]> Git Repo - linux.git/blob - fs/btrfs/relocation.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  *              Before          |               After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents       | BG A: deleted
53  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86
87 #define RELOCATION_RESERVED_NODES       256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92         struct {
93                 struct rb_node rb_node;
94                 u64 bytenr;
95         }; /* Use rb_simle_node for search/insert */
96         void *data;
97 };
98
99 struct mapping_tree {
100         struct rb_root rb_root;
101         spinlock_t lock;
102 };
103
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108         struct {
109                 struct rb_node rb_node;
110                 u64 bytenr;
111         }; /* Use rb_simple_node for search/insert */
112         u64 owner;
113         struct btrfs_key key;
114         u8 level;
115         bool key_ready;
116 };
117
118 #define MAX_EXTENTS 128
119
120 struct file_extent_cluster {
121         u64 start;
122         u64 end;
123         u64 boundary[MAX_EXTENTS];
124         unsigned int nr;
125         u64 owning_root;
126 };
127
128 /* Stages of data relocation. */
129 enum reloc_stage {
130         MOVE_DATA_EXTENTS,
131         UPDATE_DATA_PTRS
132 };
133
134 struct reloc_control {
135         /* block group to relocate */
136         struct btrfs_block_group *block_group;
137         /* extent tree */
138         struct btrfs_root *extent_root;
139         /* inode for moving data */
140         struct inode *data_inode;
141
142         struct btrfs_block_rsv *block_rsv;
143
144         struct btrfs_backref_cache backref_cache;
145
146         struct file_extent_cluster cluster;
147         /* tree blocks have been processed */
148         struct extent_io_tree processed_blocks;
149         /* map start of tree root to corresponding reloc tree */
150         struct mapping_tree reloc_root_tree;
151         /* list of reloc trees */
152         struct list_head reloc_roots;
153         /* list of subvolume trees that get relocated */
154         struct list_head dirty_subvol_roots;
155         /* size of metadata reservation for merging reloc trees */
156         u64 merging_rsv_size;
157         /* size of relocated tree nodes */
158         u64 nodes_relocated;
159         /* reserved size for block group relocation*/
160         u64 reserved_bytes;
161
162         u64 search_start;
163         u64 extents_found;
164
165         enum reloc_stage stage;
166         bool create_reloc_tree;
167         bool merge_reloc_tree;
168         bool found_file_extent;
169 };
170
171 static void mark_block_processed(struct reloc_control *rc,
172                                  struct btrfs_backref_node *node)
173 {
174         u32 blocksize;
175
176         if (node->level == 0 ||
177             in_range(node->bytenr, rc->block_group->start,
178                      rc->block_group->length)) {
179                 blocksize = rc->extent_root->fs_info->nodesize;
180                 set_extent_bit(&rc->processed_blocks, node->bytenr,
181                                node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
182         }
183         node->processed = 1;
184 }
185
186 /*
187  * walk up backref nodes until reach node presents tree root
188  */
189 static struct btrfs_backref_node *walk_up_backref(
190                 struct btrfs_backref_node *node,
191                 struct btrfs_backref_edge *edges[], int *index)
192 {
193         struct btrfs_backref_edge *edge;
194         int idx = *index;
195
196         while (!list_empty(&node->upper)) {
197                 edge = list_entry(node->upper.next,
198                                   struct btrfs_backref_edge, list[LOWER]);
199                 edges[idx++] = edge;
200                 node = edge->node[UPPER];
201         }
202         BUG_ON(node->detached);
203         *index = idx;
204         return node;
205 }
206
207 /*
208  * walk down backref nodes to find start of next reference path
209  */
210 static struct btrfs_backref_node *walk_down_backref(
211                 struct btrfs_backref_edge *edges[], int *index)
212 {
213         struct btrfs_backref_edge *edge;
214         struct btrfs_backref_node *lower;
215         int idx = *index;
216
217         while (idx > 0) {
218                 edge = edges[idx - 1];
219                 lower = edge->node[LOWER];
220                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
221                         idx--;
222                         continue;
223                 }
224                 edge = list_entry(edge->list[LOWER].next,
225                                   struct btrfs_backref_edge, list[LOWER]);
226                 edges[idx - 1] = edge;
227                 *index = idx;
228                 return edge->node[UPPER];
229         }
230         *index = 0;
231         return NULL;
232 }
233
234 static void update_backref_node(struct btrfs_backref_cache *cache,
235                                 struct btrfs_backref_node *node, u64 bytenr)
236 {
237         struct rb_node *rb_node;
238         rb_erase(&node->rb_node, &cache->rb_root);
239         node->bytenr = bytenr;
240         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
241         if (rb_node)
242                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
243 }
244
245 /*
246  * update backref cache after a transaction commit
247  */
248 static int update_backref_cache(struct btrfs_trans_handle *trans,
249                                 struct btrfs_backref_cache *cache)
250 {
251         struct btrfs_backref_node *node;
252         int level = 0;
253
254         if (cache->last_trans == 0) {
255                 cache->last_trans = trans->transid;
256                 return 0;
257         }
258
259         if (cache->last_trans == trans->transid)
260                 return 0;
261
262         /*
263          * detached nodes are used to avoid unnecessary backref
264          * lookup. transaction commit changes the extent tree.
265          * so the detached nodes are no longer useful.
266          */
267         while (!list_empty(&cache->detached)) {
268                 node = list_entry(cache->detached.next,
269                                   struct btrfs_backref_node, list);
270                 btrfs_backref_cleanup_node(cache, node);
271         }
272
273         while (!list_empty(&cache->changed)) {
274                 node = list_entry(cache->changed.next,
275                                   struct btrfs_backref_node, list);
276                 list_del_init(&node->list);
277                 BUG_ON(node->pending);
278                 update_backref_node(cache, node, node->new_bytenr);
279         }
280
281         /*
282          * some nodes can be left in the pending list if there were
283          * errors during processing the pending nodes.
284          */
285         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
286                 list_for_each_entry(node, &cache->pending[level], list) {
287                         BUG_ON(!node->pending);
288                         if (node->bytenr == node->new_bytenr)
289                                 continue;
290                         update_backref_node(cache, node, node->new_bytenr);
291                 }
292         }
293
294         cache->last_trans = 0;
295         return 1;
296 }
297
298 static bool reloc_root_is_dead(const struct btrfs_root *root)
299 {
300         /*
301          * Pair with set_bit/clear_bit in clean_dirty_subvols and
302          * btrfs_update_reloc_root. We need to see the updated bit before
303          * trying to access reloc_root
304          */
305         smp_rmb();
306         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
307                 return true;
308         return false;
309 }
310
311 /*
312  * Check if this subvolume tree has valid reloc tree.
313  *
314  * Reloc tree after swap is considered dead, thus not considered as valid.
315  * This is enough for most callers, as they don't distinguish dead reloc root
316  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
317  * special case.
318  */
319 static bool have_reloc_root(const struct btrfs_root *root)
320 {
321         if (reloc_root_is_dead(root))
322                 return false;
323         if (!root->reloc_root)
324                 return false;
325         return true;
326 }
327
328 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
329 {
330         struct btrfs_root *reloc_root;
331
332         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
333                 return false;
334
335         /* This root has been merged with its reloc tree, we can ignore it */
336         if (reloc_root_is_dead(root))
337                 return true;
338
339         reloc_root = root->reloc_root;
340         if (!reloc_root)
341                 return false;
342
343         if (btrfs_header_generation(reloc_root->commit_root) ==
344             root->fs_info->running_transaction->transid)
345                 return false;
346         /*
347          * If there is reloc tree and it was created in previous transaction
348          * backref lookup can find the reloc tree, so backref node for the fs
349          * tree root is useless for relocation.
350          */
351         return true;
352 }
353
354 /*
355  * find reloc tree by address of tree root
356  */
357 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
358 {
359         struct reloc_control *rc = fs_info->reloc_ctl;
360         struct rb_node *rb_node;
361         struct mapping_node *node;
362         struct btrfs_root *root = NULL;
363
364         ASSERT(rc);
365         spin_lock(&rc->reloc_root_tree.lock);
366         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
367         if (rb_node) {
368                 node = rb_entry(rb_node, struct mapping_node, rb_node);
369                 root = node->data;
370         }
371         spin_unlock(&rc->reloc_root_tree.lock);
372         return btrfs_grab_root(root);
373 }
374
375 /*
376  * For useless nodes, do two major clean ups:
377  *
378  * - Cleanup the children edges and nodes
379  *   If child node is also orphan (no parent) during cleanup, then the child
380  *   node will also be cleaned up.
381  *
382  * - Freeing up leaves (level 0), keeps nodes detached
383  *   For nodes, the node is still cached as "detached"
384  *
385  * Return false if @node is not in the @useless_nodes list.
386  * Return true if @node is in the @useless_nodes list.
387  */
388 static bool handle_useless_nodes(struct reloc_control *rc,
389                                  struct btrfs_backref_node *node)
390 {
391         struct btrfs_backref_cache *cache = &rc->backref_cache;
392         struct list_head *useless_node = &cache->useless_node;
393         bool ret = false;
394
395         while (!list_empty(useless_node)) {
396                 struct btrfs_backref_node *cur;
397
398                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
399                                  list);
400                 list_del_init(&cur->list);
401
402                 /* Only tree root nodes can be added to @useless_nodes */
403                 ASSERT(list_empty(&cur->upper));
404
405                 if (cur == node)
406                         ret = true;
407
408                 /* The node is the lowest node */
409                 if (cur->lowest) {
410                         list_del_init(&cur->lower);
411                         cur->lowest = 0;
412                 }
413
414                 /* Cleanup the lower edges */
415                 while (!list_empty(&cur->lower)) {
416                         struct btrfs_backref_edge *edge;
417                         struct btrfs_backref_node *lower;
418
419                         edge = list_entry(cur->lower.next,
420                                         struct btrfs_backref_edge, list[UPPER]);
421                         list_del(&edge->list[UPPER]);
422                         list_del(&edge->list[LOWER]);
423                         lower = edge->node[LOWER];
424                         btrfs_backref_free_edge(cache, edge);
425
426                         /* Child node is also orphan, queue for cleanup */
427                         if (list_empty(&lower->upper))
428                                 list_add(&lower->list, useless_node);
429                 }
430                 /* Mark this block processed for relocation */
431                 mark_block_processed(rc, cur);
432
433                 /*
434                  * Backref nodes for tree leaves are deleted from the cache.
435                  * Backref nodes for upper level tree blocks are left in the
436                  * cache to avoid unnecessary backref lookup.
437                  */
438                 if (cur->level > 0) {
439                         list_add(&cur->list, &cache->detached);
440                         cur->detached = 1;
441                 } else {
442                         rb_erase(&cur->rb_node, &cache->rb_root);
443                         btrfs_backref_free_node(cache, cur);
444                 }
445         }
446         return ret;
447 }
448
449 /*
450  * Build backref tree for a given tree block. Root of the backref tree
451  * corresponds the tree block, leaves of the backref tree correspond roots of
452  * b-trees that reference the tree block.
453  *
454  * The basic idea of this function is check backrefs of a given block to find
455  * upper level blocks that reference the block, and then check backrefs of
456  * these upper level blocks recursively. The recursion stops when tree root is
457  * reached or backrefs for the block is cached.
458  *
459  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
460  * all upper level blocks that directly/indirectly reference the block are also
461  * cached.
462  */
463 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
464                         struct btrfs_trans_handle *trans,
465                         struct reloc_control *rc, struct btrfs_key *node_key,
466                         int level, u64 bytenr)
467 {
468         struct btrfs_backref_iter *iter;
469         struct btrfs_backref_cache *cache = &rc->backref_cache;
470         /* For searching parent of TREE_BLOCK_REF */
471         struct btrfs_path *path;
472         struct btrfs_backref_node *cur;
473         struct btrfs_backref_node *node = NULL;
474         struct btrfs_backref_edge *edge;
475         int ret;
476
477         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
478         if (!iter)
479                 return ERR_PTR(-ENOMEM);
480         path = btrfs_alloc_path();
481         if (!path) {
482                 ret = -ENOMEM;
483                 goto out;
484         }
485
486         node = btrfs_backref_alloc_node(cache, bytenr, level);
487         if (!node) {
488                 ret = -ENOMEM;
489                 goto out;
490         }
491
492         node->lowest = 1;
493         cur = node;
494
495         /* Breadth-first search to build backref cache */
496         do {
497                 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
498                                                   node_key, cur);
499                 if (ret < 0)
500                         goto out;
501
502                 edge = list_first_entry_or_null(&cache->pending_edge,
503                                 struct btrfs_backref_edge, list[UPPER]);
504                 /*
505                  * The pending list isn't empty, take the first block to
506                  * process
507                  */
508                 if (edge) {
509                         list_del_init(&edge->list[UPPER]);
510                         cur = edge->node[UPPER];
511                 }
512         } while (edge);
513
514         /* Finish the upper linkage of newly added edges/nodes */
515         ret = btrfs_backref_finish_upper_links(cache, node);
516         if (ret < 0)
517                 goto out;
518
519         if (handle_useless_nodes(rc, node))
520                 node = NULL;
521 out:
522         btrfs_free_path(iter->path);
523         kfree(iter);
524         btrfs_free_path(path);
525         if (ret) {
526                 btrfs_backref_error_cleanup(cache, node);
527                 return ERR_PTR(ret);
528         }
529         ASSERT(!node || !node->detached);
530         ASSERT(list_empty(&cache->useless_node) &&
531                list_empty(&cache->pending_edge));
532         return node;
533 }
534
535 /*
536  * helper to add backref node for the newly created snapshot.
537  * the backref node is created by cloning backref node that
538  * corresponds to root of source tree
539  */
540 static int clone_backref_node(struct btrfs_trans_handle *trans,
541                               struct reloc_control *rc,
542                               const struct btrfs_root *src,
543                               struct btrfs_root *dest)
544 {
545         struct btrfs_root *reloc_root = src->reloc_root;
546         struct btrfs_backref_cache *cache = &rc->backref_cache;
547         struct btrfs_backref_node *node = NULL;
548         struct btrfs_backref_node *new_node;
549         struct btrfs_backref_edge *edge;
550         struct btrfs_backref_edge *new_edge;
551         struct rb_node *rb_node;
552
553         if (cache->last_trans > 0)
554                 update_backref_cache(trans, cache);
555
556         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
557         if (rb_node) {
558                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
559                 if (node->detached)
560                         node = NULL;
561                 else
562                         BUG_ON(node->new_bytenr != reloc_root->node->start);
563         }
564
565         if (!node) {
566                 rb_node = rb_simple_search(&cache->rb_root,
567                                            reloc_root->commit_root->start);
568                 if (rb_node) {
569                         node = rb_entry(rb_node, struct btrfs_backref_node,
570                                         rb_node);
571                         BUG_ON(node->detached);
572                 }
573         }
574
575         if (!node)
576                 return 0;
577
578         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
579                                             node->level);
580         if (!new_node)
581                 return -ENOMEM;
582
583         new_node->lowest = node->lowest;
584         new_node->checked = 1;
585         new_node->root = btrfs_grab_root(dest);
586         ASSERT(new_node->root);
587
588         if (!node->lowest) {
589                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
590                         new_edge = btrfs_backref_alloc_edge(cache);
591                         if (!new_edge)
592                                 goto fail;
593
594                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
595                                                 new_node, LINK_UPPER);
596                 }
597         } else {
598                 list_add_tail(&new_node->lower, &cache->leaves);
599         }
600
601         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
602                                    &new_node->rb_node);
603         if (rb_node)
604                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
605
606         if (!new_node->lowest) {
607                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
608                         list_add_tail(&new_edge->list[LOWER],
609                                       &new_edge->node[LOWER]->upper);
610                 }
611         }
612         return 0;
613 fail:
614         while (!list_empty(&new_node->lower)) {
615                 new_edge = list_entry(new_node->lower.next,
616                                       struct btrfs_backref_edge, list[UPPER]);
617                 list_del(&new_edge->list[UPPER]);
618                 btrfs_backref_free_edge(cache, new_edge);
619         }
620         btrfs_backref_free_node(cache, new_node);
621         return -ENOMEM;
622 }
623
624 /*
625  * helper to add 'address of tree root -> reloc tree' mapping
626  */
627 static int __add_reloc_root(struct btrfs_root *root)
628 {
629         struct btrfs_fs_info *fs_info = root->fs_info;
630         struct rb_node *rb_node;
631         struct mapping_node *node;
632         struct reloc_control *rc = fs_info->reloc_ctl;
633
634         node = kmalloc(sizeof(*node), GFP_NOFS);
635         if (!node)
636                 return -ENOMEM;
637
638         node->bytenr = root->commit_root->start;
639         node->data = root;
640
641         spin_lock(&rc->reloc_root_tree.lock);
642         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
643                                    node->bytenr, &node->rb_node);
644         spin_unlock(&rc->reloc_root_tree.lock);
645         if (rb_node) {
646                 btrfs_err(fs_info,
647                             "Duplicate root found for start=%llu while inserting into relocation tree",
648                             node->bytenr);
649                 return -EEXIST;
650         }
651
652         list_add_tail(&root->root_list, &rc->reloc_roots);
653         return 0;
654 }
655
656 /*
657  * helper to delete the 'address of tree root -> reloc tree'
658  * mapping
659  */
660 static void __del_reloc_root(struct btrfs_root *root)
661 {
662         struct btrfs_fs_info *fs_info = root->fs_info;
663         struct rb_node *rb_node;
664         struct mapping_node *node = NULL;
665         struct reloc_control *rc = fs_info->reloc_ctl;
666         bool put_ref = false;
667
668         if (rc && root->node) {
669                 spin_lock(&rc->reloc_root_tree.lock);
670                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
671                                            root->commit_root->start);
672                 if (rb_node) {
673                         node = rb_entry(rb_node, struct mapping_node, rb_node);
674                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
675                         RB_CLEAR_NODE(&node->rb_node);
676                 }
677                 spin_unlock(&rc->reloc_root_tree.lock);
678                 ASSERT(!node || (struct btrfs_root *)node->data == root);
679         }
680
681         /*
682          * We only put the reloc root here if it's on the list.  There's a lot
683          * of places where the pattern is to splice the rc->reloc_roots, process
684          * the reloc roots, and then add the reloc root back onto
685          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
686          * list we don't want the reference being dropped, because the guy
687          * messing with the list is in charge of the reference.
688          */
689         spin_lock(&fs_info->trans_lock);
690         if (!list_empty(&root->root_list)) {
691                 put_ref = true;
692                 list_del_init(&root->root_list);
693         }
694         spin_unlock(&fs_info->trans_lock);
695         if (put_ref)
696                 btrfs_put_root(root);
697         kfree(node);
698 }
699
700 /*
701  * helper to update the 'address of tree root -> reloc tree'
702  * mapping
703  */
704 static int __update_reloc_root(struct btrfs_root *root)
705 {
706         struct btrfs_fs_info *fs_info = root->fs_info;
707         struct rb_node *rb_node;
708         struct mapping_node *node = NULL;
709         struct reloc_control *rc = fs_info->reloc_ctl;
710
711         spin_lock(&rc->reloc_root_tree.lock);
712         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
713                                    root->commit_root->start);
714         if (rb_node) {
715                 node = rb_entry(rb_node, struct mapping_node, rb_node);
716                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
717         }
718         spin_unlock(&rc->reloc_root_tree.lock);
719
720         if (!node)
721                 return 0;
722         BUG_ON((struct btrfs_root *)node->data != root);
723
724         spin_lock(&rc->reloc_root_tree.lock);
725         node->bytenr = root->node->start;
726         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
727                                    node->bytenr, &node->rb_node);
728         spin_unlock(&rc->reloc_root_tree.lock);
729         if (rb_node)
730                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
731         return 0;
732 }
733
734 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
735                                         struct btrfs_root *root, u64 objectid)
736 {
737         struct btrfs_fs_info *fs_info = root->fs_info;
738         struct btrfs_root *reloc_root;
739         struct extent_buffer *eb;
740         struct btrfs_root_item *root_item;
741         struct btrfs_key root_key;
742         int ret = 0;
743         bool must_abort = false;
744
745         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
746         if (!root_item)
747                 return ERR_PTR(-ENOMEM);
748
749         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
750         root_key.type = BTRFS_ROOT_ITEM_KEY;
751         root_key.offset = objectid;
752
753         if (btrfs_root_id(root) == objectid) {
754                 u64 commit_root_gen;
755
756                 /* called by btrfs_init_reloc_root */
757                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
758                                       BTRFS_TREE_RELOC_OBJECTID);
759                 if (ret)
760                         goto fail;
761
762                 /*
763                  * Set the last_snapshot field to the generation of the commit
764                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
765                  * correctly (returns true) when the relocation root is created
766                  * either inside the critical section of a transaction commit
767                  * (through transaction.c:qgroup_account_snapshot()) and when
768                  * it's created before the transaction commit is started.
769                  */
770                 commit_root_gen = btrfs_header_generation(root->commit_root);
771                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
772         } else {
773                 /*
774                  * called by btrfs_reloc_post_snapshot_hook.
775                  * the source tree is a reloc tree, all tree blocks
776                  * modified after it was created have RELOC flag
777                  * set in their headers. so it's OK to not update
778                  * the 'last_snapshot'.
779                  */
780                 ret = btrfs_copy_root(trans, root, root->node, &eb,
781                                       BTRFS_TREE_RELOC_OBJECTID);
782                 if (ret)
783                         goto fail;
784         }
785
786         /*
787          * We have changed references at this point, we must abort the
788          * transaction if anything fails.
789          */
790         must_abort = true;
791
792         memcpy(root_item, &root->root_item, sizeof(*root_item));
793         btrfs_set_root_bytenr(root_item, eb->start);
794         btrfs_set_root_level(root_item, btrfs_header_level(eb));
795         btrfs_set_root_generation(root_item, trans->transid);
796
797         if (btrfs_root_id(root) == objectid) {
798                 btrfs_set_root_refs(root_item, 0);
799                 memset(&root_item->drop_progress, 0,
800                        sizeof(struct btrfs_disk_key));
801                 btrfs_set_root_drop_level(root_item, 0);
802         }
803
804         btrfs_tree_unlock(eb);
805         free_extent_buffer(eb);
806
807         ret = btrfs_insert_root(trans, fs_info->tree_root,
808                                 &root_key, root_item);
809         if (ret)
810                 goto fail;
811
812         kfree(root_item);
813
814         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
815         if (IS_ERR(reloc_root)) {
816                 ret = PTR_ERR(reloc_root);
817                 goto abort;
818         }
819         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
820         reloc_root->last_trans = trans->transid;
821         return reloc_root;
822 fail:
823         kfree(root_item);
824 abort:
825         if (must_abort)
826                 btrfs_abort_transaction(trans, ret);
827         return ERR_PTR(ret);
828 }
829
830 /*
831  * create reloc tree for a given fs tree. reloc tree is just a
832  * snapshot of the fs tree with special root objectid.
833  *
834  * The reloc_root comes out of here with two references, one for
835  * root->reloc_root, and another for being on the rc->reloc_roots list.
836  */
837 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
838                           struct btrfs_root *root)
839 {
840         struct btrfs_fs_info *fs_info = root->fs_info;
841         struct btrfs_root *reloc_root;
842         struct reloc_control *rc = fs_info->reloc_ctl;
843         struct btrfs_block_rsv *rsv;
844         int clear_rsv = 0;
845         int ret;
846
847         if (!rc)
848                 return 0;
849
850         /*
851          * The subvolume has reloc tree but the swap is finished, no need to
852          * create/update the dead reloc tree
853          */
854         if (reloc_root_is_dead(root))
855                 return 0;
856
857         /*
858          * This is subtle but important.  We do not do
859          * record_root_in_transaction for reloc roots, instead we record their
860          * corresponding fs root, and then here we update the last trans for the
861          * reloc root.  This means that we have to do this for the entire life
862          * of the reloc root, regardless of which stage of the relocation we are
863          * in.
864          */
865         if (root->reloc_root) {
866                 reloc_root = root->reloc_root;
867                 reloc_root->last_trans = trans->transid;
868                 return 0;
869         }
870
871         /*
872          * We are merging reloc roots, we do not need new reloc trees.  Also
873          * reloc trees never need their own reloc tree.
874          */
875         if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
876                 return 0;
877
878         if (!trans->reloc_reserved) {
879                 rsv = trans->block_rsv;
880                 trans->block_rsv = rc->block_rsv;
881                 clear_rsv = 1;
882         }
883         reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
884         if (clear_rsv)
885                 trans->block_rsv = rsv;
886         if (IS_ERR(reloc_root))
887                 return PTR_ERR(reloc_root);
888
889         ret = __add_reloc_root(reloc_root);
890         ASSERT(ret != -EEXIST);
891         if (ret) {
892                 /* Pairs with create_reloc_root */
893                 btrfs_put_root(reloc_root);
894                 return ret;
895         }
896         root->reloc_root = btrfs_grab_root(reloc_root);
897         return 0;
898 }
899
900 /*
901  * update root item of reloc tree
902  */
903 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
904                             struct btrfs_root *root)
905 {
906         struct btrfs_fs_info *fs_info = root->fs_info;
907         struct btrfs_root *reloc_root;
908         struct btrfs_root_item *root_item;
909         int ret;
910
911         if (!have_reloc_root(root))
912                 return 0;
913
914         reloc_root = root->reloc_root;
915         root_item = &reloc_root->root_item;
916
917         /*
918          * We are probably ok here, but __del_reloc_root() will drop its ref of
919          * the root.  We have the ref for root->reloc_root, but just in case
920          * hold it while we update the reloc root.
921          */
922         btrfs_grab_root(reloc_root);
923
924         /* root->reloc_root will stay until current relocation finished */
925         if (fs_info->reloc_ctl->merge_reloc_tree &&
926             btrfs_root_refs(root_item) == 0) {
927                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
928                 /*
929                  * Mark the tree as dead before we change reloc_root so
930                  * have_reloc_root will not touch it from now on.
931                  */
932                 smp_wmb();
933                 __del_reloc_root(reloc_root);
934         }
935
936         if (reloc_root->commit_root != reloc_root->node) {
937                 __update_reloc_root(reloc_root);
938                 btrfs_set_root_node(root_item, reloc_root->node);
939                 free_extent_buffer(reloc_root->commit_root);
940                 reloc_root->commit_root = btrfs_root_node(reloc_root);
941         }
942
943         ret = btrfs_update_root(trans, fs_info->tree_root,
944                                 &reloc_root->root_key, root_item);
945         btrfs_put_root(reloc_root);
946         return ret;
947 }
948
949 /*
950  * get new location of data
951  */
952 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
953                             u64 bytenr, u64 num_bytes)
954 {
955         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
956         struct btrfs_path *path;
957         struct btrfs_file_extent_item *fi;
958         struct extent_buffer *leaf;
959         int ret;
960
961         path = btrfs_alloc_path();
962         if (!path)
963                 return -ENOMEM;
964
965         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
966         ret = btrfs_lookup_file_extent(NULL, root, path,
967                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
968         if (ret < 0)
969                 goto out;
970         if (ret > 0) {
971                 ret = -ENOENT;
972                 goto out;
973         }
974
975         leaf = path->nodes[0];
976         fi = btrfs_item_ptr(leaf, path->slots[0],
977                             struct btrfs_file_extent_item);
978
979         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
980                btrfs_file_extent_compression(leaf, fi) ||
981                btrfs_file_extent_encryption(leaf, fi) ||
982                btrfs_file_extent_other_encoding(leaf, fi));
983
984         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
985                 ret = -EINVAL;
986                 goto out;
987         }
988
989         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
990         ret = 0;
991 out:
992         btrfs_free_path(path);
993         return ret;
994 }
995
996 /*
997  * update file extent items in the tree leaf to point to
998  * the new locations.
999  */
1000 static noinline_for_stack
1001 int replace_file_extents(struct btrfs_trans_handle *trans,
1002                          struct reloc_control *rc,
1003                          struct btrfs_root *root,
1004                          struct extent_buffer *leaf)
1005 {
1006         struct btrfs_fs_info *fs_info = root->fs_info;
1007         struct btrfs_key key;
1008         struct btrfs_file_extent_item *fi;
1009         struct btrfs_inode *inode = NULL;
1010         u64 parent;
1011         u64 bytenr;
1012         u64 new_bytenr = 0;
1013         u64 num_bytes;
1014         u64 end;
1015         u32 nritems;
1016         u32 i;
1017         int ret = 0;
1018         int first = 1;
1019         int dirty = 0;
1020
1021         if (rc->stage != UPDATE_DATA_PTRS)
1022                 return 0;
1023
1024         /* reloc trees always use full backref */
1025         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
1026                 parent = leaf->start;
1027         else
1028                 parent = 0;
1029
1030         nritems = btrfs_header_nritems(leaf);
1031         for (i = 0; i < nritems; i++) {
1032                 struct btrfs_ref ref = { 0 };
1033
1034                 cond_resched();
1035                 btrfs_item_key_to_cpu(leaf, &key, i);
1036                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1037                         continue;
1038                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1039                 if (btrfs_file_extent_type(leaf, fi) ==
1040                     BTRFS_FILE_EXTENT_INLINE)
1041                         continue;
1042                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1044                 if (bytenr == 0)
1045                         continue;
1046                 if (!in_range(bytenr, rc->block_group->start,
1047                               rc->block_group->length))
1048                         continue;
1049
1050                 /*
1051                  * if we are modifying block in fs tree, wait for read_folio
1052                  * to complete and drop the extent cache
1053                  */
1054                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1055                         if (first) {
1056                                 inode = btrfs_find_first_inode(root, key.objectid);
1057                                 first = 0;
1058                         } else if (inode && btrfs_ino(inode) < key.objectid) {
1059                                 btrfs_add_delayed_iput(inode);
1060                                 inode = btrfs_find_first_inode(root, key.objectid);
1061                         }
1062                         if (inode && btrfs_ino(inode) == key.objectid) {
1063                                 struct extent_state *cached_state = NULL;
1064
1065                                 end = key.offset +
1066                                       btrfs_file_extent_num_bytes(leaf, fi);
1067                                 WARN_ON(!IS_ALIGNED(key.offset,
1068                                                     fs_info->sectorsize));
1069                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1070                                 end--;
1071                                 /* Take mmap lock to serialize with reflinks. */
1072                                 if (!down_read_trylock(&inode->i_mmap_lock))
1073                                         continue;
1074                                 ret = try_lock_extent(&inode->io_tree, key.offset,
1075                                                       end, &cached_state);
1076                                 if (!ret) {
1077                                         up_read(&inode->i_mmap_lock);
1078                                         continue;
1079                                 }
1080
1081                                 btrfs_drop_extent_map_range(inode, key.offset, end, true);
1082                                 unlock_extent(&inode->io_tree, key.offset, end,
1083                                               &cached_state);
1084                                 up_read(&inode->i_mmap_lock);
1085                         }
1086                 }
1087
1088                 ret = get_new_location(rc->data_inode, &new_bytenr,
1089                                        bytenr, num_bytes);
1090                 if (ret) {
1091                         /*
1092                          * Don't have to abort since we've not changed anything
1093                          * in the file extent yet.
1094                          */
1095                         break;
1096                 }
1097
1098                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1099                 dirty = 1;
1100
1101                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1102                 ref.action = BTRFS_ADD_DELAYED_REF;
1103                 ref.bytenr = new_bytenr;
1104                 ref.num_bytes = num_bytes;
1105                 ref.parent = parent;
1106                 ref.owning_root = btrfs_root_id(root);
1107                 ref.ref_root = btrfs_header_owner(leaf);
1108                 btrfs_init_data_ref(&ref, key.objectid, key.offset,
1109                                     btrfs_root_id(root), false);
1110                 ret = btrfs_inc_extent_ref(trans, &ref);
1111                 if (ret) {
1112                         btrfs_abort_transaction(trans, ret);
1113                         break;
1114                 }
1115
1116                 ref.action = BTRFS_DROP_DELAYED_REF;
1117                 ref.bytenr = bytenr;
1118                 ref.num_bytes = num_bytes;
1119                 ref.parent = parent;
1120                 ref.owning_root = btrfs_root_id(root);
1121                 ref.ref_root = btrfs_header_owner(leaf);
1122                 btrfs_init_data_ref(&ref, key.objectid, key.offset,
1123                                     btrfs_root_id(root), false);
1124                 ret = btrfs_free_extent(trans, &ref);
1125                 if (ret) {
1126                         btrfs_abort_transaction(trans, ret);
1127                         break;
1128                 }
1129         }
1130         if (dirty)
1131                 btrfs_mark_buffer_dirty(trans, leaf);
1132         if (inode)
1133                 btrfs_add_delayed_iput(inode);
1134         return ret;
1135 }
1136
1137 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1138                                                int slot, const struct btrfs_path *path,
1139                                                int level)
1140 {
1141         struct btrfs_disk_key key1;
1142         struct btrfs_disk_key key2;
1143         btrfs_node_key(eb, &key1, slot);
1144         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1145         return memcmp(&key1, &key2, sizeof(key1));
1146 }
1147
1148 /*
1149  * try to replace tree blocks in fs tree with the new blocks
1150  * in reloc tree. tree blocks haven't been modified since the
1151  * reloc tree was create can be replaced.
1152  *
1153  * if a block was replaced, level of the block + 1 is returned.
1154  * if no block got replaced, 0 is returned. if there are other
1155  * errors, a negative error number is returned.
1156  */
1157 static noinline_for_stack
1158 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1159                  struct btrfs_root *dest, struct btrfs_root *src,
1160                  struct btrfs_path *path, struct btrfs_key *next_key,
1161                  int lowest_level, int max_level)
1162 {
1163         struct btrfs_fs_info *fs_info = dest->fs_info;
1164         struct extent_buffer *eb;
1165         struct extent_buffer *parent;
1166         struct btrfs_ref ref = { 0 };
1167         struct btrfs_key key;
1168         u64 old_bytenr;
1169         u64 new_bytenr;
1170         u64 old_ptr_gen;
1171         u64 new_ptr_gen;
1172         u64 last_snapshot;
1173         u32 blocksize;
1174         int cow = 0;
1175         int level;
1176         int ret;
1177         int slot;
1178
1179         ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1180         ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1181
1182         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1183 again:
1184         slot = path->slots[lowest_level];
1185         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1186
1187         eb = btrfs_lock_root_node(dest);
1188         level = btrfs_header_level(eb);
1189
1190         if (level < lowest_level) {
1191                 btrfs_tree_unlock(eb);
1192                 free_extent_buffer(eb);
1193                 return 0;
1194         }
1195
1196         if (cow) {
1197                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1198                                       BTRFS_NESTING_COW);
1199                 if (ret) {
1200                         btrfs_tree_unlock(eb);
1201                         free_extent_buffer(eb);
1202                         return ret;
1203                 }
1204         }
1205
1206         if (next_key) {
1207                 next_key->objectid = (u64)-1;
1208                 next_key->type = (u8)-1;
1209                 next_key->offset = (u64)-1;
1210         }
1211
1212         parent = eb;
1213         while (1) {
1214                 level = btrfs_header_level(parent);
1215                 ASSERT(level >= lowest_level);
1216
1217                 ret = btrfs_bin_search(parent, 0, &key, &slot);
1218                 if (ret < 0)
1219                         break;
1220                 if (ret && slot > 0)
1221                         slot--;
1222
1223                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1224                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1225
1226                 old_bytenr = btrfs_node_blockptr(parent, slot);
1227                 blocksize = fs_info->nodesize;
1228                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1229
1230                 if (level <= max_level) {
1231                         eb = path->nodes[level];
1232                         new_bytenr = btrfs_node_blockptr(eb,
1233                                                         path->slots[level]);
1234                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1235                                                         path->slots[level]);
1236                 } else {
1237                         new_bytenr = 0;
1238                         new_ptr_gen = 0;
1239                 }
1240
1241                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1242                         ret = level;
1243                         break;
1244                 }
1245
1246                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1247                     memcmp_node_keys(parent, slot, path, level)) {
1248                         if (level <= lowest_level) {
1249                                 ret = 0;
1250                                 break;
1251                         }
1252
1253                         eb = btrfs_read_node_slot(parent, slot);
1254                         if (IS_ERR(eb)) {
1255                                 ret = PTR_ERR(eb);
1256                                 break;
1257                         }
1258                         btrfs_tree_lock(eb);
1259                         if (cow) {
1260                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1261                                                       slot, &eb,
1262                                                       BTRFS_NESTING_COW);
1263                                 if (ret) {
1264                                         btrfs_tree_unlock(eb);
1265                                         free_extent_buffer(eb);
1266                                         break;
1267                                 }
1268                         }
1269
1270                         btrfs_tree_unlock(parent);
1271                         free_extent_buffer(parent);
1272
1273                         parent = eb;
1274                         continue;
1275                 }
1276
1277                 if (!cow) {
1278                         btrfs_tree_unlock(parent);
1279                         free_extent_buffer(parent);
1280                         cow = 1;
1281                         goto again;
1282                 }
1283
1284                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1285                                       path->slots[level]);
1286                 btrfs_release_path(path);
1287
1288                 path->lowest_level = level;
1289                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1290                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1291                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1292                 path->lowest_level = 0;
1293                 if (ret) {
1294                         if (ret > 0)
1295                                 ret = -ENOENT;
1296                         break;
1297                 }
1298
1299                 /*
1300                  * Info qgroup to trace both subtrees.
1301                  *
1302                  * We must trace both trees.
1303                  * 1) Tree reloc subtree
1304                  *    If not traced, we will leak data numbers
1305                  * 2) Fs subtree
1306                  *    If not traced, we will double count old data
1307                  *
1308                  * We don't scan the subtree right now, but only record
1309                  * the swapped tree blocks.
1310                  * The real subtree rescan is delayed until we have new
1311                  * CoW on the subtree root node before transaction commit.
1312                  */
1313                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1314                                 rc->block_group, parent, slot,
1315                                 path->nodes[level], path->slots[level],
1316                                 last_snapshot);
1317                 if (ret < 0)
1318                         break;
1319                 /*
1320                  * swap blocks in fs tree and reloc tree.
1321                  */
1322                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1323                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1324                 btrfs_mark_buffer_dirty(trans, parent);
1325
1326                 btrfs_set_node_blockptr(path->nodes[level],
1327                                         path->slots[level], old_bytenr);
1328                 btrfs_set_node_ptr_generation(path->nodes[level],
1329                                               path->slots[level], old_ptr_gen);
1330                 btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1331
1332                 ref.action = BTRFS_ADD_DELAYED_REF;
1333                 ref.bytenr = old_bytenr;
1334                 ref.num_bytes = blocksize;
1335                 ref.parent = path->nodes[level]->start;
1336                 ref.owning_root = btrfs_root_id(src);
1337                 ref.ref_root = btrfs_root_id(src);
1338                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1339                 ret = btrfs_inc_extent_ref(trans, &ref);
1340                 if (ret) {
1341                         btrfs_abort_transaction(trans, ret);
1342                         break;
1343                 }
1344
1345                 ref.action = BTRFS_ADD_DELAYED_REF;
1346                 ref.bytenr = new_bytenr;
1347                 ref.num_bytes = blocksize;
1348                 ref.parent = 0;
1349                 ref.owning_root = btrfs_root_id(dest);
1350                 ref.ref_root = btrfs_root_id(dest);
1351                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1352                 ret = btrfs_inc_extent_ref(trans, &ref);
1353                 if (ret) {
1354                         btrfs_abort_transaction(trans, ret);
1355                         break;
1356                 }
1357
1358                 /* We don't know the real owning_root, use 0. */
1359                 ref.action = BTRFS_DROP_DELAYED_REF;
1360                 ref.bytenr = new_bytenr;
1361                 ref.num_bytes = blocksize;
1362                 ref.parent = path->nodes[level]->start;
1363                 ref.owning_root = 0;
1364                 ref.ref_root = btrfs_root_id(src);
1365                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1366                 ret = btrfs_free_extent(trans, &ref);
1367                 if (ret) {
1368                         btrfs_abort_transaction(trans, ret);
1369                         break;
1370                 }
1371
1372                 /* We don't know the real owning_root, use 0. */
1373                 ref.action = BTRFS_DROP_DELAYED_REF;
1374                 ref.bytenr = old_bytenr;
1375                 ref.num_bytes = blocksize;
1376                 ref.parent = 0;
1377                 ref.owning_root = 0;
1378                 ref.ref_root = btrfs_root_id(dest);
1379                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1380                 ret = btrfs_free_extent(trans, &ref);
1381                 if (ret) {
1382                         btrfs_abort_transaction(trans, ret);
1383                         break;
1384                 }
1385
1386                 btrfs_unlock_up_safe(path, 0);
1387
1388                 ret = level;
1389                 break;
1390         }
1391         btrfs_tree_unlock(parent);
1392         free_extent_buffer(parent);
1393         return ret;
1394 }
1395
1396 /*
1397  * helper to find next relocated block in reloc tree
1398  */
1399 static noinline_for_stack
1400 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1401                        int *level)
1402 {
1403         struct extent_buffer *eb;
1404         int i;
1405         u64 last_snapshot;
1406         u32 nritems;
1407
1408         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1409
1410         for (i = 0; i < *level; i++) {
1411                 free_extent_buffer(path->nodes[i]);
1412                 path->nodes[i] = NULL;
1413         }
1414
1415         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1416                 eb = path->nodes[i];
1417                 nritems = btrfs_header_nritems(eb);
1418                 while (path->slots[i] + 1 < nritems) {
1419                         path->slots[i]++;
1420                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1421                             last_snapshot)
1422                                 continue;
1423
1424                         *level = i;
1425                         return 0;
1426                 }
1427                 free_extent_buffer(path->nodes[i]);
1428                 path->nodes[i] = NULL;
1429         }
1430         return 1;
1431 }
1432
1433 /*
1434  * walk down reloc tree to find relocated block of lowest level
1435  */
1436 static noinline_for_stack
1437 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438                          int *level)
1439 {
1440         struct extent_buffer *eb = NULL;
1441         int i;
1442         u64 ptr_gen = 0;
1443         u64 last_snapshot;
1444         u32 nritems;
1445
1446         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1447
1448         for (i = *level; i > 0; i--) {
1449                 eb = path->nodes[i];
1450                 nritems = btrfs_header_nritems(eb);
1451                 while (path->slots[i] < nritems) {
1452                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1453                         if (ptr_gen > last_snapshot)
1454                                 break;
1455                         path->slots[i]++;
1456                 }
1457                 if (path->slots[i] >= nritems) {
1458                         if (i == *level)
1459                                 break;
1460                         *level = i + 1;
1461                         return 0;
1462                 }
1463                 if (i == 1) {
1464                         *level = i;
1465                         return 0;
1466                 }
1467
1468                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1469                 if (IS_ERR(eb))
1470                         return PTR_ERR(eb);
1471                 BUG_ON(btrfs_header_level(eb) != i - 1);
1472                 path->nodes[i - 1] = eb;
1473                 path->slots[i - 1] = 0;
1474         }
1475         return 1;
1476 }
1477
1478 /*
1479  * invalidate extent cache for file extents whose key in range of
1480  * [min_key, max_key)
1481  */
1482 static int invalidate_extent_cache(struct btrfs_root *root,
1483                                    const struct btrfs_key *min_key,
1484                                    const struct btrfs_key *max_key)
1485 {
1486         struct btrfs_fs_info *fs_info = root->fs_info;
1487         struct btrfs_inode *inode = NULL;
1488         u64 objectid;
1489         u64 start, end;
1490         u64 ino;
1491
1492         objectid = min_key->objectid;
1493         while (1) {
1494                 struct extent_state *cached_state = NULL;
1495
1496                 cond_resched();
1497                 if (inode)
1498                         iput(&inode->vfs_inode);
1499
1500                 if (objectid > max_key->objectid)
1501                         break;
1502
1503                 inode = btrfs_find_first_inode(root, objectid);
1504                 if (!inode)
1505                         break;
1506                 ino = btrfs_ino(inode);
1507
1508                 if (ino > max_key->objectid) {
1509                         iput(&inode->vfs_inode);
1510                         break;
1511                 }
1512
1513                 objectid = ino + 1;
1514                 if (!S_ISREG(inode->vfs_inode.i_mode))
1515                         continue;
1516
1517                 if (unlikely(min_key->objectid == ino)) {
1518                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1519                                 continue;
1520                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1521                                 start = 0;
1522                         else {
1523                                 start = min_key->offset;
1524                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1525                         }
1526                 } else {
1527                         start = 0;
1528                 }
1529
1530                 if (unlikely(max_key->objectid == ino)) {
1531                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1532                                 continue;
1533                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1534                                 end = (u64)-1;
1535                         } else {
1536                                 if (max_key->offset == 0)
1537                                         continue;
1538                                 end = max_key->offset;
1539                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1540                                 end--;
1541                         }
1542                 } else {
1543                         end = (u64)-1;
1544                 }
1545
1546                 /* the lock_extent waits for read_folio to complete */
1547                 lock_extent(&inode->io_tree, start, end, &cached_state);
1548                 btrfs_drop_extent_map_range(inode, start, end, true);
1549                 unlock_extent(&inode->io_tree, start, end, &cached_state);
1550         }
1551         return 0;
1552 }
1553
1554 static int find_next_key(struct btrfs_path *path, int level,
1555                          struct btrfs_key *key)
1556
1557 {
1558         while (level < BTRFS_MAX_LEVEL) {
1559                 if (!path->nodes[level])
1560                         break;
1561                 if (path->slots[level] + 1 <
1562                     btrfs_header_nritems(path->nodes[level])) {
1563                         btrfs_node_key_to_cpu(path->nodes[level], key,
1564                                               path->slots[level] + 1);
1565                         return 0;
1566                 }
1567                 level++;
1568         }
1569         return 1;
1570 }
1571
1572 /*
1573  * Insert current subvolume into reloc_control::dirty_subvol_roots
1574  */
1575 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1576                                struct reloc_control *rc,
1577                                struct btrfs_root *root)
1578 {
1579         struct btrfs_root *reloc_root = root->reloc_root;
1580         struct btrfs_root_item *reloc_root_item;
1581         int ret;
1582
1583         /* @root must be a subvolume tree root with a valid reloc tree */
1584         ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1585         ASSERT(reloc_root);
1586
1587         reloc_root_item = &reloc_root->root_item;
1588         memset(&reloc_root_item->drop_progress, 0,
1589                 sizeof(reloc_root_item->drop_progress));
1590         btrfs_set_root_drop_level(reloc_root_item, 0);
1591         btrfs_set_root_refs(reloc_root_item, 0);
1592         ret = btrfs_update_reloc_root(trans, root);
1593         if (ret)
1594                 return ret;
1595
1596         if (list_empty(&root->reloc_dirty_list)) {
1597                 btrfs_grab_root(root);
1598                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1599         }
1600
1601         return 0;
1602 }
1603
1604 static int clean_dirty_subvols(struct reloc_control *rc)
1605 {
1606         struct btrfs_root *root;
1607         struct btrfs_root *next;
1608         int ret = 0;
1609         int ret2;
1610
1611         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1612                                  reloc_dirty_list) {
1613                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1614                         /* Merged subvolume, cleanup its reloc root */
1615                         struct btrfs_root *reloc_root = root->reloc_root;
1616
1617                         list_del_init(&root->reloc_dirty_list);
1618                         root->reloc_root = NULL;
1619                         /*
1620                          * Need barrier to ensure clear_bit() only happens after
1621                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1622                          */
1623                         smp_wmb();
1624                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1625                         if (reloc_root) {
1626                                 /*
1627                                  * btrfs_drop_snapshot drops our ref we hold for
1628                                  * ->reloc_root.  If it fails however we must
1629                                  * drop the ref ourselves.
1630                                  */
1631                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1632                                 if (ret2 < 0) {
1633                                         btrfs_put_root(reloc_root);
1634                                         if (!ret)
1635                                                 ret = ret2;
1636                                 }
1637                         }
1638                         btrfs_put_root(root);
1639                 } else {
1640                         /* Orphan reloc tree, just clean it up */
1641                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1642                         if (ret2 < 0) {
1643                                 btrfs_put_root(root);
1644                                 if (!ret)
1645                                         ret = ret2;
1646                         }
1647                 }
1648         }
1649         return ret;
1650 }
1651
1652 /*
1653  * merge the relocated tree blocks in reloc tree with corresponding
1654  * fs tree.
1655  */
1656 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1657                                                struct btrfs_root *root)
1658 {
1659         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1660         struct btrfs_key key;
1661         struct btrfs_key next_key;
1662         struct btrfs_trans_handle *trans = NULL;
1663         struct btrfs_root *reloc_root;
1664         struct btrfs_root_item *root_item;
1665         struct btrfs_path *path;
1666         struct extent_buffer *leaf;
1667         int reserve_level;
1668         int level;
1669         int max_level;
1670         int replaced = 0;
1671         int ret = 0;
1672         u32 min_reserved;
1673
1674         path = btrfs_alloc_path();
1675         if (!path)
1676                 return -ENOMEM;
1677         path->reada = READA_FORWARD;
1678
1679         reloc_root = root->reloc_root;
1680         root_item = &reloc_root->root_item;
1681
1682         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1683                 level = btrfs_root_level(root_item);
1684                 atomic_inc(&reloc_root->node->refs);
1685                 path->nodes[level] = reloc_root->node;
1686                 path->slots[level] = 0;
1687         } else {
1688                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1689
1690                 level = btrfs_root_drop_level(root_item);
1691                 BUG_ON(level == 0);
1692                 path->lowest_level = level;
1693                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1694                 path->lowest_level = 0;
1695                 if (ret < 0) {
1696                         btrfs_free_path(path);
1697                         return ret;
1698                 }
1699
1700                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1701                                       path->slots[level]);
1702                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1703
1704                 btrfs_unlock_up_safe(path, 0);
1705         }
1706
1707         /*
1708          * In merge_reloc_root(), we modify the upper level pointer to swap the
1709          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1710          * block COW, we COW at most from level 1 to root level for each tree.
1711          *
1712          * Thus the needed metadata size is at most root_level * nodesize,
1713          * and * 2 since we have two trees to COW.
1714          */
1715         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1716         min_reserved = fs_info->nodesize * reserve_level * 2;
1717         memset(&next_key, 0, sizeof(next_key));
1718
1719         while (1) {
1720                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1721                                              min_reserved,
1722                                              BTRFS_RESERVE_FLUSH_LIMIT);
1723                 if (ret)
1724                         goto out;
1725                 trans = btrfs_start_transaction(root, 0);
1726                 if (IS_ERR(trans)) {
1727                         ret = PTR_ERR(trans);
1728                         trans = NULL;
1729                         goto out;
1730                 }
1731
1732                 /*
1733                  * At this point we no longer have a reloc_control, so we can't
1734                  * depend on btrfs_init_reloc_root to update our last_trans.
1735                  *
1736                  * But that's ok, we started the trans handle on our
1737                  * corresponding fs_root, which means it's been added to the
1738                  * dirty list.  At commit time we'll still call
1739                  * btrfs_update_reloc_root() and update our root item
1740                  * appropriately.
1741                  */
1742                 reloc_root->last_trans = trans->transid;
1743                 trans->block_rsv = rc->block_rsv;
1744
1745                 replaced = 0;
1746                 max_level = level;
1747
1748                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1749                 if (ret < 0)
1750                         goto out;
1751                 if (ret > 0)
1752                         break;
1753
1754                 if (!find_next_key(path, level, &key) &&
1755                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1756                         ret = 0;
1757                 } else {
1758                         ret = replace_path(trans, rc, root, reloc_root, path,
1759                                            &next_key, level, max_level);
1760                 }
1761                 if (ret < 0)
1762                         goto out;
1763                 if (ret > 0) {
1764                         level = ret;
1765                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1766                                               path->slots[level]);
1767                         replaced = 1;
1768                 }
1769
1770                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1771                 if (ret > 0)
1772                         break;
1773
1774                 BUG_ON(level == 0);
1775                 /*
1776                  * save the merging progress in the drop_progress.
1777                  * this is OK since root refs == 1 in this case.
1778                  */
1779                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1780                                path->slots[level]);
1781                 btrfs_set_root_drop_level(root_item, level);
1782
1783                 btrfs_end_transaction_throttle(trans);
1784                 trans = NULL;
1785
1786                 btrfs_btree_balance_dirty(fs_info);
1787
1788                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1789                         invalidate_extent_cache(root, &key, &next_key);
1790         }
1791
1792         /*
1793          * handle the case only one block in the fs tree need to be
1794          * relocated and the block is tree root.
1795          */
1796         leaf = btrfs_lock_root_node(root);
1797         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1798                               BTRFS_NESTING_COW);
1799         btrfs_tree_unlock(leaf);
1800         free_extent_buffer(leaf);
1801 out:
1802         btrfs_free_path(path);
1803
1804         if (ret == 0) {
1805                 ret = insert_dirty_subvol(trans, rc, root);
1806                 if (ret)
1807                         btrfs_abort_transaction(trans, ret);
1808         }
1809
1810         if (trans)
1811                 btrfs_end_transaction_throttle(trans);
1812
1813         btrfs_btree_balance_dirty(fs_info);
1814
1815         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1816                 invalidate_extent_cache(root, &key, &next_key);
1817
1818         return ret;
1819 }
1820
1821 static noinline_for_stack
1822 int prepare_to_merge(struct reloc_control *rc, int err)
1823 {
1824         struct btrfs_root *root = rc->extent_root;
1825         struct btrfs_fs_info *fs_info = root->fs_info;
1826         struct btrfs_root *reloc_root;
1827         struct btrfs_trans_handle *trans;
1828         LIST_HEAD(reloc_roots);
1829         u64 num_bytes = 0;
1830         int ret;
1831
1832         mutex_lock(&fs_info->reloc_mutex);
1833         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1834         rc->merging_rsv_size += rc->nodes_relocated * 2;
1835         mutex_unlock(&fs_info->reloc_mutex);
1836
1837 again:
1838         if (!err) {
1839                 num_bytes = rc->merging_rsv_size;
1840                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1841                                           BTRFS_RESERVE_FLUSH_ALL);
1842                 if (ret)
1843                         err = ret;
1844         }
1845
1846         trans = btrfs_join_transaction(rc->extent_root);
1847         if (IS_ERR(trans)) {
1848                 if (!err)
1849                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1850                                                 num_bytes, NULL);
1851                 return PTR_ERR(trans);
1852         }
1853
1854         if (!err) {
1855                 if (num_bytes != rc->merging_rsv_size) {
1856                         btrfs_end_transaction(trans);
1857                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1858                                                 num_bytes, NULL);
1859                         goto again;
1860                 }
1861         }
1862
1863         rc->merge_reloc_tree = true;
1864
1865         while (!list_empty(&rc->reloc_roots)) {
1866                 reloc_root = list_entry(rc->reloc_roots.next,
1867                                         struct btrfs_root, root_list);
1868                 list_del_init(&reloc_root->root_list);
1869
1870                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1871                                 false);
1872                 if (IS_ERR(root)) {
1873                         /*
1874                          * Even if we have an error we need this reloc root
1875                          * back on our list so we can clean up properly.
1876                          */
1877                         list_add(&reloc_root->root_list, &reloc_roots);
1878                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1879                         if (!err)
1880                                 err = PTR_ERR(root);
1881                         break;
1882                 }
1883
1884                 if (unlikely(root->reloc_root != reloc_root)) {
1885                         if (root->reloc_root) {
1886                                 btrfs_err(fs_info,
1887 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1888                                           btrfs_root_id(root),
1889                                           btrfs_root_id(root->reloc_root),
1890                                           root->reloc_root->root_key.type,
1891                                           root->reloc_root->root_key.offset,
1892                                           btrfs_root_generation(
1893                                                   &root->reloc_root->root_item),
1894                                           btrfs_root_id(reloc_root),
1895                                           reloc_root->root_key.type,
1896                                           reloc_root->root_key.offset,
1897                                           btrfs_root_generation(
1898                                                   &reloc_root->root_item));
1899                         } else {
1900                                 btrfs_err(fs_info,
1901 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1902                                           btrfs_root_id(root),
1903                                           btrfs_root_id(reloc_root),
1904                                           reloc_root->root_key.type,
1905                                           reloc_root->root_key.offset,
1906                                           btrfs_root_generation(
1907                                                   &reloc_root->root_item));
1908                         }
1909                         list_add(&reloc_root->root_list, &reloc_roots);
1910                         btrfs_put_root(root);
1911                         btrfs_abort_transaction(trans, -EUCLEAN);
1912                         if (!err)
1913                                 err = -EUCLEAN;
1914                         break;
1915                 }
1916
1917                 /*
1918                  * set reference count to 1, so btrfs_recover_relocation
1919                  * knows it should resumes merging
1920                  */
1921                 if (!err)
1922                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1923                 ret = btrfs_update_reloc_root(trans, root);
1924
1925                 /*
1926                  * Even if we have an error we need this reloc root back on our
1927                  * list so we can clean up properly.
1928                  */
1929                 list_add(&reloc_root->root_list, &reloc_roots);
1930                 btrfs_put_root(root);
1931
1932                 if (ret) {
1933                         btrfs_abort_transaction(trans, ret);
1934                         if (!err)
1935                                 err = ret;
1936                         break;
1937                 }
1938         }
1939
1940         list_splice(&reloc_roots, &rc->reloc_roots);
1941
1942         if (!err)
1943                 err = btrfs_commit_transaction(trans);
1944         else
1945                 btrfs_end_transaction(trans);
1946         return err;
1947 }
1948
1949 static noinline_for_stack
1950 void free_reloc_roots(struct list_head *list)
1951 {
1952         struct btrfs_root *reloc_root, *tmp;
1953
1954         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1955                 __del_reloc_root(reloc_root);
1956 }
1957
1958 static noinline_for_stack
1959 void merge_reloc_roots(struct reloc_control *rc)
1960 {
1961         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1962         struct btrfs_root *root;
1963         struct btrfs_root *reloc_root;
1964         LIST_HEAD(reloc_roots);
1965         int found = 0;
1966         int ret = 0;
1967 again:
1968         root = rc->extent_root;
1969
1970         /*
1971          * this serializes us with btrfs_record_root_in_transaction,
1972          * we have to make sure nobody is in the middle of
1973          * adding their roots to the list while we are
1974          * doing this splice
1975          */
1976         mutex_lock(&fs_info->reloc_mutex);
1977         list_splice_init(&rc->reloc_roots, &reloc_roots);
1978         mutex_unlock(&fs_info->reloc_mutex);
1979
1980         while (!list_empty(&reloc_roots)) {
1981                 found = 1;
1982                 reloc_root = list_entry(reloc_roots.next,
1983                                         struct btrfs_root, root_list);
1984
1985                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1986                                          false);
1987                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1988                         if (WARN_ON(IS_ERR(root))) {
1989                                 /*
1990                                  * For recovery we read the fs roots on mount,
1991                                  * and if we didn't find the root then we marked
1992                                  * the reloc root as a garbage root.  For normal
1993                                  * relocation obviously the root should exist in
1994                                  * memory.  However there's no reason we can't
1995                                  * handle the error properly here just in case.
1996                                  */
1997                                 ret = PTR_ERR(root);
1998                                 goto out;
1999                         }
2000                         if (WARN_ON(root->reloc_root != reloc_root)) {
2001                                 /*
2002                                  * This can happen if on-disk metadata has some
2003                                  * corruption, e.g. bad reloc tree key offset.
2004                                  */
2005                                 ret = -EINVAL;
2006                                 goto out;
2007                         }
2008                         ret = merge_reloc_root(rc, root);
2009                         btrfs_put_root(root);
2010                         if (ret) {
2011                                 if (list_empty(&reloc_root->root_list))
2012                                         list_add_tail(&reloc_root->root_list,
2013                                                       &reloc_roots);
2014                                 goto out;
2015                         }
2016                 } else {
2017                         if (!IS_ERR(root)) {
2018                                 if (root->reloc_root == reloc_root) {
2019                                         root->reloc_root = NULL;
2020                                         btrfs_put_root(reloc_root);
2021                                 }
2022                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2023                                           &root->state);
2024                                 btrfs_put_root(root);
2025                         }
2026
2027                         list_del_init(&reloc_root->root_list);
2028                         /* Don't forget to queue this reloc root for cleanup */
2029                         list_add_tail(&reloc_root->reloc_dirty_list,
2030                                       &rc->dirty_subvol_roots);
2031                 }
2032         }
2033
2034         if (found) {
2035                 found = 0;
2036                 goto again;
2037         }
2038 out:
2039         if (ret) {
2040                 btrfs_handle_fs_error(fs_info, ret, NULL);
2041                 free_reloc_roots(&reloc_roots);
2042
2043                 /* new reloc root may be added */
2044                 mutex_lock(&fs_info->reloc_mutex);
2045                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2046                 mutex_unlock(&fs_info->reloc_mutex);
2047                 free_reloc_roots(&reloc_roots);
2048         }
2049
2050         /*
2051          * We used to have
2052          *
2053          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2054          *
2055          * here, but it's wrong.  If we fail to start the transaction in
2056          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2057          * have actually been removed from the reloc_root_tree rb tree.  This is
2058          * fine because we're bailing here, and we hold a reference on the root
2059          * for the list that holds it, so these roots will be cleaned up when we
2060          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2061          * will be cleaned up on unmount.
2062          *
2063          * The remaining nodes will be cleaned up by free_reloc_control.
2064          */
2065 }
2066
2067 static void free_block_list(struct rb_root *blocks)
2068 {
2069         struct tree_block *block;
2070         struct rb_node *rb_node;
2071         while ((rb_node = rb_first(blocks))) {
2072                 block = rb_entry(rb_node, struct tree_block, rb_node);
2073                 rb_erase(rb_node, blocks);
2074                 kfree(block);
2075         }
2076 }
2077
2078 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2079                                       struct btrfs_root *reloc_root)
2080 {
2081         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2082         struct btrfs_root *root;
2083         int ret;
2084
2085         if (reloc_root->last_trans == trans->transid)
2086                 return 0;
2087
2088         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2089
2090         /*
2091          * This should succeed, since we can't have a reloc root without having
2092          * already looked up the actual root and created the reloc root for this
2093          * root.
2094          *
2095          * However if there's some sort of corruption where we have a ref to a
2096          * reloc root without a corresponding root this could return ENOENT.
2097          */
2098         if (IS_ERR(root)) {
2099                 ASSERT(0);
2100                 return PTR_ERR(root);
2101         }
2102         if (root->reloc_root != reloc_root) {
2103                 ASSERT(0);
2104                 btrfs_err(fs_info,
2105                           "root %llu has two reloc roots associated with it",
2106                           reloc_root->root_key.offset);
2107                 btrfs_put_root(root);
2108                 return -EUCLEAN;
2109         }
2110         ret = btrfs_record_root_in_trans(trans, root);
2111         btrfs_put_root(root);
2112
2113         return ret;
2114 }
2115
2116 static noinline_for_stack
2117 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2118                                      struct reloc_control *rc,
2119                                      struct btrfs_backref_node *node,
2120                                      struct btrfs_backref_edge *edges[])
2121 {
2122         struct btrfs_backref_node *next;
2123         struct btrfs_root *root;
2124         int index = 0;
2125         int ret;
2126
2127         next = node;
2128         while (1) {
2129                 cond_resched();
2130                 next = walk_up_backref(next, edges, &index);
2131                 root = next->root;
2132
2133                 /*
2134                  * If there is no root, then our references for this block are
2135                  * incomplete, as we should be able to walk all the way up to a
2136                  * block that is owned by a root.
2137                  *
2138                  * This path is only for SHAREABLE roots, so if we come upon a
2139                  * non-SHAREABLE root then we have backrefs that resolve
2140                  * improperly.
2141                  *
2142                  * Both of these cases indicate file system corruption, or a bug
2143                  * in the backref walking code.
2144                  */
2145                 if (!root) {
2146                         ASSERT(0);
2147                         btrfs_err(trans->fs_info,
2148                 "bytenr %llu doesn't have a backref path ending in a root",
2149                                   node->bytenr);
2150                         return ERR_PTR(-EUCLEAN);
2151                 }
2152                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2153                         ASSERT(0);
2154                         btrfs_err(trans->fs_info,
2155         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2156                                   node->bytenr);
2157                         return ERR_PTR(-EUCLEAN);
2158                 }
2159
2160                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2161                         ret = record_reloc_root_in_trans(trans, root);
2162                         if (ret)
2163                                 return ERR_PTR(ret);
2164                         break;
2165                 }
2166
2167                 ret = btrfs_record_root_in_trans(trans, root);
2168                 if (ret)
2169                         return ERR_PTR(ret);
2170                 root = root->reloc_root;
2171
2172                 /*
2173                  * We could have raced with another thread which failed, so
2174                  * root->reloc_root may not be set, return ENOENT in this case.
2175                  */
2176                 if (!root)
2177                         return ERR_PTR(-ENOENT);
2178
2179                 if (next->new_bytenr != root->node->start) {
2180                         /*
2181                          * We just created the reloc root, so we shouldn't have
2182                          * ->new_bytenr set and this shouldn't be in the changed
2183                          *  list.  If it is then we have multiple roots pointing
2184                          *  at the same bytenr which indicates corruption, or
2185                          *  we've made a mistake in the backref walking code.
2186                          */
2187                         ASSERT(next->new_bytenr == 0);
2188                         ASSERT(list_empty(&next->list));
2189                         if (next->new_bytenr || !list_empty(&next->list)) {
2190                                 btrfs_err(trans->fs_info,
2191         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2192                                           node->bytenr, next->bytenr);
2193                                 return ERR_PTR(-EUCLEAN);
2194                         }
2195
2196                         next->new_bytenr = root->node->start;
2197                         btrfs_put_root(next->root);
2198                         next->root = btrfs_grab_root(root);
2199                         ASSERT(next->root);
2200                         list_add_tail(&next->list,
2201                                       &rc->backref_cache.changed);
2202                         mark_block_processed(rc, next);
2203                         break;
2204                 }
2205
2206                 WARN_ON(1);
2207                 root = NULL;
2208                 next = walk_down_backref(edges, &index);
2209                 if (!next || next->level <= node->level)
2210                         break;
2211         }
2212         if (!root) {
2213                 /*
2214                  * This can happen if there's fs corruption or if there's a bug
2215                  * in the backref lookup code.
2216                  */
2217                 ASSERT(0);
2218                 return ERR_PTR(-ENOENT);
2219         }
2220
2221         next = node;
2222         /* setup backref node path for btrfs_reloc_cow_block */
2223         while (1) {
2224                 rc->backref_cache.path[next->level] = next;
2225                 if (--index < 0)
2226                         break;
2227                 next = edges[index]->node[UPPER];
2228         }
2229         return root;
2230 }
2231
2232 /*
2233  * Select a tree root for relocation.
2234  *
2235  * Return NULL if the block is not shareable. We should use do_relocation() in
2236  * this case.
2237  *
2238  * Return a tree root pointer if the block is shareable.
2239  * Return -ENOENT if the block is root of reloc tree.
2240  */
2241 static noinline_for_stack
2242 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2243 {
2244         struct btrfs_backref_node *next;
2245         struct btrfs_root *root;
2246         struct btrfs_root *fs_root = NULL;
2247         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2248         int index = 0;
2249
2250         next = node;
2251         while (1) {
2252                 cond_resched();
2253                 next = walk_up_backref(next, edges, &index);
2254                 root = next->root;
2255
2256                 /*
2257                  * This can occur if we have incomplete extent refs leading all
2258                  * the way up a particular path, in this case return -EUCLEAN.
2259                  */
2260                 if (!root)
2261                         return ERR_PTR(-EUCLEAN);
2262
2263                 /* No other choice for non-shareable tree */
2264                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2265                         return root;
2266
2267                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2268                         fs_root = root;
2269
2270                 if (next != node)
2271                         return NULL;
2272
2273                 next = walk_down_backref(edges, &index);
2274                 if (!next || next->level <= node->level)
2275                         break;
2276         }
2277
2278         if (!fs_root)
2279                 return ERR_PTR(-ENOENT);
2280         return fs_root;
2281 }
2282
2283 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2284                                                   struct btrfs_backref_node *node)
2285 {
2286         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2287         struct btrfs_backref_node *next = node;
2288         struct btrfs_backref_edge *edge;
2289         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2290         u64 num_bytes = 0;
2291         int index = 0;
2292
2293         BUG_ON(node->processed);
2294
2295         while (next) {
2296                 cond_resched();
2297                 while (1) {
2298                         if (next->processed)
2299                                 break;
2300
2301                         num_bytes += fs_info->nodesize;
2302
2303                         if (list_empty(&next->upper))
2304                                 break;
2305
2306                         edge = list_entry(next->upper.next,
2307                                         struct btrfs_backref_edge, list[LOWER]);
2308                         edges[index++] = edge;
2309                         next = edge->node[UPPER];
2310                 }
2311                 next = walk_down_backref(edges, &index);
2312         }
2313         return num_bytes;
2314 }
2315
2316 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2317                                   struct reloc_control *rc,
2318                                   struct btrfs_backref_node *node)
2319 {
2320         struct btrfs_root *root = rc->extent_root;
2321         struct btrfs_fs_info *fs_info = root->fs_info;
2322         u64 num_bytes;
2323         int ret;
2324         u64 tmp;
2325
2326         num_bytes = calcu_metadata_size(rc, node) * 2;
2327
2328         trans->block_rsv = rc->block_rsv;
2329         rc->reserved_bytes += num_bytes;
2330
2331         /*
2332          * We are under a transaction here so we can only do limited flushing.
2333          * If we get an enospc just kick back -EAGAIN so we know to drop the
2334          * transaction and try to refill when we can flush all the things.
2335          */
2336         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2337                                      BTRFS_RESERVE_FLUSH_LIMIT);
2338         if (ret) {
2339                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2340                 while (tmp <= rc->reserved_bytes)
2341                         tmp <<= 1;
2342                 /*
2343                  * only one thread can access block_rsv at this point,
2344                  * so we don't need hold lock to protect block_rsv.
2345                  * we expand more reservation size here to allow enough
2346                  * space for relocation and we will return earlier in
2347                  * enospc case.
2348                  */
2349                 rc->block_rsv->size = tmp + fs_info->nodesize *
2350                                       RELOCATION_RESERVED_NODES;
2351                 return -EAGAIN;
2352         }
2353
2354         return 0;
2355 }
2356
2357 /*
2358  * relocate a block tree, and then update pointers in upper level
2359  * blocks that reference the block to point to the new location.
2360  *
2361  * if called by link_to_upper, the block has already been relocated.
2362  * in that case this function just updates pointers.
2363  */
2364 static int do_relocation(struct btrfs_trans_handle *trans,
2365                          struct reloc_control *rc,
2366                          struct btrfs_backref_node *node,
2367                          struct btrfs_key *key,
2368                          struct btrfs_path *path, int lowest)
2369 {
2370         struct btrfs_backref_node *upper;
2371         struct btrfs_backref_edge *edge;
2372         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2373         struct btrfs_root *root;
2374         struct extent_buffer *eb;
2375         u32 blocksize;
2376         u64 bytenr;
2377         int slot;
2378         int ret = 0;
2379
2380         /*
2381          * If we are lowest then this is the first time we're processing this
2382          * block, and thus shouldn't have an eb associated with it yet.
2383          */
2384         ASSERT(!lowest || !node->eb);
2385
2386         path->lowest_level = node->level + 1;
2387         rc->backref_cache.path[node->level] = node;
2388         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2389                 cond_resched();
2390
2391                 upper = edge->node[UPPER];
2392                 root = select_reloc_root(trans, rc, upper, edges);
2393                 if (IS_ERR(root)) {
2394                         ret = PTR_ERR(root);
2395                         goto next;
2396                 }
2397
2398                 if (upper->eb && !upper->locked) {
2399                         if (!lowest) {
2400                                 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2401                                 if (ret < 0)
2402                                         goto next;
2403                                 BUG_ON(ret);
2404                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2405                                 if (node->eb->start == bytenr)
2406                                         goto next;
2407                         }
2408                         btrfs_backref_drop_node_buffer(upper);
2409                 }
2410
2411                 if (!upper->eb) {
2412                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2413                         if (ret) {
2414                                 if (ret > 0)
2415                                         ret = -ENOENT;
2416
2417                                 btrfs_release_path(path);
2418                                 break;
2419                         }
2420
2421                         if (!upper->eb) {
2422                                 upper->eb = path->nodes[upper->level];
2423                                 path->nodes[upper->level] = NULL;
2424                         } else {
2425                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2426                         }
2427
2428                         upper->locked = 1;
2429                         path->locks[upper->level] = 0;
2430
2431                         slot = path->slots[upper->level];
2432                         btrfs_release_path(path);
2433                 } else {
2434                         ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2435                         if (ret < 0)
2436                                 goto next;
2437                         BUG_ON(ret);
2438                 }
2439
2440                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2441                 if (lowest) {
2442                         if (bytenr != node->bytenr) {
2443                                 btrfs_err(root->fs_info,
2444                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2445                                           bytenr, node->bytenr, slot,
2446                                           upper->eb->start);
2447                                 ret = -EIO;
2448                                 goto next;
2449                         }
2450                 } else {
2451                         if (node->eb->start == bytenr)
2452                                 goto next;
2453                 }
2454
2455                 blocksize = root->fs_info->nodesize;
2456                 eb = btrfs_read_node_slot(upper->eb, slot);
2457                 if (IS_ERR(eb)) {
2458                         ret = PTR_ERR(eb);
2459                         goto next;
2460                 }
2461                 btrfs_tree_lock(eb);
2462
2463                 if (!node->eb) {
2464                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2465                                               slot, &eb, BTRFS_NESTING_COW);
2466                         btrfs_tree_unlock(eb);
2467                         free_extent_buffer(eb);
2468                         if (ret < 0)
2469                                 goto next;
2470                         /*
2471                          * We've just COWed this block, it should have updated
2472                          * the correct backref node entry.
2473                          */
2474                         ASSERT(node->eb == eb);
2475                 } else {
2476                         struct btrfs_ref ref = {
2477                                 .action = BTRFS_ADD_DELAYED_REF,
2478                                 .bytenr = node->eb->start,
2479                                 .num_bytes = blocksize,
2480                                 .parent = upper->eb->start,
2481                                 .owning_root = btrfs_header_owner(upper->eb),
2482                                 .ref_root = btrfs_header_owner(upper->eb),
2483                         };
2484
2485                         btrfs_set_node_blockptr(upper->eb, slot,
2486                                                 node->eb->start);
2487                         btrfs_set_node_ptr_generation(upper->eb, slot,
2488                                                       trans->transid);
2489                         btrfs_mark_buffer_dirty(trans, upper->eb);
2490
2491                         btrfs_init_tree_ref(&ref, node->level,
2492                                             btrfs_root_id(root), false);
2493                         ret = btrfs_inc_extent_ref(trans, &ref);
2494                         if (!ret)
2495                                 ret = btrfs_drop_subtree(trans, root, eb,
2496                                                          upper->eb);
2497                         if (ret)
2498                                 btrfs_abort_transaction(trans, ret);
2499                 }
2500 next:
2501                 if (!upper->pending)
2502                         btrfs_backref_drop_node_buffer(upper);
2503                 else
2504                         btrfs_backref_unlock_node_buffer(upper);
2505                 if (ret)
2506                         break;
2507         }
2508
2509         if (!ret && node->pending) {
2510                 btrfs_backref_drop_node_buffer(node);
2511                 list_move_tail(&node->list, &rc->backref_cache.changed);
2512                 node->pending = 0;
2513         }
2514
2515         path->lowest_level = 0;
2516
2517         /*
2518          * We should have allocated all of our space in the block rsv and thus
2519          * shouldn't ENOSPC.
2520          */
2521         ASSERT(ret != -ENOSPC);
2522         return ret;
2523 }
2524
2525 static int link_to_upper(struct btrfs_trans_handle *trans,
2526                          struct reloc_control *rc,
2527                          struct btrfs_backref_node *node,
2528                          struct btrfs_path *path)
2529 {
2530         struct btrfs_key key;
2531
2532         btrfs_node_key_to_cpu(node->eb, &key, 0);
2533         return do_relocation(trans, rc, node, &key, path, 0);
2534 }
2535
2536 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2537                                 struct reloc_control *rc,
2538                                 struct btrfs_path *path, int err)
2539 {
2540         LIST_HEAD(list);
2541         struct btrfs_backref_cache *cache = &rc->backref_cache;
2542         struct btrfs_backref_node *node;
2543         int level;
2544         int ret;
2545
2546         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2547                 while (!list_empty(&cache->pending[level])) {
2548                         node = list_entry(cache->pending[level].next,
2549                                           struct btrfs_backref_node, list);
2550                         list_move_tail(&node->list, &list);
2551                         BUG_ON(!node->pending);
2552
2553                         if (!err) {
2554                                 ret = link_to_upper(trans, rc, node, path);
2555                                 if (ret < 0)
2556                                         err = ret;
2557                         }
2558                 }
2559                 list_splice_init(&list, &cache->pending[level]);
2560         }
2561         return err;
2562 }
2563
2564 /*
2565  * mark a block and all blocks directly/indirectly reference the block
2566  * as processed.
2567  */
2568 static void update_processed_blocks(struct reloc_control *rc,
2569                                     struct btrfs_backref_node *node)
2570 {
2571         struct btrfs_backref_node *next = node;
2572         struct btrfs_backref_edge *edge;
2573         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2574         int index = 0;
2575
2576         while (next) {
2577                 cond_resched();
2578                 while (1) {
2579                         if (next->processed)
2580                                 break;
2581
2582                         mark_block_processed(rc, next);
2583
2584                         if (list_empty(&next->upper))
2585                                 break;
2586
2587                         edge = list_entry(next->upper.next,
2588                                         struct btrfs_backref_edge, list[LOWER]);
2589                         edges[index++] = edge;
2590                         next = edge->node[UPPER];
2591                 }
2592                 next = walk_down_backref(edges, &index);
2593         }
2594 }
2595
2596 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2597 {
2598         u32 blocksize = rc->extent_root->fs_info->nodesize;
2599
2600         if (test_range_bit(&rc->processed_blocks, bytenr,
2601                            bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2602                 return 1;
2603         return 0;
2604 }
2605
2606 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2607                               struct tree_block *block)
2608 {
2609         struct btrfs_tree_parent_check check = {
2610                 .level = block->level,
2611                 .owner_root = block->owner,
2612                 .transid = block->key.offset
2613         };
2614         struct extent_buffer *eb;
2615
2616         eb = read_tree_block(fs_info, block->bytenr, &check);
2617         if (IS_ERR(eb))
2618                 return PTR_ERR(eb);
2619         if (!extent_buffer_uptodate(eb)) {
2620                 free_extent_buffer(eb);
2621                 return -EIO;
2622         }
2623         if (block->level == 0)
2624                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2625         else
2626                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2627         free_extent_buffer(eb);
2628         block->key_ready = true;
2629         return 0;
2630 }
2631
2632 /*
2633  * helper function to relocate a tree block
2634  */
2635 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2636                                 struct reloc_control *rc,
2637                                 struct btrfs_backref_node *node,
2638                                 struct btrfs_key *key,
2639                                 struct btrfs_path *path)
2640 {
2641         struct btrfs_root *root;
2642         int ret = 0;
2643
2644         if (!node)
2645                 return 0;
2646
2647         /*
2648          * If we fail here we want to drop our backref_node because we are going
2649          * to start over and regenerate the tree for it.
2650          */
2651         ret = reserve_metadata_space(trans, rc, node);
2652         if (ret)
2653                 goto out;
2654
2655         BUG_ON(node->processed);
2656         root = select_one_root(node);
2657         if (IS_ERR(root)) {
2658                 ret = PTR_ERR(root);
2659
2660                 /* See explanation in select_one_root for the -EUCLEAN case. */
2661                 ASSERT(ret == -ENOENT);
2662                 if (ret == -ENOENT) {
2663                         ret = 0;
2664                         update_processed_blocks(rc, node);
2665                 }
2666                 goto out;
2667         }
2668
2669         if (root) {
2670                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2671                         /*
2672                          * This block was the root block of a root, and this is
2673                          * the first time we're processing the block and thus it
2674                          * should not have had the ->new_bytenr modified and
2675                          * should have not been included on the changed list.
2676                          *
2677                          * However in the case of corruption we could have
2678                          * multiple refs pointing to the same block improperly,
2679                          * and thus we would trip over these checks.  ASSERT()
2680                          * for the developer case, because it could indicate a
2681                          * bug in the backref code, however error out for a
2682                          * normal user in the case of corruption.
2683                          */
2684                         ASSERT(node->new_bytenr == 0);
2685                         ASSERT(list_empty(&node->list));
2686                         if (node->new_bytenr || !list_empty(&node->list)) {
2687                                 btrfs_err(root->fs_info,
2688                                   "bytenr %llu has improper references to it",
2689                                           node->bytenr);
2690                                 ret = -EUCLEAN;
2691                                 goto out;
2692                         }
2693                         ret = btrfs_record_root_in_trans(trans, root);
2694                         if (ret)
2695                                 goto out;
2696                         /*
2697                          * Another thread could have failed, need to check if we
2698                          * have reloc_root actually set.
2699                          */
2700                         if (!root->reloc_root) {
2701                                 ret = -ENOENT;
2702                                 goto out;
2703                         }
2704                         root = root->reloc_root;
2705                         node->new_bytenr = root->node->start;
2706                         btrfs_put_root(node->root);
2707                         node->root = btrfs_grab_root(root);
2708                         ASSERT(node->root);
2709                         list_add_tail(&node->list, &rc->backref_cache.changed);
2710                 } else {
2711                         path->lowest_level = node->level;
2712                         if (root == root->fs_info->chunk_root)
2713                                 btrfs_reserve_chunk_metadata(trans, false);
2714                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2715                         btrfs_release_path(path);
2716                         if (root == root->fs_info->chunk_root)
2717                                 btrfs_trans_release_chunk_metadata(trans);
2718                         if (ret > 0)
2719                                 ret = 0;
2720                 }
2721                 if (!ret)
2722                         update_processed_blocks(rc, node);
2723         } else {
2724                 ret = do_relocation(trans, rc, node, key, path, 1);
2725         }
2726 out:
2727         if (ret || node->level == 0 || node->cowonly)
2728                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2729         return ret;
2730 }
2731
2732 /*
2733  * relocate a list of blocks
2734  */
2735 static noinline_for_stack
2736 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2737                          struct reloc_control *rc, struct rb_root *blocks)
2738 {
2739         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2740         struct btrfs_backref_node *node;
2741         struct btrfs_path *path;
2742         struct tree_block *block;
2743         struct tree_block *next;
2744         int ret = 0;
2745
2746         path = btrfs_alloc_path();
2747         if (!path) {
2748                 ret = -ENOMEM;
2749                 goto out_free_blocks;
2750         }
2751
2752         /* Kick in readahead for tree blocks with missing keys */
2753         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2754                 if (!block->key_ready)
2755                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2756                                                    block->owner, 0,
2757                                                    block->level);
2758         }
2759
2760         /* Get first keys */
2761         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2762                 if (!block->key_ready) {
2763                         ret = get_tree_block_key(fs_info, block);
2764                         if (ret)
2765                                 goto out_free_path;
2766                 }
2767         }
2768
2769         /* Do tree relocation */
2770         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2771                 node = build_backref_tree(trans, rc, &block->key,
2772                                           block->level, block->bytenr);
2773                 if (IS_ERR(node)) {
2774                         ret = PTR_ERR(node);
2775                         goto out;
2776                 }
2777
2778                 ret = relocate_tree_block(trans, rc, node, &block->key,
2779                                           path);
2780                 if (ret < 0)
2781                         break;
2782         }
2783 out:
2784         ret = finish_pending_nodes(trans, rc, path, ret);
2785
2786 out_free_path:
2787         btrfs_free_path(path);
2788 out_free_blocks:
2789         free_block_list(blocks);
2790         return ret;
2791 }
2792
2793 static noinline_for_stack int prealloc_file_extent_cluster(
2794                                 struct btrfs_inode *inode,
2795                                 const struct file_extent_cluster *cluster)
2796 {
2797         u64 alloc_hint = 0;
2798         u64 start;
2799         u64 end;
2800         u64 offset = inode->index_cnt;
2801         u64 num_bytes;
2802         int nr;
2803         int ret = 0;
2804         u64 i_size = i_size_read(&inode->vfs_inode);
2805         u64 prealloc_start = cluster->start - offset;
2806         u64 prealloc_end = cluster->end - offset;
2807         u64 cur_offset = prealloc_start;
2808
2809         /*
2810          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2811          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2812          * btrfs_do_readpage() call of previously relocated file cluster.
2813          *
2814          * If the current cluster starts in the above range, btrfs_do_readpage()
2815          * will skip the read, and relocate_one_folio() will later writeback
2816          * the padding zeros as new data, causing data corruption.
2817          *
2818          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2819          */
2820         if (!PAGE_ALIGNED(i_size)) {
2821                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2822                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2823                 const u32 sectorsize = fs_info->sectorsize;
2824                 struct folio *folio;
2825
2826                 ASSERT(sectorsize < PAGE_SIZE);
2827                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2828
2829                 /*
2830                  * Subpage can't handle page with DIRTY but without UPTODATE
2831                  * bit as it can lead to the following deadlock:
2832                  *
2833                  * btrfs_read_folio()
2834                  * | Page already *locked*
2835                  * |- btrfs_lock_and_flush_ordered_range()
2836                  *    |- btrfs_start_ordered_extent()
2837                  *       |- extent_write_cache_pages()
2838                  *          |- lock_page()
2839                  *             We try to lock the page we already hold.
2840                  *
2841                  * Here we just writeback the whole data reloc inode, so that
2842                  * we will be ensured to have no dirty range in the page, and
2843                  * are safe to clear the uptodate bits.
2844                  *
2845                  * This shouldn't cause too much overhead, as we need to write
2846                  * the data back anyway.
2847                  */
2848                 ret = filemap_write_and_wait(mapping);
2849                 if (ret < 0)
2850                         return ret;
2851
2852                 clear_extent_bits(&inode->io_tree, i_size,
2853                                   round_up(i_size, PAGE_SIZE) - 1,
2854                                   EXTENT_UPTODATE);
2855                 folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2856                 /*
2857                  * If page is freed we don't need to do anything then, as we
2858                  * will re-read the whole page anyway.
2859                  */
2860                 if (!IS_ERR(folio)) {
2861                         btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2862                                         round_up(i_size, PAGE_SIZE) - i_size);
2863                         folio_unlock(folio);
2864                         folio_put(folio);
2865                 }
2866         }
2867
2868         BUG_ON(cluster->start != cluster->boundary[0]);
2869         ret = btrfs_alloc_data_chunk_ondemand(inode,
2870                                               prealloc_end + 1 - prealloc_start);
2871         if (ret)
2872                 return ret;
2873
2874         btrfs_inode_lock(inode, 0);
2875         for (nr = 0; nr < cluster->nr; nr++) {
2876                 struct extent_state *cached_state = NULL;
2877
2878                 start = cluster->boundary[nr] - offset;
2879                 if (nr + 1 < cluster->nr)
2880                         end = cluster->boundary[nr + 1] - 1 - offset;
2881                 else
2882                         end = cluster->end - offset;
2883
2884                 lock_extent(&inode->io_tree, start, end, &cached_state);
2885                 num_bytes = end + 1 - start;
2886                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2887                                                 num_bytes, num_bytes,
2888                                                 end + 1, &alloc_hint);
2889                 cur_offset = end + 1;
2890                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2891                 if (ret)
2892                         break;
2893         }
2894         btrfs_inode_unlock(inode, 0);
2895
2896         if (cur_offset < prealloc_end)
2897                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2898                                                prealloc_end + 1 - cur_offset);
2899         return ret;
2900 }
2901
2902 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2903                                 u64 start, u64 end, u64 block_start)
2904 {
2905         struct extent_map *em;
2906         struct extent_state *cached_state = NULL;
2907         int ret = 0;
2908
2909         em = alloc_extent_map();
2910         if (!em)
2911                 return -ENOMEM;
2912
2913         em->start = start;
2914         em->len = end + 1 - start;
2915         em->block_len = em->len;
2916         em->block_start = block_start;
2917         em->flags |= EXTENT_FLAG_PINNED;
2918
2919         lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2920         ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2921         unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2922         free_extent_map(em);
2923
2924         return ret;
2925 }
2926
2927 /*
2928  * Allow error injection to test balance/relocation cancellation
2929  */
2930 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2931 {
2932         return atomic_read(&fs_info->balance_cancel_req) ||
2933                 atomic_read(&fs_info->reloc_cancel_req) ||
2934                 fatal_signal_pending(current);
2935 }
2936 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2937
2938 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2939                                     int cluster_nr)
2940 {
2941         /* Last extent, use cluster end directly */
2942         if (cluster_nr >= cluster->nr - 1)
2943                 return cluster->end;
2944
2945         /* Use next boundary start*/
2946         return cluster->boundary[cluster_nr + 1] - 1;
2947 }
2948
2949 static int relocate_one_folio(struct inode *inode, struct file_ra_state *ra,
2950                               const struct file_extent_cluster *cluster,
2951                               int *cluster_nr, unsigned long index)
2952 {
2953         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2954         u64 offset = BTRFS_I(inode)->index_cnt;
2955         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2956         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2957         struct folio *folio;
2958         u64 folio_start;
2959         u64 folio_end;
2960         u64 cur;
2961         int ret;
2962
2963         ASSERT(index <= last_index);
2964         folio = filemap_lock_folio(inode->i_mapping, index);
2965         if (IS_ERR(folio)) {
2966                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2967                                           index, last_index + 1 - index);
2968                 folio = __filemap_get_folio(inode->i_mapping, index,
2969                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
2970                 if (IS_ERR(folio))
2971                         return PTR_ERR(folio);
2972         }
2973
2974         WARN_ON(folio_order(folio));
2975
2976         if (folio_test_readahead(folio))
2977                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2978                                            folio, index,
2979                                            last_index + 1 - index);
2980
2981         if (!folio_test_uptodate(folio)) {
2982                 btrfs_read_folio(NULL, folio);
2983                 folio_lock(folio);
2984                 if (!folio_test_uptodate(folio)) {
2985                         ret = -EIO;
2986                         goto release_folio;
2987                 }
2988         }
2989
2990         /*
2991          * We could have lost folio private when we dropped the lock to read the
2992          * folio above, make sure we set_page_extent_mapped here so we have any
2993          * of the subpage blocksize stuff we need in place.
2994          */
2995         ret = set_folio_extent_mapped(folio);
2996         if (ret < 0)
2997                 goto release_folio;
2998
2999         folio_start = folio_pos(folio);
3000         folio_end = folio_start + PAGE_SIZE - 1;
3001
3002         /*
3003          * Start from the cluster, as for subpage case, the cluster can start
3004          * inside the folio.
3005          */
3006         cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
3007         while (cur <= folio_end) {
3008                 struct extent_state *cached_state = NULL;
3009                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3010                 u64 extent_end = get_cluster_boundary_end(cluster,
3011                                                 *cluster_nr) - offset;
3012                 u64 clamped_start = max(folio_start, extent_start);
3013                 u64 clamped_end = min(folio_end, extent_end);
3014                 u32 clamped_len = clamped_end + 1 - clamped_start;
3015
3016                 /* Reserve metadata for this range */
3017                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3018                                                       clamped_len, clamped_len,
3019                                                       false);
3020                 if (ret)
3021                         goto release_folio;
3022
3023                 /* Mark the range delalloc and dirty for later writeback */
3024                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3025                             &cached_state);
3026                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3027                                                 clamped_end, 0, &cached_state);
3028                 if (ret) {
3029                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
3030                                          clamped_start, clamped_end,
3031                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
3032                                          &cached_state);
3033                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3034                                                         clamped_len, true);
3035                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3036                                                        clamped_len);
3037                         goto release_folio;
3038                 }
3039                 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
3040
3041                 /*
3042                  * Set the boundary if it's inside the folio.
3043                  * Data relocation requires the destination extents to have the
3044                  * same size as the source.
3045                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3046                  * with previous extent.
3047                  */
3048                 if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
3049                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3050                                                 offset;
3051                         u64 boundary_end = boundary_start +
3052                                            fs_info->sectorsize - 1;
3053
3054                         set_extent_bit(&BTRFS_I(inode)->io_tree,
3055                                        boundary_start, boundary_end,
3056                                        EXTENT_BOUNDARY, NULL);
3057                 }
3058                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059                               &cached_state);
3060                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3061                 cur += clamped_len;
3062
3063                 /* Crossed extent end, go to next extent */
3064                 if (cur >= extent_end) {
3065                         (*cluster_nr)++;
3066                         /* Just finished the last extent of the cluster, exit. */
3067                         if (*cluster_nr >= cluster->nr)
3068                                 break;
3069                 }
3070         }
3071         folio_unlock(folio);
3072         folio_put(folio);
3073
3074         balance_dirty_pages_ratelimited(inode->i_mapping);
3075         btrfs_throttle(fs_info);
3076         if (btrfs_should_cancel_balance(fs_info))
3077                 ret = -ECANCELED;
3078         return ret;
3079
3080 release_folio:
3081         folio_unlock(folio);
3082         folio_put(folio);
3083         return ret;
3084 }
3085
3086 static int relocate_file_extent_cluster(struct inode *inode,
3087                                         const struct file_extent_cluster *cluster)
3088 {
3089         u64 offset = BTRFS_I(inode)->index_cnt;
3090         unsigned long index;
3091         unsigned long last_index;
3092         struct file_ra_state *ra;
3093         int cluster_nr = 0;
3094         int ret = 0;
3095
3096         if (!cluster->nr)
3097                 return 0;
3098
3099         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3100         if (!ra)
3101                 return -ENOMEM;
3102
3103         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3104         if (ret)
3105                 goto out;
3106
3107         file_ra_state_init(ra, inode->i_mapping);
3108
3109         ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3110                                    cluster->end - offset, cluster->start);
3111         if (ret)
3112                 goto out;
3113
3114         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3115         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3116              index <= last_index && !ret; index++)
3117                 ret = relocate_one_folio(inode, ra, cluster, &cluster_nr, index);
3118         if (ret == 0)
3119                 WARN_ON(cluster_nr != cluster->nr);
3120 out:
3121         kfree(ra);
3122         return ret;
3123 }
3124
3125 static noinline_for_stack int relocate_data_extent(struct inode *inode,
3126                                 const struct btrfs_key *extent_key,
3127                                 struct file_extent_cluster *cluster)
3128 {
3129         int ret;
3130         struct btrfs_root *root = BTRFS_I(inode)->root;
3131
3132         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3133                 ret = relocate_file_extent_cluster(inode, cluster);
3134                 if (ret)
3135                         return ret;
3136                 cluster->nr = 0;
3137         }
3138
3139         /*
3140          * Under simple quotas, we set root->relocation_src_root when we find
3141          * the extent. If adjacent extents have different owners, we can't merge
3142          * them while relocating. Handle this by storing the owning root that
3143          * started a cluster and if we see an extent from a different root break
3144          * cluster formation (just like the above case of non-adjacent extents).
3145          *
3146          * Without simple quotas, relocation_src_root is always 0, so we should
3147          * never see a mismatch, and it should have no effect on relocation
3148          * clusters.
3149          */
3150         if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3151                 u64 tmp = root->relocation_src_root;
3152
3153                 /*
3154                  * root->relocation_src_root is the state that actually affects
3155                  * the preallocation we do here, so set it to the root owning
3156                  * the cluster we need to relocate.
3157                  */
3158                 root->relocation_src_root = cluster->owning_root;
3159                 ret = relocate_file_extent_cluster(inode, cluster);
3160                 if (ret)
3161                         return ret;
3162                 cluster->nr = 0;
3163                 /* And reset it back for the current extent's owning root. */
3164                 root->relocation_src_root = tmp;
3165         }
3166
3167         if (!cluster->nr) {
3168                 cluster->start = extent_key->objectid;
3169                 cluster->owning_root = root->relocation_src_root;
3170         }
3171         else
3172                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3173         cluster->end = extent_key->objectid + extent_key->offset - 1;
3174         cluster->boundary[cluster->nr] = extent_key->objectid;
3175         cluster->nr++;
3176
3177         if (cluster->nr >= MAX_EXTENTS) {
3178                 ret = relocate_file_extent_cluster(inode, cluster);
3179                 if (ret)
3180                         return ret;
3181                 cluster->nr = 0;
3182         }
3183         return 0;
3184 }
3185
3186 /*
3187  * helper to add a tree block to the list.
3188  * the major work is getting the generation and level of the block
3189  */
3190 static int add_tree_block(struct reloc_control *rc,
3191                           const struct btrfs_key *extent_key,
3192                           struct btrfs_path *path,
3193                           struct rb_root *blocks)
3194 {
3195         struct extent_buffer *eb;
3196         struct btrfs_extent_item *ei;
3197         struct btrfs_tree_block_info *bi;
3198         struct tree_block *block;
3199         struct rb_node *rb_node;
3200         u32 item_size;
3201         int level = -1;
3202         u64 generation;
3203         u64 owner = 0;
3204
3205         eb =  path->nodes[0];
3206         item_size = btrfs_item_size(eb, path->slots[0]);
3207
3208         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3209             item_size >= sizeof(*ei) + sizeof(*bi)) {
3210                 unsigned long ptr = 0, end;
3211
3212                 ei = btrfs_item_ptr(eb, path->slots[0],
3213                                 struct btrfs_extent_item);
3214                 end = (unsigned long)ei + item_size;
3215                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3216                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3217                         level = btrfs_tree_block_level(eb, bi);
3218                         ptr = (unsigned long)(bi + 1);
3219                 } else {
3220                         level = (int)extent_key->offset;
3221                         ptr = (unsigned long)(ei + 1);
3222                 }
3223                 generation = btrfs_extent_generation(eb, ei);
3224
3225                 /*
3226                  * We're reading random blocks without knowing their owner ahead
3227                  * of time.  This is ok most of the time, as all reloc roots and
3228                  * fs roots have the same lock type.  However normal trees do
3229                  * not, and the only way to know ahead of time is to read the
3230                  * inline ref offset.  We know it's an fs root if
3231                  *
3232                  * 1. There's more than one ref.
3233                  * 2. There's a SHARED_DATA_REF_KEY set.
3234                  * 3. FULL_BACKREF is set on the flags.
3235                  *
3236                  * Otherwise it's safe to assume that the ref offset == the
3237                  * owner of this block, so we can use that when calling
3238                  * read_tree_block.
3239                  */
3240                 if (btrfs_extent_refs(eb, ei) == 1 &&
3241                     !(btrfs_extent_flags(eb, ei) &
3242                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3243                     ptr < end) {
3244                         struct btrfs_extent_inline_ref *iref;
3245                         int type;
3246
3247                         iref = (struct btrfs_extent_inline_ref *)ptr;
3248                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3249                                                         BTRFS_REF_TYPE_BLOCK);
3250                         if (type == BTRFS_REF_TYPE_INVALID)
3251                                 return -EINVAL;
3252                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3253                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3254                 }
3255         } else {
3256                 btrfs_print_leaf(eb);
3257                 btrfs_err(rc->block_group->fs_info,
3258                           "unrecognized tree backref at tree block %llu slot %u",
3259                           eb->start, path->slots[0]);
3260                 btrfs_release_path(path);
3261                 return -EUCLEAN;
3262         }
3263
3264         btrfs_release_path(path);
3265
3266         BUG_ON(level == -1);
3267
3268         block = kmalloc(sizeof(*block), GFP_NOFS);
3269         if (!block)
3270                 return -ENOMEM;
3271
3272         block->bytenr = extent_key->objectid;
3273         block->key.objectid = rc->extent_root->fs_info->nodesize;
3274         block->key.offset = generation;
3275         block->level = level;
3276         block->key_ready = false;
3277         block->owner = owner;
3278
3279         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3280         if (rb_node)
3281                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3282                                     -EEXIST);
3283
3284         return 0;
3285 }
3286
3287 /*
3288  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3289  */
3290 static int __add_tree_block(struct reloc_control *rc,
3291                             u64 bytenr, u32 blocksize,
3292                             struct rb_root *blocks)
3293 {
3294         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3295         struct btrfs_path *path;
3296         struct btrfs_key key;
3297         int ret;
3298         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3299
3300         if (tree_block_processed(bytenr, rc))
3301                 return 0;
3302
3303         if (rb_simple_search(blocks, bytenr))
3304                 return 0;
3305
3306         path = btrfs_alloc_path();
3307         if (!path)
3308                 return -ENOMEM;
3309 again:
3310         key.objectid = bytenr;
3311         if (skinny) {
3312                 key.type = BTRFS_METADATA_ITEM_KEY;
3313                 key.offset = (u64)-1;
3314         } else {
3315                 key.type = BTRFS_EXTENT_ITEM_KEY;
3316                 key.offset = blocksize;
3317         }
3318
3319         path->search_commit_root = 1;
3320         path->skip_locking = 1;
3321         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3322         if (ret < 0)
3323                 goto out;
3324
3325         if (ret > 0 && skinny) {
3326                 if (path->slots[0]) {
3327                         path->slots[0]--;
3328                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3329                                               path->slots[0]);
3330                         if (key.objectid == bytenr &&
3331                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3332                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3333                               key.offset == blocksize)))
3334                                 ret = 0;
3335                 }
3336
3337                 if (ret) {
3338                         skinny = false;
3339                         btrfs_release_path(path);
3340                         goto again;
3341                 }
3342         }
3343         if (ret) {
3344                 ASSERT(ret == 1);
3345                 btrfs_print_leaf(path->nodes[0]);
3346                 btrfs_err(fs_info,
3347              "tree block extent item (%llu) is not found in extent tree",
3348                      bytenr);
3349                 WARN_ON(1);
3350                 ret = -EINVAL;
3351                 goto out;
3352         }
3353
3354         ret = add_tree_block(rc, &key, path, blocks);
3355 out:
3356         btrfs_free_path(path);
3357         return ret;
3358 }
3359
3360 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3361                                     struct btrfs_block_group *block_group,
3362                                     struct inode *inode,
3363                                     u64 ino)
3364 {
3365         struct btrfs_root *root = fs_info->tree_root;
3366         struct btrfs_trans_handle *trans;
3367         int ret = 0;
3368
3369         if (inode)
3370                 goto truncate;
3371
3372         inode = btrfs_iget(fs_info->sb, ino, root);
3373         if (IS_ERR(inode))
3374                 return -ENOENT;
3375
3376 truncate:
3377         ret = btrfs_check_trunc_cache_free_space(fs_info,
3378                                                  &fs_info->global_block_rsv);
3379         if (ret)
3380                 goto out;
3381
3382         trans = btrfs_join_transaction(root);
3383         if (IS_ERR(trans)) {
3384                 ret = PTR_ERR(trans);
3385                 goto out;
3386         }
3387
3388         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3389
3390         btrfs_end_transaction(trans);
3391         btrfs_btree_balance_dirty(fs_info);
3392 out:
3393         iput(inode);
3394         return ret;
3395 }
3396
3397 /*
3398  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3399  * cache inode, to avoid free space cache data extent blocking data relocation.
3400  */
3401 static int delete_v1_space_cache(struct extent_buffer *leaf,
3402                                  struct btrfs_block_group *block_group,
3403                                  u64 data_bytenr)
3404 {
3405         u64 space_cache_ino;
3406         struct btrfs_file_extent_item *ei;
3407         struct btrfs_key key;
3408         bool found = false;
3409         int i;
3410         int ret;
3411
3412         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3413                 return 0;
3414
3415         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3416                 u8 type;
3417
3418                 btrfs_item_key_to_cpu(leaf, &key, i);
3419                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3420                         continue;
3421                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3422                 type = btrfs_file_extent_type(leaf, ei);
3423
3424                 if ((type == BTRFS_FILE_EXTENT_REG ||
3425                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3426                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3427                         found = true;
3428                         space_cache_ino = key.objectid;
3429                         break;
3430                 }
3431         }
3432         if (!found)
3433                 return -ENOENT;
3434         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3435                                         space_cache_ino);
3436         return ret;
3437 }
3438
3439 /*
3440  * helper to find all tree blocks that reference a given data extent
3441  */
3442 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3443                                                   const struct btrfs_key *extent_key,
3444                                                   struct btrfs_path *path,
3445                                                   struct rb_root *blocks)
3446 {
3447         struct btrfs_backref_walk_ctx ctx = { 0 };
3448         struct ulist_iterator leaf_uiter;
3449         struct ulist_node *ref_node = NULL;
3450         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3451         int ret = 0;
3452
3453         btrfs_release_path(path);
3454
3455         ctx.bytenr = extent_key->objectid;
3456         ctx.skip_inode_ref_list = true;
3457         ctx.fs_info = rc->extent_root->fs_info;
3458
3459         ret = btrfs_find_all_leafs(&ctx);
3460         if (ret < 0)
3461                 return ret;
3462
3463         ULIST_ITER_INIT(&leaf_uiter);
3464         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3465                 struct btrfs_tree_parent_check check = { 0 };
3466                 struct extent_buffer *eb;
3467
3468                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3469                 if (IS_ERR(eb)) {
3470                         ret = PTR_ERR(eb);
3471                         break;
3472                 }
3473                 ret = delete_v1_space_cache(eb, rc->block_group,
3474                                             extent_key->objectid);
3475                 free_extent_buffer(eb);
3476                 if (ret < 0)
3477                         break;
3478                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3479                 if (ret < 0)
3480                         break;
3481         }
3482         if (ret < 0)
3483                 free_block_list(blocks);
3484         ulist_free(ctx.refs);
3485         return ret;
3486 }
3487
3488 /*
3489  * helper to find next unprocessed extent
3490  */
3491 static noinline_for_stack
3492 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3493                      struct btrfs_key *extent_key)
3494 {
3495         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3496         struct btrfs_key key;
3497         struct extent_buffer *leaf;
3498         u64 start, end, last;
3499         int ret;
3500
3501         last = rc->block_group->start + rc->block_group->length;
3502         while (1) {
3503                 bool block_found;
3504
3505                 cond_resched();
3506                 if (rc->search_start >= last) {
3507                         ret = 1;
3508                         break;
3509                 }
3510
3511                 key.objectid = rc->search_start;
3512                 key.type = BTRFS_EXTENT_ITEM_KEY;
3513                 key.offset = 0;
3514
3515                 path->search_commit_root = 1;
3516                 path->skip_locking = 1;
3517                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3518                                         0, 0);
3519                 if (ret < 0)
3520                         break;
3521 next:
3522                 leaf = path->nodes[0];
3523                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3524                         ret = btrfs_next_leaf(rc->extent_root, path);
3525                         if (ret != 0)
3526                                 break;
3527                         leaf = path->nodes[0];
3528                 }
3529
3530                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3531                 if (key.objectid >= last) {
3532                         ret = 1;
3533                         break;
3534                 }
3535
3536                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3537                     key.type != BTRFS_METADATA_ITEM_KEY) {
3538                         path->slots[0]++;
3539                         goto next;
3540                 }
3541
3542                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3543                     key.objectid + key.offset <= rc->search_start) {
3544                         path->slots[0]++;
3545                         goto next;
3546                 }
3547
3548                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3549                     key.objectid + fs_info->nodesize <=
3550                     rc->search_start) {
3551                         path->slots[0]++;
3552                         goto next;
3553                 }
3554
3555                 block_found = find_first_extent_bit(&rc->processed_blocks,
3556                                                     key.objectid, &start, &end,
3557                                                     EXTENT_DIRTY, NULL);
3558
3559                 if (block_found && start <= key.objectid) {
3560                         btrfs_release_path(path);
3561                         rc->search_start = end + 1;
3562                 } else {
3563                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3564                                 rc->search_start = key.objectid + key.offset;
3565                         else
3566                                 rc->search_start = key.objectid +
3567                                         fs_info->nodesize;
3568                         memcpy(extent_key, &key, sizeof(key));
3569                         return 0;
3570                 }
3571         }
3572         btrfs_release_path(path);
3573         return ret;
3574 }
3575
3576 static void set_reloc_control(struct reloc_control *rc)
3577 {
3578         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3579
3580         mutex_lock(&fs_info->reloc_mutex);
3581         fs_info->reloc_ctl = rc;
3582         mutex_unlock(&fs_info->reloc_mutex);
3583 }
3584
3585 static void unset_reloc_control(struct reloc_control *rc)
3586 {
3587         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3588
3589         mutex_lock(&fs_info->reloc_mutex);
3590         fs_info->reloc_ctl = NULL;
3591         mutex_unlock(&fs_info->reloc_mutex);
3592 }
3593
3594 static noinline_for_stack
3595 int prepare_to_relocate(struct reloc_control *rc)
3596 {
3597         struct btrfs_trans_handle *trans;
3598         int ret;
3599
3600         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3601                                               BTRFS_BLOCK_RSV_TEMP);
3602         if (!rc->block_rsv)
3603                 return -ENOMEM;
3604
3605         memset(&rc->cluster, 0, sizeof(rc->cluster));
3606         rc->search_start = rc->block_group->start;
3607         rc->extents_found = 0;
3608         rc->nodes_relocated = 0;
3609         rc->merging_rsv_size = 0;
3610         rc->reserved_bytes = 0;
3611         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3612                               RELOCATION_RESERVED_NODES;
3613         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3614                                      rc->block_rsv, rc->block_rsv->size,
3615                                      BTRFS_RESERVE_FLUSH_ALL);
3616         if (ret)
3617                 return ret;
3618
3619         rc->create_reloc_tree = true;
3620         set_reloc_control(rc);
3621
3622         trans = btrfs_join_transaction(rc->extent_root);
3623         if (IS_ERR(trans)) {
3624                 unset_reloc_control(rc);
3625                 /*
3626                  * extent tree is not a ref_cow tree and has no reloc_root to
3627                  * cleanup.  And callers are responsible to free the above
3628                  * block rsv.
3629                  */
3630                 return PTR_ERR(trans);
3631         }
3632
3633         ret = btrfs_commit_transaction(trans);
3634         if (ret)
3635                 unset_reloc_control(rc);
3636
3637         return ret;
3638 }
3639
3640 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3641 {
3642         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3643         struct rb_root blocks = RB_ROOT;
3644         struct btrfs_key key;
3645         struct btrfs_trans_handle *trans = NULL;
3646         struct btrfs_path *path;
3647         struct btrfs_extent_item *ei;
3648         u64 flags;
3649         int ret;
3650         int err = 0;
3651         int progress = 0;
3652
3653         path = btrfs_alloc_path();
3654         if (!path)
3655                 return -ENOMEM;
3656         path->reada = READA_FORWARD;
3657
3658         ret = prepare_to_relocate(rc);
3659         if (ret) {
3660                 err = ret;
3661                 goto out_free;
3662         }
3663
3664         while (1) {
3665                 rc->reserved_bytes = 0;
3666                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3667                                              rc->block_rsv->size,
3668                                              BTRFS_RESERVE_FLUSH_ALL);
3669                 if (ret) {
3670                         err = ret;
3671                         break;
3672                 }
3673                 progress++;
3674                 trans = btrfs_start_transaction(rc->extent_root, 0);
3675                 if (IS_ERR(trans)) {
3676                         err = PTR_ERR(trans);
3677                         trans = NULL;
3678                         break;
3679                 }
3680 restart:
3681                 if (update_backref_cache(trans, &rc->backref_cache)) {
3682                         btrfs_end_transaction(trans);
3683                         trans = NULL;
3684                         continue;
3685                 }
3686
3687                 ret = find_next_extent(rc, path, &key);
3688                 if (ret < 0)
3689                         err = ret;
3690                 if (ret != 0)
3691                         break;
3692
3693                 rc->extents_found++;
3694
3695                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3696                                     struct btrfs_extent_item);
3697                 flags = btrfs_extent_flags(path->nodes[0], ei);
3698
3699                 /*
3700                  * If we are relocating a simple quota owned extent item, we
3701                  * need to note the owner on the reloc data root so that when
3702                  * we allocate the replacement item, we can attribute it to the
3703                  * correct eventual owner (rather than the reloc data root).
3704                  */
3705                 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3706                         struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3707                         u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3708                                                                  path->nodes[0],
3709                                                                  path->slots[0]);
3710
3711                         root->relocation_src_root = owning_root_id;
3712                 }
3713
3714                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3715                         ret = add_tree_block(rc, &key, path, &blocks);
3716                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3717                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3718                         ret = add_data_references(rc, &key, path, &blocks);
3719                 } else {
3720                         btrfs_release_path(path);
3721                         ret = 0;
3722                 }
3723                 if (ret < 0) {
3724                         err = ret;
3725                         break;
3726                 }
3727
3728                 if (!RB_EMPTY_ROOT(&blocks)) {
3729                         ret = relocate_tree_blocks(trans, rc, &blocks);
3730                         if (ret < 0) {
3731                                 if (ret != -EAGAIN) {
3732                                         err = ret;
3733                                         break;
3734                                 }
3735                                 rc->extents_found--;
3736                                 rc->search_start = key.objectid;
3737                         }
3738                 }
3739
3740                 btrfs_end_transaction_throttle(trans);
3741                 btrfs_btree_balance_dirty(fs_info);
3742                 trans = NULL;
3743
3744                 if (rc->stage == MOVE_DATA_EXTENTS &&
3745                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3746                         rc->found_file_extent = true;
3747                         ret = relocate_data_extent(rc->data_inode,
3748                                                    &key, &rc->cluster);
3749                         if (ret < 0) {
3750                                 err = ret;
3751                                 break;
3752                         }
3753                 }
3754                 if (btrfs_should_cancel_balance(fs_info)) {
3755                         err = -ECANCELED;
3756                         break;
3757                 }
3758         }
3759         if (trans && progress && err == -ENOSPC) {
3760                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3761                 if (ret == 1) {
3762                         err = 0;
3763                         progress = 0;
3764                         goto restart;
3765                 }
3766         }
3767
3768         btrfs_release_path(path);
3769         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3770
3771         if (trans) {
3772                 btrfs_end_transaction_throttle(trans);
3773                 btrfs_btree_balance_dirty(fs_info);
3774         }
3775
3776         if (!err) {
3777                 ret = relocate_file_extent_cluster(rc->data_inode,
3778                                                    &rc->cluster);
3779                 if (ret < 0)
3780                         err = ret;
3781         }
3782
3783         rc->create_reloc_tree = false;
3784         set_reloc_control(rc);
3785
3786         btrfs_backref_release_cache(&rc->backref_cache);
3787         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3788
3789         /*
3790          * Even in the case when the relocation is cancelled, we should all go
3791          * through prepare_to_merge() and merge_reloc_roots().
3792          *
3793          * For error (including cancelled balance), prepare_to_merge() will
3794          * mark all reloc trees orphan, then queue them for cleanup in
3795          * merge_reloc_roots()
3796          */
3797         err = prepare_to_merge(rc, err);
3798
3799         merge_reloc_roots(rc);
3800
3801         rc->merge_reloc_tree = false;
3802         unset_reloc_control(rc);
3803         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3804
3805         /* get rid of pinned extents */
3806         trans = btrfs_join_transaction(rc->extent_root);
3807         if (IS_ERR(trans)) {
3808                 err = PTR_ERR(trans);
3809                 goto out_free;
3810         }
3811         ret = btrfs_commit_transaction(trans);
3812         if (ret && !err)
3813                 err = ret;
3814 out_free:
3815         ret = clean_dirty_subvols(rc);
3816         if (ret < 0 && !err)
3817                 err = ret;
3818         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3819         btrfs_free_path(path);
3820         return err;
3821 }
3822
3823 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3824                                  struct btrfs_root *root, u64 objectid)
3825 {
3826         struct btrfs_path *path;
3827         struct btrfs_inode_item *item;
3828         struct extent_buffer *leaf;
3829         int ret;
3830
3831         path = btrfs_alloc_path();
3832         if (!path)
3833                 return -ENOMEM;
3834
3835         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3836         if (ret)
3837                 goto out;
3838
3839         leaf = path->nodes[0];
3840         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3841         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3842         btrfs_set_inode_generation(leaf, item, 1);
3843         btrfs_set_inode_size(leaf, item, 0);
3844         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3845         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3846                                           BTRFS_INODE_PREALLOC);
3847         btrfs_mark_buffer_dirty(trans, leaf);
3848 out:
3849         btrfs_free_path(path);
3850         return ret;
3851 }
3852
3853 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3854                                 struct btrfs_root *root, u64 objectid)
3855 {
3856         struct btrfs_path *path;
3857         struct btrfs_key key;
3858         int ret = 0;
3859
3860         path = btrfs_alloc_path();
3861         if (!path) {
3862                 ret = -ENOMEM;
3863                 goto out;
3864         }
3865
3866         key.objectid = objectid;
3867         key.type = BTRFS_INODE_ITEM_KEY;
3868         key.offset = 0;
3869         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3870         if (ret) {
3871                 if (ret > 0)
3872                         ret = -ENOENT;
3873                 goto out;
3874         }
3875         ret = btrfs_del_item(trans, root, path);
3876 out:
3877         if (ret)
3878                 btrfs_abort_transaction(trans, ret);
3879         btrfs_free_path(path);
3880 }
3881
3882 /*
3883  * helper to create inode for data relocation.
3884  * the inode is in data relocation tree and its link count is 0
3885  */
3886 static noinline_for_stack struct inode *create_reloc_inode(
3887                                         struct btrfs_fs_info *fs_info,
3888                                         const struct btrfs_block_group *group)
3889 {
3890         struct inode *inode = NULL;
3891         struct btrfs_trans_handle *trans;
3892         struct btrfs_root *root;
3893         u64 objectid;
3894         int ret = 0;
3895
3896         root = btrfs_grab_root(fs_info->data_reloc_root);
3897         trans = btrfs_start_transaction(root, 6);
3898         if (IS_ERR(trans)) {
3899                 btrfs_put_root(root);
3900                 return ERR_CAST(trans);
3901         }
3902
3903         ret = btrfs_get_free_objectid(root, &objectid);
3904         if (ret)
3905                 goto out;
3906
3907         ret = __insert_orphan_inode(trans, root, objectid);
3908         if (ret)
3909                 goto out;
3910
3911         inode = btrfs_iget(fs_info->sb, objectid, root);
3912         if (IS_ERR(inode)) {
3913                 delete_orphan_inode(trans, root, objectid);
3914                 ret = PTR_ERR(inode);
3915                 inode = NULL;
3916                 goto out;
3917         }
3918         BTRFS_I(inode)->index_cnt = group->start;
3919
3920         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3921 out:
3922         btrfs_put_root(root);
3923         btrfs_end_transaction(trans);
3924         btrfs_btree_balance_dirty(fs_info);
3925         if (ret) {
3926                 iput(inode);
3927                 inode = ERR_PTR(ret);
3928         }
3929         return inode;
3930 }
3931
3932 /*
3933  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3934  * has been requested meanwhile and don't start in that case.
3935  *
3936  * Return:
3937  *   0             success
3938  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3939  *   -ECANCELED    cancellation request was set before the operation started
3940  */
3941 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3942 {
3943         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3944                 /* This should not happen */
3945                 btrfs_err(fs_info, "reloc already running, cannot start");
3946                 return -EINPROGRESS;
3947         }
3948
3949         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3950                 btrfs_info(fs_info, "chunk relocation canceled on start");
3951                 /*
3952                  * On cancel, clear all requests but let the caller mark
3953                  * the end after cleanup operations.
3954                  */
3955                 atomic_set(&fs_info->reloc_cancel_req, 0);
3956                 return -ECANCELED;
3957         }
3958         return 0;
3959 }
3960
3961 /*
3962  * Mark end of chunk relocation that is cancellable and wake any waiters.
3963  */
3964 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3965 {
3966         /* Requested after start, clear bit first so any waiters can continue */
3967         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3968                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3969         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3970         atomic_set(&fs_info->reloc_cancel_req, 0);
3971 }
3972
3973 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3974 {
3975         struct reloc_control *rc;
3976
3977         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3978         if (!rc)
3979                 return NULL;
3980
3981         INIT_LIST_HEAD(&rc->reloc_roots);
3982         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3983         btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3984         rc->reloc_root_tree.rb_root = RB_ROOT;
3985         spin_lock_init(&rc->reloc_root_tree.lock);
3986         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3987         return rc;
3988 }
3989
3990 static void free_reloc_control(struct reloc_control *rc)
3991 {
3992         struct mapping_node *node, *tmp;
3993
3994         free_reloc_roots(&rc->reloc_roots);
3995         rbtree_postorder_for_each_entry_safe(node, tmp,
3996                         &rc->reloc_root_tree.rb_root, rb_node)
3997                 kfree(node);
3998
3999         kfree(rc);
4000 }
4001
4002 /*
4003  * Print the block group being relocated
4004  */
4005 static void describe_relocation(struct btrfs_fs_info *fs_info,
4006                                 struct btrfs_block_group *block_group)
4007 {
4008         char buf[128] = {'\0'};
4009
4010         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4011
4012         btrfs_info(fs_info,
4013                    "relocating block group %llu flags %s",
4014                    block_group->start, buf);
4015 }
4016
4017 static const char *stage_to_string(enum reloc_stage stage)
4018 {
4019         if (stage == MOVE_DATA_EXTENTS)
4020                 return "move data extents";
4021         if (stage == UPDATE_DATA_PTRS)
4022                 return "update data pointers";
4023         return "unknown";
4024 }
4025
4026 /*
4027  * function to relocate all extents in a block group.
4028  */
4029 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4030 {
4031         struct btrfs_block_group *bg;
4032         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4033         struct reloc_control *rc;
4034         struct inode *inode;
4035         struct btrfs_path *path;
4036         int ret;
4037         int rw = 0;
4038         int err = 0;
4039
4040         /*
4041          * This only gets set if we had a half-deleted snapshot on mount.  We
4042          * cannot allow relocation to start while we're still trying to clean up
4043          * these pending deletions.
4044          */
4045         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4046         if (ret)
4047                 return ret;
4048
4049         /* We may have been woken up by close_ctree, so bail if we're closing. */
4050         if (btrfs_fs_closing(fs_info))
4051                 return -EINTR;
4052
4053         bg = btrfs_lookup_block_group(fs_info, group_start);
4054         if (!bg)
4055                 return -ENOENT;
4056
4057         /*
4058          * Relocation of a data block group creates ordered extents.  Without
4059          * sb_start_write(), we can freeze the filesystem while unfinished
4060          * ordered extents are left. Such ordered extents can cause a deadlock
4061          * e.g. when syncfs() is waiting for their completion but they can't
4062          * finish because they block when joining a transaction, due to the
4063          * fact that the freeze locks are being held in write mode.
4064          */
4065         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4066                 ASSERT(sb_write_started(fs_info->sb));
4067
4068         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4069                 btrfs_put_block_group(bg);
4070                 return -ETXTBSY;
4071         }
4072
4073         rc = alloc_reloc_control(fs_info);
4074         if (!rc) {
4075                 btrfs_put_block_group(bg);
4076                 return -ENOMEM;
4077         }
4078
4079         ret = reloc_chunk_start(fs_info);
4080         if (ret < 0) {
4081                 err = ret;
4082                 goto out_put_bg;
4083         }
4084
4085         rc->extent_root = extent_root;
4086         rc->block_group = bg;
4087
4088         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4089         if (ret) {
4090                 err = ret;
4091                 goto out;
4092         }
4093         rw = 1;
4094
4095         path = btrfs_alloc_path();
4096         if (!path) {
4097                 err = -ENOMEM;
4098                 goto out;
4099         }
4100
4101         inode = lookup_free_space_inode(rc->block_group, path);
4102         btrfs_free_path(path);
4103
4104         if (!IS_ERR(inode))
4105                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4106         else
4107                 ret = PTR_ERR(inode);
4108
4109         if (ret && ret != -ENOENT) {
4110                 err = ret;
4111                 goto out;
4112         }
4113
4114         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4115         if (IS_ERR(rc->data_inode)) {
4116                 err = PTR_ERR(rc->data_inode);
4117                 rc->data_inode = NULL;
4118                 goto out;
4119         }
4120
4121         describe_relocation(fs_info, rc->block_group);
4122
4123         btrfs_wait_block_group_reservations(rc->block_group);
4124         btrfs_wait_nocow_writers(rc->block_group);
4125         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4126                                  rc->block_group->start,
4127                                  rc->block_group->length);
4128
4129         ret = btrfs_zone_finish(rc->block_group);
4130         WARN_ON(ret && ret != -EAGAIN);
4131
4132         while (1) {
4133                 enum reloc_stage finishes_stage;
4134
4135                 mutex_lock(&fs_info->cleaner_mutex);
4136                 ret = relocate_block_group(rc);
4137                 mutex_unlock(&fs_info->cleaner_mutex);
4138                 if (ret < 0)
4139                         err = ret;
4140
4141                 finishes_stage = rc->stage;
4142                 /*
4143                  * We may have gotten ENOSPC after we already dirtied some
4144                  * extents.  If writeout happens while we're relocating a
4145                  * different block group we could end up hitting the
4146                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4147                  * btrfs_reloc_cow_block.  Make sure we write everything out
4148                  * properly so we don't trip over this problem, and then break
4149                  * out of the loop if we hit an error.
4150                  */
4151                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4152                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4153                                                        (u64)-1);
4154                         if (ret)
4155                                 err = ret;
4156                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4157                                                  0, -1);
4158                         rc->stage = UPDATE_DATA_PTRS;
4159                 }
4160
4161                 if (err < 0)
4162                         goto out;
4163
4164                 if (rc->extents_found == 0)
4165                         break;
4166
4167                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4168                            rc->extents_found, stage_to_string(finishes_stage));
4169         }
4170
4171         WARN_ON(rc->block_group->pinned > 0);
4172         WARN_ON(rc->block_group->reserved > 0);
4173         WARN_ON(rc->block_group->used > 0);
4174 out:
4175         if (err && rw)
4176                 btrfs_dec_block_group_ro(rc->block_group);
4177         iput(rc->data_inode);
4178 out_put_bg:
4179         btrfs_put_block_group(bg);
4180         reloc_chunk_end(fs_info);
4181         free_reloc_control(rc);
4182         return err;
4183 }
4184
4185 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4186 {
4187         struct btrfs_fs_info *fs_info = root->fs_info;
4188         struct btrfs_trans_handle *trans;
4189         int ret, err;
4190
4191         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4192         if (IS_ERR(trans))
4193                 return PTR_ERR(trans);
4194
4195         memset(&root->root_item.drop_progress, 0,
4196                 sizeof(root->root_item.drop_progress));
4197         btrfs_set_root_drop_level(&root->root_item, 0);
4198         btrfs_set_root_refs(&root->root_item, 0);
4199         ret = btrfs_update_root(trans, fs_info->tree_root,
4200                                 &root->root_key, &root->root_item);
4201
4202         err = btrfs_end_transaction(trans);
4203         if (err)
4204                 return err;
4205         return ret;
4206 }
4207
4208 /*
4209  * recover relocation interrupted by system crash.
4210  *
4211  * this function resumes merging reloc trees with corresponding fs trees.
4212  * this is important for keeping the sharing of tree blocks
4213  */
4214 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4215 {
4216         LIST_HEAD(reloc_roots);
4217         struct btrfs_key key;
4218         struct btrfs_root *fs_root;
4219         struct btrfs_root *reloc_root;
4220         struct btrfs_path *path;
4221         struct extent_buffer *leaf;
4222         struct reloc_control *rc = NULL;
4223         struct btrfs_trans_handle *trans;
4224         int ret;
4225         int err = 0;
4226
4227         path = btrfs_alloc_path();
4228         if (!path)
4229                 return -ENOMEM;
4230         path->reada = READA_BACK;
4231
4232         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4233         key.type = BTRFS_ROOT_ITEM_KEY;
4234         key.offset = (u64)-1;
4235
4236         while (1) {
4237                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4238                                         path, 0, 0);
4239                 if (ret < 0) {
4240                         err = ret;
4241                         goto out;
4242                 }
4243                 if (ret > 0) {
4244                         if (path->slots[0] == 0)
4245                                 break;
4246                         path->slots[0]--;
4247                 }
4248                 leaf = path->nodes[0];
4249                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4250                 btrfs_release_path(path);
4251
4252                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4253                     key.type != BTRFS_ROOT_ITEM_KEY)
4254                         break;
4255
4256                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4257                 if (IS_ERR(reloc_root)) {
4258                         err = PTR_ERR(reloc_root);
4259                         goto out;
4260                 }
4261
4262                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4263                 list_add(&reloc_root->root_list, &reloc_roots);
4264
4265                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4266                         fs_root = btrfs_get_fs_root(fs_info,
4267                                         reloc_root->root_key.offset, false);
4268                         if (IS_ERR(fs_root)) {
4269                                 ret = PTR_ERR(fs_root);
4270                                 if (ret != -ENOENT) {
4271                                         err = ret;
4272                                         goto out;
4273                                 }
4274                                 ret = mark_garbage_root(reloc_root);
4275                                 if (ret < 0) {
4276                                         err = ret;
4277                                         goto out;
4278                                 }
4279                         } else {
4280                                 btrfs_put_root(fs_root);
4281                         }
4282                 }
4283
4284                 if (key.offset == 0)
4285                         break;
4286
4287                 key.offset--;
4288         }
4289         btrfs_release_path(path);
4290
4291         if (list_empty(&reloc_roots))
4292                 goto out;
4293
4294         rc = alloc_reloc_control(fs_info);
4295         if (!rc) {
4296                 err = -ENOMEM;
4297                 goto out;
4298         }
4299
4300         ret = reloc_chunk_start(fs_info);
4301         if (ret < 0) {
4302                 err = ret;
4303                 goto out_end;
4304         }
4305
4306         rc->extent_root = btrfs_extent_root(fs_info, 0);
4307
4308         set_reloc_control(rc);
4309
4310         trans = btrfs_join_transaction(rc->extent_root);
4311         if (IS_ERR(trans)) {
4312                 err = PTR_ERR(trans);
4313                 goto out_unset;
4314         }
4315
4316         rc->merge_reloc_tree = true;
4317
4318         while (!list_empty(&reloc_roots)) {
4319                 reloc_root = list_entry(reloc_roots.next,
4320                                         struct btrfs_root, root_list);
4321                 list_del(&reloc_root->root_list);
4322
4323                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4324                         list_add_tail(&reloc_root->root_list,
4325                                       &rc->reloc_roots);
4326                         continue;
4327                 }
4328
4329                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4330                                             false);
4331                 if (IS_ERR(fs_root)) {
4332                         err = PTR_ERR(fs_root);
4333                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4334                         btrfs_end_transaction(trans);
4335                         goto out_unset;
4336                 }
4337
4338                 err = __add_reloc_root(reloc_root);
4339                 ASSERT(err != -EEXIST);
4340                 if (err) {
4341                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4342                         btrfs_put_root(fs_root);
4343                         btrfs_end_transaction(trans);
4344                         goto out_unset;
4345                 }
4346                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4347                 btrfs_put_root(fs_root);
4348         }
4349
4350         err = btrfs_commit_transaction(trans);
4351         if (err)
4352                 goto out_unset;
4353
4354         merge_reloc_roots(rc);
4355
4356         unset_reloc_control(rc);
4357
4358         trans = btrfs_join_transaction(rc->extent_root);
4359         if (IS_ERR(trans)) {
4360                 err = PTR_ERR(trans);
4361                 goto out_clean;
4362         }
4363         err = btrfs_commit_transaction(trans);
4364 out_clean:
4365         ret = clean_dirty_subvols(rc);
4366         if (ret < 0 && !err)
4367                 err = ret;
4368 out_unset:
4369         unset_reloc_control(rc);
4370 out_end:
4371         reloc_chunk_end(fs_info);
4372         free_reloc_control(rc);
4373 out:
4374         free_reloc_roots(&reloc_roots);
4375
4376         btrfs_free_path(path);
4377
4378         if (err == 0) {
4379                 /* cleanup orphan inode in data relocation tree */
4380                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4381                 ASSERT(fs_root);
4382                 err = btrfs_orphan_cleanup(fs_root);
4383                 btrfs_put_root(fs_root);
4384         }
4385         return err;
4386 }
4387
4388 /*
4389  * helper to add ordered checksum for data relocation.
4390  *
4391  * cloning checksum properly handles the nodatasum extents.
4392  * it also saves CPU time to re-calculate the checksum.
4393  */
4394 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4395 {
4396         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4397         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4398         u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4399         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4400         LIST_HEAD(list);
4401         int ret;
4402
4403         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4404                                       disk_bytenr + ordered->num_bytes - 1,
4405                                       &list, false);
4406         if (ret < 0) {
4407                 btrfs_mark_ordered_extent_error(ordered);
4408                 return ret;
4409         }
4410
4411         while (!list_empty(&list)) {
4412                 struct btrfs_ordered_sum *sums =
4413                         list_entry(list.next, struct btrfs_ordered_sum, list);
4414
4415                 list_del_init(&sums->list);
4416
4417                 /*
4418                  * We need to offset the new_bytenr based on where the csum is.
4419                  * We need to do this because we will read in entire prealloc
4420                  * extents but we may have written to say the middle of the
4421                  * prealloc extent, so we need to make sure the csum goes with
4422                  * the right disk offset.
4423                  *
4424                  * We can do this because the data reloc inode refers strictly
4425                  * to the on disk bytes, so we don't have to worry about
4426                  * disk_len vs real len like with real inodes since it's all
4427                  * disk length.
4428                  */
4429                 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4430                 btrfs_add_ordered_sum(ordered, sums);
4431         }
4432
4433         return 0;
4434 }
4435
4436 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4437                           struct btrfs_root *root,
4438                           const struct extent_buffer *buf,
4439                           struct extent_buffer *cow)
4440 {
4441         struct btrfs_fs_info *fs_info = root->fs_info;
4442         struct reloc_control *rc;
4443         struct btrfs_backref_node *node;
4444         int first_cow = 0;
4445         int level;
4446         int ret = 0;
4447
4448         rc = fs_info->reloc_ctl;
4449         if (!rc)
4450                 return 0;
4451
4452         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4453
4454         level = btrfs_header_level(buf);
4455         if (btrfs_header_generation(buf) <=
4456             btrfs_root_last_snapshot(&root->root_item))
4457                 first_cow = 1;
4458
4459         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4460                 WARN_ON(!first_cow && level == 0);
4461
4462                 node = rc->backref_cache.path[level];
4463                 BUG_ON(node->bytenr != buf->start &&
4464                        node->new_bytenr != buf->start);
4465
4466                 btrfs_backref_drop_node_buffer(node);
4467                 atomic_inc(&cow->refs);
4468                 node->eb = cow;
4469                 node->new_bytenr = cow->start;
4470
4471                 if (!node->pending) {
4472                         list_move_tail(&node->list,
4473                                        &rc->backref_cache.pending[level]);
4474                         node->pending = 1;
4475                 }
4476
4477                 if (first_cow)
4478                         mark_block_processed(rc, node);
4479
4480                 if (first_cow && level > 0)
4481                         rc->nodes_relocated += buf->len;
4482         }
4483
4484         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4485                 ret = replace_file_extents(trans, rc, root, cow);
4486         return ret;
4487 }
4488
4489 /*
4490  * called before creating snapshot. it calculates metadata reservation
4491  * required for relocating tree blocks in the snapshot
4492  */
4493 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4494                               u64 *bytes_to_reserve)
4495 {
4496         struct btrfs_root *root = pending->root;
4497         struct reloc_control *rc = root->fs_info->reloc_ctl;
4498
4499         if (!rc || !have_reloc_root(root))
4500                 return;
4501
4502         if (!rc->merge_reloc_tree)
4503                 return;
4504
4505         root = root->reloc_root;
4506         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4507         /*
4508          * relocation is in the stage of merging trees. the space
4509          * used by merging a reloc tree is twice the size of
4510          * relocated tree nodes in the worst case. half for cowing
4511          * the reloc tree, half for cowing the fs tree. the space
4512          * used by cowing the reloc tree will be freed after the
4513          * tree is dropped. if we create snapshot, cowing the fs
4514          * tree may use more space than it frees. so we need
4515          * reserve extra space.
4516          */
4517         *bytes_to_reserve += rc->nodes_relocated;
4518 }
4519
4520 /*
4521  * called after snapshot is created. migrate block reservation
4522  * and create reloc root for the newly created snapshot
4523  *
4524  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4525  * references held on the reloc_root, one for root->reloc_root and one for
4526  * rc->reloc_roots.
4527  */
4528 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4529                                struct btrfs_pending_snapshot *pending)
4530 {
4531         struct btrfs_root *root = pending->root;
4532         struct btrfs_root *reloc_root;
4533         struct btrfs_root *new_root;
4534         struct reloc_control *rc = root->fs_info->reloc_ctl;
4535         int ret;
4536
4537         if (!rc || !have_reloc_root(root))
4538                 return 0;
4539
4540         rc = root->fs_info->reloc_ctl;
4541         rc->merging_rsv_size += rc->nodes_relocated;
4542
4543         if (rc->merge_reloc_tree) {
4544                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4545                                               rc->block_rsv,
4546                                               rc->nodes_relocated, true);
4547                 if (ret)
4548                         return ret;
4549         }
4550
4551         new_root = pending->snap;
4552         reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4553         if (IS_ERR(reloc_root))
4554                 return PTR_ERR(reloc_root);
4555
4556         ret = __add_reloc_root(reloc_root);
4557         ASSERT(ret != -EEXIST);
4558         if (ret) {
4559                 /* Pairs with create_reloc_root */
4560                 btrfs_put_root(reloc_root);
4561                 return ret;
4562         }
4563         new_root->reloc_root = btrfs_grab_root(reloc_root);
4564
4565         if (rc->create_reloc_tree)
4566                 ret = clone_backref_node(trans, rc, root, reloc_root);
4567         return ret;
4568 }
4569
4570 /*
4571  * Get the current bytenr for the block group which is being relocated.
4572  *
4573  * Return U64_MAX if no running relocation.
4574  */
4575 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4576 {
4577         u64 logical = U64_MAX;
4578
4579         lockdep_assert_held(&fs_info->reloc_mutex);
4580
4581         if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4582                 logical = fs_info->reloc_ctl->block_group->start;
4583         return logical;
4584 }
This page took 0.363741 seconds and 4 git commands to generate.