]>
Commit | Line | Data |
---|---|---|
cf4a7207 CW |
1 | #define pr_fmt(fmt) "prime numbers: " fmt "\n" |
2 | ||
3 | #include <linux/module.h> | |
4 | #include <linux/mutex.h> | |
5 | #include <linux/prime_numbers.h> | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) | |
9 | ||
10 | struct primes { | |
11 | struct rcu_head rcu; | |
12 | unsigned long last, sz; | |
13 | unsigned long primes[]; | |
14 | }; | |
15 | ||
16 | #if BITS_PER_LONG == 64 | |
17 | static const struct primes small_primes = { | |
18 | .last = 61, | |
19 | .sz = 64, | |
20 | .primes = { | |
21 | BIT(2) | | |
22 | BIT(3) | | |
23 | BIT(5) | | |
24 | BIT(7) | | |
25 | BIT(11) | | |
26 | BIT(13) | | |
27 | BIT(17) | | |
28 | BIT(19) | | |
29 | BIT(23) | | |
30 | BIT(29) | | |
31 | BIT(31) | | |
32 | BIT(37) | | |
33 | BIT(41) | | |
34 | BIT(43) | | |
35 | BIT(47) | | |
36 | BIT(53) | | |
37 | BIT(59) | | |
38 | BIT(61) | |
39 | } | |
40 | }; | |
41 | #elif BITS_PER_LONG == 32 | |
42 | static const struct primes small_primes = { | |
43 | .last = 31, | |
44 | .sz = 32, | |
45 | .primes = { | |
46 | BIT(2) | | |
47 | BIT(3) | | |
48 | BIT(5) | | |
49 | BIT(7) | | |
50 | BIT(11) | | |
51 | BIT(13) | | |
52 | BIT(17) | | |
53 | BIT(19) | | |
54 | BIT(23) | | |
55 | BIT(29) | | |
56 | BIT(31) | |
57 | } | |
58 | }; | |
59 | #else | |
60 | #error "unhandled BITS_PER_LONG" | |
61 | #endif | |
62 | ||
63 | static DEFINE_MUTEX(lock); | |
64 | static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); | |
65 | ||
66 | static unsigned long selftest_max; | |
67 | ||
68 | static bool slow_is_prime_number(unsigned long x) | |
69 | { | |
70 | unsigned long y = int_sqrt(x); | |
71 | ||
72 | while (y > 1) { | |
73 | if ((x % y) == 0) | |
74 | break; | |
75 | y--; | |
76 | } | |
77 | ||
78 | return y == 1; | |
79 | } | |
80 | ||
81 | static unsigned long slow_next_prime_number(unsigned long x) | |
82 | { | |
83 | while (x < ULONG_MAX && !slow_is_prime_number(++x)) | |
84 | ; | |
85 | ||
86 | return x; | |
87 | } | |
88 | ||
89 | static unsigned long clear_multiples(unsigned long x, | |
90 | unsigned long *p, | |
91 | unsigned long start, | |
92 | unsigned long end) | |
93 | { | |
94 | unsigned long m; | |
95 | ||
96 | m = 2 * x; | |
97 | if (m < start) | |
98 | m = roundup(start, x); | |
99 | ||
100 | while (m < end) { | |
101 | __clear_bit(m, p); | |
102 | m += x; | |
103 | } | |
104 | ||
105 | return x; | |
106 | } | |
107 | ||
108 | static bool expand_to_next_prime(unsigned long x) | |
109 | { | |
110 | const struct primes *p; | |
111 | struct primes *new; | |
112 | unsigned long sz, y; | |
113 | ||
114 | /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, | |
115 | * there is always at least one prime p between n and 2n - 2. | |
116 | * Equivalently, if n > 1, then there is always at least one prime p | |
117 | * such that n < p < 2n. | |
118 | * | |
119 | * http://mathworld.wolfram.com/BertrandsPostulate.html | |
120 | * https://en.wikipedia.org/wiki/Bertrand's_postulate | |
121 | */ | |
122 | sz = 2 * x; | |
123 | if (sz < x) | |
124 | return false; | |
125 | ||
126 | sz = round_up(sz, BITS_PER_LONG); | |
127 | new = kmalloc(sizeof(*new) + bitmap_size(sz), GFP_KERNEL); | |
128 | if (!new) | |
129 | return false; | |
130 | ||
131 | mutex_lock(&lock); | |
132 | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | |
133 | if (x < p->last) { | |
134 | kfree(new); | |
135 | goto unlock; | |
136 | } | |
137 | ||
138 | /* Where memory permits, track the primes using the | |
139 | * Sieve of Eratosthenes. The sieve is to remove all multiples of known | |
140 | * primes from the set, what remains in the set is therefore prime. | |
141 | */ | |
142 | bitmap_fill(new->primes, sz); | |
143 | bitmap_copy(new->primes, p->primes, p->sz); | |
144 | for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) | |
145 | new->last = clear_multiples(y, new->primes, p->sz, sz); | |
146 | new->sz = sz; | |
147 | ||
148 | BUG_ON(new->last <= x); | |
149 | ||
150 | rcu_assign_pointer(primes, new); | |
151 | if (p != &small_primes) | |
152 | kfree_rcu((struct primes *)p, rcu); | |
153 | ||
154 | unlock: | |
155 | mutex_unlock(&lock); | |
156 | return true; | |
157 | } | |
158 | ||
159 | static void free_primes(void) | |
160 | { | |
161 | const struct primes *p; | |
162 | ||
163 | mutex_lock(&lock); | |
164 | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | |
165 | if (p != &small_primes) { | |
166 | rcu_assign_pointer(primes, &small_primes); | |
167 | kfree_rcu((struct primes *)p, rcu); | |
168 | } | |
169 | mutex_unlock(&lock); | |
170 | } | |
171 | ||
172 | /** | |
173 | * next_prime_number - return the next prime number | |
174 | * @x: the starting point for searching to test | |
175 | * | |
176 | * A prime number is an integer greater than 1 that is only divisible by | |
177 | * itself and 1. The set of prime numbers is computed using the Sieve of | |
178 | * Eratoshenes (on finding a prime, all multiples of that prime are removed | |
179 | * from the set) enabling a fast lookup of the next prime number larger than | |
180 | * @x. If the sieve fails (memory limitation), the search falls back to using | |
181 | * slow trial-divison, up to the value of ULONG_MAX (which is reported as the | |
182 | * final prime as a sentinel). | |
183 | * | |
184 | * Returns: the next prime number larger than @x | |
185 | */ | |
186 | unsigned long next_prime_number(unsigned long x) | |
187 | { | |
188 | const struct primes *p; | |
189 | ||
190 | rcu_read_lock(); | |
191 | p = rcu_dereference(primes); | |
192 | while (x >= p->last) { | |
193 | rcu_read_unlock(); | |
194 | ||
195 | if (!expand_to_next_prime(x)) | |
196 | return slow_next_prime_number(x); | |
197 | ||
198 | rcu_read_lock(); | |
199 | p = rcu_dereference(primes); | |
200 | } | |
201 | x = find_next_bit(p->primes, p->last, x + 1); | |
202 | rcu_read_unlock(); | |
203 | ||
204 | return x; | |
205 | } | |
206 | EXPORT_SYMBOL(next_prime_number); | |
207 | ||
208 | /** | |
209 | * is_prime_number - test whether the given number is prime | |
210 | * @x: the number to test | |
211 | * | |
212 | * A prime number is an integer greater than 1 that is only divisible by | |
213 | * itself and 1. Internally a cache of prime numbers is kept (to speed up | |
214 | * searching for sequential primes, see next_prime_number()), but if the number | |
215 | * falls outside of that cache, its primality is tested using trial-divison. | |
216 | * | |
217 | * Returns: true if @x is prime, false for composite numbers. | |
218 | */ | |
219 | bool is_prime_number(unsigned long x) | |
220 | { | |
221 | const struct primes *p; | |
222 | bool result; | |
223 | ||
224 | rcu_read_lock(); | |
225 | p = rcu_dereference(primes); | |
226 | while (x >= p->sz) { | |
227 | rcu_read_unlock(); | |
228 | ||
229 | if (!expand_to_next_prime(x)) | |
230 | return slow_is_prime_number(x); | |
231 | ||
232 | rcu_read_lock(); | |
233 | p = rcu_dereference(primes); | |
234 | } | |
235 | result = test_bit(x, p->primes); | |
236 | rcu_read_unlock(); | |
237 | ||
238 | return result; | |
239 | } | |
240 | EXPORT_SYMBOL(is_prime_number); | |
241 | ||
242 | static void dump_primes(void) | |
243 | { | |
244 | const struct primes *p; | |
245 | char *buf; | |
246 | ||
247 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | |
248 | ||
249 | rcu_read_lock(); | |
250 | p = rcu_dereference(primes); | |
251 | ||
252 | if (buf) | |
253 | bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); | |
254 | pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", | |
255 | p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); | |
256 | ||
257 | rcu_read_unlock(); | |
258 | ||
259 | kfree(buf); | |
260 | } | |
261 | ||
262 | static int selftest(unsigned long max) | |
263 | { | |
264 | unsigned long x, last; | |
265 | ||
266 | if (!max) | |
267 | return 0; | |
268 | ||
269 | for (last = 0, x = 2; x < max; x++) { | |
270 | bool slow = slow_is_prime_number(x); | |
271 | bool fast = is_prime_number(x); | |
272 | ||
273 | if (slow != fast) { | |
274 | pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", | |
275 | x, slow ? "yes" : "no", fast ? "yes" : "no"); | |
276 | goto err; | |
277 | } | |
278 | ||
279 | if (!slow) | |
280 | continue; | |
281 | ||
282 | if (next_prime_number(last) != x) { | |
283 | pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", | |
284 | last, x, next_prime_number(last)); | |
285 | goto err; | |
286 | } | |
287 | last = x; | |
288 | } | |
289 | ||
290 | pr_info("selftest(%lu) passed, last prime was %lu", x, last); | |
291 | return 0; | |
292 | ||
293 | err: | |
294 | dump_primes(); | |
295 | return -EINVAL; | |
296 | } | |
297 | ||
298 | static int __init primes_init(void) | |
299 | { | |
300 | return selftest(selftest_max); | |
301 | } | |
302 | ||
303 | static void __exit primes_exit(void) | |
304 | { | |
305 | free_primes(); | |
306 | } | |
307 | ||
308 | module_init(primes_init); | |
309 | module_exit(primes_exit); | |
310 | ||
311 | module_param_named(selftest, selftest_max, ulong, 0400); | |
312 | ||
313 | MODULE_AUTHOR("Intel Corporation"); | |
314 | MODULE_LICENSE("GPL"); |