->m_lblk + map->m_len - 1))
691 status |= EXTENT_STATUS_DELAYED;
692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693 map->m_pblk, status);
701 up_write((&EXT4_I(inode)->i_data_sem));
702 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
703 ret = check_block_validity(inode, map);
708 * Inodes with freshly allocated blocks where contents will be
709 * visible after transaction commit must be on transaction's
712 if (map->m_flags & EXT4_MAP_NEW &&
713 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
714 !(flags & EXT4_GET_BLOCKS_ZERO) &&
715 !ext4_is_quota_file(inode) &&
716 ext4_should_order_data(inode)) {
718 (loff_t)map->m_lblk << inode->i_blkbits;
719 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode,
725 ret = ext4_jbd2_inode_add_write(handle, inode,
735 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
736 * we have to be careful as someone else may be manipulating b_state as well.
738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
740 unsigned long old_state;
741 unsigned long new_state;
743 flags &= EXT4_MAP_FLAGS;
745 /* Dummy buffer_head? Set non-atomically. */
747 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
751 * Someone else may be modifying b_state. Be careful! This is ugly but
752 * once we get rid of using bh as a container for mapping information
753 * to pass to / from get_block functions, this can go away.
756 old_state = READ_ONCE(bh->b_state);
757 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
759 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763 struct buffer_head *bh, int flags)
765 struct ext4_map_blocks map;
768 if (ext4_has_inline_data(inode))
772 map.m_len = bh->b_size >> inode->i_blkbits;
774 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
777 map_bh(bh, inode->i_sb, map.m_pblk);
778 ext4_update_bh_state(bh, map.m_flags);
779 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
781 } else if (ret == 0) {
782 /* hole case, need to fill in bh->b_size */
783 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788 int ext4_get_block(struct inode *inode, sector_t iblock,
789 struct buffer_head *bh, int create)
791 return _ext4_get_block(inode, iblock, bh,
792 create ? EXT4_GET_BLOCKS_CREATE : 0);
796 * Get block function used when preparing for buffered write if we require
797 * creating an unwritten extent if blocks haven't been allocated. The extent
798 * will be converted to written after the IO is complete.
800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
801 struct buffer_head *bh_result, int create)
803 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
804 inode->i_ino, create);
805 return _ext4_get_block(inode, iblock, bh_result,
806 EXT4_GET_BLOCKS_IO_CREATE_EXT);
809 /* Maximum number of blocks we map for direct IO at once. */
810 #define DIO_MAX_BLOCKS 4096
813 * `handle' can be NULL if create is zero
815 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
816 ext4_lblk_t block, int map_flags)
818 struct ext4_map_blocks map;
819 struct buffer_head *bh;
820 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
823 J_ASSERT(handle != NULL || create == 0);
827 err = ext4_map_blocks(handle, inode, &map, map_flags);
830 return create ? ERR_PTR(-ENOSPC) : NULL;
834 bh = sb_getblk(inode->i_sb, map.m_pblk);
836 return ERR_PTR(-ENOMEM);
837 if (map.m_flags & EXT4_MAP_NEW) {
838 J_ASSERT(create != 0);
839 J_ASSERT(handle != NULL);
842 * Now that we do not always journal data, we should
843 * keep in mind whether this should always journal the
844 * new buffer as metadata. For now, regular file
845 * writes use ext4_get_block instead, so it's not a
849 BUFFER_TRACE(bh, "call get_create_access");
850 err = ext4_journal_get_create_access(handle, bh);
855 if (!buffer_uptodate(bh)) {
856 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
857 set_buffer_uptodate(bh);
860 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
861 err = ext4_handle_dirty_metadata(handle, inode, bh);
865 BUFFER_TRACE(bh, "not a new buffer");
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873 ext4_lblk_t block, int map_flags)
875 struct buffer_head *bh;
877 bh = ext4_getblk(handle, inode, block, map_flags);
880 if (!bh || ext4_buffer_uptodate(bh))
882 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
884 if (buffer_uptodate(bh))
887 return ERR_PTR(-EIO);
890 /* Read a contiguous batch of blocks. */
891 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
892 bool wait, struct buffer_head **bhs)
896 for (i = 0; i < bh_count; i++) {
897 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
898 if (IS_ERR(bhs[i])) {
899 err = PTR_ERR(bhs[i]);
905 for (i = 0; i < bh_count; i++)
906 /* Note that NULL bhs[i] is valid because of holes. */
907 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
908 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
914 for (i = 0; i < bh_count; i++)
916 wait_on_buffer(bhs[i]);
918 for (i = 0; i < bh_count; i++) {
919 if (bhs[i] && !buffer_uptodate(bhs[i])) {
927 for (i = 0; i < bh_count; i++) {
934 int ext4_walk_page_buffers(handle_t *handle,
935 struct buffer_head *head,
939 int (*fn)(handle_t *handle,
940 struct buffer_head *bh))
942 struct buffer_head *bh;
943 unsigned block_start, block_end;
944 unsigned blocksize = head->b_size;
946 struct buffer_head *next;
948 for (bh = head, block_start = 0;
949 ret == 0 && (bh != head || !block_start);
950 block_start = block_end, bh = next) {
951 next = bh->b_this_page;
952 block_end = block_start + blocksize;
953 if (block_end <= from || block_start >= to) {
954 if (partial && !buffer_uptodate(bh))
958 err = (*fn)(handle, bh);
966 * To preserve ordering, it is essential that the hole instantiation and
967 * the data write be encapsulated in a single transaction. We cannot
968 * close off a transaction and start a new one between the ext4_get_block()
969 * and the commit_write(). So doing the jbd2_journal_start at the start of
970 * prepare_write() is the right place.
972 * Also, this function can nest inside ext4_writepage(). In that case, we
973 * *know* that ext4_writepage() has generated enough buffer credits to do the
974 * whole page. So we won't block on the journal in that case, which is good,
975 * because the caller may be PF_MEMALLOC.
977 * By accident, ext4 can be reentered when a transaction is open via
978 * quota file writes. If we were to commit the transaction while thus
979 * reentered, there can be a deadlock - we would be holding a quota
980 * lock, and the commit would never complete if another thread had a
981 * transaction open and was blocking on the quota lock - a ranking
984 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
985 * will _not_ run commit under these circumstances because handle->h_ref
986 * is elevated. We'll still have enough credits for the tiny quotafile
989 int do_journal_get_write_access(handle_t *handle,
990 struct buffer_head *bh)
992 int dirty = buffer_dirty(bh);
995 if (!buffer_mapped(bh) || buffer_freed(bh))
998 * __block_write_begin() could have dirtied some buffers. Clean
999 * the dirty bit as jbd2_journal_get_write_access() could complain
1000 * otherwise about fs integrity issues. Setting of the dirty bit
1001 * by __block_write_begin() isn't a real problem here as we clear
1002 * the bit before releasing a page lock and thus writeback cannot
1003 * ever write the buffer.
1006 clear_buffer_dirty(bh);
1007 BUFFER_TRACE(bh, "get write access");
1008 ret = ext4_journal_get_write_access(handle, bh);
1010 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1014 #ifdef CONFIG_FS_ENCRYPTION
1015 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1016 get_block_t *get_block)
1018 unsigned from = pos & (PAGE_SIZE - 1);
1019 unsigned to = from + len;
1020 struct inode *inode = page->mapping->host;
1021 unsigned block_start, block_end;
1024 unsigned blocksize = inode->i_sb->s_blocksize;
1026 struct buffer_head *bh, *head, *wait[2];
1030 BUG_ON(!PageLocked(page));
1031 BUG_ON(from > PAGE_SIZE);
1032 BUG_ON(to > PAGE_SIZE);
1035 if (!page_has_buffers(page))
1036 create_empty_buffers(page, blocksize, 0);
1037 head = page_buffers(page);
1038 bbits = ilog2(blocksize);
1039 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1041 for (bh = head, block_start = 0; bh != head || !block_start;
1042 block++, block_start = block_end, bh = bh->b_this_page) {
1043 block_end = block_start + blocksize;
1044 if (block_end <= from || block_start >= to) {
1045 if (PageUptodate(page)) {
1046 if (!buffer_uptodate(bh))
1047 set_buffer_uptodate(bh);
1052 clear_buffer_new(bh);
1053 if (!buffer_mapped(bh)) {
1054 WARN_ON(bh->b_size != blocksize);
1055 err = get_block(inode, block, bh, 1);
1058 if (buffer_new(bh)) {
1059 if (PageUptodate(page)) {
1060 clear_buffer_new(bh);
1061 set_buffer_uptodate(bh);
1062 mark_buffer_dirty(bh);
1065 if (block_end > to || block_start < from)
1066 zero_user_segments(page, to, block_end,
1071 if (PageUptodate(page)) {
1072 if (!buffer_uptodate(bh))
1073 set_buffer_uptodate(bh);
1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077 !buffer_unwritten(bh) &&
1078 (block_start < from || block_end > to)) {
1079 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1080 wait[nr_wait++] = bh;
1084 * If we issued read requests, let them complete.
1086 for (i = 0; i < nr_wait; i++) {
1087 wait_on_buffer(wait[i]);
1088 if (!buffer_uptodate(wait[i]))
1091 if (unlikely(err)) {
1092 page_zero_new_buffers(page, from, to);
1093 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1094 for (i = 0; i < nr_wait; i++) {
1097 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1098 bh_offset(wait[i]));
1100 clear_buffer_uptodate(wait[i]);
1110 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned flags,
1112 struct page **pagep, void **fsdata)
1114 struct inode *inode = mapping->host;
1115 int ret, needed_blocks;
1122 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1125 trace_ext4_write_begin(inode, pos, len, flags);
1127 * Reserve one block more for addition to orphan list in case
1128 * we allocate blocks but write fails for some reason
1130 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1131 index = pos >> PAGE_SHIFT;
1132 from = pos & (PAGE_SIZE - 1);
1135 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1136 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1145 * grab_cache_page_write_begin() can take a long time if the
1146 * system is thrashing due to memory pressure, or if the page
1147 * is being written back. So grab it first before we start
1148 * the transaction handle. This also allows us to allocate
1149 * the page (if needed) without using GFP_NOFS.
1152 page = grab_cache_page_write_begin(mapping, index, flags);
1158 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1159 if (IS_ERR(handle)) {
1161 return PTR_ERR(handle);
1165 if (page->mapping != mapping) {
1166 /* The page got truncated from under us */
1169 ext4_journal_stop(handle);
1172 /* In case writeback began while the page was unlocked */
1173 wait_for_stable_page(page);
1175 #ifdef CONFIG_FS_ENCRYPTION
1176 if (ext4_should_dioread_nolock(inode))
1177 ret = ext4_block_write_begin(page, pos, len,
1178 ext4_get_block_unwritten);
1180 ret = ext4_block_write_begin(page, pos, len,
1183 if (ext4_should_dioread_nolock(inode))
1184 ret = __block_write_begin(page, pos, len,
1185 ext4_get_block_unwritten);
1187 ret = __block_write_begin(page, pos, len, ext4_get_block);
1189 if (!ret && ext4_should_journal_data(inode)) {
1190 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1192 do_journal_get_write_access);
1196 bool extended = (pos + len > inode->i_size) &&
1197 !ext4_verity_in_progress(inode);
1201 * __block_write_begin may have instantiated a few blocks
1202 * outside i_size. Trim these off again. Don't need
1203 * i_size_read because we hold i_mutex.
1205 * Add inode to orphan list in case we crash before
1208 if (extended && ext4_can_truncate(inode))
1209 ext4_orphan_add(handle, inode);
1211 ext4_journal_stop(handle);
1213 ext4_truncate_failed_write(inode);
1215 * If truncate failed early the inode might
1216 * still be on the orphan list; we need to
1217 * make sure the inode is removed from the
1218 * orphan list in that case.
1221 ext4_orphan_del(NULL, inode);
1224 if (ret == -ENOSPC &&
1225 ext4_should_retry_alloc(inode->i_sb, &retries))
1234 /* For write_end() in data=journal mode */
1235 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1238 if (!buffer_mapped(bh) || buffer_freed(bh))
1240 set_buffer_uptodate(bh);
1241 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1242 clear_buffer_meta(bh);
1243 clear_buffer_prio(bh);
1248 * We need to pick up the new inode size which generic_commit_write gave us
1249 * `file' can be NULL - eg, when called from page_symlink().
1251 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1252 * buffers are managed internally.
1254 static int ext4_write_end(struct file *file,
1255 struct address_space *mapping,
1256 loff_t pos, unsigned len, unsigned copied,
1257 struct page *page, void *fsdata)
1259 handle_t *handle = ext4_journal_current_handle();
1260 struct inode *inode = mapping->host;
1261 loff_t old_size = inode->i_size;
1263 int i_size_changed = 0;
1264 int inline_data = ext4_has_inline_data(inode);
1265 bool verity = ext4_verity_in_progress(inode);
1267 trace_ext4_write_end(inode, pos, len, copied);
1269 ret = ext4_write_inline_data_end(inode, pos, len,
1278 copied = block_write_end(file, mapping, pos,
1279 len, copied, page, fsdata);
1281 * it's important to update i_size while still holding page lock:
1282 * page writeout could otherwise come in and zero beyond i_size.
1284 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1285 * blocks are being written past EOF, so skip the i_size update.
1288 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1292 if (old_size < pos && !verity)
1293 pagecache_isize_extended(inode, old_size, pos);
1295 * Don't mark the inode dirty under page lock. First, it unnecessarily
1296 * makes the holding time of page lock longer. Second, it forces lock
1297 * ordering of page lock and transaction start for journaling
1300 if (i_size_changed || inline_data)
1301 ext4_mark_inode_dirty(handle, inode);
1303 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1304 /* if we have allocated more blocks and copied
1305 * less. We will have blocks allocated outside
1306 * inode->i_size. So truncate them
1308 ext4_orphan_add(handle, inode);
1310 ret2 = ext4_journal_stop(handle);
1314 if (pos + len > inode->i_size && !verity) {
1315 ext4_truncate_failed_write(inode);
1317 * If truncate failed early the inode might still be
1318 * on the orphan list; we need to make sure the inode
1319 * is removed from the orphan list in that case.
1322 ext4_orphan_del(NULL, inode);
1325 return ret ? ret : copied;
1329 * This is a private version of page_zero_new_buffers() which doesn't
1330 * set the buffer to be dirty, since in data=journalled mode we need
1331 * to call ext4_handle_dirty_metadata() instead.
1333 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1335 unsigned from, unsigned to)
1337 unsigned int block_start = 0, block_end;
1338 struct buffer_head *head, *bh;
1340 bh = head = page_buffers(page);
1342 block_end = block_start + bh->b_size;
1343 if (buffer_new(bh)) {
1344 if (block_end > from && block_start < to) {
1345 if (!PageUptodate(page)) {
1346 unsigned start, size;
1348 start = max(from, block_start);
1349 size = min(to, block_end) - start;
1351 zero_user(page, start, size);
1352 write_end_fn(handle, bh);
1354 clear_buffer_new(bh);
1357 block_start = block_end;
1358 bh = bh->b_this_page;
1359 } while (bh != head);
1362 static int ext4_journalled_write_end(struct file *file,
1363 struct address_space *mapping,
1364 loff_t pos, unsigned len, unsigned copied,
1365 struct page *page, void *fsdata)
1367 handle_t *handle = ext4_journal_current_handle();
1368 struct inode *inode = mapping->host;
1369 loff_t old_size = inode->i_size;
1373 int size_changed = 0;
1374 int inline_data = ext4_has_inline_data(inode);
1375 bool verity = ext4_verity_in_progress(inode);
1377 trace_ext4_journalled_write_end(inode, pos, len, copied);
1378 from = pos & (PAGE_SIZE - 1);
1381 BUG_ON(!ext4_handle_valid(handle));
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1392 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1394 ext4_journalled_zero_new_buffers(handle, page, from, to);
1396 if (unlikely(copied < len))
1397 ext4_journalled_zero_new_buffers(handle, page,
1399 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1400 from + copied, &partial,
1403 SetPageUptodate(page);
1406 size_changed = ext4_update_inode_size(inode, pos + copied);
1407 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1408 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1412 if (old_size < pos && !verity)
1413 pagecache_isize_extended(inode, old_size, pos);
1415 if (size_changed || inline_data) {
1416 ret2 = ext4_mark_inode_dirty(handle, inode);
1421 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1422 /* if we have allocated more blocks and copied
1423 * less. We will have blocks allocated outside
1424 * inode->i_size. So truncate them
1426 ext4_orphan_add(handle, inode);
1429 ret2 = ext4_journal_stop(handle);
1432 if (pos + len > inode->i_size && !verity) {
1433 ext4_truncate_failed_write(inode);
1435 * If truncate failed early the inode might still be
1436 * on the orphan list; we need to make sure the inode
1437 * is removed from the orphan list in that case.
1440 ext4_orphan_del(NULL, inode);
1443 return ret ? ret : copied;
1447 * Reserve space for a single cluster
1449 static int ext4_da_reserve_space(struct inode *inode)
1451 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1452 struct ext4_inode_info *ei = EXT4_I(inode);
1456 * We will charge metadata quota at writeout time; this saves
1457 * us from metadata over-estimation, though we may go over by
1458 * a small amount in the end. Here we just reserve for data.
1460 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1464 spin_lock(&ei->i_block_reservation_lock);
1465 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1466 spin_unlock(&ei->i_block_reservation_lock);
1467 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1470 ei->i_reserved_data_blocks++;
1471 trace_ext4_da_reserve_space(inode);
1472 spin_unlock(&ei->i_block_reservation_lock);
1474 return 0; /* success */
1477 void ext4_da_release_space(struct inode *inode, int to_free)
1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 struct ext4_inode_info *ei = EXT4_I(inode);
1483 return; /* Nothing to release, exit */
1485 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1487 trace_ext4_da_release_space(inode, to_free);
1488 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1490 * if there aren't enough reserved blocks, then the
1491 * counter is messed up somewhere. Since this
1492 * function is called from invalidate page, it's
1493 * harmless to return without any action.
1495 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1496 "ino %lu, to_free %d with only %d reserved "
1497 "data blocks", inode->i_ino, to_free,
1498 ei->i_reserved_data_blocks);
1500 to_free = ei->i_reserved_data_blocks;
1502 ei->i_reserved_data_blocks -= to_free;
1504 /* update fs dirty data blocks counter */
1505 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1507 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1509 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1513 * Delayed allocation stuff
1516 struct mpage_da_data {
1517 struct inode *inode;
1518 struct writeback_control *wbc;
1520 pgoff_t first_page; /* The first page to write */
1521 pgoff_t next_page; /* Current page to examine */
1522 pgoff_t last_page; /* Last page to examine */
1524 * Extent to map - this can be after first_page because that can be
1525 * fully mapped. We somewhat abuse m_flags to store whether the extent
1526 * is delalloc or unwritten.
1528 struct ext4_map_blocks map;
1529 struct ext4_io_submit io_submit; /* IO submission data */
1530 unsigned int do_map:1;
1533 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1538 struct pagevec pvec;
1539 struct inode *inode = mpd->inode;
1540 struct address_space *mapping = inode->i_mapping;
1542 /* This is necessary when next_page == 0. */
1543 if (mpd->first_page >= mpd->next_page)
1546 index = mpd->first_page;
1547 end = mpd->next_page - 1;
1549 ext4_lblk_t start, last;
1550 start = index << (PAGE_SHIFT - inode->i_blkbits);
1551 last = end << (PAGE_SHIFT - inode->i_blkbits);
1552 ext4_es_remove_extent(inode, start, last - start + 1);
1555 pagevec_init(&pvec);
1556 while (index <= end) {
1557 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1560 for (i = 0; i < nr_pages; i++) {
1561 struct page *page = pvec.pages[i];
1563 BUG_ON(!PageLocked(page));
1564 BUG_ON(PageWriteback(page));
1566 if (page_mapped(page))
1567 clear_page_dirty_for_io(page);
1568 block_invalidatepage(page, 0, PAGE_SIZE);
1569 ClearPageUptodate(page);
1573 pagevec_release(&pvec);
1577 static void ext4_print_free_blocks(struct inode *inode)
1579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1580 struct super_block *sb = inode->i_sb;
1581 struct ext4_inode_info *ei = EXT4_I(inode);
1583 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1584 EXT4_C2B(EXT4_SB(inode->i_sb),
1585 ext4_count_free_clusters(sb)));
1586 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1587 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1588 (long long) EXT4_C2B(EXT4_SB(sb),
1589 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1590 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1591 (long long) EXT4_C2B(EXT4_SB(sb),
1592 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1593 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1594 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1595 ei->i_reserved_data_blocks);
1599 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1601 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1605 * ext4_insert_delayed_block - adds a delayed block to the extents status
1606 * tree, incrementing the reserved cluster/block
1607 * count or making a pending reservation
1610 * @inode - file containing the newly added block
1611 * @lblk - logical block to be added
1613 * Returns 0 on success, negative error code on failure.
1615 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1617 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1619 bool allocated = false;
1622 * If the cluster containing lblk is shared with a delayed,
1623 * written, or unwritten extent in a bigalloc file system, it's
1624 * already been accounted for and does not need to be reserved.
1625 * A pending reservation must be made for the cluster if it's
1626 * shared with a written or unwritten extent and doesn't already
1627 * have one. Written and unwritten extents can be purged from the
1628 * extents status tree if the system is under memory pressure, so
1629 * it's necessary to examine the extent tree if a search of the
1630 * extents status tree doesn't get a match.
1632 if (sbi->s_cluster_ratio == 1) {
1633 ret = ext4_da_reserve_space(inode);
1634 if (ret != 0) /* ENOSPC */
1636 } else { /* bigalloc */
1637 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1638 if (!ext4_es_scan_clu(inode,
1639 &ext4_es_is_mapped, lblk)) {
1640 ret = ext4_clu_mapped(inode,
1641 EXT4_B2C(sbi, lblk));
1645 ret = ext4_da_reserve_space(inode);
1646 if (ret != 0) /* ENOSPC */
1657 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1664 * This function is grabs code from the very beginning of
1665 * ext4_map_blocks, but assumes that the caller is from delayed write
1666 * time. This function looks up the requested blocks and sets the
1667 * buffer delay bit under the protection of i_data_sem.
1669 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1670 struct ext4_map_blocks *map,
1671 struct buffer_head *bh)
1673 struct extent_status es;
1675 sector_t invalid_block = ~((sector_t) 0xffff);
1676 #ifdef ES_AGGRESSIVE_TEST
1677 struct ext4_map_blocks orig_map;
1679 memcpy(&orig_map, map, sizeof(*map));
1682 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1686 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1687 "logical block %lu\n", inode->i_ino, map->m_len,
1688 (unsigned long) map->m_lblk);
1690 /* Lookup extent status tree firstly */
1691 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1692 if (ext4_es_is_hole(&es)) {
1694 down_read(&EXT4_I(inode)->i_data_sem);
1699 * Delayed extent could be allocated by fallocate.
1700 * So we need to check it.
1702 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1703 map_bh(bh, inode->i_sb, invalid_block);
1705 set_buffer_delay(bh);
1709 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1710 retval = es.es_len - (iblock - es.es_lblk);
1711 if (retval > map->m_len)
1712 retval = map->m_len;
1713 map->m_len = retval;
1714 if (ext4_es_is_written(&es))
1715 map->m_flags |= EXT4_MAP_MAPPED;
1716 else if (ext4_es_is_unwritten(&es))
1717 map->m_flags |= EXT4_MAP_UNWRITTEN;
1721 #ifdef ES_AGGRESSIVE_TEST
1722 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1728 * Try to see if we can get the block without requesting a new
1729 * file system block.
1731 down_read(&EXT4_I(inode)->i_data_sem);
1732 if (ext4_has_inline_data(inode))
1734 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1735 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1737 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1744 * XXX: __block_prepare_write() unmaps passed block,
1748 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1754 map_bh(bh, inode->i_sb, invalid_block);
1756 set_buffer_delay(bh);
1757 } else if (retval > 0) {
1759 unsigned int status;
1761 if (unlikely(retval != map->m_len)) {
1762 ext4_warning(inode->i_sb,
1763 "ES len assertion failed for inode "
1764 "%lu: retval %d != map->m_len %d",
1765 inode->i_ino, retval, map->m_len);
1769 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1770 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1771 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1772 map->m_pblk, status);
1778 up_read((&EXT4_I(inode)->i_data_sem));
1784 * This is a special get_block_t callback which is used by
1785 * ext4_da_write_begin(). It will either return mapped block or
1786 * reserve space for a single block.
1788 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1789 * We also have b_blocknr = -1 and b_bdev initialized properly
1791 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1792 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1793 * initialized properly.
1795 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1796 struct buffer_head *bh, int create)
1798 struct ext4_map_blocks map;
1801 BUG_ON(create == 0);
1802 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1804 map.m_lblk = iblock;
1808 * first, we need to know whether the block is allocated already
1809 * preallocated blocks are unmapped but should treated
1810 * the same as allocated blocks.
1812 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1816 map_bh(bh, inode->i_sb, map.m_pblk);
1817 ext4_update_bh_state(bh, map.m_flags);
1819 if (buffer_unwritten(bh)) {
1820 /* A delayed write to unwritten bh should be marked
1821 * new and mapped. Mapped ensures that we don't do
1822 * get_block multiple times when we write to the same
1823 * offset and new ensures that we do proper zero out
1824 * for partial write.
1827 set_buffer_mapped(bh);
1832 static int bget_one(handle_t *handle, struct buffer_head *bh)
1838 static int bput_one(handle_t *handle, struct buffer_head *bh)
1844 static int __ext4_journalled_writepage(struct page *page,
1847 struct address_space *mapping = page->mapping;
1848 struct inode *inode = mapping->host;
1849 struct buffer_head *page_bufs = NULL;
1850 handle_t *handle = NULL;
1851 int ret = 0, err = 0;
1852 int inline_data = ext4_has_inline_data(inode);
1853 struct buffer_head *inode_bh = NULL;
1855 ClearPageChecked(page);
1858 BUG_ON(page->index != 0);
1859 BUG_ON(len > ext4_get_max_inline_size(inode));
1860 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1861 if (inode_bh == NULL)
1864 page_bufs = page_buffers(page);
1869 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1873 * We need to release the page lock before we start the
1874 * journal, so grab a reference so the page won't disappear
1875 * out from under us.
1880 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1881 ext4_writepage_trans_blocks(inode));
1882 if (IS_ERR(handle)) {
1883 ret = PTR_ERR(handle);
1885 goto out_no_pagelock;
1887 BUG_ON(!ext4_handle_valid(handle));
1891 if (page->mapping != mapping) {
1892 /* The page got truncated from under us */
1893 ext4_journal_stop(handle);
1899 ret = ext4_mark_inode_dirty(handle, inode);
1901 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1902 do_journal_get_write_access);
1904 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1909 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1910 err = ext4_journal_stop(handle);
1914 if (!ext4_has_inline_data(inode))
1915 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1917 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1926 * Note that we don't need to start a transaction unless we're journaling data
1927 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1928 * need to file the inode to the transaction's list in ordered mode because if
1929 * we are writing back data added by write(), the inode is already there and if
1930 * we are writing back data modified via mmap(), no one guarantees in which
1931 * transaction the data will hit the disk. In case we are journaling data, we
1932 * cannot start transaction directly because transaction start ranks above page
1933 * lock so we have to do some magic.
1935 * This function can get called via...
1936 * - ext4_writepages after taking page lock (have journal handle)
1937 * - journal_submit_inode_data_buffers (no journal handle)
1938 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1939 * - grab_page_cache when doing write_begin (have journal handle)
1941 * We don't do any block allocation in this function. If we have page with
1942 * multiple blocks we need to write those buffer_heads that are mapped. This
1943 * is important for mmaped based write. So if we do with blocksize 1K
1944 * truncate(f, 1024);
1945 * a = mmap(f, 0, 4096);
1947 * truncate(f, 4096);
1948 * we have in the page first buffer_head mapped via page_mkwrite call back
1949 * but other buffer_heads would be unmapped but dirty (dirty done via the
1950 * do_wp_page). So writepage should write the first block. If we modify
1951 * the mmap area beyond 1024 we will again get a page_fault and the
1952 * page_mkwrite callback will do the block allocation and mark the
1953 * buffer_heads mapped.
1955 * We redirty the page if we have any buffer_heads that is either delay or
1956 * unwritten in the page.
1958 * We can get recursively called as show below.
1960 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1963 * But since we don't do any block allocation we should not deadlock.
1964 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1966 static int ext4_writepage(struct page *page,
1967 struct writeback_control *wbc)
1972 struct buffer_head *page_bufs = NULL;
1973 struct inode *inode = page->mapping->host;
1974 struct ext4_io_submit io_submit;
1975 bool keep_towrite = false;
1977 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1978 ext4_invalidatepage(page, 0, PAGE_SIZE);
1983 trace_ext4_writepage(page);
1984 size = i_size_read(inode);
1985 if (page->index == size >> PAGE_SHIFT &&
1986 !ext4_verity_in_progress(inode))
1987 len = size & ~PAGE_MASK;
1991 page_bufs = page_buffers(page);
1993 * We cannot do block allocation or other extent handling in this
1994 * function. If there are buffers needing that, we have to redirty
1995 * the page. But we may reach here when we do a journal commit via
1996 * journal_submit_inode_data_buffers() and in that case we must write
1997 * allocated buffers to achieve data=ordered mode guarantees.
1999 * Also, if there is only one buffer per page (the fs block
2000 * size == the page size), if one buffer needs block
2001 * allocation or needs to modify the extent tree to clear the
2002 * unwritten flag, we know that the page can't be written at
2003 * all, so we might as well refuse the write immediately.
2004 * Unfortunately if the block size != page size, we can't as
2005 * easily detect this case using ext4_walk_page_buffers(), but
2006 * for the extremely common case, this is an optimization that
2007 * skips a useless round trip through ext4_bio_write_page().
2009 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2010 ext4_bh_delay_or_unwritten)) {
2011 redirty_page_for_writepage(wbc, page);
2012 if ((current->flags & PF_MEMALLOC) ||
2013 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2015 * For memory cleaning there's no point in writing only
2016 * some buffers. So just bail out. Warn if we came here
2017 * from direct reclaim.
2019 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2024 keep_towrite = true;
2027 if (PageChecked(page) && ext4_should_journal_data(inode))
2029 * It's mmapped pagecache. Add buffers and journal it. There
2030 * doesn't seem much point in redirtying the page here.
2032 return __ext4_journalled_writepage(page, len);
2034 ext4_io_submit_init(&io_submit, wbc);
2035 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2036 if (!io_submit.io_end) {
2037 redirty_page_for_writepage(wbc, page);
2041 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2042 ext4_io_submit(&io_submit);
2043 /* Drop io_end reference we got from init */
2044 ext4_put_io_end_defer(io_submit.io_end);
2048 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2054 BUG_ON(page->index != mpd->first_page);
2055 clear_page_dirty_for_io(page);
2057 * We have to be very careful here! Nothing protects writeback path
2058 * against i_size changes and the page can be writeably mapped into
2059 * page tables. So an application can be growing i_size and writing
2060 * data through mmap while writeback runs. clear_page_dirty_for_io()
2061 * write-protects our page in page tables and the page cannot get
2062 * written to again until we release page lock. So only after
2063 * clear_page_dirty_for_io() we are safe to sample i_size for
2064 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2065 * on the barrier provided by TestClearPageDirty in
2066 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2067 * after page tables are updated.
2069 size = i_size_read(mpd->inode);
2070 if (page->index == size >> PAGE_SHIFT &&
2071 !ext4_verity_in_progress(mpd->inode))
2072 len = size & ~PAGE_MASK;
2075 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2077 mpd->wbc->nr_to_write--;
2083 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2086 * mballoc gives us at most this number of blocks...
2087 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2088 * The rest of mballoc seems to handle chunks up to full group size.
2090 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2093 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2095 * @mpd - extent of blocks
2096 * @lblk - logical number of the block in the file
2097 * @bh - buffer head we want to add to the extent
2099 * The function is used to collect contig. blocks in the same state. If the
2100 * buffer doesn't require mapping for writeback and we haven't started the
2101 * extent of buffers to map yet, the function returns 'true' immediately - the
2102 * caller can write the buffer right away. Otherwise the function returns true
2103 * if the block has been added to the extent, false if the block couldn't be
2106 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2107 struct buffer_head *bh)
2109 struct ext4_map_blocks *map = &mpd->map;
2111 /* Buffer that doesn't need mapping for writeback? */
2112 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2113 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2114 /* So far no extent to map => we write the buffer right away */
2115 if (map->m_len == 0)
2120 /* First block in the extent? */
2121 if (map->m_len == 0) {
2122 /* We cannot map unless handle is started... */
2127 map->m_flags = bh->b_state & BH_FLAGS;
2131 /* Don't go larger than mballoc is willing to allocate */
2132 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2135 /* Can we merge the block to our big extent? */
2136 if (lblk == map->m_lblk + map->m_len &&
2137 (bh->b_state & BH_FLAGS) == map->m_flags) {
2145 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2147 * @mpd - extent of blocks for mapping
2148 * @head - the first buffer in the page
2149 * @bh - buffer we should start processing from
2150 * @lblk - logical number of the block in the file corresponding to @bh
2152 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2153 * the page for IO if all buffers in this page were mapped and there's no
2154 * accumulated extent of buffers to map or add buffers in the page to the
2155 * extent of buffers to map. The function returns 1 if the caller can continue
2156 * by processing the next page, 0 if it should stop adding buffers to the
2157 * extent to map because we cannot extend it anymore. It can also return value
2158 * < 0 in case of error during IO submission.
2160 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2161 struct buffer_head *head,
2162 struct buffer_head *bh,
2165 struct inode *inode = mpd->inode;
2167 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2168 >> inode->i_blkbits;
2170 if (ext4_verity_in_progress(inode))
2171 blocks = EXT_MAX_BLOCKS;
2174 BUG_ON(buffer_locked(bh));
2176 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2177 /* Found extent to map? */
2180 /* Buffer needs mapping and handle is not started? */
2183 /* Everything mapped so far and we hit EOF */
2186 } while (lblk++, (bh = bh->b_this_page) != head);
2187 /* So far everything mapped? Submit the page for IO. */
2188 if (mpd->map.m_len == 0) {
2189 err = mpage_submit_page(mpd, head->b_page);
2193 return lblk < blocks;
2197 * mpage_process_page - update page buffers corresponding to changed extent and
2198 * may submit fully mapped page for IO
2200 * @mpd - description of extent to map, on return next extent to map
2201 * @m_lblk - logical block mapping.
2202 * @m_pblk - corresponding physical mapping.
2203 * @map_bh - determines on return whether this page requires any further
2205 * Scan given page buffers corresponding to changed extent and update buffer
2206 * state according to new extent state.
2207 * We map delalloc buffers to their physical location, clear unwritten bits.
2208 * If the given page is not fully mapped, we update @map to the next extent in
2209 * the given page that needs mapping & return @map_bh as true.
2211 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2212 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2215 struct buffer_head *head, *bh;
2216 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2217 ext4_lblk_t lblk = *m_lblk;
2218 ext4_fsblk_t pblock = *m_pblk;
2220 int blkbits = mpd->inode->i_blkbits;
2221 ssize_t io_end_size = 0;
2222 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2224 bh = head = page_buffers(page);
2226 if (lblk < mpd->map.m_lblk)
2228 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2230 * Buffer after end of mapped extent.
2231 * Find next buffer in the page to map.
2234 mpd->map.m_flags = 0;
2235 io_end_vec->size += io_end_size;
2238 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2241 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2242 io_end_vec = ext4_alloc_io_end_vec(io_end);
2243 if (IS_ERR(io_end_vec)) {
2244 err = PTR_ERR(io_end_vec);
2247 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2252 if (buffer_delay(bh)) {
2253 clear_buffer_delay(bh);
2254 bh->b_blocknr = pblock++;
2256 clear_buffer_unwritten(bh);
2257 io_end_size += (1 << blkbits);
2258 } while (lblk++, (bh = bh->b_this_page) != head);
2260 io_end_vec->size += io_end_size;
2270 * mpage_map_buffers - update buffers corresponding to changed extent and
2271 * submit fully mapped pages for IO
2273 * @mpd - description of extent to map, on return next extent to map
2275 * Scan buffers corresponding to changed extent (we expect corresponding pages
2276 * to be already locked) and update buffer state according to new extent state.
2277 * We map delalloc buffers to their physical location, clear unwritten bits,
2278 * and mark buffers as uninit when we perform writes to unwritten extents
2279 * and do extent conversion after IO is finished. If the last page is not fully
2280 * mapped, we update @map to the next extent in the last page that needs
2281 * mapping. Otherwise we submit the page for IO.
2283 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2285 struct pagevec pvec;
2287 struct inode *inode = mpd->inode;
2288 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2291 ext4_fsblk_t pblock;
2293 bool map_bh = false;
2295 start = mpd->map.m_lblk >> bpp_bits;
2296 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2297 lblk = start << bpp_bits;
2298 pblock = mpd->map.m_pblk;
2300 pagevec_init(&pvec);
2301 while (start <= end) {
2302 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2306 for (i = 0; i < nr_pages; i++) {
2307 struct page *page = pvec.pages[i];
2309 err = mpage_process_page(mpd, page, &lblk, &pblock,
2312 * If map_bh is true, means page may require further bh
2313 * mapping, or maybe the page was submitted for IO.
2314 * So we return to call further extent mapping.
2316 if (err < 0 || map_bh == true)
2318 /* Page fully mapped - let IO run! */
2319 err = mpage_submit_page(mpd, page);
2323 pagevec_release(&pvec);
2325 /* Extent fully mapped and matches with page boundary. We are done. */
2327 mpd->map.m_flags = 0;
2330 pagevec_release(&pvec);
2334 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2336 struct inode *inode = mpd->inode;
2337 struct ext4_map_blocks *map = &mpd->map;
2338 int get_blocks_flags;
2339 int err, dioread_nolock;
2341 trace_ext4_da_write_pages_extent(inode, map);
2343 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2344 * to convert an unwritten extent to be initialized (in the case
2345 * where we have written into one or more preallocated blocks). It is
2346 * possible that we're going to need more metadata blocks than
2347 * previously reserved. However we must not fail because we're in
2348 * writeback and there is nothing we can do about it so it might result
2349 * in data loss. So use reserved blocks to allocate metadata if
2352 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2353 * the blocks in question are delalloc blocks. This indicates
2354 * that the blocks and quotas has already been checked when
2355 * the data was copied into the page cache.
2357 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2358 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2359 EXT4_GET_BLOCKS_IO_SUBMIT;
2360 dioread_nolock = ext4_should_dioread_nolock(inode);
2362 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2363 if (map->m_flags & (1 << BH_Delay))
2364 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2366 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2369 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2370 if (!mpd->io_submit.io_end->handle &&
2371 ext4_handle_valid(handle)) {
2372 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2373 handle->h_rsv_handle = NULL;
2375 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2378 BUG_ON(map->m_len == 0);
2383 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2384 * mpd->len and submit pages underlying it for IO
2386 * @handle - handle for journal operations
2387 * @mpd - extent to map
2388 * @give_up_on_write - we set this to true iff there is a fatal error and there
2389 * is no hope of writing the data. The caller should discard
2390 * dirty pages to avoid infinite loops.
2392 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2393 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2394 * them to initialized or split the described range from larger unwritten
2395 * extent. Note that we need not map all the described range since allocation
2396 * can return less blocks or the range is covered by more unwritten extents. We
2397 * cannot map more because we are limited by reserved transaction credits. On
2398 * the other hand we always make sure that the last touched page is fully
2399 * mapped so that it can be written out (and thus forward progress is
2400 * guaranteed). After mapping we submit all mapped pages for IO.
2402 static int mpage_map_and_submit_extent(handle_t *handle,
2403 struct mpage_da_data *mpd,
2404 bool *give_up_on_write)
2406 struct inode *inode = mpd->inode;
2407 struct ext4_map_blocks *map = &mpd->map;
2411 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2412 struct ext4_io_end_vec *io_end_vec;
2414 io_end_vec = ext4_alloc_io_end_vec(io_end);
2415 if (IS_ERR(io_end_vec))
2416 return PTR_ERR(io_end_vec);
2417 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2419 err = mpage_map_one_extent(handle, mpd);
2421 struct super_block *sb = inode->i_sb;
2423 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2424 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2425 goto invalidate_dirty_pages;
2427 * Let the uper layers retry transient errors.
2428 * In the case of ENOSPC, if ext4_count_free_blocks()
2429 * is non-zero, a commit should free up blocks.
2431 if ((err == -ENOMEM) ||
2432 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434 goto update_disksize;
2437 ext4_msg(sb, KERN_CRIT,
2438 "Delayed block allocation failed for "
2439 "inode %lu at logical offset %llu with"
2440 " max blocks %u with error %d",
2442 (unsigned long long)map->m_lblk,
2443 (unsigned)map->m_len, -err);
2444 ext4_msg(sb, KERN_CRIT,
2445 "This should not happen!! Data will "
2448 ext4_print_free_blocks(inode);
2449 invalidate_dirty_pages:
2450 *give_up_on_write = true;
2455 * Update buffer state, submit mapped pages, and get us new
2458 err = mpage_map_and_submit_buffers(mpd);
2460 goto update_disksize;
2461 } while (map->m_len);
2465 * Update on-disk size after IO is submitted. Races with
2466 * truncate are avoided by checking i_size under i_data_sem.
2468 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2469 if (disksize > EXT4_I(inode)->i_disksize) {
2473 down_write(&EXT4_I(inode)->i_data_sem);
2474 i_size = i_size_read(inode);
2475 if (disksize > i_size)
2477 if (disksize > EXT4_I(inode)->i_disksize)
2478 EXT4_I(inode)->i_disksize = disksize;
2479 up_write(&EXT4_I(inode)->i_data_sem);
2480 err2 = ext4_mark_inode_dirty(handle, inode);
2482 ext4_error(inode->i_sb,
2483 "Failed to mark inode %lu dirty",
2492 * Calculate the total number of credits to reserve for one writepages
2493 * iteration. This is called from ext4_writepages(). We map an extent of
2494 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2495 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2496 * bpp - 1 blocks in bpp different extents.
2498 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500 int bpp = ext4_journal_blocks_per_page(inode);
2502 return ext4_meta_trans_blocks(inode,
2503 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2507 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2508 * and underlying extent to map
2510 * @mpd - where to look for pages
2512 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2513 * IO immediately. When we find a page which isn't mapped we start accumulating
2514 * extent of buffers underlying these pages that needs mapping (formed by
2515 * either delayed or unwritten buffers). We also lock the pages containing
2516 * these buffers. The extent found is returned in @mpd structure (starting at
2517 * mpd->lblk with length mpd->len blocks).
2519 * Note that this function can attach bios to one io_end structure which are
2520 * neither logically nor physically contiguous. Although it may seem as an
2521 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2522 * case as we need to track IO to all buffers underlying a page in one io_end.
2524 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526 struct address_space *mapping = mpd->inode->i_mapping;
2527 struct pagevec pvec;
2528 unsigned int nr_pages;
2529 long left = mpd->wbc->nr_to_write;
2530 pgoff_t index = mpd->first_page;
2531 pgoff_t end = mpd->last_page;
2534 int blkbits = mpd->inode->i_blkbits;
2536 struct buffer_head *head;
2538 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2539 tag = PAGECACHE_TAG_TOWRITE;
2541 tag = PAGECACHE_TAG_DIRTY;
2543 pagevec_init(&pvec);
2545 mpd->next_page = index;
2546 while (index <= end) {
2547 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2552 for (i = 0; i < nr_pages; i++) {
2553 struct page *page = pvec.pages[i];
2556 * Accumulated enough dirty pages? This doesn't apply
2557 * to WB_SYNC_ALL mode. For integrity sync we have to
2558 * keep going because someone may be concurrently
2559 * dirtying pages, and we might have synced a lot of
2560 * newly appeared dirty pages, but have not synced all
2561 * of the old dirty pages.
2563 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2566 /* If we can't merge this page, we are done. */
2567 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2572 * If the page is no longer dirty, or its mapping no
2573 * longer corresponds to inode we are writing (which
2574 * means it has been truncated or invalidated), or the
2575 * page is already under writeback and we are not doing
2576 * a data integrity writeback, skip the page
2578 if (!PageDirty(page) ||
2579 (PageWriteback(page) &&
2580 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2581 unlikely(page->mapping != mapping)) {
2586 wait_on_page_writeback(page);
2587 BUG_ON(PageWriteback(page));
2589 if (mpd->map.m_len == 0)
2590 mpd->first_page = page->index;
2591 mpd->next_page = page->index + 1;
2592 /* Add all dirty buffers to mpd */
2593 lblk = ((ext4_lblk_t)page->index) <<
2594 (PAGE_SHIFT - blkbits);
2595 head = page_buffers(page);
2596 err = mpage_process_page_bufs(mpd, head, head, lblk);
2602 pagevec_release(&pvec);
2607 pagevec_release(&pvec);
2611 static int ext4_writepages(struct address_space *mapping,
2612 struct writeback_control *wbc)
2614 pgoff_t writeback_index = 0;
2615 long nr_to_write = wbc->nr_to_write;
2616 int range_whole = 0;
2618 handle_t *handle = NULL;
2619 struct mpage_da_data mpd;
2620 struct inode *inode = mapping->host;
2621 int needed_blocks, rsv_blocks = 0, ret = 0;
2622 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2624 struct blk_plug plug;
2625 bool give_up_on_write = false;
2627 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2630 percpu_down_read(&sbi->s_journal_flag_rwsem);
2631 trace_ext4_writepages(inode, wbc);
2634 * No pages to write? This is mainly a kludge to avoid starting
2635 * a transaction for special inodes like journal inode on last iput()
2636 * because that could violate lock ordering on umount
2638 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2639 goto out_writepages;
2641 if (ext4_should_journal_data(inode)) {
2642 ret = generic_writepages(mapping, wbc);
2643 goto out_writepages;
2647 * If the filesystem has aborted, it is read-only, so return
2648 * right away instead of dumping stack traces later on that
2649 * will obscure the real source of the problem. We test
2650 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2651 * the latter could be true if the filesystem is mounted
2652 * read-only, and in that case, ext4_writepages should
2653 * *never* be called, so if that ever happens, we would want
2656 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2657 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2659 goto out_writepages;
2663 * If we have inline data and arrive here, it means that
2664 * we will soon create the block for the 1st page, so
2665 * we'd better clear the inline data here.
2667 if (ext4_has_inline_data(inode)) {
2668 /* Just inode will be modified... */
2669 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2670 if (IS_ERR(handle)) {
2671 ret = PTR_ERR(handle);
2672 goto out_writepages;
2674 BUG_ON(ext4_test_inode_state(inode,
2675 EXT4_STATE_MAY_INLINE_DATA));
2676 ext4_destroy_inline_data(handle, inode);
2677 ext4_journal_stop(handle);
2680 if (ext4_should_dioread_nolock(inode)) {
2682 * We may need to convert up to one extent per block in
2683 * the page and we may dirty the inode.
2685 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2686 PAGE_SIZE >> inode->i_blkbits);
2689 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2692 if (wbc->range_cyclic) {
2693 writeback_index = mapping->writeback_index;
2694 if (writeback_index)
2696 mpd.first_page = writeback_index;
2699 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2700 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2705 ext4_io_submit_init(&mpd.io_submit, wbc);
2707 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2708 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2710 blk_start_plug(&plug);
2713 * First writeback pages that don't need mapping - we can avoid
2714 * starting a transaction unnecessarily and also avoid being blocked
2715 * in the block layer on device congestion while having transaction
2719 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2720 if (!mpd.io_submit.io_end) {
2724 ret = mpage_prepare_extent_to_map(&mpd);
2725 /* Unlock pages we didn't use */
2726 mpage_release_unused_pages(&mpd, false);
2727 /* Submit prepared bio */
2728 ext4_io_submit(&mpd.io_submit);
2729 ext4_put_io_end_defer(mpd.io_submit.io_end);
2730 mpd.io_submit.io_end = NULL;
2734 while (!done && mpd.first_page <= mpd.last_page) {
2735 /* For each extent of pages we use new io_end */
2736 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2737 if (!mpd.io_submit.io_end) {
2743 * We have two constraints: We find one extent to map and we
2744 * must always write out whole page (makes a difference when
2745 * blocksize < pagesize) so that we don't block on IO when we
2746 * try to write out the rest of the page. Journalled mode is
2747 * not supported by delalloc.
2749 BUG_ON(ext4_should_journal_data(inode));
2750 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2752 /* start a new transaction */
2753 handle = ext4_journal_start_with_reserve(inode,
2754 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2755 if (IS_ERR(handle)) {
2756 ret = PTR_ERR(handle);
2757 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2758 "%ld pages, ino %lu; err %d", __func__,
2759 wbc->nr_to_write, inode->i_ino, ret);
2760 /* Release allocated io_end */
2761 ext4_put_io_end(mpd.io_submit.io_end);
2762 mpd.io_submit.io_end = NULL;
2767 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768 ret = mpage_prepare_extent_to_map(&mpd);
2771 ret = mpage_map_and_submit_extent(handle, &mpd,
2775 * We scanned the whole range (or exhausted
2776 * nr_to_write), submitted what was mapped and
2777 * didn't find anything needing mapping. We are
2784 * Caution: If the handle is synchronous,
2785 * ext4_journal_stop() can wait for transaction commit
2786 * to finish which may depend on writeback of pages to
2787 * complete or on page lock to be released. In that
2788 * case, we have to wait until after after we have
2789 * submitted all the IO, released page locks we hold,
2790 * and dropped io_end reference (for extent conversion
2791 * to be able to complete) before stopping the handle.
2793 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794 ext4_journal_stop(handle);
2798 /* Unlock pages we didn't use */
2799 mpage_release_unused_pages(&mpd, give_up_on_write);
2800 /* Submit prepared bio */
2801 ext4_io_submit(&mpd.io_submit);
2804 * Drop our io_end reference we got from init. We have
2805 * to be careful and use deferred io_end finishing if
2806 * we are still holding the transaction as we can
2807 * release the last reference to io_end which may end
2808 * up doing unwritten extent conversion.
2811 ext4_put_io_end_defer(mpd.io_submit.io_end);
2812 ext4_journal_stop(handle);
2814 ext4_put_io_end(mpd.io_submit.io_end);
2815 mpd.io_submit.io_end = NULL;
2817 if (ret == -ENOSPC && sbi->s_journal) {
2819 * Commit the transaction which would
2820 * free blocks released in the transaction
2823 jbd2_journal_force_commit_nested(sbi->s_journal);
2827 /* Fatal error - ENOMEM, EIO... */
2832 blk_finish_plug(&plug);
2833 if (!ret && !cycled && wbc->nr_to_write > 0) {
2835 mpd.last_page = writeback_index - 1;
2841 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2843 * Set the writeback_index so that range_cyclic
2844 * mode will write it back later
2846 mapping->writeback_index = mpd.first_page;
2849 trace_ext4_writepages_result(inode, wbc, ret,
2850 nr_to_write - wbc->nr_to_write);
2851 percpu_up_read(&sbi->s_journal_flag_rwsem);
2855 static int ext4_dax_writepages(struct address_space *mapping,
2856 struct writeback_control *wbc)
2859 long nr_to_write = wbc->nr_to_write;
2860 struct inode *inode = mapping->host;
2861 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2863 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2866 percpu_down_read(&sbi->s_journal_flag_rwsem);
2867 trace_ext4_writepages(inode, wbc);
2869 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2870 trace_ext4_writepages_result(inode, wbc, ret,
2871 nr_to_write - wbc->nr_to_write);
2872 percpu_up_read(&sbi->s_journal_flag_rwsem);
2876 static int ext4_nonda_switch(struct super_block *sb)
2878 s64 free_clusters, dirty_clusters;
2879 struct ext4_sb_info *sbi = EXT4_SB(sb);
2882 * switch to non delalloc mode if we are running low
2883 * on free block. The free block accounting via percpu
2884 * counters can get slightly wrong with percpu_counter_batch getting
2885 * accumulated on each CPU without updating global counters
2886 * Delalloc need an accurate free block accounting. So switch
2887 * to non delalloc when we are near to error range.
2890 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2892 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2894 * Start pushing delalloc when 1/2 of free blocks are dirty.
2896 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2899 if (2 * free_clusters < 3 * dirty_clusters ||
2900 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2902 * free block count is less than 150% of dirty blocks
2903 * or free blocks is less than watermark
2910 /* We always reserve for an inode update; the superblock could be there too */
2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2913 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2916 if (pos + len <= 0x7fffffffULL)
2919 /* We might need to update the superblock to set LARGE_FILE */
2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924 loff_t pos, unsigned len, unsigned flags,
2925 struct page **pagep, void **fsdata)
2927 int ret, retries = 0;
2930 struct inode *inode = mapping->host;
2933 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2936 index = pos >> PAGE_SHIFT;
2938 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939 ext4_verity_in_progress(inode)) {
2940 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941 return ext4_write_begin(file, mapping, pos,
2942 len, flags, pagep, fsdata);
2944 *fsdata = (void *)0;
2945 trace_ext4_da_write_begin(inode, pos, len, flags);
2947 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948 ret = ext4_da_write_inline_data_begin(mapping, inode,
2958 * grab_cache_page_write_begin() can take a long time if the
2959 * system is thrashing due to memory pressure, or if the page
2960 * is being written back. So grab it first before we start
2961 * the transaction handle. This also allows us to allocate
2962 * the page (if needed) without using GFP_NOFS.
2965 page = grab_cache_page_write_begin(mapping, index, flags);
2971 * With delayed allocation, we don't log the i_disksize update
2972 * if there is delayed block allocation. But we still need
2973 * to journalling the i_disksize update if writes to the end
2974 * of file which has an already mapped buffer.
2977 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978 ext4_da_write_credits(inode, pos, len));
2979 if (IS_ERR(handle)) {
2981 return PTR_ERR(handle);
2985 if (page->mapping != mapping) {
2986 /* The page got truncated from under us */
2989 ext4_journal_stop(handle);
2992 /* In case writeback began while the page was unlocked */
2993 wait_for_stable_page(page);
2995 #ifdef CONFIG_FS_ENCRYPTION
2996 ret = ext4_block_write_begin(page, pos, len,
2997 ext4_da_get_block_prep);
2999 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3003 ext4_journal_stop(handle);
3005 * block_write_begin may have instantiated a few blocks
3006 * outside i_size. Trim these off again. Don't need
3007 * i_size_read because we hold i_mutex.
3009 if (pos + len > inode->i_size)
3010 ext4_truncate_failed_write(inode);
3012 if (ret == -ENOSPC &&
3013 ext4_should_retry_alloc(inode->i_sb, &retries))
3025 * Check if we should update i_disksize
3026 * when write to the end of file but not require block allocation
3028 static int ext4_da_should_update_i_disksize(struct page *page,
3029 unsigned long offset)
3031 struct buffer_head *bh;
3032 struct inode *inode = page->mapping->host;
3036 bh = page_buffers(page);
3037 idx = offset >> inode->i_blkbits;
3039 for (i = 0; i < idx; i++)
3040 bh = bh->b_this_page;
3042 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3047 static int ext4_da_write_end(struct file *file,
3048 struct address_space *mapping,
3049 loff_t pos, unsigned len, unsigned copied,
3050 struct page *page, void *fsdata)
3052 struct inode *inode = mapping->host;
3054 handle_t *handle = ext4_journal_current_handle();
3056 unsigned long start, end;
3057 int write_mode = (int)(unsigned long)fsdata;
3059 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060 return ext4_write_end(file, mapping, pos,
3061 len, copied, page, fsdata);
3063 trace_ext4_da_write_end(inode, pos, len, copied);
3064 start = pos & (PAGE_SIZE - 1);
3065 end = start + copied - 1;
3068 * generic_write_end() will run mark_inode_dirty() if i_size
3069 * changes. So let's piggyback the i_disksize mark_inode_dirty
3072 new_i_size = pos + copied;
3073 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074 if (ext4_has_inline_data(inode) ||
3075 ext4_da_should_update_i_disksize(page, end)) {
3076 ext4_update_i_disksize(inode, new_i_size);
3077 /* We need to mark inode dirty even if
3078 * new_i_size is less that inode->i_size
3079 * bu greater than i_disksize.(hint delalloc)
3081 ext4_mark_inode_dirty(handle, inode);
3085 if (write_mode != CONVERT_INLINE_DATA &&
3086 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087 ext4_has_inline_data(inode))
3088 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3091 ret2 = generic_write_end(file, mapping, pos, len, copied,
3097 ret2 = ext4_journal_stop(handle);
3101 return ret ? ret : copied;
3105 * Force all delayed allocation blocks to be allocated for a given inode.
3107 int ext4_alloc_da_blocks(struct inode *inode)
3109 trace_ext4_alloc_da_blocks(inode);
3111 if (!EXT4_I(inode)->i_reserved_data_blocks)
3115 * We do something simple for now. The filemap_flush() will
3116 * also start triggering a write of the data blocks, which is
3117 * not strictly speaking necessary (and for users of
3118 * laptop_mode, not even desirable). However, to do otherwise
3119 * would require replicating code paths in:
3121 * ext4_writepages() ->
3122 * write_cache_pages() ---> (via passed in callback function)
3123 * __mpage_da_writepage() -->
3124 * mpage_add_bh_to_extent()
3125 * mpage_da_map_blocks()
3127 * The problem is that write_cache_pages(), located in
3128 * mm/page-writeback.c, marks pages clean in preparation for
3129 * doing I/O, which is not desirable if we're not planning on
3132 * We could call write_cache_pages(), and then redirty all of
3133 * the pages by calling redirty_page_for_writepage() but that
3134 * would be ugly in the extreme. So instead we would need to
3135 * replicate parts of the code in the above functions,
3136 * simplifying them because we wouldn't actually intend to
3137 * write out the pages, but rather only collect contiguous
3138 * logical block extents, call the multi-block allocator, and
3139 * then update the buffer heads with the block allocations.
3141 * For now, though, we'll cheat by calling filemap_flush(),
3142 * which will map the blocks, and start the I/O, but not
3143 * actually wait for the I/O to complete.
3145 return filemap_flush(inode->i_mapping);
3149 * bmap() is special. It gets used by applications such as lilo and by
3150 * the swapper to find the on-disk block of a specific piece of data.
3152 * Naturally, this is dangerous if the block concerned is still in the
3153 * journal. If somebody makes a swapfile on an ext4 data-journaling
3154 * filesystem and enables swap, then they may get a nasty shock when the
3155 * data getting swapped to that swapfile suddenly gets overwritten by
3156 * the original zero's written out previously to the journal and
3157 * awaiting writeback in the kernel's buffer cache.
3159 * So, if we see any bmap calls here on a modified, data-journaled file,
3160 * take extra steps to flush any blocks which might be in the cache.
3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164 struct inode *inode = mapping->host;
3169 * We can get here for an inline file via the FIBMAP ioctl
3171 if (ext4_has_inline_data(inode))
3174 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175 test_opt(inode->i_sb, DELALLOC)) {
3177 * With delalloc we want to sync the file
3178 * so that we can make sure we allocate
3181 filemap_write_and_wait(mapping);
3184 if (EXT4_JOURNAL(inode) &&
3185 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3187 * This is a REALLY heavyweight approach, but the use of
3188 * bmap on dirty files is expected to be extremely rare:
3189 * only if we run lilo or swapon on a freshly made file
3190 * do we expect this to happen.
3192 * (bmap requires CAP_SYS_RAWIO so this does not
3193 * represent an unprivileged user DOS attack --- we'd be
3194 * in trouble if mortal users could trigger this path at
3197 * NB. EXT4_STATE_JDATA is not set on files other than
3198 * regular files. If somebody wants to bmap a directory
3199 * or symlink and gets confused because the buffer
3200 * hasn't yet been flushed to disk, they deserve
3201 * everything they get.
3204 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205 journal = EXT4_JOURNAL(inode);
3206 jbd2_journal_lock_updates(journal);
3207 err = jbd2_journal_flush(journal);
3208 jbd2_journal_unlock_updates(journal);
3214 return generic_block_bmap(mapping, block, ext4_get_block);
3217 static int ext4_readpage(struct file *file, struct page *page)
3220 struct inode *inode = page->mapping->host;
3222 trace_ext4_readpage(page);
3224 if (ext4_has_inline_data(inode))
3225 ret = ext4_readpage_inline(inode, page);
3228 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3235 ext4_readpages(struct file *file, struct address_space *mapping,
3236 struct list_head *pages, unsigned nr_pages)
3238 struct inode *inode = mapping->host;
3240 /* If the file has inline data, no need to do readpages. */
3241 if (ext4_has_inline_data(inode))
3244 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3247 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3248 unsigned int length)
3250 trace_ext4_invalidatepage(page, offset, length);
3252 /* No journalling happens on data buffers when this function is used */
3253 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3255 block_invalidatepage(page, offset, length);
3258 static int __ext4_journalled_invalidatepage(struct page *page,
3259 unsigned int offset,
3260 unsigned int length)
3262 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3264 trace_ext4_journalled_invalidatepage(page, offset, length);
3267 * If it's a full truncate we just forget about the pending dirtying
3269 if (offset == 0 && length == PAGE_SIZE)
3270 ClearPageChecked(page);
3272 return jbd2_journal_invalidatepage(journal, page, offset, length);
3275 /* Wrapper for aops... */
3276 static void ext4_journalled_invalidatepage(struct page *page,
3277 unsigned int offset,
3278 unsigned int length)
3280 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3283 static int ext4_releasepage(struct page *page, gfp_t wait)
3285 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3287 trace_ext4_releasepage(page);
3289 /* Page has dirty journalled data -> cannot release */
3290 if (PageChecked(page))
3293 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3295 return try_to_free_buffers(page);
3298 static bool ext4_inode_datasync_dirty(struct inode *inode)
3300 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3303 return !jbd2_transaction_committed(journal,
3304 EXT4_I(inode)->i_datasync_tid);
3305 /* Any metadata buffers to write? */
3306 if (!list_empty(&inode->i_mapping->private_list))
3308 return inode->i_state & I_DIRTY_DATASYNC;
3311 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3312 struct ext4_map_blocks *map, loff_t offset,
3315 u8 blkbits = inode->i_blkbits;
3318 * Writes that span EOF might trigger an I/O size update on completion,
3319 * so consider them to be dirty for the purpose of O_DSYNC, even if
3320 * there is no other metadata changes being made or are pending.
3323 if (ext4_inode_datasync_dirty(inode) ||
3324 offset + length > i_size_read(inode))
3325 iomap->flags |= IOMAP_F_DIRTY;
3327 if (map->m_flags & EXT4_MAP_NEW)
3328 iomap->flags |= IOMAP_F_NEW;
3330 iomap->bdev = inode->i_sb->s_bdev;
3331 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3332 iomap->offset = (u64) map->m_lblk << blkbits;
3333 iomap->length = (u64) map->m_len << blkbits;
3336 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3337 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3338 * set. In order for any allocated unwritten extents to be converted
3339 * into written extents correctly within the ->end_io() handler, we
3340 * need to ensure that the iomap->type is set appropriately. Hence, the
3341 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3344 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3345 iomap->type = IOMAP_UNWRITTEN;
3346 iomap->addr = (u64) map->m_pblk << blkbits;
3347 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3348 iomap->type = IOMAP_MAPPED;
3349 iomap->addr = (u64) map->m_pblk << blkbits;
3351 iomap->type = IOMAP_HOLE;
3352 iomap->addr = IOMAP_NULL_ADDR;
3356 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3360 u8 blkbits = inode->i_blkbits;
3361 int ret, dio_credits, m_flags = 0, retries = 0;
3364 * Trim the mapping request to the maximum value that we can map at
3365 * once for direct I/O.
3367 if (map->m_len > DIO_MAX_BLOCKS)
3368 map->m_len = DIO_MAX_BLOCKS;
3369 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3373 * Either we allocate blocks and then don't get an unwritten extent, so
3374 * in that case we have reserved enough credits. Or, the blocks are
3375 * already allocated and unwritten. In that case, the extent conversion
3376 * fits into the credits as well.
3378 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380 return PTR_ERR(handle);
3383 * DAX and direct I/O are the only two operations that are currently
3384 * supported with IOMAP_WRITE.
3386 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390 * We use i_size instead of i_disksize here because delalloc writeback
3391 * can complete at any point during the I/O and subsequently push the
3392 * i_disksize out to i_size. This could be beyond where direct I/O is
3393 * happening and thus expose allocated blocks to direct I/O reads.
3395 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3396 m_flags = EXT4_GET_BLOCKS_CREATE;
3397 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3398 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400 ret = ext4_map_blocks(handle, inode, map, m_flags);
3403 * We cannot fill holes in indirect tree based inodes as that could
3404 * expose stale data in the case of a crash. Use the magic error code
3405 * to fallback to buffered I/O.
3407 if (!m_flags && !ret)
3410 ext4_journal_stop(handle);
3411 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3418 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3419 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3422 struct ext4_map_blocks map;
3423 u8 blkbits = inode->i_blkbits;
3425 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3428 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 * Calculate the first and last logical blocks respectively.
3434 map.m_lblk = offset >> blkbits;
3435 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3436 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438 if (flags & IOMAP_WRITE)
3439 ret = ext4_iomap_alloc(inode, &map, flags);
3441 ret = ext4_map_blocks(NULL, inode, &map, 0);
3446 ext4_set_iomap(inode, iomap, &map, offset, length);
3451 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3452 ssize_t written, unsigned flags, struct iomap *iomap)
3455 * Check to see whether an error occurred while writing out the data to
3456 * the allocated blocks. If so, return the magic error code so that we
3457 * fallback to buffered I/O and attempt to complete the remainder of
3458 * the I/O. Any blocks that may have been allocated in preparation for
3459 * the direct I/O will be reused during buffered I/O.
3461 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3467 const struct iomap_ops ext4_iomap_ops = {
3468 .iomap_begin = ext4_iomap_begin,
3469 .iomap_end = ext4_iomap_end,
3472 static bool ext4_iomap_is_delalloc(struct inode *inode,
3473 struct ext4_map_blocks *map)
3475 struct extent_status es;
3476 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3478 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3479 map->m_lblk, end, &es);
3481 if (!es.es_len || es.es_lblk > end)
3484 if (es.es_lblk > map->m_lblk) {
3485 map->m_len = es.es_lblk - map->m_lblk;
3489 offset = map->m_lblk - es.es_lblk;
3490 map->m_len = es.es_len - offset;
3495 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3496 loff_t length, unsigned int flags,
3497 struct iomap *iomap, struct iomap *srcmap)
3500 bool delalloc = false;
3501 struct ext4_map_blocks map;
3502 u8 blkbits = inode->i_blkbits;
3504 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3507 if (ext4_has_inline_data(inode)) {
3508 ret = ext4_inline_data_iomap(inode, iomap);
3509 if (ret != -EAGAIN) {
3510 if (ret == 0 && offset >= iomap->length)
3517 * Calculate the first and last logical block respectively.
3519 map.m_lblk = offset >> blkbits;
3520 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3521 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3523 ret = ext4_map_blocks(NULL, inode, &map, 0);
3527 delalloc = ext4_iomap_is_delalloc(inode, &map);
3529 ext4_set_iomap(inode, iomap, &map, offset, length);
3530 if (delalloc && iomap->type == IOMAP_HOLE)
3531 iomap->type = IOMAP_DELALLOC;
3536 const struct iomap_ops ext4_iomap_report_ops = {
3537 .iomap_begin = ext4_iomap_begin_report,
3541 * Pages can be marked dirty completely asynchronously from ext4's journalling
3542 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3543 * much here because ->set_page_dirty is called under VFS locks. The page is
3544 * not necessarily locked.
3546 * We cannot just dirty the page and leave attached buffers clean, because the
3547 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3548 * or jbddirty because all the journalling code will explode.
3550 * So what we do is to mark the page "pending dirty" and next time writepage
3551 * is called, propagate that into the buffers appropriately.
3553 static int ext4_journalled_set_page_dirty(struct page *page)
3555 SetPageChecked(page);
3556 return __set_page_dirty_nobuffers(page);
3559 static int ext4_set_page_dirty(struct page *page)
3561 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3562 WARN_ON_ONCE(!page_has_buffers(page));
3563 return __set_page_dirty_buffers(page);
3566 static const struct address_space_operations ext4_aops = {
3567 .readpage = ext4_readpage,
3568 .readpages = ext4_readpages,
3569 .writepage = ext4_writepage,
3570 .writepages = ext4_writepages,
3571 .write_begin = ext4_write_begin,
3572 .write_end = ext4_write_end,
3573 .set_page_dirty = ext4_set_page_dirty,
3575 .invalidatepage = ext4_invalidatepage,
3576 .releasepage = ext4_releasepage,
3577 .direct_IO = noop_direct_IO,
3578 .migratepage = buffer_migrate_page,
3579 .is_partially_uptodate = block_is_partially_uptodate,
3580 .error_remove_page = generic_error_remove_page,
3583 static const struct address_space_operations ext4_journalled_aops = {
3584 .readpage = ext4_readpage,
3585 .readpages = ext4_readpages,
3586 .writepage = ext4_writepage,
3587 .writepages = ext4_writepages,
3588 .write_begin = ext4_write_begin,
3589 .write_end = ext4_journalled_write_end,
3590 .set_page_dirty = ext4_journalled_set_page_dirty,
3592 .invalidatepage = ext4_journalled_invalidatepage,
3593 .releasepage = ext4_releasepage,
3594 .direct_IO = noop_direct_IO,
3595 .is_partially_uptodate = block_is_partially_uptodate,
3596 .error_remove_page = generic_error_remove_page,
3599 static const struct address_space_operations ext4_da_aops = {
3600 .readpage = ext4_readpage,
3601 .readpages = ext4_readpages,
3602 .writepage = ext4_writepage,
3603 .writepages = ext4_writepages,
3604 .write_begin = ext4_da_write_begin,
3605 .write_end = ext4_da_write_end,
3606 .set_page_dirty = ext4_set_page_dirty,
3608 .invalidatepage = ext4_invalidatepage,
3609 .releasepage = ext4_releasepage,
3610 .direct_IO = noop_direct_IO,
3611 .migratepage = buffer_migrate_page,
3612 .is_partially_uptodate = block_is_partially_uptodate,
3613 .error_remove_page = generic_error_remove_page,
3616 static const struct address_space_operations ext4_dax_aops = {
3617 .writepages = ext4_dax_writepages,
3618 .direct_IO = noop_direct_IO,
3619 .set_page_dirty = noop_set_page_dirty,
3621 .invalidatepage = noop_invalidatepage,
3624 void ext4_set_aops(struct inode *inode)
3626 switch (ext4_inode_journal_mode(inode)) {
3627 case EXT4_INODE_ORDERED_DATA_MODE:
3628 case EXT4_INODE_WRITEBACK_DATA_MODE:
3630 case EXT4_INODE_JOURNAL_DATA_MODE:
3631 inode->i_mapping->a_ops = &ext4_journalled_aops;
3637 inode->i_mapping->a_ops = &ext4_dax_aops;
3638 else if (test_opt(inode->i_sb, DELALLOC))
3639 inode->i_mapping->a_ops = &ext4_da_aops;
3641 inode->i_mapping->a_ops = &ext4_aops;
3644 static int __ext4_block_zero_page_range(handle_t *handle,
3645 struct address_space *mapping, loff_t from, loff_t length)
3647 ext4_fsblk_t index = from >> PAGE_SHIFT;
3648 unsigned offset = from & (PAGE_SIZE-1);
3649 unsigned blocksize, pos;
3651 struct inode *inode = mapping->host;
3652 struct buffer_head *bh;
3656 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3657 mapping_gfp_constraint(mapping, ~__GFP_FS));
3661 blocksize = inode->i_sb->s_blocksize;
3663 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3665 if (!page_has_buffers(page))
3666 create_empty_buffers(page, blocksize, 0);
3668 /* Find the buffer that contains "offset" */
3669 bh = page_buffers(page);
3671 while (offset >= pos) {
3672 bh = bh->b_this_page;
3676 if (buffer_freed(bh)) {
3677 BUFFER_TRACE(bh, "freed: skip");
3680 if (!buffer_mapped(bh)) {
3681 BUFFER_TRACE(bh, "unmapped");
3682 ext4_get_block(inode, iblock, bh, 0);
3683 /* unmapped? It's a hole - nothing to do */
3684 if (!buffer_mapped(bh)) {
3685 BUFFER_TRACE(bh, "still unmapped");
3690 /* Ok, it's mapped. Make sure it's up-to-date */
3691 if (PageUptodate(page))
3692 set_buffer_uptodate(bh);
3694 if (!buffer_uptodate(bh)) {
3696 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3698 /* Uhhuh. Read error. Complain and punt. */
3699 if (!buffer_uptodate(bh))
3701 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3702 /* We expect the key to be set. */
3703 BUG_ON(!fscrypt_has_encryption_key(inode));
3704 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
3705 page, blocksize, bh_offset(bh)));
3708 if (ext4_should_journal_data(inode)) {
3709 BUFFER_TRACE(bh, "get write access");
3710 err = ext4_journal_get_write_access(handle, bh);
3714 zero_user(page, offset, length);
3715 BUFFER_TRACE(bh, "zeroed end of block");
3717 if (ext4_should_journal_data(inode)) {
3718 err = ext4_handle_dirty_metadata(handle, inode, bh);
3721 mark_buffer_dirty(bh);
3722 if (ext4_should_order_data(inode))
3723 err = ext4_jbd2_inode_add_write(handle, inode, from,
3734 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3735 * starting from file offset 'from'. The range to be zero'd must
3736 * be contained with in one block. If the specified range exceeds
3737 * the end of the block it will be shortened to end of the block
3738 * that cooresponds to 'from'
3740 static int ext4_block_zero_page_range(handle_t *handle,
3741 struct address_space *mapping, loff_t from, loff_t length)
3743 struct inode *inode = mapping->host;
3744 unsigned offset = from & (PAGE_SIZE-1);
3745 unsigned blocksize = inode->i_sb->s_blocksize;
3746 unsigned max = blocksize - (offset & (blocksize - 1));
3749 * correct length if it does not fall between
3750 * 'from' and the end of the block
3752 if (length > max || length < 0)
3755 if (IS_DAX(inode)) {
3756 return iomap_zero_range(inode, from, length, NULL,
3759 return __ext4_block_zero_page_range(handle, mapping, from, length);
3763 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3764 * up to the end of the block which corresponds to `from'.
3765 * This required during truncate. We need to physically zero the tail end
3766 * of that block so it doesn't yield old data if the file is later grown.
3768 static int ext4_block_truncate_page(handle_t *handle,
3769 struct address_space *mapping, loff_t from)
3771 unsigned offset = from & (PAGE_SIZE-1);
3774 struct inode *inode = mapping->host;
3776 /* If we are processing an encrypted inode during orphan list handling */
3777 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3780 blocksize = inode->i_sb->s_blocksize;
3781 length = blocksize - (offset & (blocksize - 1));
3783 return ext4_block_zero_page_range(handle, mapping, from, length);
3786 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3787 loff_t lstart, loff_t length)
3789 struct super_block *sb = inode->i_sb;
3790 struct address_space *mapping = inode->i_mapping;
3791 unsigned partial_start, partial_end;
3792 ext4_fsblk_t start, end;
3793 loff_t byte_end = (lstart + length - 1);
3796 partial_start = lstart & (sb->s_blocksize - 1);
3797 partial_end = byte_end & (sb->s_blocksize - 1);
3799 start = lstart >> sb->s_blocksize_bits;
3800 end = byte_end >> sb->s_blocksize_bits;
3802 /* Handle partial zero within the single block */
3804 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3805 err = ext4_block_zero_page_range(handle, mapping,
3809 /* Handle partial zero out on the start of the range */
3810 if (partial_start) {
3811 err = ext4_block_zero_page_range(handle, mapping,
3812 lstart, sb->s_blocksize);
3816 /* Handle partial zero out on the end of the range */
3817 if (partial_end != sb->s_blocksize - 1)
3818 err = ext4_block_zero_page_range(handle, mapping,
3819 byte_end - partial_end,
3824 int ext4_can_truncate(struct inode *inode)
3826 if (S_ISREG(inode->i_mode))
3828 if (S_ISDIR(inode->i_mode))
3830 if (S_ISLNK(inode->i_mode))
3831 return !ext4_inode_is_fast_symlink(inode);
3836 * We have to make sure i_disksize gets properly updated before we truncate
3837 * page cache due to hole punching or zero range. Otherwise i_disksize update
3838 * can get lost as it may have been postponed to submission of writeback but
3839 * that will never happen after we truncate page cache.
3841 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3845 loff_t size = i_size_read(inode);
3847 WARN_ON(!inode_is_locked(inode));
3848 if (offset > size || offset + len < size)
3851 if (EXT4_I(inode)->i_disksize >= size)
3854 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3856 return PTR_ERR(handle);
3857 ext4_update_i_disksize(inode, size);
3858 ext4_mark_inode_dirty(handle, inode);
3859 ext4_journal_stop(handle);
3864 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3866 up_write(&ei->i_mmap_sem);
3868 down_write(&ei->i_mmap_sem);
3871 int ext4_break_layouts(struct inode *inode)
3873 struct ext4_inode_info *ei = EXT4_I(inode);
3877 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3881 page = dax_layout_busy_page(inode->i_mapping);
3885 error = ___wait_var_event(&page->_refcount,
3886 atomic_read(&page->_refcount) == 1,
3887 TASK_INTERRUPTIBLE, 0, 0,
3888 ext4_wait_dax_page(ei));
3889 } while (error == 0);
3895 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3896 * associated with the given offset and length
3898 * @inode: File inode
3899 * @offset: The offset where the hole will begin
3900 * @len: The length of the hole
3902 * Returns: 0 on success or negative on failure
3905 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3907 struct super_block *sb = inode->i_sb;
3908 ext4_lblk_t first_block, stop_block;
3909 struct address_space *mapping = inode->i_mapping;
3910 loff_t first_block_offset, last_block_offset;
3912 unsigned int credits;
3915 if (!S_ISREG(inode->i_mode))
3918 trace_ext4_punch_hole(inode, offset, length, 0);
3920 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3921 if (ext4_has_inline_data(inode)) {
3922 down_write(&EXT4_I(inode)->i_mmap_sem);
3923 ret = ext4_convert_inline_data(inode);
3924 up_write(&EXT4_I(inode)->i_mmap_sem);
3930 * Write out all dirty pages to avoid race conditions
3931 * Then release them.
3933 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3934 ret = filemap_write_and_wait_range(mapping, offset,
3935 offset + length - 1);
3942 /* No need to punch hole beyond i_size */
3943 if (offset >= inode->i_size)
3947 * If the hole extends beyond i_size, set the hole
3948 * to end after the page that contains i_size
3950 if (offset + length > inode->i_size) {
3951 length = inode->i_size +
3952 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3956 if (offset & (sb->s_blocksize - 1) ||
3957 (offset + length) & (sb->s_blocksize - 1)) {
3959 * Attach jinode to inode for jbd2 if we do any zeroing of
3962 ret = ext4_inode_attach_jinode(inode);
3968 /* Wait all existing dio workers, newcomers will block on i_mutex */
3969 inode_dio_wait(inode);
3972 * Prevent page faults from reinstantiating pages we have released from
3975 down_write(&EXT4_I(inode)->i_mmap_sem);
3977 ret = ext4_break_layouts(inode);
3981 first_block_offset = round_up(offset, sb->s_blocksize);
3982 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3984 /* Now release the pages and zero block aligned part of pages*/
3985 if (last_block_offset > first_block_offset) {
3986 ret = ext4_update_disksize_before_punch(inode, offset, length);
3989 truncate_pagecache_range(inode, first_block_offset,
3993 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994 credits = ext4_writepage_trans_blocks(inode);
3996 credits = ext4_blocks_for_truncate(inode);
3997 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3998 if (IS_ERR(handle)) {
3999 ret = PTR_ERR(handle);
4000 ext4_std_error(sb, ret);
4004 ret = ext4_zero_partial_blocks(handle, inode, offset,
4009 first_block = (offset + sb->s_blocksize - 1) >>
4010 EXT4_BLOCK_SIZE_BITS(sb);
4011 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4013 /* If there are blocks to remove, do it */
4014 if (stop_block > first_block) {
4016 down_write(&EXT4_I(inode)->i_data_sem);
4017 ext4_discard_preallocations(inode);
4019 ret = ext4_es_remove_extent(inode, first_block,
4020 stop_block - first_block);
4022 up_write(&EXT4_I(inode)->i_data_sem);
4026 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4027 ret = ext4_ext_remove_space(inode, first_block,
4030 ret = ext4_ind_remove_space(handle, inode, first_block,
4033 up_write(&EXT4_I(inode)->i_data_sem);
4036 ext4_handle_sync(handle);
4038 inode->i_mtime = inode->i_ctime = current_time(inode);
4039 ext4_mark_inode_dirty(handle, inode);
4041 ext4_update_inode_fsync_trans(handle, inode, 1);
4043 ext4_journal_stop(handle);
4045 up_write(&EXT4_I(inode)->i_mmap_sem);
4047 inode_unlock(inode);
4051 int ext4_inode_attach_jinode(struct inode *inode)
4053 struct ext4_inode_info *ei = EXT4_I(inode);
4054 struct jbd2_inode *jinode;
4056 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4059 jinode = jbd2_alloc_inode(GFP_KERNEL);
4060 spin_lock(&inode->i_lock);
4063 spin_unlock(&inode->i_lock);
4066 ei->jinode = jinode;
4067 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4070 spin_unlock(&inode->i_lock);
4071 if (unlikely(jinode != NULL))
4072 jbd2_free_inode(jinode);
4079 * We block out ext4_get_block() block instantiations across the entire
4080 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4081 * simultaneously on behalf of the same inode.
4083 * As we work through the truncate and commit bits of it to the journal there
4084 * is one core, guiding principle: the file's tree must always be consistent on
4085 * disk. We must be able to restart the truncate after a crash.
4087 * The file's tree may be transiently inconsistent in memory (although it
4088 * probably isn't), but whenever we close off and commit a journal transaction,
4089 * the contents of (the filesystem + the journal) must be consistent and
4090 * restartable. It's pretty simple, really: bottom up, right to left (although
4091 * left-to-right works OK too).
4093 * Note that at recovery time, journal replay occurs *before* the restart of
4094 * truncate against the orphan inode list.
4096 * The committed inode has the new, desired i_size (which is the same as
4097 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4098 * that this inode's truncate did not complete and it will again call
4099 * ext4_truncate() to have another go. So there will be instantiated blocks
4100 * to the right of the truncation point in a crashed ext4 filesystem. But
4101 * that's fine - as long as they are linked from the inode, the post-crash
4102 * ext4_truncate() run will find them and release them.
4104 int ext4_truncate(struct inode *inode)
4106 struct ext4_inode_info *ei = EXT4_I(inode);
4107 unsigned int credits;
4110 struct address_space *mapping = inode->i_mapping;
4113 * There is a possibility that we're either freeing the inode
4114 * or it's a completely new inode. In those cases we might not
4115 * have i_mutex locked because it's not necessary.
4117 if (!(inode->i_state & (I_NEW|I_FREEING)))
4118 WARN_ON(!inode_is_locked(inode));
4119 trace_ext4_truncate_enter(inode);
4121 if (!ext4_can_truncate(inode))
4124 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4126 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4127 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4129 if (ext4_has_inline_data(inode)) {
4132 err = ext4_inline_data_truncate(inode, &has_inline);
4139 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4140 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4141 if (ext4_inode_attach_jinode(inode) < 0)
4145 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4146 credits = ext4_writepage_trans_blocks(inode);
4148 credits = ext4_blocks_for_truncate(inode);
4150 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4152 return PTR_ERR(handle);
4154 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4155 ext4_block_truncate_page(handle, mapping, inode->i_size);
4158 * We add the inode to the orphan list, so that if this
4159 * truncate spans multiple transactions, and we crash, we will
4160 * resume the truncate when the filesystem recovers. It also
4161 * marks the inode dirty, to catch the new size.
4163 * Implication: the file must always be in a sane, consistent
4164 * truncatable state while each transaction commits.
4166 err = ext4_orphan_add(handle, inode);
4170 down_write(&EXT4_I(inode)->i_data_sem);
4172 ext4_discard_preallocations(inode);
4174 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4175 err = ext4_ext_truncate(handle, inode);
4177 ext4_ind_truncate(handle, inode);
4179 up_write(&ei->i_data_sem);
4184 ext4_handle_sync(handle);
4188 * If this was a simple ftruncate() and the file will remain alive,
4189 * then we need to clear up the orphan record which we created above.
4190 * However, if this was a real unlink then we were called by
4191 * ext4_evict_inode(), and we allow that function to clean up the
4192 * orphan info for us.
4195 ext4_orphan_del(handle, inode);
4197 inode->i_mtime = inode->i_ctime = current_time(inode);
4198 ext4_mark_inode_dirty(handle, inode);
4199 ext4_journal_stop(handle);
4201 trace_ext4_truncate_exit(inode);
4206 * ext4_get_inode_loc returns with an extra refcount against the inode's
4207 * underlying buffer_head on success. If 'in_mem' is true, we have all
4208 * data in memory that is needed to recreate the on-disk version of this
4211 static int __ext4_get_inode_loc(struct inode *inode,
4212 struct ext4_iloc *iloc, int in_mem)
4214 struct ext4_group_desc *gdp;
4215 struct buffer_head *bh;
4216 struct super_block *sb = inode->i_sb;
4218 struct blk_plug plug;
4219 int inodes_per_block, inode_offset;
4222 if (inode->i_ino < EXT4_ROOT_INO ||
4223 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4224 return -EFSCORRUPTED;
4226 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4227 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4232 * Figure out the offset within the block group inode table
4234 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4235 inode_offset = ((inode->i_ino - 1) %
4236 EXT4_INODES_PER_GROUP(sb));
4237 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4238 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4240 bh = sb_getblk(sb, block);
4243 if (!buffer_uptodate(bh)) {
4247 * If the buffer has the write error flag, we have failed
4248 * to write out another inode in the same block. In this
4249 * case, we don't have to read the block because we may
4250 * read the old inode data successfully.
4252 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4253 set_buffer_uptodate(bh);
4255 if (buffer_uptodate(bh)) {
4256 /* someone brought it uptodate while we waited */
4262 * If we have all information of the inode in memory and this
4263 * is the only valid inode in the block, we need not read the
4267 struct buffer_head *bitmap_bh;
4270 start = inode_offset & ~(inodes_per_block - 1);
4272 /* Is the inode bitmap in cache? */
4273 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4274 if (unlikely(!bitmap_bh))
4278 * If the inode bitmap isn't in cache then the
4279 * optimisation may end up performing two reads instead
4280 * of one, so skip it.
4282 if (!buffer_uptodate(bitmap_bh)) {
4286 for (i = start; i < start + inodes_per_block; i++) {
4287 if (i == inode_offset)
4289 if (ext4_test_bit(i, bitmap_bh->b_data))
4293 if (i == start + inodes_per_block) {
4294 /* all other inodes are free, so skip I/O */
4295 memset(bh->b_data, 0, bh->b_size);
4296 set_buffer_uptodate(bh);
4304 * If we need to do any I/O, try to pre-readahead extra
4305 * blocks from the inode table.
4307 blk_start_plug(&plug);
4308 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4309 ext4_fsblk_t b, end, table;
4311 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4313 table = ext4_inode_table(sb, gdp);
4314 /* s_inode_readahead_blks is always a power of 2 */
4315 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4319 num = EXT4_INODES_PER_GROUP(sb);
4320 if (ext4_has_group_desc_csum(sb))
4321 num -= ext4_itable_unused_count(sb, gdp);
4322 table += num / inodes_per_block;
4326 sb_breadahead(sb, b++);
4330 * There are other valid inodes in the buffer, this inode
4331 * has in-inode xattrs, or we don't have this inode in memory.
4332 * Read the block from disk.
4334 trace_ext4_load_inode(inode);
4336 bh->b_end_io = end_buffer_read_sync;
4337 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4338 blk_finish_plug(&plug);
4340 if (!buffer_uptodate(bh)) {
4341 EXT4_ERROR_INODE_BLOCK(inode, block,
4342 "unable to read itable block");
4352 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4354 /* We have all inode data except xattrs in memory here. */
4355 return __ext4_get_inode_loc(inode, iloc,
4356 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4359 static bool ext4_should_use_dax(struct inode *inode)
4361 if (!test_opt(inode->i_sb, DAX))
4363 if (!S_ISREG(inode->i_mode))
4365 if (ext4_should_journal_data(inode))
4367 if (ext4_has_inline_data(inode))
4369 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4371 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4376 void ext4_set_inode_flags(struct inode *inode)
4378 unsigned int flags = EXT4_I(inode)->i_flags;
4379 unsigned int new_fl = 0;
4381 if (flags & EXT4_SYNC_FL)
4383 if (flags & EXT4_APPEND_FL)
4385 if (flags & EXT4_IMMUTABLE_FL)
4386 new_fl |= S_IMMUTABLE;
4387 if (flags & EXT4_NOATIME_FL)
4388 new_fl |= S_NOATIME;
4389 if (flags & EXT4_DIRSYNC_FL)
4390 new_fl |= S_DIRSYNC;
4391 if (ext4_should_use_dax(inode))
4393 if (flags & EXT4_ENCRYPT_FL)
4394 new_fl |= S_ENCRYPTED;
4395 if (flags & EXT4_CASEFOLD_FL)
4396 new_fl |= S_CASEFOLD;
4397 if (flags & EXT4_VERITY_FL)
4399 inode_set_flags(inode, new_fl,
4400 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4401 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4404 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4405 struct ext4_inode_info *ei)
4408 struct inode *inode = &(ei->vfs_inode);
4409 struct super_block *sb = inode->i_sb;
4411 if (ext4_has_feature_huge_file(sb)) {
4412 /* we are using combined 48 bit field */
4413 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4414 le32_to_cpu(raw_inode->i_blocks_lo);
4415 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4416 /* i_blocks represent file system block size */
4417 return i_blocks << (inode->i_blkbits - 9);
4422 return le32_to_cpu(raw_inode->i_blocks_lo);
4426 static inline int ext4_iget_extra_inode(struct inode *inode,
4427 struct ext4_inode *raw_inode,
4428 struct ext4_inode_info *ei)
4430 __le32 *magic = (void *)raw_inode +
4431 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4433 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4434 EXT4_INODE_SIZE(inode->i_sb) &&
4435 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4436 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4437 return ext4_find_inline_data_nolock(inode);
4439 EXT4_I(inode)->i_inline_off = 0;
4443 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4445 if (!ext4_has_feature_project(inode->i_sb))
4447 *projid = EXT4_I(inode)->i_projid;
4452 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4453 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4456 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4458 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4459 inode_set_iversion_raw(inode, val);
4461 inode_set_iversion_queried(inode, val);
4463 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4465 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4466 return inode_peek_iversion_raw(inode);
4468 return inode_peek_iversion(inode);
4471 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4472 ext4_iget_flags flags, const char *function,
4475 struct ext4_iloc iloc;
4476 struct ext4_inode *raw_inode;
4477 struct ext4_inode_info *ei;
4478 struct inode *inode;
4479 journal_t *journal = EXT4_SB(sb)->s_journal;
4487 if ((!(flags & EXT4_IGET_SPECIAL) &&
4488 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4489 (ino < EXT4_ROOT_INO) ||
4490 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4491 if (flags & EXT4_IGET_HANDLE)
4492 return ERR_PTR(-ESTALE);
4493 __ext4_error(sb, function, line,
4494 "inode #%lu: comm %s: iget: illegal inode #",
4495 ino, current->comm);
4496 return ERR_PTR(-EFSCORRUPTED);
4499 inode = iget_locked(sb, ino);
4501 return ERR_PTR(-ENOMEM);
4502 if (!(inode->i_state & I_NEW))
4508 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4511 raw_inode = ext4_raw_inode(&iloc);
4513 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4514 ext4_error_inode(inode, function, line, 0,
4515 "iget: root inode unallocated");
4516 ret = -EFSCORRUPTED;
4520 if ((flags & EXT4_IGET_HANDLE) &&
4521 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4526 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4527 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4528 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4529 EXT4_INODE_SIZE(inode->i_sb) ||
4530 (ei->i_extra_isize & 3)) {
4531 ext4_error_inode(inode, function, line, 0,
4532 "iget: bad extra_isize %u "
4535 EXT4_INODE_SIZE(inode->i_sb));
4536 ret = -EFSCORRUPTED;
4540 ei->i_extra_isize = 0;
4542 /* Precompute checksum seed for inode metadata */
4543 if (ext4_has_metadata_csum(sb)) {
4544 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4546 __le32 inum = cpu_to_le32(inode->i_ino);
4547 __le32 gen = raw_inode->i_generation;
4548 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4550 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4554 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4555 ext4_error_inode(inode, function, line, 0,
4556 "iget: checksum invalid");
4561 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4562 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4563 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4564 if (ext4_has_feature_project(sb) &&
4565 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4566 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4567 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4569 i_projid = EXT4_DEF_PROJID;
4571 if (!(test_opt(inode->i_sb, NO_UID32))) {
4572 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4573 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4575 i_uid_write(inode, i_uid);
4576 i_gid_write(inode, i_gid);
4577 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4578 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4580 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4581 ei->i_inline_off = 0;
4582 ei->i_dir_start_lookup = 0;
4583 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4584 /* We now have enough fields to check if the inode was active or not.
4585 * This is needed because nfsd might try to access dead inodes
4586 * the test is that same one that e2fsck uses
4587 * NeilBrown 1999oct15
4589 if (inode->i_nlink == 0) {
4590 if ((inode->i_mode == 0 ||
4591 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4592 ino != EXT4_BOOT_LOADER_INO) {
4593 /* this inode is deleted */
4597 /* The only unlinked inodes we let through here have
4598 * valid i_mode and are being read by the orphan
4599 * recovery code: that's fine, we're about to complete
4600 * the process of deleting those.
4601 * OR it is the EXT4_BOOT_LOADER_INO which is
4602 * not initialized on a new filesystem. */
4604 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4605 ext4_set_inode_flags(inode);
4606 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4607 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4608 if (ext4_has_feature_64bit(sb))
4610 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4611 inode->i_size = ext4_isize(sb, raw_inode);
4612 if ((size = i_size_read(inode)) < 0) {
4613 ext4_error_inode(inode, function, line, 0,
4614 "iget: bad i_size value: %lld", size);
4615 ret = -EFSCORRUPTED;
4618 ei->i_disksize = inode->i_size;
4620 ei->i_reserved_quota = 0;
4622 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4623 ei->i_block_group = iloc.block_group;
4624 ei->i_last_alloc_group = ~0;
4626 * NOTE! The in-memory inode i_data array is in little-endian order
4627 * even on big-endian machines: we do NOT byteswap the block numbers!
4629 for (block = 0; block < EXT4_N_BLOCKS; block++)
4630 ei->i_data[block] = raw_inode->i_block[block];
4631 INIT_LIST_HEAD(&ei->i_orphan);
4634 * Set transaction id's of transactions that have to be committed
4635 * to finish f[data]sync. We set them to currently running transaction
4636 * as we cannot be sure that the inode or some of its metadata isn't
4637 * part of the transaction - the inode could have been reclaimed and
4638 * now it is reread from disk.
4641 transaction_t *transaction;
4644 read_lock(&journal->j_state_lock);
4645 if (journal->j_running_transaction)
4646 transaction = journal->j_running_transaction;
4648 transaction = journal->j_committing_transaction;
4650 tid = transaction->t_tid;
4652 tid = journal->j_commit_sequence;
4653 read_unlock(&journal->j_state_lock);
4654 ei->i_sync_tid = tid;
4655 ei->i_datasync_tid = tid;
4658 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4659 if (ei->i_extra_isize == 0) {
4660 /* The extra space is currently unused. Use it. */
4661 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4662 ei->i_extra_isize = sizeof(struct ext4_inode) -
4663 EXT4_GOOD_OLD_INODE_SIZE;
4665 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4671 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4672 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4673 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4674 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4676 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4677 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4679 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4680 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4682 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4684 ext4_inode_set_iversion_queried(inode, ivers);
4688 if (ei->i_file_acl &&
4689 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4690 ext4_error_inode(inode, function, line, 0,
4691 "iget: bad extended attribute block %llu",
4693 ret = -EFSCORRUPTED;
4695 } else if (!ext4_has_inline_data(inode)) {
4696 /* validate the block references in the inode */
4697 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4698 (S_ISLNK(inode->i_mode) &&
4699 !ext4_inode_is_fast_symlink(inode))) {
4700 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4701 ret = ext4_ext_check_inode(inode);
4703 ret = ext4_ind_check_inode(inode);
4709 if (S_ISREG(inode->i_mode)) {
4710 inode->i_op = &ext4_file_inode_operations;
4711 inode->i_fop = &ext4_file_operations;
4712 ext4_set_aops(inode);
4713 } else if (S_ISDIR(inode->i_mode)) {
4714 inode->i_op = &ext4_dir_inode_operations;
4715 inode->i_fop = &ext4_dir_operations;
4716 } else if (S_ISLNK(inode->i_mode)) {
4717 /* VFS does not allow setting these so must be corruption */
4718 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4719 ext4_error_inode(inode, function, line, 0,
4720 "iget: immutable or append flags "
4721 "not allowed on symlinks");
4722 ret = -EFSCORRUPTED;
4725 if (IS_ENCRYPTED(inode)) {
4726 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4727 ext4_set_aops(inode);
4728 } else if (ext4_inode_is_fast_symlink(inode)) {
4729 inode->i_link = (char *)ei->i_data;
4730 inode->i_op = &ext4_fast_symlink_inode_operations;
4731 nd_terminate_link(ei->i_data, inode->i_size,
4732 sizeof(ei->i_data) - 1);
4734 inode->i_op = &ext4_symlink_inode_operations;
4735 ext4_set_aops(inode);
4737 inode_nohighmem(inode);
4738 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4739 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4740 inode->i_op = &ext4_special_inode_operations;
4741 if (raw_inode->i_block[0])
4742 init_special_inode(inode, inode->i_mode,
4743 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4745 init_special_inode(inode, inode->i_mode,
4746 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4747 } else if (ino == EXT4_BOOT_LOADER_INO) {
4748 make_bad_inode(inode);
4750 ret = -EFSCORRUPTED;
4751 ext4_error_inode(inode, function, line, 0,
4752 "iget: bogus i_mode (%o)", inode->i_mode);
4755 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4756 ext4_error_inode(inode, function, line, 0,
4757 "casefold flag without casefold feature");
4760 unlock_new_inode(inode);
4766 return ERR_PTR(ret);
4769 static int ext4_inode_blocks_set(handle_t *handle,
4770 struct ext4_inode *raw_inode,
4771 struct ext4_inode_info *ei)
4773 struct inode *inode = &(ei->vfs_inode);
4774 u64 i_blocks = inode->i_blocks;
4775 struct super_block *sb = inode->i_sb;
4777 if (i_blocks <= ~0U) {
4779 * i_blocks can be represented in a 32 bit variable
4780 * as multiple of 512 bytes
4782 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4783 raw_inode->i_blocks_high = 0;
4784 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4787 if (!ext4_has_feature_huge_file(sb))
4790 if (i_blocks <= 0xffffffffffffULL) {
4792 * i_blocks can be represented in a 48 bit variable
4793 * as multiple of 512 bytes
4795 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4796 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4797 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4799 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4800 /* i_block is stored in file system block size */
4801 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4802 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4803 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4808 struct other_inode {
4809 unsigned long orig_ino;
4810 struct ext4_inode *raw_inode;
4813 static int other_inode_match(struct inode * inode, unsigned long ino,
4816 struct other_inode *oi = (struct other_inode *) data;
4818 if ((inode->i_ino != ino) ||
4819 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4821 ((inode->i_state & I_DIRTY_TIME) == 0))
4823 spin_lock(&inode->i_lock);
4824 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4825 I_DIRTY_INODE)) == 0) &&
4826 (inode->i_state & I_DIRTY_TIME)) {
4827 struct ext4_inode_info *ei = EXT4_I(inode);
4829 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4830 spin_unlock(&inode->i_lock);
4832 spin_lock(&ei->i_raw_lock);
4833 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4834 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4835 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4836 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4837 spin_unlock(&ei->i_raw_lock);
4838 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4841 spin_unlock(&inode->i_lock);
4846 * Opportunistically update the other time fields for other inodes in
4847 * the same inode table block.
4849 static void ext4_update_other_inodes_time(struct super_block *sb,
4850 unsigned long orig_ino, char *buf)
4852 struct other_inode oi;
4854 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4855 int inode_size = EXT4_INODE_SIZE(sb);
4857 oi.orig_ino = orig_ino;
4859 * Calculate the first inode in the inode table block. Inode
4860 * numbers are one-based. That is, the first inode in a block
4861 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4863 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4864 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4865 if (ino == orig_ino)
4867 oi.raw_inode = (struct ext4_inode *) buf;
4868 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4873 * Post the struct inode info into an on-disk inode location in the
4874 * buffer-cache. This gobbles the caller's reference to the
4875 * buffer_head in the inode location struct.
4877 * The caller must have write access to iloc->bh.
4879 static int ext4_do_update_inode(handle_t *handle,
4880 struct inode *inode,
4881 struct ext4_iloc *iloc)
4883 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4884 struct ext4_inode_info *ei = EXT4_I(inode);
4885 struct buffer_head *bh = iloc->bh;
4886 struct super_block *sb = inode->i_sb;
4887 int err = 0, rc, block;
4888 int need_datasync = 0, set_large_file = 0;
4893 spin_lock(&ei->i_raw_lock);
4895 /* For fields not tracked in the in-memory inode,
4896 * initialise them to zero for new inodes. */
4897 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4898 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4900 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4901 i_uid = i_uid_read(inode);
4902 i_gid = i_gid_read(inode);
4903 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4904 if (!(test_opt(inode->i_sb, NO_UID32))) {
4905 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4906 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4908 * Fix up interoperability with old kernels. Otherwise, old inodes get
4909 * re-used with the upper 16 bits of the uid/gid intact
4911 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4912 raw_inode->i_uid_high = 0;
4913 raw_inode->i_gid_high = 0;
4915 raw_inode->i_uid_high =
4916 cpu_to_le16(high_16_bits(i_uid));
4917 raw_inode->i_gid_high =
4918 cpu_to_le16(high_16_bits(i_gid));
4921 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4922 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4923 raw_inode->i_uid_high = 0;
4924 raw_inode->i_gid_high = 0;
4926 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4928 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4929 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4930 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4931 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4933 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4935 spin_unlock(&ei->i_raw_lock);
4938 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4939 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4940 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4941 raw_inode->i_file_acl_high =
4942 cpu_to_le16(ei->i_file_acl >> 32);
4943 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4944 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4945 ext4_isize_set(raw_inode, ei->i_disksize);
4948 if (ei->i_disksize > 0x7fffffffULL) {
4949 if (!ext4_has_feature_large_file(sb) ||
4950 EXT4_SB(sb)->s_es->s_rev_level ==
4951 cpu_to_le32(EXT4_GOOD_OLD_REV))
4954 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4955 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4956 if (old_valid_dev(inode->i_rdev)) {
4957 raw_inode->i_block[0] =
4958 cpu_to_le32(old_encode_dev(inode->i_rdev));
4959 raw_inode->i_block[1] = 0;
4961 raw_inode->i_block[0] = 0;
4962 raw_inode->i_block[1] =
4963 cpu_to_le32(new_encode_dev(inode->i_rdev));
4964 raw_inode->i_block[2] = 0;
4966 } else if (!ext4_has_inline_data(inode)) {
4967 for (block = 0; block < EXT4_N_BLOCKS; block++)
4968 raw_inode->i_block[block] = ei->i_data[block];
4971 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4972 u64 ivers = ext4_inode_peek_iversion(inode);
4974 raw_inode->i_disk_version = cpu_to_le32(ivers);
4975 if (ei->i_extra_isize) {
4976 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4977 raw_inode->i_version_hi =
4978 cpu_to_le32(ivers >> 32);
4979 raw_inode->i_extra_isize =
4980 cpu_to_le16(ei->i_extra_isize);
4984 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4985 i_projid != EXT4_DEF_PROJID);
4987 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4988 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4989 raw_inode->i_projid = cpu_to_le32(i_projid);
4991 ext4_inode_csum_set(inode, raw_inode, ei);
4992 spin_unlock(&ei->i_raw_lock);
4993 if (inode->i_sb->s_flags & SB_LAZYTIME)
4994 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4997 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4998 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5001 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5002 if (set_large_file) {
5003 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5004 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5007 ext4_set_feature_large_file(sb);
5008 ext4_handle_sync(handle);
5009 err = ext4_handle_dirty_super(handle, sb);
5011 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5014 ext4_std_error(inode->i_sb, err);
5019 * ext4_write_inode()
5021 * We are called from a few places:
5023 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5024 * Here, there will be no transaction running. We wait for any running
5025 * transaction to commit.
5027 * - Within flush work (sys_sync(), kupdate and such).
5028 * We wait on commit, if told to.
5030 * - Within iput_final() -> write_inode_now()
5031 * We wait on commit, if told to.
5033 * In all cases it is actually safe for us to return without doing anything,
5034 * because the inode has been copied into a raw inode buffer in
5035 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5038 * Note that we are absolutely dependent upon all inode dirtiers doing the
5039 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5040 * which we are interested.
5042 * It would be a bug for them to not do this. The code:
5044 * mark_inode_dirty(inode)
5046 * inode->i_size = expr;
5048 * is in error because write_inode() could occur while `stuff()' is running,
5049 * and the new i_size will be lost. Plus the inode will no longer be on the
5050 * superblock's dirty inode list.
5052 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5056 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5057 sb_rdonly(inode->i_sb))
5060 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5063 if (EXT4_SB(inode->i_sb)->s_journal) {
5064 if (ext4_journal_current_handle()) {
5065 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5071 * No need to force transaction in WB_SYNC_NONE mode. Also
5072 * ext4_sync_fs() will force the commit after everything is
5075 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5078 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5079 EXT4_I(inode)->i_sync_tid);
5081 struct ext4_iloc iloc;
5083 err = __ext4_get_inode_loc(inode, &iloc, 0);
5087 * sync(2) will flush the whole buffer cache. No need to do
5088 * it here separately for each inode.
5090 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5091 sync_dirty_buffer(iloc.bh);
5092 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5093 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5094 "IO error syncing inode");
5103 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5104 * buffers that are attached to a page stradding i_size and are undergoing
5105 * commit. In that case we have to wait for commit to finish and try again.
5107 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5111 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5112 tid_t commit_tid = 0;
5115 offset = inode->i_size & (PAGE_SIZE - 1);
5117 * If the page is fully truncated, we don't need to wait for any commit
5118 * (and we even should not as __ext4_journalled_invalidatepage() may
5119 * strip all buffers from the page but keep the page dirty which can then
5120 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5121 * buffers). Also we don't need to wait for any commit if all buffers in
5122 * the page remain valid. This is most beneficial for the common case of
5123 * blocksize == PAGESIZE.
5125 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5128 page = find_lock_page(inode->i_mapping,
5129 inode->i_size >> PAGE_SHIFT);
5132 ret = __ext4_journalled_invalidatepage(page, offset,
5133 PAGE_SIZE - offset);
5139 read_lock(&journal->j_state_lock);
5140 if (journal->j_committing_transaction)
5141 commit_tid = journal->j_committing_transaction->t_tid;
5142 read_unlock(&journal->j_state_lock);
5144 jbd2_log_wait_commit(journal, commit_tid);
5151 * Called from notify_change.
5153 * We want to trap VFS attempts to truncate the file as soon as
5154 * possible. In particular, we want to make sure that when the VFS
5155 * shrinks i_size, we put the inode on the orphan list and modify
5156 * i_disksize immediately, so that during the subsequent flushing of
5157 * dirty pages and freeing of disk blocks, we can guarantee that any
5158 * commit will leave the blocks being flushed in an unused state on
5159 * disk. (On recovery, the inode will get truncated and the blocks will
5160 * be freed, so we have a strong guarantee that no future commit will
5161 * leave these blocks visible to the user.)
5163 * Another thing we have to assure is that if we are in ordered mode
5164 * and inode is still attached to the committing transaction, we must
5165 * we start writeout of all the dirty pages which are being truncated.
5166 * This way we are sure that all the data written in the previous
5167 * transaction are already on disk (truncate waits for pages under
5170 * Called with inode->i_mutex down.
5172 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5174 struct inode *inode = d_inode(dentry);
5177 const unsigned int ia_valid = attr->ia_valid;
5179 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5182 if (unlikely(IS_IMMUTABLE(inode)))
5185 if (unlikely(IS_APPEND(inode) &&
5186 (ia_valid & (ATTR_MODE | ATTR_UID |
5187 ATTR_GID | ATTR_TIMES_SET))))
5190 error = setattr_prepare(dentry, attr);
5194 error = fscrypt_prepare_setattr(dentry, attr);
5198 error = fsverity_prepare_setattr(dentry, attr);
5202 if (is_quota_modification(inode, attr)) {
5203 error = dquot_initialize(inode);
5207 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5208 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5211 /* (user+group)*(old+new) structure, inode write (sb,
5212 * inode block, ? - but truncate inode update has it) */
5213 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5214 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5215 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5216 if (IS_ERR(handle)) {
5217 error = PTR_ERR(handle);
5221 /* dquot_transfer() calls back ext4_get_inode_usage() which
5222 * counts xattr inode references.
5224 down_read(&EXT4_I(inode)->xattr_sem);
5225 error = dquot_transfer(inode, attr);
5226 up_read(&EXT4_I(inode)->xattr_sem);
5229 ext4_journal_stop(handle);
5232 /* Update corresponding info in inode so that everything is in
5233 * one transaction */
5234 if (attr->ia_valid & ATTR_UID)
5235 inode->i_uid = attr->ia_uid;
5236 if (attr->ia_valid & ATTR_GID)
5237 inode->i_gid = attr->ia_gid;
5238 error = ext4_mark_inode_dirty(handle, inode);
5239 ext4_journal_stop(handle);
5242 if (attr->ia_valid & ATTR_SIZE) {
5244 loff_t oldsize = inode->i_size;
5245 int shrink = (attr->ia_size < inode->i_size);
5247 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5250 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5253 if (!S_ISREG(inode->i_mode))
5256 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5257 inode_inc_iversion(inode);
5260 if (ext4_should_order_data(inode)) {
5261 error = ext4_begin_ordered_truncate(inode,
5267 * Blocks are going to be removed from the inode. Wait
5268 * for dio in flight.
5270 inode_dio_wait(inode);
5273 down_write(&EXT4_I(inode)->i_mmap_sem);
5275 rc = ext4_break_layouts(inode);
5277 up_write(&EXT4_I(inode)->i_mmap_sem);
5281 if (attr->ia_size != inode->i_size) {
5282 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5283 if (IS_ERR(handle)) {
5284 error = PTR_ERR(handle);
5287 if (ext4_handle_valid(handle) && shrink) {
5288 error = ext4_orphan_add(handle, inode);
5292 * Update c/mtime on truncate up, ext4_truncate() will
5293 * update c/mtime in shrink case below
5296 inode->i_mtime = current_time(inode);
5297 inode->i_ctime = inode->i_mtime;
5299 down_write(&EXT4_I(inode)->i_data_sem);
5300 EXT4_I(inode)->i_disksize = attr->ia_size;
5301 rc = ext4_mark_inode_dirty(handle, inode);
5305 * We have to update i_size under i_data_sem together
5306 * with i_disksize to avoid races with writeback code
5307 * running ext4_wb_update_i_disksize().
5310 i_size_write(inode, attr->ia_size);
5311 up_write(&EXT4_I(inode)->i_data_sem);
5312 ext4_journal_stop(handle);
5316 pagecache_isize_extended(inode, oldsize,
5318 } else if (ext4_should_journal_data(inode)) {
5319 ext4_wait_for_tail_page_commit(inode);
5324 * Truncate pagecache after we've waited for commit
5325 * in data=journal mode to make pages freeable.
5327 truncate_pagecache(inode, inode->i_size);
5329 * Call ext4_truncate() even if i_size didn't change to
5330 * truncate possible preallocated blocks.
5332 if (attr->ia_size <= oldsize) {
5333 rc = ext4_truncate(inode);
5338 up_write(&EXT4_I(inode)->i_mmap_sem);
5342 setattr_copy(inode, attr);
5343 mark_inode_dirty(inode);
5347 * If the call to ext4_truncate failed to get a transaction handle at
5348 * all, we need to clean up the in-core orphan list manually.
5350 if (orphan && inode->i_nlink)
5351 ext4_orphan_del(NULL, inode);
5353 if (!error && (ia_valid & ATTR_MODE))
5354 rc = posix_acl_chmod(inode, inode->i_mode);
5357 ext4_std_error(inode->i_sb, error);
5363 int ext4_getattr(const struct path *path, struct kstat *stat,
5364 u32 request_mask, unsigned int query_flags)
5366 struct inode *inode = d_inode(path->dentry);
5367 struct ext4_inode *raw_inode;
5368 struct ext4_inode_info *ei = EXT4_I(inode);
5371 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5372 stat->result_mask |= STATX_BTIME;
5373 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5374 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5377 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5378 if (flags & EXT4_APPEND_FL)
5379 stat->attributes |= STATX_ATTR_APPEND;
5380 if (flags & EXT4_COMPR_FL)
5381 stat->attributes |= STATX_ATTR_COMPRESSED;
5382 if (flags & EXT4_ENCRYPT_FL)
5383 stat->attributes |= STATX_ATTR_ENCRYPTED;
5384 if (flags & EXT4_IMMUTABLE_FL)
5385 stat->attributes |= STATX_ATTR_IMMUTABLE;
5386 if (flags & EXT4_NODUMP_FL)
5387 stat->attributes |= STATX_ATTR_NODUMP;
5388 if (flags & EXT4_VERITY_FL)
5389 stat->attributes |= STATX_ATTR_VERITY;
5391 stat->attributes_mask |= (STATX_ATTR_APPEND |
5392 STATX_ATTR_COMPRESSED |
5393 STATX_ATTR_ENCRYPTED |
5394 STATX_ATTR_IMMUTABLE |
5398 generic_fillattr(inode, stat);
5402 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5403 u32 request_mask, unsigned int query_flags)
5405 struct inode *inode = d_inode(path->dentry);
5406 u64 delalloc_blocks;
5408 ext4_getattr(path, stat, request_mask, query_flags);
5411 * If there is inline data in the inode, the inode will normally not
5412 * have data blocks allocated (it may have an external xattr block).
5413 * Report at least one sector for such files, so tools like tar, rsync,
5414 * others don't incorrectly think the file is completely sparse.
5416 if (unlikely(ext4_has_inline_data(inode)))
5417 stat->blocks += (stat->size + 511) >> 9;
5420 * We can't update i_blocks if the block allocation is delayed
5421 * otherwise in the case of system crash before the real block
5422 * allocation is done, we will have i_blocks inconsistent with
5423 * on-disk file blocks.
5424 * We always keep i_blocks updated together with real
5425 * allocation. But to not confuse with user, stat
5426 * will return the blocks that include the delayed allocation
5427 * blocks for this file.
5429 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5430 EXT4_I(inode)->i_reserved_data_blocks);
5431 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5435 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5438 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5439 return ext4_ind_trans_blocks(inode, lblocks);
5440 return ext4_ext_index_trans_blocks(inode, pextents);
5444 * Account for index blocks, block groups bitmaps and block group
5445 * descriptor blocks if modify datablocks and index blocks
5446 * worse case, the indexs blocks spread over different block groups
5448 * If datablocks are discontiguous, they are possible to spread over
5449 * different block groups too. If they are contiguous, with flexbg,
5450 * they could still across block group boundary.
5452 * Also account for superblock, inode, quota and xattr blocks
5454 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5457 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5463 * How many index blocks need to touch to map @lblocks logical blocks
5464 * to @pextents physical extents?
5466 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5471 * Now let's see how many group bitmaps and group descriptors need
5474 groups = idxblocks + pextents;
5476 if (groups > ngroups)
5478 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5479 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5481 /* bitmaps and block group descriptor blocks */
5482 ret += groups + gdpblocks;
5484 /* Blocks for super block, inode, quota and xattr blocks */
5485 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5491 * Calculate the total number of credits to reserve to fit
5492 * the modification of a single pages into a single transaction,
5493 * which may include multiple chunks of block allocations.
5495 * This could be called via ext4_write_begin()
5497 * We need to consider the worse case, when
5498 * one new block per extent.
5500 int ext4_writepage_trans_blocks(struct inode *inode)
5502 int bpp = ext4_journal_blocks_per_page(inode);
5505 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5507 /* Account for data blocks for journalled mode */
5508 if (ext4_should_journal_data(inode))
5514 * Calculate the journal credits for a chunk of data modification.
5516 * This is called from DIO, fallocate or whoever calling
5517 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5519 * journal buffers for data blocks are not included here, as DIO
5520 * and fallocate do no need to journal data buffers.
5522 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5524 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5528 * The caller must have previously called ext4_reserve_inode_write().
5529 * Give this, we know that the caller already has write access to iloc->bh.
5531 int ext4_mark_iloc_dirty(handle_t *handle,
5532 struct inode *inode, struct ext4_iloc *iloc)
5536 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5540 if (IS_I_VERSION(inode))
5541 inode_inc_iversion(inode);
5543 /* the do_update_inode consumes one bh->b_count */
5546 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5547 err = ext4_do_update_inode(handle, inode, iloc);
5553 * On success, We end up with an outstanding reference count against
5554 * iloc->bh. This _must_ be cleaned up later.
5558 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5559 struct ext4_iloc *iloc)
5563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5566 err = ext4_get_inode_loc(inode, iloc);
5568 BUFFER_TRACE(iloc->bh, "get_write_access");
5569 err = ext4_journal_get_write_access(handle, iloc->bh);
5575 ext4_std_error(inode->i_sb, err);
5579 static int __ext4_expand_extra_isize(struct inode *inode,
5580 unsigned int new_extra_isize,
5581 struct ext4_iloc *iloc,
5582 handle_t *handle, int *no_expand)
5584 struct ext4_inode *raw_inode;
5585 struct ext4_xattr_ibody_header *header;
5586 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5587 struct ext4_inode_info *ei = EXT4_I(inode);
5590 /* this was checked at iget time, but double check for good measure */
5591 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5592 (ei->i_extra_isize & 3)) {
5593 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5595 EXT4_INODE_SIZE(inode->i_sb));
5596 return -EFSCORRUPTED;
5598 if ((new_extra_isize < ei->i_extra_isize) ||
5599 (new_extra_isize < 4) ||
5600 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5601 return -EINVAL; /* Should never happen */
5603 raw_inode = ext4_raw_inode(iloc);
5605 header = IHDR(inode, raw_inode);
5607 /* No extended attributes present */
5608 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5609 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5610 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5611 EXT4_I(inode)->i_extra_isize, 0,
5612 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5613 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5617 /* try to expand with EAs present */
5618 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5622 * Inode size expansion failed; don't try again
5631 * Expand an inode by new_extra_isize bytes.
5632 * Returns 0 on success or negative error number on failure.
5634 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5635 unsigned int new_extra_isize,
5636 struct ext4_iloc iloc,
5642 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5646 * In nojournal mode, we can immediately attempt to expand
5647 * the inode. When journaled, we first need to obtain extra
5648 * buffer credits since we may write into the EA block
5649 * with this same handle. If journal_extend fails, then it will
5650 * only result in a minor loss of functionality for that inode.
5651 * If this is felt to be critical, then e2fsck should be run to
5652 * force a large enough s_min_extra_isize.
5654 if (ext4_journal_extend(handle,
5655 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5658 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5661 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5662 handle, &no_expand);
5663 ext4_write_unlock_xattr(inode, &no_expand);
5668 int ext4_expand_extra_isize(struct inode *inode,
5669 unsigned int new_extra_isize,
5670 struct ext4_iloc *iloc)
5676 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5681 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5682 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5683 if (IS_ERR(handle)) {
5684 error = PTR_ERR(handle);
5689 ext4_write_lock_xattr(inode, &no_expand);
5691 BUFFER_TRACE(iloc->bh, "get_write_access");
5692 error = ext4_journal_get_write_access(handle, iloc->bh);
5698 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5699 handle, &no_expand);
5701 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5706 ext4_write_unlock_xattr(inode, &no_expand);
5707 ext4_journal_stop(handle);
5712 * What we do here is to mark the in-core inode as clean with respect to inode
5713 * dirtiness (it may still be data-dirty).
5714 * This means that the in-core inode may be reaped by prune_icache
5715 * without having to perform any I/O. This is a very good thing,
5716 * because *any* task may call prune_icache - even ones which
5717 * have a transaction open against a different journal.
5719 * Is this cheating? Not really. Sure, we haven't written the
5720 * inode out, but prune_icache isn't a user-visible syncing function.
5721 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5722 * we start and wait on commits.
5724 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5726 struct ext4_iloc iloc;
5727 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5731 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5732 err = ext4_reserve_inode_write(handle, inode, &iloc);
5736 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5737 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5740 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5744 * ext4_dirty_inode() is called from __mark_inode_dirty()
5746 * We're really interested in the case where a file is being extended.
5747 * i_size has been changed by generic_commit_write() and we thus need
5748 * to include the updated inode in the current transaction.
5750 * Also, dquot_alloc_block() will always dirty the inode when blocks
5751 * are allocated to the file.
5753 * If the inode is marked synchronous, we don't honour that here - doing
5754 * so would cause a commit on atime updates, which we don't bother doing.
5755 * We handle synchronous inodes at the highest possible level.
5757 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5758 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5759 * to copy into the on-disk inode structure are the timestamp files.
5761 void ext4_dirty_inode(struct inode *inode, int flags)
5765 if (flags == I_DIRTY_TIME)
5767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5771 ext4_mark_inode_dirty(handle, inode);
5773 ext4_journal_stop(handle);
5778 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5783 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5786 * We have to be very careful here: changing a data block's
5787 * journaling status dynamically is dangerous. If we write a
5788 * data block to the journal, change the status and then delete
5789 * that block, we risk forgetting to revoke the old log record
5790 * from the journal and so a subsequent replay can corrupt data.
5791 * So, first we make sure that the journal is empty and that
5792 * nobody is changing anything.
5795 journal = EXT4_JOURNAL(inode);
5798 if (is_journal_aborted(journal))
5801 /* Wait for all existing dio workers */
5802 inode_dio_wait(inode);
5805 * Before flushing the journal and switching inode's aops, we have
5806 * to flush all dirty data the inode has. There can be outstanding
5807 * delayed allocations, there can be unwritten extents created by
5808 * fallocate or buffered writes in dioread_nolock mode covered by
5809 * dirty data which can be converted only after flushing the dirty
5810 * data (and journalled aops don't know how to handle these cases).
5813 down_write(&EXT4_I(inode)->i_mmap_sem);
5814 err = filemap_write_and_wait(inode->i_mapping);
5816 up_write(&EXT4_I(inode)->i_mmap_sem);
5821 percpu_down_write(&sbi->s_journal_flag_rwsem);
5822 jbd2_journal_lock_updates(journal);
5825 * OK, there are no updates running now, and all cached data is
5826 * synced to disk. We are now in a completely consistent state
5827 * which doesn't have anything in the journal, and we know that
5828 * no filesystem updates are running, so it is safe to modify
5829 * the inode's in-core data-journaling state flag now.
5833 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5835 err = jbd2_journal_flush(journal);
5837 jbd2_journal_unlock_updates(journal);
5838 percpu_up_write(&sbi->s_journal_flag_rwsem);
5841 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5843 ext4_set_aops(inode);
5845 jbd2_journal_unlock_updates(journal);
5846 percpu_up_write(&sbi->s_journal_flag_rwsem);
5849 up_write(&EXT4_I(inode)->i_mmap_sem);
5851 /* Finally we can mark the inode as dirty. */
5853 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5855 return PTR_ERR(handle);
5857 err = ext4_mark_inode_dirty(handle, inode);
5858 ext4_handle_sync(handle);
5859 ext4_journal_stop(handle);
5860 ext4_std_error(inode->i_sb, err);
5865 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5867 return !buffer_mapped(bh);
5870 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5872 struct vm_area_struct *vma = vmf->vma;
5873 struct page *page = vmf->page;
5878 struct file *file = vma->vm_file;
5879 struct inode *inode = file_inode(file);
5880 struct address_space *mapping = inode->i_mapping;
5882 get_block_t *get_block;
5885 if (unlikely(IS_IMMUTABLE(inode)))
5886 return VM_FAULT_SIGBUS;
5888 sb_start_pagefault(inode->i_sb);
5889 file_update_time(vma->vm_file);
5891 down_read(&EXT4_I(inode)->i_mmap_sem);
5893 err = ext4_convert_inline_data(inode);
5897 /* Delalloc case is easy... */
5898 if (test_opt(inode->i_sb, DELALLOC) &&
5899 !ext4_should_journal_data(inode) &&
5900 !ext4_nonda_switch(inode->i_sb)) {
5902 err = block_page_mkwrite(vma, vmf,
5903 ext4_da_get_block_prep);
5904 } while (err == -ENOSPC &&
5905 ext4_should_retry_alloc(inode->i_sb, &retries));
5910 size = i_size_read(inode);
5911 /* Page got truncated from under us? */
5912 if (page->mapping != mapping || page_offset(page) > size) {
5914 ret = VM_FAULT_NOPAGE;
5918 if (page->index == size >> PAGE_SHIFT)
5919 len = size & ~PAGE_MASK;
5923 * Return if we have all the buffers mapped. This avoids the need to do
5924 * journal_start/journal_stop which can block and take a long time
5926 if (page_has_buffers(page)) {
5927 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5929 ext4_bh_unmapped)) {
5930 /* Wait so that we don't change page under IO */
5931 wait_for_stable_page(page);
5932 ret = VM_FAULT_LOCKED;
5937 /* OK, we need to fill the hole... */
5938 if (ext4_should_dioread_nolock(inode))
5939 get_block = ext4_get_block_unwritten;
5941 get_block = ext4_get_block;
5943 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5944 ext4_writepage_trans_blocks(inode));
5945 if (IS_ERR(handle)) {
5946 ret = VM_FAULT_SIGBUS;
5949 err = block_page_mkwrite(vma, vmf, get_block);
5950 if (!err && ext4_should_journal_data(inode)) {
5951 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5952 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5954 ret = VM_FAULT_SIGBUS;
5955 ext4_journal_stop(handle);
5958 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5960 ext4_journal_stop(handle);
5961 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5964 ret = block_page_mkwrite_return(err);
5966 up_read(&EXT4_I(inode)->i_mmap_sem);
5967 sb_end_pagefault(inode->i_sb);
5971 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
5973 struct inode *inode = file_inode(vmf->vma->vm_file);
5976 down_read(&EXT4_I(inode)->i_mmap_sem);
5977 ret = filemap_fault(vmf);
5978 up_read(&EXT4_I(inode)->i_mmap_sem);