1 #define pr_fmt(fmt) "prime numbers: " fmt "\n"
3 #include <linux/module.h>
4 #include <linux/mutex.h>
5 #include <linux/prime_numbers.h>
6 #include <linux/slab.h>
8 #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
12 unsigned long last, sz;
13 unsigned long primes[];
16 #if BITS_PER_LONG == 64
17 static const struct primes small_primes = {
41 #elif BITS_PER_LONG == 32
42 static const struct primes small_primes = {
60 #error "unhandled BITS_PER_LONG"
63 static DEFINE_MUTEX(lock);
64 static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
66 static unsigned long selftest_max;
68 static bool slow_is_prime_number(unsigned long x)
70 unsigned long y = int_sqrt(x);
81 static unsigned long slow_next_prime_number(unsigned long x)
83 while (x < ULONG_MAX && !slow_is_prime_number(++x))
89 static unsigned long clear_multiples(unsigned long x,
98 m = roundup(start, x);
108 static bool expand_to_next_prime(unsigned long x)
110 const struct primes *p;
114 /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
115 * there is always at least one prime p between n and 2n - 2.
116 * Equivalently, if n > 1, then there is always at least one prime p
117 * such that n < p < 2n.
119 * http://mathworld.wolfram.com/BertrandsPostulate.html
120 * https://en.wikipedia.org/wiki/Bertrand's_postulate
126 sz = round_up(sz, BITS_PER_LONG);
127 new = kmalloc(sizeof(*new) + bitmap_size(sz), GFP_KERNEL);
132 p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
138 /* Where memory permits, track the primes using the
139 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
140 * primes from the set, what remains in the set is therefore prime.
142 bitmap_fill(new->primes, sz);
143 bitmap_copy(new->primes, p->primes, p->sz);
144 for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
145 new->last = clear_multiples(y, new->primes, p->sz, sz);
148 BUG_ON(new->last <= x);
150 rcu_assign_pointer(primes, new);
151 if (p != &small_primes)
152 kfree_rcu((struct primes *)p, rcu);
159 static void free_primes(void)
161 const struct primes *p;
164 p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
165 if (p != &small_primes) {
166 rcu_assign_pointer(primes, &small_primes);
167 kfree_rcu((struct primes *)p, rcu);
173 * next_prime_number - return the next prime number
174 * @x: the starting point for searching to test
176 * A prime number is an integer greater than 1 that is only divisible by
177 * itself and 1. The set of prime numbers is computed using the Sieve of
178 * Eratoshenes (on finding a prime, all multiples of that prime are removed
179 * from the set) enabling a fast lookup of the next prime number larger than
180 * @x. If the sieve fails (memory limitation), the search falls back to using
181 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
182 * final prime as a sentinel).
184 * Returns: the next prime number larger than @x
186 unsigned long next_prime_number(unsigned long x)
188 const struct primes *p;
191 p = rcu_dereference(primes);
192 while (x >= p->last) {
195 if (!expand_to_next_prime(x))
196 return slow_next_prime_number(x);
199 p = rcu_dereference(primes);
201 x = find_next_bit(p->primes, p->last, x + 1);
206 EXPORT_SYMBOL(next_prime_number);
209 * is_prime_number - test whether the given number is prime
210 * @x: the number to test
212 * A prime number is an integer greater than 1 that is only divisible by
213 * itself and 1. Internally a cache of prime numbers is kept (to speed up
214 * searching for sequential primes, see next_prime_number()), but if the number
215 * falls outside of that cache, its primality is tested using trial-divison.
217 * Returns: true if @x is prime, false for composite numbers.
219 bool is_prime_number(unsigned long x)
221 const struct primes *p;
225 p = rcu_dereference(primes);
229 if (!expand_to_next_prime(x))
230 return slow_is_prime_number(x);
233 p = rcu_dereference(primes);
235 result = test_bit(x, p->primes);
240 EXPORT_SYMBOL(is_prime_number);
242 static void dump_primes(void)
244 const struct primes *p;
247 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
250 p = rcu_dereference(primes);
253 bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
254 pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
255 p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
262 static int selftest(unsigned long max)
264 unsigned long x, last;
269 for (last = 0, x = 2; x < max; x++) {
270 bool slow = slow_is_prime_number(x);
271 bool fast = is_prime_number(x);
274 pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
275 x, slow ? "yes" : "no", fast ? "yes" : "no");
282 if (next_prime_number(last) != x) {
283 pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
284 last, x, next_prime_number(last));
290 pr_info("selftest(%lu) passed, last prime was %lu", x, last);
298 static int __init primes_init(void)
300 return selftest(selftest_max);
303 static void __exit primes_exit(void)
308 module_init(primes_init);
309 module_exit(primes_exit);
311 module_param_named(selftest, selftest_max, ulong, 0400);
313 MODULE_AUTHOR("Intel Corporation");
314 MODULE_LICENSE("GPL");