]> Git Repo - linux.git/blob - kernel/rcu/tree_nocb.h
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / kernel / rcu / tree_nocb.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <[email protected]>
12  *         Paul E. McKenney <[email protected]>
13  *         Frederic Weisbecker <[email protected]>
14  */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21         return lockdep_is_held(&rdp->nocb_lock);
22 }
23
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26         /* Race on early boot between thread creation and assignment */
27         if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28                 return true;
29
30         if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31                 if (in_task())
32                         return true;
33         return false;
34 }
35
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57
58
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 static int __init rcu_nocb_setup(char *str)
64 {
65         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66         if (*str == '=') {
67                 if (cpulist_parse(++str, rcu_nocb_mask)) {
68                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69                         cpumask_setall(rcu_nocb_mask);
70                 }
71         }
72         rcu_state.nocb_is_setup = true;
73         return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76
77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79         rcu_nocb_poll = true;
80         return 1;
81 }
82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83
84 /*
85  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86  * After all, the main point of bypassing is to avoid lock contention
87  * on ->nocb_lock, which only can happen at high call_rcu() rates.
88  */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91
92 /*
93  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
94  * lock isn't immediately available, increment ->nocb_lock_contended to
95  * flag the contention.
96  */
97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98         __acquires(&rdp->nocb_bypass_lock)
99 {
100         lockdep_assert_irqs_disabled();
101         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102                 return;
103         atomic_inc(&rdp->nocb_lock_contended);
104         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105         smp_mb__after_atomic(); /* atomic_inc() before lock. */
106         raw_spin_lock(&rdp->nocb_bypass_lock);
107         smp_mb__before_atomic(); /* atomic_dec() after lock. */
108         atomic_dec(&rdp->nocb_lock_contended);
109 }
110
111 /*
112  * Spinwait until the specified rcu_data structure's ->nocb_lock is
113  * not contended.  Please note that this is extremely special-purpose,
114  * relying on the fact that at most two kthreads and one CPU contend for
115  * this lock, and also that the two kthreads are guaranteed to have frequent
116  * grace-period-duration time intervals between successive acquisitions
117  * of the lock.  This allows us to use an extremely simple throttling
118  * mechanism, and further to apply it only to the CPU doing floods of
119  * call_rcu() invocations.  Don't try this at home!
120  */
121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122 {
123         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125                 cpu_relax();
126 }
127
128 /*
129  * Conditionally acquire the specified rcu_data structure's
130  * ->nocb_bypass_lock.
131  */
132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133 {
134         lockdep_assert_irqs_disabled();
135         return raw_spin_trylock(&rdp->nocb_bypass_lock);
136 }
137
138 /*
139  * Release the specified rcu_data structure's ->nocb_bypass_lock.
140  */
141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142         __releases(&rdp->nocb_bypass_lock)
143 {
144         lockdep_assert_irqs_disabled();
145         raw_spin_unlock(&rdp->nocb_bypass_lock);
146 }
147
148 /*
149  * Acquire the specified rcu_data structure's ->nocb_lock, but only
150  * if it corresponds to a no-CBs CPU.
151  */
152 static void rcu_nocb_lock(struct rcu_data *rdp)
153 {
154         lockdep_assert_irqs_disabled();
155         if (!rcu_rdp_is_offloaded(rdp))
156                 return;
157         raw_spin_lock(&rdp->nocb_lock);
158 }
159
160 /*
161  * Release the specified rcu_data structure's ->nocb_lock, but only
162  * if it corresponds to a no-CBs CPU.
163  */
164 static void rcu_nocb_unlock(struct rcu_data *rdp)
165 {
166         if (rcu_rdp_is_offloaded(rdp)) {
167                 lockdep_assert_irqs_disabled();
168                 raw_spin_unlock(&rdp->nocb_lock);
169         }
170 }
171
172 /*
173  * Release the specified rcu_data structure's ->nocb_lock and restore
174  * interrupts, but only if it corresponds to a no-CBs CPU.
175  */
176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177                                        unsigned long flags)
178 {
179         if (rcu_rdp_is_offloaded(rdp)) {
180                 lockdep_assert_irqs_disabled();
181                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182         } else {
183                 local_irq_restore(flags);
184         }
185 }
186
187 /* Lockdep check that ->cblist may be safely accessed. */
188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189 {
190         lockdep_assert_irqs_disabled();
191         if (rcu_rdp_is_offloaded(rdp))
192                 lockdep_assert_held(&rdp->nocb_lock);
193 }
194
195 /*
196  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197  * grace period.
198  */
199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200 {
201         swake_up_all(sq);
202 }
203
204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205 {
206         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207 }
208
209 static void rcu_init_one_nocb(struct rcu_node *rnp)
210 {
211         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213 }
214
215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216                            struct rcu_data *rdp,
217                            bool force, unsigned long flags)
218         __releases(rdp_gp->nocb_gp_lock)
219 {
220         bool needwake = false;
221
222         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225                                     TPS("AlreadyAwake"));
226                 return false;
227         }
228
229         if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231                 del_timer(&rdp_gp->nocb_timer);
232         }
233
234         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236                 needwake = true;
237         }
238         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239         if (needwake) {
240                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241                 wake_up_process(rdp_gp->nocb_gp_kthread);
242         }
243
244         return needwake;
245 }
246
247 /*
248  * Kick the GP kthread for this NOCB group.
249  */
250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
251 {
252         unsigned long flags;
253         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
254
255         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
256         return __wake_nocb_gp(rdp_gp, rdp, force, flags);
257 }
258
259 #ifdef CONFIG_RCU_LAZY
260 /*
261  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
262  * can elapse before lazy callbacks are flushed. Lazy callbacks
263  * could be flushed much earlier for a number of other reasons
264  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
265  * left unsubmitted to RCU after those many jiffies.
266  */
267 #define LAZY_FLUSH_JIFFIES (10 * HZ)
268 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
269
270 // To be called only from test code.
271 void rcu_set_jiffies_lazy_flush(unsigned long jif)
272 {
273         jiffies_lazy_flush = jif;
274 }
275 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
276
277 unsigned long rcu_get_jiffies_lazy_flush(void)
278 {
279         return jiffies_lazy_flush;
280 }
281 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
282 #endif
283
284 /*
285  * Arrange to wake the GP kthread for this NOCB group at some future
286  * time when it is safe to do so.
287  */
288 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
289                                const char *reason)
290 {
291         unsigned long flags;
292         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
293
294         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
295
296         /*
297          * Bypass wakeup overrides previous deferments. In case of
298          * callback storms, no need to wake up too early.
299          */
300         if (waketype == RCU_NOCB_WAKE_LAZY &&
301             rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
302                 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
303                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
304         } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
305                 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
306                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
307         } else {
308                 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
309                         mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
310                 if (rdp_gp->nocb_defer_wakeup < waketype)
311                         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
312         }
313
314         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
315
316         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
317 }
318
319 /*
320  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
321  * However, if there is a callback to be enqueued and if ->nocb_bypass
322  * proves to be initially empty, just return false because the no-CB GP
323  * kthread may need to be awakened in this case.
324  *
325  * Return true if there was something to be flushed and it succeeded, otherwise
326  * false.
327  *
328  * Note that this function always returns true if rhp is NULL.
329  */
330 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
331                                      unsigned long j, bool lazy)
332 {
333         struct rcu_cblist rcl;
334         struct rcu_head *rhp = rhp_in;
335
336         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
337         rcu_lockdep_assert_cblist_protected(rdp);
338         lockdep_assert_held(&rdp->nocb_bypass_lock);
339         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
340                 raw_spin_unlock(&rdp->nocb_bypass_lock);
341                 return false;
342         }
343         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
344         if (rhp)
345                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
346
347         /*
348          * If the new CB requested was a lazy one, queue it onto the main
349          * ->cblist so that we can take advantage of the grace-period that will
350          * happen regardless. But queue it onto the bypass list first so that
351          * the lazy CB is ordered with the existing CBs in the bypass list.
352          */
353         if (lazy && rhp) {
354                 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
355                 rhp = NULL;
356         }
357         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
358         WRITE_ONCE(rdp->lazy_len, 0);
359
360         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
361         WRITE_ONCE(rdp->nocb_bypass_first, j);
362         rcu_nocb_bypass_unlock(rdp);
363         return true;
364 }
365
366 /*
367  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
368  * However, if there is a callback to be enqueued and if ->nocb_bypass
369  * proves to be initially empty, just return false because the no-CB GP
370  * kthread may need to be awakened in this case.
371  *
372  * Note that this function always returns true if rhp is NULL.
373  */
374 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
375                                   unsigned long j, bool lazy)
376 {
377         if (!rcu_rdp_is_offloaded(rdp))
378                 return true;
379         rcu_lockdep_assert_cblist_protected(rdp);
380         rcu_nocb_bypass_lock(rdp);
381         return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
382 }
383
384 /*
385  * If the ->nocb_bypass_lock is immediately available, flush the
386  * ->nocb_bypass queue into ->cblist.
387  */
388 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
389 {
390         rcu_lockdep_assert_cblist_protected(rdp);
391         if (!rcu_rdp_is_offloaded(rdp) ||
392             !rcu_nocb_bypass_trylock(rdp))
393                 return;
394         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
395 }
396
397 /*
398  * See whether it is appropriate to use the ->nocb_bypass list in order
399  * to control contention on ->nocb_lock.  A limited number of direct
400  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
401  * is non-empty, further callbacks must be placed into ->nocb_bypass,
402  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
403  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
404  * used if ->cblist is empty, because otherwise callbacks can be stranded
405  * on ->nocb_bypass because we cannot count on the current CPU ever again
406  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
407  * non-empty, the corresponding no-CBs grace-period kthread must not be
408  * in an indefinite sleep state.
409  *
410  * Finally, it is not permitted to use the bypass during early boot,
411  * as doing so would confuse the auto-initialization code.  Besides
412  * which, there is no point in worrying about lock contention while
413  * there is only one CPU in operation.
414  */
415 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
416                                 bool *was_alldone, unsigned long flags,
417                                 bool lazy)
418 {
419         unsigned long c;
420         unsigned long cur_gp_seq;
421         unsigned long j = jiffies;
422         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
423         bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
424
425         lockdep_assert_irqs_disabled();
426
427         // Pure softirq/rcuc based processing: no bypassing, no
428         // locking.
429         if (!rcu_rdp_is_offloaded(rdp)) {
430                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
431                 return false;
432         }
433
434         // In the process of (de-)offloading: no bypassing, but
435         // locking.
436         if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
437                 rcu_nocb_lock(rdp);
438                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
439                 return false; /* Not offloaded, no bypassing. */
440         }
441
442         // Don't use ->nocb_bypass during early boot.
443         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
444                 rcu_nocb_lock(rdp);
445                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
446                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
447                 return false;
448         }
449
450         // If we have advanced to a new jiffy, reset counts to allow
451         // moving back from ->nocb_bypass to ->cblist.
452         if (j == rdp->nocb_nobypass_last) {
453                 c = rdp->nocb_nobypass_count + 1;
454         } else {
455                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
456                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
457                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
458                                  nocb_nobypass_lim_per_jiffy))
459                         c = 0;
460                 else if (c > nocb_nobypass_lim_per_jiffy)
461                         c = nocb_nobypass_lim_per_jiffy;
462         }
463         WRITE_ONCE(rdp->nocb_nobypass_count, c);
464
465         // If there hasn't yet been all that many ->cblist enqueues
466         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
467         // ->nocb_bypass first.
468         // Lazy CBs throttle this back and do immediate bypass queuing.
469         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
470                 rcu_nocb_lock(rdp);
471                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
472                 if (*was_alldone)
473                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
474                                             TPS("FirstQ"));
475
476                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
477                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
478                 return false; // Caller must enqueue the callback.
479         }
480
481         // If ->nocb_bypass has been used too long or is too full,
482         // flush ->nocb_bypass to ->cblist.
483         if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
484             (ncbs &&  bypass_is_lazy &&
485              (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
486             ncbs >= qhimark) {
487                 rcu_nocb_lock(rdp);
488                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
489
490                 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
491                         if (*was_alldone)
492                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
493                                                     TPS("FirstQ"));
494                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
495                         return false; // Caller must enqueue the callback.
496                 }
497                 if (j != rdp->nocb_gp_adv_time &&
498                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
499                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
500                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
501                         rdp->nocb_gp_adv_time = j;
502                 }
503
504                 // The flush succeeded and we moved CBs into the regular list.
505                 // Don't wait for the wake up timer as it may be too far ahead.
506                 // Wake up the GP thread now instead, if the cblist was empty.
507                 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
508
509                 return true; // Callback already enqueued.
510         }
511
512         // We need to use the bypass.
513         rcu_nocb_wait_contended(rdp);
514         rcu_nocb_bypass_lock(rdp);
515         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
516         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
517         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
518
519         if (lazy)
520                 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
521
522         if (!ncbs) {
523                 WRITE_ONCE(rdp->nocb_bypass_first, j);
524                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
525         }
526         rcu_nocb_bypass_unlock(rdp);
527         smp_mb(); /* Order enqueue before wake. */
528         // A wake up of the grace period kthread or timer adjustment
529         // needs to be done only if:
530         // 1. Bypass list was fully empty before (this is the first
531         //    bypass list entry), or:
532         // 2. Both of these conditions are met:
533         //    a. The bypass list previously had only lazy CBs, and:
534         //    b. The new CB is non-lazy.
535         if (!ncbs || (bypass_is_lazy && !lazy)) {
536                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
537                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
538                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
539                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
540                                             TPS("FirstBQwake"));
541                         __call_rcu_nocb_wake(rdp, true, flags);
542                 } else {
543                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
544                                             TPS("FirstBQnoWake"));
545                         rcu_nocb_unlock(rdp);
546                 }
547         }
548         return true; // Callback already enqueued.
549 }
550
551 /*
552  * Awaken the no-CBs grace-period kthread if needed, either due to it
553  * legitimately being asleep or due to overload conditions.
554  *
555  * If warranted, also wake up the kthread servicing this CPUs queues.
556  */
557 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
558                                  unsigned long flags)
559                                  __releases(rdp->nocb_lock)
560 {
561         long bypass_len;
562         unsigned long cur_gp_seq;
563         unsigned long j;
564         long lazy_len;
565         long len;
566         struct task_struct *t;
567         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
568
569         // If we are being polled or there is no kthread, just leave.
570         t = READ_ONCE(rdp->nocb_gp_kthread);
571         if (rcu_nocb_poll || !t) {
572                 rcu_nocb_unlock(rdp);
573                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
574                                     TPS("WakeNotPoll"));
575                 return;
576         }
577         // Need to actually to a wakeup.
578         len = rcu_segcblist_n_cbs(&rdp->cblist);
579         bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
580         lazy_len = READ_ONCE(rdp->lazy_len);
581         if (was_alldone) {
582                 rdp->qlen_last_fqs_check = len;
583                 // Only lazy CBs in bypass list
584                 if (lazy_len && bypass_len == lazy_len) {
585                         rcu_nocb_unlock(rdp);
586                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
587                                            TPS("WakeLazy"));
588                 } else if (!irqs_disabled_flags(flags)) {
589                         /* ... if queue was empty ... */
590                         rcu_nocb_unlock(rdp);
591                         wake_nocb_gp(rdp, false);
592                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
593                                             TPS("WakeEmpty"));
594                 } else {
595                         rcu_nocb_unlock(rdp);
596                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
597                                            TPS("WakeEmptyIsDeferred"));
598                 }
599         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
600                 /* ... or if many callbacks queued. */
601                 rdp->qlen_last_fqs_check = len;
602                 j = jiffies;
603                 if (j != rdp->nocb_gp_adv_time &&
604                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
605                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
606                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
607                         rdp->nocb_gp_adv_time = j;
608                 }
609                 smp_mb(); /* Enqueue before timer_pending(). */
610                 if ((rdp->nocb_cb_sleep ||
611                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
612                     !timer_pending(&rdp_gp->nocb_timer)) {
613                         rcu_nocb_unlock(rdp);
614                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
615                                            TPS("WakeOvfIsDeferred"));
616                 } else {
617                         rcu_nocb_unlock(rdp);
618                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
619                 }
620         } else {
621                 rcu_nocb_unlock(rdp);
622                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
623         }
624 }
625
626 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
627                           rcu_callback_t func, unsigned long flags, bool lazy)
628 {
629         bool was_alldone;
630
631         if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
632                 /* Not enqueued on bypass but locked, do regular enqueue */
633                 rcutree_enqueue(rdp, head, func);
634                 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
635         }
636 }
637
638 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
639                                bool *wake_state)
640 {
641         struct rcu_segcblist *cblist = &rdp->cblist;
642         unsigned long flags;
643         int ret;
644
645         rcu_nocb_lock_irqsave(rdp, flags);
646         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
647             !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
648                 /*
649                  * Offloading. Set our flag and notify the offload worker.
650                  * We will handle this rdp until it ever gets de-offloaded.
651                  */
652                 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
653                 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
654                         *wake_state = true;
655                 ret = 1;
656         } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
657                    rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
658                 /*
659                  * De-offloading. Clear our flag and notify the de-offload worker.
660                  * We will ignore this rdp until it ever gets re-offloaded.
661                  */
662                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
663                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
664                         *wake_state = true;
665                 ret = 0;
666         } else {
667                 WARN_ON_ONCE(1);
668                 ret = -1;
669         }
670
671         rcu_nocb_unlock_irqrestore(rdp, flags);
672
673         return ret;
674 }
675
676 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
677 {
678         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
679         swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
680                                         !READ_ONCE(my_rdp->nocb_gp_sleep));
681         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
682 }
683
684 /*
685  * No-CBs GP kthreads come here to wait for additional callbacks to show up
686  * or for grace periods to end.
687  */
688 static void nocb_gp_wait(struct rcu_data *my_rdp)
689 {
690         bool bypass = false;
691         int __maybe_unused cpu = my_rdp->cpu;
692         unsigned long cur_gp_seq;
693         unsigned long flags;
694         bool gotcbs = false;
695         unsigned long j = jiffies;
696         bool lazy = false;
697         bool needwait_gp = false; // This prevents actual uninitialized use.
698         bool needwake;
699         bool needwake_gp;
700         struct rcu_data *rdp, *rdp_toggling = NULL;
701         struct rcu_node *rnp;
702         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
703         bool wasempty = false;
704
705         /*
706          * Each pass through the following loop checks for CBs and for the
707          * nearest grace period (if any) to wait for next.  The CB kthreads
708          * and the global grace-period kthread are awakened if needed.
709          */
710         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
711         /*
712          * An rcu_data structure is removed from the list after its
713          * CPU is de-offloaded and added to the list before that CPU is
714          * (re-)offloaded.  If the following loop happens to be referencing
715          * that rcu_data structure during the time that the corresponding
716          * CPU is de-offloaded and then immediately re-offloaded, this
717          * loop's rdp pointer will be carried to the end of the list by
718          * the resulting pair of list operations.  This can cause the loop
719          * to skip over some of the rcu_data structures that were supposed
720          * to have been scanned.  Fortunately a new iteration through the
721          * entire loop is forced after a given CPU's rcu_data structure
722          * is added to the list, so the skipped-over rcu_data structures
723          * won't be ignored for long.
724          */
725         list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
726                 long bypass_ncbs;
727                 bool flush_bypass = false;
728                 long lazy_ncbs;
729
730                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
731                 rcu_nocb_lock_irqsave(rdp, flags);
732                 lockdep_assert_held(&rdp->nocb_lock);
733                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
734                 lazy_ncbs = READ_ONCE(rdp->lazy_len);
735
736                 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
737                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
738                      bypass_ncbs > 2 * qhimark)) {
739                         flush_bypass = true;
740                 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
741                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
742                      bypass_ncbs > 2 * qhimark)) {
743                         flush_bypass = true;
744                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
745                         rcu_nocb_unlock_irqrestore(rdp, flags);
746                         continue; /* No callbacks here, try next. */
747                 }
748
749                 if (flush_bypass) {
750                         // Bypass full or old, so flush it.
751                         (void)rcu_nocb_try_flush_bypass(rdp, j);
752                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
753                         lazy_ncbs = READ_ONCE(rdp->lazy_len);
754                 }
755
756                 if (bypass_ncbs) {
757                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
758                                             bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
759                         if (bypass_ncbs == lazy_ncbs)
760                                 lazy = true;
761                         else
762                                 bypass = true;
763                 }
764                 rnp = rdp->mynode;
765
766                 // Advance callbacks if helpful and low contention.
767                 needwake_gp = false;
768                 if (!rcu_segcblist_restempty(&rdp->cblist,
769                                              RCU_NEXT_READY_TAIL) ||
770                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
771                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
772                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
773                         needwake_gp = rcu_advance_cbs(rnp, rdp);
774                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
775                                                            RCU_NEXT_READY_TAIL);
776                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
777                 }
778                 // Need to wait on some grace period?
779                 WARN_ON_ONCE(wasempty &&
780                              !rcu_segcblist_restempty(&rdp->cblist,
781                                                       RCU_NEXT_READY_TAIL));
782                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
783                         if (!needwait_gp ||
784                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
785                                 wait_gp_seq = cur_gp_seq;
786                         needwait_gp = true;
787                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
788                                             TPS("NeedWaitGP"));
789                 }
790                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
791                         needwake = rdp->nocb_cb_sleep;
792                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
793                 } else {
794                         needwake = false;
795                 }
796                 rcu_nocb_unlock_irqrestore(rdp, flags);
797                 if (needwake) {
798                         swake_up_one(&rdp->nocb_cb_wq);
799                         gotcbs = true;
800                 }
801                 if (needwake_gp)
802                         rcu_gp_kthread_wake();
803         }
804
805         my_rdp->nocb_gp_bypass = bypass;
806         my_rdp->nocb_gp_gp = needwait_gp;
807         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
808
809         // At least one child with non-empty ->nocb_bypass, so set
810         // timer in order to avoid stranding its callbacks.
811         if (!rcu_nocb_poll) {
812                 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
813                 if (lazy && !bypass) {
814                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
815                                         TPS("WakeLazyIsDeferred"));
816                 // Otherwise add a deferred bypass wake up.
817                 } else if (bypass) {
818                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
819                                         TPS("WakeBypassIsDeferred"));
820                 }
821         }
822
823         if (rcu_nocb_poll) {
824                 /* Polling, so trace if first poll in the series. */
825                 if (gotcbs)
826                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
827                 if (list_empty(&my_rdp->nocb_head_rdp)) {
828                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
829                         if (!my_rdp->nocb_toggling_rdp)
830                                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
831                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
832                         /* Wait for any offloading rdp */
833                         nocb_gp_sleep(my_rdp, cpu);
834                 } else {
835                         schedule_timeout_idle(1);
836                 }
837         } else if (!needwait_gp) {
838                 /* Wait for callbacks to appear. */
839                 nocb_gp_sleep(my_rdp, cpu);
840         } else {
841                 rnp = my_rdp->mynode;
842                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
843                 swait_event_interruptible_exclusive(
844                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
845                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
846                         !READ_ONCE(my_rdp->nocb_gp_sleep));
847                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
848         }
849
850         if (!rcu_nocb_poll) {
851                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
852                 // (De-)queue an rdp to/from the group if its nocb state is changing
853                 rdp_toggling = my_rdp->nocb_toggling_rdp;
854                 if (rdp_toggling)
855                         my_rdp->nocb_toggling_rdp = NULL;
856
857                 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
858                         WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
859                         del_timer(&my_rdp->nocb_timer);
860                 }
861                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
862                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
863         } else {
864                 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
865                 if (rdp_toggling) {
866                         /*
867                          * Paranoid locking to make sure nocb_toggling_rdp is well
868                          * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
869                          * race with another round of nocb toggling for this rdp.
870                          * Nocb locking should prevent from that already but we stick
871                          * to paranoia, especially in rare path.
872                          */
873                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
874                         my_rdp->nocb_toggling_rdp = NULL;
875                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
876                 }
877         }
878
879         if (rdp_toggling) {
880                 bool wake_state = false;
881                 int ret;
882
883                 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
884                 if (ret == 1)
885                         list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
886                 else if (ret == 0)
887                         list_del(&rdp_toggling->nocb_entry_rdp);
888                 if (wake_state)
889                         swake_up_one(&rdp_toggling->nocb_state_wq);
890         }
891
892         my_rdp->nocb_gp_seq = -1;
893         WARN_ON(signal_pending(current));
894 }
895
896 /*
897  * No-CBs grace-period-wait kthread.  There is one of these per group
898  * of CPUs, but only once at least one CPU in that group has come online
899  * at least once since boot.  This kthread checks for newly posted
900  * callbacks from any of the CPUs it is responsible for, waits for a
901  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
902  * that then have callback-invocation work to do.
903  */
904 static int rcu_nocb_gp_kthread(void *arg)
905 {
906         struct rcu_data *rdp = arg;
907
908         for (;;) {
909                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
910                 nocb_gp_wait(rdp);
911                 cond_resched_tasks_rcu_qs();
912         }
913         return 0;
914 }
915
916 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
917 {
918         u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
919
920         return rcu_segcblist_test_flags(&rdp->cblist, flags);
921 }
922
923 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
924 {
925         return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
926 }
927
928 /*
929  * Invoke any ready callbacks from the corresponding no-CBs CPU,
930  * then, if there are no more, wait for more to appear.
931  */
932 static void nocb_cb_wait(struct rcu_data *rdp)
933 {
934         struct rcu_segcblist *cblist = &rdp->cblist;
935         unsigned long cur_gp_seq;
936         unsigned long flags;
937         bool needwake_state = false;
938         bool needwake_gp = false;
939         bool can_sleep = true;
940         struct rcu_node *rnp = rdp->mynode;
941
942         do {
943                 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
944                                                     nocb_cb_wait_cond(rdp));
945
946                 if (READ_ONCE(rdp->nocb_cb_sleep)) {
947                         WARN_ON(signal_pending(current));
948                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
949                 }
950         } while (!nocb_cb_can_run(rdp));
951
952
953         local_irq_save(flags);
954         rcu_momentary_dyntick_idle();
955         local_irq_restore(flags);
956         /*
957          * Disable BH to provide the expected environment.  Also, when
958          * transitioning to/from NOCB mode, a self-requeuing callback might
959          * be invoked from softirq.  A short grace period could cause both
960          * instances of this callback would execute concurrently.
961          */
962         local_bh_disable();
963         rcu_do_batch(rdp);
964         local_bh_enable();
965         lockdep_assert_irqs_enabled();
966         rcu_nocb_lock_irqsave(rdp, flags);
967         if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
968             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
969             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
970                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
971                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
972         }
973
974         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
975                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
976                         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
977                         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
978                                 needwake_state = true;
979                 }
980                 if (rcu_segcblist_ready_cbs(cblist))
981                         can_sleep = false;
982         } else {
983                 /*
984                  * De-offloading. Clear our flag and notify the de-offload worker.
985                  * We won't touch the callbacks and keep sleeping until we ever
986                  * get re-offloaded.
987                  */
988                 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
989                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
990                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
991                         needwake_state = true;
992         }
993
994         WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
995
996         if (rdp->nocb_cb_sleep)
997                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
998
999         rcu_nocb_unlock_irqrestore(rdp, flags);
1000         if (needwake_gp)
1001                 rcu_gp_kthread_wake();
1002
1003         if (needwake_state)
1004                 swake_up_one(&rdp->nocb_state_wq);
1005 }
1006
1007 /*
1008  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
1009  * nocb_cb_wait() to do the dirty work.
1010  */
1011 static int rcu_nocb_cb_kthread(void *arg)
1012 {
1013         struct rcu_data *rdp = arg;
1014
1015         // Each pass through this loop does one callback batch, and,
1016         // if there are no more ready callbacks, waits for them.
1017         for (;;) {
1018                 nocb_cb_wait(rdp);
1019                 cond_resched_tasks_rcu_qs();
1020         }
1021         return 0;
1022 }
1023
1024 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
1025 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1026 {
1027         return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1028 }
1029
1030 /* Do a deferred wakeup of rcu_nocb_kthread(). */
1031 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1032                                            struct rcu_data *rdp, int level,
1033                                            unsigned long flags)
1034         __releases(rdp_gp->nocb_gp_lock)
1035 {
1036         int ndw;
1037         int ret;
1038
1039         if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1040                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1041                 return false;
1042         }
1043
1044         ndw = rdp_gp->nocb_defer_wakeup;
1045         ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1046         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1047
1048         return ret;
1049 }
1050
1051 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
1052 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1053 {
1054         unsigned long flags;
1055         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1056
1057         WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1058         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1059
1060         raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1061         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1062         do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1063 }
1064
1065 /*
1066  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1067  * This means we do an inexact common-case check.  Note that if
1068  * we miss, ->nocb_timer will eventually clean things up.
1069  */
1070 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1071 {
1072         unsigned long flags;
1073         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1074
1075         if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1076                 return false;
1077
1078         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1079         return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1080 }
1081
1082 void rcu_nocb_flush_deferred_wakeup(void)
1083 {
1084         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1085 }
1086 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1087
1088 static int rdp_offload_toggle(struct rcu_data *rdp,
1089                                bool offload, unsigned long flags)
1090         __releases(rdp->nocb_lock)
1091 {
1092         struct rcu_segcblist *cblist = &rdp->cblist;
1093         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1094         bool wake_gp = false;
1095
1096         rcu_segcblist_offload(cblist, offload);
1097
1098         if (rdp->nocb_cb_sleep)
1099                 rdp->nocb_cb_sleep = false;
1100         rcu_nocb_unlock_irqrestore(rdp, flags);
1101
1102         /*
1103          * Ignore former value of nocb_cb_sleep and force wake up as it could
1104          * have been spuriously set to false already.
1105          */
1106         swake_up_one(&rdp->nocb_cb_wq);
1107
1108         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1109         // Queue this rdp for add/del to/from the list to iterate on rcuog
1110         WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1111         if (rdp_gp->nocb_gp_sleep) {
1112                 rdp_gp->nocb_gp_sleep = false;
1113                 wake_gp = true;
1114         }
1115         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1116
1117         return wake_gp;
1118 }
1119
1120 static long rcu_nocb_rdp_deoffload(void *arg)
1121 {
1122         struct rcu_data *rdp = arg;
1123         struct rcu_segcblist *cblist = &rdp->cblist;
1124         unsigned long flags;
1125         int wake_gp;
1126         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1127
1128         /*
1129          * rcu_nocb_rdp_deoffload() may be called directly if
1130          * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1131          * is not online yet.
1132          */
1133         WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1134
1135         pr_info("De-offloading %d\n", rdp->cpu);
1136
1137         rcu_nocb_lock_irqsave(rdp, flags);
1138         /*
1139          * Flush once and for all now. This suffices because we are
1140          * running on the target CPU holding ->nocb_lock (thus having
1141          * interrupts disabled), and because rdp_offload_toggle()
1142          * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1143          * Thus future calls to rcu_segcblist_completely_offloaded() will
1144          * return false, which means that future calls to rcu_nocb_try_bypass()
1145          * will refuse to put anything into the bypass.
1146          */
1147         WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1148         /*
1149          * Start with invoking rcu_core() early. This way if the current thread
1150          * happens to preempt an ongoing call to rcu_core() in the middle,
1151          * leaving some work dismissed because rcu_core() still thinks the rdp is
1152          * completely offloaded, we are guaranteed a nearby future instance of
1153          * rcu_core() to catch up.
1154          */
1155         rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1156         invoke_rcu_core();
1157         wake_gp = rdp_offload_toggle(rdp, false, flags);
1158
1159         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1160         if (rdp_gp->nocb_gp_kthread) {
1161                 if (wake_gp)
1162                         wake_up_process(rdp_gp->nocb_gp_kthread);
1163
1164                 /*
1165                  * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1166                  * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1167                  */
1168                 if (!rdp->nocb_cb_kthread) {
1169                         rcu_nocb_lock_irqsave(rdp, flags);
1170                         rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1171                         rcu_nocb_unlock_irqrestore(rdp, flags);
1172                 }
1173
1174                 swait_event_exclusive(rdp->nocb_state_wq,
1175                                         !rcu_segcblist_test_flags(cblist,
1176                                           SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1177         } else {
1178                 /*
1179                  * No kthread to clear the flags for us or remove the rdp from the nocb list
1180                  * to iterate. Do it here instead. Locking doesn't look stricly necessary
1181                  * but we stick to paranoia in this rare path.
1182                  */
1183                 rcu_nocb_lock_irqsave(rdp, flags);
1184                 rcu_segcblist_clear_flags(&rdp->cblist,
1185                                 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1186                 rcu_nocb_unlock_irqrestore(rdp, flags);
1187
1188                 list_del(&rdp->nocb_entry_rdp);
1189         }
1190         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1191
1192         /*
1193          * Lock one last time to acquire latest callback updates from kthreads
1194          * so we can later handle callbacks locally without locking.
1195          */
1196         rcu_nocb_lock_irqsave(rdp, flags);
1197         /*
1198          * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1199          * lock is released but how about being paranoid for once?
1200          */
1201         rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1202         /*
1203          * Without SEGCBLIST_LOCKING, we can't use
1204          * rcu_nocb_unlock_irqrestore() anymore.
1205          */
1206         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1207
1208         /* Sanity check */
1209         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1210
1211
1212         return 0;
1213 }
1214
1215 int rcu_nocb_cpu_deoffload(int cpu)
1216 {
1217         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1218         int ret = 0;
1219
1220         cpus_read_lock();
1221         mutex_lock(&rcu_state.barrier_mutex);
1222         if (rcu_rdp_is_offloaded(rdp)) {
1223                 if (cpu_online(cpu)) {
1224                         ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1225                         if (!ret)
1226                                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1227                 } else {
1228                         pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1229                         ret = -EINVAL;
1230                 }
1231         }
1232         mutex_unlock(&rcu_state.barrier_mutex);
1233         cpus_read_unlock();
1234
1235         return ret;
1236 }
1237 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1238
1239 static long rcu_nocb_rdp_offload(void *arg)
1240 {
1241         struct rcu_data *rdp = arg;
1242         struct rcu_segcblist *cblist = &rdp->cblist;
1243         unsigned long flags;
1244         int wake_gp;
1245         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1246
1247         WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1248         /*
1249          * For now we only support re-offload, ie: the rdp must have been
1250          * offloaded on boot first.
1251          */
1252         if (!rdp->nocb_gp_rdp)
1253                 return -EINVAL;
1254
1255         if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1256                 return -EINVAL;
1257
1258         pr_info("Offloading %d\n", rdp->cpu);
1259
1260         /*
1261          * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1262          * is set.
1263          */
1264         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1265
1266         /*
1267          * We didn't take the nocb lock while working on the
1268          * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1269          * Every modifications that have been done previously on
1270          * rdp->cblist must be visible remotely by the nocb kthreads
1271          * upon wake up after reading the cblist flags.
1272          *
1273          * The layout against nocb_lock enforces that ordering:
1274          *
1275          *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1276          * -------------------------   ----------------------------
1277          *      WRITE callbacks           rcu_nocb_lock()
1278          *      rcu_nocb_lock()           READ flags
1279          *      WRITE flags               READ callbacks
1280          *      rcu_nocb_unlock()         rcu_nocb_unlock()
1281          */
1282         wake_gp = rdp_offload_toggle(rdp, true, flags);
1283         if (wake_gp)
1284                 wake_up_process(rdp_gp->nocb_gp_kthread);
1285         swait_event_exclusive(rdp->nocb_state_wq,
1286                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1287                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1288
1289         /*
1290          * All kthreads are ready to work, we can finally relieve rcu_core() and
1291          * enable nocb bypass.
1292          */
1293         rcu_nocb_lock_irqsave(rdp, flags);
1294         rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1295         rcu_nocb_unlock_irqrestore(rdp, flags);
1296
1297         return 0;
1298 }
1299
1300 int rcu_nocb_cpu_offload(int cpu)
1301 {
1302         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1303         int ret = 0;
1304
1305         cpus_read_lock();
1306         mutex_lock(&rcu_state.barrier_mutex);
1307         if (!rcu_rdp_is_offloaded(rdp)) {
1308                 if (cpu_online(cpu)) {
1309                         ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1310                         if (!ret)
1311                                 cpumask_set_cpu(cpu, rcu_nocb_mask);
1312                 } else {
1313                         pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1314                         ret = -EINVAL;
1315                 }
1316         }
1317         mutex_unlock(&rcu_state.barrier_mutex);
1318         cpus_read_unlock();
1319
1320         return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1323
1324 #ifdef CONFIG_RCU_LAZY
1325 static unsigned long
1326 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1327 {
1328         int cpu;
1329         unsigned long count = 0;
1330
1331         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1332                 return 0;
1333
1334         /*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1335         if (!mutex_trylock(&rcu_state.barrier_mutex))
1336                 return 0;
1337
1338         /* Snapshot count of all CPUs */
1339         for_each_cpu(cpu, rcu_nocb_mask) {
1340                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1341
1342                 count +=  READ_ONCE(rdp->lazy_len);
1343         }
1344
1345         mutex_unlock(&rcu_state.barrier_mutex);
1346
1347         return count ? count : SHRINK_EMPTY;
1348 }
1349
1350 static unsigned long
1351 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1352 {
1353         int cpu;
1354         unsigned long flags;
1355         unsigned long count = 0;
1356
1357         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1358                 return 0;
1359         /*
1360          * Protect against concurrent (de-)offloading. Otherwise nocb locking
1361          * may be ignored or imbalanced.
1362          */
1363         if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1364                 /*
1365                  * But really don't insist if barrier_mutex is contended since we
1366                  * can't guarantee that it will never engage in a dependency
1367                  * chain involving memory allocation. The lock is seldom contended
1368                  * anyway.
1369                  */
1370                 return 0;
1371         }
1372
1373         /* Snapshot count of all CPUs */
1374         for_each_cpu(cpu, rcu_nocb_mask) {
1375                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1376                 int _count;
1377
1378                 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1379                         continue;
1380
1381                 if (!READ_ONCE(rdp->lazy_len))
1382                         continue;
1383
1384                 rcu_nocb_lock_irqsave(rdp, flags);
1385                 /*
1386                  * Recheck under the nocb lock. Since we are not holding the bypass
1387                  * lock we may still race with increments from the enqueuer but still
1388                  * we know for sure if there is at least one lazy callback.
1389                  */
1390                 _count = READ_ONCE(rdp->lazy_len);
1391                 if (!_count) {
1392                         rcu_nocb_unlock_irqrestore(rdp, flags);
1393                         continue;
1394                 }
1395                 rcu_nocb_try_flush_bypass(rdp, jiffies);
1396                 rcu_nocb_unlock_irqrestore(rdp, flags);
1397                 wake_nocb_gp(rdp, false);
1398                 sc->nr_to_scan -= _count;
1399                 count += _count;
1400                 if (sc->nr_to_scan <= 0)
1401                         break;
1402         }
1403
1404         mutex_unlock(&rcu_state.barrier_mutex);
1405
1406         return count ? count : SHRINK_STOP;
1407 }
1408 #endif // #ifdef CONFIG_RCU_LAZY
1409
1410 void __init rcu_init_nohz(void)
1411 {
1412         int cpu;
1413         struct rcu_data *rdp;
1414         const struct cpumask *cpumask = NULL;
1415         struct shrinker * __maybe_unused lazy_rcu_shrinker;
1416
1417 #if defined(CONFIG_NO_HZ_FULL)
1418         if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1419                 cpumask = tick_nohz_full_mask;
1420 #endif
1421
1422         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1423             !rcu_state.nocb_is_setup && !cpumask)
1424                 cpumask = cpu_possible_mask;
1425
1426         if (cpumask) {
1427                 if (!cpumask_available(rcu_nocb_mask)) {
1428                         if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1429                                 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1430                                 return;
1431                         }
1432                 }
1433
1434                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1435                 rcu_state.nocb_is_setup = true;
1436         }
1437
1438         if (!rcu_state.nocb_is_setup)
1439                 return;
1440
1441 #ifdef CONFIG_RCU_LAZY
1442         lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1443         if (!lazy_rcu_shrinker) {
1444                 pr_err("Failed to allocate lazy_rcu shrinker!\n");
1445         } else {
1446                 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1447                 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1448
1449                 shrinker_register(lazy_rcu_shrinker);
1450         }
1451 #endif // #ifdef CONFIG_RCU_LAZY
1452
1453         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1454                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1455                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1456                             rcu_nocb_mask);
1457         }
1458         if (cpumask_empty(rcu_nocb_mask))
1459                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1460         else
1461                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1462                         cpumask_pr_args(rcu_nocb_mask));
1463         if (rcu_nocb_poll)
1464                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1465
1466         for_each_cpu(cpu, rcu_nocb_mask) {
1467                 rdp = per_cpu_ptr(&rcu_data, cpu);
1468                 if (rcu_segcblist_empty(&rdp->cblist))
1469                         rcu_segcblist_init(&rdp->cblist);
1470                 rcu_segcblist_offload(&rdp->cblist, true);
1471                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1472                 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1473         }
1474         rcu_organize_nocb_kthreads();
1475 }
1476
1477 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1478 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1479 {
1480         init_swait_queue_head(&rdp->nocb_cb_wq);
1481         init_swait_queue_head(&rdp->nocb_gp_wq);
1482         init_swait_queue_head(&rdp->nocb_state_wq);
1483         raw_spin_lock_init(&rdp->nocb_lock);
1484         raw_spin_lock_init(&rdp->nocb_bypass_lock);
1485         raw_spin_lock_init(&rdp->nocb_gp_lock);
1486         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1487         rcu_cblist_init(&rdp->nocb_bypass);
1488         WRITE_ONCE(rdp->lazy_len, 0);
1489         mutex_init(&rdp->nocb_gp_kthread_mutex);
1490 }
1491
1492 /*
1493  * If the specified CPU is a no-CBs CPU that does not already have its
1494  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1495  * for this CPU's group has not yet been created, spawn it as well.
1496  */
1497 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1498 {
1499         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1500         struct rcu_data *rdp_gp;
1501         struct task_struct *t;
1502         struct sched_param sp;
1503
1504         if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1505                 return;
1506
1507         /* If there already is an rcuo kthread, then nothing to do. */
1508         if (rdp->nocb_cb_kthread)
1509                 return;
1510
1511         /* If we didn't spawn the GP kthread first, reorganize! */
1512         sp.sched_priority = kthread_prio;
1513         rdp_gp = rdp->nocb_gp_rdp;
1514         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1515         if (!rdp_gp->nocb_gp_kthread) {
1516                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1517                                 "rcuog/%d", rdp_gp->cpu);
1518                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1519                         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1520                         goto end;
1521                 }
1522                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1523                 if (kthread_prio)
1524                         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1525         }
1526         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1527
1528         /* Spawn the kthread for this CPU. */
1529         t = kthread_run(rcu_nocb_cb_kthread, rdp,
1530                         "rcuo%c/%d", rcu_state.abbr, cpu);
1531         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1532                 goto end;
1533
1534         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1535                 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1536
1537         WRITE_ONCE(rdp->nocb_cb_kthread, t);
1538         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1539         return;
1540 end:
1541         mutex_lock(&rcu_state.barrier_mutex);
1542         if (rcu_rdp_is_offloaded(rdp)) {
1543                 rcu_nocb_rdp_deoffload(rdp);
1544                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1545         }
1546         mutex_unlock(&rcu_state.barrier_mutex);
1547 }
1548
1549 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1550 static int rcu_nocb_gp_stride = -1;
1551 module_param(rcu_nocb_gp_stride, int, 0444);
1552
1553 /*
1554  * Initialize GP-CB relationships for all no-CBs CPU.
1555  */
1556 static void __init rcu_organize_nocb_kthreads(void)
1557 {
1558         int cpu;
1559         bool firsttime = true;
1560         bool gotnocbs = false;
1561         bool gotnocbscbs = true;
1562         int ls = rcu_nocb_gp_stride;
1563         int nl = 0;  /* Next GP kthread. */
1564         struct rcu_data *rdp;
1565         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1566
1567         if (!cpumask_available(rcu_nocb_mask))
1568                 return;
1569         if (ls == -1) {
1570                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1571                 rcu_nocb_gp_stride = ls;
1572         }
1573
1574         /*
1575          * Each pass through this loop sets up one rcu_data structure.
1576          * Should the corresponding CPU come online in the future, then
1577          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1578          */
1579         for_each_possible_cpu(cpu) {
1580                 rdp = per_cpu_ptr(&rcu_data, cpu);
1581                 if (rdp->cpu >= nl) {
1582                         /* New GP kthread, set up for CBs & next GP. */
1583                         gotnocbs = true;
1584                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1585                         rdp_gp = rdp;
1586                         INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1587                         if (dump_tree) {
1588                                 if (!firsttime)
1589                                         pr_cont("%s\n", gotnocbscbs
1590                                                         ? "" : " (self only)");
1591                                 gotnocbscbs = false;
1592                                 firsttime = false;
1593                                 pr_alert("%s: No-CB GP kthread CPU %d:",
1594                                          __func__, cpu);
1595                         }
1596                 } else {
1597                         /* Another CB kthread, link to previous GP kthread. */
1598                         gotnocbscbs = true;
1599                         if (dump_tree)
1600                                 pr_cont(" %d", cpu);
1601                 }
1602                 rdp->nocb_gp_rdp = rdp_gp;
1603                 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1604                         list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1605         }
1606         if (gotnocbs && dump_tree)
1607                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1608 }
1609
1610 /*
1611  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1612  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1613  */
1614 void rcu_bind_current_to_nocb(void)
1615 {
1616         if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1617                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1618 }
1619 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1620
1621 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1622 #ifdef CONFIG_SMP
1623 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1624 {
1625         return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1626 }
1627 #else // #ifdef CONFIG_SMP
1628 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1629 {
1630         return "";
1631 }
1632 #endif // #else #ifdef CONFIG_SMP
1633
1634 /*
1635  * Dump out nocb grace-period kthread state for the specified rcu_data
1636  * structure.
1637  */
1638 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1639 {
1640         struct rcu_node *rnp = rdp->mynode;
1641
1642         pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1643                 rdp->cpu,
1644                 "kK"[!!rdp->nocb_gp_kthread],
1645                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1646                 "dD"[!!rdp->nocb_defer_wakeup],
1647                 "tT"[timer_pending(&rdp->nocb_timer)],
1648                 "sS"[!!rdp->nocb_gp_sleep],
1649                 ".W"[swait_active(&rdp->nocb_gp_wq)],
1650                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1651                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1652                 ".B"[!!rdp->nocb_gp_bypass],
1653                 ".G"[!!rdp->nocb_gp_gp],
1654                 (long)rdp->nocb_gp_seq,
1655                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1656                 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1657                 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1658                 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1659 }
1660
1661 /* Dump out nocb kthread state for the specified rcu_data structure. */
1662 static void show_rcu_nocb_state(struct rcu_data *rdp)
1663 {
1664         char bufw[20];
1665         char bufr[20];
1666         struct rcu_data *nocb_next_rdp;
1667         struct rcu_segcblist *rsclp = &rdp->cblist;
1668         bool waslocked;
1669         bool wassleep;
1670
1671         if (rdp->nocb_gp_rdp == rdp)
1672                 show_rcu_nocb_gp_state(rdp);
1673
1674         nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1675                                               &rdp->nocb_entry_rdp,
1676                                               typeof(*rdp),
1677                                               nocb_entry_rdp);
1678
1679         sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1680         sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1681         pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1682                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1683                 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1684                 "kK"[!!rdp->nocb_cb_kthread],
1685                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1686                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1687                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1688                 "sS"[!!rdp->nocb_cb_sleep],
1689                 ".W"[swait_active(&rdp->nocb_cb_wq)],
1690                 jiffies - rdp->nocb_bypass_first,
1691                 jiffies - rdp->nocb_nobypass_last,
1692                 rdp->nocb_nobypass_count,
1693                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1694                 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1695                 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1696                 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1697                 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1698                 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1699                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1700                 rcu_segcblist_n_cbs(&rdp->cblist),
1701                 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1702                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1703                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1704
1705         /* It is OK for GP kthreads to have GP state. */
1706         if (rdp->nocb_gp_rdp == rdp)
1707                 return;
1708
1709         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1710         wassleep = swait_active(&rdp->nocb_gp_wq);
1711         if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1712                 return;  /* Nothing untoward. */
1713
1714         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1715                 "lL"[waslocked],
1716                 "dD"[!!rdp->nocb_defer_wakeup],
1717                 "sS"[!!rdp->nocb_gp_sleep],
1718                 ".W"[wassleep]);
1719 }
1720
1721 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1722
1723 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1724 {
1725         return 0;
1726 }
1727
1728 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1729 {
1730         return false;
1731 }
1732
1733 /* No ->nocb_lock to acquire.  */
1734 static void rcu_nocb_lock(struct rcu_data *rdp)
1735 {
1736 }
1737
1738 /* No ->nocb_lock to release.  */
1739 static void rcu_nocb_unlock(struct rcu_data *rdp)
1740 {
1741 }
1742
1743 /* No ->nocb_lock to release.  */
1744 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1745                                        unsigned long flags)
1746 {
1747         local_irq_restore(flags);
1748 }
1749
1750 /* Lockdep check that ->cblist may be safely accessed. */
1751 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1752 {
1753         lockdep_assert_irqs_disabled();
1754 }
1755
1756 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1757 {
1758 }
1759
1760 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1761 {
1762         return NULL;
1763 }
1764
1765 static void rcu_init_one_nocb(struct rcu_node *rnp)
1766 {
1767 }
1768
1769 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1770 {
1771         return false;
1772 }
1773
1774 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1775                                   unsigned long j, bool lazy)
1776 {
1777         return true;
1778 }
1779
1780 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1781                           rcu_callback_t func, unsigned long flags, bool lazy)
1782 {
1783         WARN_ON_ONCE(1);  /* Should be dead code! */
1784 }
1785
1786 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1787                                  unsigned long flags)
1788 {
1789         WARN_ON_ONCE(1);  /* Should be dead code! */
1790 }
1791
1792 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1793 {
1794 }
1795
1796 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1797 {
1798         return false;
1799 }
1800
1801 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1802 {
1803         return false;
1804 }
1805
1806 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1807 {
1808 }
1809
1810 static void show_rcu_nocb_state(struct rcu_data *rdp)
1811 {
1812 }
1813
1814 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
This page took 0.145447 seconds and 4 git commands to generate.