]> Git Repo - linux.git/blob - fs/bcachefs/io_write.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / fs / bcachefs / io_write.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2010, 2011 Kent Overstreet <[email protected]>
4  * Copyright 2012 Google, Inc.
5  */
6
7 #include "bcachefs.h"
8 #include "alloc_foreground.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "clock.h"
15 #include "compress.h"
16 #include "debug.h"
17 #include "ec.h"
18 #include "error.h"
19 #include "extent_update.h"
20 #include "inode.h"
21 #include "io_write.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "nocow_locking.h"
26 #include "rebalance.h"
27 #include "subvolume.h"
28 #include "super.h"
29 #include "super-io.h"
30 #include "trace.h"
31
32 #include <linux/blkdev.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/sched/mm.h>
36
37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40                                        u64 now, int rw)
41 {
42         u64 latency_capable =
43                 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44         /* ideally we'd be taking into account the device's variance here: */
45         u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46         s64 latency_over = io_latency - latency_threshold;
47
48         if (latency_threshold && latency_over > 0) {
49                 /*
50                  * bump up congested by approximately latency_over * 4 /
51                  * latency_threshold - we don't need much accuracy here so don't
52                  * bother with the divide:
53                  */
54                 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55                         atomic_add(latency_over >>
56                                    max_t(int, ilog2(latency_threshold) - 2, 0),
57                                    &ca->congested);
58
59                 ca->congested_last = now;
60         } else if (atomic_read(&ca->congested) > 0) {
61                 atomic_dec(&ca->congested);
62         }
63 }
64
65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66 {
67         atomic64_t *latency = &ca->cur_latency[rw];
68         u64 now = local_clock();
69         u64 io_latency = time_after64(now, submit_time)
70                 ? now - submit_time
71                 : 0;
72         u64 old, new, v = atomic64_read(latency);
73
74         do {
75                 old = v;
76
77                 /*
78                  * If the io latency was reasonably close to the current
79                  * latency, skip doing the update and atomic operation - most of
80                  * the time:
81                  */
82                 if (abs((int) (old - io_latency)) < (old >> 1) &&
83                     now & ~(~0U << 5))
84                         break;
85
86                 new = ewma_add(old, io_latency, 5);
87         } while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88
89         bch2_congested_acct(ca, io_latency, now, rw);
90
91         __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
92 }
93
94 #endif
95
96 /* Allocate, free from mempool: */
97
98 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99 {
100         struct bvec_iter_all iter;
101         struct bio_vec *bv;
102
103         bio_for_each_segment_all(bv, bio, iter)
104                 if (bv->bv_page != ZERO_PAGE(0))
105                         mempool_free(bv->bv_page, &c->bio_bounce_pages);
106         bio->bi_vcnt = 0;
107 }
108
109 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110 {
111         struct page *page;
112
113         if (likely(!*using_mempool)) {
114                 page = alloc_page(GFP_NOFS);
115                 if (unlikely(!page)) {
116                         mutex_lock(&c->bio_bounce_pages_lock);
117                         *using_mempool = true;
118                         goto pool_alloc;
119
120                 }
121         } else {
122 pool_alloc:
123                 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
124         }
125
126         return page;
127 }
128
129 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130                                size_t size)
131 {
132         bool using_mempool = false;
133
134         while (size) {
135                 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
136                 unsigned len = min_t(size_t, PAGE_SIZE, size);
137
138                 BUG_ON(!bio_add_page(bio, page, len, 0));
139                 size -= len;
140         }
141
142         if (using_mempool)
143                 mutex_unlock(&c->bio_bounce_pages_lock);
144 }
145
146 /* Extent update path: */
147
148 int bch2_sum_sector_overwrites(struct btree_trans *trans,
149                                struct btree_iter *extent_iter,
150                                struct bkey_i *new,
151                                bool *usage_increasing,
152                                s64 *i_sectors_delta,
153                                s64 *disk_sectors_delta)
154 {
155         struct bch_fs *c = trans->c;
156         struct btree_iter iter;
157         struct bkey_s_c old;
158         unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
159         bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
160         int ret = 0;
161
162         *usage_increasing       = false;
163         *i_sectors_delta        = 0;
164         *disk_sectors_delta     = 0;
165
166         bch2_trans_copy_iter(&iter, extent_iter);
167
168         for_each_btree_key_upto_continue_norestart(iter,
169                                 new->k.p, BTREE_ITER_slots, old, ret) {
170                 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171                         max(bkey_start_offset(&new->k),
172                             bkey_start_offset(old.k));
173
174                 *i_sectors_delta += sectors *
175                         (bkey_extent_is_allocation(&new->k) -
176                          bkey_extent_is_allocation(old.k));
177
178                 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
179                 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180                         ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181                         : 0;
182
183                 if (!*usage_increasing &&
184                     (new->k.p.snapshot != old.k->p.snapshot ||
185                      new_replicas > bch2_bkey_replicas(c, old) ||
186                      (!new_compressed && bch2_bkey_sectors_compressed(old))))
187                         *usage_increasing = true;
188
189                 if (bkey_ge(old.k->p, new->k.p))
190                         break;
191         }
192
193         bch2_trans_iter_exit(trans, &iter);
194         return ret;
195 }
196
197 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198                                                     struct btree_iter *extent_iter,
199                                                     u64 new_i_size,
200                                                     s64 i_sectors_delta)
201 {
202         /*
203          * Crazy performance optimization:
204          * Every extent update needs to also update the inode: the inode trigger
205          * will set bi->journal_seq to the journal sequence number of this
206          * transaction - for fsync.
207          *
208          * But if that's the only reason we're updating the inode (we're not
209          * updating bi_size or bi_sectors), then we don't need the inode update
210          * to be journalled - if we crash, the bi_journal_seq update will be
211          * lost, but that's fine.
212          */
213         unsigned inode_update_flags = BTREE_UPDATE_nojournal;
214
215         struct btree_iter iter;
216         struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
217                               SPOS(0,
218                                    extent_iter->pos.inode,
219                                    extent_iter->snapshot),
220                               BTREE_ITER_cached);
221         int ret = bkey_err(k);
222         if (unlikely(ret))
223                 return ret;
224
225         /*
226          * varint_decode_fast(), in the inode .invalid method, reads up to 7
227          * bytes past the end of the buffer:
228          */
229         struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
230         ret = PTR_ERR_OR_ZERO(k_mut);
231         if (unlikely(ret))
232                 goto err;
233
234         bkey_reassemble(k_mut, k);
235
236         if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
237                 k_mut = bch2_inode_to_v3(trans, k_mut);
238                 ret = PTR_ERR_OR_ZERO(k_mut);
239                 if (unlikely(ret))
240                         goto err;
241         }
242
243         struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
244
245         if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
246             new_i_size > le64_to_cpu(inode->v.bi_size)) {
247                 inode->v.bi_size = cpu_to_le64(new_i_size);
248                 inode_update_flags = 0;
249         }
250
251         if (i_sectors_delta) {
252                 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
253                 inode_update_flags = 0;
254         }
255
256         if (inode->k.p.snapshot != iter.snapshot) {
257                 inode->k.p.snapshot = iter.snapshot;
258                 inode_update_flags = 0;
259         }
260
261         ret = bch2_trans_update(trans, &iter, &inode->k_i,
262                                 BTREE_UPDATE_internal_snapshot_node|
263                                 inode_update_flags);
264 err:
265         bch2_trans_iter_exit(trans, &iter);
266         return ret;
267 }
268
269 int bch2_extent_update(struct btree_trans *trans,
270                        subvol_inum inum,
271                        struct btree_iter *iter,
272                        struct bkey_i *k,
273                        struct disk_reservation *disk_res,
274                        u64 new_i_size,
275                        s64 *i_sectors_delta_total,
276                        bool check_enospc)
277 {
278         struct bpos next_pos;
279         bool usage_increasing;
280         s64 i_sectors_delta = 0, disk_sectors_delta = 0;
281         int ret;
282
283         /*
284          * This traverses us the iterator without changing iter->path->pos to
285          * search_key() (which is pos + 1 for extents): we want there to be a
286          * path already traversed at iter->pos because
287          * bch2_trans_extent_update() will use it to attempt extent merging
288          */
289         ret = __bch2_btree_iter_traverse(iter);
290         if (ret)
291                 return ret;
292
293         ret = bch2_extent_trim_atomic(trans, iter, k);
294         if (ret)
295                 return ret;
296
297         next_pos = k->k.p;
298
299         ret = bch2_sum_sector_overwrites(trans, iter, k,
300                         &usage_increasing,
301                         &i_sectors_delta,
302                         &disk_sectors_delta);
303         if (ret)
304                 return ret;
305
306         if (disk_res &&
307             disk_sectors_delta > (s64) disk_res->sectors) {
308                 ret = bch2_disk_reservation_add(trans->c, disk_res,
309                                         disk_sectors_delta - disk_res->sectors,
310                                         !check_enospc || !usage_increasing
311                                         ? BCH_DISK_RESERVATION_NOFAIL : 0);
312                 if (ret)
313                         return ret;
314         }
315
316         /*
317          * Note:
318          * We always have to do an inode update - even when i_size/i_sectors
319          * aren't changing - for fsync to work properly; fsync relies on
320          * inode->bi_journal_seq which is updated by the trigger code:
321          */
322         ret =   bch2_extent_update_i_size_sectors(trans, iter,
323                                                   min(k->k.p.offset << 9, new_i_size),
324                                                   i_sectors_delta) ?:
325                 bch2_trans_update(trans, iter, k, 0) ?:
326                 bch2_trans_commit(trans, disk_res, NULL,
327                                 BCH_TRANS_COMMIT_no_check_rw|
328                                 BCH_TRANS_COMMIT_no_enospc);
329         if (unlikely(ret))
330                 return ret;
331
332         if (i_sectors_delta_total)
333                 *i_sectors_delta_total += i_sectors_delta;
334         bch2_btree_iter_set_pos(iter, next_pos);
335         return 0;
336 }
337
338 static int bch2_write_index_default(struct bch_write_op *op)
339 {
340         struct bch_fs *c = op->c;
341         struct bkey_buf sk;
342         struct keylist *keys = &op->insert_keys;
343         struct bkey_i *k = bch2_keylist_front(keys);
344         struct btree_trans *trans = bch2_trans_get(c);
345         struct btree_iter iter;
346         subvol_inum inum = {
347                 .subvol = op->subvol,
348                 .inum   = k->k.p.inode,
349         };
350         int ret;
351
352         BUG_ON(!inum.subvol);
353
354         bch2_bkey_buf_init(&sk);
355
356         do {
357                 bch2_trans_begin(trans);
358
359                 k = bch2_keylist_front(keys);
360                 bch2_bkey_buf_copy(&sk, c, k);
361
362                 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
363                                                   &sk.k->k.p.snapshot);
364                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
365                         continue;
366                 if (ret)
367                         break;
368
369                 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
370                                      bkey_start_pos(&sk.k->k),
371                                      BTREE_ITER_slots|BTREE_ITER_intent);
372
373                 ret =   bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
374                         bch2_extent_update(trans, inum, &iter, sk.k,
375                                         &op->res,
376                                         op->new_i_size, &op->i_sectors_delta,
377                                         op->flags & BCH_WRITE_CHECK_ENOSPC);
378                 bch2_trans_iter_exit(trans, &iter);
379
380                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
381                         continue;
382                 if (ret)
383                         break;
384
385                 if (bkey_ge(iter.pos, k->k.p))
386                         bch2_keylist_pop_front(&op->insert_keys);
387                 else
388                         bch2_cut_front(iter.pos, k);
389         } while (!bch2_keylist_empty(keys));
390
391         bch2_trans_put(trans);
392         bch2_bkey_buf_exit(&sk, c);
393
394         return ret;
395 }
396
397 /* Writes */
398
399 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
400                                enum bch_data_type type,
401                                const struct bkey_i *k,
402                                bool nocow)
403 {
404         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
405         struct bch_write_bio *n;
406
407         BUG_ON(c->opts.nochanges);
408
409         bkey_for_each_ptr(ptrs, ptr) {
410                 struct bch_dev *ca = nocow
411                         ? bch2_dev_have_ref(c, ptr->dev)
412                         : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE);
413
414                 if (to_entry(ptr + 1) < ptrs.end) {
415                         n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set));
416
417                         n->bio.bi_end_io        = wbio->bio.bi_end_io;
418                         n->bio.bi_private       = wbio->bio.bi_private;
419                         n->parent               = wbio;
420                         n->split                = true;
421                         n->bounce               = false;
422                         n->put_bio              = true;
423                         n->bio.bi_opf           = wbio->bio.bi_opf;
424                         bio_inc_remaining(&wbio->bio);
425                 } else {
426                         n = wbio;
427                         n->split                = false;
428                 }
429
430                 n->c                    = c;
431                 n->dev                  = ptr->dev;
432                 n->have_ioref           = ca != NULL;
433                 n->nocow                = nocow;
434                 n->submit_time          = local_clock();
435                 n->inode_offset         = bkey_start_offset(&k->k);
436                 if (nocow)
437                         n->nocow_bucket = PTR_BUCKET_NR(ca, ptr);
438                 n->bio.bi_iter.bi_sector = ptr->offset;
439
440                 if (likely(n->have_ioref)) {
441                         this_cpu_add(ca->io_done->sectors[WRITE][type],
442                                      bio_sectors(&n->bio));
443
444                         bio_set_dev(&n->bio, ca->disk_sb.bdev);
445
446                         if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
447                                 bio_endio(&n->bio);
448                                 continue;
449                         }
450
451                         submit_bio(&n->bio);
452                 } else {
453                         n->bio.bi_status        = BLK_STS_REMOVED;
454                         bio_endio(&n->bio);
455                 }
456         }
457 }
458
459 static void __bch2_write(struct bch_write_op *);
460
461 static void bch2_write_done(struct closure *cl)
462 {
463         struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
464         struct bch_fs *c = op->c;
465
466         EBUG_ON(op->open_buckets.nr);
467
468         bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
469         bch2_disk_reservation_put(c, &op->res);
470
471         if (!(op->flags & BCH_WRITE_MOVE))
472                 bch2_write_ref_put(c, BCH_WRITE_REF_write);
473         bch2_keylist_free(&op->insert_keys, op->inline_keys);
474
475         EBUG_ON(cl->parent);
476         closure_debug_destroy(cl);
477         if (op->end_io)
478                 op->end_io(op);
479 }
480
481 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
482 {
483         struct keylist *keys = &op->insert_keys;
484         struct bkey_i *src, *dst = keys->keys, *n;
485
486         for (src = keys->keys; src != keys->top; src = n) {
487                 n = bkey_next(src);
488
489                 if (bkey_extent_is_direct_data(&src->k)) {
490                         bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
491                                             test_bit(ptr->dev, op->failed.d));
492
493                         if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
494                                 return -EIO;
495                 }
496
497                 if (dst != src)
498                         memmove_u64s_down(dst, src, src->k.u64s);
499                 dst = bkey_next(dst);
500         }
501
502         keys->top = dst;
503         return 0;
504 }
505
506 /**
507  * __bch2_write_index - after a write, update index to point to new data
508  * @op:         bch_write_op to process
509  */
510 static void __bch2_write_index(struct bch_write_op *op)
511 {
512         struct bch_fs *c = op->c;
513         struct keylist *keys = &op->insert_keys;
514         unsigned dev;
515         int ret = 0;
516
517         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
518                 ret = bch2_write_drop_io_error_ptrs(op);
519                 if (ret)
520                         goto err;
521         }
522
523         if (!bch2_keylist_empty(keys)) {
524                 u64 sectors_start = keylist_sectors(keys);
525
526                 ret = !(op->flags & BCH_WRITE_MOVE)
527                         ? bch2_write_index_default(op)
528                         : bch2_data_update_index_update(op);
529
530                 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
531                 BUG_ON(keylist_sectors(keys) && !ret);
532
533                 op->written += sectors_start - keylist_sectors(keys);
534
535                 if (ret && !bch2_err_matches(ret, EROFS)) {
536                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
537
538                         bch_err_inum_offset_ratelimited(c,
539                                 insert->k.p.inode, insert->k.p.offset << 9,
540                                 "%s write error while doing btree update: %s",
541                                 op->flags & BCH_WRITE_MOVE ? "move" : "user",
542                                 bch2_err_str(ret));
543                 }
544
545                 if (ret)
546                         goto err;
547         }
548 out:
549         /* If some a bucket wasn't written, we can't erasure code it: */
550         for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
551                 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
552
553         bch2_open_buckets_put(c, &op->open_buckets);
554         return;
555 err:
556         keys->top = keys->keys;
557         op->error = ret;
558         op->flags |= BCH_WRITE_DONE;
559         goto out;
560 }
561
562 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
563 {
564         if (state != wp->state) {
565                 u64 now = ktime_get_ns();
566
567                 if (wp->last_state_change &&
568                     time_after64(now, wp->last_state_change))
569                         wp->time[wp->state] += now - wp->last_state_change;
570                 wp->state = state;
571                 wp->last_state_change = now;
572         }
573 }
574
575 static inline void wp_update_state(struct write_point *wp, bool running)
576 {
577         enum write_point_state state;
578
579         state = running                  ? WRITE_POINT_running :
580                 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
581                                          : WRITE_POINT_stopped;
582
583         __wp_update_state(wp, state);
584 }
585
586 static CLOSURE_CALLBACK(bch2_write_index)
587 {
588         closure_type(op, struct bch_write_op, cl);
589         struct write_point *wp = op->wp;
590         struct workqueue_struct *wq = index_update_wq(op);
591         unsigned long flags;
592
593         if ((op->flags & BCH_WRITE_DONE) &&
594             (op->flags & BCH_WRITE_MOVE))
595                 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
596
597         spin_lock_irqsave(&wp->writes_lock, flags);
598         if (wp->state == WRITE_POINT_waiting_io)
599                 __wp_update_state(wp, WRITE_POINT_waiting_work);
600         list_add_tail(&op->wp_list, &wp->writes);
601         spin_unlock_irqrestore (&wp->writes_lock, flags);
602
603         queue_work(wq, &wp->index_update_work);
604 }
605
606 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
607 {
608         op->wp = wp;
609
610         if (wp->state == WRITE_POINT_stopped) {
611                 spin_lock_irq(&wp->writes_lock);
612                 __wp_update_state(wp, WRITE_POINT_waiting_io);
613                 spin_unlock_irq(&wp->writes_lock);
614         }
615 }
616
617 void bch2_write_point_do_index_updates(struct work_struct *work)
618 {
619         struct write_point *wp =
620                 container_of(work, struct write_point, index_update_work);
621         struct bch_write_op *op;
622
623         while (1) {
624                 spin_lock_irq(&wp->writes_lock);
625                 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
626                 if (op)
627                         list_del(&op->wp_list);
628                 wp_update_state(wp, op != NULL);
629                 spin_unlock_irq(&wp->writes_lock);
630
631                 if (!op)
632                         break;
633
634                 op->flags |= BCH_WRITE_IN_WORKER;
635
636                 __bch2_write_index(op);
637
638                 if (!(op->flags & BCH_WRITE_DONE))
639                         __bch2_write(op);
640                 else
641                         bch2_write_done(&op->cl);
642         }
643 }
644
645 static void bch2_write_endio(struct bio *bio)
646 {
647         struct closure *cl              = bio->bi_private;
648         struct bch_write_op *op         = container_of(cl, struct bch_write_op, cl);
649         struct bch_write_bio *wbio      = to_wbio(bio);
650         struct bch_write_bio *parent    = wbio->split ? wbio->parent : NULL;
651         struct bch_fs *c                = wbio->c;
652         struct bch_dev *ca              = wbio->have_ioref
653                 ? bch2_dev_have_ref(c, wbio->dev)
654                 : NULL;
655
656         if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
657                                     op->pos.inode,
658                                     wbio->inode_offset << 9,
659                                     "data write error: %s",
660                                     bch2_blk_status_to_str(bio->bi_status))) {
661                 set_bit(wbio->dev, op->failed.d);
662                 op->flags |= BCH_WRITE_IO_ERROR;
663         }
664
665         if (wbio->nocow) {
666                 bch2_bucket_nocow_unlock(&c->nocow_locks,
667                                          POS(ca->dev_idx, wbio->nocow_bucket),
668                                          BUCKET_NOCOW_LOCK_UPDATE);
669                 set_bit(wbio->dev, op->devs_need_flush->d);
670         }
671
672         if (wbio->have_ioref) {
673                 bch2_latency_acct(ca, wbio->submit_time, WRITE);
674                 percpu_ref_put(&ca->io_ref);
675         }
676
677         if (wbio->bounce)
678                 bch2_bio_free_pages_pool(c, bio);
679
680         if (wbio->put_bio)
681                 bio_put(bio);
682
683         if (parent)
684                 bio_endio(&parent->bio);
685         else
686                 closure_put(cl);
687 }
688
689 static void init_append_extent(struct bch_write_op *op,
690                                struct write_point *wp,
691                                struct bversion version,
692                                struct bch_extent_crc_unpacked crc)
693 {
694         struct bkey_i_extent *e;
695
696         op->pos.offset += crc.uncompressed_size;
697
698         e = bkey_extent_init(op->insert_keys.top);
699         e->k.p          = op->pos;
700         e->k.size       = crc.uncompressed_size;
701         e->k.version    = version;
702
703         if (crc.csum_type ||
704             crc.compression_type ||
705             crc.nonce)
706                 bch2_extent_crc_append(&e->k_i, crc);
707
708         bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
709                                        op->flags & BCH_WRITE_CACHED);
710
711         bch2_keylist_push(&op->insert_keys);
712 }
713
714 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
715                                         struct write_point *wp,
716                                         struct bio *src,
717                                         bool *page_alloc_failed,
718                                         void *buf)
719 {
720         struct bch_write_bio *wbio;
721         struct bio *bio;
722         unsigned output_available =
723                 min(wp->sectors_free << 9, src->bi_iter.bi_size);
724         unsigned pages = DIV_ROUND_UP(output_available +
725                                       (buf
726                                        ? ((unsigned long) buf & (PAGE_SIZE - 1))
727                                        : 0), PAGE_SIZE);
728
729         pages = min(pages, BIO_MAX_VECS);
730
731         bio = bio_alloc_bioset(NULL, pages, 0,
732                                GFP_NOFS, &c->bio_write);
733         wbio                    = wbio_init(bio);
734         wbio->put_bio           = true;
735         /* copy WRITE_SYNC flag */
736         wbio->bio.bi_opf        = src->bi_opf;
737
738         if (buf) {
739                 bch2_bio_map(bio, buf, output_available);
740                 return bio;
741         }
742
743         wbio->bounce            = true;
744
745         /*
746          * We can't use mempool for more than c->sb.encoded_extent_max
747          * worth of pages, but we'd like to allocate more if we can:
748          */
749         bch2_bio_alloc_pages_pool(c, bio,
750                                   min_t(unsigned, output_available,
751                                         c->opts.encoded_extent_max));
752
753         if (bio->bi_iter.bi_size < output_available)
754                 *page_alloc_failed =
755                         bch2_bio_alloc_pages(bio,
756                                              output_available -
757                                              bio->bi_iter.bi_size,
758                                              GFP_NOFS) != 0;
759
760         return bio;
761 }
762
763 static int bch2_write_rechecksum(struct bch_fs *c,
764                                  struct bch_write_op *op,
765                                  unsigned new_csum_type)
766 {
767         struct bio *bio = &op->wbio.bio;
768         struct bch_extent_crc_unpacked new_crc;
769         int ret;
770
771         /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
772
773         if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
774             bch2_csum_type_is_encryption(new_csum_type))
775                 new_csum_type = op->crc.csum_type;
776
777         ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
778                                   NULL, &new_crc,
779                                   op->crc.offset, op->crc.live_size,
780                                   new_csum_type);
781         if (ret)
782                 return ret;
783
784         bio_advance(bio, op->crc.offset << 9);
785         bio->bi_iter.bi_size = op->crc.live_size << 9;
786         op->crc = new_crc;
787         return 0;
788 }
789
790 static int bch2_write_decrypt(struct bch_write_op *op)
791 {
792         struct bch_fs *c = op->c;
793         struct nonce nonce = extent_nonce(op->version, op->crc);
794         struct bch_csum csum;
795         int ret;
796
797         if (!bch2_csum_type_is_encryption(op->crc.csum_type))
798                 return 0;
799
800         /*
801          * If we need to decrypt data in the write path, we'll no longer be able
802          * to verify the existing checksum (poly1305 mac, in this case) after
803          * it's decrypted - this is the last point we'll be able to reverify the
804          * checksum:
805          */
806         csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
807         if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
808                 return -EIO;
809
810         ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
811         op->crc.csum_type = 0;
812         op->crc.csum = (struct bch_csum) { 0, 0 };
813         return ret;
814 }
815
816 static enum prep_encoded_ret {
817         PREP_ENCODED_OK,
818         PREP_ENCODED_ERR,
819         PREP_ENCODED_CHECKSUM_ERR,
820         PREP_ENCODED_DO_WRITE,
821 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
822 {
823         struct bch_fs *c = op->c;
824         struct bio *bio = &op->wbio.bio;
825
826         if (!(op->flags & BCH_WRITE_DATA_ENCODED))
827                 return PREP_ENCODED_OK;
828
829         BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
830
831         /* Can we just write the entire extent as is? */
832         if (op->crc.uncompressed_size == op->crc.live_size &&
833             op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
834             op->crc.compressed_size <= wp->sectors_free &&
835             (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
836              op->incompressible)) {
837                 if (!crc_is_compressed(op->crc) &&
838                     op->csum_type != op->crc.csum_type &&
839                     bch2_write_rechecksum(c, op, op->csum_type) &&
840                     !c->opts.no_data_io)
841                         return PREP_ENCODED_CHECKSUM_ERR;
842
843                 return PREP_ENCODED_DO_WRITE;
844         }
845
846         /*
847          * If the data is compressed and we couldn't write the entire extent as
848          * is, we have to decompress it:
849          */
850         if (crc_is_compressed(op->crc)) {
851                 struct bch_csum csum;
852
853                 if (bch2_write_decrypt(op))
854                         return PREP_ENCODED_CHECKSUM_ERR;
855
856                 /* Last point we can still verify checksum: */
857                 csum = bch2_checksum_bio(c, op->crc.csum_type,
858                                          extent_nonce(op->version, op->crc),
859                                          bio);
860                 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
861                         return PREP_ENCODED_CHECKSUM_ERR;
862
863                 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
864                         return PREP_ENCODED_ERR;
865         }
866
867         /*
868          * No longer have compressed data after this point - data might be
869          * encrypted:
870          */
871
872         /*
873          * If the data is checksummed and we're only writing a subset,
874          * rechecksum and adjust bio to point to currently live data:
875          */
876         if ((op->crc.live_size != op->crc.uncompressed_size ||
877              op->crc.csum_type != op->csum_type) &&
878             bch2_write_rechecksum(c, op, op->csum_type) &&
879             !c->opts.no_data_io)
880                 return PREP_ENCODED_CHECKSUM_ERR;
881
882         /*
883          * If we want to compress the data, it has to be decrypted:
884          */
885         if ((op->compression_opt ||
886              bch2_csum_type_is_encryption(op->crc.csum_type) !=
887              bch2_csum_type_is_encryption(op->csum_type)) &&
888             bch2_write_decrypt(op))
889                 return PREP_ENCODED_CHECKSUM_ERR;
890
891         return PREP_ENCODED_OK;
892 }
893
894 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
895                              struct bio **_dst)
896 {
897         struct bch_fs *c = op->c;
898         struct bio *src = &op->wbio.bio, *dst = src;
899         struct bvec_iter saved_iter;
900         void *ec_buf;
901         unsigned total_output = 0, total_input = 0;
902         bool bounce = false;
903         bool page_alloc_failed = false;
904         int ret, more = 0;
905
906         BUG_ON(!bio_sectors(src));
907
908         ec_buf = bch2_writepoint_ec_buf(c, wp);
909
910         switch (bch2_write_prep_encoded_data(op, wp)) {
911         case PREP_ENCODED_OK:
912                 break;
913         case PREP_ENCODED_ERR:
914                 ret = -EIO;
915                 goto err;
916         case PREP_ENCODED_CHECKSUM_ERR:
917                 goto csum_err;
918         case PREP_ENCODED_DO_WRITE:
919                 /* XXX look for bug here */
920                 if (ec_buf) {
921                         dst = bch2_write_bio_alloc(c, wp, src,
922                                                    &page_alloc_failed,
923                                                    ec_buf);
924                         bio_copy_data(dst, src);
925                         bounce = true;
926                 }
927                 init_append_extent(op, wp, op->version, op->crc);
928                 goto do_write;
929         }
930
931         if (ec_buf ||
932             op->compression_opt ||
933             (op->csum_type &&
934              !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
935             (bch2_csum_type_is_encryption(op->csum_type) &&
936              !(op->flags & BCH_WRITE_PAGES_OWNED))) {
937                 dst = bch2_write_bio_alloc(c, wp, src,
938                                            &page_alloc_failed,
939                                            ec_buf);
940                 bounce = true;
941         }
942
943         saved_iter = dst->bi_iter;
944
945         do {
946                 struct bch_extent_crc_unpacked crc = { 0 };
947                 struct bversion version = op->version;
948                 size_t dst_len = 0, src_len = 0;
949
950                 if (page_alloc_failed &&
951                     dst->bi_iter.bi_size  < (wp->sectors_free << 9) &&
952                     dst->bi_iter.bi_size < c->opts.encoded_extent_max)
953                         break;
954
955                 BUG_ON(op->compression_opt &&
956                        (op->flags & BCH_WRITE_DATA_ENCODED) &&
957                        bch2_csum_type_is_encryption(op->crc.csum_type));
958                 BUG_ON(op->compression_opt && !bounce);
959
960                 crc.compression_type = op->incompressible
961                         ? BCH_COMPRESSION_TYPE_incompressible
962                         : op->compression_opt
963                         ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
964                                             op->compression_opt)
965                         : 0;
966                 if (!crc_is_compressed(crc)) {
967                         dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
968                         dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
969
970                         if (op->csum_type)
971                                 dst_len = min_t(unsigned, dst_len,
972                                                 c->opts.encoded_extent_max);
973
974                         if (bounce) {
975                                 swap(dst->bi_iter.bi_size, dst_len);
976                                 bio_copy_data(dst, src);
977                                 swap(dst->bi_iter.bi_size, dst_len);
978                         }
979
980                         src_len = dst_len;
981                 }
982
983                 BUG_ON(!src_len || !dst_len);
984
985                 if (bch2_csum_type_is_encryption(op->csum_type)) {
986                         if (bversion_zero(version)) {
987                                 version.lo = atomic64_inc_return(&c->key_version);
988                         } else {
989                                 crc.nonce = op->nonce;
990                                 op->nonce += src_len >> 9;
991                         }
992                 }
993
994                 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
995                     !crc_is_compressed(crc) &&
996                     bch2_csum_type_is_encryption(op->crc.csum_type) ==
997                     bch2_csum_type_is_encryption(op->csum_type)) {
998                         u8 compression_type = crc.compression_type;
999                         u16 nonce = crc.nonce;
1000                         /*
1001                          * Note: when we're using rechecksum(), we need to be
1002                          * checksumming @src because it has all the data our
1003                          * existing checksum covers - if we bounced (because we
1004                          * were trying to compress), @dst will only have the
1005                          * part of the data the new checksum will cover.
1006                          *
1007                          * But normally we want to be checksumming post bounce,
1008                          * because part of the reason for bouncing is so the
1009                          * data can't be modified (by userspace) while it's in
1010                          * flight.
1011                          */
1012                         if (bch2_rechecksum_bio(c, src, version, op->crc,
1013                                         &crc, &op->crc,
1014                                         src_len >> 9,
1015                                         bio_sectors(src) - (src_len >> 9),
1016                                         op->csum_type))
1017                                 goto csum_err;
1018                         /*
1019                          * rchecksum_bio sets compression_type on crc from op->crc,
1020                          * this isn't always correct as sometimes we're changing
1021                          * an extent from uncompressed to incompressible.
1022                          */
1023                         crc.compression_type = compression_type;
1024                         crc.nonce = nonce;
1025                 } else {
1026                         if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1027                             bch2_rechecksum_bio(c, src, version, op->crc,
1028                                         NULL, &op->crc,
1029                                         src_len >> 9,
1030                                         bio_sectors(src) - (src_len >> 9),
1031                                         op->crc.csum_type))
1032                                 goto csum_err;
1033
1034                         crc.compressed_size     = dst_len >> 9;
1035                         crc.uncompressed_size   = src_len >> 9;
1036                         crc.live_size           = src_len >> 9;
1037
1038                         swap(dst->bi_iter.bi_size, dst_len);
1039                         ret = bch2_encrypt_bio(c, op->csum_type,
1040                                                extent_nonce(version, crc), dst);
1041                         if (ret)
1042                                 goto err;
1043
1044                         crc.csum = bch2_checksum_bio(c, op->csum_type,
1045                                          extent_nonce(version, crc), dst);
1046                         crc.csum_type = op->csum_type;
1047                         swap(dst->bi_iter.bi_size, dst_len);
1048                 }
1049
1050                 init_append_extent(op, wp, version, crc);
1051
1052                 if (dst != src)
1053                         bio_advance(dst, dst_len);
1054                 bio_advance(src, src_len);
1055                 total_output    += dst_len;
1056                 total_input     += src_len;
1057         } while (dst->bi_iter.bi_size &&
1058                  src->bi_iter.bi_size &&
1059                  wp->sectors_free &&
1060                  !bch2_keylist_realloc(&op->insert_keys,
1061                                       op->inline_keys,
1062                                       ARRAY_SIZE(op->inline_keys),
1063                                       BKEY_EXTENT_U64s_MAX));
1064
1065         more = src->bi_iter.bi_size != 0;
1066
1067         dst->bi_iter = saved_iter;
1068
1069         if (dst == src && more) {
1070                 BUG_ON(total_output != total_input);
1071
1072                 dst = bio_split(src, total_input >> 9,
1073                                 GFP_NOFS, &c->bio_write);
1074                 wbio_init(dst)->put_bio = true;
1075                 /* copy WRITE_SYNC flag */
1076                 dst->bi_opf             = src->bi_opf;
1077         }
1078
1079         dst->bi_iter.bi_size = total_output;
1080 do_write:
1081         *_dst = dst;
1082         return more;
1083 csum_err:
1084         bch_err(c, "%s writ error: error verifying existing checksum while rewriting existing data (memory corruption?)",
1085                 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1086         ret = -EIO;
1087 err:
1088         if (to_wbio(dst)->bounce)
1089                 bch2_bio_free_pages_pool(c, dst);
1090         if (to_wbio(dst)->put_bio)
1091                 bio_put(dst);
1092
1093         return ret;
1094 }
1095
1096 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1097                                      struct bkey_s_c k)
1098 {
1099         struct bch_fs *c = op->c;
1100         struct bkey_s_c_extent e;
1101         struct extent_ptr_decoded p;
1102         const union bch_extent_entry *entry;
1103         unsigned replicas = 0;
1104
1105         if (k.k->type != KEY_TYPE_extent)
1106                 return false;
1107
1108         e = bkey_s_c_to_extent(k);
1109
1110         rcu_read_lock();
1111         extent_for_each_ptr_decode(e, p, entry) {
1112                 if (crc_is_encoded(p.crc) || p.has_ec) {
1113                         rcu_read_unlock();
1114                         return false;
1115                 }
1116
1117                 replicas += bch2_extent_ptr_durability(c, &p);
1118         }
1119         rcu_read_unlock();
1120
1121         return replicas >= op->opts.data_replicas;
1122 }
1123
1124 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1125                                                   struct btree_iter *iter,
1126                                                   struct bkey_i *orig,
1127                                                   struct bkey_s_c k,
1128                                                   u64 new_i_size)
1129 {
1130         if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1131                 /* trace this */
1132                 return 0;
1133         }
1134
1135         struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1136         int ret = PTR_ERR_OR_ZERO(new);
1137         if (ret)
1138                 return ret;
1139
1140         bch2_cut_front(bkey_start_pos(&orig->k), new);
1141         bch2_cut_back(orig->k.p, new);
1142
1143         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1144         bkey_for_each_ptr(ptrs, ptr)
1145                 ptr->unwritten = 0;
1146
1147         /*
1148          * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1149          * that was done when we kicked off the write, and here it's important
1150          * that we update the extent that we wrote to - even if a snapshot has
1151          * since been created. The write is still outstanding, so we're ok
1152          * w.r.t. snapshot atomicity:
1153          */
1154         return  bch2_extent_update_i_size_sectors(trans, iter,
1155                                         min(new->k.p.offset << 9, new_i_size), 0) ?:
1156                 bch2_trans_update(trans, iter, new,
1157                                   BTREE_UPDATE_internal_snapshot_node);
1158 }
1159
1160 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1161 {
1162         struct bch_fs *c = op->c;
1163         struct btree_trans *trans = bch2_trans_get(c);
1164
1165         for_each_keylist_key(&op->insert_keys, orig) {
1166                 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1167                                      bkey_start_pos(&orig->k), orig->k.p,
1168                                      BTREE_ITER_intent, k,
1169                                      NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1170                         bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1171                 }));
1172
1173                 if (ret && !bch2_err_matches(ret, EROFS)) {
1174                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1175
1176                         bch_err_inum_offset_ratelimited(c,
1177                                 insert->k.p.inode, insert->k.p.offset << 9,
1178                                 "%s write error while doing btree update: %s",
1179                                 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1180                                 bch2_err_str(ret));
1181                 }
1182
1183                 if (ret) {
1184                         op->error = ret;
1185                         break;
1186                 }
1187         }
1188
1189         bch2_trans_put(trans);
1190 }
1191
1192 static void __bch2_nocow_write_done(struct bch_write_op *op)
1193 {
1194         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1195                 op->error = -EIO;
1196         } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1197                 bch2_nocow_write_convert_unwritten(op);
1198 }
1199
1200 static CLOSURE_CALLBACK(bch2_nocow_write_done)
1201 {
1202         closure_type(op, struct bch_write_op, cl);
1203
1204         __bch2_nocow_write_done(op);
1205         bch2_write_done(cl);
1206 }
1207
1208 struct bucket_to_lock {
1209         struct bpos             b;
1210         unsigned                gen;
1211         struct nocow_lock_bucket *l;
1212 };
1213
1214 static void bch2_nocow_write(struct bch_write_op *op)
1215 {
1216         struct bch_fs *c = op->c;
1217         struct btree_trans *trans;
1218         struct btree_iter iter;
1219         struct bkey_s_c k;
1220         DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1221         u32 snapshot;
1222         struct bucket_to_lock *stale_at;
1223         int ret;
1224
1225         if (op->flags & BCH_WRITE_MOVE)
1226                 return;
1227
1228         darray_init(&buckets);
1229         trans = bch2_trans_get(c);
1230 retry:
1231         bch2_trans_begin(trans);
1232
1233         ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1234         if (unlikely(ret))
1235                 goto err;
1236
1237         bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1238                              SPOS(op->pos.inode, op->pos.offset, snapshot),
1239                              BTREE_ITER_slots);
1240         while (1) {
1241                 struct bio *bio = &op->wbio.bio;
1242
1243                 buckets.nr = 0;
1244
1245                 ret = bch2_trans_relock(trans);
1246                 if (ret)
1247                         break;
1248
1249                 k = bch2_btree_iter_peek_slot(&iter);
1250                 ret = bkey_err(k);
1251                 if (ret)
1252                         break;
1253
1254                 /* fall back to normal cow write path? */
1255                 if (unlikely(k.k->p.snapshot != snapshot ||
1256                              !bch2_extent_is_writeable(op, k)))
1257                         break;
1258
1259                 if (bch2_keylist_realloc(&op->insert_keys,
1260                                          op->inline_keys,
1261                                          ARRAY_SIZE(op->inline_keys),
1262                                          k.k->u64s))
1263                         break;
1264
1265                 /* Get iorefs before dropping btree locks: */
1266                 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1267                 bkey_for_each_ptr(ptrs, ptr) {
1268                         struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE);
1269                         if (unlikely(!ca))
1270                                 goto err_get_ioref;
1271
1272                         struct bpos b = PTR_BUCKET_POS(ca, ptr);
1273                         struct nocow_lock_bucket *l =
1274                                 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1275                         prefetch(l);
1276
1277                         /* XXX allocating memory with btree locks held - rare */
1278                         darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1279                                                    .b = b, .gen = ptr->gen, .l = l,
1280                                                    }), GFP_KERNEL|__GFP_NOFAIL);
1281
1282                         if (ptr->unwritten)
1283                                 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1284                 }
1285
1286                 /* Unlock before taking nocow locks, doing IO: */
1287                 bkey_reassemble(op->insert_keys.top, k);
1288                 bch2_trans_unlock(trans);
1289
1290                 bch2_cut_front(op->pos, op->insert_keys.top);
1291                 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1292                         bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1293
1294                 darray_for_each(buckets, i) {
1295                         struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode);
1296
1297                         __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1298                                                  bucket_to_u64(i->b),
1299                                                  BUCKET_NOCOW_LOCK_UPDATE);
1300
1301                         rcu_read_lock();
1302                         bool stale = gen_after(*bucket_gen(ca, i->b.offset), i->gen);
1303                         rcu_read_unlock();
1304
1305                         if (unlikely(stale)) {
1306                                 stale_at = i;
1307                                 goto err_bucket_stale;
1308                         }
1309                 }
1310
1311                 bio = &op->wbio.bio;
1312                 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1313                         bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1314                                         GFP_KERNEL, &c->bio_write);
1315                         wbio_init(bio)->put_bio = true;
1316                         bio->bi_opf = op->wbio.bio.bi_opf;
1317                 } else {
1318                         op->flags |= BCH_WRITE_DONE;
1319                 }
1320
1321                 op->pos.offset += bio_sectors(bio);
1322                 op->written += bio_sectors(bio);
1323
1324                 bio->bi_end_io  = bch2_write_endio;
1325                 bio->bi_private = &op->cl;
1326                 bio->bi_opf |= REQ_OP_WRITE;
1327                 closure_get(&op->cl);
1328                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1329                                           op->insert_keys.top, true);
1330
1331                 bch2_keylist_push(&op->insert_keys);
1332                 if (op->flags & BCH_WRITE_DONE)
1333                         break;
1334                 bch2_btree_iter_advance(&iter);
1335         }
1336 out:
1337         bch2_trans_iter_exit(trans, &iter);
1338 err:
1339         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1340                 goto retry;
1341
1342         if (ret) {
1343                 bch_err_inum_offset_ratelimited(c,
1344                         op->pos.inode, op->pos.offset << 9,
1345                         "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1346                 op->error = ret;
1347                 op->flags |= BCH_WRITE_DONE;
1348         }
1349
1350         bch2_trans_put(trans);
1351         darray_exit(&buckets);
1352
1353         /* fallback to cow write path? */
1354         if (!(op->flags & BCH_WRITE_DONE)) {
1355                 closure_sync(&op->cl);
1356                 __bch2_nocow_write_done(op);
1357                 op->insert_keys.top = op->insert_keys.keys;
1358         } else if (op->flags & BCH_WRITE_SYNC) {
1359                 closure_sync(&op->cl);
1360                 bch2_nocow_write_done(&op->cl.work);
1361         } else {
1362                 /*
1363                  * XXX
1364                  * needs to run out of process context because ei_quota_lock is
1365                  * a mutex
1366                  */
1367                 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1368         }
1369         return;
1370 err_get_ioref:
1371         darray_for_each(buckets, i)
1372                 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref);
1373
1374         /* Fall back to COW path: */
1375         goto out;
1376 err_bucket_stale:
1377         darray_for_each(buckets, i) {
1378                 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1379                 if (i == stale_at)
1380                         break;
1381         }
1382
1383         /* We can retry this: */
1384         ret = -BCH_ERR_transaction_restart;
1385         goto err_get_ioref;
1386 }
1387
1388 static void __bch2_write(struct bch_write_op *op)
1389 {
1390         struct bch_fs *c = op->c;
1391         struct write_point *wp = NULL;
1392         struct bio *bio = NULL;
1393         unsigned nofs_flags;
1394         int ret;
1395
1396         nofs_flags = memalloc_nofs_save();
1397
1398         if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1399                 bch2_nocow_write(op);
1400                 if (op->flags & BCH_WRITE_DONE)
1401                         goto out_nofs_restore;
1402         }
1403 again:
1404         memset(&op->failed, 0, sizeof(op->failed));
1405
1406         do {
1407                 struct bkey_i *key_to_write;
1408                 unsigned key_to_write_offset = op->insert_keys.top_p -
1409                         op->insert_keys.keys_p;
1410
1411                 /* +1 for possible cache device: */
1412                 if (op->open_buckets.nr + op->nr_replicas + 1 >
1413                     ARRAY_SIZE(op->open_buckets.v))
1414                         break;
1415
1416                 if (bch2_keylist_realloc(&op->insert_keys,
1417                                         op->inline_keys,
1418                                         ARRAY_SIZE(op->inline_keys),
1419                                         BKEY_EXTENT_U64s_MAX))
1420                         break;
1421
1422                 /*
1423                  * The copygc thread is now global, which means it's no longer
1424                  * freeing up space on specific disks, which means that
1425                  * allocations for specific disks may hang arbitrarily long:
1426                  */
1427                 ret = bch2_trans_do(c, NULL, NULL, 0,
1428                         bch2_alloc_sectors_start_trans(trans,
1429                                 op->target,
1430                                 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1431                                 op->write_point,
1432                                 &op->devs_have,
1433                                 op->nr_replicas,
1434                                 op->nr_replicas_required,
1435                                 op->watermark,
1436                                 op->flags,
1437                                 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1438                                               BCH_WRITE_ONLY_SPECIFIED_DEVS))
1439                                 ? NULL : &op->cl, &wp));
1440                 if (unlikely(ret)) {
1441                         if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1442                                 break;
1443
1444                         goto err;
1445                 }
1446
1447                 EBUG_ON(!wp);
1448
1449                 bch2_open_bucket_get(c, wp, &op->open_buckets);
1450                 ret = bch2_write_extent(op, wp, &bio);
1451
1452                 bch2_alloc_sectors_done_inlined(c, wp);
1453 err:
1454                 if (ret <= 0) {
1455                         op->flags |= BCH_WRITE_DONE;
1456
1457                         if (ret < 0) {
1458                                 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
1459                                         bch_err_inum_offset_ratelimited(c,
1460                                                 op->pos.inode,
1461                                                 op->pos.offset << 9,
1462                                                 "%s(): %s error: %s", __func__,
1463                                                 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1464                                                 bch2_err_str(ret));
1465                                 op->error = ret;
1466                                 break;
1467                         }
1468                 }
1469
1470                 bio->bi_end_io  = bch2_write_endio;
1471                 bio->bi_private = &op->cl;
1472                 bio->bi_opf |= REQ_OP_WRITE;
1473
1474                 closure_get(bio->bi_private);
1475
1476                 key_to_write = (void *) (op->insert_keys.keys_p +
1477                                          key_to_write_offset);
1478
1479                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1480                                           key_to_write, false);
1481         } while (ret);
1482
1483         /*
1484          * Sync or no?
1485          *
1486          * If we're running asynchronously, wne may still want to block
1487          * synchronously here if we weren't able to submit all of the IO at
1488          * once, as that signals backpressure to the caller.
1489          */
1490         if ((op->flags & BCH_WRITE_SYNC) ||
1491             (!(op->flags & BCH_WRITE_DONE) &&
1492              !(op->flags & BCH_WRITE_IN_WORKER))) {
1493                 if (closure_sync_timeout(&op->cl, HZ * 10)) {
1494                         bch2_print_allocator_stuck(c);
1495                         closure_sync(&op->cl);
1496                 }
1497
1498                 __bch2_write_index(op);
1499
1500                 if (!(op->flags & BCH_WRITE_DONE))
1501                         goto again;
1502                 bch2_write_done(&op->cl);
1503         } else {
1504                 bch2_write_queue(op, wp);
1505                 continue_at(&op->cl, bch2_write_index, NULL);
1506         }
1507 out_nofs_restore:
1508         memalloc_nofs_restore(nofs_flags);
1509 }
1510
1511 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1512 {
1513         struct bio *bio = &op->wbio.bio;
1514         struct bvec_iter iter;
1515         struct bkey_i_inline_data *id;
1516         unsigned sectors;
1517         int ret;
1518
1519         memset(&op->failed, 0, sizeof(op->failed));
1520
1521         op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1522         op->flags |= BCH_WRITE_DONE;
1523
1524         bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1525
1526         ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1527                                    ARRAY_SIZE(op->inline_keys),
1528                                    BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1529         if (ret) {
1530                 op->error = ret;
1531                 goto err;
1532         }
1533
1534         sectors = bio_sectors(bio);
1535         op->pos.offset += sectors;
1536
1537         id = bkey_inline_data_init(op->insert_keys.top);
1538         id->k.p         = op->pos;
1539         id->k.version   = op->version;
1540         id->k.size      = sectors;
1541
1542         iter = bio->bi_iter;
1543         iter.bi_size = data_len;
1544         memcpy_from_bio(id->v.data, bio, iter);
1545
1546         while (data_len & 7)
1547                 id->v.data[data_len++] = '\0';
1548         set_bkey_val_bytes(&id->k, data_len);
1549         bch2_keylist_push(&op->insert_keys);
1550
1551         __bch2_write_index(op);
1552 err:
1553         bch2_write_done(&op->cl);
1554 }
1555
1556 /**
1557  * bch2_write() - handle a write to a cache device or flash only volume
1558  * @cl:         &bch_write_op->cl
1559  *
1560  * This is the starting point for any data to end up in a cache device; it could
1561  * be from a normal write, or a writeback write, or a write to a flash only
1562  * volume - it's also used by the moving garbage collector to compact data in
1563  * mostly empty buckets.
1564  *
1565  * It first writes the data to the cache, creating a list of keys to be inserted
1566  * (if the data won't fit in a single open bucket, there will be multiple keys);
1567  * after the data is written it calls bch_journal, and after the keys have been
1568  * added to the next journal write they're inserted into the btree.
1569  *
1570  * If op->discard is true, instead of inserting the data it invalidates the
1571  * region of the cache represented by op->bio and op->inode.
1572  */
1573 CLOSURE_CALLBACK(bch2_write)
1574 {
1575         closure_type(op, struct bch_write_op, cl);
1576         struct bio *bio = &op->wbio.bio;
1577         struct bch_fs *c = op->c;
1578         unsigned data_len;
1579
1580         EBUG_ON(op->cl.parent);
1581         BUG_ON(!op->nr_replicas);
1582         BUG_ON(!op->write_point.v);
1583         BUG_ON(bkey_eq(op->pos, POS_MAX));
1584
1585         op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1586         op->start_time = local_clock();
1587         bch2_keylist_init(&op->insert_keys, op->inline_keys);
1588         wbio_init(bio)->put_bio = false;
1589
1590         if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1591                 bch_err_inum_offset_ratelimited(c,
1592                         op->pos.inode,
1593                         op->pos.offset << 9,
1594                         "%s write error: misaligned write",
1595                         op->flags & BCH_WRITE_MOVE ? "move" : "user");
1596                 op->error = -EIO;
1597                 goto err;
1598         }
1599
1600         if (c->opts.nochanges) {
1601                 op->error = -BCH_ERR_erofs_no_writes;
1602                 goto err;
1603         }
1604
1605         if (!(op->flags & BCH_WRITE_MOVE) &&
1606             !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1607                 op->error = -BCH_ERR_erofs_no_writes;
1608                 goto err;
1609         }
1610
1611         this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1612         bch2_increment_clock(c, bio_sectors(bio), WRITE);
1613
1614         data_len = min_t(u64, bio->bi_iter.bi_size,
1615                          op->new_i_size - (op->pos.offset << 9));
1616
1617         if (c->opts.inline_data &&
1618             data_len <= min(block_bytes(c) / 2, 1024U)) {
1619                 bch2_write_data_inline(op, data_len);
1620                 return;
1621         }
1622
1623         __bch2_write(op);
1624         return;
1625 err:
1626         bch2_disk_reservation_put(c, &op->res);
1627
1628         closure_debug_destroy(&op->cl);
1629         if (op->end_io)
1630                 op->end_io(op);
1631 }
1632
1633 static const char * const bch2_write_flags[] = {
1634 #define x(f)    #f,
1635         BCH_WRITE_FLAGS()
1636 #undef x
1637         NULL
1638 };
1639
1640 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1641 {
1642         prt_str(out, "pos: ");
1643         bch2_bpos_to_text(out, op->pos);
1644         prt_newline(out);
1645         printbuf_indent_add(out, 2);
1646
1647         prt_str(out, "started: ");
1648         bch2_pr_time_units(out, local_clock() - op->start_time);
1649         prt_newline(out);
1650
1651         prt_str(out, "flags: ");
1652         prt_bitflags(out, bch2_write_flags, op->flags);
1653         prt_newline(out);
1654
1655         prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl));
1656
1657         printbuf_indent_sub(out, 2);
1658 }
1659
1660 void bch2_fs_io_write_exit(struct bch_fs *c)
1661 {
1662         mempool_exit(&c->bio_bounce_pages);
1663         bioset_exit(&c->replica_set);
1664         bioset_exit(&c->bio_write);
1665 }
1666
1667 int bch2_fs_io_write_init(struct bch_fs *c)
1668 {
1669         if (bioset_init(&c->bio_write,   1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) ||
1670             bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0))
1671                 return -BCH_ERR_ENOMEM_bio_write_init;
1672
1673         if (mempool_init_page_pool(&c->bio_bounce_pages,
1674                                    max_t(unsigned,
1675                                          c->opts.btree_node_size,
1676                                          c->opts.encoded_extent_max) /
1677                                    PAGE_SIZE, 0))
1678                 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1679
1680         return 0;
1681 }
This page took 0.136818 seconds and 4 git commands to generate.