]> Git Repo - linux.git/blob - fs/btrfs/relocation.c
Linux 6.14-rc3
[linux.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  *              Before          |               After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents       | BG A: deleted
54  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87
88 #define RELOCATION_RESERVED_NODES       256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93         struct {
94                 struct rb_node rb_node;
95                 u64 bytenr;
96         }; /* Use rb_simle_node for search/insert */
97         void *data;
98 };
99
100 struct mapping_tree {
101         struct rb_root rb_root;
102         spinlock_t lock;
103 };
104
105 /*
106  * present a tree block to process
107  */
108 struct tree_block {
109         struct {
110                 struct rb_node rb_node;
111                 u64 bytenr;
112         }; /* Use rb_simple_node for search/insert */
113         u64 owner;
114         struct btrfs_key key;
115         u8 level;
116         bool key_ready;
117 };
118
119 #define MAX_EXTENTS 128
120
121 struct file_extent_cluster {
122         u64 start;
123         u64 end;
124         u64 boundary[MAX_EXTENTS];
125         unsigned int nr;
126         u64 owning_root;
127 };
128
129 /* Stages of data relocation. */
130 enum reloc_stage {
131         MOVE_DATA_EXTENTS,
132         UPDATE_DATA_PTRS
133 };
134
135 struct reloc_control {
136         /* block group to relocate */
137         struct btrfs_block_group *block_group;
138         /* extent tree */
139         struct btrfs_root *extent_root;
140         /* inode for moving data */
141         struct inode *data_inode;
142
143         struct btrfs_block_rsv *block_rsv;
144
145         struct btrfs_backref_cache backref_cache;
146
147         struct file_extent_cluster cluster;
148         /* tree blocks have been processed */
149         struct extent_io_tree processed_blocks;
150         /* map start of tree root to corresponding reloc tree */
151         struct mapping_tree reloc_root_tree;
152         /* list of reloc trees */
153         struct list_head reloc_roots;
154         /* list of subvolume trees that get relocated */
155         struct list_head dirty_subvol_roots;
156         /* size of metadata reservation for merging reloc trees */
157         u64 merging_rsv_size;
158         /* size of relocated tree nodes */
159         u64 nodes_relocated;
160         /* reserved size for block group relocation*/
161         u64 reserved_bytes;
162
163         u64 search_start;
164         u64 extents_found;
165
166         enum reloc_stage stage;
167         bool create_reloc_tree;
168         bool merge_reloc_tree;
169         bool found_file_extent;
170 };
171
172 static void mark_block_processed(struct reloc_control *rc,
173                                  struct btrfs_backref_node *node)
174 {
175         u32 blocksize;
176
177         if (node->level == 0 ||
178             in_range(node->bytenr, rc->block_group->start,
179                      rc->block_group->length)) {
180                 blocksize = rc->extent_root->fs_info->nodesize;
181                 set_extent_bit(&rc->processed_blocks, node->bytenr,
182                                node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183         }
184         node->processed = 1;
185 }
186
187 /*
188  * walk up backref nodes until reach node presents tree root
189  */
190 static struct btrfs_backref_node *walk_up_backref(
191                 struct btrfs_backref_node *node,
192                 struct btrfs_backref_edge *edges[], int *index)
193 {
194         struct btrfs_backref_edge *edge;
195         int idx = *index;
196
197         while (!list_empty(&node->upper)) {
198                 edge = list_entry(node->upper.next,
199                                   struct btrfs_backref_edge, list[LOWER]);
200                 edges[idx++] = edge;
201                 node = edge->node[UPPER];
202         }
203         BUG_ON(node->detached);
204         *index = idx;
205         return node;
206 }
207
208 /*
209  * walk down backref nodes to find start of next reference path
210  */
211 static struct btrfs_backref_node *walk_down_backref(
212                 struct btrfs_backref_edge *edges[], int *index)
213 {
214         struct btrfs_backref_edge *edge;
215         struct btrfs_backref_node *lower;
216         int idx = *index;
217
218         while (idx > 0) {
219                 edge = edges[idx - 1];
220                 lower = edge->node[LOWER];
221                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222                         idx--;
223                         continue;
224                 }
225                 edge = list_entry(edge->list[LOWER].next,
226                                   struct btrfs_backref_edge, list[LOWER]);
227                 edges[idx - 1] = edge;
228                 *index = idx;
229                 return edge->node[UPPER];
230         }
231         *index = 0;
232         return NULL;
233 }
234
235 static bool reloc_root_is_dead(const struct btrfs_root *root)
236 {
237         /*
238          * Pair with set_bit/clear_bit in clean_dirty_subvols and
239          * btrfs_update_reloc_root. We need to see the updated bit before
240          * trying to access reloc_root
241          */
242         smp_rmb();
243         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
244                 return true;
245         return false;
246 }
247
248 /*
249  * Check if this subvolume tree has valid reloc tree.
250  *
251  * Reloc tree after swap is considered dead, thus not considered as valid.
252  * This is enough for most callers, as they don't distinguish dead reloc root
253  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
254  * special case.
255  */
256 static bool have_reloc_root(const struct btrfs_root *root)
257 {
258         if (reloc_root_is_dead(root))
259                 return false;
260         if (!root->reloc_root)
261                 return false;
262         return true;
263 }
264
265 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
266 {
267         struct btrfs_root *reloc_root;
268
269         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
270                 return false;
271
272         /* This root has been merged with its reloc tree, we can ignore it */
273         if (reloc_root_is_dead(root))
274                 return true;
275
276         reloc_root = root->reloc_root;
277         if (!reloc_root)
278                 return false;
279
280         if (btrfs_header_generation(reloc_root->commit_root) ==
281             root->fs_info->running_transaction->transid)
282                 return false;
283         /*
284          * If there is reloc tree and it was created in previous transaction
285          * backref lookup can find the reloc tree, so backref node for the fs
286          * tree root is useless for relocation.
287          */
288         return true;
289 }
290
291 /*
292  * find reloc tree by address of tree root
293  */
294 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
295 {
296         struct reloc_control *rc = fs_info->reloc_ctl;
297         struct rb_node *rb_node;
298         struct mapping_node *node;
299         struct btrfs_root *root = NULL;
300
301         ASSERT(rc);
302         spin_lock(&rc->reloc_root_tree.lock);
303         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
304         if (rb_node) {
305                 node = rb_entry(rb_node, struct mapping_node, rb_node);
306                 root = node->data;
307         }
308         spin_unlock(&rc->reloc_root_tree.lock);
309         return btrfs_grab_root(root);
310 }
311
312 /*
313  * For useless nodes, do two major clean ups:
314  *
315  * - Cleanup the children edges and nodes
316  *   If child node is also orphan (no parent) during cleanup, then the child
317  *   node will also be cleaned up.
318  *
319  * - Freeing up leaves (level 0), keeps nodes detached
320  *   For nodes, the node is still cached as "detached"
321  *
322  * Return false if @node is not in the @useless_nodes list.
323  * Return true if @node is in the @useless_nodes list.
324  */
325 static bool handle_useless_nodes(struct reloc_control *rc,
326                                  struct btrfs_backref_node *node)
327 {
328         struct btrfs_backref_cache *cache = &rc->backref_cache;
329         struct list_head *useless_node = &cache->useless_node;
330         bool ret = false;
331
332         while (!list_empty(useless_node)) {
333                 struct btrfs_backref_node *cur;
334
335                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
336                                  list);
337                 list_del_init(&cur->list);
338
339                 /* Only tree root nodes can be added to @useless_nodes */
340                 ASSERT(list_empty(&cur->upper));
341
342                 if (cur == node)
343                         ret = true;
344
345                 /* Cleanup the lower edges */
346                 while (!list_empty(&cur->lower)) {
347                         struct btrfs_backref_edge *edge;
348                         struct btrfs_backref_node *lower;
349
350                         edge = list_entry(cur->lower.next,
351                                         struct btrfs_backref_edge, list[UPPER]);
352                         list_del(&edge->list[UPPER]);
353                         list_del(&edge->list[LOWER]);
354                         lower = edge->node[LOWER];
355                         btrfs_backref_free_edge(cache, edge);
356
357                         /* Child node is also orphan, queue for cleanup */
358                         if (list_empty(&lower->upper))
359                                 list_add(&lower->list, useless_node);
360                 }
361                 /* Mark this block processed for relocation */
362                 mark_block_processed(rc, cur);
363
364                 /*
365                  * Backref nodes for tree leaves are deleted from the cache.
366                  * Backref nodes for upper level tree blocks are left in the
367                  * cache to avoid unnecessary backref lookup.
368                  */
369                 if (cur->level > 0) {
370                         cur->detached = 1;
371                 } else {
372                         rb_erase(&cur->rb_node, &cache->rb_root);
373                         btrfs_backref_free_node(cache, cur);
374                 }
375         }
376         return ret;
377 }
378
379 /*
380  * Build backref tree for a given tree block. Root of the backref tree
381  * corresponds the tree block, leaves of the backref tree correspond roots of
382  * b-trees that reference the tree block.
383  *
384  * The basic idea of this function is check backrefs of a given block to find
385  * upper level blocks that reference the block, and then check backrefs of
386  * these upper level blocks recursively. The recursion stops when tree root is
387  * reached or backrefs for the block is cached.
388  *
389  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
390  * all upper level blocks that directly/indirectly reference the block are also
391  * cached.
392  */
393 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
394                         struct btrfs_trans_handle *trans,
395                         struct reloc_control *rc, struct btrfs_key *node_key,
396                         int level, u64 bytenr)
397 {
398         struct btrfs_backref_iter *iter;
399         struct btrfs_backref_cache *cache = &rc->backref_cache;
400         /* For searching parent of TREE_BLOCK_REF */
401         struct btrfs_path *path;
402         struct btrfs_backref_node *cur;
403         struct btrfs_backref_node *node = NULL;
404         struct btrfs_backref_edge *edge;
405         int ret;
406
407         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
408         if (!iter)
409                 return ERR_PTR(-ENOMEM);
410         path = btrfs_alloc_path();
411         if (!path) {
412                 ret = -ENOMEM;
413                 goto out;
414         }
415
416         node = btrfs_backref_alloc_node(cache, bytenr, level);
417         if (!node) {
418                 ret = -ENOMEM;
419                 goto out;
420         }
421
422         cur = node;
423
424         /* Breadth-first search to build backref cache */
425         do {
426                 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
427                                                   node_key, cur);
428                 if (ret < 0)
429                         goto out;
430
431                 edge = list_first_entry_or_null(&cache->pending_edge,
432                                 struct btrfs_backref_edge, list[UPPER]);
433                 /*
434                  * The pending list isn't empty, take the first block to
435                  * process
436                  */
437                 if (edge) {
438                         list_del_init(&edge->list[UPPER]);
439                         cur = edge->node[UPPER];
440                 }
441         } while (edge);
442
443         /* Finish the upper linkage of newly added edges/nodes */
444         ret = btrfs_backref_finish_upper_links(cache, node);
445         if (ret < 0)
446                 goto out;
447
448         if (handle_useless_nodes(rc, node))
449                 node = NULL;
450 out:
451         btrfs_free_path(iter->path);
452         kfree(iter);
453         btrfs_free_path(path);
454         if (ret) {
455                 btrfs_backref_error_cleanup(cache, node);
456                 return ERR_PTR(ret);
457         }
458         ASSERT(!node || !node->detached);
459         ASSERT(list_empty(&cache->useless_node) &&
460                list_empty(&cache->pending_edge));
461         return node;
462 }
463
464 /*
465  * helper to add 'address of tree root -> reloc tree' mapping
466  */
467 static int __add_reloc_root(struct btrfs_root *root)
468 {
469         struct btrfs_fs_info *fs_info = root->fs_info;
470         struct rb_node *rb_node;
471         struct mapping_node *node;
472         struct reloc_control *rc = fs_info->reloc_ctl;
473
474         node = kmalloc(sizeof(*node), GFP_NOFS);
475         if (!node)
476                 return -ENOMEM;
477
478         node->bytenr = root->commit_root->start;
479         node->data = root;
480
481         spin_lock(&rc->reloc_root_tree.lock);
482         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
483                                    node->bytenr, &node->rb_node);
484         spin_unlock(&rc->reloc_root_tree.lock);
485         if (rb_node) {
486                 btrfs_err(fs_info,
487                             "Duplicate root found for start=%llu while inserting into relocation tree",
488                             node->bytenr);
489                 return -EEXIST;
490         }
491
492         list_add_tail(&root->root_list, &rc->reloc_roots);
493         return 0;
494 }
495
496 /*
497  * helper to delete the 'address of tree root -> reloc tree'
498  * mapping
499  */
500 static void __del_reloc_root(struct btrfs_root *root)
501 {
502         struct btrfs_fs_info *fs_info = root->fs_info;
503         struct rb_node *rb_node;
504         struct mapping_node *node = NULL;
505         struct reloc_control *rc = fs_info->reloc_ctl;
506         bool put_ref = false;
507
508         if (rc && root->node) {
509                 spin_lock(&rc->reloc_root_tree.lock);
510                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
511                                            root->commit_root->start);
512                 if (rb_node) {
513                         node = rb_entry(rb_node, struct mapping_node, rb_node);
514                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
515                         RB_CLEAR_NODE(&node->rb_node);
516                 }
517                 spin_unlock(&rc->reloc_root_tree.lock);
518                 ASSERT(!node || (struct btrfs_root *)node->data == root);
519         }
520
521         /*
522          * We only put the reloc root here if it's on the list.  There's a lot
523          * of places where the pattern is to splice the rc->reloc_roots, process
524          * the reloc roots, and then add the reloc root back onto
525          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
526          * list we don't want the reference being dropped, because the guy
527          * messing with the list is in charge of the reference.
528          */
529         spin_lock(&fs_info->trans_lock);
530         if (!list_empty(&root->root_list)) {
531                 put_ref = true;
532                 list_del_init(&root->root_list);
533         }
534         spin_unlock(&fs_info->trans_lock);
535         if (put_ref)
536                 btrfs_put_root(root);
537         kfree(node);
538 }
539
540 /*
541  * helper to update the 'address of tree root -> reloc tree'
542  * mapping
543  */
544 static int __update_reloc_root(struct btrfs_root *root)
545 {
546         struct btrfs_fs_info *fs_info = root->fs_info;
547         struct rb_node *rb_node;
548         struct mapping_node *node = NULL;
549         struct reloc_control *rc = fs_info->reloc_ctl;
550
551         spin_lock(&rc->reloc_root_tree.lock);
552         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
553                                    root->commit_root->start);
554         if (rb_node) {
555                 node = rb_entry(rb_node, struct mapping_node, rb_node);
556                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
557         }
558         spin_unlock(&rc->reloc_root_tree.lock);
559
560         if (!node)
561                 return 0;
562         BUG_ON((struct btrfs_root *)node->data != root);
563
564         spin_lock(&rc->reloc_root_tree.lock);
565         node->bytenr = root->node->start;
566         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
567                                    node->bytenr, &node->rb_node);
568         spin_unlock(&rc->reloc_root_tree.lock);
569         if (rb_node)
570                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
571         return 0;
572 }
573
574 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
575                                         struct btrfs_root *root, u64 objectid)
576 {
577         struct btrfs_fs_info *fs_info = root->fs_info;
578         struct btrfs_root *reloc_root;
579         struct extent_buffer *eb;
580         struct btrfs_root_item *root_item;
581         struct btrfs_key root_key;
582         int ret = 0;
583         bool must_abort = false;
584
585         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
586         if (!root_item)
587                 return ERR_PTR(-ENOMEM);
588
589         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
590         root_key.type = BTRFS_ROOT_ITEM_KEY;
591         root_key.offset = objectid;
592
593         if (btrfs_root_id(root) == objectid) {
594                 u64 commit_root_gen;
595
596                 /* called by btrfs_init_reloc_root */
597                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
598                                       BTRFS_TREE_RELOC_OBJECTID);
599                 if (ret)
600                         goto fail;
601
602                 /*
603                  * Set the last_snapshot field to the generation of the commit
604                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
605                  * correctly (returns true) when the relocation root is created
606                  * either inside the critical section of a transaction commit
607                  * (through transaction.c:qgroup_account_snapshot()) and when
608                  * it's created before the transaction commit is started.
609                  */
610                 commit_root_gen = btrfs_header_generation(root->commit_root);
611                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
612         } else {
613                 /*
614                  * called by btrfs_reloc_post_snapshot_hook.
615                  * the source tree is a reloc tree, all tree blocks
616                  * modified after it was created have RELOC flag
617                  * set in their headers. so it's OK to not update
618                  * the 'last_snapshot'.
619                  */
620                 ret = btrfs_copy_root(trans, root, root->node, &eb,
621                                       BTRFS_TREE_RELOC_OBJECTID);
622                 if (ret)
623                         goto fail;
624         }
625
626         /*
627          * We have changed references at this point, we must abort the
628          * transaction if anything fails.
629          */
630         must_abort = true;
631
632         memcpy(root_item, &root->root_item, sizeof(*root_item));
633         btrfs_set_root_bytenr(root_item, eb->start);
634         btrfs_set_root_level(root_item, btrfs_header_level(eb));
635         btrfs_set_root_generation(root_item, trans->transid);
636
637         if (btrfs_root_id(root) == objectid) {
638                 btrfs_set_root_refs(root_item, 0);
639                 memset(&root_item->drop_progress, 0,
640                        sizeof(struct btrfs_disk_key));
641                 btrfs_set_root_drop_level(root_item, 0);
642         }
643
644         btrfs_tree_unlock(eb);
645         free_extent_buffer(eb);
646
647         ret = btrfs_insert_root(trans, fs_info->tree_root,
648                                 &root_key, root_item);
649         if (ret)
650                 goto fail;
651
652         kfree(root_item);
653
654         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
655         if (IS_ERR(reloc_root)) {
656                 ret = PTR_ERR(reloc_root);
657                 goto abort;
658         }
659         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
660         btrfs_set_root_last_trans(reloc_root, trans->transid);
661         return reloc_root;
662 fail:
663         kfree(root_item);
664 abort:
665         if (must_abort)
666                 btrfs_abort_transaction(trans, ret);
667         return ERR_PTR(ret);
668 }
669
670 /*
671  * create reloc tree for a given fs tree. reloc tree is just a
672  * snapshot of the fs tree with special root objectid.
673  *
674  * The reloc_root comes out of here with two references, one for
675  * root->reloc_root, and another for being on the rc->reloc_roots list.
676  */
677 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
678                           struct btrfs_root *root)
679 {
680         struct btrfs_fs_info *fs_info = root->fs_info;
681         struct btrfs_root *reloc_root;
682         struct reloc_control *rc = fs_info->reloc_ctl;
683         struct btrfs_block_rsv *rsv;
684         int clear_rsv = 0;
685         int ret;
686
687         if (!rc)
688                 return 0;
689
690         /*
691          * The subvolume has reloc tree but the swap is finished, no need to
692          * create/update the dead reloc tree
693          */
694         if (reloc_root_is_dead(root))
695                 return 0;
696
697         /*
698          * This is subtle but important.  We do not do
699          * record_root_in_transaction for reloc roots, instead we record their
700          * corresponding fs root, and then here we update the last trans for the
701          * reloc root.  This means that we have to do this for the entire life
702          * of the reloc root, regardless of which stage of the relocation we are
703          * in.
704          */
705         if (root->reloc_root) {
706                 reloc_root = root->reloc_root;
707                 btrfs_set_root_last_trans(reloc_root, trans->transid);
708                 return 0;
709         }
710
711         /*
712          * We are merging reloc roots, we do not need new reloc trees.  Also
713          * reloc trees never need their own reloc tree.
714          */
715         if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
716                 return 0;
717
718         if (!trans->reloc_reserved) {
719                 rsv = trans->block_rsv;
720                 trans->block_rsv = rc->block_rsv;
721                 clear_rsv = 1;
722         }
723         reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
724         if (clear_rsv)
725                 trans->block_rsv = rsv;
726         if (IS_ERR(reloc_root))
727                 return PTR_ERR(reloc_root);
728
729         ret = __add_reloc_root(reloc_root);
730         ASSERT(ret != -EEXIST);
731         if (ret) {
732                 /* Pairs with create_reloc_root */
733                 btrfs_put_root(reloc_root);
734                 return ret;
735         }
736         root->reloc_root = btrfs_grab_root(reloc_root);
737         return 0;
738 }
739
740 /*
741  * update root item of reloc tree
742  */
743 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
744                             struct btrfs_root *root)
745 {
746         struct btrfs_fs_info *fs_info = root->fs_info;
747         struct btrfs_root *reloc_root;
748         struct btrfs_root_item *root_item;
749         int ret;
750
751         if (!have_reloc_root(root))
752                 return 0;
753
754         reloc_root = root->reloc_root;
755         root_item = &reloc_root->root_item;
756
757         /*
758          * We are probably ok here, but __del_reloc_root() will drop its ref of
759          * the root.  We have the ref for root->reloc_root, but just in case
760          * hold it while we update the reloc root.
761          */
762         btrfs_grab_root(reloc_root);
763
764         /* root->reloc_root will stay until current relocation finished */
765         if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
766             btrfs_root_refs(root_item) == 0) {
767                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
768                 /*
769                  * Mark the tree as dead before we change reloc_root so
770                  * have_reloc_root will not touch it from now on.
771                  */
772                 smp_wmb();
773                 __del_reloc_root(reloc_root);
774         }
775
776         if (reloc_root->commit_root != reloc_root->node) {
777                 __update_reloc_root(reloc_root);
778                 btrfs_set_root_node(root_item, reloc_root->node);
779                 free_extent_buffer(reloc_root->commit_root);
780                 reloc_root->commit_root = btrfs_root_node(reloc_root);
781         }
782
783         ret = btrfs_update_root(trans, fs_info->tree_root,
784                                 &reloc_root->root_key, root_item);
785         btrfs_put_root(reloc_root);
786         return ret;
787 }
788
789 /*
790  * get new location of data
791  */
792 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
793                             u64 bytenr, u64 num_bytes)
794 {
795         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
796         struct btrfs_path *path;
797         struct btrfs_file_extent_item *fi;
798         struct extent_buffer *leaf;
799         int ret;
800
801         path = btrfs_alloc_path();
802         if (!path)
803                 return -ENOMEM;
804
805         bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
806         ret = btrfs_lookup_file_extent(NULL, root, path,
807                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
808         if (ret < 0)
809                 goto out;
810         if (ret > 0) {
811                 ret = -ENOENT;
812                 goto out;
813         }
814
815         leaf = path->nodes[0];
816         fi = btrfs_item_ptr(leaf, path->slots[0],
817                             struct btrfs_file_extent_item);
818
819         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
820                btrfs_file_extent_compression(leaf, fi) ||
821                btrfs_file_extent_encryption(leaf, fi) ||
822                btrfs_file_extent_other_encoding(leaf, fi));
823
824         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
825                 ret = -EINVAL;
826                 goto out;
827         }
828
829         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
830         ret = 0;
831 out:
832         btrfs_free_path(path);
833         return ret;
834 }
835
836 /*
837  * update file extent items in the tree leaf to point to
838  * the new locations.
839  */
840 static noinline_for_stack
841 int replace_file_extents(struct btrfs_trans_handle *trans,
842                          struct reloc_control *rc,
843                          struct btrfs_root *root,
844                          struct extent_buffer *leaf)
845 {
846         struct btrfs_fs_info *fs_info = root->fs_info;
847         struct btrfs_key key;
848         struct btrfs_file_extent_item *fi;
849         struct btrfs_inode *inode = NULL;
850         u64 parent;
851         u64 bytenr;
852         u64 new_bytenr = 0;
853         u64 num_bytes;
854         u64 end;
855         u32 nritems;
856         u32 i;
857         int ret = 0;
858         int first = 1;
859
860         if (rc->stage != UPDATE_DATA_PTRS)
861                 return 0;
862
863         /* reloc trees always use full backref */
864         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
865                 parent = leaf->start;
866         else
867                 parent = 0;
868
869         nritems = btrfs_header_nritems(leaf);
870         for (i = 0; i < nritems; i++) {
871                 struct btrfs_ref ref = { 0 };
872
873                 cond_resched();
874                 btrfs_item_key_to_cpu(leaf, &key, i);
875                 if (key.type != BTRFS_EXTENT_DATA_KEY)
876                         continue;
877                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
878                 if (btrfs_file_extent_type(leaf, fi) ==
879                     BTRFS_FILE_EXTENT_INLINE)
880                         continue;
881                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
882                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
883                 if (bytenr == 0)
884                         continue;
885                 if (!in_range(bytenr, rc->block_group->start,
886                               rc->block_group->length))
887                         continue;
888
889                 /*
890                  * if we are modifying block in fs tree, wait for read_folio
891                  * to complete and drop the extent cache
892                  */
893                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
894                         if (first) {
895                                 inode = btrfs_find_first_inode(root, key.objectid);
896                                 first = 0;
897                         } else if (inode && btrfs_ino(inode) < key.objectid) {
898                                 btrfs_add_delayed_iput(inode);
899                                 inode = btrfs_find_first_inode(root, key.objectid);
900                         }
901                         if (inode && btrfs_ino(inode) == key.objectid) {
902                                 struct extent_state *cached_state = NULL;
903
904                                 end = key.offset +
905                                       btrfs_file_extent_num_bytes(leaf, fi);
906                                 WARN_ON(!IS_ALIGNED(key.offset,
907                                                     fs_info->sectorsize));
908                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
909                                 end--;
910                                 /* Take mmap lock to serialize with reflinks. */
911                                 if (!down_read_trylock(&inode->i_mmap_lock))
912                                         continue;
913                                 ret = try_lock_extent(&inode->io_tree, key.offset,
914                                                       end, &cached_state);
915                                 if (!ret) {
916                                         up_read(&inode->i_mmap_lock);
917                                         continue;
918                                 }
919
920                                 btrfs_drop_extent_map_range(inode, key.offset, end, true);
921                                 unlock_extent(&inode->io_tree, key.offset, end,
922                                               &cached_state);
923                                 up_read(&inode->i_mmap_lock);
924                         }
925                 }
926
927                 ret = get_new_location(rc->data_inode, &new_bytenr,
928                                        bytenr, num_bytes);
929                 if (ret) {
930                         /*
931                          * Don't have to abort since we've not changed anything
932                          * in the file extent yet.
933                          */
934                         break;
935                 }
936
937                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
938
939                 key.offset -= btrfs_file_extent_offset(leaf, fi);
940                 ref.action = BTRFS_ADD_DELAYED_REF;
941                 ref.bytenr = new_bytenr;
942                 ref.num_bytes = num_bytes;
943                 ref.parent = parent;
944                 ref.owning_root = btrfs_root_id(root);
945                 ref.ref_root = btrfs_header_owner(leaf);
946                 btrfs_init_data_ref(&ref, key.objectid, key.offset,
947                                     btrfs_root_id(root), false);
948                 ret = btrfs_inc_extent_ref(trans, &ref);
949                 if (ret) {
950                         btrfs_abort_transaction(trans, ret);
951                         break;
952                 }
953
954                 ref.action = BTRFS_DROP_DELAYED_REF;
955                 ref.bytenr = bytenr;
956                 ref.num_bytes = num_bytes;
957                 ref.parent = parent;
958                 ref.owning_root = btrfs_root_id(root);
959                 ref.ref_root = btrfs_header_owner(leaf);
960                 btrfs_init_data_ref(&ref, key.objectid, key.offset,
961                                     btrfs_root_id(root), false);
962                 ret = btrfs_free_extent(trans, &ref);
963                 if (ret) {
964                         btrfs_abort_transaction(trans, ret);
965                         break;
966                 }
967         }
968         if (inode)
969                 btrfs_add_delayed_iput(inode);
970         return ret;
971 }
972
973 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
974                                                int slot, const struct btrfs_path *path,
975                                                int level)
976 {
977         struct btrfs_disk_key key1;
978         struct btrfs_disk_key key2;
979         btrfs_node_key(eb, &key1, slot);
980         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
981         return memcmp(&key1, &key2, sizeof(key1));
982 }
983
984 /*
985  * try to replace tree blocks in fs tree with the new blocks
986  * in reloc tree. tree blocks haven't been modified since the
987  * reloc tree was create can be replaced.
988  *
989  * if a block was replaced, level of the block + 1 is returned.
990  * if no block got replaced, 0 is returned. if there are other
991  * errors, a negative error number is returned.
992  */
993 static noinline_for_stack
994 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
995                  struct btrfs_root *dest, struct btrfs_root *src,
996                  struct btrfs_path *path, struct btrfs_key *next_key,
997                  int lowest_level, int max_level)
998 {
999         struct btrfs_fs_info *fs_info = dest->fs_info;
1000         struct extent_buffer *eb;
1001         struct extent_buffer *parent;
1002         struct btrfs_ref ref = { 0 };
1003         struct btrfs_key key;
1004         u64 old_bytenr;
1005         u64 new_bytenr;
1006         u64 old_ptr_gen;
1007         u64 new_ptr_gen;
1008         u64 last_snapshot;
1009         u32 blocksize;
1010         int cow = 0;
1011         int level;
1012         int ret;
1013         int slot;
1014
1015         ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1016         ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1017
1018         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1019 again:
1020         slot = path->slots[lowest_level];
1021         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1022
1023         eb = btrfs_lock_root_node(dest);
1024         level = btrfs_header_level(eb);
1025
1026         if (level < lowest_level) {
1027                 btrfs_tree_unlock(eb);
1028                 free_extent_buffer(eb);
1029                 return 0;
1030         }
1031
1032         if (cow) {
1033                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1034                                       BTRFS_NESTING_COW);
1035                 if (ret) {
1036                         btrfs_tree_unlock(eb);
1037                         free_extent_buffer(eb);
1038                         return ret;
1039                 }
1040         }
1041
1042         if (next_key) {
1043                 next_key->objectid = (u64)-1;
1044                 next_key->type = (u8)-1;
1045                 next_key->offset = (u64)-1;
1046         }
1047
1048         parent = eb;
1049         while (1) {
1050                 level = btrfs_header_level(parent);
1051                 ASSERT(level >= lowest_level);
1052
1053                 ret = btrfs_bin_search(parent, 0, &key, &slot);
1054                 if (ret < 0)
1055                         break;
1056                 if (ret && slot > 0)
1057                         slot--;
1058
1059                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1060                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1061
1062                 old_bytenr = btrfs_node_blockptr(parent, slot);
1063                 blocksize = fs_info->nodesize;
1064                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1065
1066                 if (level <= max_level) {
1067                         eb = path->nodes[level];
1068                         new_bytenr = btrfs_node_blockptr(eb,
1069                                                         path->slots[level]);
1070                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1071                                                         path->slots[level]);
1072                 } else {
1073                         new_bytenr = 0;
1074                         new_ptr_gen = 0;
1075                 }
1076
1077                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1078                         ret = level;
1079                         break;
1080                 }
1081
1082                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1083                     memcmp_node_keys(parent, slot, path, level)) {
1084                         if (level <= lowest_level) {
1085                                 ret = 0;
1086                                 break;
1087                         }
1088
1089                         eb = btrfs_read_node_slot(parent, slot);
1090                         if (IS_ERR(eb)) {
1091                                 ret = PTR_ERR(eb);
1092                                 break;
1093                         }
1094                         btrfs_tree_lock(eb);
1095                         if (cow) {
1096                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1097                                                       slot, &eb,
1098                                                       BTRFS_NESTING_COW);
1099                                 if (ret) {
1100                                         btrfs_tree_unlock(eb);
1101                                         free_extent_buffer(eb);
1102                                         break;
1103                                 }
1104                         }
1105
1106                         btrfs_tree_unlock(parent);
1107                         free_extent_buffer(parent);
1108
1109                         parent = eb;
1110                         continue;
1111                 }
1112
1113                 if (!cow) {
1114                         btrfs_tree_unlock(parent);
1115                         free_extent_buffer(parent);
1116                         cow = 1;
1117                         goto again;
1118                 }
1119
1120                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1121                                       path->slots[level]);
1122                 btrfs_release_path(path);
1123
1124                 path->lowest_level = level;
1125                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1126                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1127                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1128                 path->lowest_level = 0;
1129                 if (ret) {
1130                         if (ret > 0)
1131                                 ret = -ENOENT;
1132                         break;
1133                 }
1134
1135                 /*
1136                  * Info qgroup to trace both subtrees.
1137                  *
1138                  * We must trace both trees.
1139                  * 1) Tree reloc subtree
1140                  *    If not traced, we will leak data numbers
1141                  * 2) Fs subtree
1142                  *    If not traced, we will double count old data
1143                  *
1144                  * We don't scan the subtree right now, but only record
1145                  * the swapped tree blocks.
1146                  * The real subtree rescan is delayed until we have new
1147                  * CoW on the subtree root node before transaction commit.
1148                  */
1149                 ret = btrfs_qgroup_add_swapped_blocks(dest,
1150                                 rc->block_group, parent, slot,
1151                                 path->nodes[level], path->slots[level],
1152                                 last_snapshot);
1153                 if (ret < 0)
1154                         break;
1155                 /*
1156                  * swap blocks in fs tree and reloc tree.
1157                  */
1158                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1159                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1160
1161                 btrfs_set_node_blockptr(path->nodes[level],
1162                                         path->slots[level], old_bytenr);
1163                 btrfs_set_node_ptr_generation(path->nodes[level],
1164                                               path->slots[level], old_ptr_gen);
1165
1166                 ref.action = BTRFS_ADD_DELAYED_REF;
1167                 ref.bytenr = old_bytenr;
1168                 ref.num_bytes = blocksize;
1169                 ref.parent = path->nodes[level]->start;
1170                 ref.owning_root = btrfs_root_id(src);
1171                 ref.ref_root = btrfs_root_id(src);
1172                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1173                 ret = btrfs_inc_extent_ref(trans, &ref);
1174                 if (ret) {
1175                         btrfs_abort_transaction(trans, ret);
1176                         break;
1177                 }
1178
1179                 ref.action = BTRFS_ADD_DELAYED_REF;
1180                 ref.bytenr = new_bytenr;
1181                 ref.num_bytes = blocksize;
1182                 ref.parent = 0;
1183                 ref.owning_root = btrfs_root_id(dest);
1184                 ref.ref_root = btrfs_root_id(dest);
1185                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1186                 ret = btrfs_inc_extent_ref(trans, &ref);
1187                 if (ret) {
1188                         btrfs_abort_transaction(trans, ret);
1189                         break;
1190                 }
1191
1192                 /* We don't know the real owning_root, use 0. */
1193                 ref.action = BTRFS_DROP_DELAYED_REF;
1194                 ref.bytenr = new_bytenr;
1195                 ref.num_bytes = blocksize;
1196                 ref.parent = path->nodes[level]->start;
1197                 ref.owning_root = 0;
1198                 ref.ref_root = btrfs_root_id(src);
1199                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1200                 ret = btrfs_free_extent(trans, &ref);
1201                 if (ret) {
1202                         btrfs_abort_transaction(trans, ret);
1203                         break;
1204                 }
1205
1206                 /* We don't know the real owning_root, use 0. */
1207                 ref.action = BTRFS_DROP_DELAYED_REF;
1208                 ref.bytenr = old_bytenr;
1209                 ref.num_bytes = blocksize;
1210                 ref.parent = 0;
1211                 ref.owning_root = 0;
1212                 ref.ref_root = btrfs_root_id(dest);
1213                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1214                 ret = btrfs_free_extent(trans, &ref);
1215                 if (ret) {
1216                         btrfs_abort_transaction(trans, ret);
1217                         break;
1218                 }
1219
1220                 btrfs_unlock_up_safe(path, 0);
1221
1222                 ret = level;
1223                 break;
1224         }
1225         btrfs_tree_unlock(parent);
1226         free_extent_buffer(parent);
1227         return ret;
1228 }
1229
1230 /*
1231  * helper to find next relocated block in reloc tree
1232  */
1233 static noinline_for_stack
1234 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1235                        int *level)
1236 {
1237         struct extent_buffer *eb;
1238         int i;
1239         u64 last_snapshot;
1240         u32 nritems;
1241
1242         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1243
1244         for (i = 0; i < *level; i++) {
1245                 free_extent_buffer(path->nodes[i]);
1246                 path->nodes[i] = NULL;
1247         }
1248
1249         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1250                 eb = path->nodes[i];
1251                 nritems = btrfs_header_nritems(eb);
1252                 while (path->slots[i] + 1 < nritems) {
1253                         path->slots[i]++;
1254                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1255                             last_snapshot)
1256                                 continue;
1257
1258                         *level = i;
1259                         return 0;
1260                 }
1261                 free_extent_buffer(path->nodes[i]);
1262                 path->nodes[i] = NULL;
1263         }
1264         return 1;
1265 }
1266
1267 /*
1268  * walk down reloc tree to find relocated block of lowest level
1269  */
1270 static noinline_for_stack
1271 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1272                          int *level)
1273 {
1274         struct extent_buffer *eb = NULL;
1275         int i;
1276         u64 ptr_gen = 0;
1277         u64 last_snapshot;
1278         u32 nritems;
1279
1280         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1281
1282         for (i = *level; i > 0; i--) {
1283                 eb = path->nodes[i];
1284                 nritems = btrfs_header_nritems(eb);
1285                 while (path->slots[i] < nritems) {
1286                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1287                         if (ptr_gen > last_snapshot)
1288                                 break;
1289                         path->slots[i]++;
1290                 }
1291                 if (path->slots[i] >= nritems) {
1292                         if (i == *level)
1293                                 break;
1294                         *level = i + 1;
1295                         return 0;
1296                 }
1297                 if (i == 1) {
1298                         *level = i;
1299                         return 0;
1300                 }
1301
1302                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1303                 if (IS_ERR(eb))
1304                         return PTR_ERR(eb);
1305                 BUG_ON(btrfs_header_level(eb) != i - 1);
1306                 path->nodes[i - 1] = eb;
1307                 path->slots[i - 1] = 0;
1308         }
1309         return 1;
1310 }
1311
1312 /*
1313  * invalidate extent cache for file extents whose key in range of
1314  * [min_key, max_key)
1315  */
1316 static int invalidate_extent_cache(struct btrfs_root *root,
1317                                    const struct btrfs_key *min_key,
1318                                    const struct btrfs_key *max_key)
1319 {
1320         struct btrfs_fs_info *fs_info = root->fs_info;
1321         struct btrfs_inode *inode = NULL;
1322         u64 objectid;
1323         u64 start, end;
1324         u64 ino;
1325
1326         objectid = min_key->objectid;
1327         while (1) {
1328                 struct extent_state *cached_state = NULL;
1329
1330                 cond_resched();
1331                 if (inode)
1332                         iput(&inode->vfs_inode);
1333
1334                 if (objectid > max_key->objectid)
1335                         break;
1336
1337                 inode = btrfs_find_first_inode(root, objectid);
1338                 if (!inode)
1339                         break;
1340                 ino = btrfs_ino(inode);
1341
1342                 if (ino > max_key->objectid) {
1343                         iput(&inode->vfs_inode);
1344                         break;
1345                 }
1346
1347                 objectid = ino + 1;
1348                 if (!S_ISREG(inode->vfs_inode.i_mode))
1349                         continue;
1350
1351                 if (unlikely(min_key->objectid == ino)) {
1352                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1353                                 continue;
1354                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1355                                 start = 0;
1356                         else {
1357                                 start = min_key->offset;
1358                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1359                         }
1360                 } else {
1361                         start = 0;
1362                 }
1363
1364                 if (unlikely(max_key->objectid == ino)) {
1365                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1366                                 continue;
1367                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1368                                 end = (u64)-1;
1369                         } else {
1370                                 if (max_key->offset == 0)
1371                                         continue;
1372                                 end = max_key->offset;
1373                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1374                                 end--;
1375                         }
1376                 } else {
1377                         end = (u64)-1;
1378                 }
1379
1380                 /* the lock_extent waits for read_folio to complete */
1381                 lock_extent(&inode->io_tree, start, end, &cached_state);
1382                 btrfs_drop_extent_map_range(inode, start, end, true);
1383                 unlock_extent(&inode->io_tree, start, end, &cached_state);
1384         }
1385         return 0;
1386 }
1387
1388 static int find_next_key(struct btrfs_path *path, int level,
1389                          struct btrfs_key *key)
1390
1391 {
1392         while (level < BTRFS_MAX_LEVEL) {
1393                 if (!path->nodes[level])
1394                         break;
1395                 if (path->slots[level] + 1 <
1396                     btrfs_header_nritems(path->nodes[level])) {
1397                         btrfs_node_key_to_cpu(path->nodes[level], key,
1398                                               path->slots[level] + 1);
1399                         return 0;
1400                 }
1401                 level++;
1402         }
1403         return 1;
1404 }
1405
1406 /*
1407  * Insert current subvolume into reloc_control::dirty_subvol_roots
1408  */
1409 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1410                                struct reloc_control *rc,
1411                                struct btrfs_root *root)
1412 {
1413         struct btrfs_root *reloc_root = root->reloc_root;
1414         struct btrfs_root_item *reloc_root_item;
1415         int ret;
1416
1417         /* @root must be a subvolume tree root with a valid reloc tree */
1418         ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1419         ASSERT(reloc_root);
1420
1421         reloc_root_item = &reloc_root->root_item;
1422         memset(&reloc_root_item->drop_progress, 0,
1423                 sizeof(reloc_root_item->drop_progress));
1424         btrfs_set_root_drop_level(reloc_root_item, 0);
1425         btrfs_set_root_refs(reloc_root_item, 0);
1426         ret = btrfs_update_reloc_root(trans, root);
1427         if (ret)
1428                 return ret;
1429
1430         if (list_empty(&root->reloc_dirty_list)) {
1431                 btrfs_grab_root(root);
1432                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1433         }
1434
1435         return 0;
1436 }
1437
1438 static int clean_dirty_subvols(struct reloc_control *rc)
1439 {
1440         struct btrfs_root *root;
1441         struct btrfs_root *next;
1442         int ret = 0;
1443         int ret2;
1444
1445         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1446                                  reloc_dirty_list) {
1447                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1448                         /* Merged subvolume, cleanup its reloc root */
1449                         struct btrfs_root *reloc_root = root->reloc_root;
1450
1451                         list_del_init(&root->reloc_dirty_list);
1452                         root->reloc_root = NULL;
1453                         /*
1454                          * Need barrier to ensure clear_bit() only happens after
1455                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1456                          */
1457                         smp_wmb();
1458                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1459                         if (reloc_root) {
1460                                 /*
1461                                  * btrfs_drop_snapshot drops our ref we hold for
1462                                  * ->reloc_root.  If it fails however we must
1463                                  * drop the ref ourselves.
1464                                  */
1465                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1466                                 if (ret2 < 0) {
1467                                         btrfs_put_root(reloc_root);
1468                                         if (!ret)
1469                                                 ret = ret2;
1470                                 }
1471                         }
1472                         btrfs_put_root(root);
1473                 } else {
1474                         /* Orphan reloc tree, just clean it up */
1475                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1476                         if (ret2 < 0) {
1477                                 btrfs_put_root(root);
1478                                 if (!ret)
1479                                         ret = ret2;
1480                         }
1481                 }
1482         }
1483         return ret;
1484 }
1485
1486 /*
1487  * merge the relocated tree blocks in reloc tree with corresponding
1488  * fs tree.
1489  */
1490 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1491                                                struct btrfs_root *root)
1492 {
1493         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1494         struct btrfs_key key;
1495         struct btrfs_key next_key;
1496         struct btrfs_trans_handle *trans = NULL;
1497         struct btrfs_root *reloc_root;
1498         struct btrfs_root_item *root_item;
1499         struct btrfs_path *path;
1500         struct extent_buffer *leaf;
1501         int reserve_level;
1502         int level;
1503         int max_level;
1504         int replaced = 0;
1505         int ret = 0;
1506         u32 min_reserved;
1507
1508         path = btrfs_alloc_path();
1509         if (!path)
1510                 return -ENOMEM;
1511         path->reada = READA_FORWARD;
1512
1513         reloc_root = root->reloc_root;
1514         root_item = &reloc_root->root_item;
1515
1516         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1517                 level = btrfs_root_level(root_item);
1518                 atomic_inc(&reloc_root->node->refs);
1519                 path->nodes[level] = reloc_root->node;
1520                 path->slots[level] = 0;
1521         } else {
1522                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1523
1524                 level = btrfs_root_drop_level(root_item);
1525                 BUG_ON(level == 0);
1526                 path->lowest_level = level;
1527                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1528                 path->lowest_level = 0;
1529                 if (ret < 0) {
1530                         btrfs_free_path(path);
1531                         return ret;
1532                 }
1533
1534                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1535                                       path->slots[level]);
1536                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1537
1538                 btrfs_unlock_up_safe(path, 0);
1539         }
1540
1541         /*
1542          * In merge_reloc_root(), we modify the upper level pointer to swap the
1543          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1544          * block COW, we COW at most from level 1 to root level for each tree.
1545          *
1546          * Thus the needed metadata size is at most root_level * nodesize,
1547          * and * 2 since we have two trees to COW.
1548          */
1549         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1550         min_reserved = fs_info->nodesize * reserve_level * 2;
1551         memset(&next_key, 0, sizeof(next_key));
1552
1553         while (1) {
1554                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1555                                              min_reserved,
1556                                              BTRFS_RESERVE_FLUSH_LIMIT);
1557                 if (ret)
1558                         goto out;
1559                 trans = btrfs_start_transaction(root, 0);
1560                 if (IS_ERR(trans)) {
1561                         ret = PTR_ERR(trans);
1562                         trans = NULL;
1563                         goto out;
1564                 }
1565
1566                 /*
1567                  * At this point we no longer have a reloc_control, so we can't
1568                  * depend on btrfs_init_reloc_root to update our last_trans.
1569                  *
1570                  * But that's ok, we started the trans handle on our
1571                  * corresponding fs_root, which means it's been added to the
1572                  * dirty list.  At commit time we'll still call
1573                  * btrfs_update_reloc_root() and update our root item
1574                  * appropriately.
1575                  */
1576                 btrfs_set_root_last_trans(reloc_root, trans->transid);
1577                 trans->block_rsv = rc->block_rsv;
1578
1579                 replaced = 0;
1580                 max_level = level;
1581
1582                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1583                 if (ret < 0)
1584                         goto out;
1585                 if (ret > 0)
1586                         break;
1587
1588                 if (!find_next_key(path, level, &key) &&
1589                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1590                         ret = 0;
1591                 } else {
1592                         ret = replace_path(trans, rc, root, reloc_root, path,
1593                                            &next_key, level, max_level);
1594                 }
1595                 if (ret < 0)
1596                         goto out;
1597                 if (ret > 0) {
1598                         level = ret;
1599                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1600                                               path->slots[level]);
1601                         replaced = 1;
1602                 }
1603
1604                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1605                 if (ret > 0)
1606                         break;
1607
1608                 BUG_ON(level == 0);
1609                 /*
1610                  * save the merging progress in the drop_progress.
1611                  * this is OK since root refs == 1 in this case.
1612                  */
1613                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1614                                path->slots[level]);
1615                 btrfs_set_root_drop_level(root_item, level);
1616
1617                 btrfs_end_transaction_throttle(trans);
1618                 trans = NULL;
1619
1620                 btrfs_btree_balance_dirty(fs_info);
1621
1622                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1623                         invalidate_extent_cache(root, &key, &next_key);
1624         }
1625
1626         /*
1627          * handle the case only one block in the fs tree need to be
1628          * relocated and the block is tree root.
1629          */
1630         leaf = btrfs_lock_root_node(root);
1631         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1632                               BTRFS_NESTING_COW);
1633         btrfs_tree_unlock(leaf);
1634         free_extent_buffer(leaf);
1635 out:
1636         btrfs_free_path(path);
1637
1638         if (ret == 0) {
1639                 ret = insert_dirty_subvol(trans, rc, root);
1640                 if (ret)
1641                         btrfs_abort_transaction(trans, ret);
1642         }
1643
1644         if (trans)
1645                 btrfs_end_transaction_throttle(trans);
1646
1647         btrfs_btree_balance_dirty(fs_info);
1648
1649         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1650                 invalidate_extent_cache(root, &key, &next_key);
1651
1652         return ret;
1653 }
1654
1655 static noinline_for_stack
1656 int prepare_to_merge(struct reloc_control *rc, int err)
1657 {
1658         struct btrfs_root *root = rc->extent_root;
1659         struct btrfs_fs_info *fs_info = root->fs_info;
1660         struct btrfs_root *reloc_root;
1661         struct btrfs_trans_handle *trans;
1662         LIST_HEAD(reloc_roots);
1663         u64 num_bytes = 0;
1664         int ret;
1665
1666         mutex_lock(&fs_info->reloc_mutex);
1667         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1668         rc->merging_rsv_size += rc->nodes_relocated * 2;
1669         mutex_unlock(&fs_info->reloc_mutex);
1670
1671 again:
1672         if (!err) {
1673                 num_bytes = rc->merging_rsv_size;
1674                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1675                                           BTRFS_RESERVE_FLUSH_ALL);
1676                 if (ret)
1677                         err = ret;
1678         }
1679
1680         trans = btrfs_join_transaction(rc->extent_root);
1681         if (IS_ERR(trans)) {
1682                 if (!err)
1683                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1684                                                 num_bytes, NULL);
1685                 return PTR_ERR(trans);
1686         }
1687
1688         if (!err) {
1689                 if (num_bytes != rc->merging_rsv_size) {
1690                         btrfs_end_transaction(trans);
1691                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1692                                                 num_bytes, NULL);
1693                         goto again;
1694                 }
1695         }
1696
1697         rc->merge_reloc_tree = true;
1698
1699         while (!list_empty(&rc->reloc_roots)) {
1700                 reloc_root = list_entry(rc->reloc_roots.next,
1701                                         struct btrfs_root, root_list);
1702                 list_del_init(&reloc_root->root_list);
1703
1704                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1705                                 false);
1706                 if (IS_ERR(root)) {
1707                         /*
1708                          * Even if we have an error we need this reloc root
1709                          * back on our list so we can clean up properly.
1710                          */
1711                         list_add(&reloc_root->root_list, &reloc_roots);
1712                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1713                         if (!err)
1714                                 err = PTR_ERR(root);
1715                         break;
1716                 }
1717
1718                 if (unlikely(root->reloc_root != reloc_root)) {
1719                         if (root->reloc_root) {
1720                                 btrfs_err(fs_info,
1721 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1722                                           btrfs_root_id(root),
1723                                           btrfs_root_id(root->reloc_root),
1724                                           root->reloc_root->root_key.type,
1725                                           root->reloc_root->root_key.offset,
1726                                           btrfs_root_generation(
1727                                                   &root->reloc_root->root_item),
1728                                           btrfs_root_id(reloc_root),
1729                                           reloc_root->root_key.type,
1730                                           reloc_root->root_key.offset,
1731                                           btrfs_root_generation(
1732                                                   &reloc_root->root_item));
1733                         } else {
1734                                 btrfs_err(fs_info,
1735 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1736                                           btrfs_root_id(root),
1737                                           btrfs_root_id(reloc_root),
1738                                           reloc_root->root_key.type,
1739                                           reloc_root->root_key.offset,
1740                                           btrfs_root_generation(
1741                                                   &reloc_root->root_item));
1742                         }
1743                         list_add(&reloc_root->root_list, &reloc_roots);
1744                         btrfs_put_root(root);
1745                         btrfs_abort_transaction(trans, -EUCLEAN);
1746                         if (!err)
1747                                 err = -EUCLEAN;
1748                         break;
1749                 }
1750
1751                 /*
1752                  * set reference count to 1, so btrfs_recover_relocation
1753                  * knows it should resumes merging
1754                  */
1755                 if (!err)
1756                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1757                 ret = btrfs_update_reloc_root(trans, root);
1758
1759                 /*
1760                  * Even if we have an error we need this reloc root back on our
1761                  * list so we can clean up properly.
1762                  */
1763                 list_add(&reloc_root->root_list, &reloc_roots);
1764                 btrfs_put_root(root);
1765
1766                 if (ret) {
1767                         btrfs_abort_transaction(trans, ret);
1768                         if (!err)
1769                                 err = ret;
1770                         break;
1771                 }
1772         }
1773
1774         list_splice(&reloc_roots, &rc->reloc_roots);
1775
1776         if (!err)
1777                 err = btrfs_commit_transaction(trans);
1778         else
1779                 btrfs_end_transaction(trans);
1780         return err;
1781 }
1782
1783 static noinline_for_stack
1784 void free_reloc_roots(struct list_head *list)
1785 {
1786         struct btrfs_root *reloc_root, *tmp;
1787
1788         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1789                 __del_reloc_root(reloc_root);
1790 }
1791
1792 static noinline_for_stack
1793 void merge_reloc_roots(struct reloc_control *rc)
1794 {
1795         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1796         struct btrfs_root *root;
1797         struct btrfs_root *reloc_root;
1798         LIST_HEAD(reloc_roots);
1799         int found = 0;
1800         int ret = 0;
1801 again:
1802         root = rc->extent_root;
1803
1804         /*
1805          * this serializes us with btrfs_record_root_in_transaction,
1806          * we have to make sure nobody is in the middle of
1807          * adding their roots to the list while we are
1808          * doing this splice
1809          */
1810         mutex_lock(&fs_info->reloc_mutex);
1811         list_splice_init(&rc->reloc_roots, &reloc_roots);
1812         mutex_unlock(&fs_info->reloc_mutex);
1813
1814         while (!list_empty(&reloc_roots)) {
1815                 found = 1;
1816                 reloc_root = list_entry(reloc_roots.next,
1817                                         struct btrfs_root, root_list);
1818
1819                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1820                                          false);
1821                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1822                         if (WARN_ON(IS_ERR(root))) {
1823                                 /*
1824                                  * For recovery we read the fs roots on mount,
1825                                  * and if we didn't find the root then we marked
1826                                  * the reloc root as a garbage root.  For normal
1827                                  * relocation obviously the root should exist in
1828                                  * memory.  However there's no reason we can't
1829                                  * handle the error properly here just in case.
1830                                  */
1831                                 ret = PTR_ERR(root);
1832                                 goto out;
1833                         }
1834                         if (WARN_ON(root->reloc_root != reloc_root)) {
1835                                 /*
1836                                  * This can happen if on-disk metadata has some
1837                                  * corruption, e.g. bad reloc tree key offset.
1838                                  */
1839                                 ret = -EINVAL;
1840                                 goto out;
1841                         }
1842                         ret = merge_reloc_root(rc, root);
1843                         btrfs_put_root(root);
1844                         if (ret) {
1845                                 if (list_empty(&reloc_root->root_list))
1846                                         list_add_tail(&reloc_root->root_list,
1847                                                       &reloc_roots);
1848                                 goto out;
1849                         }
1850                 } else {
1851                         if (!IS_ERR(root)) {
1852                                 if (root->reloc_root == reloc_root) {
1853                                         root->reloc_root = NULL;
1854                                         btrfs_put_root(reloc_root);
1855                                 }
1856                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1857                                           &root->state);
1858                                 btrfs_put_root(root);
1859                         }
1860
1861                         list_del_init(&reloc_root->root_list);
1862                         /* Don't forget to queue this reloc root for cleanup */
1863                         list_add_tail(&reloc_root->reloc_dirty_list,
1864                                       &rc->dirty_subvol_roots);
1865                 }
1866         }
1867
1868         if (found) {
1869                 found = 0;
1870                 goto again;
1871         }
1872 out:
1873         if (ret) {
1874                 btrfs_handle_fs_error(fs_info, ret, NULL);
1875                 free_reloc_roots(&reloc_roots);
1876
1877                 /* new reloc root may be added */
1878                 mutex_lock(&fs_info->reloc_mutex);
1879                 list_splice_init(&rc->reloc_roots, &reloc_roots);
1880                 mutex_unlock(&fs_info->reloc_mutex);
1881                 free_reloc_roots(&reloc_roots);
1882         }
1883
1884         /*
1885          * We used to have
1886          *
1887          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1888          *
1889          * here, but it's wrong.  If we fail to start the transaction in
1890          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1891          * have actually been removed from the reloc_root_tree rb tree.  This is
1892          * fine because we're bailing here, and we hold a reference on the root
1893          * for the list that holds it, so these roots will be cleaned up when we
1894          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1895          * will be cleaned up on unmount.
1896          *
1897          * The remaining nodes will be cleaned up by free_reloc_control.
1898          */
1899 }
1900
1901 static void free_block_list(struct rb_root *blocks)
1902 {
1903         struct tree_block *block;
1904         struct rb_node *rb_node;
1905         while ((rb_node = rb_first(blocks))) {
1906                 block = rb_entry(rb_node, struct tree_block, rb_node);
1907                 rb_erase(rb_node, blocks);
1908                 kfree(block);
1909         }
1910 }
1911
1912 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1913                                       struct btrfs_root *reloc_root)
1914 {
1915         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1916         struct btrfs_root *root;
1917         int ret;
1918
1919         if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1920                 return 0;
1921
1922         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1923
1924         /*
1925          * This should succeed, since we can't have a reloc root without having
1926          * already looked up the actual root and created the reloc root for this
1927          * root.
1928          *
1929          * However if there's some sort of corruption where we have a ref to a
1930          * reloc root without a corresponding root this could return ENOENT.
1931          */
1932         if (IS_ERR(root)) {
1933                 ASSERT(0);
1934                 return PTR_ERR(root);
1935         }
1936         if (root->reloc_root != reloc_root) {
1937                 ASSERT(0);
1938                 btrfs_err(fs_info,
1939                           "root %llu has two reloc roots associated with it",
1940                           reloc_root->root_key.offset);
1941                 btrfs_put_root(root);
1942                 return -EUCLEAN;
1943         }
1944         ret = btrfs_record_root_in_trans(trans, root);
1945         btrfs_put_root(root);
1946
1947         return ret;
1948 }
1949
1950 static noinline_for_stack
1951 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1952                                      struct reloc_control *rc,
1953                                      struct btrfs_backref_node *node,
1954                                      struct btrfs_backref_edge *edges[])
1955 {
1956         struct btrfs_backref_node *next;
1957         struct btrfs_root *root;
1958         int index = 0;
1959         int ret;
1960
1961         next = walk_up_backref(node, edges, &index);
1962         root = next->root;
1963
1964         /*
1965          * If there is no root, then our references for this block are
1966          * incomplete, as we should be able to walk all the way up to a block
1967          * that is owned by a root.
1968          *
1969          * This path is only for SHAREABLE roots, so if we come upon a
1970          * non-SHAREABLE root then we have backrefs that resolve improperly.
1971          *
1972          * Both of these cases indicate file system corruption, or a bug in the
1973          * backref walking code.
1974          */
1975         if (unlikely(!root)) {
1976                 btrfs_err(trans->fs_info,
1977                           "bytenr %llu doesn't have a backref path ending in a root",
1978                           node->bytenr);
1979                 return ERR_PTR(-EUCLEAN);
1980         }
1981         if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1982                 btrfs_err(trans->fs_info,
1983                           "bytenr %llu has multiple refs with one ending in a non-shareable root",
1984                           node->bytenr);
1985                 return ERR_PTR(-EUCLEAN);
1986         }
1987
1988         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
1989                 ret = record_reloc_root_in_trans(trans, root);
1990                 if (ret)
1991                         return ERR_PTR(ret);
1992                 goto found;
1993         }
1994
1995         ret = btrfs_record_root_in_trans(trans, root);
1996         if (ret)
1997                 return ERR_PTR(ret);
1998         root = root->reloc_root;
1999
2000         /*
2001          * We could have raced with another thread which failed, so
2002          * root->reloc_root may not be set, return ENOENT in this case.
2003          */
2004         if (!root)
2005                 return ERR_PTR(-ENOENT);
2006
2007         if (next->new_bytenr) {
2008                 /*
2009                  * We just created the reloc root, so we shouldn't have
2010                  * ->new_bytenr set yet. If it is then we have multiple roots
2011                  *  pointing at the same bytenr which indicates corruption, or
2012                  *  we've made a mistake in the backref walking code.
2013                  */
2014                 ASSERT(next->new_bytenr == 0);
2015                 btrfs_err(trans->fs_info,
2016                           "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2017                           node->bytenr, next->bytenr);
2018                 return ERR_PTR(-EUCLEAN);
2019         }
2020
2021         next->new_bytenr = root->node->start;
2022         btrfs_put_root(next->root);
2023         next->root = btrfs_grab_root(root);
2024         ASSERT(next->root);
2025         mark_block_processed(rc, next);
2026 found:
2027         next = node;
2028         /* setup backref node path for btrfs_reloc_cow_block */
2029         while (1) {
2030                 rc->backref_cache.path[next->level] = next;
2031                 if (--index < 0)
2032                         break;
2033                 next = edges[index]->node[UPPER];
2034         }
2035         return root;
2036 }
2037
2038 /*
2039  * Select a tree root for relocation.
2040  *
2041  * Return NULL if the block is not shareable. We should use do_relocation() in
2042  * this case.
2043  *
2044  * Return a tree root pointer if the block is shareable.
2045  * Return -ENOENT if the block is root of reloc tree.
2046  */
2047 static noinline_for_stack
2048 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2049 {
2050         struct btrfs_backref_node *next;
2051         struct btrfs_root *root;
2052         struct btrfs_root *fs_root = NULL;
2053         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2054         int index = 0;
2055
2056         next = node;
2057         while (1) {
2058                 cond_resched();
2059                 next = walk_up_backref(next, edges, &index);
2060                 root = next->root;
2061
2062                 /*
2063                  * This can occur if we have incomplete extent refs leading all
2064                  * the way up a particular path, in this case return -EUCLEAN.
2065                  */
2066                 if (!root)
2067                         return ERR_PTR(-EUCLEAN);
2068
2069                 /* No other choice for non-shareable tree */
2070                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2071                         return root;
2072
2073                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2074                         fs_root = root;
2075
2076                 if (next != node)
2077                         return NULL;
2078
2079                 next = walk_down_backref(edges, &index);
2080                 if (!next || next->level <= node->level)
2081                         break;
2082         }
2083
2084         if (!fs_root)
2085                 return ERR_PTR(-ENOENT);
2086         return fs_root;
2087 }
2088
2089 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2090                                                   struct btrfs_backref_node *node)
2091 {
2092         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2093         struct btrfs_backref_node *next = node;
2094         struct btrfs_backref_edge *edge;
2095         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2096         u64 num_bytes = 0;
2097         int index = 0;
2098
2099         BUG_ON(node->processed);
2100
2101         while (next) {
2102                 cond_resched();
2103                 while (1) {
2104                         if (next->processed)
2105                                 break;
2106
2107                         num_bytes += fs_info->nodesize;
2108
2109                         if (list_empty(&next->upper))
2110                                 break;
2111
2112                         edge = list_entry(next->upper.next,
2113                                         struct btrfs_backref_edge, list[LOWER]);
2114                         edges[index++] = edge;
2115                         next = edge->node[UPPER];
2116                 }
2117                 next = walk_down_backref(edges, &index);
2118         }
2119         return num_bytes;
2120 }
2121
2122 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2123                                  struct reloc_control *rc, u64 num_bytes)
2124 {
2125         struct btrfs_fs_info *fs_info = trans->fs_info;
2126         int ret;
2127
2128         trans->block_rsv = rc->block_rsv;
2129         rc->reserved_bytes += num_bytes;
2130
2131         /*
2132          * We are under a transaction here so we can only do limited flushing.
2133          * If we get an enospc just kick back -EAGAIN so we know to drop the
2134          * transaction and try to refill when we can flush all the things.
2135          */
2136         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2137                                      BTRFS_RESERVE_FLUSH_LIMIT);
2138         if (ret) {
2139                 u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2140
2141                 while (tmp <= rc->reserved_bytes)
2142                         tmp <<= 1;
2143                 /*
2144                  * only one thread can access block_rsv at this point,
2145                  * so we don't need hold lock to protect block_rsv.
2146                  * we expand more reservation size here to allow enough
2147                  * space for relocation and we will return earlier in
2148                  * enospc case.
2149                  */
2150                 rc->block_rsv->size = tmp + fs_info->nodesize *
2151                                       RELOCATION_RESERVED_NODES;
2152                 return -EAGAIN;
2153         }
2154
2155         return 0;
2156 }
2157
2158 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2159                                   struct reloc_control *rc,
2160                                   struct btrfs_backref_node *node)
2161 {
2162         u64 num_bytes;
2163
2164         num_bytes = calcu_metadata_size(rc, node) * 2;
2165         return refill_metadata_space(trans, rc, num_bytes);
2166 }
2167
2168 /*
2169  * relocate a block tree, and then update pointers in upper level
2170  * blocks that reference the block to point to the new location.
2171  *
2172  * if called by link_to_upper, the block has already been relocated.
2173  * in that case this function just updates pointers.
2174  */
2175 static int do_relocation(struct btrfs_trans_handle *trans,
2176                          struct reloc_control *rc,
2177                          struct btrfs_backref_node *node,
2178                          struct btrfs_key *key,
2179                          struct btrfs_path *path, int lowest)
2180 {
2181         struct btrfs_backref_node *upper;
2182         struct btrfs_backref_edge *edge;
2183         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2184         struct btrfs_root *root;
2185         struct extent_buffer *eb;
2186         u32 blocksize;
2187         u64 bytenr;
2188         int slot;
2189         int ret = 0;
2190
2191         /*
2192          * If we are lowest then this is the first time we're processing this
2193          * block, and thus shouldn't have an eb associated with it yet.
2194          */
2195         ASSERT(!lowest || !node->eb);
2196
2197         path->lowest_level = node->level + 1;
2198         rc->backref_cache.path[node->level] = node;
2199         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2200                 cond_resched();
2201
2202                 upper = edge->node[UPPER];
2203                 root = select_reloc_root(trans, rc, upper, edges);
2204                 if (IS_ERR(root)) {
2205                         ret = PTR_ERR(root);
2206                         goto next;
2207                 }
2208
2209                 if (upper->eb && !upper->locked) {
2210                         if (!lowest) {
2211                                 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2212                                 if (ret < 0)
2213                                         goto next;
2214                                 BUG_ON(ret);
2215                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2216                                 if (node->eb->start == bytenr)
2217                                         goto next;
2218                         }
2219                         btrfs_backref_drop_node_buffer(upper);
2220                 }
2221
2222                 if (!upper->eb) {
2223                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2224                         if (ret) {
2225                                 if (ret > 0)
2226                                         ret = -ENOENT;
2227
2228                                 btrfs_release_path(path);
2229                                 break;
2230                         }
2231
2232                         if (!upper->eb) {
2233                                 upper->eb = path->nodes[upper->level];
2234                                 path->nodes[upper->level] = NULL;
2235                         } else {
2236                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2237                         }
2238
2239                         upper->locked = 1;
2240                         path->locks[upper->level] = 0;
2241
2242                         slot = path->slots[upper->level];
2243                         btrfs_release_path(path);
2244                 } else {
2245                         ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2246                         if (ret < 0)
2247                                 goto next;
2248                         BUG_ON(ret);
2249                 }
2250
2251                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2252                 if (lowest) {
2253                         if (bytenr != node->bytenr) {
2254                                 btrfs_err(root->fs_info,
2255                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2256                                           bytenr, node->bytenr, slot,
2257                                           upper->eb->start);
2258                                 ret = -EIO;
2259                                 goto next;
2260                         }
2261                 } else {
2262                         if (node->eb->start == bytenr)
2263                                 goto next;
2264                 }
2265
2266                 blocksize = root->fs_info->nodesize;
2267                 eb = btrfs_read_node_slot(upper->eb, slot);
2268                 if (IS_ERR(eb)) {
2269                         ret = PTR_ERR(eb);
2270                         goto next;
2271                 }
2272                 btrfs_tree_lock(eb);
2273
2274                 if (!node->eb) {
2275                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2276                                               slot, &eb, BTRFS_NESTING_COW);
2277                         btrfs_tree_unlock(eb);
2278                         free_extent_buffer(eb);
2279                         if (ret < 0)
2280                                 goto next;
2281                         /*
2282                          * We've just COWed this block, it should have updated
2283                          * the correct backref node entry.
2284                          */
2285                         ASSERT(node->eb == eb);
2286                 } else {
2287                         struct btrfs_ref ref = {
2288                                 .action = BTRFS_ADD_DELAYED_REF,
2289                                 .bytenr = node->eb->start,
2290                                 .num_bytes = blocksize,
2291                                 .parent = upper->eb->start,
2292                                 .owning_root = btrfs_header_owner(upper->eb),
2293                                 .ref_root = btrfs_header_owner(upper->eb),
2294                         };
2295
2296                         btrfs_set_node_blockptr(upper->eb, slot,
2297                                                 node->eb->start);
2298                         btrfs_set_node_ptr_generation(upper->eb, slot,
2299                                                       trans->transid);
2300                         btrfs_mark_buffer_dirty(trans, upper->eb);
2301
2302                         btrfs_init_tree_ref(&ref, node->level,
2303                                             btrfs_root_id(root), false);
2304                         ret = btrfs_inc_extent_ref(trans, &ref);
2305                         if (!ret)
2306                                 ret = btrfs_drop_subtree(trans, root, eb,
2307                                                          upper->eb);
2308                         if (ret)
2309                                 btrfs_abort_transaction(trans, ret);
2310                 }
2311 next:
2312                 if (!upper->pending)
2313                         btrfs_backref_drop_node_buffer(upper);
2314                 else
2315                         btrfs_backref_unlock_node_buffer(upper);
2316                 if (ret)
2317                         break;
2318         }
2319
2320         if (!ret && node->pending) {
2321                 btrfs_backref_drop_node_buffer(node);
2322                 list_del_init(&node->list);
2323                 node->pending = 0;
2324         }
2325
2326         path->lowest_level = 0;
2327
2328         /*
2329          * We should have allocated all of our space in the block rsv and thus
2330          * shouldn't ENOSPC.
2331          */
2332         ASSERT(ret != -ENOSPC);
2333         return ret;
2334 }
2335
2336 static int link_to_upper(struct btrfs_trans_handle *trans,
2337                          struct reloc_control *rc,
2338                          struct btrfs_backref_node *node,
2339                          struct btrfs_path *path)
2340 {
2341         struct btrfs_key key;
2342
2343         btrfs_node_key_to_cpu(node->eb, &key, 0);
2344         return do_relocation(trans, rc, node, &key, path, 0);
2345 }
2346
2347 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2348                                 struct reloc_control *rc,
2349                                 struct btrfs_path *path, int err)
2350 {
2351         LIST_HEAD(list);
2352         struct btrfs_backref_cache *cache = &rc->backref_cache;
2353         struct btrfs_backref_node *node;
2354         int level;
2355         int ret;
2356
2357         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2358                 while (!list_empty(&cache->pending[level])) {
2359                         node = list_entry(cache->pending[level].next,
2360                                           struct btrfs_backref_node, list);
2361                         list_move_tail(&node->list, &list);
2362                         BUG_ON(!node->pending);
2363
2364                         if (!err) {
2365                                 ret = link_to_upper(trans, rc, node, path);
2366                                 if (ret < 0)
2367                                         err = ret;
2368                         }
2369                 }
2370                 list_splice_init(&list, &cache->pending[level]);
2371         }
2372         return err;
2373 }
2374
2375 /*
2376  * mark a block and all blocks directly/indirectly reference the block
2377  * as processed.
2378  */
2379 static void update_processed_blocks(struct reloc_control *rc,
2380                                     struct btrfs_backref_node *node)
2381 {
2382         struct btrfs_backref_node *next = node;
2383         struct btrfs_backref_edge *edge;
2384         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2385         int index = 0;
2386
2387         while (next) {
2388                 cond_resched();
2389                 while (1) {
2390                         if (next->processed)
2391                                 break;
2392
2393                         mark_block_processed(rc, next);
2394
2395                         if (list_empty(&next->upper))
2396                                 break;
2397
2398                         edge = list_entry(next->upper.next,
2399                                         struct btrfs_backref_edge, list[LOWER]);
2400                         edges[index++] = edge;
2401                         next = edge->node[UPPER];
2402                 }
2403                 next = walk_down_backref(edges, &index);
2404         }
2405 }
2406
2407 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2408 {
2409         u32 blocksize = rc->extent_root->fs_info->nodesize;
2410
2411         if (test_range_bit(&rc->processed_blocks, bytenr,
2412                            bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2413                 return 1;
2414         return 0;
2415 }
2416
2417 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2418                               struct tree_block *block)
2419 {
2420         struct btrfs_tree_parent_check check = {
2421                 .level = block->level,
2422                 .owner_root = block->owner,
2423                 .transid = block->key.offset
2424         };
2425         struct extent_buffer *eb;
2426
2427         eb = read_tree_block(fs_info, block->bytenr, &check);
2428         if (IS_ERR(eb))
2429                 return PTR_ERR(eb);
2430         if (!extent_buffer_uptodate(eb)) {
2431                 free_extent_buffer(eb);
2432                 return -EIO;
2433         }
2434         if (block->level == 0)
2435                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2436         else
2437                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2438         free_extent_buffer(eb);
2439         block->key_ready = true;
2440         return 0;
2441 }
2442
2443 /*
2444  * helper function to relocate a tree block
2445  */
2446 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2447                                 struct reloc_control *rc,
2448                                 struct btrfs_backref_node *node,
2449                                 struct btrfs_key *key,
2450                                 struct btrfs_path *path)
2451 {
2452         struct btrfs_root *root;
2453         int ret = 0;
2454
2455         if (!node)
2456                 return 0;
2457
2458         /*
2459          * If we fail here we want to drop our backref_node because we are going
2460          * to start over and regenerate the tree for it.
2461          */
2462         ret = reserve_metadata_space(trans, rc, node);
2463         if (ret)
2464                 goto out;
2465
2466         BUG_ON(node->processed);
2467         root = select_one_root(node);
2468         if (IS_ERR(root)) {
2469                 ret = PTR_ERR(root);
2470
2471                 /* See explanation in select_one_root for the -EUCLEAN case. */
2472                 ASSERT(ret == -ENOENT);
2473                 if (ret == -ENOENT) {
2474                         ret = 0;
2475                         update_processed_blocks(rc, node);
2476                 }
2477                 goto out;
2478         }
2479
2480         if (root) {
2481                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2482                         /*
2483                          * This block was the root block of a root, and this is
2484                          * the first time we're processing the block and thus it
2485                          * should not have had the ->new_bytenr modified.
2486                          *
2487                          * However in the case of corruption we could have
2488                          * multiple refs pointing to the same block improperly,
2489                          * and thus we would trip over these checks.  ASSERT()
2490                          * for the developer case, because it could indicate a
2491                          * bug in the backref code, however error out for a
2492                          * normal user in the case of corruption.
2493                          */
2494                         ASSERT(node->new_bytenr == 0);
2495                         if (node->new_bytenr) {
2496                                 btrfs_err(root->fs_info,
2497                                   "bytenr %llu has improper references to it",
2498                                           node->bytenr);
2499                                 ret = -EUCLEAN;
2500                                 goto out;
2501                         }
2502                         ret = btrfs_record_root_in_trans(trans, root);
2503                         if (ret)
2504                                 goto out;
2505                         /*
2506                          * Another thread could have failed, need to check if we
2507                          * have reloc_root actually set.
2508                          */
2509                         if (!root->reloc_root) {
2510                                 ret = -ENOENT;
2511                                 goto out;
2512                         }
2513                         root = root->reloc_root;
2514                         node->new_bytenr = root->node->start;
2515                         btrfs_put_root(node->root);
2516                         node->root = btrfs_grab_root(root);
2517                         ASSERT(node->root);
2518                 } else {
2519                         btrfs_err(root->fs_info,
2520                                   "bytenr %llu resolved to a non-shareable root",
2521                                   node->bytenr);
2522                         ret = -EUCLEAN;
2523                         goto out;
2524                 }
2525                 if (!ret)
2526                         update_processed_blocks(rc, node);
2527         } else {
2528                 ret = do_relocation(trans, rc, node, key, path, 1);
2529         }
2530 out:
2531         if (ret || node->level == 0)
2532                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2533         return ret;
2534 }
2535
2536 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2537                                   struct reloc_control *rc, struct tree_block *block,
2538                                   struct btrfs_path *path)
2539 {
2540         struct btrfs_fs_info *fs_info = trans->fs_info;
2541         struct btrfs_root *root;
2542         u64 num_bytes;
2543         int nr_levels;
2544         int ret;
2545
2546         root = btrfs_get_fs_root(fs_info, block->owner, true);
2547         if (IS_ERR(root))
2548                 return PTR_ERR(root);
2549
2550         nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2551
2552         num_bytes = fs_info->nodesize * nr_levels;
2553         ret = refill_metadata_space(trans, rc, num_bytes);
2554         if (ret) {
2555                 btrfs_put_root(root);
2556                 return ret;
2557         }
2558         path->lowest_level = block->level;
2559         if (root == root->fs_info->chunk_root)
2560                 btrfs_reserve_chunk_metadata(trans, false);
2561
2562         ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2563         path->lowest_level = 0;
2564         btrfs_release_path(path);
2565
2566         if (root == root->fs_info->chunk_root)
2567                 btrfs_trans_release_chunk_metadata(trans);
2568         if (ret > 0)
2569                 ret = 0;
2570         btrfs_put_root(root);
2571
2572         return ret;
2573 }
2574
2575 /*
2576  * relocate a list of blocks
2577  */
2578 static noinline_for_stack
2579 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2580                          struct reloc_control *rc, struct rb_root *blocks)
2581 {
2582         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2583         struct btrfs_backref_node *node;
2584         struct btrfs_path *path;
2585         struct tree_block *block;
2586         struct tree_block *next;
2587         int ret = 0;
2588
2589         path = btrfs_alloc_path();
2590         if (!path) {
2591                 ret = -ENOMEM;
2592                 goto out_free_blocks;
2593         }
2594
2595         /* Kick in readahead for tree blocks with missing keys */
2596         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2597                 if (!block->key_ready)
2598                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2599                                                    block->owner, 0,
2600                                                    block->level);
2601         }
2602
2603         /* Get first keys */
2604         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2605                 if (!block->key_ready) {
2606                         ret = get_tree_block_key(fs_info, block);
2607                         if (ret)
2608                                 goto out_free_path;
2609                 }
2610         }
2611
2612         /* Do tree relocation */
2613         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2614                 /*
2615                  * For COWonly blocks, or the data reloc tree, we only need to
2616                  * COW down to the block, there's no need to generate a backref
2617                  * tree.
2618                  */
2619                 if (block->owner &&
2620                     (!is_fstree(block->owner) ||
2621                      block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2622                         ret = relocate_cowonly_block(trans, rc, block, path);
2623                         if (ret)
2624                                 break;
2625                         continue;
2626                 }
2627
2628                 node = build_backref_tree(trans, rc, &block->key,
2629                                           block->level, block->bytenr);
2630                 if (IS_ERR(node)) {
2631                         ret = PTR_ERR(node);
2632                         goto out;
2633                 }
2634
2635                 ret = relocate_tree_block(trans, rc, node, &block->key,
2636                                           path);
2637                 if (ret < 0)
2638                         break;
2639         }
2640 out:
2641         ret = finish_pending_nodes(trans, rc, path, ret);
2642
2643 out_free_path:
2644         btrfs_free_path(path);
2645 out_free_blocks:
2646         free_block_list(blocks);
2647         return ret;
2648 }
2649
2650 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2651 {
2652         const struct file_extent_cluster *cluster = &rc->cluster;
2653         struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2654         u64 alloc_hint = 0;
2655         u64 start;
2656         u64 end;
2657         u64 offset = inode->reloc_block_group_start;
2658         u64 num_bytes;
2659         int nr;
2660         int ret = 0;
2661         u64 i_size = i_size_read(&inode->vfs_inode);
2662         u64 prealloc_start = cluster->start - offset;
2663         u64 prealloc_end = cluster->end - offset;
2664         u64 cur_offset = prealloc_start;
2665
2666         /*
2667          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2668          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2669          * btrfs_do_readpage() call of previously relocated file cluster.
2670          *
2671          * If the current cluster starts in the above range, btrfs_do_readpage()
2672          * will skip the read, and relocate_one_folio() will later writeback
2673          * the padding zeros as new data, causing data corruption.
2674          *
2675          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2676          */
2677         if (!PAGE_ALIGNED(i_size)) {
2678                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2679                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2680                 const u32 sectorsize = fs_info->sectorsize;
2681                 struct folio *folio;
2682
2683                 ASSERT(sectorsize < PAGE_SIZE);
2684                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2685
2686                 /*
2687                  * Subpage can't handle page with DIRTY but without UPTODATE
2688                  * bit as it can lead to the following deadlock:
2689                  *
2690                  * btrfs_read_folio()
2691                  * | Page already *locked*
2692                  * |- btrfs_lock_and_flush_ordered_range()
2693                  *    |- btrfs_start_ordered_extent()
2694                  *       |- extent_write_cache_pages()
2695                  *          |- lock_page()
2696                  *             We try to lock the page we already hold.
2697                  *
2698                  * Here we just writeback the whole data reloc inode, so that
2699                  * we will be ensured to have no dirty range in the page, and
2700                  * are safe to clear the uptodate bits.
2701                  *
2702                  * This shouldn't cause too much overhead, as we need to write
2703                  * the data back anyway.
2704                  */
2705                 ret = filemap_write_and_wait(mapping);
2706                 if (ret < 0)
2707                         return ret;
2708
2709                 clear_extent_bits(&inode->io_tree, i_size,
2710                                   round_up(i_size, PAGE_SIZE) - 1,
2711                                   EXTENT_UPTODATE);
2712                 folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2713                 /*
2714                  * If page is freed we don't need to do anything then, as we
2715                  * will re-read the whole page anyway.
2716                  */
2717                 if (!IS_ERR(folio)) {
2718                         btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2719                                         round_up(i_size, PAGE_SIZE) - i_size);
2720                         folio_unlock(folio);
2721                         folio_put(folio);
2722                 }
2723         }
2724
2725         BUG_ON(cluster->start != cluster->boundary[0]);
2726         ret = btrfs_alloc_data_chunk_ondemand(inode,
2727                                               prealloc_end + 1 - prealloc_start);
2728         if (ret)
2729                 return ret;
2730
2731         btrfs_inode_lock(inode, 0);
2732         for (nr = 0; nr < cluster->nr; nr++) {
2733                 struct extent_state *cached_state = NULL;
2734
2735                 start = cluster->boundary[nr] - offset;
2736                 if (nr + 1 < cluster->nr)
2737                         end = cluster->boundary[nr + 1] - 1 - offset;
2738                 else
2739                         end = cluster->end - offset;
2740
2741                 lock_extent(&inode->io_tree, start, end, &cached_state);
2742                 num_bytes = end + 1 - start;
2743                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2744                                                 num_bytes, num_bytes,
2745                                                 end + 1, &alloc_hint);
2746                 cur_offset = end + 1;
2747                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2748                 if (ret)
2749                         break;
2750         }
2751         btrfs_inode_unlock(inode, 0);
2752
2753         if (cur_offset < prealloc_end)
2754                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2755                                                prealloc_end + 1 - cur_offset);
2756         return ret;
2757 }
2758
2759 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2760 {
2761         struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2762         struct extent_map *em;
2763         struct extent_state *cached_state = NULL;
2764         u64 offset = inode->reloc_block_group_start;
2765         u64 start = rc->cluster.start - offset;
2766         u64 end = rc->cluster.end - offset;
2767         int ret = 0;
2768
2769         em = alloc_extent_map();
2770         if (!em)
2771                 return -ENOMEM;
2772
2773         em->start = start;
2774         em->len = end + 1 - start;
2775         em->disk_bytenr = rc->cluster.start;
2776         em->disk_num_bytes = em->len;
2777         em->ram_bytes = em->len;
2778         em->flags |= EXTENT_FLAG_PINNED;
2779
2780         lock_extent(&inode->io_tree, start, end, &cached_state);
2781         ret = btrfs_replace_extent_map_range(inode, em, false);
2782         unlock_extent(&inode->io_tree, start, end, &cached_state);
2783         free_extent_map(em);
2784
2785         return ret;
2786 }
2787
2788 /*
2789  * Allow error injection to test balance/relocation cancellation
2790  */
2791 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2792 {
2793         return atomic_read(&fs_info->balance_cancel_req) ||
2794                 atomic_read(&fs_info->reloc_cancel_req) ||
2795                 fatal_signal_pending(current);
2796 }
2797 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2798
2799 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2800                                     int cluster_nr)
2801 {
2802         /* Last extent, use cluster end directly */
2803         if (cluster_nr >= cluster->nr - 1)
2804                 return cluster->end;
2805
2806         /* Use next boundary start*/
2807         return cluster->boundary[cluster_nr + 1] - 1;
2808 }
2809
2810 static int relocate_one_folio(struct reloc_control *rc,
2811                               struct file_ra_state *ra,
2812                               int *cluster_nr, unsigned long index)
2813 {
2814         const struct file_extent_cluster *cluster = &rc->cluster;
2815         struct inode *inode = rc->data_inode;
2816         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2817         u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2818         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2819         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2820         struct folio *folio;
2821         u64 folio_start;
2822         u64 folio_end;
2823         u64 cur;
2824         int ret;
2825         const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2826
2827         ASSERT(index <= last_index);
2828 again:
2829         folio = filemap_lock_folio(inode->i_mapping, index);
2830         if (IS_ERR(folio)) {
2831
2832                 /*
2833                  * On relocation we're doing readahead on the relocation inode,
2834                  * but if the filesystem is backed by a RAID stripe tree we can
2835                  * get ENOENT (e.g. due to preallocated extents not being
2836                  * mapped in the RST) from the lookup.
2837                  *
2838                  * But readahead doesn't handle the error and submits invalid
2839                  * reads to the device, causing a assertion failures.
2840                  */
2841                 if (!use_rst)
2842                         page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2843                                                   index, last_index + 1 - index);
2844                 folio = __filemap_get_folio(inode->i_mapping, index,
2845                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2846                                             mask);
2847                 if (IS_ERR(folio))
2848                         return PTR_ERR(folio);
2849         }
2850
2851         WARN_ON(folio_order(folio));
2852
2853         if (folio_test_readahead(folio) && !use_rst)
2854                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2855                                            folio, last_index + 1 - index);
2856
2857         if (!folio_test_uptodate(folio)) {
2858                 btrfs_read_folio(NULL, folio);
2859                 folio_lock(folio);
2860                 if (!folio_test_uptodate(folio)) {
2861                         ret = -EIO;
2862                         goto release_folio;
2863                 }
2864                 if (folio->mapping != inode->i_mapping) {
2865                         folio_unlock(folio);
2866                         folio_put(folio);
2867                         goto again;
2868                 }
2869         }
2870
2871         /*
2872          * We could have lost folio private when we dropped the lock to read the
2873          * folio above, make sure we set_folio_extent_mapped() here so we have any
2874          * of the subpage blocksize stuff we need in place.
2875          */
2876         ret = set_folio_extent_mapped(folio);
2877         if (ret < 0)
2878                 goto release_folio;
2879
2880         folio_start = folio_pos(folio);
2881         folio_end = folio_start + PAGE_SIZE - 1;
2882
2883         /*
2884          * Start from the cluster, as for subpage case, the cluster can start
2885          * inside the folio.
2886          */
2887         cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2888         while (cur <= folio_end) {
2889                 struct extent_state *cached_state = NULL;
2890                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2891                 u64 extent_end = get_cluster_boundary_end(cluster,
2892                                                 *cluster_nr) - offset;
2893                 u64 clamped_start = max(folio_start, extent_start);
2894                 u64 clamped_end = min(folio_end, extent_end);
2895                 u32 clamped_len = clamped_end + 1 - clamped_start;
2896
2897                 /* Reserve metadata for this range */
2898                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2899                                                       clamped_len, clamped_len,
2900                                                       false);
2901                 if (ret)
2902                         goto release_folio;
2903
2904                 /* Mark the range delalloc and dirty for later writeback */
2905                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2906                             &cached_state);
2907                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2908                                                 clamped_end, 0, &cached_state);
2909                 if (ret) {
2910                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
2911                                          clamped_start, clamped_end,
2912                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
2913                                          &cached_state);
2914                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
2915                                                         clamped_len, true);
2916                         btrfs_delalloc_release_extents(BTRFS_I(inode),
2917                                                        clamped_len);
2918                         goto release_folio;
2919                 }
2920                 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2921
2922                 /*
2923                  * Set the boundary if it's inside the folio.
2924                  * Data relocation requires the destination extents to have the
2925                  * same size as the source.
2926                  * EXTENT_BOUNDARY bit prevents current extent from being merged
2927                  * with previous extent.
2928                  */
2929                 if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
2930                         u64 boundary_start = cluster->boundary[*cluster_nr] -
2931                                                 offset;
2932                         u64 boundary_end = boundary_start +
2933                                            fs_info->sectorsize - 1;
2934
2935                         set_extent_bit(&BTRFS_I(inode)->io_tree,
2936                                        boundary_start, boundary_end,
2937                                        EXTENT_BOUNDARY, NULL);
2938                 }
2939                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2940                               &cached_state);
2941                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2942                 cur += clamped_len;
2943
2944                 /* Crossed extent end, go to next extent */
2945                 if (cur >= extent_end) {
2946                         (*cluster_nr)++;
2947                         /* Just finished the last extent of the cluster, exit. */
2948                         if (*cluster_nr >= cluster->nr)
2949                                 break;
2950                 }
2951         }
2952         folio_unlock(folio);
2953         folio_put(folio);
2954
2955         balance_dirty_pages_ratelimited(inode->i_mapping);
2956         btrfs_throttle(fs_info);
2957         if (btrfs_should_cancel_balance(fs_info))
2958                 ret = -ECANCELED;
2959         return ret;
2960
2961 release_folio:
2962         folio_unlock(folio);
2963         folio_put(folio);
2964         return ret;
2965 }
2966
2967 static int relocate_file_extent_cluster(struct reloc_control *rc)
2968 {
2969         struct inode *inode = rc->data_inode;
2970         const struct file_extent_cluster *cluster = &rc->cluster;
2971         u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2972         unsigned long index;
2973         unsigned long last_index;
2974         struct file_ra_state *ra;
2975         int cluster_nr = 0;
2976         int ret = 0;
2977
2978         if (!cluster->nr)
2979                 return 0;
2980
2981         ra = kzalloc(sizeof(*ra), GFP_NOFS);
2982         if (!ra)
2983                 return -ENOMEM;
2984
2985         ret = prealloc_file_extent_cluster(rc);
2986         if (ret)
2987                 goto out;
2988
2989         file_ra_state_init(ra, inode->i_mapping);
2990
2991         ret = setup_relocation_extent_mapping(rc);
2992         if (ret)
2993                 goto out;
2994
2995         last_index = (cluster->end - offset) >> PAGE_SHIFT;
2996         for (index = (cluster->start - offset) >> PAGE_SHIFT;
2997              index <= last_index && !ret; index++)
2998                 ret = relocate_one_folio(rc, ra, &cluster_nr, index);
2999         if (ret == 0)
3000                 WARN_ON(cluster_nr != cluster->nr);
3001 out:
3002         kfree(ra);
3003         return ret;
3004 }
3005
3006 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3007                                            const struct btrfs_key *extent_key)
3008 {
3009         struct inode *inode = rc->data_inode;
3010         struct file_extent_cluster *cluster = &rc->cluster;
3011         int ret;
3012         struct btrfs_root *root = BTRFS_I(inode)->root;
3013
3014         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3015                 ret = relocate_file_extent_cluster(rc);
3016                 if (ret)
3017                         return ret;
3018                 cluster->nr = 0;
3019         }
3020
3021         /*
3022          * Under simple quotas, we set root->relocation_src_root when we find
3023          * the extent. If adjacent extents have different owners, we can't merge
3024          * them while relocating. Handle this by storing the owning root that
3025          * started a cluster and if we see an extent from a different root break
3026          * cluster formation (just like the above case of non-adjacent extents).
3027          *
3028          * Without simple quotas, relocation_src_root is always 0, so we should
3029          * never see a mismatch, and it should have no effect on relocation
3030          * clusters.
3031          */
3032         if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3033                 u64 tmp = root->relocation_src_root;
3034
3035                 /*
3036                  * root->relocation_src_root is the state that actually affects
3037                  * the preallocation we do here, so set it to the root owning
3038                  * the cluster we need to relocate.
3039                  */
3040                 root->relocation_src_root = cluster->owning_root;
3041                 ret = relocate_file_extent_cluster(rc);
3042                 if (ret)
3043                         return ret;
3044                 cluster->nr = 0;
3045                 /* And reset it back for the current extent's owning root. */
3046                 root->relocation_src_root = tmp;
3047         }
3048
3049         if (!cluster->nr) {
3050                 cluster->start = extent_key->objectid;
3051                 cluster->owning_root = root->relocation_src_root;
3052         }
3053         else
3054                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3055         cluster->end = extent_key->objectid + extent_key->offset - 1;
3056         cluster->boundary[cluster->nr] = extent_key->objectid;
3057         cluster->nr++;
3058
3059         if (cluster->nr >= MAX_EXTENTS) {
3060                 ret = relocate_file_extent_cluster(rc);
3061                 if (ret)
3062                         return ret;
3063                 cluster->nr = 0;
3064         }
3065         return 0;
3066 }
3067
3068 /*
3069  * helper to add a tree block to the list.
3070  * the major work is getting the generation and level of the block
3071  */
3072 static int add_tree_block(struct reloc_control *rc,
3073                           const struct btrfs_key *extent_key,
3074                           struct btrfs_path *path,
3075                           struct rb_root *blocks)
3076 {
3077         struct extent_buffer *eb;
3078         struct btrfs_extent_item *ei;
3079         struct btrfs_tree_block_info *bi;
3080         struct tree_block *block;
3081         struct rb_node *rb_node;
3082         u32 item_size;
3083         int level = -1;
3084         u64 generation;
3085         u64 owner = 0;
3086
3087         eb =  path->nodes[0];
3088         item_size = btrfs_item_size(eb, path->slots[0]);
3089
3090         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3091             item_size >= sizeof(*ei) + sizeof(*bi)) {
3092                 unsigned long ptr = 0, end;
3093
3094                 ei = btrfs_item_ptr(eb, path->slots[0],
3095                                 struct btrfs_extent_item);
3096                 end = (unsigned long)ei + item_size;
3097                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3098                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3099                         level = btrfs_tree_block_level(eb, bi);
3100                         ptr = (unsigned long)(bi + 1);
3101                 } else {
3102                         level = (int)extent_key->offset;
3103                         ptr = (unsigned long)(ei + 1);
3104                 }
3105                 generation = btrfs_extent_generation(eb, ei);
3106
3107                 /*
3108                  * We're reading random blocks without knowing their owner ahead
3109                  * of time.  This is ok most of the time, as all reloc roots and
3110                  * fs roots have the same lock type.  However normal trees do
3111                  * not, and the only way to know ahead of time is to read the
3112                  * inline ref offset.  We know it's an fs root if
3113                  *
3114                  * 1. There's more than one ref.
3115                  * 2. There's a SHARED_DATA_REF_KEY set.
3116                  * 3. FULL_BACKREF is set on the flags.
3117                  *
3118                  * Otherwise it's safe to assume that the ref offset == the
3119                  * owner of this block, so we can use that when calling
3120                  * read_tree_block.
3121                  */
3122                 if (btrfs_extent_refs(eb, ei) == 1 &&
3123                     !(btrfs_extent_flags(eb, ei) &
3124                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3125                     ptr < end) {
3126                         struct btrfs_extent_inline_ref *iref;
3127                         int type;
3128
3129                         iref = (struct btrfs_extent_inline_ref *)ptr;
3130                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3131                                                         BTRFS_REF_TYPE_BLOCK);
3132                         if (type == BTRFS_REF_TYPE_INVALID)
3133                                 return -EINVAL;
3134                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3135                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3136                 }
3137         } else {
3138                 btrfs_print_leaf(eb);
3139                 btrfs_err(rc->block_group->fs_info,
3140                           "unrecognized tree backref at tree block %llu slot %u",
3141                           eb->start, path->slots[0]);
3142                 btrfs_release_path(path);
3143                 return -EUCLEAN;
3144         }
3145
3146         btrfs_release_path(path);
3147
3148         BUG_ON(level == -1);
3149
3150         block = kmalloc(sizeof(*block), GFP_NOFS);
3151         if (!block)
3152                 return -ENOMEM;
3153
3154         block->bytenr = extent_key->objectid;
3155         block->key.objectid = rc->extent_root->fs_info->nodesize;
3156         block->key.offset = generation;
3157         block->level = level;
3158         block->key_ready = false;
3159         block->owner = owner;
3160
3161         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3162         if (rb_node)
3163                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3164                                     -EEXIST);
3165
3166         return 0;
3167 }
3168
3169 /*
3170  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3171  */
3172 static int __add_tree_block(struct reloc_control *rc,
3173                             u64 bytenr, u32 blocksize,
3174                             struct rb_root *blocks)
3175 {
3176         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3177         struct btrfs_path *path;
3178         struct btrfs_key key;
3179         int ret;
3180         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3181
3182         if (tree_block_processed(bytenr, rc))
3183                 return 0;
3184
3185         if (rb_simple_search(blocks, bytenr))
3186                 return 0;
3187
3188         path = btrfs_alloc_path();
3189         if (!path)
3190                 return -ENOMEM;
3191 again:
3192         key.objectid = bytenr;
3193         if (skinny) {
3194                 key.type = BTRFS_METADATA_ITEM_KEY;
3195                 key.offset = (u64)-1;
3196         } else {
3197                 key.type = BTRFS_EXTENT_ITEM_KEY;
3198                 key.offset = blocksize;
3199         }
3200
3201         path->search_commit_root = 1;
3202         path->skip_locking = 1;
3203         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3204         if (ret < 0)
3205                 goto out;
3206
3207         if (ret > 0 && skinny) {
3208                 if (path->slots[0]) {
3209                         path->slots[0]--;
3210                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3211                                               path->slots[0]);
3212                         if (key.objectid == bytenr &&
3213                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3214                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3215                               key.offset == blocksize)))
3216                                 ret = 0;
3217                 }
3218
3219                 if (ret) {
3220                         skinny = false;
3221                         btrfs_release_path(path);
3222                         goto again;
3223                 }
3224         }
3225         if (ret) {
3226                 ASSERT(ret == 1);
3227                 btrfs_print_leaf(path->nodes[0]);
3228                 btrfs_err(fs_info,
3229              "tree block extent item (%llu) is not found in extent tree",
3230                      bytenr);
3231                 WARN_ON(1);
3232                 ret = -EINVAL;
3233                 goto out;
3234         }
3235
3236         ret = add_tree_block(rc, &key, path, blocks);
3237 out:
3238         btrfs_free_path(path);
3239         return ret;
3240 }
3241
3242 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3243                                     struct btrfs_block_group *block_group,
3244                                     struct inode *inode,
3245                                     u64 ino)
3246 {
3247         struct btrfs_root *root = fs_info->tree_root;
3248         struct btrfs_trans_handle *trans;
3249         int ret = 0;
3250
3251         if (inode)
3252                 goto truncate;
3253
3254         inode = btrfs_iget(ino, root);
3255         if (IS_ERR(inode))
3256                 return -ENOENT;
3257
3258 truncate:
3259         ret = btrfs_check_trunc_cache_free_space(fs_info,
3260                                                  &fs_info->global_block_rsv);
3261         if (ret)
3262                 goto out;
3263
3264         trans = btrfs_join_transaction(root);
3265         if (IS_ERR(trans)) {
3266                 ret = PTR_ERR(trans);
3267                 goto out;
3268         }
3269
3270         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3271
3272         btrfs_end_transaction(trans);
3273         btrfs_btree_balance_dirty(fs_info);
3274 out:
3275         iput(inode);
3276         return ret;
3277 }
3278
3279 /*
3280  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3281  * cache inode, to avoid free space cache data extent blocking data relocation.
3282  */
3283 static int delete_v1_space_cache(struct extent_buffer *leaf,
3284                                  struct btrfs_block_group *block_group,
3285                                  u64 data_bytenr)
3286 {
3287         u64 space_cache_ino;
3288         struct btrfs_file_extent_item *ei;
3289         struct btrfs_key key;
3290         bool found = false;
3291         int i;
3292         int ret;
3293
3294         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3295                 return 0;
3296
3297         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3298                 u8 type;
3299
3300                 btrfs_item_key_to_cpu(leaf, &key, i);
3301                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3302                         continue;
3303                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3304                 type = btrfs_file_extent_type(leaf, ei);
3305
3306                 if ((type == BTRFS_FILE_EXTENT_REG ||
3307                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3308                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3309                         found = true;
3310                         space_cache_ino = key.objectid;
3311                         break;
3312                 }
3313         }
3314         if (!found)
3315                 return -ENOENT;
3316         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3317                                         space_cache_ino);
3318         return ret;
3319 }
3320
3321 /*
3322  * helper to find all tree blocks that reference a given data extent
3323  */
3324 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3325                                                   const struct btrfs_key *extent_key,
3326                                                   struct btrfs_path *path,
3327                                                   struct rb_root *blocks)
3328 {
3329         struct btrfs_backref_walk_ctx ctx = { 0 };
3330         struct ulist_iterator leaf_uiter;
3331         struct ulist_node *ref_node = NULL;
3332         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3333         int ret = 0;
3334
3335         btrfs_release_path(path);
3336
3337         ctx.bytenr = extent_key->objectid;
3338         ctx.skip_inode_ref_list = true;
3339         ctx.fs_info = rc->extent_root->fs_info;
3340
3341         ret = btrfs_find_all_leafs(&ctx);
3342         if (ret < 0)
3343                 return ret;
3344
3345         ULIST_ITER_INIT(&leaf_uiter);
3346         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3347                 struct btrfs_tree_parent_check check = { 0 };
3348                 struct extent_buffer *eb;
3349
3350                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3351                 if (IS_ERR(eb)) {
3352                         ret = PTR_ERR(eb);
3353                         break;
3354                 }
3355                 ret = delete_v1_space_cache(eb, rc->block_group,
3356                                             extent_key->objectid);
3357                 free_extent_buffer(eb);
3358                 if (ret < 0)
3359                         break;
3360                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3361                 if (ret < 0)
3362                         break;
3363         }
3364         if (ret < 0)
3365                 free_block_list(blocks);
3366         ulist_free(ctx.refs);
3367         return ret;
3368 }
3369
3370 /*
3371  * helper to find next unprocessed extent
3372  */
3373 static noinline_for_stack
3374 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3375                      struct btrfs_key *extent_key)
3376 {
3377         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3378         struct btrfs_key key;
3379         struct extent_buffer *leaf;
3380         u64 start, end, last;
3381         int ret;
3382
3383         last = rc->block_group->start + rc->block_group->length;
3384         while (1) {
3385                 bool block_found;
3386
3387                 cond_resched();
3388                 if (rc->search_start >= last) {
3389                         ret = 1;
3390                         break;
3391                 }
3392
3393                 key.objectid = rc->search_start;
3394                 key.type = BTRFS_EXTENT_ITEM_KEY;
3395                 key.offset = 0;
3396
3397                 path->search_commit_root = 1;
3398                 path->skip_locking = 1;
3399                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3400                                         0, 0);
3401                 if (ret < 0)
3402                         break;
3403 next:
3404                 leaf = path->nodes[0];
3405                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3406                         ret = btrfs_next_leaf(rc->extent_root, path);
3407                         if (ret != 0)
3408                                 break;
3409                         leaf = path->nodes[0];
3410                 }
3411
3412                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3413                 if (key.objectid >= last) {
3414                         ret = 1;
3415                         break;
3416                 }
3417
3418                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3419                     key.type != BTRFS_METADATA_ITEM_KEY) {
3420                         path->slots[0]++;
3421                         goto next;
3422                 }
3423
3424                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3425                     key.objectid + key.offset <= rc->search_start) {
3426                         path->slots[0]++;
3427                         goto next;
3428                 }
3429
3430                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3431                     key.objectid + fs_info->nodesize <=
3432                     rc->search_start) {
3433                         path->slots[0]++;
3434                         goto next;
3435                 }
3436
3437                 block_found = find_first_extent_bit(&rc->processed_blocks,
3438                                                     key.objectid, &start, &end,
3439                                                     EXTENT_DIRTY, NULL);
3440
3441                 if (block_found && start <= key.objectid) {
3442                         btrfs_release_path(path);
3443                         rc->search_start = end + 1;
3444                 } else {
3445                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3446                                 rc->search_start = key.objectid + key.offset;
3447                         else
3448                                 rc->search_start = key.objectid +
3449                                         fs_info->nodesize;
3450                         memcpy(extent_key, &key, sizeof(key));
3451                         return 0;
3452                 }
3453         }
3454         btrfs_release_path(path);
3455         return ret;
3456 }
3457
3458 static void set_reloc_control(struct reloc_control *rc)
3459 {
3460         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3461
3462         mutex_lock(&fs_info->reloc_mutex);
3463         fs_info->reloc_ctl = rc;
3464         mutex_unlock(&fs_info->reloc_mutex);
3465 }
3466
3467 static void unset_reloc_control(struct reloc_control *rc)
3468 {
3469         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3470
3471         mutex_lock(&fs_info->reloc_mutex);
3472         fs_info->reloc_ctl = NULL;
3473         mutex_unlock(&fs_info->reloc_mutex);
3474 }
3475
3476 static noinline_for_stack
3477 int prepare_to_relocate(struct reloc_control *rc)
3478 {
3479         struct btrfs_trans_handle *trans;
3480         int ret;
3481
3482         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3483                                               BTRFS_BLOCK_RSV_TEMP);
3484         if (!rc->block_rsv)
3485                 return -ENOMEM;
3486
3487         memset(&rc->cluster, 0, sizeof(rc->cluster));
3488         rc->search_start = rc->block_group->start;
3489         rc->extents_found = 0;
3490         rc->nodes_relocated = 0;
3491         rc->merging_rsv_size = 0;
3492         rc->reserved_bytes = 0;
3493         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3494                               RELOCATION_RESERVED_NODES;
3495         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3496                                      rc->block_rsv, rc->block_rsv->size,
3497                                      BTRFS_RESERVE_FLUSH_ALL);
3498         if (ret)
3499                 return ret;
3500
3501         rc->create_reloc_tree = true;
3502         set_reloc_control(rc);
3503
3504         trans = btrfs_join_transaction(rc->extent_root);
3505         if (IS_ERR(trans)) {
3506                 unset_reloc_control(rc);
3507                 /*
3508                  * extent tree is not a ref_cow tree and has no reloc_root to
3509                  * cleanup.  And callers are responsible to free the above
3510                  * block rsv.
3511                  */
3512                 return PTR_ERR(trans);
3513         }
3514
3515         ret = btrfs_commit_transaction(trans);
3516         if (ret)
3517                 unset_reloc_control(rc);
3518
3519         return ret;
3520 }
3521
3522 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3523 {
3524         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3525         struct rb_root blocks = RB_ROOT;
3526         struct btrfs_key key;
3527         struct btrfs_trans_handle *trans = NULL;
3528         struct btrfs_path *path;
3529         struct btrfs_extent_item *ei;
3530         u64 flags;
3531         int ret;
3532         int err = 0;
3533         int progress = 0;
3534
3535         path = btrfs_alloc_path();
3536         if (!path)
3537                 return -ENOMEM;
3538         path->reada = READA_FORWARD;
3539
3540         ret = prepare_to_relocate(rc);
3541         if (ret) {
3542                 err = ret;
3543                 goto out_free;
3544         }
3545
3546         while (1) {
3547                 rc->reserved_bytes = 0;
3548                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3549                                              rc->block_rsv->size,
3550                                              BTRFS_RESERVE_FLUSH_ALL);
3551                 if (ret) {
3552                         err = ret;
3553                         break;
3554                 }
3555                 progress++;
3556                 trans = btrfs_start_transaction(rc->extent_root, 0);
3557                 if (IS_ERR(trans)) {
3558                         err = PTR_ERR(trans);
3559                         trans = NULL;
3560                         break;
3561                 }
3562 restart:
3563                 if (rc->backref_cache.last_trans != trans->transid)
3564                         btrfs_backref_release_cache(&rc->backref_cache);
3565                 rc->backref_cache.last_trans = trans->transid;
3566
3567                 ret = find_next_extent(rc, path, &key);
3568                 if (ret < 0)
3569                         err = ret;
3570                 if (ret != 0)
3571                         break;
3572
3573                 rc->extents_found++;
3574
3575                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3576                                     struct btrfs_extent_item);
3577                 flags = btrfs_extent_flags(path->nodes[0], ei);
3578
3579                 /*
3580                  * If we are relocating a simple quota owned extent item, we
3581                  * need to note the owner on the reloc data root so that when
3582                  * we allocate the replacement item, we can attribute it to the
3583                  * correct eventual owner (rather than the reloc data root).
3584                  */
3585                 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3586                         struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3587                         u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3588                                                                  path->nodes[0],
3589                                                                  path->slots[0]);
3590
3591                         root->relocation_src_root = owning_root_id;
3592                 }
3593
3594                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3595                         ret = add_tree_block(rc, &key, path, &blocks);
3596                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3597                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3598                         ret = add_data_references(rc, &key, path, &blocks);
3599                 } else {
3600                         btrfs_release_path(path);
3601                         ret = 0;
3602                 }
3603                 if (ret < 0) {
3604                         err = ret;
3605                         break;
3606                 }
3607
3608                 if (!RB_EMPTY_ROOT(&blocks)) {
3609                         ret = relocate_tree_blocks(trans, rc, &blocks);
3610                         if (ret < 0) {
3611                                 if (ret != -EAGAIN) {
3612                                         err = ret;
3613                                         break;
3614                                 }
3615                                 rc->extents_found--;
3616                                 rc->search_start = key.objectid;
3617                         }
3618                 }
3619
3620                 btrfs_end_transaction_throttle(trans);
3621                 btrfs_btree_balance_dirty(fs_info);
3622                 trans = NULL;
3623
3624                 if (rc->stage == MOVE_DATA_EXTENTS &&
3625                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3626                         rc->found_file_extent = true;
3627                         ret = relocate_data_extent(rc, &key);
3628                         if (ret < 0) {
3629                                 err = ret;
3630                                 break;
3631                         }
3632                 }
3633                 if (btrfs_should_cancel_balance(fs_info)) {
3634                         err = -ECANCELED;
3635                         break;
3636                 }
3637         }
3638         if (trans && progress && err == -ENOSPC) {
3639                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3640                 if (ret == 1) {
3641                         err = 0;
3642                         progress = 0;
3643                         goto restart;
3644                 }
3645         }
3646
3647         btrfs_release_path(path);
3648         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3649
3650         if (trans) {
3651                 btrfs_end_transaction_throttle(trans);
3652                 btrfs_btree_balance_dirty(fs_info);
3653         }
3654
3655         if (!err) {
3656                 ret = relocate_file_extent_cluster(rc);
3657                 if (ret < 0)
3658                         err = ret;
3659         }
3660
3661         rc->create_reloc_tree = false;
3662         set_reloc_control(rc);
3663
3664         btrfs_backref_release_cache(&rc->backref_cache);
3665         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3666
3667         /*
3668          * Even in the case when the relocation is cancelled, we should all go
3669          * through prepare_to_merge() and merge_reloc_roots().
3670          *
3671          * For error (including cancelled balance), prepare_to_merge() will
3672          * mark all reloc trees orphan, then queue them for cleanup in
3673          * merge_reloc_roots()
3674          */
3675         err = prepare_to_merge(rc, err);
3676
3677         merge_reloc_roots(rc);
3678
3679         rc->merge_reloc_tree = false;
3680         unset_reloc_control(rc);
3681         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3682
3683         /* get rid of pinned extents */
3684         trans = btrfs_join_transaction(rc->extent_root);
3685         if (IS_ERR(trans)) {
3686                 err = PTR_ERR(trans);
3687                 goto out_free;
3688         }
3689         ret = btrfs_commit_transaction(trans);
3690         if (ret && !err)
3691                 err = ret;
3692 out_free:
3693         ret = clean_dirty_subvols(rc);
3694         if (ret < 0 && !err)
3695                 err = ret;
3696         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3697         btrfs_free_path(path);
3698         return err;
3699 }
3700
3701 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3702                                  struct btrfs_root *root, u64 objectid)
3703 {
3704         struct btrfs_path *path;
3705         struct btrfs_inode_item *item;
3706         struct extent_buffer *leaf;
3707         int ret;
3708
3709         path = btrfs_alloc_path();
3710         if (!path)
3711                 return -ENOMEM;
3712
3713         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3714         if (ret)
3715                 goto out;
3716
3717         leaf = path->nodes[0];
3718         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3719         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3720         btrfs_set_inode_generation(leaf, item, 1);
3721         btrfs_set_inode_size(leaf, item, 0);
3722         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3723         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3724                                           BTRFS_INODE_PREALLOC);
3725 out:
3726         btrfs_free_path(path);
3727         return ret;
3728 }
3729
3730 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3731                                 struct btrfs_root *root, u64 objectid)
3732 {
3733         struct btrfs_path *path;
3734         struct btrfs_key key;
3735         int ret = 0;
3736
3737         path = btrfs_alloc_path();
3738         if (!path) {
3739                 ret = -ENOMEM;
3740                 goto out;
3741         }
3742
3743         key.objectid = objectid;
3744         key.type = BTRFS_INODE_ITEM_KEY;
3745         key.offset = 0;
3746         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3747         if (ret) {
3748                 if (ret > 0)
3749                         ret = -ENOENT;
3750                 goto out;
3751         }
3752         ret = btrfs_del_item(trans, root, path);
3753 out:
3754         if (ret)
3755                 btrfs_abort_transaction(trans, ret);
3756         btrfs_free_path(path);
3757 }
3758
3759 /*
3760  * helper to create inode for data relocation.
3761  * the inode is in data relocation tree and its link count is 0
3762  */
3763 static noinline_for_stack struct inode *create_reloc_inode(
3764                                         struct btrfs_fs_info *fs_info,
3765                                         const struct btrfs_block_group *group)
3766 {
3767         struct inode *inode = NULL;
3768         struct btrfs_trans_handle *trans;
3769         struct btrfs_root *root;
3770         u64 objectid;
3771         int ret = 0;
3772
3773         root = btrfs_grab_root(fs_info->data_reloc_root);
3774         trans = btrfs_start_transaction(root, 6);
3775         if (IS_ERR(trans)) {
3776                 btrfs_put_root(root);
3777                 return ERR_CAST(trans);
3778         }
3779
3780         ret = btrfs_get_free_objectid(root, &objectid);
3781         if (ret)
3782                 goto out;
3783
3784         ret = __insert_orphan_inode(trans, root, objectid);
3785         if (ret)
3786                 goto out;
3787
3788         inode = btrfs_iget(objectid, root);
3789         if (IS_ERR(inode)) {
3790                 delete_orphan_inode(trans, root, objectid);
3791                 ret = PTR_ERR(inode);
3792                 inode = NULL;
3793                 goto out;
3794         }
3795         BTRFS_I(inode)->reloc_block_group_start = group->start;
3796
3797         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3798 out:
3799         btrfs_put_root(root);
3800         btrfs_end_transaction(trans);
3801         btrfs_btree_balance_dirty(fs_info);
3802         if (ret) {
3803                 iput(inode);
3804                 inode = ERR_PTR(ret);
3805         }
3806         return inode;
3807 }
3808
3809 /*
3810  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3811  * has been requested meanwhile and don't start in that case.
3812  *
3813  * Return:
3814  *   0             success
3815  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3816  *   -ECANCELED    cancellation request was set before the operation started
3817  */
3818 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3819 {
3820         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3821                 /* This should not happen */
3822                 btrfs_err(fs_info, "reloc already running, cannot start");
3823                 return -EINPROGRESS;
3824         }
3825
3826         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3827                 btrfs_info(fs_info, "chunk relocation canceled on start");
3828                 /*
3829                  * On cancel, clear all requests but let the caller mark
3830                  * the end after cleanup operations.
3831                  */
3832                 atomic_set(&fs_info->reloc_cancel_req, 0);
3833                 return -ECANCELED;
3834         }
3835         return 0;
3836 }
3837
3838 /*
3839  * Mark end of chunk relocation that is cancellable and wake any waiters.
3840  */
3841 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3842 {
3843         /* Requested after start, clear bit first so any waiters can continue */
3844         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3845                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3846         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3847         atomic_set(&fs_info->reloc_cancel_req, 0);
3848 }
3849
3850 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3851 {
3852         struct reloc_control *rc;
3853
3854         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3855         if (!rc)
3856                 return NULL;
3857
3858         INIT_LIST_HEAD(&rc->reloc_roots);
3859         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3860         btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3861         rc->reloc_root_tree.rb_root = RB_ROOT;
3862         spin_lock_init(&rc->reloc_root_tree.lock);
3863         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3864         return rc;
3865 }
3866
3867 static void free_reloc_control(struct reloc_control *rc)
3868 {
3869         struct mapping_node *node, *tmp;
3870
3871         free_reloc_roots(&rc->reloc_roots);
3872         rbtree_postorder_for_each_entry_safe(node, tmp,
3873                         &rc->reloc_root_tree.rb_root, rb_node)
3874                 kfree(node);
3875
3876         kfree(rc);
3877 }
3878
3879 /*
3880  * Print the block group being relocated
3881  */
3882 static void describe_relocation(struct btrfs_block_group *block_group)
3883 {
3884         char buf[128] = {'\0'};
3885
3886         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3887
3888         btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3889                    block_group->start, buf);
3890 }
3891
3892 static const char *stage_to_string(enum reloc_stage stage)
3893 {
3894         if (stage == MOVE_DATA_EXTENTS)
3895                 return "move data extents";
3896         if (stage == UPDATE_DATA_PTRS)
3897                 return "update data pointers";
3898         return "unknown";
3899 }
3900
3901 /*
3902  * function to relocate all extents in a block group.
3903  */
3904 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3905 {
3906         struct btrfs_block_group *bg;
3907         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3908         struct reloc_control *rc;
3909         struct inode *inode;
3910         struct btrfs_path *path;
3911         int ret;
3912         int rw = 0;
3913         int err = 0;
3914
3915         /*
3916          * This only gets set if we had a half-deleted snapshot on mount.  We
3917          * cannot allow relocation to start while we're still trying to clean up
3918          * these pending deletions.
3919          */
3920         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3921         if (ret)
3922                 return ret;
3923
3924         /* We may have been woken up by close_ctree, so bail if we're closing. */
3925         if (btrfs_fs_closing(fs_info))
3926                 return -EINTR;
3927
3928         bg = btrfs_lookup_block_group(fs_info, group_start);
3929         if (!bg)
3930                 return -ENOENT;
3931
3932         /*
3933          * Relocation of a data block group creates ordered extents.  Without
3934          * sb_start_write(), we can freeze the filesystem while unfinished
3935          * ordered extents are left. Such ordered extents can cause a deadlock
3936          * e.g. when syncfs() is waiting for their completion but they can't
3937          * finish because they block when joining a transaction, due to the
3938          * fact that the freeze locks are being held in write mode.
3939          */
3940         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3941                 ASSERT(sb_write_started(fs_info->sb));
3942
3943         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3944                 btrfs_put_block_group(bg);
3945                 return -ETXTBSY;
3946         }
3947
3948         rc = alloc_reloc_control(fs_info);
3949         if (!rc) {
3950                 btrfs_put_block_group(bg);
3951                 return -ENOMEM;
3952         }
3953
3954         ret = reloc_chunk_start(fs_info);
3955         if (ret < 0) {
3956                 err = ret;
3957                 goto out_put_bg;
3958         }
3959
3960         rc->extent_root = extent_root;
3961         rc->block_group = bg;
3962
3963         ret = btrfs_inc_block_group_ro(rc->block_group, true);
3964         if (ret) {
3965                 err = ret;
3966                 goto out;
3967         }
3968         rw = 1;
3969
3970         path = btrfs_alloc_path();
3971         if (!path) {
3972                 err = -ENOMEM;
3973                 goto out;
3974         }
3975
3976         inode = lookup_free_space_inode(rc->block_group, path);
3977         btrfs_free_path(path);
3978
3979         if (!IS_ERR(inode))
3980                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3981         else
3982                 ret = PTR_ERR(inode);
3983
3984         if (ret && ret != -ENOENT) {
3985                 err = ret;
3986                 goto out;
3987         }
3988
3989         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3990         if (IS_ERR(rc->data_inode)) {
3991                 err = PTR_ERR(rc->data_inode);
3992                 rc->data_inode = NULL;
3993                 goto out;
3994         }
3995
3996         describe_relocation(rc->block_group);
3997
3998         btrfs_wait_block_group_reservations(rc->block_group);
3999         btrfs_wait_nocow_writers(rc->block_group);
4000         btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4001
4002         ret = btrfs_zone_finish(rc->block_group);
4003         WARN_ON(ret && ret != -EAGAIN);
4004
4005         while (1) {
4006                 enum reloc_stage finishes_stage;
4007
4008                 mutex_lock(&fs_info->cleaner_mutex);
4009                 ret = relocate_block_group(rc);
4010                 mutex_unlock(&fs_info->cleaner_mutex);
4011                 if (ret < 0)
4012                         err = ret;
4013
4014                 finishes_stage = rc->stage;
4015                 /*
4016                  * We may have gotten ENOSPC after we already dirtied some
4017                  * extents.  If writeout happens while we're relocating a
4018                  * different block group we could end up hitting the
4019                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4020                  * btrfs_reloc_cow_block.  Make sure we write everything out
4021                  * properly so we don't trip over this problem, and then break
4022                  * out of the loop if we hit an error.
4023                  */
4024                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4025                         ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4026                                                        (u64)-1);
4027                         if (ret)
4028                                 err = ret;
4029                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4030                                                  0, -1);
4031                         rc->stage = UPDATE_DATA_PTRS;
4032                 }
4033
4034                 if (err < 0)
4035                         goto out;
4036
4037                 if (rc->extents_found == 0)
4038                         break;
4039
4040                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4041                            rc->extents_found, stage_to_string(finishes_stage));
4042         }
4043
4044         WARN_ON(rc->block_group->pinned > 0);
4045         WARN_ON(rc->block_group->reserved > 0);
4046         WARN_ON(rc->block_group->used > 0);
4047 out:
4048         if (err && rw)
4049                 btrfs_dec_block_group_ro(rc->block_group);
4050         iput(rc->data_inode);
4051 out_put_bg:
4052         btrfs_put_block_group(bg);
4053         reloc_chunk_end(fs_info);
4054         free_reloc_control(rc);
4055         return err;
4056 }
4057
4058 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4059 {
4060         struct btrfs_fs_info *fs_info = root->fs_info;
4061         struct btrfs_trans_handle *trans;
4062         int ret, err;
4063
4064         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4065         if (IS_ERR(trans))
4066                 return PTR_ERR(trans);
4067
4068         memset(&root->root_item.drop_progress, 0,
4069                 sizeof(root->root_item.drop_progress));
4070         btrfs_set_root_drop_level(&root->root_item, 0);
4071         btrfs_set_root_refs(&root->root_item, 0);
4072         ret = btrfs_update_root(trans, fs_info->tree_root,
4073                                 &root->root_key, &root->root_item);
4074
4075         err = btrfs_end_transaction(trans);
4076         if (err)
4077                 return err;
4078         return ret;
4079 }
4080
4081 /*
4082  * recover relocation interrupted by system crash.
4083  *
4084  * this function resumes merging reloc trees with corresponding fs trees.
4085  * this is important for keeping the sharing of tree blocks
4086  */
4087 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4088 {
4089         LIST_HEAD(reloc_roots);
4090         struct btrfs_key key;
4091         struct btrfs_root *fs_root;
4092         struct btrfs_root *reloc_root;
4093         struct btrfs_path *path;
4094         struct extent_buffer *leaf;
4095         struct reloc_control *rc = NULL;
4096         struct btrfs_trans_handle *trans;
4097         int ret2;
4098         int ret = 0;
4099
4100         path = btrfs_alloc_path();
4101         if (!path)
4102                 return -ENOMEM;
4103         path->reada = READA_BACK;
4104
4105         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4106         key.type = BTRFS_ROOT_ITEM_KEY;
4107         key.offset = (u64)-1;
4108
4109         while (1) {
4110                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4111                                         path, 0, 0);
4112                 if (ret < 0)
4113                         goto out;
4114                 if (ret > 0) {
4115                         if (path->slots[0] == 0)
4116                                 break;
4117                         path->slots[0]--;
4118                 }
4119                 ret = 0;
4120                 leaf = path->nodes[0];
4121                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4122                 btrfs_release_path(path);
4123
4124                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4125                     key.type != BTRFS_ROOT_ITEM_KEY)
4126                         break;
4127
4128                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4129                 if (IS_ERR(reloc_root)) {
4130                         ret = PTR_ERR(reloc_root);
4131                         goto out;
4132                 }
4133
4134                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4135                 list_add(&reloc_root->root_list, &reloc_roots);
4136
4137                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4138                         fs_root = btrfs_get_fs_root(fs_info,
4139                                         reloc_root->root_key.offset, false);
4140                         if (IS_ERR(fs_root)) {
4141                                 ret = PTR_ERR(fs_root);
4142                                 if (ret != -ENOENT)
4143                                         goto out;
4144                                 ret = mark_garbage_root(reloc_root);
4145                                 if (ret < 0)
4146                                         goto out;
4147                                 ret = 0;
4148                         } else {
4149                                 btrfs_put_root(fs_root);
4150                         }
4151                 }
4152
4153                 if (key.offset == 0)
4154                         break;
4155
4156                 key.offset--;
4157         }
4158         btrfs_release_path(path);
4159
4160         if (list_empty(&reloc_roots))
4161                 goto out;
4162
4163         rc = alloc_reloc_control(fs_info);
4164         if (!rc) {
4165                 ret = -ENOMEM;
4166                 goto out;
4167         }
4168
4169         ret = reloc_chunk_start(fs_info);
4170         if (ret < 0)
4171                 goto out_end;
4172
4173         rc->extent_root = btrfs_extent_root(fs_info, 0);
4174
4175         set_reloc_control(rc);
4176
4177         trans = btrfs_join_transaction(rc->extent_root);
4178         if (IS_ERR(trans)) {
4179                 ret = PTR_ERR(trans);
4180                 goto out_unset;
4181         }
4182
4183         rc->merge_reloc_tree = true;
4184
4185         while (!list_empty(&reloc_roots)) {
4186                 reloc_root = list_entry(reloc_roots.next,
4187                                         struct btrfs_root, root_list);
4188                 list_del(&reloc_root->root_list);
4189
4190                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4191                         list_add_tail(&reloc_root->root_list,
4192                                       &rc->reloc_roots);
4193                         continue;
4194                 }
4195
4196                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4197                                             false);
4198                 if (IS_ERR(fs_root)) {
4199                         ret = PTR_ERR(fs_root);
4200                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4201                         btrfs_end_transaction(trans);
4202                         goto out_unset;
4203                 }
4204
4205                 ret = __add_reloc_root(reloc_root);
4206                 ASSERT(ret != -EEXIST);
4207                 if (ret) {
4208                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4209                         btrfs_put_root(fs_root);
4210                         btrfs_end_transaction(trans);
4211                         goto out_unset;
4212                 }
4213                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4214                 btrfs_put_root(fs_root);
4215         }
4216
4217         ret = btrfs_commit_transaction(trans);
4218         if (ret)
4219                 goto out_unset;
4220
4221         merge_reloc_roots(rc);
4222
4223         unset_reloc_control(rc);
4224
4225         trans = btrfs_join_transaction(rc->extent_root);
4226         if (IS_ERR(trans)) {
4227                 ret = PTR_ERR(trans);
4228                 goto out_clean;
4229         }
4230         ret = btrfs_commit_transaction(trans);
4231 out_clean:
4232         ret2 = clean_dirty_subvols(rc);
4233         if (ret2 < 0 && !ret)
4234                 ret = ret2;
4235 out_unset:
4236         unset_reloc_control(rc);
4237 out_end:
4238         reloc_chunk_end(fs_info);
4239         free_reloc_control(rc);
4240 out:
4241         free_reloc_roots(&reloc_roots);
4242
4243         btrfs_free_path(path);
4244
4245         if (ret == 0) {
4246                 /* cleanup orphan inode in data relocation tree */
4247                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4248                 ASSERT(fs_root);
4249                 ret = btrfs_orphan_cleanup(fs_root);
4250                 btrfs_put_root(fs_root);
4251         }
4252         return ret;
4253 }
4254
4255 /*
4256  * helper to add ordered checksum for data relocation.
4257  *
4258  * cloning checksum properly handles the nodatasum extents.
4259  * it also saves CPU time to re-calculate the checksum.
4260  */
4261 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4262 {
4263         struct btrfs_inode *inode = ordered->inode;
4264         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4265         u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4266         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4267         LIST_HEAD(list);
4268         int ret;
4269
4270         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4271                                       disk_bytenr + ordered->num_bytes - 1,
4272                                       &list, false);
4273         if (ret < 0) {
4274                 btrfs_mark_ordered_extent_error(ordered);
4275                 return ret;
4276         }
4277
4278         while (!list_empty(&list)) {
4279                 struct btrfs_ordered_sum *sums =
4280                         list_entry(list.next, struct btrfs_ordered_sum, list);
4281
4282                 list_del_init(&sums->list);
4283
4284                 /*
4285                  * We need to offset the new_bytenr based on where the csum is.
4286                  * We need to do this because we will read in entire prealloc
4287                  * extents but we may have written to say the middle of the
4288                  * prealloc extent, so we need to make sure the csum goes with
4289                  * the right disk offset.
4290                  *
4291                  * We can do this because the data reloc inode refers strictly
4292                  * to the on disk bytes, so we don't have to worry about
4293                  * disk_len vs real len like with real inodes since it's all
4294                  * disk length.
4295                  */
4296                 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4297                 btrfs_add_ordered_sum(ordered, sums);
4298         }
4299
4300         return 0;
4301 }
4302
4303 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4304                           struct btrfs_root *root,
4305                           const struct extent_buffer *buf,
4306                           struct extent_buffer *cow)
4307 {
4308         struct btrfs_fs_info *fs_info = root->fs_info;
4309         struct reloc_control *rc;
4310         struct btrfs_backref_node *node;
4311         int first_cow = 0;
4312         int level;
4313         int ret = 0;
4314
4315         rc = fs_info->reloc_ctl;
4316         if (!rc)
4317                 return 0;
4318
4319         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4320
4321         level = btrfs_header_level(buf);
4322         if (btrfs_header_generation(buf) <=
4323             btrfs_root_last_snapshot(&root->root_item))
4324                 first_cow = 1;
4325
4326         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4327                 WARN_ON(!first_cow && level == 0);
4328
4329                 node = rc->backref_cache.path[level];
4330
4331                 /*
4332                  * If node->bytenr != buf->start and node->new_bytenr !=
4333                  * buf->start then we've got the wrong backref node for what we
4334                  * expected to see here and the cache is incorrect.
4335                  */
4336                 if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4337                         btrfs_err(fs_info,
4338 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4339                                   buf->start, node->bytenr, node->new_bytenr);
4340                         return -EUCLEAN;
4341                 }
4342
4343                 btrfs_backref_drop_node_buffer(node);
4344                 atomic_inc(&cow->refs);
4345                 node->eb = cow;
4346                 node->new_bytenr = cow->start;
4347
4348                 if (!node->pending) {
4349                         list_move_tail(&node->list,
4350                                        &rc->backref_cache.pending[level]);
4351                         node->pending = 1;
4352                 }
4353
4354                 if (first_cow)
4355                         mark_block_processed(rc, node);
4356
4357                 if (first_cow && level > 0)
4358                         rc->nodes_relocated += buf->len;
4359         }
4360
4361         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4362                 ret = replace_file_extents(trans, rc, root, cow);
4363         return ret;
4364 }
4365
4366 /*
4367  * called before creating snapshot. it calculates metadata reservation
4368  * required for relocating tree blocks in the snapshot
4369  */
4370 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4371                               u64 *bytes_to_reserve)
4372 {
4373         struct btrfs_root *root = pending->root;
4374         struct reloc_control *rc = root->fs_info->reloc_ctl;
4375
4376         if (!rc || !have_reloc_root(root))
4377                 return;
4378
4379         if (!rc->merge_reloc_tree)
4380                 return;
4381
4382         root = root->reloc_root;
4383         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4384         /*
4385          * relocation is in the stage of merging trees. the space
4386          * used by merging a reloc tree is twice the size of
4387          * relocated tree nodes in the worst case. half for cowing
4388          * the reloc tree, half for cowing the fs tree. the space
4389          * used by cowing the reloc tree will be freed after the
4390          * tree is dropped. if we create snapshot, cowing the fs
4391          * tree may use more space than it frees. so we need
4392          * reserve extra space.
4393          */
4394         *bytes_to_reserve += rc->nodes_relocated;
4395 }
4396
4397 /*
4398  * called after snapshot is created. migrate block reservation
4399  * and create reloc root for the newly created snapshot
4400  *
4401  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4402  * references held on the reloc_root, one for root->reloc_root and one for
4403  * rc->reloc_roots.
4404  */
4405 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4406                                struct btrfs_pending_snapshot *pending)
4407 {
4408         struct btrfs_root *root = pending->root;
4409         struct btrfs_root *reloc_root;
4410         struct btrfs_root *new_root;
4411         struct reloc_control *rc = root->fs_info->reloc_ctl;
4412         int ret;
4413
4414         if (!rc || !have_reloc_root(root))
4415                 return 0;
4416
4417         rc = root->fs_info->reloc_ctl;
4418         rc->merging_rsv_size += rc->nodes_relocated;
4419
4420         if (rc->merge_reloc_tree) {
4421                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4422                                               rc->block_rsv,
4423                                               rc->nodes_relocated, true);
4424                 if (ret)
4425                         return ret;
4426         }
4427
4428         new_root = pending->snap;
4429         reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4430         if (IS_ERR(reloc_root))
4431                 return PTR_ERR(reloc_root);
4432
4433         ret = __add_reloc_root(reloc_root);
4434         ASSERT(ret != -EEXIST);
4435         if (ret) {
4436                 /* Pairs with create_reloc_root */
4437                 btrfs_put_root(reloc_root);
4438                 return ret;
4439         }
4440         new_root->reloc_root = btrfs_grab_root(reloc_root);
4441         return 0;
4442 }
4443
4444 /*
4445  * Get the current bytenr for the block group which is being relocated.
4446  *
4447  * Return U64_MAX if no running relocation.
4448  */
4449 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4450 {
4451         u64 logical = U64_MAX;
4452
4453         lockdep_assert_held(&fs_info->reloc_mutex);
4454
4455         if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4456                 logical = fs_info->reloc_ctl->block_group->start;
4457         return logical;
4458 }
This page took 0.278381 seconds and 4 git commands to generate.