]> Git Repo - linux.git/blob - kernel/rcu/tree_nocb.h
Linux 6.14-rc3
[linux.git] / kernel / rcu / tree_nocb.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <[email protected]>
12  *         Paul E. McKenney <[email protected]>
13  *         Frederic Weisbecker <[email protected]>
14  */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19
20 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
21 {
22         /* Race on early boot between thread creation and assignment */
23         if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
24                 return true;
25
26         if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
27                 if (in_task())
28                         return true;
29         return false;
30 }
31
32 /*
33  * Offload callback processing from the boot-time-specified set of CPUs
34  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
35  * created that pull the callbacks from the corresponding CPU, wait for
36  * a grace period to elapse, and invoke the callbacks.  These kthreads
37  * are organized into GP kthreads, which manage incoming callbacks, wait for
38  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
39  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
40  * do a wake_up() on their GP kthread when they insert a callback into any
41  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
42  * in which case each kthread actively polls its CPU.  (Which isn't so great
43  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
44  *
45  * This is intended to be used in conjunction with Frederic Weisbecker's
46  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
47  * running CPU-bound user-mode computations.
48  *
49  * Offloading of callbacks can also be used as an energy-efficiency
50  * measure because CPUs with no RCU callbacks queued are more aggressive
51  * about entering dyntick-idle mode.
52  */
53
54
55 /*
56  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
57  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
58  */
59 static int __init rcu_nocb_setup(char *str)
60 {
61         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
62         if (*str == '=') {
63                 if (cpulist_parse(++str, rcu_nocb_mask)) {
64                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
65                         cpumask_setall(rcu_nocb_mask);
66                 }
67         }
68         rcu_state.nocb_is_setup = true;
69         return 1;
70 }
71 __setup("rcu_nocbs", rcu_nocb_setup);
72
73 static int __init parse_rcu_nocb_poll(char *arg)
74 {
75         rcu_nocb_poll = true;
76         return 1;
77 }
78 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
79
80 /*
81  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
82  * After all, the main point of bypassing is to avoid lock contention
83  * on ->nocb_lock, which only can happen at high call_rcu() rates.
84  */
85 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
86 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
87
88 /*
89  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
90  * lock isn't immediately available, perform minimal sanity check.
91  */
92 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
93         __acquires(&rdp->nocb_bypass_lock)
94 {
95         lockdep_assert_irqs_disabled();
96         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
97                 return;
98         /*
99          * Contention expected only when local enqueue collide with
100          * remote flush from kthreads.
101          */
102         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
103         raw_spin_lock(&rdp->nocb_bypass_lock);
104 }
105
106 /*
107  * Conditionally acquire the specified rcu_data structure's
108  * ->nocb_bypass_lock.
109  */
110 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
111 {
112         lockdep_assert_irqs_disabled();
113         return raw_spin_trylock(&rdp->nocb_bypass_lock);
114 }
115
116 /*
117  * Release the specified rcu_data structure's ->nocb_bypass_lock.
118  */
119 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
120         __releases(&rdp->nocb_bypass_lock)
121 {
122         lockdep_assert_irqs_disabled();
123         raw_spin_unlock(&rdp->nocb_bypass_lock);
124 }
125
126 /*
127  * Acquire the specified rcu_data structure's ->nocb_lock, but only
128  * if it corresponds to a no-CBs CPU.
129  */
130 static void rcu_nocb_lock(struct rcu_data *rdp)
131 {
132         lockdep_assert_irqs_disabled();
133         if (!rcu_rdp_is_offloaded(rdp))
134                 return;
135         raw_spin_lock(&rdp->nocb_lock);
136 }
137
138 /*
139  * Release the specified rcu_data structure's ->nocb_lock, but only
140  * if it corresponds to a no-CBs CPU.
141  */
142 static void rcu_nocb_unlock(struct rcu_data *rdp)
143 {
144         if (rcu_rdp_is_offloaded(rdp)) {
145                 lockdep_assert_irqs_disabled();
146                 raw_spin_unlock(&rdp->nocb_lock);
147         }
148 }
149
150 /*
151  * Release the specified rcu_data structure's ->nocb_lock and restore
152  * interrupts, but only if it corresponds to a no-CBs CPU.
153  */
154 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
155                                        unsigned long flags)
156 {
157         if (rcu_rdp_is_offloaded(rdp)) {
158                 lockdep_assert_irqs_disabled();
159                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
160         } else {
161                 local_irq_restore(flags);
162         }
163 }
164
165 /* Lockdep check that ->cblist may be safely accessed. */
166 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
167 {
168         lockdep_assert_irqs_disabled();
169         if (rcu_rdp_is_offloaded(rdp))
170                 lockdep_assert_held(&rdp->nocb_lock);
171 }
172
173 /*
174  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
175  * grace period.
176  */
177 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
178 {
179         swake_up_all(sq);
180 }
181
182 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
183 {
184         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
185 }
186
187 static void rcu_init_one_nocb(struct rcu_node *rnp)
188 {
189         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
190         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
191 }
192
193 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
194                            struct rcu_data *rdp,
195                            bool force, unsigned long flags)
196         __releases(rdp_gp->nocb_gp_lock)
197 {
198         bool needwake = false;
199
200         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
201                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
202                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
203                                     TPS("AlreadyAwake"));
204                 return false;
205         }
206
207         if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
208                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
209                 del_timer(&rdp_gp->nocb_timer);
210         }
211
212         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
213                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
214                 needwake = true;
215         }
216         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
217         if (needwake) {
218                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
219                 swake_up_one_online(&rdp_gp->nocb_gp_wq);
220         }
221
222         return needwake;
223 }
224
225 /*
226  * Kick the GP kthread for this NOCB group.
227  */
228 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
229 {
230         unsigned long flags;
231         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
232
233         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
234         return __wake_nocb_gp(rdp_gp, rdp, force, flags);
235 }
236
237 #ifdef CONFIG_RCU_LAZY
238 /*
239  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
240  * can elapse before lazy callbacks are flushed. Lazy callbacks
241  * could be flushed much earlier for a number of other reasons
242  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
243  * left unsubmitted to RCU after those many jiffies.
244  */
245 #define LAZY_FLUSH_JIFFIES (10 * HZ)
246 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
247
248 // To be called only from test code.
249 void rcu_set_jiffies_lazy_flush(unsigned long jif)
250 {
251         jiffies_lazy_flush = jif;
252 }
253 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
254
255 unsigned long rcu_get_jiffies_lazy_flush(void)
256 {
257         return jiffies_lazy_flush;
258 }
259 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
260 #endif
261
262 /*
263  * Arrange to wake the GP kthread for this NOCB group at some future
264  * time when it is safe to do so.
265  */
266 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
267                                const char *reason)
268 {
269         unsigned long flags;
270         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
271
272         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
273
274         /*
275          * Bypass wakeup overrides previous deferments. In case of
276          * callback storms, no need to wake up too early.
277          */
278         if (waketype == RCU_NOCB_WAKE_LAZY &&
279             rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
280                 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
281                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
282         } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
283                 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
284                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
285         } else {
286                 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
287                         mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
288                 if (rdp_gp->nocb_defer_wakeup < waketype)
289                         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
290         }
291
292         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
293
294         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
295 }
296
297 /*
298  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
299  * However, if there is a callback to be enqueued and if ->nocb_bypass
300  * proves to be initially empty, just return false because the no-CB GP
301  * kthread may need to be awakened in this case.
302  *
303  * Return true if there was something to be flushed and it succeeded, otherwise
304  * false.
305  *
306  * Note that this function always returns true if rhp is NULL.
307  */
308 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
309                                      unsigned long j, bool lazy)
310 {
311         struct rcu_cblist rcl;
312         struct rcu_head *rhp = rhp_in;
313
314         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
315         rcu_lockdep_assert_cblist_protected(rdp);
316         lockdep_assert_held(&rdp->nocb_bypass_lock);
317         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
318                 raw_spin_unlock(&rdp->nocb_bypass_lock);
319                 return false;
320         }
321         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
322         if (rhp)
323                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
324
325         /*
326          * If the new CB requested was a lazy one, queue it onto the main
327          * ->cblist so that we can take advantage of the grace-period that will
328          * happen regardless. But queue it onto the bypass list first so that
329          * the lazy CB is ordered with the existing CBs in the bypass list.
330          */
331         if (lazy && rhp) {
332                 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
333                 rhp = NULL;
334         }
335         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
336         WRITE_ONCE(rdp->lazy_len, 0);
337
338         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
339         WRITE_ONCE(rdp->nocb_bypass_first, j);
340         rcu_nocb_bypass_unlock(rdp);
341         return true;
342 }
343
344 /*
345  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
346  * However, if there is a callback to be enqueued and if ->nocb_bypass
347  * proves to be initially empty, just return false because the no-CB GP
348  * kthread may need to be awakened in this case.
349  *
350  * Note that this function always returns true if rhp is NULL.
351  */
352 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
353                                   unsigned long j, bool lazy)
354 {
355         if (!rcu_rdp_is_offloaded(rdp))
356                 return true;
357         rcu_lockdep_assert_cblist_protected(rdp);
358         rcu_nocb_bypass_lock(rdp);
359         return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
360 }
361
362 /*
363  * If the ->nocb_bypass_lock is immediately available, flush the
364  * ->nocb_bypass queue into ->cblist.
365  */
366 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
367 {
368         rcu_lockdep_assert_cblist_protected(rdp);
369         if (!rcu_rdp_is_offloaded(rdp) ||
370             !rcu_nocb_bypass_trylock(rdp))
371                 return;
372         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
373 }
374
375 /*
376  * See whether it is appropriate to use the ->nocb_bypass list in order
377  * to control contention on ->nocb_lock.  A limited number of direct
378  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
379  * is non-empty, further callbacks must be placed into ->nocb_bypass,
380  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
381  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
382  * used if ->cblist is empty, because otherwise callbacks can be stranded
383  * on ->nocb_bypass because we cannot count on the current CPU ever again
384  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
385  * non-empty, the corresponding no-CBs grace-period kthread must not be
386  * in an indefinite sleep state.
387  *
388  * Finally, it is not permitted to use the bypass during early boot,
389  * as doing so would confuse the auto-initialization code.  Besides
390  * which, there is no point in worrying about lock contention while
391  * there is only one CPU in operation.
392  */
393 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
394                                 bool *was_alldone, unsigned long flags,
395                                 bool lazy)
396 {
397         unsigned long c;
398         unsigned long cur_gp_seq;
399         unsigned long j = jiffies;
400         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
401         bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
402
403         lockdep_assert_irqs_disabled();
404
405         // Pure softirq/rcuc based processing: no bypassing, no
406         // locking.
407         if (!rcu_rdp_is_offloaded(rdp)) {
408                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
409                 return false;
410         }
411
412         // Don't use ->nocb_bypass during early boot.
413         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
414                 rcu_nocb_lock(rdp);
415                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
416                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
417                 return false;
418         }
419
420         // If we have advanced to a new jiffy, reset counts to allow
421         // moving back from ->nocb_bypass to ->cblist.
422         if (j == rdp->nocb_nobypass_last) {
423                 c = rdp->nocb_nobypass_count + 1;
424         } else {
425                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
426                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
427                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
428                                  nocb_nobypass_lim_per_jiffy))
429                         c = 0;
430                 else if (c > nocb_nobypass_lim_per_jiffy)
431                         c = nocb_nobypass_lim_per_jiffy;
432         }
433         WRITE_ONCE(rdp->nocb_nobypass_count, c);
434
435         // If there hasn't yet been all that many ->cblist enqueues
436         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
437         // ->nocb_bypass first.
438         // Lazy CBs throttle this back and do immediate bypass queuing.
439         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
440                 rcu_nocb_lock(rdp);
441                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
442                 if (*was_alldone)
443                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
444                                             TPS("FirstQ"));
445
446                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
447                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
448                 return false; // Caller must enqueue the callback.
449         }
450
451         // If ->nocb_bypass has been used too long or is too full,
452         // flush ->nocb_bypass to ->cblist.
453         if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
454             (ncbs &&  bypass_is_lazy &&
455              (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
456             ncbs >= qhimark) {
457                 rcu_nocb_lock(rdp);
458                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
459
460                 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
461                         if (*was_alldone)
462                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
463                                                     TPS("FirstQ"));
464                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
465                         return false; // Caller must enqueue the callback.
466                 }
467                 if (j != rdp->nocb_gp_adv_time &&
468                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
469                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
470                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
471                         rdp->nocb_gp_adv_time = j;
472                 }
473
474                 // The flush succeeded and we moved CBs into the regular list.
475                 // Don't wait for the wake up timer as it may be too far ahead.
476                 // Wake up the GP thread now instead, if the cblist was empty.
477                 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
478
479                 return true; // Callback already enqueued.
480         }
481
482         // We need to use the bypass.
483         rcu_nocb_bypass_lock(rdp);
484         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
485         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
486         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
487
488         if (lazy)
489                 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
490
491         if (!ncbs) {
492                 WRITE_ONCE(rdp->nocb_bypass_first, j);
493                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
494         }
495         rcu_nocb_bypass_unlock(rdp);
496
497         // A wake up of the grace period kthread or timer adjustment
498         // needs to be done only if:
499         // 1. Bypass list was fully empty before (this is the first
500         //    bypass list entry), or:
501         // 2. Both of these conditions are met:
502         //    a. The bypass list previously had only lazy CBs, and:
503         //    b. The new CB is non-lazy.
504         if (!ncbs || (bypass_is_lazy && !lazy)) {
505                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
506                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
507                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
508                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
509                                             TPS("FirstBQwake"));
510                         __call_rcu_nocb_wake(rdp, true, flags);
511                 } else {
512                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
513                                             TPS("FirstBQnoWake"));
514                         rcu_nocb_unlock(rdp);
515                 }
516         }
517         return true; // Callback already enqueued.
518 }
519
520 /*
521  * Awaken the no-CBs grace-period kthread if needed, either due to it
522  * legitimately being asleep or due to overload conditions.
523  *
524  * If warranted, also wake up the kthread servicing this CPUs queues.
525  */
526 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
527                                  unsigned long flags)
528                                  __releases(rdp->nocb_lock)
529 {
530         long bypass_len;
531         unsigned long cur_gp_seq;
532         unsigned long j;
533         long lazy_len;
534         long len;
535         struct task_struct *t;
536         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
537
538         // If we are being polled or there is no kthread, just leave.
539         t = READ_ONCE(rdp->nocb_gp_kthread);
540         if (rcu_nocb_poll || !t) {
541                 rcu_nocb_unlock(rdp);
542                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
543                                     TPS("WakeNotPoll"));
544                 return;
545         }
546         // Need to actually to a wakeup.
547         len = rcu_segcblist_n_cbs(&rdp->cblist);
548         bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
549         lazy_len = READ_ONCE(rdp->lazy_len);
550         if (was_alldone) {
551                 rdp->qlen_last_fqs_check = len;
552                 // Only lazy CBs in bypass list
553                 if (lazy_len && bypass_len == lazy_len) {
554                         rcu_nocb_unlock(rdp);
555                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
556                                            TPS("WakeLazy"));
557                 } else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) {
558                         /* ... if queue was empty ... */
559                         rcu_nocb_unlock(rdp);
560                         wake_nocb_gp(rdp, false);
561                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
562                                             TPS("WakeEmpty"));
563                 } else {
564                         /*
565                          * Don't do the wake-up upfront on fragile paths.
566                          * Also offline CPUs can't call swake_up_one_online() from
567                          * (soft-)IRQs. Rely on the final deferred wake-up from
568                          * rcutree_report_cpu_dead()
569                          */
570                         rcu_nocb_unlock(rdp);
571                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
572                                            TPS("WakeEmptyIsDeferred"));
573                 }
574         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
575                 /* ... or if many callbacks queued. */
576                 rdp->qlen_last_fqs_check = len;
577                 j = jiffies;
578                 if (j != rdp->nocb_gp_adv_time &&
579                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
580                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
581                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
582                         rdp->nocb_gp_adv_time = j;
583                 }
584                 smp_mb(); /* Enqueue before timer_pending(). */
585                 if ((rdp->nocb_cb_sleep ||
586                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
587                     !timer_pending(&rdp_gp->nocb_timer)) {
588                         rcu_nocb_unlock(rdp);
589                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
590                                            TPS("WakeOvfIsDeferred"));
591                 } else {
592                         rcu_nocb_unlock(rdp);
593                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
594                 }
595         } else {
596                 rcu_nocb_unlock(rdp);
597                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
598         }
599 }
600
601 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
602                           rcu_callback_t func, unsigned long flags, bool lazy)
603 {
604         bool was_alldone;
605
606         if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
607                 /* Not enqueued on bypass but locked, do regular enqueue */
608                 rcutree_enqueue(rdp, head, func);
609                 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
610         }
611 }
612
613 static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
614 {
615         struct rcu_segcblist *cblist = &rdp->cblist;
616         unsigned long flags;
617
618         /*
619          * Locking orders future de-offloaded callbacks enqueue against previous
620          * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
621          * deoffloaded callbacks can be enqueued.
622          */
623         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
624         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
625                 /*
626                  * Offloading. Set our flag and notify the offload worker.
627                  * We will handle this rdp until it ever gets de-offloaded.
628                  */
629                 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
630                 rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
631         } else {
632                 /*
633                  * De-offloading. Clear our flag and notify the de-offload worker.
634                  * We will ignore this rdp until it ever gets re-offloaded.
635                  */
636                 list_del(&rdp->nocb_entry_rdp);
637                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
638         }
639         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
640 }
641
642 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
643 {
644         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
645         swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
646                                         !READ_ONCE(my_rdp->nocb_gp_sleep));
647         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
648 }
649
650 /*
651  * No-CBs GP kthreads come here to wait for additional callbacks to show up
652  * or for grace periods to end.
653  */
654 static void nocb_gp_wait(struct rcu_data *my_rdp)
655 {
656         bool bypass = false;
657         int __maybe_unused cpu = my_rdp->cpu;
658         unsigned long cur_gp_seq;
659         unsigned long flags;
660         bool gotcbs = false;
661         unsigned long j = jiffies;
662         bool lazy = false;
663         bool needwait_gp = false; // This prevents actual uninitialized use.
664         bool needwake;
665         bool needwake_gp;
666         struct rcu_data *rdp, *rdp_toggling = NULL;
667         struct rcu_node *rnp;
668         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
669         bool wasempty = false;
670
671         /*
672          * Each pass through the following loop checks for CBs and for the
673          * nearest grace period (if any) to wait for next.  The CB kthreads
674          * and the global grace-period kthread are awakened if needed.
675          */
676         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
677         /*
678          * An rcu_data structure is removed from the list after its
679          * CPU is de-offloaded and added to the list before that CPU is
680          * (re-)offloaded.  If the following loop happens to be referencing
681          * that rcu_data structure during the time that the corresponding
682          * CPU is de-offloaded and then immediately re-offloaded, this
683          * loop's rdp pointer will be carried to the end of the list by
684          * the resulting pair of list operations.  This can cause the loop
685          * to skip over some of the rcu_data structures that were supposed
686          * to have been scanned.  Fortunately a new iteration through the
687          * entire loop is forced after a given CPU's rcu_data structure
688          * is added to the list, so the skipped-over rcu_data structures
689          * won't be ignored for long.
690          */
691         list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
692                 long bypass_ncbs;
693                 bool flush_bypass = false;
694                 long lazy_ncbs;
695
696                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
697                 rcu_nocb_lock_irqsave(rdp, flags);
698                 lockdep_assert_held(&rdp->nocb_lock);
699                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
700                 lazy_ncbs = READ_ONCE(rdp->lazy_len);
701
702                 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
703                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
704                      bypass_ncbs > 2 * qhimark)) {
705                         flush_bypass = true;
706                 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
707                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
708                      bypass_ncbs > 2 * qhimark)) {
709                         flush_bypass = true;
710                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
711                         rcu_nocb_unlock_irqrestore(rdp, flags);
712                         continue; /* No callbacks here, try next. */
713                 }
714
715                 if (flush_bypass) {
716                         // Bypass full or old, so flush it.
717                         (void)rcu_nocb_try_flush_bypass(rdp, j);
718                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
719                         lazy_ncbs = READ_ONCE(rdp->lazy_len);
720                 }
721
722                 if (bypass_ncbs) {
723                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
724                                             bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
725                         if (bypass_ncbs == lazy_ncbs)
726                                 lazy = true;
727                         else
728                                 bypass = true;
729                 }
730                 rnp = rdp->mynode;
731
732                 // Advance callbacks if helpful and low contention.
733                 needwake_gp = false;
734                 if (!rcu_segcblist_restempty(&rdp->cblist,
735                                              RCU_NEXT_READY_TAIL) ||
736                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
737                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
738                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
739                         needwake_gp = rcu_advance_cbs(rnp, rdp);
740                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
741                                                            RCU_NEXT_READY_TAIL);
742                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
743                 }
744                 // Need to wait on some grace period?
745                 WARN_ON_ONCE(wasempty &&
746                              !rcu_segcblist_restempty(&rdp->cblist,
747                                                       RCU_NEXT_READY_TAIL));
748                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
749                         if (!needwait_gp ||
750                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
751                                 wait_gp_seq = cur_gp_seq;
752                         needwait_gp = true;
753                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
754                                             TPS("NeedWaitGP"));
755                 }
756                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
757                         needwake = rdp->nocb_cb_sleep;
758                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
759                 } else {
760                         needwake = false;
761                 }
762                 rcu_nocb_unlock_irqrestore(rdp, flags);
763                 if (needwake) {
764                         swake_up_one(&rdp->nocb_cb_wq);
765                         gotcbs = true;
766                 }
767                 if (needwake_gp)
768                         rcu_gp_kthread_wake();
769         }
770
771         my_rdp->nocb_gp_bypass = bypass;
772         my_rdp->nocb_gp_gp = needwait_gp;
773         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
774
775         // At least one child with non-empty ->nocb_bypass, so set
776         // timer in order to avoid stranding its callbacks.
777         if (!rcu_nocb_poll) {
778                 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
779                 if (lazy && !bypass) {
780                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
781                                         TPS("WakeLazyIsDeferred"));
782                 // Otherwise add a deferred bypass wake up.
783                 } else if (bypass) {
784                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
785                                         TPS("WakeBypassIsDeferred"));
786                 }
787         }
788
789         if (rcu_nocb_poll) {
790                 /* Polling, so trace if first poll in the series. */
791                 if (gotcbs)
792                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
793                 if (list_empty(&my_rdp->nocb_head_rdp)) {
794                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
795                         if (!my_rdp->nocb_toggling_rdp)
796                                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
797                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
798                         /* Wait for any offloading rdp */
799                         nocb_gp_sleep(my_rdp, cpu);
800                 } else {
801                         schedule_timeout_idle(1);
802                 }
803         } else if (!needwait_gp) {
804                 /* Wait for callbacks to appear. */
805                 nocb_gp_sleep(my_rdp, cpu);
806         } else {
807                 rnp = my_rdp->mynode;
808                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
809                 swait_event_interruptible_exclusive(
810                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
811                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
812                         !READ_ONCE(my_rdp->nocb_gp_sleep));
813                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
814         }
815
816         if (!rcu_nocb_poll) {
817                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
818                 // (De-)queue an rdp to/from the group if its nocb state is changing
819                 rdp_toggling = my_rdp->nocb_toggling_rdp;
820                 if (rdp_toggling)
821                         my_rdp->nocb_toggling_rdp = NULL;
822
823                 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
824                         WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
825                         del_timer(&my_rdp->nocb_timer);
826                 }
827                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
828                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
829         } else {
830                 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
831                 if (rdp_toggling) {
832                         /*
833                          * Paranoid locking to make sure nocb_toggling_rdp is well
834                          * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
835                          * race with another round of nocb toggling for this rdp.
836                          * Nocb locking should prevent from that already but we stick
837                          * to paranoia, especially in rare path.
838                          */
839                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
840                         my_rdp->nocb_toggling_rdp = NULL;
841                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
842                 }
843         }
844
845         if (rdp_toggling) {
846                 nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
847                 swake_up_one(&rdp_toggling->nocb_state_wq);
848         }
849
850         my_rdp->nocb_gp_seq = -1;
851         WARN_ON(signal_pending(current));
852 }
853
854 /*
855  * No-CBs grace-period-wait kthread.  There is one of these per group
856  * of CPUs, but only once at least one CPU in that group has come online
857  * at least once since boot.  This kthread checks for newly posted
858  * callbacks from any of the CPUs it is responsible for, waits for a
859  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
860  * that then have callback-invocation work to do.
861  */
862 static int rcu_nocb_gp_kthread(void *arg)
863 {
864         struct rcu_data *rdp = arg;
865
866         for (;;) {
867                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
868                 nocb_gp_wait(rdp);
869                 cond_resched_tasks_rcu_qs();
870         }
871         return 0;
872 }
873
874 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
875 {
876         return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
877 }
878
879 /*
880  * Invoke any ready callbacks from the corresponding no-CBs CPU,
881  * then, if there are no more, wait for more to appear.
882  */
883 static void nocb_cb_wait(struct rcu_data *rdp)
884 {
885         struct rcu_segcblist *cblist = &rdp->cblist;
886         unsigned long cur_gp_seq;
887         unsigned long flags;
888         bool needwake_gp = false;
889         struct rcu_node *rnp = rdp->mynode;
890
891         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
892                                             nocb_cb_wait_cond(rdp));
893         if (kthread_should_park()) {
894                 /*
895                  * kthread_park() must be preceded by an rcu_barrier().
896                  * But yet another rcu_barrier() might have sneaked in between
897                  * the barrier callback execution and the callbacks counter
898                  * decrement.
899                  */
900                 if (rdp->nocb_cb_sleep) {
901                         rcu_nocb_lock_irqsave(rdp, flags);
902                         WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
903                         rcu_nocb_unlock_irqrestore(rdp, flags);
904                         kthread_parkme();
905                 }
906         } else if (READ_ONCE(rdp->nocb_cb_sleep)) {
907                 WARN_ON(signal_pending(current));
908                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
909         }
910
911         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
912
913         local_irq_save(flags);
914         rcu_momentary_eqs();
915         local_irq_restore(flags);
916         /*
917          * Disable BH to provide the expected environment.  Also, when
918          * transitioning to/from NOCB mode, a self-requeuing callback might
919          * be invoked from softirq.  A short grace period could cause both
920          * instances of this callback would execute concurrently.
921          */
922         local_bh_disable();
923         rcu_do_batch(rdp);
924         local_bh_enable();
925         lockdep_assert_irqs_enabled();
926         rcu_nocb_lock_irqsave(rdp, flags);
927         if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
928             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
929             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
930                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
931                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
932         }
933
934         if (!rcu_segcblist_ready_cbs(cblist)) {
935                 WRITE_ONCE(rdp->nocb_cb_sleep, true);
936                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
937         } else {
938                 WRITE_ONCE(rdp->nocb_cb_sleep, false);
939         }
940
941         rcu_nocb_unlock_irqrestore(rdp, flags);
942         if (needwake_gp)
943                 rcu_gp_kthread_wake();
944 }
945
946 /*
947  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
948  * nocb_cb_wait() to do the dirty work.
949  */
950 static int rcu_nocb_cb_kthread(void *arg)
951 {
952         struct rcu_data *rdp = arg;
953
954         // Each pass through this loop does one callback batch, and,
955         // if there are no more ready callbacks, waits for them.
956         for (;;) {
957                 nocb_cb_wait(rdp);
958                 cond_resched_tasks_rcu_qs();
959         }
960         return 0;
961 }
962
963 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
964 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
965 {
966         return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
967 }
968
969 /* Do a deferred wakeup of rcu_nocb_kthread(). */
970 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
971                                            struct rcu_data *rdp, int level,
972                                            unsigned long flags)
973         __releases(rdp_gp->nocb_gp_lock)
974 {
975         int ndw;
976         int ret;
977
978         if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
979                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
980                 return false;
981         }
982
983         ndw = rdp_gp->nocb_defer_wakeup;
984         ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
985         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
986
987         return ret;
988 }
989
990 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
991 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
992 {
993         unsigned long flags;
994         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
995
996         WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
997         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
998
999         raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1000         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1001         do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1002 }
1003
1004 /*
1005  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1006  * This means we do an inexact common-case check.  Note that if
1007  * we miss, ->nocb_timer will eventually clean things up.
1008  */
1009 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1010 {
1011         unsigned long flags;
1012         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013
1014         if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1015                 return false;
1016
1017         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1018         return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1019 }
1020
1021 void rcu_nocb_flush_deferred_wakeup(void)
1022 {
1023         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1024 }
1025 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1026
1027 static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
1028 {
1029         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1030         bool wake_gp = false;
1031         unsigned long flags;
1032
1033         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1034         // Queue this rdp for add/del to/from the list to iterate on rcuog
1035         WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1036         if (rdp_gp->nocb_gp_sleep) {
1037                 rdp_gp->nocb_gp_sleep = false;
1038                 wake_gp = true;
1039         }
1040         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1041
1042         return wake_gp;
1043 }
1044
1045 static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
1046 {
1047         unsigned long flags;
1048         bool ret;
1049
1050         /*
1051          * Locking makes sure rcuog is done handling this rdp before deoffloaded
1052          * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
1053          * while the ->nocb_lock is held.
1054          */
1055         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1056         ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1057         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1058
1059         return ret;
1060 }
1061
1062 static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
1063 {
1064         unsigned long flags;
1065         int wake_gp;
1066         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1067
1068         /* CPU must be offline, unless it's early boot */
1069         WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
1070
1071         pr_info("De-offloading %d\n", rdp->cpu);
1072
1073         /* Flush all callbacks from segcblist and bypass */
1074         rcu_barrier();
1075
1076         /*
1077          * Make sure the rcuoc kthread isn't in the middle of a nocb locked
1078          * sequence while offloading is deactivated, along with nocb locking.
1079          */
1080         if (rdp->nocb_cb_kthread)
1081                 kthread_park(rdp->nocb_cb_kthread);
1082
1083         rcu_nocb_lock_irqsave(rdp, flags);
1084         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1085         WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1086         rcu_nocb_unlock_irqrestore(rdp, flags);
1087
1088         wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1089
1090         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1091
1092         if (rdp_gp->nocb_gp_kthread) {
1093                 if (wake_gp)
1094                         wake_up_process(rdp_gp->nocb_gp_kthread);
1095
1096                 swait_event_exclusive(rdp->nocb_state_wq,
1097                                       rcu_nocb_rdp_deoffload_wait_cond(rdp));
1098         } else {
1099                 /*
1100                  * No kthread to clear the flags for us or remove the rdp from the nocb list
1101                  * to iterate. Do it here instead. Locking doesn't look stricly necessary
1102                  * but we stick to paranoia in this rare path.
1103                  */
1104                 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1105                 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1106                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1107
1108                 list_del(&rdp->nocb_entry_rdp);
1109         }
1110
1111         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1112
1113         return 0;
1114 }
1115
1116 int rcu_nocb_cpu_deoffload(int cpu)
1117 {
1118         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1119         int ret = 0;
1120
1121         cpus_read_lock();
1122         mutex_lock(&rcu_state.nocb_mutex);
1123         if (rcu_rdp_is_offloaded(rdp)) {
1124                 if (!cpu_online(cpu)) {
1125                         ret = rcu_nocb_rdp_deoffload(rdp);
1126                         if (!ret)
1127                                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1128                 } else {
1129                         pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
1130                         ret = -EINVAL;
1131                 }
1132         }
1133         mutex_unlock(&rcu_state.nocb_mutex);
1134         cpus_read_unlock();
1135
1136         return ret;
1137 }
1138 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1139
1140 static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
1141 {
1142         unsigned long flags;
1143         bool ret;
1144
1145         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1146         ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1147         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1148
1149         return ret;
1150 }
1151
1152 static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
1153 {
1154         int wake_gp;
1155         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1156
1157         WARN_ON_ONCE(cpu_online(rdp->cpu));
1158         /*
1159          * For now we only support re-offload, ie: the rdp must have been
1160          * offloaded on boot first.
1161          */
1162         if (!rdp->nocb_gp_rdp)
1163                 return -EINVAL;
1164
1165         if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1166                 return -EINVAL;
1167
1168         pr_info("Offloading %d\n", rdp->cpu);
1169
1170         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1171         WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1172
1173         wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1174         if (wake_gp)
1175                 wake_up_process(rdp_gp->nocb_gp_kthread);
1176
1177         swait_event_exclusive(rdp->nocb_state_wq,
1178                               rcu_nocb_rdp_offload_wait_cond(rdp));
1179
1180         kthread_unpark(rdp->nocb_cb_kthread);
1181
1182         return 0;
1183 }
1184
1185 int rcu_nocb_cpu_offload(int cpu)
1186 {
1187         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188         int ret = 0;
1189
1190         cpus_read_lock();
1191         mutex_lock(&rcu_state.nocb_mutex);
1192         if (!rcu_rdp_is_offloaded(rdp)) {
1193                 if (!cpu_online(cpu)) {
1194                         ret = rcu_nocb_rdp_offload(rdp);
1195                         if (!ret)
1196                                 cpumask_set_cpu(cpu, rcu_nocb_mask);
1197                 } else {
1198                         pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
1199                         ret = -EINVAL;
1200                 }
1201         }
1202         mutex_unlock(&rcu_state.nocb_mutex);
1203         cpus_read_unlock();
1204
1205         return ret;
1206 }
1207 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1208
1209 #ifdef CONFIG_RCU_LAZY
1210 static unsigned long
1211 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1212 {
1213         int cpu;
1214         unsigned long count = 0;
1215
1216         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1217                 return 0;
1218
1219         /*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1220         if (!mutex_trylock(&rcu_state.nocb_mutex))
1221                 return 0;
1222
1223         /* Snapshot count of all CPUs */
1224         for_each_cpu(cpu, rcu_nocb_mask) {
1225                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1226
1227                 count +=  READ_ONCE(rdp->lazy_len);
1228         }
1229
1230         mutex_unlock(&rcu_state.nocb_mutex);
1231
1232         return count ? count : SHRINK_EMPTY;
1233 }
1234
1235 static unsigned long
1236 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1237 {
1238         int cpu;
1239         unsigned long flags;
1240         unsigned long count = 0;
1241
1242         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1243                 return 0;
1244         /*
1245          * Protect against concurrent (de-)offloading. Otherwise nocb locking
1246          * may be ignored or imbalanced.
1247          */
1248         if (!mutex_trylock(&rcu_state.nocb_mutex)) {
1249                 /*
1250                  * But really don't insist if nocb_mutex is contended since we
1251                  * can't guarantee that it will never engage in a dependency
1252                  * chain involving memory allocation. The lock is seldom contended
1253                  * anyway.
1254                  */
1255                 return 0;
1256         }
1257
1258         /* Snapshot count of all CPUs */
1259         for_each_cpu(cpu, rcu_nocb_mask) {
1260                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1261                 int _count;
1262
1263                 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1264                         continue;
1265
1266                 if (!READ_ONCE(rdp->lazy_len))
1267                         continue;
1268
1269                 rcu_nocb_lock_irqsave(rdp, flags);
1270                 /*
1271                  * Recheck under the nocb lock. Since we are not holding the bypass
1272                  * lock we may still race with increments from the enqueuer but still
1273                  * we know for sure if there is at least one lazy callback.
1274                  */
1275                 _count = READ_ONCE(rdp->lazy_len);
1276                 if (!_count) {
1277                         rcu_nocb_unlock_irqrestore(rdp, flags);
1278                         continue;
1279                 }
1280                 rcu_nocb_try_flush_bypass(rdp, jiffies);
1281                 rcu_nocb_unlock_irqrestore(rdp, flags);
1282                 wake_nocb_gp(rdp, false);
1283                 sc->nr_to_scan -= _count;
1284                 count += _count;
1285                 if (sc->nr_to_scan <= 0)
1286                         break;
1287         }
1288
1289         mutex_unlock(&rcu_state.nocb_mutex);
1290
1291         return count ? count : SHRINK_STOP;
1292 }
1293 #endif // #ifdef CONFIG_RCU_LAZY
1294
1295 void __init rcu_init_nohz(void)
1296 {
1297         int cpu;
1298         struct rcu_data *rdp;
1299         const struct cpumask *cpumask = NULL;
1300         struct shrinker * __maybe_unused lazy_rcu_shrinker;
1301
1302 #if defined(CONFIG_NO_HZ_FULL)
1303         if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1304                 cpumask = tick_nohz_full_mask;
1305 #endif
1306
1307         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1308             !rcu_state.nocb_is_setup && !cpumask)
1309                 cpumask = cpu_possible_mask;
1310
1311         if (cpumask) {
1312                 if (!cpumask_available(rcu_nocb_mask)) {
1313                         if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1314                                 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1315                                 return;
1316                         }
1317                 }
1318
1319                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1320                 rcu_state.nocb_is_setup = true;
1321         }
1322
1323         if (!rcu_state.nocb_is_setup)
1324                 return;
1325
1326 #ifdef CONFIG_RCU_LAZY
1327         lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1328         if (!lazy_rcu_shrinker) {
1329                 pr_err("Failed to allocate lazy_rcu shrinker!\n");
1330         } else {
1331                 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1332                 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1333
1334                 shrinker_register(lazy_rcu_shrinker);
1335         }
1336 #endif // #ifdef CONFIG_RCU_LAZY
1337
1338         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1339                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1340                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1341                             rcu_nocb_mask);
1342         }
1343         if (cpumask_empty(rcu_nocb_mask))
1344                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1345         else
1346                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1347                         cpumask_pr_args(rcu_nocb_mask));
1348         if (rcu_nocb_poll)
1349                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1350
1351         for_each_cpu(cpu, rcu_nocb_mask) {
1352                 rdp = per_cpu_ptr(&rcu_data, cpu);
1353                 if (rcu_segcblist_empty(&rdp->cblist))
1354                         rcu_segcblist_init(&rdp->cblist);
1355                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1356         }
1357         rcu_organize_nocb_kthreads();
1358 }
1359
1360 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1361 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1362 {
1363         init_swait_queue_head(&rdp->nocb_cb_wq);
1364         init_swait_queue_head(&rdp->nocb_gp_wq);
1365         init_swait_queue_head(&rdp->nocb_state_wq);
1366         raw_spin_lock_init(&rdp->nocb_lock);
1367         raw_spin_lock_init(&rdp->nocb_bypass_lock);
1368         raw_spin_lock_init(&rdp->nocb_gp_lock);
1369         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1370         rcu_cblist_init(&rdp->nocb_bypass);
1371         WRITE_ONCE(rdp->lazy_len, 0);
1372         mutex_init(&rdp->nocb_gp_kthread_mutex);
1373 }
1374
1375 /*
1376  * If the specified CPU is a no-CBs CPU that does not already have its
1377  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1378  * for this CPU's group has not yet been created, spawn it as well.
1379  */
1380 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1381 {
1382         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1383         struct rcu_data *rdp_gp;
1384         struct task_struct *t;
1385         struct sched_param sp;
1386
1387         if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1388                 return;
1389
1390         /* If there already is an rcuo kthread, then nothing to do. */
1391         if (rdp->nocb_cb_kthread)
1392                 return;
1393
1394         /* If we didn't spawn the GP kthread first, reorganize! */
1395         sp.sched_priority = kthread_prio;
1396         rdp_gp = rdp->nocb_gp_rdp;
1397         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1398         if (!rdp_gp->nocb_gp_kthread) {
1399                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1400                                 "rcuog/%d", rdp_gp->cpu);
1401                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1402                         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1403                         goto err;
1404                 }
1405                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1406                 if (kthread_prio)
1407                         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1408         }
1409         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1410
1411         /* Spawn the kthread for this CPU. */
1412         t = kthread_create(rcu_nocb_cb_kthread, rdp,
1413                            "rcuo%c/%d", rcu_state.abbr, cpu);
1414         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1415                 goto err;
1416
1417         if (rcu_rdp_is_offloaded(rdp))
1418                 wake_up_process(t);
1419         else
1420                 kthread_park(t);
1421
1422         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1423                 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1424
1425         WRITE_ONCE(rdp->nocb_cb_kthread, t);
1426         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1427         return;
1428
1429 err:
1430         /*
1431          * No need to protect against concurrent rcu_barrier()
1432          * because the number of callbacks should be 0 for a non-boot CPU,
1433          * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
1434          * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
1435          */
1436         WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
1437         mutex_lock(&rcu_state.nocb_mutex);
1438         if (rcu_rdp_is_offloaded(rdp)) {
1439                 rcu_nocb_rdp_deoffload(rdp);
1440                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1441         }
1442         mutex_unlock(&rcu_state.nocb_mutex);
1443 }
1444
1445 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1446 static int rcu_nocb_gp_stride = -1;
1447 module_param(rcu_nocb_gp_stride, int, 0444);
1448
1449 /*
1450  * Initialize GP-CB relationships for all no-CBs CPU.
1451  */
1452 static void __init rcu_organize_nocb_kthreads(void)
1453 {
1454         int cpu;
1455         bool firsttime = true;
1456         bool gotnocbs = false;
1457         bool gotnocbscbs = true;
1458         int ls = rcu_nocb_gp_stride;
1459         int nl = 0;  /* Next GP kthread. */
1460         struct rcu_data *rdp;
1461         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1462
1463         if (!cpumask_available(rcu_nocb_mask))
1464                 return;
1465         if (ls == -1) {
1466                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1467                 rcu_nocb_gp_stride = ls;
1468         }
1469
1470         /*
1471          * Each pass through this loop sets up one rcu_data structure.
1472          * Should the corresponding CPU come online in the future, then
1473          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1474          */
1475         for_each_possible_cpu(cpu) {
1476                 rdp = per_cpu_ptr(&rcu_data, cpu);
1477                 if (rdp->cpu >= nl) {
1478                         /* New GP kthread, set up for CBs & next GP. */
1479                         gotnocbs = true;
1480                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1481                         rdp_gp = rdp;
1482                         INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1483                         if (dump_tree) {
1484                                 if (!firsttime)
1485                                         pr_cont("%s\n", gotnocbscbs
1486                                                         ? "" : " (self only)");
1487                                 gotnocbscbs = false;
1488                                 firsttime = false;
1489                                 pr_alert("%s: No-CB GP kthread CPU %d:",
1490                                          __func__, cpu);
1491                         }
1492                 } else {
1493                         /* Another CB kthread, link to previous GP kthread. */
1494                         gotnocbscbs = true;
1495                         if (dump_tree)
1496                                 pr_cont(" %d", cpu);
1497                 }
1498                 rdp->nocb_gp_rdp = rdp_gp;
1499                 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1500                         list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1501         }
1502         if (gotnocbs && dump_tree)
1503                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1504 }
1505
1506 /*
1507  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1508  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1509  */
1510 void rcu_bind_current_to_nocb(void)
1511 {
1512         if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1513                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1514 }
1515 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1516
1517 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1518 #ifdef CONFIG_SMP
1519 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1520 {
1521         return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1522 }
1523 #else // #ifdef CONFIG_SMP
1524 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1525 {
1526         return "";
1527 }
1528 #endif // #else #ifdef CONFIG_SMP
1529
1530 /*
1531  * Dump out nocb grace-period kthread state for the specified rcu_data
1532  * structure.
1533  */
1534 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1535 {
1536         struct rcu_node *rnp = rdp->mynode;
1537
1538         pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1539                 rdp->cpu,
1540                 "kK"[!!rdp->nocb_gp_kthread],
1541                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1542                 "dD"[!!rdp->nocb_defer_wakeup],
1543                 "tT"[timer_pending(&rdp->nocb_timer)],
1544                 "sS"[!!rdp->nocb_gp_sleep],
1545                 ".W"[swait_active(&rdp->nocb_gp_wq)],
1546                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1547                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1548                 ".B"[!!rdp->nocb_gp_bypass],
1549                 ".G"[!!rdp->nocb_gp_gp],
1550                 (long)rdp->nocb_gp_seq,
1551                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1552                 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1553                 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1554                 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1555 }
1556
1557 /* Dump out nocb kthread state for the specified rcu_data structure. */
1558 static void show_rcu_nocb_state(struct rcu_data *rdp)
1559 {
1560         char bufw[20];
1561         char bufr[20];
1562         struct rcu_data *nocb_next_rdp;
1563         struct rcu_segcblist *rsclp = &rdp->cblist;
1564         bool waslocked;
1565         bool wassleep;
1566
1567         if (rdp->nocb_gp_rdp == rdp)
1568                 show_rcu_nocb_gp_state(rdp);
1569
1570         nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1571                                               &rdp->nocb_entry_rdp,
1572                                               typeof(*rdp),
1573                                               nocb_entry_rdp);
1574
1575         sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1576         sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1577         pr_info("   CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1578                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1579                 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1580                 "kK"[!!rdp->nocb_cb_kthread],
1581                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1582                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1583                 "sS"[!!rdp->nocb_cb_sleep],
1584                 ".W"[swait_active(&rdp->nocb_cb_wq)],
1585                 jiffies - rdp->nocb_bypass_first,
1586                 jiffies - rdp->nocb_nobypass_last,
1587                 rdp->nocb_nobypass_count,
1588                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1589                 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1590                 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1591                 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1592                 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1593                 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1594                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1595                 rcu_segcblist_n_cbs(&rdp->cblist),
1596                 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1597                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1598                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1599
1600         /* It is OK for GP kthreads to have GP state. */
1601         if (rdp->nocb_gp_rdp == rdp)
1602                 return;
1603
1604         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1605         wassleep = swait_active(&rdp->nocb_gp_wq);
1606         if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1607                 return;  /* Nothing untoward. */
1608
1609         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1610                 "lL"[waslocked],
1611                 "dD"[!!rdp->nocb_defer_wakeup],
1612                 "sS"[!!rdp->nocb_gp_sleep],
1613                 ".W"[wassleep]);
1614 }
1615
1616 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1617
1618 /* No ->nocb_lock to acquire.  */
1619 static void rcu_nocb_lock(struct rcu_data *rdp)
1620 {
1621 }
1622
1623 /* No ->nocb_lock to release.  */
1624 static void rcu_nocb_unlock(struct rcu_data *rdp)
1625 {
1626 }
1627
1628 /* No ->nocb_lock to release.  */
1629 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1630                                        unsigned long flags)
1631 {
1632         local_irq_restore(flags);
1633 }
1634
1635 /* Lockdep check that ->cblist may be safely accessed. */
1636 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1637 {
1638         lockdep_assert_irqs_disabled();
1639 }
1640
1641 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1642 {
1643 }
1644
1645 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1646 {
1647         return NULL;
1648 }
1649
1650 static void rcu_init_one_nocb(struct rcu_node *rnp)
1651 {
1652 }
1653
1654 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1655 {
1656         return false;
1657 }
1658
1659 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1660                                   unsigned long j, bool lazy)
1661 {
1662         return true;
1663 }
1664
1665 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1666                           rcu_callback_t func, unsigned long flags, bool lazy)
1667 {
1668         WARN_ON_ONCE(1);  /* Should be dead code! */
1669 }
1670
1671 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1672                                  unsigned long flags)
1673 {
1674         WARN_ON_ONCE(1);  /* Should be dead code! */
1675 }
1676
1677 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1678 {
1679 }
1680
1681 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1682 {
1683         return false;
1684 }
1685
1686 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1687 {
1688         return false;
1689 }
1690
1691 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1692 {
1693 }
1694
1695 static void show_rcu_nocb_state(struct rcu_data *rdp)
1696 {
1697 }
1698
1699 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
This page took 0.130518 seconds and 4 git commands to generate.