]> Git Repo - linux.git/blob - fs/bcachefs/io_write.c
Linux 6.14-rc3
[linux.git] / fs / bcachefs / io_write.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2010, 2011 Kent Overstreet <[email protected]>
4  * Copyright 2012 Google, Inc.
5  */
6
7 #include "bcachefs.h"
8 #include "alloc_foreground.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "clock.h"
15 #include "compress.h"
16 #include "debug.h"
17 #include "ec.h"
18 #include "error.h"
19 #include "extent_update.h"
20 #include "inode.h"
21 #include "io_write.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "nocow_locking.h"
26 #include "rebalance.h"
27 #include "subvolume.h"
28 #include "super.h"
29 #include "super-io.h"
30 #include "trace.h"
31
32 #include <linux/blkdev.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/sched/mm.h>
36
37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40                                        u64 now, int rw)
41 {
42         u64 latency_capable =
43                 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44         /* ideally we'd be taking into account the device's variance here: */
45         u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46         s64 latency_over = io_latency - latency_threshold;
47
48         if (latency_threshold && latency_over > 0) {
49                 /*
50                  * bump up congested by approximately latency_over * 4 /
51                  * latency_threshold - we don't need much accuracy here so don't
52                  * bother with the divide:
53                  */
54                 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55                         atomic_add(latency_over >>
56                                    max_t(int, ilog2(latency_threshold) - 2, 0),
57                                    &ca->congested);
58
59                 ca->congested_last = now;
60         } else if (atomic_read(&ca->congested) > 0) {
61                 atomic_dec(&ca->congested);
62         }
63 }
64
65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66 {
67         atomic64_t *latency = &ca->cur_latency[rw];
68         u64 now = local_clock();
69         u64 io_latency = time_after64(now, submit_time)
70                 ? now - submit_time
71                 : 0;
72         u64 old, new;
73
74         old = atomic64_read(latency);
75         do {
76                 /*
77                  * If the io latency was reasonably close to the current
78                  * latency, skip doing the update and atomic operation - most of
79                  * the time:
80                  */
81                 if (abs((int) (old - io_latency)) < (old >> 1) &&
82                     now & ~(~0U << 5))
83                         break;
84
85                 new = ewma_add(old, io_latency, 5);
86         } while (!atomic64_try_cmpxchg(latency, &old, new));
87
88         bch2_congested_acct(ca, io_latency, now, rw);
89
90         __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
91 }
92
93 #endif
94
95 /* Allocate, free from mempool: */
96
97 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
98 {
99         struct bvec_iter_all iter;
100         struct bio_vec *bv;
101
102         bio_for_each_segment_all(bv, bio, iter)
103                 if (bv->bv_page != ZERO_PAGE(0))
104                         mempool_free(bv->bv_page, &c->bio_bounce_pages);
105         bio->bi_vcnt = 0;
106 }
107
108 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
109 {
110         struct page *page;
111
112         if (likely(!*using_mempool)) {
113                 page = alloc_page(GFP_NOFS);
114                 if (unlikely(!page)) {
115                         mutex_lock(&c->bio_bounce_pages_lock);
116                         *using_mempool = true;
117                         goto pool_alloc;
118
119                 }
120         } else {
121 pool_alloc:
122                 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
123         }
124
125         return page;
126 }
127
128 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
129                                size_t size)
130 {
131         bool using_mempool = false;
132
133         while (size) {
134                 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
135                 unsigned len = min_t(size_t, PAGE_SIZE, size);
136
137                 BUG_ON(!bio_add_page(bio, page, len, 0));
138                 size -= len;
139         }
140
141         if (using_mempool)
142                 mutex_unlock(&c->bio_bounce_pages_lock);
143 }
144
145 /* Extent update path: */
146
147 int bch2_sum_sector_overwrites(struct btree_trans *trans,
148                                struct btree_iter *extent_iter,
149                                struct bkey_i *new,
150                                bool *usage_increasing,
151                                s64 *i_sectors_delta,
152                                s64 *disk_sectors_delta)
153 {
154         struct bch_fs *c = trans->c;
155         struct btree_iter iter;
156         struct bkey_s_c old;
157         unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
158         bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
159         int ret = 0;
160
161         *usage_increasing       = false;
162         *i_sectors_delta        = 0;
163         *disk_sectors_delta     = 0;
164
165         bch2_trans_copy_iter(&iter, extent_iter);
166
167         for_each_btree_key_max_continue_norestart(iter,
168                                 new->k.p, BTREE_ITER_slots, old, ret) {
169                 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
170                         max(bkey_start_offset(&new->k),
171                             bkey_start_offset(old.k));
172
173                 *i_sectors_delta += sectors *
174                         (bkey_extent_is_allocation(&new->k) -
175                          bkey_extent_is_allocation(old.k));
176
177                 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
178                 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
179                         ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
180                         : 0;
181
182                 if (!*usage_increasing &&
183                     (new->k.p.snapshot != old.k->p.snapshot ||
184                      new_replicas > bch2_bkey_replicas(c, old) ||
185                      (!new_compressed && bch2_bkey_sectors_compressed(old))))
186                         *usage_increasing = true;
187
188                 if (bkey_ge(old.k->p, new->k.p))
189                         break;
190         }
191
192         bch2_trans_iter_exit(trans, &iter);
193         return ret;
194 }
195
196 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
197                                                     struct btree_iter *extent_iter,
198                                                     u64 new_i_size,
199                                                     s64 i_sectors_delta)
200 {
201         /*
202          * Crazy performance optimization:
203          * Every extent update needs to also update the inode: the inode trigger
204          * will set bi->journal_seq to the journal sequence number of this
205          * transaction - for fsync.
206          *
207          * But if that's the only reason we're updating the inode (we're not
208          * updating bi_size or bi_sectors), then we don't need the inode update
209          * to be journalled - if we crash, the bi_journal_seq update will be
210          * lost, but that's fine.
211          */
212         unsigned inode_update_flags = BTREE_UPDATE_nojournal;
213
214         struct btree_iter iter;
215         struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
216                               SPOS(0,
217                                    extent_iter->pos.inode,
218                                    extent_iter->snapshot),
219                               BTREE_ITER_intent|
220                               BTREE_ITER_cached);
221         int ret = bkey_err(k);
222         if (unlikely(ret))
223                 return ret;
224
225         /*
226          * varint_decode_fast(), in the inode .invalid method, reads up to 7
227          * bytes past the end of the buffer:
228          */
229         struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
230         ret = PTR_ERR_OR_ZERO(k_mut);
231         if (unlikely(ret))
232                 goto err;
233
234         bkey_reassemble(k_mut, k);
235
236         if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
237                 k_mut = bch2_inode_to_v3(trans, k_mut);
238                 ret = PTR_ERR_OR_ZERO(k_mut);
239                 if (unlikely(ret))
240                         goto err;
241         }
242
243         struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
244
245         if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
246             new_i_size > le64_to_cpu(inode->v.bi_size)) {
247                 inode->v.bi_size = cpu_to_le64(new_i_size);
248                 inode_update_flags = 0;
249         }
250
251         if (i_sectors_delta) {
252                 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
253                 inode_update_flags = 0;
254         }
255
256         if (inode->k.p.snapshot != iter.snapshot) {
257                 inode->k.p.snapshot = iter.snapshot;
258                 inode_update_flags = 0;
259         }
260
261         ret = bch2_trans_update(trans, &iter, &inode->k_i,
262                                 BTREE_UPDATE_internal_snapshot_node|
263                                 inode_update_flags);
264 err:
265         bch2_trans_iter_exit(trans, &iter);
266         return ret;
267 }
268
269 int bch2_extent_update(struct btree_trans *trans,
270                        subvol_inum inum,
271                        struct btree_iter *iter,
272                        struct bkey_i *k,
273                        struct disk_reservation *disk_res,
274                        u64 new_i_size,
275                        s64 *i_sectors_delta_total,
276                        bool check_enospc)
277 {
278         struct bpos next_pos;
279         bool usage_increasing;
280         s64 i_sectors_delta = 0, disk_sectors_delta = 0;
281         int ret;
282
283         /*
284          * This traverses us the iterator without changing iter->path->pos to
285          * search_key() (which is pos + 1 for extents): we want there to be a
286          * path already traversed at iter->pos because
287          * bch2_trans_extent_update() will use it to attempt extent merging
288          */
289         ret = __bch2_btree_iter_traverse(iter);
290         if (ret)
291                 return ret;
292
293         ret = bch2_extent_trim_atomic(trans, iter, k);
294         if (ret)
295                 return ret;
296
297         next_pos = k->k.p;
298
299         ret = bch2_sum_sector_overwrites(trans, iter, k,
300                         &usage_increasing,
301                         &i_sectors_delta,
302                         &disk_sectors_delta);
303         if (ret)
304                 return ret;
305
306         if (disk_res &&
307             disk_sectors_delta > (s64) disk_res->sectors) {
308                 ret = bch2_disk_reservation_add(trans->c, disk_res,
309                                         disk_sectors_delta - disk_res->sectors,
310                                         !check_enospc || !usage_increasing
311                                         ? BCH_DISK_RESERVATION_NOFAIL : 0);
312                 if (ret)
313                         return ret;
314         }
315
316         /*
317          * Note:
318          * We always have to do an inode update - even when i_size/i_sectors
319          * aren't changing - for fsync to work properly; fsync relies on
320          * inode->bi_journal_seq which is updated by the trigger code:
321          */
322         ret =   bch2_extent_update_i_size_sectors(trans, iter,
323                                                   min(k->k.p.offset << 9, new_i_size),
324                                                   i_sectors_delta) ?:
325                 bch2_trans_update(trans, iter, k, 0) ?:
326                 bch2_trans_commit(trans, disk_res, NULL,
327                                 BCH_TRANS_COMMIT_no_check_rw|
328                                 BCH_TRANS_COMMIT_no_enospc);
329         if (unlikely(ret))
330                 return ret;
331
332         if (i_sectors_delta_total)
333                 *i_sectors_delta_total += i_sectors_delta;
334         bch2_btree_iter_set_pos(iter, next_pos);
335         return 0;
336 }
337
338 static int bch2_write_index_default(struct bch_write_op *op)
339 {
340         struct bch_fs *c = op->c;
341         struct bkey_buf sk;
342         struct keylist *keys = &op->insert_keys;
343         struct bkey_i *k = bch2_keylist_front(keys);
344         struct btree_trans *trans = bch2_trans_get(c);
345         struct btree_iter iter;
346         subvol_inum inum = {
347                 .subvol = op->subvol,
348                 .inum   = k->k.p.inode,
349         };
350         int ret;
351
352         BUG_ON(!inum.subvol);
353
354         bch2_bkey_buf_init(&sk);
355
356         do {
357                 bch2_trans_begin(trans);
358
359                 k = bch2_keylist_front(keys);
360                 bch2_bkey_buf_copy(&sk, c, k);
361
362                 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
363                                                   &sk.k->k.p.snapshot);
364                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
365                         continue;
366                 if (ret)
367                         break;
368
369                 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
370                                      bkey_start_pos(&sk.k->k),
371                                      BTREE_ITER_slots|BTREE_ITER_intent);
372
373                 ret =   bch2_bkey_set_needs_rebalance(c, &op->opts, sk.k) ?:
374                         bch2_extent_update(trans, inum, &iter, sk.k,
375                                         &op->res,
376                                         op->new_i_size, &op->i_sectors_delta,
377                                         op->flags & BCH_WRITE_CHECK_ENOSPC);
378                 bch2_trans_iter_exit(trans, &iter);
379
380                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
381                         continue;
382                 if (ret)
383                         break;
384
385                 if (bkey_ge(iter.pos, k->k.p))
386                         bch2_keylist_pop_front(&op->insert_keys);
387                 else
388                         bch2_cut_front(iter.pos, k);
389         } while (!bch2_keylist_empty(keys));
390
391         bch2_trans_put(trans);
392         bch2_bkey_buf_exit(&sk, c);
393
394         return ret;
395 }
396
397 /* Writes */
398
399 static void __bch2_write_op_error(struct printbuf *out, struct bch_write_op *op,
400                                   u64 offset)
401 {
402         bch2_inum_offset_err_msg(op->c, out,
403                                  (subvol_inum) { op->subvol, op->pos.inode, },
404                                  offset << 9);
405         prt_printf(out, "write error%s: ",
406                    op->flags & BCH_WRITE_MOVE ? "(internal move)" : "");
407 }
408
409 void bch2_write_op_error(struct printbuf *out, struct bch_write_op *op)
410 {
411         __bch2_write_op_error(out, op, op->pos.offset);
412 }
413
414 static void bch2_write_op_error_trans(struct btree_trans *trans, struct printbuf *out,
415                                       struct bch_write_op *op, u64 offset)
416 {
417         bch2_inum_offset_err_msg_trans(trans, out,
418                                        (subvol_inum) { op->subvol, op->pos.inode, },
419                                        offset << 9);
420         prt_printf(out, "write error%s: ",
421                    op->flags & BCH_WRITE_MOVE ? "(internal move)" : "");
422 }
423
424 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
425                                enum bch_data_type type,
426                                const struct bkey_i *k,
427                                bool nocow)
428 {
429         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
430         struct bch_write_bio *n;
431
432         BUG_ON(c->opts.nochanges);
433
434         bkey_for_each_ptr(ptrs, ptr) {
435                 struct bch_dev *ca = nocow
436                         ? bch2_dev_have_ref(c, ptr->dev)
437                         : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE);
438
439                 if (to_entry(ptr + 1) < ptrs.end) {
440                         n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set));
441
442                         n->bio.bi_end_io        = wbio->bio.bi_end_io;
443                         n->bio.bi_private       = wbio->bio.bi_private;
444                         n->parent               = wbio;
445                         n->split                = true;
446                         n->bounce               = false;
447                         n->put_bio              = true;
448                         n->bio.bi_opf           = wbio->bio.bi_opf;
449                         bio_inc_remaining(&wbio->bio);
450                 } else {
451                         n = wbio;
452                         n->split                = false;
453                 }
454
455                 n->c                    = c;
456                 n->dev                  = ptr->dev;
457                 n->have_ioref           = ca != NULL;
458                 n->nocow                = nocow;
459                 n->submit_time          = local_clock();
460                 n->inode_offset         = bkey_start_offset(&k->k);
461                 if (nocow)
462                         n->nocow_bucket = PTR_BUCKET_NR(ca, ptr);
463                 n->bio.bi_iter.bi_sector = ptr->offset;
464
465                 if (likely(n->have_ioref)) {
466                         this_cpu_add(ca->io_done->sectors[WRITE][type],
467                                      bio_sectors(&n->bio));
468
469                         bio_set_dev(&n->bio, ca->disk_sb.bdev);
470
471                         if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
472                                 bio_endio(&n->bio);
473                                 continue;
474                         }
475
476                         submit_bio(&n->bio);
477                 } else {
478                         n->bio.bi_status        = BLK_STS_REMOVED;
479                         bio_endio(&n->bio);
480                 }
481         }
482 }
483
484 static void __bch2_write(struct bch_write_op *);
485
486 static void bch2_write_done(struct closure *cl)
487 {
488         struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
489         struct bch_fs *c = op->c;
490
491         EBUG_ON(op->open_buckets.nr);
492
493         bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
494         bch2_disk_reservation_put(c, &op->res);
495
496         if (!(op->flags & BCH_WRITE_MOVE))
497                 bch2_write_ref_put(c, BCH_WRITE_REF_write);
498         bch2_keylist_free(&op->insert_keys, op->inline_keys);
499
500         EBUG_ON(cl->parent);
501         closure_debug_destroy(cl);
502         if (op->end_io)
503                 op->end_io(op);
504 }
505
506 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
507 {
508         struct keylist *keys = &op->insert_keys;
509         struct bkey_i *src, *dst = keys->keys, *n;
510
511         for (src = keys->keys; src != keys->top; src = n) {
512                 n = bkey_next(src);
513
514                 if (bkey_extent_is_direct_data(&src->k)) {
515                         bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
516                                             test_bit(ptr->dev, op->failed.d));
517
518                         if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
519                                 return -EIO;
520                 }
521
522                 if (dst != src)
523                         memmove_u64s_down(dst, src, src->k.u64s);
524                 dst = bkey_next(dst);
525         }
526
527         keys->top = dst;
528         return 0;
529 }
530
531 /**
532  * __bch2_write_index - after a write, update index to point to new data
533  * @op:         bch_write_op to process
534  */
535 static void __bch2_write_index(struct bch_write_op *op)
536 {
537         struct bch_fs *c = op->c;
538         struct keylist *keys = &op->insert_keys;
539         unsigned dev;
540         int ret = 0;
541
542         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
543                 ret = bch2_write_drop_io_error_ptrs(op);
544                 if (ret)
545                         goto err;
546         }
547
548         if (!bch2_keylist_empty(keys)) {
549                 u64 sectors_start = keylist_sectors(keys);
550
551                 ret = !(op->flags & BCH_WRITE_MOVE)
552                         ? bch2_write_index_default(op)
553                         : bch2_data_update_index_update(op);
554
555                 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
556                 BUG_ON(keylist_sectors(keys) && !ret);
557
558                 op->written += sectors_start - keylist_sectors(keys);
559
560                 if (unlikely(ret && !bch2_err_matches(ret, EROFS))) {
561                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
562
563                         struct printbuf buf = PRINTBUF;
564                         __bch2_write_op_error(&buf, op, bkey_start_offset(&insert->k));
565                         prt_printf(&buf, "btree update error: %s", bch2_err_str(ret));
566                         bch_err_ratelimited(c, "%s", buf.buf);
567                         printbuf_exit(&buf);
568                 }
569
570                 if (ret)
571                         goto err;
572         }
573 out:
574         /* If some a bucket wasn't written, we can't erasure code it: */
575         for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
576                 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
577
578         bch2_open_buckets_put(c, &op->open_buckets);
579         return;
580 err:
581         keys->top = keys->keys;
582         op->error = ret;
583         op->flags |= BCH_WRITE_SUBMITTED;
584         goto out;
585 }
586
587 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
588 {
589         if (state != wp->state) {
590                 u64 now = ktime_get_ns();
591
592                 if (wp->last_state_change &&
593                     time_after64(now, wp->last_state_change))
594                         wp->time[wp->state] += now - wp->last_state_change;
595                 wp->state = state;
596                 wp->last_state_change = now;
597         }
598 }
599
600 static inline void wp_update_state(struct write_point *wp, bool running)
601 {
602         enum write_point_state state;
603
604         state = running                  ? WRITE_POINT_running :
605                 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
606                                          : WRITE_POINT_stopped;
607
608         __wp_update_state(wp, state);
609 }
610
611 static CLOSURE_CALLBACK(bch2_write_index)
612 {
613         closure_type(op, struct bch_write_op, cl);
614         struct write_point *wp = op->wp;
615         struct workqueue_struct *wq = index_update_wq(op);
616         unsigned long flags;
617
618         if ((op->flags & BCH_WRITE_SUBMITTED) &&
619             (op->flags & BCH_WRITE_MOVE))
620                 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
621
622         spin_lock_irqsave(&wp->writes_lock, flags);
623         if (wp->state == WRITE_POINT_waiting_io)
624                 __wp_update_state(wp, WRITE_POINT_waiting_work);
625         list_add_tail(&op->wp_list, &wp->writes);
626         spin_unlock_irqrestore (&wp->writes_lock, flags);
627
628         queue_work(wq, &wp->index_update_work);
629 }
630
631 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
632 {
633         op->wp = wp;
634
635         if (wp->state == WRITE_POINT_stopped) {
636                 spin_lock_irq(&wp->writes_lock);
637                 __wp_update_state(wp, WRITE_POINT_waiting_io);
638                 spin_unlock_irq(&wp->writes_lock);
639         }
640 }
641
642 void bch2_write_point_do_index_updates(struct work_struct *work)
643 {
644         struct write_point *wp =
645                 container_of(work, struct write_point, index_update_work);
646         struct bch_write_op *op;
647
648         while (1) {
649                 spin_lock_irq(&wp->writes_lock);
650                 op = list_pop_entry(&wp->writes, struct bch_write_op, wp_list);
651                 wp_update_state(wp, op != NULL);
652                 spin_unlock_irq(&wp->writes_lock);
653
654                 if (!op)
655                         break;
656
657                 op->flags |= BCH_WRITE_IN_WORKER;
658
659                 __bch2_write_index(op);
660
661                 if (!(op->flags & BCH_WRITE_SUBMITTED))
662                         __bch2_write(op);
663                 else
664                         bch2_write_done(&op->cl);
665         }
666 }
667
668 static void bch2_write_endio(struct bio *bio)
669 {
670         struct closure *cl              = bio->bi_private;
671         struct bch_write_op *op         = container_of(cl, struct bch_write_op, cl);
672         struct bch_write_bio *wbio      = to_wbio(bio);
673         struct bch_write_bio *parent    = wbio->split ? wbio->parent : NULL;
674         struct bch_fs *c                = wbio->c;
675         struct bch_dev *ca              = wbio->have_ioref
676                 ? bch2_dev_have_ref(c, wbio->dev)
677                 : NULL;
678
679         if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
680                                     op->pos.inode,
681                                     wbio->inode_offset << 9,
682                                     "data write error: %s",
683                                     bch2_blk_status_to_str(bio->bi_status))) {
684                 set_bit(wbio->dev, op->failed.d);
685                 op->flags |= BCH_WRITE_IO_ERROR;
686         }
687
688         if (wbio->nocow) {
689                 bch2_bucket_nocow_unlock(&c->nocow_locks,
690                                          POS(ca->dev_idx, wbio->nocow_bucket),
691                                          BUCKET_NOCOW_LOCK_UPDATE);
692                 set_bit(wbio->dev, op->devs_need_flush->d);
693         }
694
695         if (wbio->have_ioref) {
696                 bch2_latency_acct(ca, wbio->submit_time, WRITE);
697                 percpu_ref_put(&ca->io_ref);
698         }
699
700         if (wbio->bounce)
701                 bch2_bio_free_pages_pool(c, bio);
702
703         if (wbio->put_bio)
704                 bio_put(bio);
705
706         if (parent)
707                 bio_endio(&parent->bio);
708         else
709                 closure_put(cl);
710 }
711
712 static void init_append_extent(struct bch_write_op *op,
713                                struct write_point *wp,
714                                struct bversion version,
715                                struct bch_extent_crc_unpacked crc)
716 {
717         struct bkey_i_extent *e;
718
719         op->pos.offset += crc.uncompressed_size;
720
721         e = bkey_extent_init(op->insert_keys.top);
722         e->k.p          = op->pos;
723         e->k.size       = crc.uncompressed_size;
724         e->k.bversion   = version;
725
726         if (crc.csum_type ||
727             crc.compression_type ||
728             crc.nonce)
729                 bch2_extent_crc_append(&e->k_i, crc);
730
731         bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
732                                        op->flags & BCH_WRITE_CACHED);
733
734         bch2_keylist_push(&op->insert_keys);
735 }
736
737 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
738                                         struct write_point *wp,
739                                         struct bio *src,
740                                         bool *page_alloc_failed,
741                                         void *buf)
742 {
743         struct bch_write_bio *wbio;
744         struct bio *bio;
745         unsigned output_available =
746                 min(wp->sectors_free << 9, src->bi_iter.bi_size);
747         unsigned pages = DIV_ROUND_UP(output_available +
748                                       (buf
749                                        ? ((unsigned long) buf & (PAGE_SIZE - 1))
750                                        : 0), PAGE_SIZE);
751
752         pages = min(pages, BIO_MAX_VECS);
753
754         bio = bio_alloc_bioset(NULL, pages, 0,
755                                GFP_NOFS, &c->bio_write);
756         wbio                    = wbio_init(bio);
757         wbio->put_bio           = true;
758         /* copy WRITE_SYNC flag */
759         wbio->bio.bi_opf        = src->bi_opf;
760
761         if (buf) {
762                 bch2_bio_map(bio, buf, output_available);
763                 return bio;
764         }
765
766         wbio->bounce            = true;
767
768         /*
769          * We can't use mempool for more than c->sb.encoded_extent_max
770          * worth of pages, but we'd like to allocate more if we can:
771          */
772         bch2_bio_alloc_pages_pool(c, bio,
773                                   min_t(unsigned, output_available,
774                                         c->opts.encoded_extent_max));
775
776         if (bio->bi_iter.bi_size < output_available)
777                 *page_alloc_failed =
778                         bch2_bio_alloc_pages(bio,
779                                              output_available -
780                                              bio->bi_iter.bi_size,
781                                              GFP_NOFS) != 0;
782
783         return bio;
784 }
785
786 static int bch2_write_rechecksum(struct bch_fs *c,
787                                  struct bch_write_op *op,
788                                  unsigned new_csum_type)
789 {
790         struct bio *bio = &op->wbio.bio;
791         struct bch_extent_crc_unpacked new_crc;
792         int ret;
793
794         /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
795
796         if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
797             bch2_csum_type_is_encryption(new_csum_type))
798                 new_csum_type = op->crc.csum_type;
799
800         ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
801                                   NULL, &new_crc,
802                                   op->crc.offset, op->crc.live_size,
803                                   new_csum_type);
804         if (ret)
805                 return ret;
806
807         bio_advance(bio, op->crc.offset << 9);
808         bio->bi_iter.bi_size = op->crc.live_size << 9;
809         op->crc = new_crc;
810         return 0;
811 }
812
813 static int bch2_write_decrypt(struct bch_write_op *op)
814 {
815         struct bch_fs *c = op->c;
816         struct nonce nonce = extent_nonce(op->version, op->crc);
817         struct bch_csum csum;
818         int ret;
819
820         if (!bch2_csum_type_is_encryption(op->crc.csum_type))
821                 return 0;
822
823         /*
824          * If we need to decrypt data in the write path, we'll no longer be able
825          * to verify the existing checksum (poly1305 mac, in this case) after
826          * it's decrypted - this is the last point we'll be able to reverify the
827          * checksum:
828          */
829         csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
830         if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
831                 return -EIO;
832
833         ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
834         op->crc.csum_type = 0;
835         op->crc.csum = (struct bch_csum) { 0, 0 };
836         return ret;
837 }
838
839 static enum prep_encoded_ret {
840         PREP_ENCODED_OK,
841         PREP_ENCODED_ERR,
842         PREP_ENCODED_CHECKSUM_ERR,
843         PREP_ENCODED_DO_WRITE,
844 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
845 {
846         struct bch_fs *c = op->c;
847         struct bio *bio = &op->wbio.bio;
848
849         if (!(op->flags & BCH_WRITE_DATA_ENCODED))
850                 return PREP_ENCODED_OK;
851
852         BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
853
854         /* Can we just write the entire extent as is? */
855         if (op->crc.uncompressed_size == op->crc.live_size &&
856             op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
857             op->crc.compressed_size <= wp->sectors_free &&
858             (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
859              op->incompressible)) {
860                 if (!crc_is_compressed(op->crc) &&
861                     op->csum_type != op->crc.csum_type &&
862                     bch2_write_rechecksum(c, op, op->csum_type) &&
863                     !c->opts.no_data_io)
864                         return PREP_ENCODED_CHECKSUM_ERR;
865
866                 return PREP_ENCODED_DO_WRITE;
867         }
868
869         /*
870          * If the data is compressed and we couldn't write the entire extent as
871          * is, we have to decompress it:
872          */
873         if (crc_is_compressed(op->crc)) {
874                 struct bch_csum csum;
875
876                 if (bch2_write_decrypt(op))
877                         return PREP_ENCODED_CHECKSUM_ERR;
878
879                 /* Last point we can still verify checksum: */
880                 csum = bch2_checksum_bio(c, op->crc.csum_type,
881                                          extent_nonce(op->version, op->crc),
882                                          bio);
883                 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
884                         return PREP_ENCODED_CHECKSUM_ERR;
885
886                 if (bch2_bio_uncompress_inplace(op, bio))
887                         return PREP_ENCODED_ERR;
888         }
889
890         /*
891          * No longer have compressed data after this point - data might be
892          * encrypted:
893          */
894
895         /*
896          * If the data is checksummed and we're only writing a subset,
897          * rechecksum and adjust bio to point to currently live data:
898          */
899         if ((op->crc.live_size != op->crc.uncompressed_size ||
900              op->crc.csum_type != op->csum_type) &&
901             bch2_write_rechecksum(c, op, op->csum_type) &&
902             !c->opts.no_data_io)
903                 return PREP_ENCODED_CHECKSUM_ERR;
904
905         /*
906          * If we want to compress the data, it has to be decrypted:
907          */
908         if ((op->compression_opt ||
909              bch2_csum_type_is_encryption(op->crc.csum_type) !=
910              bch2_csum_type_is_encryption(op->csum_type)) &&
911             bch2_write_decrypt(op))
912                 return PREP_ENCODED_CHECKSUM_ERR;
913
914         return PREP_ENCODED_OK;
915 }
916
917 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
918                              struct bio **_dst)
919 {
920         struct bch_fs *c = op->c;
921         struct bio *src = &op->wbio.bio, *dst = src;
922         struct bvec_iter saved_iter;
923         void *ec_buf;
924         unsigned total_output = 0, total_input = 0;
925         bool bounce = false;
926         bool page_alloc_failed = false;
927         int ret, more = 0;
928
929         BUG_ON(!bio_sectors(src));
930
931         ec_buf = bch2_writepoint_ec_buf(c, wp);
932
933         switch (bch2_write_prep_encoded_data(op, wp)) {
934         case PREP_ENCODED_OK:
935                 break;
936         case PREP_ENCODED_ERR:
937                 ret = -EIO;
938                 goto err;
939         case PREP_ENCODED_CHECKSUM_ERR:
940                 goto csum_err;
941         case PREP_ENCODED_DO_WRITE:
942                 /* XXX look for bug here */
943                 if (ec_buf) {
944                         dst = bch2_write_bio_alloc(c, wp, src,
945                                                    &page_alloc_failed,
946                                                    ec_buf);
947                         bio_copy_data(dst, src);
948                         bounce = true;
949                 }
950                 init_append_extent(op, wp, op->version, op->crc);
951                 goto do_write;
952         }
953
954         if (ec_buf ||
955             op->compression_opt ||
956             (op->csum_type &&
957              !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
958             (bch2_csum_type_is_encryption(op->csum_type) &&
959              !(op->flags & BCH_WRITE_PAGES_OWNED))) {
960                 dst = bch2_write_bio_alloc(c, wp, src,
961                                            &page_alloc_failed,
962                                            ec_buf);
963                 bounce = true;
964         }
965
966         saved_iter = dst->bi_iter;
967
968         do {
969                 struct bch_extent_crc_unpacked crc = { 0 };
970                 struct bversion version = op->version;
971                 size_t dst_len = 0, src_len = 0;
972
973                 if (page_alloc_failed &&
974                     dst->bi_iter.bi_size  < (wp->sectors_free << 9) &&
975                     dst->bi_iter.bi_size < c->opts.encoded_extent_max)
976                         break;
977
978                 BUG_ON(op->compression_opt &&
979                        (op->flags & BCH_WRITE_DATA_ENCODED) &&
980                        bch2_csum_type_is_encryption(op->crc.csum_type));
981                 BUG_ON(op->compression_opt && !bounce);
982
983                 crc.compression_type = op->incompressible
984                         ? BCH_COMPRESSION_TYPE_incompressible
985                         : op->compression_opt
986                         ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
987                                             op->compression_opt)
988                         : 0;
989                 if (!crc_is_compressed(crc)) {
990                         dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
991                         dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
992
993                         if (op->csum_type)
994                                 dst_len = min_t(unsigned, dst_len,
995                                                 c->opts.encoded_extent_max);
996
997                         if (bounce) {
998                                 swap(dst->bi_iter.bi_size, dst_len);
999                                 bio_copy_data(dst, src);
1000                                 swap(dst->bi_iter.bi_size, dst_len);
1001                         }
1002
1003                         src_len = dst_len;
1004                 }
1005
1006                 BUG_ON(!src_len || !dst_len);
1007
1008                 if (bch2_csum_type_is_encryption(op->csum_type)) {
1009                         if (bversion_zero(version)) {
1010                                 version.lo = atomic64_inc_return(&c->key_version);
1011                         } else {
1012                                 crc.nonce = op->nonce;
1013                                 op->nonce += src_len >> 9;
1014                         }
1015                 }
1016
1017                 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1018                     !crc_is_compressed(crc) &&
1019                     bch2_csum_type_is_encryption(op->crc.csum_type) ==
1020                     bch2_csum_type_is_encryption(op->csum_type)) {
1021                         u8 compression_type = crc.compression_type;
1022                         u16 nonce = crc.nonce;
1023                         /*
1024                          * Note: when we're using rechecksum(), we need to be
1025                          * checksumming @src because it has all the data our
1026                          * existing checksum covers - if we bounced (because we
1027                          * were trying to compress), @dst will only have the
1028                          * part of the data the new checksum will cover.
1029                          *
1030                          * But normally we want to be checksumming post bounce,
1031                          * because part of the reason for bouncing is so the
1032                          * data can't be modified (by userspace) while it's in
1033                          * flight.
1034                          */
1035                         if (bch2_rechecksum_bio(c, src, version, op->crc,
1036                                         &crc, &op->crc,
1037                                         src_len >> 9,
1038                                         bio_sectors(src) - (src_len >> 9),
1039                                         op->csum_type))
1040                                 goto csum_err;
1041                         /*
1042                          * rchecksum_bio sets compression_type on crc from op->crc,
1043                          * this isn't always correct as sometimes we're changing
1044                          * an extent from uncompressed to incompressible.
1045                          */
1046                         crc.compression_type = compression_type;
1047                         crc.nonce = nonce;
1048                 } else {
1049                         if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1050                             bch2_rechecksum_bio(c, src, version, op->crc,
1051                                         NULL, &op->crc,
1052                                         src_len >> 9,
1053                                         bio_sectors(src) - (src_len >> 9),
1054                                         op->crc.csum_type))
1055                                 goto csum_err;
1056
1057                         crc.compressed_size     = dst_len >> 9;
1058                         crc.uncompressed_size   = src_len >> 9;
1059                         crc.live_size           = src_len >> 9;
1060
1061                         swap(dst->bi_iter.bi_size, dst_len);
1062                         ret = bch2_encrypt_bio(c, op->csum_type,
1063                                                extent_nonce(version, crc), dst);
1064                         if (ret)
1065                                 goto err;
1066
1067                         crc.csum = bch2_checksum_bio(c, op->csum_type,
1068                                          extent_nonce(version, crc), dst);
1069                         crc.csum_type = op->csum_type;
1070                         swap(dst->bi_iter.bi_size, dst_len);
1071                 }
1072
1073                 init_append_extent(op, wp, version, crc);
1074
1075                 if (dst != src)
1076                         bio_advance(dst, dst_len);
1077                 bio_advance(src, src_len);
1078                 total_output    += dst_len;
1079                 total_input     += src_len;
1080         } while (dst->bi_iter.bi_size &&
1081                  src->bi_iter.bi_size &&
1082                  wp->sectors_free &&
1083                  !bch2_keylist_realloc(&op->insert_keys,
1084                                       op->inline_keys,
1085                                       ARRAY_SIZE(op->inline_keys),
1086                                       BKEY_EXTENT_U64s_MAX));
1087
1088         more = src->bi_iter.bi_size != 0;
1089
1090         dst->bi_iter = saved_iter;
1091
1092         if (dst == src && more) {
1093                 BUG_ON(total_output != total_input);
1094
1095                 dst = bio_split(src, total_input >> 9,
1096                                 GFP_NOFS, &c->bio_write);
1097                 wbio_init(dst)->put_bio = true;
1098                 /* copy WRITE_SYNC flag */
1099                 dst->bi_opf             = src->bi_opf;
1100         }
1101
1102         dst->bi_iter.bi_size = total_output;
1103 do_write:
1104         *_dst = dst;
1105         return more;
1106 csum_err:
1107         {
1108                 struct printbuf buf = PRINTBUF;
1109                 bch2_write_op_error(&buf, op);
1110                 prt_printf(&buf, "error verifying existing checksum while rewriting existing data (memory corruption?)");
1111                 bch_err_ratelimited(c, "%s", buf.buf);
1112                 printbuf_exit(&buf);
1113         }
1114
1115         ret = -EIO;
1116 err:
1117         if (to_wbio(dst)->bounce)
1118                 bch2_bio_free_pages_pool(c, dst);
1119         if (to_wbio(dst)->put_bio)
1120                 bio_put(dst);
1121
1122         return ret;
1123 }
1124
1125 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1126                                      struct bkey_s_c k)
1127 {
1128         struct bch_fs *c = op->c;
1129         struct bkey_s_c_extent e;
1130         struct extent_ptr_decoded p;
1131         const union bch_extent_entry *entry;
1132         unsigned replicas = 0;
1133
1134         if (k.k->type != KEY_TYPE_extent)
1135                 return false;
1136
1137         e = bkey_s_c_to_extent(k);
1138
1139         rcu_read_lock();
1140         extent_for_each_ptr_decode(e, p, entry) {
1141                 if (crc_is_encoded(p.crc) || p.has_ec) {
1142                         rcu_read_unlock();
1143                         return false;
1144                 }
1145
1146                 replicas += bch2_extent_ptr_durability(c, &p);
1147         }
1148         rcu_read_unlock();
1149
1150         return replicas >= op->opts.data_replicas;
1151 }
1152
1153 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1154                                                   struct btree_iter *iter,
1155                                                   struct bkey_i *orig,
1156                                                   struct bkey_s_c k,
1157                                                   u64 new_i_size)
1158 {
1159         if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1160                 /* trace this */
1161                 return 0;
1162         }
1163
1164         struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1165         int ret = PTR_ERR_OR_ZERO(new);
1166         if (ret)
1167                 return ret;
1168
1169         bch2_cut_front(bkey_start_pos(&orig->k), new);
1170         bch2_cut_back(orig->k.p, new);
1171
1172         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1173         bkey_for_each_ptr(ptrs, ptr)
1174                 ptr->unwritten = 0;
1175
1176         /*
1177          * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1178          * that was done when we kicked off the write, and here it's important
1179          * that we update the extent that we wrote to - even if a snapshot has
1180          * since been created. The write is still outstanding, so we're ok
1181          * w.r.t. snapshot atomicity:
1182          */
1183         return  bch2_extent_update_i_size_sectors(trans, iter,
1184                                         min(new->k.p.offset << 9, new_i_size), 0) ?:
1185                 bch2_trans_update(trans, iter, new,
1186                                   BTREE_UPDATE_internal_snapshot_node);
1187 }
1188
1189 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1190 {
1191         struct bch_fs *c = op->c;
1192         struct btree_trans *trans = bch2_trans_get(c);
1193
1194         for_each_keylist_key(&op->insert_keys, orig) {
1195                 int ret = for_each_btree_key_max_commit(trans, iter, BTREE_ID_extents,
1196                                      bkey_start_pos(&orig->k), orig->k.p,
1197                                      BTREE_ITER_intent, k,
1198                                      NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1199                         bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1200                 }));
1201
1202                 if (ret && !bch2_err_matches(ret, EROFS)) {
1203                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1204
1205                         struct printbuf buf = PRINTBUF;
1206                         bch2_write_op_error_trans(trans, &buf, op, bkey_start_offset(&insert->k));
1207                         prt_printf(&buf, "btree update error: %s", bch2_err_str(ret));
1208                         bch_err_ratelimited(c, "%s", buf.buf);
1209                         printbuf_exit(&buf);
1210                 }
1211
1212                 if (ret) {
1213                         op->error = ret;
1214                         break;
1215                 }
1216         }
1217
1218         bch2_trans_put(trans);
1219 }
1220
1221 static void __bch2_nocow_write_done(struct bch_write_op *op)
1222 {
1223         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1224                 op->error = -EIO;
1225         } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1226                 bch2_nocow_write_convert_unwritten(op);
1227 }
1228
1229 static CLOSURE_CALLBACK(bch2_nocow_write_done)
1230 {
1231         closure_type(op, struct bch_write_op, cl);
1232
1233         __bch2_nocow_write_done(op);
1234         bch2_write_done(cl);
1235 }
1236
1237 struct bucket_to_lock {
1238         struct bpos             b;
1239         unsigned                gen;
1240         struct nocow_lock_bucket *l;
1241 };
1242
1243 static void bch2_nocow_write(struct bch_write_op *op)
1244 {
1245         struct bch_fs *c = op->c;
1246         struct btree_trans *trans;
1247         struct btree_iter iter;
1248         struct bkey_s_c k;
1249         DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1250         u32 snapshot;
1251         struct bucket_to_lock *stale_at;
1252         int stale, ret;
1253
1254         if (op->flags & BCH_WRITE_MOVE)
1255                 return;
1256
1257         darray_init(&buckets);
1258         trans = bch2_trans_get(c);
1259 retry:
1260         bch2_trans_begin(trans);
1261
1262         ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1263         if (unlikely(ret))
1264                 goto err;
1265
1266         bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1267                              SPOS(op->pos.inode, op->pos.offset, snapshot),
1268                              BTREE_ITER_slots);
1269         while (1) {
1270                 struct bio *bio = &op->wbio.bio;
1271
1272                 buckets.nr = 0;
1273
1274                 ret = bch2_trans_relock(trans);
1275                 if (ret)
1276                         break;
1277
1278                 k = bch2_btree_iter_peek_slot(&iter);
1279                 ret = bkey_err(k);
1280                 if (ret)
1281                         break;
1282
1283                 /* fall back to normal cow write path? */
1284                 if (unlikely(k.k->p.snapshot != snapshot ||
1285                              !bch2_extent_is_writeable(op, k)))
1286                         break;
1287
1288                 if (bch2_keylist_realloc(&op->insert_keys,
1289                                          op->inline_keys,
1290                                          ARRAY_SIZE(op->inline_keys),
1291                                          k.k->u64s))
1292                         break;
1293
1294                 /* Get iorefs before dropping btree locks: */
1295                 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1296                 bkey_for_each_ptr(ptrs, ptr) {
1297                         struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE);
1298                         if (unlikely(!ca))
1299                                 goto err_get_ioref;
1300
1301                         struct bpos b = PTR_BUCKET_POS(ca, ptr);
1302                         struct nocow_lock_bucket *l =
1303                                 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1304                         prefetch(l);
1305
1306                         /* XXX allocating memory with btree locks held - rare */
1307                         darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1308                                                    .b = b, .gen = ptr->gen, .l = l,
1309                                                    }), GFP_KERNEL|__GFP_NOFAIL);
1310
1311                         if (ptr->unwritten)
1312                                 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1313                 }
1314
1315                 /* Unlock before taking nocow locks, doing IO: */
1316                 bkey_reassemble(op->insert_keys.top, k);
1317                 bch2_trans_unlock(trans);
1318
1319                 bch2_cut_front(op->pos, op->insert_keys.top);
1320                 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1321                         bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1322
1323                 darray_for_each(buckets, i) {
1324                         struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode);
1325
1326                         __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1327                                                  bucket_to_u64(i->b),
1328                                                  BUCKET_NOCOW_LOCK_UPDATE);
1329
1330                         int gen = bucket_gen_get(ca, i->b.offset);
1331                         stale = gen < 0 ? gen : gen_after(gen, i->gen);
1332                         if (unlikely(stale)) {
1333                                 stale_at = i;
1334                                 goto err_bucket_stale;
1335                         }
1336                 }
1337
1338                 bio = &op->wbio.bio;
1339                 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1340                         bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1341                                         GFP_KERNEL, &c->bio_write);
1342                         wbio_init(bio)->put_bio = true;
1343                         bio->bi_opf = op->wbio.bio.bi_opf;
1344                 } else {
1345                         op->flags |= BCH_WRITE_SUBMITTED;
1346                 }
1347
1348                 op->pos.offset += bio_sectors(bio);
1349                 op->written += bio_sectors(bio);
1350
1351                 bio->bi_end_io  = bch2_write_endio;
1352                 bio->bi_private = &op->cl;
1353                 bio->bi_opf |= REQ_OP_WRITE;
1354                 closure_get(&op->cl);
1355                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1356                                           op->insert_keys.top, true);
1357
1358                 bch2_keylist_push(&op->insert_keys);
1359                 if (op->flags & BCH_WRITE_SUBMITTED)
1360                         break;
1361                 bch2_btree_iter_advance(&iter);
1362         }
1363 out:
1364         bch2_trans_iter_exit(trans, &iter);
1365 err:
1366         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1367                 goto retry;
1368
1369         bch2_trans_put(trans);
1370         darray_exit(&buckets);
1371
1372         if (ret) {
1373                 struct printbuf buf = PRINTBUF;
1374                 bch2_write_op_error(&buf, op);
1375                 prt_printf(&buf, "%s(): btree lookup error: %s", __func__, bch2_err_str(ret));
1376                 bch_err_ratelimited(c, "%s", buf.buf);
1377                 printbuf_exit(&buf);
1378                 op->error = ret;
1379                 op->flags |= BCH_WRITE_SUBMITTED;
1380         }
1381
1382         /* fallback to cow write path? */
1383         if (!(op->flags & BCH_WRITE_SUBMITTED)) {
1384                 closure_sync(&op->cl);
1385                 __bch2_nocow_write_done(op);
1386                 op->insert_keys.top = op->insert_keys.keys;
1387         } else if (op->flags & BCH_WRITE_SYNC) {
1388                 closure_sync(&op->cl);
1389                 bch2_nocow_write_done(&op->cl.work);
1390         } else {
1391                 /*
1392                  * XXX
1393                  * needs to run out of process context because ei_quota_lock is
1394                  * a mutex
1395                  */
1396                 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1397         }
1398         return;
1399 err_get_ioref:
1400         darray_for_each(buckets, i)
1401                 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref);
1402
1403         /* Fall back to COW path: */
1404         goto out;
1405 err_bucket_stale:
1406         darray_for_each(buckets, i) {
1407                 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1408                 if (i == stale_at)
1409                         break;
1410         }
1411
1412         struct printbuf buf = PRINTBUF;
1413         if (bch2_fs_inconsistent_on(stale < 0, c,
1414                                     "pointer to invalid bucket in nocow path on device %llu\n  %s",
1415                                     stale_at->b.inode,
1416                                     (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
1417                 ret = -EIO;
1418         } else {
1419                 /* We can retry this: */
1420                 ret = -BCH_ERR_transaction_restart;
1421         }
1422         printbuf_exit(&buf);
1423
1424         goto err_get_ioref;
1425 }
1426
1427 static void __bch2_write(struct bch_write_op *op)
1428 {
1429         struct bch_fs *c = op->c;
1430         struct write_point *wp = NULL;
1431         struct bio *bio = NULL;
1432         unsigned nofs_flags;
1433         int ret;
1434
1435         nofs_flags = memalloc_nofs_save();
1436
1437         if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1438                 bch2_nocow_write(op);
1439                 if (op->flags & BCH_WRITE_SUBMITTED)
1440                         goto out_nofs_restore;
1441         }
1442 again:
1443         memset(&op->failed, 0, sizeof(op->failed));
1444
1445         do {
1446                 struct bkey_i *key_to_write;
1447                 unsigned key_to_write_offset = op->insert_keys.top_p -
1448                         op->insert_keys.keys_p;
1449
1450                 /* +1 for possible cache device: */
1451                 if (op->open_buckets.nr + op->nr_replicas + 1 >
1452                     ARRAY_SIZE(op->open_buckets.v))
1453                         break;
1454
1455                 if (bch2_keylist_realloc(&op->insert_keys,
1456                                         op->inline_keys,
1457                                         ARRAY_SIZE(op->inline_keys),
1458                                         BKEY_EXTENT_U64s_MAX))
1459                         break;
1460
1461                 /*
1462                  * The copygc thread is now global, which means it's no longer
1463                  * freeing up space on specific disks, which means that
1464                  * allocations for specific disks may hang arbitrarily long:
1465                  */
1466                 ret = bch2_trans_run(c, lockrestart_do(trans,
1467                         bch2_alloc_sectors_start_trans(trans,
1468                                 op->target,
1469                                 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1470                                 op->write_point,
1471                                 &op->devs_have,
1472                                 op->nr_replicas,
1473                                 op->nr_replicas_required,
1474                                 op->watermark,
1475                                 op->flags,
1476                                 &op->cl, &wp)));
1477                 if (unlikely(ret)) {
1478                         if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1479                                 break;
1480
1481                         goto err;
1482                 }
1483
1484                 EBUG_ON(!wp);
1485
1486                 bch2_open_bucket_get(c, wp, &op->open_buckets);
1487                 ret = bch2_write_extent(op, wp, &bio);
1488
1489                 bch2_alloc_sectors_done_inlined(c, wp);
1490 err:
1491                 if (ret <= 0) {
1492                         op->flags |= BCH_WRITE_SUBMITTED;
1493
1494                         if (unlikely(ret < 0)) {
1495                                 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT)) {
1496                                         struct printbuf buf = PRINTBUF;
1497                                         bch2_write_op_error(&buf, op);
1498                                         prt_printf(&buf, "%s(): %s", __func__, bch2_err_str(ret));
1499                                         bch_err_ratelimited(c, "%s", buf.buf);
1500                                         printbuf_exit(&buf);
1501                                 }
1502                                 op->error = ret;
1503                                 break;
1504                         }
1505                 }
1506
1507                 bio->bi_end_io  = bch2_write_endio;
1508                 bio->bi_private = &op->cl;
1509                 bio->bi_opf |= REQ_OP_WRITE;
1510
1511                 closure_get(bio->bi_private);
1512
1513                 key_to_write = (void *) (op->insert_keys.keys_p +
1514                                          key_to_write_offset);
1515
1516                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1517                                           key_to_write, false);
1518         } while (ret);
1519
1520         /*
1521          * Sync or no?
1522          *
1523          * If we're running asynchronously, wne may still want to block
1524          * synchronously here if we weren't able to submit all of the IO at
1525          * once, as that signals backpressure to the caller.
1526          */
1527         if ((op->flags & BCH_WRITE_SYNC) ||
1528             (!(op->flags & BCH_WRITE_SUBMITTED) &&
1529              !(op->flags & BCH_WRITE_IN_WORKER))) {
1530                 bch2_wait_on_allocator(c, &op->cl);
1531
1532                 __bch2_write_index(op);
1533
1534                 if (!(op->flags & BCH_WRITE_SUBMITTED))
1535                         goto again;
1536                 bch2_write_done(&op->cl);
1537         } else {
1538                 bch2_write_queue(op, wp);
1539                 continue_at(&op->cl, bch2_write_index, NULL);
1540         }
1541 out_nofs_restore:
1542         memalloc_nofs_restore(nofs_flags);
1543 }
1544
1545 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1546 {
1547         struct bio *bio = &op->wbio.bio;
1548         struct bvec_iter iter;
1549         struct bkey_i_inline_data *id;
1550         unsigned sectors;
1551         int ret;
1552
1553         memset(&op->failed, 0, sizeof(op->failed));
1554
1555         op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1556         op->flags |= BCH_WRITE_SUBMITTED;
1557
1558         bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1559
1560         ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1561                                    ARRAY_SIZE(op->inline_keys),
1562                                    BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1563         if (ret) {
1564                 op->error = ret;
1565                 goto err;
1566         }
1567
1568         sectors = bio_sectors(bio);
1569         op->pos.offset += sectors;
1570
1571         id = bkey_inline_data_init(op->insert_keys.top);
1572         id->k.p         = op->pos;
1573         id->k.bversion  = op->version;
1574         id->k.size      = sectors;
1575
1576         iter = bio->bi_iter;
1577         iter.bi_size = data_len;
1578         memcpy_from_bio(id->v.data, bio, iter);
1579
1580         while (data_len & 7)
1581                 id->v.data[data_len++] = '\0';
1582         set_bkey_val_bytes(&id->k, data_len);
1583         bch2_keylist_push(&op->insert_keys);
1584
1585         __bch2_write_index(op);
1586 err:
1587         bch2_write_done(&op->cl);
1588 }
1589
1590 /**
1591  * bch2_write() - handle a write to a cache device or flash only volume
1592  * @cl:         &bch_write_op->cl
1593  *
1594  * This is the starting point for any data to end up in a cache device; it could
1595  * be from a normal write, or a writeback write, or a write to a flash only
1596  * volume - it's also used by the moving garbage collector to compact data in
1597  * mostly empty buckets.
1598  *
1599  * It first writes the data to the cache, creating a list of keys to be inserted
1600  * (if the data won't fit in a single open bucket, there will be multiple keys);
1601  * after the data is written it calls bch_journal, and after the keys have been
1602  * added to the next journal write they're inserted into the btree.
1603  *
1604  * If op->discard is true, instead of inserting the data it invalidates the
1605  * region of the cache represented by op->bio and op->inode.
1606  */
1607 CLOSURE_CALLBACK(bch2_write)
1608 {
1609         closure_type(op, struct bch_write_op, cl);
1610         struct bio *bio = &op->wbio.bio;
1611         struct bch_fs *c = op->c;
1612         unsigned data_len;
1613
1614         EBUG_ON(op->cl.parent);
1615         BUG_ON(!op->nr_replicas);
1616         BUG_ON(!op->write_point.v);
1617         BUG_ON(bkey_eq(op->pos, POS_MAX));
1618
1619         if (op->flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)
1620                 op->flags |= BCH_WRITE_ALLOC_NOWAIT;
1621
1622         op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1623         op->start_time = local_clock();
1624         bch2_keylist_init(&op->insert_keys, op->inline_keys);
1625         wbio_init(bio)->put_bio = false;
1626
1627         if (unlikely(bio->bi_iter.bi_size & (c->opts.block_size - 1))) {
1628                 struct printbuf buf = PRINTBUF;
1629                 bch2_write_op_error(&buf, op);
1630                 prt_printf(&buf, "misaligned write");
1631                 printbuf_exit(&buf);
1632                 op->error = -EIO;
1633                 goto err;
1634         }
1635
1636         if (c->opts.nochanges) {
1637                 op->error = -BCH_ERR_erofs_no_writes;
1638                 goto err;
1639         }
1640
1641         if (!(op->flags & BCH_WRITE_MOVE) &&
1642             !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1643                 op->error = -BCH_ERR_erofs_no_writes;
1644                 goto err;
1645         }
1646
1647         this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1648         bch2_increment_clock(c, bio_sectors(bio), WRITE);
1649
1650         data_len = min_t(u64, bio->bi_iter.bi_size,
1651                          op->new_i_size - (op->pos.offset << 9));
1652
1653         if (c->opts.inline_data &&
1654             data_len <= min(block_bytes(c) / 2, 1024U)) {
1655                 bch2_write_data_inline(op, data_len);
1656                 return;
1657         }
1658
1659         __bch2_write(op);
1660         return;
1661 err:
1662         bch2_disk_reservation_put(c, &op->res);
1663
1664         closure_debug_destroy(&op->cl);
1665         if (op->end_io)
1666                 op->end_io(op);
1667 }
1668
1669 static const char * const bch2_write_flags[] = {
1670 #define x(f)    #f,
1671         BCH_WRITE_FLAGS()
1672 #undef x
1673         NULL
1674 };
1675
1676 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1677 {
1678         prt_str(out, "pos: ");
1679         bch2_bpos_to_text(out, op->pos);
1680         prt_newline(out);
1681         printbuf_indent_add(out, 2);
1682
1683         prt_str(out, "started: ");
1684         bch2_pr_time_units(out, local_clock() - op->start_time);
1685         prt_newline(out);
1686
1687         prt_str(out, "flags: ");
1688         prt_bitflags(out, bch2_write_flags, op->flags);
1689         prt_newline(out);
1690
1691         prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl));
1692
1693         printbuf_indent_sub(out, 2);
1694 }
1695
1696 void bch2_fs_io_write_exit(struct bch_fs *c)
1697 {
1698         mempool_exit(&c->bio_bounce_pages);
1699         bioset_exit(&c->replica_set);
1700         bioset_exit(&c->bio_write);
1701 }
1702
1703 int bch2_fs_io_write_init(struct bch_fs *c)
1704 {
1705         if (bioset_init(&c->bio_write,   1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) ||
1706             bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0))
1707                 return -BCH_ERR_ENOMEM_bio_write_init;
1708
1709         if (mempool_init_page_pool(&c->bio_bounce_pages,
1710                                    max_t(unsigned,
1711                                          c->opts.btree_node_size,
1712                                          c->opts.encoded_extent_max) /
1713                                    PAGE_SIZE, 0))
1714                 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1715
1716         return 0;
1717 }
This page took 0.13033 seconds and 4 git commands to generate.