]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
Merge branch 'sched-wait-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #if defined(CONFIG_AMD_IOMMU_V2_MODULE) || defined(CONFIG_AMD_IOMMU_V2)
24 #include <linux/amd-iommu.h>
25 #endif
26 #include <linux/bsearch.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include "kfd_priv.h"
30 #include "kfd_device_queue_manager.h"
31 #include "kfd_pm4_headers_vi.h"
32 #include "cwsr_trap_handler_gfx8.asm"
33 #include "kfd_iommu.h"
34
35 #define MQD_SIZE_ALIGNED 768
36 static atomic_t kfd_device_suspended = ATOMIC_INIT(0);
37
38 #ifdef KFD_SUPPORT_IOMMU_V2
39 static const struct kfd_device_info kaveri_device_info = {
40         .asic_family = CHIP_KAVERI,
41         .max_pasid_bits = 16,
42         /* max num of queues for KV.TODO should be a dynamic value */
43         .max_no_of_hqd  = 24,
44         .ih_ring_entry_size = 4 * sizeof(uint32_t),
45         .event_interrupt_class = &event_interrupt_class_cik,
46         .num_of_watch_points = 4,
47         .mqd_size_aligned = MQD_SIZE_ALIGNED,
48         .supports_cwsr = false,
49         .needs_iommu_device = true,
50         .needs_pci_atomics = false,
51 };
52
53 static const struct kfd_device_info carrizo_device_info = {
54         .asic_family = CHIP_CARRIZO,
55         .max_pasid_bits = 16,
56         /* max num of queues for CZ.TODO should be a dynamic value */
57         .max_no_of_hqd  = 24,
58         .ih_ring_entry_size = 4 * sizeof(uint32_t),
59         .event_interrupt_class = &event_interrupt_class_cik,
60         .num_of_watch_points = 4,
61         .mqd_size_aligned = MQD_SIZE_ALIGNED,
62         .supports_cwsr = true,
63         .needs_iommu_device = true,
64         .needs_pci_atomics = false,
65 };
66 #endif
67
68 static const struct kfd_device_info hawaii_device_info = {
69         .asic_family = CHIP_HAWAII,
70         .max_pasid_bits = 16,
71         /* max num of queues for KV.TODO should be a dynamic value */
72         .max_no_of_hqd  = 24,
73         .ih_ring_entry_size = 4 * sizeof(uint32_t),
74         .event_interrupt_class = &event_interrupt_class_cik,
75         .num_of_watch_points = 4,
76         .mqd_size_aligned = MQD_SIZE_ALIGNED,
77         .supports_cwsr = false,
78         .needs_iommu_device = false,
79         .needs_pci_atomics = false,
80 };
81
82 static const struct kfd_device_info tonga_device_info = {
83         .asic_family = CHIP_TONGA,
84         .max_pasid_bits = 16,
85         .max_no_of_hqd  = 24,
86         .ih_ring_entry_size = 4 * sizeof(uint32_t),
87         .event_interrupt_class = &event_interrupt_class_cik,
88         .num_of_watch_points = 4,
89         .mqd_size_aligned = MQD_SIZE_ALIGNED,
90         .supports_cwsr = false,
91         .needs_iommu_device = false,
92         .needs_pci_atomics = true,
93 };
94
95 static const struct kfd_device_info tonga_vf_device_info = {
96         .asic_family = CHIP_TONGA,
97         .max_pasid_bits = 16,
98         .max_no_of_hqd  = 24,
99         .ih_ring_entry_size = 4 * sizeof(uint32_t),
100         .event_interrupt_class = &event_interrupt_class_cik,
101         .num_of_watch_points = 4,
102         .mqd_size_aligned = MQD_SIZE_ALIGNED,
103         .supports_cwsr = false,
104         .needs_iommu_device = false,
105         .needs_pci_atomics = false,
106 };
107
108 static const struct kfd_device_info fiji_device_info = {
109         .asic_family = CHIP_FIJI,
110         .max_pasid_bits = 16,
111         .max_no_of_hqd  = 24,
112         .ih_ring_entry_size = 4 * sizeof(uint32_t),
113         .event_interrupt_class = &event_interrupt_class_cik,
114         .num_of_watch_points = 4,
115         .mqd_size_aligned = MQD_SIZE_ALIGNED,
116         .supports_cwsr = true,
117         .needs_iommu_device = false,
118         .needs_pci_atomics = true,
119 };
120
121 static const struct kfd_device_info fiji_vf_device_info = {
122         .asic_family = CHIP_FIJI,
123         .max_pasid_bits = 16,
124         .max_no_of_hqd  = 24,
125         .ih_ring_entry_size = 4 * sizeof(uint32_t),
126         .event_interrupt_class = &event_interrupt_class_cik,
127         .num_of_watch_points = 4,
128         .mqd_size_aligned = MQD_SIZE_ALIGNED,
129         .supports_cwsr = true,
130         .needs_iommu_device = false,
131         .needs_pci_atomics = false,
132 };
133
134
135 static const struct kfd_device_info polaris10_device_info = {
136         .asic_family = CHIP_POLARIS10,
137         .max_pasid_bits = 16,
138         .max_no_of_hqd  = 24,
139         .ih_ring_entry_size = 4 * sizeof(uint32_t),
140         .event_interrupt_class = &event_interrupt_class_cik,
141         .num_of_watch_points = 4,
142         .mqd_size_aligned = MQD_SIZE_ALIGNED,
143         .supports_cwsr = true,
144         .needs_iommu_device = false,
145         .needs_pci_atomics = true,
146 };
147
148 static const struct kfd_device_info polaris10_vf_device_info = {
149         .asic_family = CHIP_POLARIS10,
150         .max_pasid_bits = 16,
151         .max_no_of_hqd  = 24,
152         .ih_ring_entry_size = 4 * sizeof(uint32_t),
153         .event_interrupt_class = &event_interrupt_class_cik,
154         .num_of_watch_points = 4,
155         .mqd_size_aligned = MQD_SIZE_ALIGNED,
156         .supports_cwsr = true,
157         .needs_iommu_device = false,
158         .needs_pci_atomics = false,
159 };
160
161 static const struct kfd_device_info polaris11_device_info = {
162         .asic_family = CHIP_POLARIS11,
163         .max_pasid_bits = 16,
164         .max_no_of_hqd  = 24,
165         .ih_ring_entry_size = 4 * sizeof(uint32_t),
166         .event_interrupt_class = &event_interrupt_class_cik,
167         .num_of_watch_points = 4,
168         .mqd_size_aligned = MQD_SIZE_ALIGNED,
169         .supports_cwsr = true,
170         .needs_iommu_device = false,
171         .needs_pci_atomics = true,
172 };
173
174
175 struct kfd_deviceid {
176         unsigned short did;
177         const struct kfd_device_info *device_info;
178 };
179
180 static const struct kfd_deviceid supported_devices[] = {
181 #ifdef KFD_SUPPORT_IOMMU_V2
182         { 0x1304, &kaveri_device_info },        /* Kaveri */
183         { 0x1305, &kaveri_device_info },        /* Kaveri */
184         { 0x1306, &kaveri_device_info },        /* Kaveri */
185         { 0x1307, &kaveri_device_info },        /* Kaveri */
186         { 0x1309, &kaveri_device_info },        /* Kaveri */
187         { 0x130A, &kaveri_device_info },        /* Kaveri */
188         { 0x130B, &kaveri_device_info },        /* Kaveri */
189         { 0x130C, &kaveri_device_info },        /* Kaveri */
190         { 0x130D, &kaveri_device_info },        /* Kaveri */
191         { 0x130E, &kaveri_device_info },        /* Kaveri */
192         { 0x130F, &kaveri_device_info },        /* Kaveri */
193         { 0x1310, &kaveri_device_info },        /* Kaveri */
194         { 0x1311, &kaveri_device_info },        /* Kaveri */
195         { 0x1312, &kaveri_device_info },        /* Kaveri */
196         { 0x1313, &kaveri_device_info },        /* Kaveri */
197         { 0x1315, &kaveri_device_info },        /* Kaveri */
198         { 0x1316, &kaveri_device_info },        /* Kaveri */
199         { 0x1317, &kaveri_device_info },        /* Kaveri */
200         { 0x1318, &kaveri_device_info },        /* Kaveri */
201         { 0x131B, &kaveri_device_info },        /* Kaveri */
202         { 0x131C, &kaveri_device_info },        /* Kaveri */
203         { 0x131D, &kaveri_device_info },        /* Kaveri */
204         { 0x9870, &carrizo_device_info },       /* Carrizo */
205         { 0x9874, &carrizo_device_info },       /* Carrizo */
206         { 0x9875, &carrizo_device_info },       /* Carrizo */
207         { 0x9876, &carrizo_device_info },       /* Carrizo */
208         { 0x9877, &carrizo_device_info },       /* Carrizo */
209 #endif
210         { 0x67A0, &hawaii_device_info },        /* Hawaii */
211         { 0x67A1, &hawaii_device_info },        /* Hawaii */
212         { 0x67A2, &hawaii_device_info },        /* Hawaii */
213         { 0x67A8, &hawaii_device_info },        /* Hawaii */
214         { 0x67A9, &hawaii_device_info },        /* Hawaii */
215         { 0x67AA, &hawaii_device_info },        /* Hawaii */
216         { 0x67B0, &hawaii_device_info },        /* Hawaii */
217         { 0x67B1, &hawaii_device_info },        /* Hawaii */
218         { 0x67B8, &hawaii_device_info },        /* Hawaii */
219         { 0x67B9, &hawaii_device_info },        /* Hawaii */
220         { 0x67BA, &hawaii_device_info },        /* Hawaii */
221         { 0x67BE, &hawaii_device_info },        /* Hawaii */
222         { 0x6920, &tonga_device_info },         /* Tonga */
223         { 0x6921, &tonga_device_info },         /* Tonga */
224         { 0x6928, &tonga_device_info },         /* Tonga */
225         { 0x6929, &tonga_device_info },         /* Tonga */
226         { 0x692B, &tonga_device_info },         /* Tonga */
227         { 0x692F, &tonga_vf_device_info },      /* Tonga vf */
228         { 0x6938, &tonga_device_info },         /* Tonga */
229         { 0x6939, &tonga_device_info },         /* Tonga */
230         { 0x7300, &fiji_device_info },          /* Fiji */
231         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
232         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
233         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
234         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
235         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
236         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
237         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
238         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
239         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
240         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
241         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
242         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
243         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
244         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
245         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
246         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
247         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
248         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
249         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
250         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
251         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
252         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
253 };
254
255 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
256                                 unsigned int chunk_size);
257 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
258
259 static int kfd_resume(struct kfd_dev *kfd);
260
261 static const struct kfd_device_info *lookup_device_info(unsigned short did)
262 {
263         size_t i;
264
265         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
266                 if (supported_devices[i].did == did) {
267                         WARN_ON(!supported_devices[i].device_info);
268                         return supported_devices[i].device_info;
269                 }
270         }
271
272         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
273                  did);
274
275         return NULL;
276 }
277
278 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
279         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
280 {
281         struct kfd_dev *kfd;
282
283         const struct kfd_device_info *device_info =
284                                         lookup_device_info(pdev->device);
285
286         if (!device_info) {
287                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
288                 return NULL;
289         }
290
291         if (device_info->needs_pci_atomics) {
292                 /* Allow BIF to recode atomics to PCIe 3.0
293                  * AtomicOps. 32 and 64-bit requests are possible and
294                  * must be supported.
295                  */
296                 if (pci_enable_atomic_ops_to_root(pdev,
297                                 PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
298                                 PCI_EXP_DEVCAP2_ATOMIC_COMP64) < 0) {
299                         dev_info(kfd_device,
300                                 "skipped device %x:%x, PCI rejects atomics",
301                                  pdev->vendor, pdev->device);
302                         return NULL;
303                 }
304         }
305
306         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
307         if (!kfd)
308                 return NULL;
309
310         kfd->kgd = kgd;
311         kfd->device_info = device_info;
312         kfd->pdev = pdev;
313         kfd->init_complete = false;
314         kfd->kfd2kgd = f2g;
315
316         mutex_init(&kfd->doorbell_mutex);
317         memset(&kfd->doorbell_available_index, 0,
318                 sizeof(kfd->doorbell_available_index));
319
320         return kfd;
321 }
322
323 static void kfd_cwsr_init(struct kfd_dev *kfd)
324 {
325         if (cwsr_enable && kfd->device_info->supports_cwsr) {
326                 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
327
328                 kfd->cwsr_isa = cwsr_trap_gfx8_hex;
329                 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
330                 kfd->cwsr_enabled = true;
331         }
332 }
333
334 bool kgd2kfd_device_init(struct kfd_dev *kfd,
335                          const struct kgd2kfd_shared_resources *gpu_resources)
336 {
337         unsigned int size;
338
339         kfd->shared_resources = *gpu_resources;
340
341         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
342         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
343         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
344                         - kfd->vm_info.first_vmid_kfd + 1;
345
346         /* Verify module parameters regarding mapped process number*/
347         if ((hws_max_conc_proc < 0)
348                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
349                 dev_err(kfd_device,
350                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
351                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
352                         kfd->vm_info.vmid_num_kfd);
353                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
354         } else
355                 kfd->max_proc_per_quantum = hws_max_conc_proc;
356
357         /* calculate max size of mqds needed for queues */
358         size = max_num_of_queues_per_device *
359                         kfd->device_info->mqd_size_aligned;
360
361         /*
362          * calculate max size of runlist packet.
363          * There can be only 2 packets at once
364          */
365         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
366                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
367                 + sizeof(struct pm4_mes_runlist)) * 2;
368
369         /* Add size of HIQ & DIQ */
370         size += KFD_KERNEL_QUEUE_SIZE * 2;
371
372         /* add another 512KB for all other allocations on gart (HPD, fences) */
373         size += 512 * 1024;
374
375         if (kfd->kfd2kgd->init_gtt_mem_allocation(
376                         kfd->kgd, size, &kfd->gtt_mem,
377                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
378                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
379                 goto out;
380         }
381
382         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
383
384         /* Initialize GTT sa with 512 byte chunk size */
385         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
386                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
387                 goto kfd_gtt_sa_init_error;
388         }
389
390         if (kfd_doorbell_init(kfd)) {
391                 dev_err(kfd_device,
392                         "Error initializing doorbell aperture\n");
393                 goto kfd_doorbell_error;
394         }
395
396         if (kfd_topology_add_device(kfd)) {
397                 dev_err(kfd_device, "Error adding device to topology\n");
398                 goto kfd_topology_add_device_error;
399         }
400
401         if (kfd_interrupt_init(kfd)) {
402                 dev_err(kfd_device, "Error initializing interrupts\n");
403                 goto kfd_interrupt_error;
404         }
405
406         kfd->dqm = device_queue_manager_init(kfd);
407         if (!kfd->dqm) {
408                 dev_err(kfd_device, "Error initializing queue manager\n");
409                 goto device_queue_manager_error;
410         }
411
412         if (kfd_iommu_device_init(kfd)) {
413                 dev_err(kfd_device, "Error initializing iommuv2\n");
414                 goto device_iommu_error;
415         }
416
417         kfd_cwsr_init(kfd);
418
419         if (kfd_resume(kfd))
420                 goto kfd_resume_error;
421
422         kfd->dbgmgr = NULL;
423
424         kfd->init_complete = true;
425         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
426                  kfd->pdev->device);
427
428         pr_debug("Starting kfd with the following scheduling policy %d\n",
429                 kfd->dqm->sched_policy);
430
431         goto out;
432
433 kfd_resume_error:
434 device_iommu_error:
435         device_queue_manager_uninit(kfd->dqm);
436 device_queue_manager_error:
437         kfd_interrupt_exit(kfd);
438 kfd_interrupt_error:
439         kfd_topology_remove_device(kfd);
440 kfd_topology_add_device_error:
441         kfd_doorbell_fini(kfd);
442 kfd_doorbell_error:
443         kfd_gtt_sa_fini(kfd);
444 kfd_gtt_sa_init_error:
445         kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
446         dev_err(kfd_device,
447                 "device %x:%x NOT added due to errors\n",
448                 kfd->pdev->vendor, kfd->pdev->device);
449 out:
450         return kfd->init_complete;
451 }
452
453 void kgd2kfd_device_exit(struct kfd_dev *kfd)
454 {
455         if (kfd->init_complete) {
456                 kgd2kfd_suspend(kfd);
457                 device_queue_manager_uninit(kfd->dqm);
458                 kfd_interrupt_exit(kfd);
459                 kfd_topology_remove_device(kfd);
460                 kfd_doorbell_fini(kfd);
461                 kfd_gtt_sa_fini(kfd);
462                 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
463         }
464
465         kfree(kfd);
466 }
467
468 void kgd2kfd_suspend(struct kfd_dev *kfd)
469 {
470         if (!kfd->init_complete)
471                 return;
472
473         /* For first KFD device suspend all the KFD processes */
474         if (atomic_inc_return(&kfd_device_suspended) == 1)
475                 kfd_suspend_all_processes();
476
477         kfd->dqm->ops.stop(kfd->dqm);
478
479         kfd_iommu_suspend(kfd);
480 }
481
482 int kgd2kfd_resume(struct kfd_dev *kfd)
483 {
484         int ret, count;
485
486         if (!kfd->init_complete)
487                 return 0;
488
489         ret = kfd_resume(kfd);
490         if (ret)
491                 return ret;
492
493         count = atomic_dec_return(&kfd_device_suspended);
494         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
495         if (count == 0)
496                 ret = kfd_resume_all_processes();
497
498         return ret;
499 }
500
501 static int kfd_resume(struct kfd_dev *kfd)
502 {
503         int err = 0;
504
505         err = kfd_iommu_resume(kfd);
506         if (err) {
507                 dev_err(kfd_device,
508                         "Failed to resume IOMMU for device %x:%x\n",
509                         kfd->pdev->vendor, kfd->pdev->device);
510                 return err;
511         }
512
513         err = kfd->dqm->ops.start(kfd->dqm);
514         if (err) {
515                 dev_err(kfd_device,
516                         "Error starting queue manager for device %x:%x\n",
517                         kfd->pdev->vendor, kfd->pdev->device);
518                 goto dqm_start_error;
519         }
520
521         return err;
522
523 dqm_start_error:
524         kfd_iommu_suspend(kfd);
525         return err;
526 }
527
528 /* This is called directly from KGD at ISR. */
529 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
530 {
531         if (!kfd->init_complete)
532                 return;
533
534         spin_lock(&kfd->interrupt_lock);
535
536         if (kfd->interrupts_active
537             && interrupt_is_wanted(kfd, ih_ring_entry)
538             && enqueue_ih_ring_entry(kfd, ih_ring_entry))
539                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
540
541         spin_unlock(&kfd->interrupt_lock);
542 }
543
544 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
545  *   prepare for safe eviction of KFD BOs that belong to the specified
546  *   process.
547  *
548  * @mm: mm_struct that identifies the specified KFD process
549  * @fence: eviction fence attached to KFD process BOs
550  *
551  */
552 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
553                                                struct dma_fence *fence)
554 {
555         struct kfd_process *p;
556         unsigned long active_time;
557         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
558
559         if (!fence)
560                 return -EINVAL;
561
562         if (dma_fence_is_signaled(fence))
563                 return 0;
564
565         p = kfd_lookup_process_by_mm(mm);
566         if (!p)
567                 return -ENODEV;
568
569         if (fence->seqno == p->last_eviction_seqno)
570                 goto out;
571
572         p->last_eviction_seqno = fence->seqno;
573
574         /* Avoid KFD process starvation. Wait for at least
575          * PROCESS_ACTIVE_TIME_MS before evicting the process again
576          */
577         active_time = get_jiffies_64() - p->last_restore_timestamp;
578         if (delay_jiffies > active_time)
579                 delay_jiffies -= active_time;
580         else
581                 delay_jiffies = 0;
582
583         /* During process initialization eviction_work.dwork is initialized
584          * to kfd_evict_bo_worker
585          */
586         schedule_delayed_work(&p->eviction_work, delay_jiffies);
587 out:
588         kfd_unref_process(p);
589         return 0;
590 }
591
592 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
593                                 unsigned int chunk_size)
594 {
595         unsigned int num_of_longs;
596
597         if (WARN_ON(buf_size < chunk_size))
598                 return -EINVAL;
599         if (WARN_ON(buf_size == 0))
600                 return -EINVAL;
601         if (WARN_ON(chunk_size == 0))
602                 return -EINVAL;
603
604         kfd->gtt_sa_chunk_size = chunk_size;
605         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
606
607         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
608                 BITS_PER_LONG;
609
610         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
611
612         if (!kfd->gtt_sa_bitmap)
613                 return -ENOMEM;
614
615         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
616                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
617
618         mutex_init(&kfd->gtt_sa_lock);
619
620         return 0;
621
622 }
623
624 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
625 {
626         mutex_destroy(&kfd->gtt_sa_lock);
627         kfree(kfd->gtt_sa_bitmap);
628 }
629
630 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
631                                                 unsigned int bit_num,
632                                                 unsigned int chunk_size)
633 {
634         return start_addr + bit_num * chunk_size;
635 }
636
637 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
638                                                 unsigned int bit_num,
639                                                 unsigned int chunk_size)
640 {
641         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
642 }
643
644 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
645                         struct kfd_mem_obj **mem_obj)
646 {
647         unsigned int found, start_search, cur_size;
648
649         if (size == 0)
650                 return -EINVAL;
651
652         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
653                 return -ENOMEM;
654
655         *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
656         if ((*mem_obj) == NULL)
657                 return -ENOMEM;
658
659         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
660
661         start_search = 0;
662
663         mutex_lock(&kfd->gtt_sa_lock);
664
665 kfd_gtt_restart_search:
666         /* Find the first chunk that is free */
667         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
668                                         kfd->gtt_sa_num_of_chunks,
669                                         start_search);
670
671         pr_debug("Found = %d\n", found);
672
673         /* If there wasn't any free chunk, bail out */
674         if (found == kfd->gtt_sa_num_of_chunks)
675                 goto kfd_gtt_no_free_chunk;
676
677         /* Update fields of mem_obj */
678         (*mem_obj)->range_start = found;
679         (*mem_obj)->range_end = found;
680         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
681                                         kfd->gtt_start_gpu_addr,
682                                         found,
683                                         kfd->gtt_sa_chunk_size);
684         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
685                                         kfd->gtt_start_cpu_ptr,
686                                         found,
687                                         kfd->gtt_sa_chunk_size);
688
689         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
690                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
691
692         /* If we need only one chunk, mark it as allocated and get out */
693         if (size <= kfd->gtt_sa_chunk_size) {
694                 pr_debug("Single bit\n");
695                 set_bit(found, kfd->gtt_sa_bitmap);
696                 goto kfd_gtt_out;
697         }
698
699         /* Otherwise, try to see if we have enough contiguous chunks */
700         cur_size = size - kfd->gtt_sa_chunk_size;
701         do {
702                 (*mem_obj)->range_end =
703                         find_next_zero_bit(kfd->gtt_sa_bitmap,
704                                         kfd->gtt_sa_num_of_chunks, ++found);
705                 /*
706                  * If next free chunk is not contiguous than we need to
707                  * restart our search from the last free chunk we found (which
708                  * wasn't contiguous to the previous ones
709                  */
710                 if ((*mem_obj)->range_end != found) {
711                         start_search = found;
712                         goto kfd_gtt_restart_search;
713                 }
714
715                 /*
716                  * If we reached end of buffer, bail out with error
717                  */
718                 if (found == kfd->gtt_sa_num_of_chunks)
719                         goto kfd_gtt_no_free_chunk;
720
721                 /* Check if we don't need another chunk */
722                 if (cur_size <= kfd->gtt_sa_chunk_size)
723                         cur_size = 0;
724                 else
725                         cur_size -= kfd->gtt_sa_chunk_size;
726
727         } while (cur_size > 0);
728
729         pr_debug("range_start = %d, range_end = %d\n",
730                 (*mem_obj)->range_start, (*mem_obj)->range_end);
731
732         /* Mark the chunks as allocated */
733         for (found = (*mem_obj)->range_start;
734                 found <= (*mem_obj)->range_end;
735                 found++)
736                 set_bit(found, kfd->gtt_sa_bitmap);
737
738 kfd_gtt_out:
739         mutex_unlock(&kfd->gtt_sa_lock);
740         return 0;
741
742 kfd_gtt_no_free_chunk:
743         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
744         mutex_unlock(&kfd->gtt_sa_lock);
745         kfree(mem_obj);
746         return -ENOMEM;
747 }
748
749 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
750 {
751         unsigned int bit;
752
753         /* Act like kfree when trying to free a NULL object */
754         if (!mem_obj)
755                 return 0;
756
757         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
758                         mem_obj, mem_obj->range_start, mem_obj->range_end);
759
760         mutex_lock(&kfd->gtt_sa_lock);
761
762         /* Mark the chunks as free */
763         for (bit = mem_obj->range_start;
764                 bit <= mem_obj->range_end;
765                 bit++)
766                 clear_bit(bit, kfd->gtt_sa_bitmap);
767
768         mutex_unlock(&kfd->gtt_sa_lock);
769
770         kfree(mem_obj);
771         return 0;
772 }
This page took 0.081044 seconds and 4 git commands to generate.