2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
81 __u32 provided, calculated;
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 return provided == calculated;
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 trace_ext4_begin_ordered_truncate(inode, new_size);
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
128 if (!EXT4_I(inode)->jinode)
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 * Test whether an inode is a fast symlink.
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages(&inode->i_data, 0);
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
254 ext4_handle_sync(handle);
256 err = ext4_mark_inode_dirty(handle, inode);
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
263 ext4_truncate(inode);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
274 err = ext4_journal_restart(handle, 3);
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 return &EXT4_I(inode)->i_reserved_quota;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
332 return ext4_ind_calc_metadata_amount(inode, lblock);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
353 used = ei->i_reserved_data_blocks;
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
374 if (ei->i_reserved_data_blocks == 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
409 static int __check_block_validity(struct inode *inode, const char *func,
411 struct ext4_map_blocks *map)
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
507 #ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
510 memcpy(&orig_map, map, sizeof(*map));
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
519 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 if (unlikely(map->m_len > INT_MAX))
522 map->m_len = INT_MAX;
524 /* Lookup extent status tree firstly */
525 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
526 ext4_es_lru_add(inode);
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 #ifdef ES_AGGRESSIVE_TEST
542 ext4_map_blocks_es_recheck(handle, inode, map,
549 * Try to see if we can get the block without requesting a new
552 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
553 down_read((&EXT4_I(inode)->i_data_sem));
554 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
555 retval = ext4_ext_map_blocks(handle, inode, map, flags &
556 EXT4_GET_BLOCKS_KEEP_SIZE);
558 retval = ext4_ind_map_blocks(handle, inode, map, flags &
559 EXT4_GET_BLOCKS_KEEP_SIZE);
564 if (unlikely(retval != map->m_len)) {
565 ext4_warning(inode->i_sb,
566 "ES len assertion failed for inode "
567 "%lu: retval %d != map->m_len %d",
568 inode->i_ino, retval, map->m_len);
572 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
575 ext4_find_delalloc_range(inode, map->m_lblk,
576 map->m_lblk + map->m_len - 1))
577 status |= EXTENT_STATUS_DELAYED;
578 ret = ext4_es_insert_extent(inode, map->m_lblk,
579 map->m_len, map->m_pblk, status);
583 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
584 up_read((&EXT4_I(inode)->i_data_sem));
587 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
588 ret = check_block_validity(inode, map);
593 /* If it is only a block(s) look up */
594 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
598 * Returns if the blocks have already allocated
600 * Note that if blocks have been preallocated
601 * ext4_ext_get_block() returns the create = 0
602 * with buffer head unmapped.
604 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
606 * If we need to convert extent to unwritten
607 * we continue and do the actual work in
608 * ext4_ext_map_blocks()
610 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
614 * Here we clear m_flags because after allocating an new extent,
615 * it will be set again.
617 map->m_flags &= ~EXT4_MAP_FLAGS;
620 * New blocks allocate and/or writing to uninitialized extent
621 * will possibly result in updating i_data, so we take
622 * the write lock of i_data_sem, and call get_blocks()
623 * with create == 1 flag.
625 down_write((&EXT4_I(inode)->i_data_sem));
628 * if the caller is from delayed allocation writeout path
629 * we have already reserved fs blocks for allocation
630 * let the underlying get_block() function know to
631 * avoid double accounting
633 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
634 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636 * We need to check for EXT4 here because migrate
637 * could have changed the inode type in between
639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 retval = ext4_ext_map_blocks(handle, inode, map, flags);
642 retval = ext4_ind_map_blocks(handle, inode, map, flags);
644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
646 * We allocated new blocks which will result in
647 * i_data's format changing. Force the migrate
648 * to fail by clearing migrate flags
650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
654 * Update reserved blocks/metadata blocks after successful
655 * block allocation which had been deferred till now. We don't
656 * support fallocate for non extent files. So we can update
657 * reserve space here.
660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 ext4_da_update_reserve_space(inode, retval, 1);
663 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
664 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
669 if (unlikely(retval != map->m_len)) {
670 ext4_warning(inode->i_sb,
671 "ES len assertion failed for inode "
672 "%lu: retval %d != map->m_len %d",
673 inode->i_ino, retval, map->m_len);
678 * If the extent has been zeroed out, we don't need to update
679 * extent status tree.
681 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
682 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
683 if (ext4_es_is_written(&es))
686 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
687 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
688 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
689 ext4_find_delalloc_range(inode, map->m_lblk,
690 map->m_lblk + map->m_len - 1))
691 status |= EXTENT_STATUS_DELAYED;
692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693 map->m_pblk, status);
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
708 /* Maximum number of blocks we map for direct IO at once. */
709 #define DIO_MAX_BLOCKS 4096
711 static int _ext4_get_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh, int flags)
714 handle_t *handle = ext4_journal_current_handle();
715 struct ext4_map_blocks map;
716 int ret = 0, started = 0;
719 if (ext4_has_inline_data(inode))
723 map.m_len = bh->b_size >> inode->i_blkbits;
725 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
726 /* Direct IO write... */
727 if (map.m_len > DIO_MAX_BLOCKS)
728 map.m_len = DIO_MAX_BLOCKS;
729 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
730 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
732 if (IS_ERR(handle)) {
733 ret = PTR_ERR(handle);
739 ret = ext4_map_blocks(handle, inode, &map, flags);
741 ext4_io_end_t *io_end = ext4_inode_aio(inode);
743 map_bh(bh, inode->i_sb, map.m_pblk);
744 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
745 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
746 set_buffer_defer_completion(bh);
747 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
751 ext4_journal_stop(handle);
755 int ext4_get_block(struct inode *inode, sector_t iblock,
756 struct buffer_head *bh, int create)
758 return _ext4_get_block(inode, iblock, bh,
759 create ? EXT4_GET_BLOCKS_CREATE : 0);
763 * `handle' can be NULL if create is zero
765 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
766 ext4_lblk_t block, int create, int *errp)
768 struct ext4_map_blocks map;
769 struct buffer_head *bh;
772 J_ASSERT(handle != NULL || create == 0);
776 err = ext4_map_blocks(handle, inode, &map,
777 create ? EXT4_GET_BLOCKS_CREATE : 0);
779 /* ensure we send some value back into *errp */
782 if (create && err == 0)
783 err = -ENOSPC; /* should never happen */
789 bh = sb_getblk(inode->i_sb, map.m_pblk);
794 if (map.m_flags & EXT4_MAP_NEW) {
795 J_ASSERT(create != 0);
796 J_ASSERT(handle != NULL);
799 * Now that we do not always journal data, we should
800 * keep in mind whether this should always journal the
801 * new buffer as metadata. For now, regular file
802 * writes use ext4_get_block instead, so it's not a
806 BUFFER_TRACE(bh, "call get_create_access");
807 fatal = ext4_journal_get_create_access(handle, bh);
808 if (!fatal && !buffer_uptodate(bh)) {
809 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
810 set_buffer_uptodate(bh);
813 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
814 err = ext4_handle_dirty_metadata(handle, inode, bh);
818 BUFFER_TRACE(bh, "not a new buffer");
828 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
829 ext4_lblk_t block, int create, int *err)
831 struct buffer_head *bh;
833 bh = ext4_getblk(handle, inode, block, create, err);
836 if (buffer_uptodate(bh))
838 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
840 if (buffer_uptodate(bh))
847 int ext4_walk_page_buffers(handle_t *handle,
848 struct buffer_head *head,
852 int (*fn)(handle_t *handle,
853 struct buffer_head *bh))
855 struct buffer_head *bh;
856 unsigned block_start, block_end;
857 unsigned blocksize = head->b_size;
859 struct buffer_head *next;
861 for (bh = head, block_start = 0;
862 ret == 0 && (bh != head || !block_start);
863 block_start = block_end, bh = next) {
864 next = bh->b_this_page;
865 block_end = block_start + blocksize;
866 if (block_end <= from || block_start >= to) {
867 if (partial && !buffer_uptodate(bh))
871 err = (*fn)(handle, bh);
879 * To preserve ordering, it is essential that the hole instantiation and
880 * the data write be encapsulated in a single transaction. We cannot
881 * close off a transaction and start a new one between the ext4_get_block()
882 * and the commit_write(). So doing the jbd2_journal_start at the start of
883 * prepare_write() is the right place.
885 * Also, this function can nest inside ext4_writepage(). In that case, we
886 * *know* that ext4_writepage() has generated enough buffer credits to do the
887 * whole page. So we won't block on the journal in that case, which is good,
888 * because the caller may be PF_MEMALLOC.
890 * By accident, ext4 can be reentered when a transaction is open via
891 * quota file writes. If we were to commit the transaction while thus
892 * reentered, there can be a deadlock - we would be holding a quota
893 * lock, and the commit would never complete if another thread had a
894 * transaction open and was blocking on the quota lock - a ranking
897 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
898 * will _not_ run commit under these circumstances because handle->h_ref
899 * is elevated. We'll still have enough credits for the tiny quotafile
902 int do_journal_get_write_access(handle_t *handle,
903 struct buffer_head *bh)
905 int dirty = buffer_dirty(bh);
908 if (!buffer_mapped(bh) || buffer_freed(bh))
911 * __block_write_begin() could have dirtied some buffers. Clean
912 * the dirty bit as jbd2_journal_get_write_access() could complain
913 * otherwise about fs integrity issues. Setting of the dirty bit
914 * by __block_write_begin() isn't a real problem here as we clear
915 * the bit before releasing a page lock and thus writeback cannot
916 * ever write the buffer.
919 clear_buffer_dirty(bh);
920 ret = ext4_journal_get_write_access(handle, bh);
922 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
927 struct buffer_head *bh_result, int create);
928 static int ext4_write_begin(struct file *file, struct address_space *mapping,
929 loff_t pos, unsigned len, unsigned flags,
930 struct page **pagep, void **fsdata)
932 struct inode *inode = mapping->host;
933 int ret, needed_blocks;
940 trace_ext4_write_begin(inode, pos, len, flags);
942 * Reserve one block more for addition to orphan list in case
943 * we allocate blocks but write fails for some reason
945 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
946 index = pos >> PAGE_CACHE_SHIFT;
947 from = pos & (PAGE_CACHE_SIZE - 1);
950 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
951 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
960 * grab_cache_page_write_begin() can take a long time if the
961 * system is thrashing due to memory pressure, or if the page
962 * is being written back. So grab it first before we start
963 * the transaction handle. This also allows us to allocate
964 * the page (if needed) without using GFP_NOFS.
967 page = grab_cache_page_write_begin(mapping, index, flags);
973 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
974 if (IS_ERR(handle)) {
975 page_cache_release(page);
976 return PTR_ERR(handle);
980 if (page->mapping != mapping) {
981 /* The page got truncated from under us */
983 page_cache_release(page);
984 ext4_journal_stop(handle);
987 /* In case writeback began while the page was unlocked */
988 wait_for_stable_page(page);
990 if (ext4_should_dioread_nolock(inode))
991 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
993 ret = __block_write_begin(page, pos, len, ext4_get_block);
995 if (!ret && ext4_should_journal_data(inode)) {
996 ret = ext4_walk_page_buffers(handle, page_buffers(page),
998 do_journal_get_write_access);
1004 * __block_write_begin may have instantiated a few blocks
1005 * outside i_size. Trim these off again. Don't need
1006 * i_size_read because we hold i_mutex.
1008 * Add inode to orphan list in case we crash before
1011 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1012 ext4_orphan_add(handle, inode);
1014 ext4_journal_stop(handle);
1015 if (pos + len > inode->i_size) {
1016 ext4_truncate_failed_write(inode);
1018 * If truncate failed early the inode might
1019 * still be on the orphan list; we need to
1020 * make sure the inode is removed from the
1021 * orphan list in that case.
1024 ext4_orphan_del(NULL, inode);
1027 if (ret == -ENOSPC &&
1028 ext4_should_retry_alloc(inode->i_sb, &retries))
1030 page_cache_release(page);
1037 /* For write_end() in data=journal mode */
1038 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1041 if (!buffer_mapped(bh) || buffer_freed(bh))
1043 set_buffer_uptodate(bh);
1044 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1045 clear_buffer_meta(bh);
1046 clear_buffer_prio(bh);
1051 * We need to pick up the new inode size which generic_commit_write gave us
1052 * `file' can be NULL - eg, when called from page_symlink().
1054 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1055 * buffers are managed internally.
1057 static int ext4_write_end(struct file *file,
1058 struct address_space *mapping,
1059 loff_t pos, unsigned len, unsigned copied,
1060 struct page *page, void *fsdata)
1062 handle_t *handle = ext4_journal_current_handle();
1063 struct inode *inode = mapping->host;
1065 int i_size_changed = 0;
1067 trace_ext4_write_end(inode, pos, len, copied);
1068 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1069 ret = ext4_jbd2_file_inode(handle, inode);
1072 page_cache_release(page);
1077 if (ext4_has_inline_data(inode)) {
1078 ret = ext4_write_inline_data_end(inode, pos, len,
1084 copied = block_write_end(file, mapping, pos,
1085 len, copied, page, fsdata);
1088 * No need to use i_size_read() here, the i_size
1089 * cannot change under us because we hole i_mutex.
1091 * But it's important to update i_size while still holding page lock:
1092 * page writeout could otherwise come in and zero beyond i_size.
1094 if (pos + copied > inode->i_size) {
1095 i_size_write(inode, pos + copied);
1099 if (pos + copied > EXT4_I(inode)->i_disksize) {
1100 /* We need to mark inode dirty even if
1101 * new_i_size is less that inode->i_size
1102 * but greater than i_disksize. (hint delalloc)
1104 ext4_update_i_disksize(inode, (pos + copied));
1108 page_cache_release(page);
1111 * Don't mark the inode dirty under page lock. First, it unnecessarily
1112 * makes the holding time of page lock longer. Second, it forces lock
1113 * ordering of page lock and transaction start for journaling
1117 ext4_mark_inode_dirty(handle, inode);
1119 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120 /* if we have allocated more blocks and copied
1121 * less. We will have blocks allocated outside
1122 * inode->i_size. So truncate them
1124 ext4_orphan_add(handle, inode);
1126 ret2 = ext4_journal_stop(handle);
1130 if (pos + len > inode->i_size) {
1131 ext4_truncate_failed_write(inode);
1133 * If truncate failed early the inode might still be
1134 * on the orphan list; we need to make sure the inode
1135 * is removed from the orphan list in that case.
1138 ext4_orphan_del(NULL, inode);
1141 return ret ? ret : copied;
1144 static int ext4_journalled_write_end(struct file *file,
1145 struct address_space *mapping,
1146 loff_t pos, unsigned len, unsigned copied,
1147 struct page *page, void *fsdata)
1149 handle_t *handle = ext4_journal_current_handle();
1150 struct inode *inode = mapping->host;
1156 trace_ext4_journalled_write_end(inode, pos, len, copied);
1157 from = pos & (PAGE_CACHE_SIZE - 1);
1160 BUG_ON(!ext4_handle_valid(handle));
1162 if (ext4_has_inline_data(inode))
1163 copied = ext4_write_inline_data_end(inode, pos, len,
1167 if (!PageUptodate(page))
1169 page_zero_new_buffers(page, from+copied, to);
1172 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1173 to, &partial, write_end_fn);
1175 SetPageUptodate(page);
1177 new_i_size = pos + copied;
1178 if (new_i_size > inode->i_size)
1179 i_size_write(inode, pos+copied);
1180 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1181 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1182 if (new_i_size > EXT4_I(inode)->i_disksize) {
1183 ext4_update_i_disksize(inode, new_i_size);
1184 ret2 = ext4_mark_inode_dirty(handle, inode);
1190 page_cache_release(page);
1191 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1192 /* if we have allocated more blocks and copied
1193 * less. We will have blocks allocated outside
1194 * inode->i_size. So truncate them
1196 ext4_orphan_add(handle, inode);
1198 ret2 = ext4_journal_stop(handle);
1201 if (pos + len > inode->i_size) {
1202 ext4_truncate_failed_write(inode);
1204 * If truncate failed early the inode might still be
1205 * on the orphan list; we need to make sure the inode
1206 * is removed from the orphan list in that case.
1209 ext4_orphan_del(NULL, inode);
1212 return ret ? ret : copied;
1216 * Reserve a metadata for a single block located at lblock
1218 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1220 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1221 struct ext4_inode_info *ei = EXT4_I(inode);
1222 unsigned int md_needed;
1223 ext4_lblk_t save_last_lblock;
1227 * recalculate the amount of metadata blocks to reserve
1228 * in order to allocate nrblocks
1229 * worse case is one extent per block
1231 spin_lock(&ei->i_block_reservation_lock);
1233 * ext4_calc_metadata_amount() has side effects, which we have
1234 * to be prepared undo if we fail to claim space.
1236 save_len = ei->i_da_metadata_calc_len;
1237 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1238 md_needed = EXT4_NUM_B2C(sbi,
1239 ext4_calc_metadata_amount(inode, lblock));
1240 trace_ext4_da_reserve_space(inode, md_needed);
1243 * We do still charge estimated metadata to the sb though;
1244 * we cannot afford to run out of free blocks.
1246 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1247 ei->i_da_metadata_calc_len = save_len;
1248 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1249 spin_unlock(&ei->i_block_reservation_lock);
1252 ei->i_reserved_meta_blocks += md_needed;
1253 spin_unlock(&ei->i_block_reservation_lock);
1255 return 0; /* success */
1259 * Reserve a single cluster located at lblock
1261 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1263 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1264 struct ext4_inode_info *ei = EXT4_I(inode);
1265 unsigned int md_needed;
1267 ext4_lblk_t save_last_lblock;
1271 * We will charge metadata quota at writeout time; this saves
1272 * us from metadata over-estimation, though we may go over by
1273 * a small amount in the end. Here we just reserve for data.
1275 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1280 * recalculate the amount of metadata blocks to reserve
1281 * in order to allocate nrblocks
1282 * worse case is one extent per block
1284 spin_lock(&ei->i_block_reservation_lock);
1286 * ext4_calc_metadata_amount() has side effects, which we have
1287 * to be prepared undo if we fail to claim space.
1289 save_len = ei->i_da_metadata_calc_len;
1290 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1291 md_needed = EXT4_NUM_B2C(sbi,
1292 ext4_calc_metadata_amount(inode, lblock));
1293 trace_ext4_da_reserve_space(inode, md_needed);
1296 * We do still charge estimated metadata to the sb though;
1297 * we cannot afford to run out of free blocks.
1299 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1300 ei->i_da_metadata_calc_len = save_len;
1301 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1302 spin_unlock(&ei->i_block_reservation_lock);
1303 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1306 ei->i_reserved_data_blocks++;
1307 ei->i_reserved_meta_blocks += md_needed;
1308 spin_unlock(&ei->i_block_reservation_lock);
1310 return 0; /* success */
1313 static void ext4_da_release_space(struct inode *inode, int to_free)
1315 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1316 struct ext4_inode_info *ei = EXT4_I(inode);
1319 return; /* Nothing to release, exit */
1321 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1323 trace_ext4_da_release_space(inode, to_free);
1324 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1326 * if there aren't enough reserved blocks, then the
1327 * counter is messed up somewhere. Since this
1328 * function is called from invalidate page, it's
1329 * harmless to return without any action.
1331 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1332 "ino %lu, to_free %d with only %d reserved "
1333 "data blocks", inode->i_ino, to_free,
1334 ei->i_reserved_data_blocks);
1336 to_free = ei->i_reserved_data_blocks;
1338 ei->i_reserved_data_blocks -= to_free;
1340 if (ei->i_reserved_data_blocks == 0) {
1342 * We can release all of the reserved metadata blocks
1343 * only when we have written all of the delayed
1344 * allocation blocks.
1345 * Note that in case of bigalloc, i_reserved_meta_blocks,
1346 * i_reserved_data_blocks, etc. refer to number of clusters.
1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1349 ei->i_reserved_meta_blocks);
1350 ei->i_reserved_meta_blocks = 0;
1351 ei->i_da_metadata_calc_len = 0;
1354 /* update fs dirty data blocks counter */
1355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1362 static void ext4_da_page_release_reservation(struct page *page,
1363 unsigned int offset,
1364 unsigned int length)
1367 struct buffer_head *head, *bh;
1368 unsigned int curr_off = 0;
1369 struct inode *inode = page->mapping->host;
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371 unsigned int stop = offset + length;
1375 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377 head = page_buffers(page);
1380 unsigned int next_off = curr_off + bh->b_size;
1382 if (next_off > stop)
1385 if ((offset <= curr_off) && (buffer_delay(bh))) {
1387 clear_buffer_delay(bh);
1389 curr_off = next_off;
1390 } while ((bh = bh->b_this_page) != head);
1393 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1394 ext4_es_remove_extent(inode, lblk, to_release);
1397 /* If we have released all the blocks belonging to a cluster, then we
1398 * need to release the reserved space for that cluster. */
1399 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1400 while (num_clusters > 0) {
1401 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1402 ((num_clusters - 1) << sbi->s_cluster_bits);
1403 if (sbi->s_cluster_ratio == 1 ||
1404 !ext4_find_delalloc_cluster(inode, lblk))
1405 ext4_da_release_space(inode, 1);
1412 * Delayed allocation stuff
1415 struct mpage_da_data {
1416 struct inode *inode;
1417 struct writeback_control *wbc;
1419 pgoff_t first_page; /* The first page to write */
1420 pgoff_t next_page; /* Current page to examine */
1421 pgoff_t last_page; /* Last page to examine */
1423 * Extent to map - this can be after first_page because that can be
1424 * fully mapped. We somewhat abuse m_flags to store whether the extent
1425 * is delalloc or unwritten.
1427 struct ext4_map_blocks map;
1428 struct ext4_io_submit io_submit; /* IO submission data */
1431 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1436 struct pagevec pvec;
1437 struct inode *inode = mpd->inode;
1438 struct address_space *mapping = inode->i_mapping;
1440 /* This is necessary when next_page == 0. */
1441 if (mpd->first_page >= mpd->next_page)
1444 index = mpd->first_page;
1445 end = mpd->next_page - 1;
1447 ext4_lblk_t start, last;
1448 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 ext4_es_remove_extent(inode, start, last - start + 1);
1453 pagevec_init(&pvec, 0);
1454 while (index <= end) {
1455 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1458 for (i = 0; i < nr_pages; i++) {
1459 struct page *page = pvec.pages[i];
1460 if (page->index > end)
1462 BUG_ON(!PageLocked(page));
1463 BUG_ON(PageWriteback(page));
1465 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1466 ClearPageUptodate(page);
1470 index = pvec.pages[nr_pages - 1]->index + 1;
1471 pagevec_release(&pvec);
1475 static void ext4_print_free_blocks(struct inode *inode)
1477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478 struct super_block *sb = inode->i_sb;
1479 struct ext4_inode_info *ei = EXT4_I(inode);
1481 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1482 EXT4_C2B(EXT4_SB(inode->i_sb),
1483 ext4_count_free_clusters(sb)));
1484 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1485 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1486 (long long) EXT4_C2B(EXT4_SB(sb),
1487 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1488 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1489 (long long) EXT4_C2B(EXT4_SB(sb),
1490 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1491 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1492 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1493 ei->i_reserved_data_blocks);
1494 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1495 ei->i_reserved_meta_blocks);
1496 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1497 ei->i_allocated_meta_blocks);
1501 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1503 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1507 * This function is grabs code from the very beginning of
1508 * ext4_map_blocks, but assumes that the caller is from delayed write
1509 * time. This function looks up the requested blocks and sets the
1510 * buffer delay bit under the protection of i_data_sem.
1512 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1513 struct ext4_map_blocks *map,
1514 struct buffer_head *bh)
1516 struct extent_status es;
1518 sector_t invalid_block = ~((sector_t) 0xffff);
1519 #ifdef ES_AGGRESSIVE_TEST
1520 struct ext4_map_blocks orig_map;
1522 memcpy(&orig_map, map, sizeof(*map));
1525 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1529 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1530 "logical block %lu\n", inode->i_ino, map->m_len,
1531 (unsigned long) map->m_lblk);
1533 /* Lookup extent status tree firstly */
1534 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1535 ext4_es_lru_add(inode);
1536 if (ext4_es_is_hole(&es)) {
1538 down_read((&EXT4_I(inode)->i_data_sem));
1543 * Delayed extent could be allocated by fallocate.
1544 * So we need to check it.
1546 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1547 map_bh(bh, inode->i_sb, invalid_block);
1549 set_buffer_delay(bh);
1553 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1554 retval = es.es_len - (iblock - es.es_lblk);
1555 if (retval > map->m_len)
1556 retval = map->m_len;
1557 map->m_len = retval;
1558 if (ext4_es_is_written(&es))
1559 map->m_flags |= EXT4_MAP_MAPPED;
1560 else if (ext4_es_is_unwritten(&es))
1561 map->m_flags |= EXT4_MAP_UNWRITTEN;
1565 #ifdef ES_AGGRESSIVE_TEST
1566 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 * Try to see if we can get the block without requesting a new
1573 * file system block.
1575 down_read((&EXT4_I(inode)->i_data_sem));
1576 if (ext4_has_inline_data(inode)) {
1578 * We will soon create blocks for this page, and let
1579 * us pretend as if the blocks aren't allocated yet.
1580 * In case of clusters, we have to handle the work
1581 * of mapping from cluster so that the reserved space
1582 * is calculated properly.
1584 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1585 ext4_find_delalloc_cluster(inode, map->m_lblk))
1586 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1589 retval = ext4_ext_map_blocks(NULL, inode, map,
1590 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592 retval = ext4_ind_map_blocks(NULL, inode, map,
1593 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599 * XXX: __block_prepare_write() unmaps passed block,
1603 * If the block was allocated from previously allocated cluster,
1604 * then we don't need to reserve it again. However we still need
1605 * to reserve metadata for every block we're going to write.
1607 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1608 ret = ext4_da_reserve_space(inode, iblock);
1610 /* not enough space to reserve */
1615 ret = ext4_da_reserve_metadata(inode, iblock);
1617 /* not enough space to reserve */
1623 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1624 ~0, EXTENT_STATUS_DELAYED);
1630 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1631 * and it should not appear on the bh->b_state.
1633 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635 map_bh(bh, inode->i_sb, invalid_block);
1637 set_buffer_delay(bh);
1638 } else if (retval > 0) {
1640 unsigned int status;
1642 if (unlikely(retval != map->m_len)) {
1643 ext4_warning(inode->i_sb,
1644 "ES len assertion failed for inode "
1645 "%lu: retval %d != map->m_len %d",
1646 inode->i_ino, retval, map->m_len);
1650 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1651 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1652 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1653 map->m_pblk, status);
1659 up_read((&EXT4_I(inode)->i_data_sem));
1665 * This is a special get_blocks_t callback which is used by
1666 * ext4_da_write_begin(). It will either return mapped block or
1667 * reserve space for a single block.
1669 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1670 * We also have b_blocknr = -1 and b_bdev initialized properly
1672 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1673 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1674 * initialized properly.
1676 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1677 struct buffer_head *bh, int create)
1679 struct ext4_map_blocks map;
1682 BUG_ON(create == 0);
1683 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685 map.m_lblk = iblock;
1689 * first, we need to know whether the block is allocated already
1690 * preallocated blocks are unmapped but should treated
1691 * the same as allocated blocks.
1693 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1697 map_bh(bh, inode->i_sb, map.m_pblk);
1698 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700 if (buffer_unwritten(bh)) {
1701 /* A delayed write to unwritten bh should be marked
1702 * new and mapped. Mapped ensures that we don't do
1703 * get_block multiple times when we write to the same
1704 * offset and new ensures that we do proper zero out
1705 * for partial write.
1708 set_buffer_mapped(bh);
1713 static int bget_one(handle_t *handle, struct buffer_head *bh)
1719 static int bput_one(handle_t *handle, struct buffer_head *bh)
1725 static int __ext4_journalled_writepage(struct page *page,
1728 struct address_space *mapping = page->mapping;
1729 struct inode *inode = mapping->host;
1730 struct buffer_head *page_bufs = NULL;
1731 handle_t *handle = NULL;
1732 int ret = 0, err = 0;
1733 int inline_data = ext4_has_inline_data(inode);
1734 struct buffer_head *inode_bh = NULL;
1736 ClearPageChecked(page);
1739 BUG_ON(page->index != 0);
1740 BUG_ON(len > ext4_get_max_inline_size(inode));
1741 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1742 if (inode_bh == NULL)
1745 page_bufs = page_buffers(page);
1750 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1753 /* As soon as we unlock the page, it can go away, but we have
1754 * references to buffers so we are safe */
1757 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1758 ext4_writepage_trans_blocks(inode));
1759 if (IS_ERR(handle)) {
1760 ret = PTR_ERR(handle);
1764 BUG_ON(!ext4_handle_valid(handle));
1767 ret = ext4_journal_get_write_access(handle, inode_bh);
1769 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1772 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773 do_journal_get_write_access);
1775 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1780 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1781 err = ext4_journal_stop(handle);
1785 if (!ext4_has_inline_data(inode))
1786 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1788 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1795 * Note that we don't need to start a transaction unless we're journaling data
1796 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1797 * need to file the inode to the transaction's list in ordered mode because if
1798 * we are writing back data added by write(), the inode is already there and if
1799 * we are writing back data modified via mmap(), no one guarantees in which
1800 * transaction the data will hit the disk. In case we are journaling data, we
1801 * cannot start transaction directly because transaction start ranks above page
1802 * lock so we have to do some magic.
1804 * This function can get called via...
1805 * - ext4_writepages after taking page lock (have journal handle)
1806 * - journal_submit_inode_data_buffers (no journal handle)
1807 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1808 * - grab_page_cache when doing write_begin (have journal handle)
1810 * We don't do any block allocation in this function. If we have page with
1811 * multiple blocks we need to write those buffer_heads that are mapped. This
1812 * is important for mmaped based write. So if we do with blocksize 1K
1813 * truncate(f, 1024);
1814 * a = mmap(f, 0, 4096);
1816 * truncate(f, 4096);
1817 * we have in the page first buffer_head mapped via page_mkwrite call back
1818 * but other buffer_heads would be unmapped but dirty (dirty done via the
1819 * do_wp_page). So writepage should write the first block. If we modify
1820 * the mmap area beyond 1024 we will again get a page_fault and the
1821 * page_mkwrite callback will do the block allocation and mark the
1822 * buffer_heads mapped.
1824 * We redirty the page if we have any buffer_heads that is either delay or
1825 * unwritten in the page.
1827 * We can get recursively called as show below.
1829 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1832 * But since we don't do any block allocation we should not deadlock.
1833 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1835 static int ext4_writepage(struct page *page,
1836 struct writeback_control *wbc)
1841 struct buffer_head *page_bufs = NULL;
1842 struct inode *inode = page->mapping->host;
1843 struct ext4_io_submit io_submit;
1845 trace_ext4_writepage(page);
1846 size = i_size_read(inode);
1847 if (page->index == size >> PAGE_CACHE_SHIFT)
1848 len = size & ~PAGE_CACHE_MASK;
1850 len = PAGE_CACHE_SIZE;
1852 page_bufs = page_buffers(page);
1854 * We cannot do block allocation or other extent handling in this
1855 * function. If there are buffers needing that, we have to redirty
1856 * the page. But we may reach here when we do a journal commit via
1857 * journal_submit_inode_data_buffers() and in that case we must write
1858 * allocated buffers to achieve data=ordered mode guarantees.
1860 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1861 ext4_bh_delay_or_unwritten)) {
1862 redirty_page_for_writepage(wbc, page);
1863 if (current->flags & PF_MEMALLOC) {
1865 * For memory cleaning there's no point in writing only
1866 * some buffers. So just bail out. Warn if we came here
1867 * from direct reclaim.
1869 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1876 if (PageChecked(page) && ext4_should_journal_data(inode))
1878 * It's mmapped pagecache. Add buffers and journal it. There
1879 * doesn't seem much point in redirtying the page here.
1881 return __ext4_journalled_writepage(page, len);
1883 ext4_io_submit_init(&io_submit, wbc);
1884 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1885 if (!io_submit.io_end) {
1886 redirty_page_for_writepage(wbc, page);
1890 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1891 ext4_io_submit(&io_submit);
1892 /* Drop io_end reference we got from init */
1893 ext4_put_io_end_defer(io_submit.io_end);
1897 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1900 loff_t size = i_size_read(mpd->inode);
1903 BUG_ON(page->index != mpd->first_page);
1904 if (page->index == size >> PAGE_CACHE_SHIFT)
1905 len = size & ~PAGE_CACHE_MASK;
1907 len = PAGE_CACHE_SIZE;
1908 clear_page_dirty_for_io(page);
1909 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911 mpd->wbc->nr_to_write--;
1917 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1920 * mballoc gives us at most this number of blocks...
1921 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1922 * The rest of mballoc seems to handle chunks up to full group size.
1924 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1927 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929 * @mpd - extent of blocks
1930 * @lblk - logical number of the block in the file
1931 * @bh - buffer head we want to add to the extent
1933 * The function is used to collect contig. blocks in the same state. If the
1934 * buffer doesn't require mapping for writeback and we haven't started the
1935 * extent of buffers to map yet, the function returns 'true' immediately - the
1936 * caller can write the buffer right away. Otherwise the function returns true
1937 * if the block has been added to the extent, false if the block couldn't be
1940 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1941 struct buffer_head *bh)
1943 struct ext4_map_blocks *map = &mpd->map;
1945 /* Buffer that doesn't need mapping for writeback? */
1946 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1947 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1948 /* So far no extent to map => we write the buffer right away */
1949 if (map->m_len == 0)
1954 /* First block in the extent? */
1955 if (map->m_len == 0) {
1958 map->m_flags = bh->b_state & BH_FLAGS;
1962 /* Don't go larger than mballoc is willing to allocate */
1963 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1966 /* Can we merge the block to our big extent? */
1967 if (lblk == map->m_lblk + map->m_len &&
1968 (bh->b_state & BH_FLAGS) == map->m_flags) {
1976 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978 * @mpd - extent of blocks for mapping
1979 * @head - the first buffer in the page
1980 * @bh - buffer we should start processing from
1981 * @lblk - logical number of the block in the file corresponding to @bh
1983 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1984 * the page for IO if all buffers in this page were mapped and there's no
1985 * accumulated extent of buffers to map or add buffers in the page to the
1986 * extent of buffers to map. The function returns 1 if the caller can continue
1987 * by processing the next page, 0 if it should stop adding buffers to the
1988 * extent to map because we cannot extend it anymore. It can also return value
1989 * < 0 in case of error during IO submission.
1991 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1992 struct buffer_head *head,
1993 struct buffer_head *bh,
1996 struct inode *inode = mpd->inode;
1998 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1999 >> inode->i_blkbits;
2002 BUG_ON(buffer_locked(bh));
2004 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2005 /* Found extent to map? */
2008 /* Everything mapped so far and we hit EOF */
2011 } while (lblk++, (bh = bh->b_this_page) != head);
2012 /* So far everything mapped? Submit the page for IO. */
2013 if (mpd->map.m_len == 0) {
2014 err = mpage_submit_page(mpd, head->b_page);
2018 return lblk < blocks;
2022 * mpage_map_buffers - update buffers corresponding to changed extent and
2023 * submit fully mapped pages for IO
2025 * @mpd - description of extent to map, on return next extent to map
2027 * Scan buffers corresponding to changed extent (we expect corresponding pages
2028 * to be already locked) and update buffer state according to new extent state.
2029 * We map delalloc buffers to their physical location, clear unwritten bits,
2030 * and mark buffers as uninit when we perform writes to uninitialized extents
2031 * and do extent conversion after IO is finished. If the last page is not fully
2032 * mapped, we update @map to the next extent in the last page that needs
2033 * mapping. Otherwise we submit the page for IO.
2035 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037 struct pagevec pvec;
2039 struct inode *inode = mpd->inode;
2040 struct buffer_head *head, *bh;
2041 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047 start = mpd->map.m_lblk >> bpp_bits;
2048 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2049 lblk = start << bpp_bits;
2050 pblock = mpd->map.m_pblk;
2052 pagevec_init(&pvec, 0);
2053 while (start <= end) {
2054 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2058 for (i = 0; i < nr_pages; i++) {
2059 struct page *page = pvec.pages[i];
2061 if (page->index > end)
2063 /* Up to 'end' pages must be contiguous */
2064 BUG_ON(page->index != start);
2065 bh = head = page_buffers(page);
2067 if (lblk < mpd->map.m_lblk)
2069 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071 * Buffer after end of mapped extent.
2072 * Find next buffer in the page to map.
2075 mpd->map.m_flags = 0;
2077 * FIXME: If dioread_nolock supports
2078 * blocksize < pagesize, we need to make
2079 * sure we add size mapped so far to
2080 * io_end->size as the following call
2081 * can submit the page for IO.
2083 err = mpage_process_page_bufs(mpd, head,
2085 pagevec_release(&pvec);
2090 if (buffer_delay(bh)) {
2091 clear_buffer_delay(bh);
2092 bh->b_blocknr = pblock++;
2094 clear_buffer_unwritten(bh);
2095 } while (lblk++, (bh = bh->b_this_page) != head);
2098 * FIXME: This is going to break if dioread_nolock
2099 * supports blocksize < pagesize as we will try to
2100 * convert potentially unmapped parts of inode.
2102 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2103 /* Page fully mapped - let IO run! */
2104 err = mpage_submit_page(mpd, page);
2106 pagevec_release(&pvec);
2111 pagevec_release(&pvec);
2113 /* Extent fully mapped and matches with page boundary. We are done. */
2115 mpd->map.m_flags = 0;
2119 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121 struct inode *inode = mpd->inode;
2122 struct ext4_map_blocks *map = &mpd->map;
2123 int get_blocks_flags;
2126 trace_ext4_da_write_pages_extent(inode, map);
2128 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2129 * to convert an uninitialized extent to be initialized (in the case
2130 * where we have written into one or more preallocated blocks). It is
2131 * possible that we're going to need more metadata blocks than
2132 * previously reserved. However we must not fail because we're in
2133 * writeback and there is nothing we can do about it so it might result
2134 * in data loss. So use reserved blocks to allocate metadata if
2137 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2138 * in question are delalloc blocks. This affects functions in many
2139 * different parts of the allocation call path. This flag exists
2140 * primarily because we don't want to change *many* call functions, so
2141 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2142 * once the inode's allocation semaphore is taken.
2144 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2145 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2146 if (ext4_should_dioread_nolock(inode))
2147 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2148 if (map->m_flags & (1 << BH_Delay))
2149 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2154 if (map->m_flags & EXT4_MAP_UNINIT) {
2155 if (!mpd->io_submit.io_end->handle &&
2156 ext4_handle_valid(handle)) {
2157 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2158 handle->h_rsv_handle = NULL;
2160 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2163 BUG_ON(map->m_len == 0);
2164 if (map->m_flags & EXT4_MAP_NEW) {
2165 struct block_device *bdev = inode->i_sb->s_bdev;
2168 for (i = 0; i < map->m_len; i++)
2169 unmap_underlying_metadata(bdev, map->m_pblk + i);
2175 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2176 * mpd->len and submit pages underlying it for IO
2178 * @handle - handle for journal operations
2179 * @mpd - extent to map
2180 * @give_up_on_write - we set this to true iff there is a fatal error and there
2181 * is no hope of writing the data. The caller should discard
2182 * dirty pages to avoid infinite loops.
2184 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2185 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2186 * them to initialized or split the described range from larger unwritten
2187 * extent. Note that we need not map all the described range since allocation
2188 * can return less blocks or the range is covered by more unwritten extents. We
2189 * cannot map more because we are limited by reserved transaction credits. On
2190 * the other hand we always make sure that the last touched page is fully
2191 * mapped so that it can be written out (and thus forward progress is
2192 * guaranteed). After mapping we submit all mapped pages for IO.
2194 static int mpage_map_and_submit_extent(handle_t *handle,
2195 struct mpage_da_data *mpd,
2196 bool *give_up_on_write)
2198 struct inode *inode = mpd->inode;
2199 struct ext4_map_blocks *map = &mpd->map;
2203 mpd->io_submit.io_end->offset =
2204 ((loff_t)map->m_lblk) << inode->i_blkbits;
2206 err = mpage_map_one_extent(handle, mpd);
2208 struct super_block *sb = inode->i_sb;
2210 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2211 goto invalidate_dirty_pages;
2213 * Let the uper layers retry transient errors.
2214 * In the case of ENOSPC, if ext4_count_free_blocks()
2215 * is non-zero, a commit should free up blocks.
2217 if ((err == -ENOMEM) ||
2218 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2220 ext4_msg(sb, KERN_CRIT,
2221 "Delayed block allocation failed for "
2222 "inode %lu at logical offset %llu with"
2223 " max blocks %u with error %d",
2225 (unsigned long long)map->m_lblk,
2226 (unsigned)map->m_len, -err);
2227 ext4_msg(sb, KERN_CRIT,
2228 "This should not happen!! Data will "
2231 ext4_print_free_blocks(inode);
2232 invalidate_dirty_pages:
2233 *give_up_on_write = true;
2237 * Update buffer state, submit mapped pages, and get us new
2240 err = mpage_map_and_submit_buffers(mpd);
2243 } while (map->m_len);
2245 /* Update on-disk size after IO is submitted */
2246 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2247 if (disksize > EXT4_I(inode)->i_disksize) {
2250 ext4_wb_update_i_disksize(inode, disksize);
2251 err2 = ext4_mark_inode_dirty(handle, inode);
2253 ext4_error(inode->i_sb,
2254 "Failed to mark inode %lu dirty",
2263 * Calculate the total number of credits to reserve for one writepages
2264 * iteration. This is called from ext4_writepages(). We map an extent of
2265 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2266 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2267 * bpp - 1 blocks in bpp different extents.
2269 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2271 int bpp = ext4_journal_blocks_per_page(inode);
2273 return ext4_meta_trans_blocks(inode,
2274 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2278 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2279 * and underlying extent to map
2281 * @mpd - where to look for pages
2283 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2284 * IO immediately. When we find a page which isn't mapped we start accumulating
2285 * extent of buffers underlying these pages that needs mapping (formed by
2286 * either delayed or unwritten buffers). We also lock the pages containing
2287 * these buffers. The extent found is returned in @mpd structure (starting at
2288 * mpd->lblk with length mpd->len blocks).
2290 * Note that this function can attach bios to one io_end structure which are
2291 * neither logically nor physically contiguous. Although it may seem as an
2292 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2293 * case as we need to track IO to all buffers underlying a page in one io_end.
2295 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2297 struct address_space *mapping = mpd->inode->i_mapping;
2298 struct pagevec pvec;
2299 unsigned int nr_pages;
2300 long left = mpd->wbc->nr_to_write;
2301 pgoff_t index = mpd->first_page;
2302 pgoff_t end = mpd->last_page;
2305 int blkbits = mpd->inode->i_blkbits;
2307 struct buffer_head *head;
2309 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2310 tag = PAGECACHE_TAG_TOWRITE;
2312 tag = PAGECACHE_TAG_DIRTY;
2314 pagevec_init(&pvec, 0);
2316 mpd->next_page = index;
2317 while (index <= end) {
2318 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2319 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2323 for (i = 0; i < nr_pages; i++) {
2324 struct page *page = pvec.pages[i];
2327 * At this point, the page may be truncated or
2328 * invalidated (changing page->mapping to NULL), or
2329 * even swizzled back from swapper_space to tmpfs file
2330 * mapping. However, page->index will not change
2331 * because we have a reference on the page.
2333 if (page->index > end)
2337 * Accumulated enough dirty pages? This doesn't apply
2338 * to WB_SYNC_ALL mode. For integrity sync we have to
2339 * keep going because someone may be concurrently
2340 * dirtying pages, and we might have synced a lot of
2341 * newly appeared dirty pages, but have not synced all
2342 * of the old dirty pages.
2344 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2347 /* If we can't merge this page, we are done. */
2348 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2353 * If the page is no longer dirty, or its mapping no
2354 * longer corresponds to inode we are writing (which
2355 * means it has been truncated or invalidated), or the
2356 * page is already under writeback and we are not doing
2357 * a data integrity writeback, skip the page
2359 if (!PageDirty(page) ||
2360 (PageWriteback(page) &&
2361 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2362 unlikely(page->mapping != mapping)) {
2367 wait_on_page_writeback(page);
2368 BUG_ON(PageWriteback(page));
2370 if (mpd->map.m_len == 0)
2371 mpd->first_page = page->index;
2372 mpd->next_page = page->index + 1;
2373 /* Add all dirty buffers to mpd */
2374 lblk = ((ext4_lblk_t)page->index) <<
2375 (PAGE_CACHE_SHIFT - blkbits);
2376 head = page_buffers(page);
2377 err = mpage_process_page_bufs(mpd, head, head, lblk);
2383 pagevec_release(&pvec);
2388 pagevec_release(&pvec);
2392 static int __writepage(struct page *page, struct writeback_control *wbc,
2395 struct address_space *mapping = data;
2396 int ret = ext4_writepage(page, wbc);
2397 mapping_set_error(mapping, ret);
2401 static int ext4_writepages(struct address_space *mapping,
2402 struct writeback_control *wbc)
2404 pgoff_t writeback_index = 0;
2405 long nr_to_write = wbc->nr_to_write;
2406 int range_whole = 0;
2408 handle_t *handle = NULL;
2409 struct mpage_da_data mpd;
2410 struct inode *inode = mapping->host;
2411 int needed_blocks, rsv_blocks = 0, ret = 0;
2412 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2414 struct blk_plug plug;
2415 bool give_up_on_write = false;
2417 trace_ext4_writepages(inode, wbc);
2420 * No pages to write? This is mainly a kludge to avoid starting
2421 * a transaction for special inodes like journal inode on last iput()
2422 * because that could violate lock ordering on umount
2424 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2425 goto out_writepages;
2427 if (ext4_should_journal_data(inode)) {
2428 struct blk_plug plug;
2430 blk_start_plug(&plug);
2431 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2432 blk_finish_plug(&plug);
2433 goto out_writepages;
2437 * If the filesystem has aborted, it is read-only, so return
2438 * right away instead of dumping stack traces later on that
2439 * will obscure the real source of the problem. We test
2440 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2441 * the latter could be true if the filesystem is mounted
2442 * read-only, and in that case, ext4_writepages should
2443 * *never* be called, so if that ever happens, we would want
2446 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2448 goto out_writepages;
2451 if (ext4_should_dioread_nolock(inode)) {
2453 * We may need to convert up to one extent per block in
2454 * the page and we may dirty the inode.
2456 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2460 * If we have inline data and arrive here, it means that
2461 * we will soon create the block for the 1st page, so
2462 * we'd better clear the inline data here.
2464 if (ext4_has_inline_data(inode)) {
2465 /* Just inode will be modified... */
2466 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2467 if (IS_ERR(handle)) {
2468 ret = PTR_ERR(handle);
2469 goto out_writepages;
2471 BUG_ON(ext4_test_inode_state(inode,
2472 EXT4_STATE_MAY_INLINE_DATA));
2473 ext4_destroy_inline_data(handle, inode);
2474 ext4_journal_stop(handle);
2477 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2480 if (wbc->range_cyclic) {
2481 writeback_index = mapping->writeback_index;
2482 if (writeback_index)
2484 mpd.first_page = writeback_index;
2487 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2488 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2493 ext4_io_submit_init(&mpd.io_submit, wbc);
2495 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2496 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2498 blk_start_plug(&plug);
2499 while (!done && mpd.first_page <= mpd.last_page) {
2500 /* For each extent of pages we use new io_end */
2501 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2502 if (!mpd.io_submit.io_end) {
2508 * We have two constraints: We find one extent to map and we
2509 * must always write out whole page (makes a difference when
2510 * blocksize < pagesize) so that we don't block on IO when we
2511 * try to write out the rest of the page. Journalled mode is
2512 * not supported by delalloc.
2514 BUG_ON(ext4_should_journal_data(inode));
2515 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2517 /* start a new transaction */
2518 handle = ext4_journal_start_with_reserve(inode,
2519 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2520 if (IS_ERR(handle)) {
2521 ret = PTR_ERR(handle);
2522 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2523 "%ld pages, ino %lu; err %d", __func__,
2524 wbc->nr_to_write, inode->i_ino, ret);
2525 /* Release allocated io_end */
2526 ext4_put_io_end(mpd.io_submit.io_end);
2530 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2531 ret = mpage_prepare_extent_to_map(&mpd);
2534 ret = mpage_map_and_submit_extent(handle, &mpd,
2538 * We scanned the whole range (or exhausted
2539 * nr_to_write), submitted what was mapped and
2540 * didn't find anything needing mapping. We are
2546 ext4_journal_stop(handle);
2547 /* Submit prepared bio */
2548 ext4_io_submit(&mpd.io_submit);
2549 /* Unlock pages we didn't use */
2550 mpage_release_unused_pages(&mpd, give_up_on_write);
2551 /* Drop our io_end reference we got from init */
2552 ext4_put_io_end(mpd.io_submit.io_end);
2554 if (ret == -ENOSPC && sbi->s_journal) {
2556 * Commit the transaction which would
2557 * free blocks released in the transaction
2560 jbd2_journal_force_commit_nested(sbi->s_journal);
2564 /* Fatal error - ENOMEM, EIO... */
2568 blk_finish_plug(&plug);
2569 if (!ret && !cycled && wbc->nr_to_write > 0) {
2571 mpd.last_page = writeback_index - 1;
2577 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2579 * Set the writeback_index so that range_cyclic
2580 * mode will write it back later
2582 mapping->writeback_index = mpd.first_page;
2585 trace_ext4_writepages_result(inode, wbc, ret,
2586 nr_to_write - wbc->nr_to_write);
2590 static int ext4_nonda_switch(struct super_block *sb)
2592 s64 free_clusters, dirty_clusters;
2593 struct ext4_sb_info *sbi = EXT4_SB(sb);
2596 * switch to non delalloc mode if we are running low
2597 * on free block. The free block accounting via percpu
2598 * counters can get slightly wrong with percpu_counter_batch getting
2599 * accumulated on each CPU without updating global counters
2600 * Delalloc need an accurate free block accounting. So switch
2601 * to non delalloc when we are near to error range.
2604 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2606 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2608 * Start pushing delalloc when 1/2 of free blocks are dirty.
2610 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2611 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2613 if (2 * free_clusters < 3 * dirty_clusters ||
2614 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2616 * free block count is less than 150% of dirty blocks
2617 * or free blocks is less than watermark
2624 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2625 loff_t pos, unsigned len, unsigned flags,
2626 struct page **pagep, void **fsdata)
2628 int ret, retries = 0;
2631 struct inode *inode = mapping->host;
2634 index = pos >> PAGE_CACHE_SHIFT;
2636 if (ext4_nonda_switch(inode->i_sb)) {
2637 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2638 return ext4_write_begin(file, mapping, pos,
2639 len, flags, pagep, fsdata);
2641 *fsdata = (void *)0;
2642 trace_ext4_da_write_begin(inode, pos, len, flags);
2644 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2645 ret = ext4_da_write_inline_data_begin(mapping, inode,
2655 * grab_cache_page_write_begin() can take a long time if the
2656 * system is thrashing due to memory pressure, or if the page
2657 * is being written back. So grab it first before we start
2658 * the transaction handle. This also allows us to allocate
2659 * the page (if needed) without using GFP_NOFS.
2662 page = grab_cache_page_write_begin(mapping, index, flags);
2668 * With delayed allocation, we don't log the i_disksize update
2669 * if there is delayed block allocation. But we still need
2670 * to journalling the i_disksize update if writes to the end
2671 * of file which has an already mapped buffer.
2674 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2675 if (IS_ERR(handle)) {
2676 page_cache_release(page);
2677 return PTR_ERR(handle);
2681 if (page->mapping != mapping) {
2682 /* The page got truncated from under us */
2684 page_cache_release(page);
2685 ext4_journal_stop(handle);
2688 /* In case writeback began while the page was unlocked */
2689 wait_for_stable_page(page);
2691 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2694 ext4_journal_stop(handle);
2696 * block_write_begin may have instantiated a few blocks
2697 * outside i_size. Trim these off again. Don't need
2698 * i_size_read because we hold i_mutex.
2700 if (pos + len > inode->i_size)
2701 ext4_truncate_failed_write(inode);
2703 if (ret == -ENOSPC &&
2704 ext4_should_retry_alloc(inode->i_sb, &retries))
2707 page_cache_release(page);
2716 * Check if we should update i_disksize
2717 * when write to the end of file but not require block allocation
2719 static int ext4_da_should_update_i_disksize(struct page *page,
2720 unsigned long offset)
2722 struct buffer_head *bh;
2723 struct inode *inode = page->mapping->host;
2727 bh = page_buffers(page);
2728 idx = offset >> inode->i_blkbits;
2730 for (i = 0; i < idx; i++)
2731 bh = bh->b_this_page;
2733 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2738 static int ext4_da_write_end(struct file *file,
2739 struct address_space *mapping,
2740 loff_t pos, unsigned len, unsigned copied,
2741 struct page *page, void *fsdata)
2743 struct inode *inode = mapping->host;
2745 handle_t *handle = ext4_journal_current_handle();
2747 unsigned long start, end;
2748 int write_mode = (int)(unsigned long)fsdata;
2750 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2751 return ext4_write_end(file, mapping, pos,
2752 len, copied, page, fsdata);
2754 trace_ext4_da_write_end(inode, pos, len, copied);
2755 start = pos & (PAGE_CACHE_SIZE - 1);
2756 end = start + copied - 1;
2759 * generic_write_end() will run mark_inode_dirty() if i_size
2760 * changes. So let's piggyback the i_disksize mark_inode_dirty
2763 new_i_size = pos + copied;
2764 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2765 if (ext4_has_inline_data(inode) ||
2766 ext4_da_should_update_i_disksize(page, end)) {
2767 down_write(&EXT4_I(inode)->i_data_sem);
2768 if (new_i_size > EXT4_I(inode)->i_disksize)
2769 EXT4_I(inode)->i_disksize = new_i_size;
2770 up_write(&EXT4_I(inode)->i_data_sem);
2771 /* We need to mark inode dirty even if
2772 * new_i_size is less that inode->i_size
2773 * bu greater than i_disksize.(hint delalloc)
2775 ext4_mark_inode_dirty(handle, inode);
2779 if (write_mode != CONVERT_INLINE_DATA &&
2780 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2781 ext4_has_inline_data(inode))
2782 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2785 ret2 = generic_write_end(file, mapping, pos, len, copied,
2791 ret2 = ext4_journal_stop(handle);
2795 return ret ? ret : copied;
2798 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2799 unsigned int length)
2802 * Drop reserved blocks
2804 BUG_ON(!PageLocked(page));
2805 if (!page_has_buffers(page))
2808 ext4_da_page_release_reservation(page, offset, length);
2811 ext4_invalidatepage(page, offset, length);
2817 * Force all delayed allocation blocks to be allocated for a given inode.
2819 int ext4_alloc_da_blocks(struct inode *inode)
2821 trace_ext4_alloc_da_blocks(inode);
2823 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2824 !EXT4_I(inode)->i_reserved_meta_blocks)
2828 * We do something simple for now. The filemap_flush() will
2829 * also start triggering a write of the data blocks, which is
2830 * not strictly speaking necessary (and for users of
2831 * laptop_mode, not even desirable). However, to do otherwise
2832 * would require replicating code paths in:
2834 * ext4_writepages() ->
2835 * write_cache_pages() ---> (via passed in callback function)
2836 * __mpage_da_writepage() -->
2837 * mpage_add_bh_to_extent()
2838 * mpage_da_map_blocks()
2840 * The problem is that write_cache_pages(), located in
2841 * mm/page-writeback.c, marks pages clean in preparation for
2842 * doing I/O, which is not desirable if we're not planning on
2845 * We could call write_cache_pages(), and then redirty all of
2846 * the pages by calling redirty_page_for_writepage() but that
2847 * would be ugly in the extreme. So instead we would need to
2848 * replicate parts of the code in the above functions,
2849 * simplifying them because we wouldn't actually intend to
2850 * write out the pages, but rather only collect contiguous
2851 * logical block extents, call the multi-block allocator, and
2852 * then update the buffer heads with the block allocations.
2854 * For now, though, we'll cheat by calling filemap_flush(),
2855 * which will map the blocks, and start the I/O, but not
2856 * actually wait for the I/O to complete.
2858 return filemap_flush(inode->i_mapping);
2862 * bmap() is special. It gets used by applications such as lilo and by
2863 * the swapper to find the on-disk block of a specific piece of data.
2865 * Naturally, this is dangerous if the block concerned is still in the
2866 * journal. If somebody makes a swapfile on an ext4 data-journaling
2867 * filesystem and enables swap, then they may get a nasty shock when the
2868 * data getting swapped to that swapfile suddenly gets overwritten by
2869 * the original zero's written out previously to the journal and
2870 * awaiting writeback in the kernel's buffer cache.
2872 * So, if we see any bmap calls here on a modified, data-journaled file,
2873 * take extra steps to flush any blocks which might be in the cache.
2875 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2877 struct inode *inode = mapping->host;
2882 * We can get here for an inline file via the FIBMAP ioctl
2884 if (ext4_has_inline_data(inode))
2887 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2888 test_opt(inode->i_sb, DELALLOC)) {
2890 * With delalloc we want to sync the file
2891 * so that we can make sure we allocate
2894 filemap_write_and_wait(mapping);
2897 if (EXT4_JOURNAL(inode) &&
2898 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2900 * This is a REALLY heavyweight approach, but the use of
2901 * bmap on dirty files is expected to be extremely rare:
2902 * only if we run lilo or swapon on a freshly made file
2903 * do we expect this to happen.
2905 * (bmap requires CAP_SYS_RAWIO so this does not
2906 * represent an unprivileged user DOS attack --- we'd be
2907 * in trouble if mortal users could trigger this path at
2910 * NB. EXT4_STATE_JDATA is not set on files other than
2911 * regular files. If somebody wants to bmap a directory
2912 * or symlink and gets confused because the buffer
2913 * hasn't yet been flushed to disk, they deserve
2914 * everything they get.
2917 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2918 journal = EXT4_JOURNAL(inode);
2919 jbd2_journal_lock_updates(journal);
2920 err = jbd2_journal_flush(journal);
2921 jbd2_journal_unlock_updates(journal);
2927 return generic_block_bmap(mapping, block, ext4_get_block);
2930 static int ext4_readpage(struct file *file, struct page *page)
2933 struct inode *inode = page->mapping->host;
2935 trace_ext4_readpage(page);
2937 if (ext4_has_inline_data(inode))
2938 ret = ext4_readpage_inline(inode, page);
2941 return mpage_readpage(page, ext4_get_block);
2947 ext4_readpages(struct file *file, struct address_space *mapping,
2948 struct list_head *pages, unsigned nr_pages)
2950 struct inode *inode = mapping->host;
2952 /* If the file has inline data, no need to do readpages. */
2953 if (ext4_has_inline_data(inode))
2956 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2959 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2960 unsigned int length)
2962 trace_ext4_invalidatepage(page, offset, length);
2964 /* No journalling happens on data buffers when this function is used */
2965 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2967 block_invalidatepage(page, offset, length);
2970 static int __ext4_journalled_invalidatepage(struct page *page,
2971 unsigned int offset,
2972 unsigned int length)
2974 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2976 trace_ext4_journalled_invalidatepage(page, offset, length);
2979 * If it's a full truncate we just forget about the pending dirtying
2981 if (offset == 0 && length == PAGE_CACHE_SIZE)
2982 ClearPageChecked(page);
2984 return jbd2_journal_invalidatepage(journal, page, offset, length);
2987 /* Wrapper for aops... */
2988 static void ext4_journalled_invalidatepage(struct page *page,
2989 unsigned int offset,
2990 unsigned int length)
2992 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2995 static int ext4_releasepage(struct page *page, gfp_t wait)
2997 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2999 trace_ext4_releasepage(page);
3001 /* Page has dirty journalled data -> cannot release */
3002 if (PageChecked(page))
3005 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3007 return try_to_free_buffers(page);
3011 * ext4_get_block used when preparing for a DIO write or buffer write.
3012 * We allocate an uinitialized extent if blocks haven't been allocated.
3013 * The extent will be converted to initialized after the IO is complete.
3015 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3016 struct buffer_head *bh_result, int create)
3018 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3019 inode->i_ino, create);
3020 return _ext4_get_block(inode, iblock, bh_result,
3021 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3024 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3025 struct buffer_head *bh_result, int create)
3027 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3028 inode->i_ino, create);
3029 return _ext4_get_block(inode, iblock, bh_result,
3030 EXT4_GET_BLOCKS_NO_LOCK);
3033 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3034 ssize_t size, void *private)
3036 ext4_io_end_t *io_end = iocb->private;
3038 /* if not async direct IO just return */
3042 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3043 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3044 iocb->private, io_end->inode->i_ino, iocb, offset,
3047 iocb->private = NULL;
3048 io_end->offset = offset;
3049 io_end->size = size;
3050 ext4_put_io_end(io_end);
3054 * For ext4 extent files, ext4 will do direct-io write to holes,
3055 * preallocated extents, and those write extend the file, no need to
3056 * fall back to buffered IO.
3058 * For holes, we fallocate those blocks, mark them as uninitialized
3059 * If those blocks were preallocated, we mark sure they are split, but
3060 * still keep the range to write as uninitialized.
3062 * The unwritten extents will be converted to written when DIO is completed.
3063 * For async direct IO, since the IO may still pending when return, we
3064 * set up an end_io call back function, which will do the conversion
3065 * when async direct IO completed.
3067 * If the O_DIRECT write will extend the file then add this inode to the
3068 * orphan list. So recovery will truncate it back to the original size
3069 * if the machine crashes during the write.
3072 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3073 const struct iovec *iov, loff_t offset,
3074 unsigned long nr_segs)
3076 struct file *file = iocb->ki_filp;
3077 struct inode *inode = file->f_mapping->host;
3079 size_t count = iov_length(iov, nr_segs);
3081 get_block_t *get_block_func = NULL;
3083 loff_t final_size = offset + count;
3084 ext4_io_end_t *io_end = NULL;
3086 /* Use the old path for reads and writes beyond i_size. */
3087 if (rw != WRITE || final_size > inode->i_size)
3088 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3090 BUG_ON(iocb->private == NULL);
3093 * Make all waiters for direct IO properly wait also for extent
3094 * conversion. This also disallows race between truncate() and
3095 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3098 atomic_inc(&inode->i_dio_count);
3100 /* If we do a overwrite dio, i_mutex locking can be released */
3101 overwrite = *((int *)iocb->private);
3104 down_read(&EXT4_I(inode)->i_data_sem);
3105 mutex_unlock(&inode->i_mutex);
3109 * We could direct write to holes and fallocate.
3111 * Allocated blocks to fill the hole are marked as
3112 * uninitialized to prevent parallel buffered read to expose
3113 * the stale data before DIO complete the data IO.
3115 * As to previously fallocated extents, ext4 get_block will
3116 * just simply mark the buffer mapped but still keep the
3117 * extents uninitialized.
3119 * For non AIO case, we will convert those unwritten extents
3120 * to written after return back from blockdev_direct_IO.
3122 * For async DIO, the conversion needs to be deferred when the
3123 * IO is completed. The ext4 end_io callback function will be
3124 * called to take care of the conversion work. Here for async
3125 * case, we allocate an io_end structure to hook to the iocb.
3127 iocb->private = NULL;
3128 ext4_inode_aio_set(inode, NULL);
3129 if (!is_sync_kiocb(iocb)) {
3130 io_end = ext4_init_io_end(inode, GFP_NOFS);
3136 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3138 iocb->private = ext4_get_io_end(io_end);
3140 * we save the io structure for current async direct
3141 * IO, so that later ext4_map_blocks() could flag the
3142 * io structure whether there is a unwritten extents
3143 * needs to be converted when IO is completed.
3145 ext4_inode_aio_set(inode, io_end);
3149 get_block_func = ext4_get_block_write_nolock;
3151 get_block_func = ext4_get_block_write;
3152 dio_flags = DIO_LOCKING;
3154 ret = __blockdev_direct_IO(rw, iocb, inode,
3155 inode->i_sb->s_bdev, iov,
3163 * Put our reference to io_end. This can free the io_end structure e.g.
3164 * in sync IO case or in case of error. It can even perform extent
3165 * conversion if all bios we submitted finished before we got here.
3166 * Note that in that case iocb->private can be already set to NULL
3170 ext4_inode_aio_set(inode, NULL);
3171 ext4_put_io_end(io_end);
3173 * When no IO was submitted ext4_end_io_dio() was not
3174 * called so we have to put iocb's reference.
3176 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3177 WARN_ON(iocb->private != io_end);
3178 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3179 ext4_put_io_end(io_end);
3180 iocb->private = NULL;
3183 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3184 EXT4_STATE_DIO_UNWRITTEN)) {
3187 * for non AIO case, since the IO is already
3188 * completed, we could do the conversion right here
3190 err = ext4_convert_unwritten_extents(NULL, inode,
3194 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3199 inode_dio_done(inode);
3200 /* take i_mutex locking again if we do a ovewrite dio */
3202 up_read(&EXT4_I(inode)->i_data_sem);
3203 mutex_lock(&inode->i_mutex);
3209 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3210 const struct iovec *iov, loff_t offset,
3211 unsigned long nr_segs)
3213 struct file *file = iocb->ki_filp;
3214 struct inode *inode = file->f_mapping->host;
3218 * If we are doing data journalling we don't support O_DIRECT
3220 if (ext4_should_journal_data(inode))
3223 /* Let buffer I/O handle the inline data case. */
3224 if (ext4_has_inline_data(inode))
3227 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3228 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3229 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3231 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3232 trace_ext4_direct_IO_exit(inode, offset,
3233 iov_length(iov, nr_segs), rw, ret);
3238 * Pages can be marked dirty completely asynchronously from ext4's journalling
3239 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3240 * much here because ->set_page_dirty is called under VFS locks. The page is
3241 * not necessarily locked.
3243 * We cannot just dirty the page and leave attached buffers clean, because the
3244 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3245 * or jbddirty because all the journalling code will explode.
3247 * So what we do is to mark the page "pending dirty" and next time writepage
3248 * is called, propagate that into the buffers appropriately.
3250 static int ext4_journalled_set_page_dirty(struct page *page)
3252 SetPageChecked(page);
3253 return __set_page_dirty_nobuffers(page);
3256 static const struct address_space_operations ext4_aops = {
3257 .readpage = ext4_readpage,
3258 .readpages = ext4_readpages,
3259 .writepage = ext4_writepage,
3260 .writepages = ext4_writepages,
3261 .write_begin = ext4_write_begin,
3262 .write_end = ext4_write_end,
3264 .invalidatepage = ext4_invalidatepage,
3265 .releasepage = ext4_releasepage,
3266 .direct_IO = ext4_direct_IO,
3267 .migratepage = buffer_migrate_page,
3268 .is_partially_uptodate = block_is_partially_uptodate,
3269 .error_remove_page = generic_error_remove_page,
3272 static const struct address_space_operations ext4_journalled_aops = {
3273 .readpage = ext4_readpage,
3274 .readpages = ext4_readpages,
3275 .writepage = ext4_writepage,
3276 .writepages = ext4_writepages,
3277 .write_begin = ext4_write_begin,
3278 .write_end = ext4_journalled_write_end,
3279 .set_page_dirty = ext4_journalled_set_page_dirty,
3281 .invalidatepage = ext4_journalled_invalidatepage,
3282 .releasepage = ext4_releasepage,
3283 .direct_IO = ext4_direct_IO,
3284 .is_partially_uptodate = block_is_partially_uptodate,
3285 .error_remove_page = generic_error_remove_page,
3288 static const struct address_space_operations ext4_da_aops = {
3289 .readpage = ext4_readpage,
3290 .readpages = ext4_readpages,
3291 .writepage = ext4_writepage,
3292 .writepages = ext4_writepages,
3293 .write_begin = ext4_da_write_begin,
3294 .write_end = ext4_da_write_end,
3296 .invalidatepage = ext4_da_invalidatepage,
3297 .releasepage = ext4_releasepage,
3298 .direct_IO = ext4_direct_IO,
3299 .migratepage = buffer_migrate_page,
3300 .is_partially_uptodate = block_is_partially_uptodate,
3301 .error_remove_page = generic_error_remove_page,
3304 void ext4_set_aops(struct inode *inode)
3306 switch (ext4_inode_journal_mode(inode)) {
3307 case EXT4_INODE_ORDERED_DATA_MODE:
3308 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3310 case EXT4_INODE_WRITEBACK_DATA_MODE:
3311 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3313 case EXT4_INODE_JOURNAL_DATA_MODE:
3314 inode->i_mapping->a_ops = &ext4_journalled_aops;
3319 if (test_opt(inode->i_sb, DELALLOC))
3320 inode->i_mapping->a_ops = &ext4_da_aops;
3322 inode->i_mapping->a_ops = &ext4_aops;
3326 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3327 * up to the end of the block which corresponds to `from'.
3328 * This required during truncate. We need to physically zero the tail end
3329 * of that block so it doesn't yield old data if the file is later grown.
3331 int ext4_block_truncate_page(handle_t *handle,
3332 struct address_space *mapping, loff_t from)
3334 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3337 struct inode *inode = mapping->host;
3339 blocksize = inode->i_sb->s_blocksize;
3340 length = blocksize - (offset & (blocksize - 1));
3342 return ext4_block_zero_page_range(handle, mapping, from, length);
3346 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3347 * starting from file offset 'from'. The range to be zero'd must
3348 * be contained with in one block. If the specified range exceeds
3349 * the end of the block it will be shortened to end of the block
3350 * that cooresponds to 'from'
3352 int ext4_block_zero_page_range(handle_t *handle,
3353 struct address_space *mapping, loff_t from, loff_t length)
3355 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3356 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3357 unsigned blocksize, max, pos;
3359 struct inode *inode = mapping->host;
3360 struct buffer_head *bh;
3364 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3365 mapping_gfp_mask(mapping) & ~__GFP_FS);
3369 blocksize = inode->i_sb->s_blocksize;
3370 max = blocksize - (offset & (blocksize - 1));
3373 * correct length if it does not fall between
3374 * 'from' and the end of the block
3376 if (length > max || length < 0)
3379 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3381 if (!page_has_buffers(page))
3382 create_empty_buffers(page, blocksize, 0);
3384 /* Find the buffer that contains "offset" */
3385 bh = page_buffers(page);
3387 while (offset >= pos) {
3388 bh = bh->b_this_page;
3392 if (buffer_freed(bh)) {
3393 BUFFER_TRACE(bh, "freed: skip");
3396 if (!buffer_mapped(bh)) {
3397 BUFFER_TRACE(bh, "unmapped");
3398 ext4_get_block(inode, iblock, bh, 0);
3399 /* unmapped? It's a hole - nothing to do */
3400 if (!buffer_mapped(bh)) {
3401 BUFFER_TRACE(bh, "still unmapped");
3406 /* Ok, it's mapped. Make sure it's up-to-date */
3407 if (PageUptodate(page))
3408 set_buffer_uptodate(bh);
3410 if (!buffer_uptodate(bh)) {
3412 ll_rw_block(READ, 1, &bh);
3414 /* Uhhuh. Read error. Complain and punt. */
3415 if (!buffer_uptodate(bh))
3418 if (ext4_should_journal_data(inode)) {
3419 BUFFER_TRACE(bh, "get write access");
3420 err = ext4_journal_get_write_access(handle, bh);
3424 zero_user(page, offset, length);
3425 BUFFER_TRACE(bh, "zeroed end of block");
3427 if (ext4_should_journal_data(inode)) {
3428 err = ext4_handle_dirty_metadata(handle, inode, bh);
3431 mark_buffer_dirty(bh);
3432 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3433 err = ext4_jbd2_file_inode(handle, inode);
3438 page_cache_release(page);
3442 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3443 loff_t lstart, loff_t length)
3445 struct super_block *sb = inode->i_sb;
3446 struct address_space *mapping = inode->i_mapping;
3447 unsigned partial_start, partial_end;
3448 ext4_fsblk_t start, end;
3449 loff_t byte_end = (lstart + length - 1);
3452 partial_start = lstart & (sb->s_blocksize - 1);
3453 partial_end = byte_end & (sb->s_blocksize - 1);
3455 start = lstart >> sb->s_blocksize_bits;
3456 end = byte_end >> sb->s_blocksize_bits;
3458 /* Handle partial zero within the single block */
3460 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3461 err = ext4_block_zero_page_range(handle, mapping,
3465 /* Handle partial zero out on the start of the range */
3466 if (partial_start) {
3467 err = ext4_block_zero_page_range(handle, mapping,
3468 lstart, sb->s_blocksize);
3472 /* Handle partial zero out on the end of the range */
3473 if (partial_end != sb->s_blocksize - 1)
3474 err = ext4_block_zero_page_range(handle, mapping,
3475 byte_end - partial_end,
3480 int ext4_can_truncate(struct inode *inode)
3482 if (S_ISREG(inode->i_mode))
3484 if (S_ISDIR(inode->i_mode))
3486 if (S_ISLNK(inode->i_mode))
3487 return !ext4_inode_is_fast_symlink(inode);
3492 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3493 * associated with the given offset and length
3495 * @inode: File inode
3496 * @offset: The offset where the hole will begin
3497 * @len: The length of the hole
3499 * Returns: 0 on success or negative on failure
3502 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3504 struct super_block *sb = inode->i_sb;
3505 ext4_lblk_t first_block, stop_block;
3506 struct address_space *mapping = inode->i_mapping;
3507 loff_t first_block_offset, last_block_offset;
3509 unsigned int credits;
3512 if (!S_ISREG(inode->i_mode))
3515 trace_ext4_punch_hole(inode, offset, length, 0);
3518 * Write out all dirty pages to avoid race conditions
3519 * Then release them.
3521 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3522 ret = filemap_write_and_wait_range(mapping, offset,
3523 offset + length - 1);
3528 mutex_lock(&inode->i_mutex);
3529 /* It's not possible punch hole on append only file */
3530 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3534 if (IS_SWAPFILE(inode)) {
3539 /* No need to punch hole beyond i_size */
3540 if (offset >= inode->i_size)
3544 * If the hole extends beyond i_size, set the hole
3545 * to end after the page that contains i_size
3547 if (offset + length > inode->i_size) {
3548 length = inode->i_size +
3549 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3553 if (offset & (sb->s_blocksize - 1) ||
3554 (offset + length) & (sb->s_blocksize - 1)) {
3556 * Attach jinode to inode for jbd2 if we do any zeroing of
3559 ret = ext4_inode_attach_jinode(inode);
3565 first_block_offset = round_up(offset, sb->s_blocksize);
3566 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3568 /* Now release the pages and zero block aligned part of pages*/
3569 if (last_block_offset > first_block_offset)
3570 truncate_pagecache_range(inode, first_block_offset,
3573 /* Wait all existing dio workers, newcomers will block on i_mutex */
3574 ext4_inode_block_unlocked_dio(inode);
3575 inode_dio_wait(inode);
3577 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3578 credits = ext4_writepage_trans_blocks(inode);
3580 credits = ext4_blocks_for_truncate(inode);
3581 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3582 if (IS_ERR(handle)) {
3583 ret = PTR_ERR(handle);
3584 ext4_std_error(sb, ret);
3588 ret = ext4_zero_partial_blocks(handle, inode, offset,
3593 first_block = (offset + sb->s_blocksize - 1) >>
3594 EXT4_BLOCK_SIZE_BITS(sb);
3595 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3597 /* If there are no blocks to remove, return now */
3598 if (first_block >= stop_block)
3601 down_write(&EXT4_I(inode)->i_data_sem);
3602 ext4_discard_preallocations(inode);
3604 ret = ext4_es_remove_extent(inode, first_block,
3605 stop_block - first_block);
3607 up_write(&EXT4_I(inode)->i_data_sem);
3611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612 ret = ext4_ext_remove_space(inode, first_block,
3615 ret = ext4_free_hole_blocks(handle, inode, first_block,
3618 ext4_discard_preallocations(inode);
3619 up_write(&EXT4_I(inode)->i_data_sem);
3621 ext4_handle_sync(handle);
3623 /* Now release the pages again to reduce race window */
3624 if (last_block_offset > first_block_offset)
3625 truncate_pagecache_range(inode, first_block_offset,
3628 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3629 ext4_mark_inode_dirty(handle, inode);
3631 ext4_journal_stop(handle);
3633 ext4_inode_resume_unlocked_dio(inode);
3635 mutex_unlock(&inode->i_mutex);
3639 int ext4_inode_attach_jinode(struct inode *inode)
3641 struct ext4_inode_info *ei = EXT4_I(inode);
3642 struct jbd2_inode *jinode;
3644 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3647 jinode = jbd2_alloc_inode(GFP_KERNEL);
3648 spin_lock(&inode->i_lock);
3651 spin_unlock(&inode->i_lock);
3654 ei->jinode = jinode;
3655 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3658 spin_unlock(&inode->i_lock);
3659 if (unlikely(jinode != NULL))
3660 jbd2_free_inode(jinode);
3667 * We block out ext4_get_block() block instantiations across the entire
3668 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3669 * simultaneously on behalf of the same inode.
3671 * As we work through the truncate and commit bits of it to the journal there
3672 * is one core, guiding principle: the file's tree must always be consistent on
3673 * disk. We must be able to restart the truncate after a crash.
3675 * The file's tree may be transiently inconsistent in memory (although it
3676 * probably isn't), but whenever we close off and commit a journal transaction,
3677 * the contents of (the filesystem + the journal) must be consistent and
3678 * restartable. It's pretty simple, really: bottom up, right to left (although
3679 * left-to-right works OK too).
3681 * Note that at recovery time, journal replay occurs *before* the restart of
3682 * truncate against the orphan inode list.
3684 * The committed inode has the new, desired i_size (which is the same as
3685 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3686 * that this inode's truncate did not complete and it will again call
3687 * ext4_truncate() to have another go. So there will be instantiated blocks
3688 * to the right of the truncation point in a crashed ext4 filesystem. But
3689 * that's fine - as long as they are linked from the inode, the post-crash
3690 * ext4_truncate() run will find them and release them.
3692 void ext4_truncate(struct inode *inode)
3694 struct ext4_inode_info *ei = EXT4_I(inode);
3695 unsigned int credits;
3697 struct address_space *mapping = inode->i_mapping;
3700 * There is a possibility that we're either freeing the inode
3701 * or it completely new indode. In those cases we might not
3702 * have i_mutex locked because it's not necessary.
3704 if (!(inode->i_state & (I_NEW|I_FREEING)))
3705 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3706 trace_ext4_truncate_enter(inode);
3708 if (!ext4_can_truncate(inode))
3711 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3713 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3714 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3716 if (ext4_has_inline_data(inode)) {
3719 ext4_inline_data_truncate(inode, &has_inline);
3724 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3725 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3726 if (ext4_inode_attach_jinode(inode) < 0)
3730 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3731 credits = ext4_writepage_trans_blocks(inode);
3733 credits = ext4_blocks_for_truncate(inode);
3735 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3736 if (IS_ERR(handle)) {
3737 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3741 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3742 ext4_block_truncate_page(handle, mapping, inode->i_size);
3745 * We add the inode to the orphan list, so that if this
3746 * truncate spans multiple transactions, and we crash, we will
3747 * resume the truncate when the filesystem recovers. It also
3748 * marks the inode dirty, to catch the new size.
3750 * Implication: the file must always be in a sane, consistent
3751 * truncatable state while each transaction commits.
3753 if (ext4_orphan_add(handle, inode))
3756 down_write(&EXT4_I(inode)->i_data_sem);
3758 ext4_discard_preallocations(inode);
3760 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761 ext4_ext_truncate(handle, inode);
3763 ext4_ind_truncate(handle, inode);
3765 up_write(&ei->i_data_sem);
3768 ext4_handle_sync(handle);
3772 * If this was a simple ftruncate() and the file will remain alive,
3773 * then we need to clear up the orphan record which we created above.
3774 * However, if this was a real unlink then we were called by
3775 * ext4_delete_inode(), and we allow that function to clean up the
3776 * orphan info for us.
3779 ext4_orphan_del(handle, inode);
3781 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3782 ext4_mark_inode_dirty(handle, inode);
3783 ext4_journal_stop(handle);
3785 trace_ext4_truncate_exit(inode);
3789 * ext4_get_inode_loc returns with an extra refcount against the inode's
3790 * underlying buffer_head on success. If 'in_mem' is true, we have all
3791 * data in memory that is needed to recreate the on-disk version of this
3794 static int __ext4_get_inode_loc(struct inode *inode,
3795 struct ext4_iloc *iloc, int in_mem)
3797 struct ext4_group_desc *gdp;
3798 struct buffer_head *bh;
3799 struct super_block *sb = inode->i_sb;
3801 int inodes_per_block, inode_offset;
3804 if (!ext4_valid_inum(sb, inode->i_ino))
3807 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3808 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3813 * Figure out the offset within the block group inode table
3815 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3816 inode_offset = ((inode->i_ino - 1) %
3817 EXT4_INODES_PER_GROUP(sb));
3818 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3819 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3821 bh = sb_getblk(sb, block);
3824 if (!buffer_uptodate(bh)) {
3828 * If the buffer has the write error flag, we have failed
3829 * to write out another inode in the same block. In this
3830 * case, we don't have to read the block because we may
3831 * read the old inode data successfully.
3833 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3834 set_buffer_uptodate(bh);
3836 if (buffer_uptodate(bh)) {
3837 /* someone brought it uptodate while we waited */
3843 * If we have all information of the inode in memory and this
3844 * is the only valid inode in the block, we need not read the
3848 struct buffer_head *bitmap_bh;
3851 start = inode_offset & ~(inodes_per_block - 1);
3853 /* Is the inode bitmap in cache? */
3854 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3855 if (unlikely(!bitmap_bh))
3859 * If the inode bitmap isn't in cache then the
3860 * optimisation may end up performing two reads instead
3861 * of one, so skip it.
3863 if (!buffer_uptodate(bitmap_bh)) {
3867 for (i = start; i < start + inodes_per_block; i++) {
3868 if (i == inode_offset)
3870 if (ext4_test_bit(i, bitmap_bh->b_data))
3874 if (i == start + inodes_per_block) {
3875 /* all other inodes are free, so skip I/O */
3876 memset(bh->b_data, 0, bh->b_size);
3877 set_buffer_uptodate(bh);
3885 * If we need to do any I/O, try to pre-readahead extra
3886 * blocks from the inode table.
3888 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3889 ext4_fsblk_t b, end, table;
3891 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3893 table = ext4_inode_table(sb, gdp);
3894 /* s_inode_readahead_blks is always a power of 2 */
3895 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3899 num = EXT4_INODES_PER_GROUP(sb);
3900 if (ext4_has_group_desc_csum(sb))
3901 num -= ext4_itable_unused_count(sb, gdp);
3902 table += num / inodes_per_block;
3906 sb_breadahead(sb, b++);
3910 * There are other valid inodes in the buffer, this inode
3911 * has in-inode xattrs, or we don't have this inode in memory.
3912 * Read the block from disk.
3914 trace_ext4_load_inode(inode);
3916 bh->b_end_io = end_buffer_read_sync;
3917 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3919 if (!buffer_uptodate(bh)) {
3920 EXT4_ERROR_INODE_BLOCK(inode, block,
3921 "unable to read itable block");
3931 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3933 /* We have all inode data except xattrs in memory here. */
3934 return __ext4_get_inode_loc(inode, iloc,
3935 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3938 void ext4_set_inode_flags(struct inode *inode)
3940 unsigned int flags = EXT4_I(inode)->i_flags;
3942 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3943 if (flags & EXT4_SYNC_FL)
3944 inode->i_flags |= S_SYNC;
3945 if (flags & EXT4_APPEND_FL)
3946 inode->i_flags |= S_APPEND;
3947 if (flags & EXT4_IMMUTABLE_FL)
3948 inode->i_flags |= S_IMMUTABLE;
3949 if (flags & EXT4_NOATIME_FL)
3950 inode->i_flags |= S_NOATIME;
3951 if (flags & EXT4_DIRSYNC_FL)
3952 inode->i_flags |= S_DIRSYNC;
3955 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3956 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3958 unsigned int vfs_fl;
3959 unsigned long old_fl, new_fl;
3962 vfs_fl = ei->vfs_inode.i_flags;
3963 old_fl = ei->i_flags;
3964 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3965 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3967 if (vfs_fl & S_SYNC)
3968 new_fl |= EXT4_SYNC_FL;
3969 if (vfs_fl & S_APPEND)
3970 new_fl |= EXT4_APPEND_FL;
3971 if (vfs_fl & S_IMMUTABLE)
3972 new_fl |= EXT4_IMMUTABLE_FL;
3973 if (vfs_fl & S_NOATIME)
3974 new_fl |= EXT4_NOATIME_FL;
3975 if (vfs_fl & S_DIRSYNC)
3976 new_fl |= EXT4_DIRSYNC_FL;
3977 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3980 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3981 struct ext4_inode_info *ei)
3984 struct inode *inode = &(ei->vfs_inode);
3985 struct super_block *sb = inode->i_sb;
3987 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3988 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3989 /* we are using combined 48 bit field */
3990 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3991 le32_to_cpu(raw_inode->i_blocks_lo);
3992 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3993 /* i_blocks represent file system block size */
3994 return i_blocks << (inode->i_blkbits - 9);
3999 return le32_to_cpu(raw_inode->i_blocks_lo);
4003 static inline void ext4_iget_extra_inode(struct inode *inode,
4004 struct ext4_inode *raw_inode,
4005 struct ext4_inode_info *ei)
4007 __le32 *magic = (void *)raw_inode +
4008 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4009 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4010 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4011 ext4_find_inline_data_nolock(inode);
4013 EXT4_I(inode)->i_inline_off = 0;
4016 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4018 struct ext4_iloc iloc;
4019 struct ext4_inode *raw_inode;
4020 struct ext4_inode_info *ei;
4021 struct inode *inode;
4022 journal_t *journal = EXT4_SB(sb)->s_journal;
4028 inode = iget_locked(sb, ino);
4030 return ERR_PTR(-ENOMEM);
4031 if (!(inode->i_state & I_NEW))
4037 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4040 raw_inode = ext4_raw_inode(&iloc);
4042 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4043 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4044 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4045 EXT4_INODE_SIZE(inode->i_sb)) {
4046 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4047 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4048 EXT4_INODE_SIZE(inode->i_sb));
4053 ei->i_extra_isize = 0;
4055 /* Precompute checksum seed for inode metadata */
4056 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4057 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4060 __le32 inum = cpu_to_le32(inode->i_ino);
4061 __le32 gen = raw_inode->i_generation;
4062 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4064 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4068 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069 EXT4_ERROR_INODE(inode, "checksum invalid");
4074 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077 if (!(test_opt(inode->i_sb, NO_UID32))) {
4078 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4081 i_uid_write(inode, i_uid);
4082 i_gid_write(inode, i_gid);
4083 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4085 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4086 ei->i_inline_off = 0;
4087 ei->i_dir_start_lookup = 0;
4088 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089 /* We now have enough fields to check if the inode was active or not.
4090 * This is needed because nfsd might try to access dead inodes
4091 * the test is that same one that e2fsck uses
4092 * NeilBrown 1999oct15
4094 if (inode->i_nlink == 0) {
4095 if ((inode->i_mode == 0 ||
4096 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097 ino != EXT4_BOOT_LOADER_INO) {
4098 /* this inode is deleted */
4102 /* The only unlinked inodes we let through here have
4103 * valid i_mode and are being read by the orphan
4104 * recovery code: that's fine, we're about to complete
4105 * the process of deleting those.
4106 * OR it is the EXT4_BOOT_LOADER_INO which is
4107 * not initialized on a new filesystem. */
4109 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4114 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115 inode->i_size = ext4_isize(raw_inode);
4116 ei->i_disksize = inode->i_size;
4118 ei->i_reserved_quota = 0;
4120 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121 ei->i_block_group = iloc.block_group;
4122 ei->i_last_alloc_group = ~0;
4124 * NOTE! The in-memory inode i_data array is in little-endian order
4125 * even on big-endian machines: we do NOT byteswap the block numbers!
4127 for (block = 0; block < EXT4_N_BLOCKS; block++)
4128 ei->i_data[block] = raw_inode->i_block[block];
4129 INIT_LIST_HEAD(&ei->i_orphan);
4132 * Set transaction id's of transactions that have to be committed
4133 * to finish f[data]sync. We set them to currently running transaction
4134 * as we cannot be sure that the inode or some of its metadata isn't
4135 * part of the transaction - the inode could have been reclaimed and
4136 * now it is reread from disk.
4139 transaction_t *transaction;
4142 read_lock(&journal->j_state_lock);
4143 if (journal->j_running_transaction)
4144 transaction = journal->j_running_transaction;
4146 transaction = journal->j_committing_transaction;
4148 tid = transaction->t_tid;
4150 tid = journal->j_commit_sequence;
4151 read_unlock(&journal->j_state_lock);
4152 ei->i_sync_tid = tid;
4153 ei->i_datasync_tid = tid;
4156 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157 if (ei->i_extra_isize == 0) {
4158 /* The extra space is currently unused. Use it. */
4159 ei->i_extra_isize = sizeof(struct ext4_inode) -
4160 EXT4_GOOD_OLD_INODE_SIZE;
4162 ext4_iget_extra_inode(inode, raw_inode, ei);
4166 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4171 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4172 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4173 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4175 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4179 if (ei->i_file_acl &&
4180 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4181 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4185 } else if (!ext4_has_inline_data(inode)) {
4186 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4187 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4188 (S_ISLNK(inode->i_mode) &&
4189 !ext4_inode_is_fast_symlink(inode))))
4190 /* Validate extent which is part of inode */
4191 ret = ext4_ext_check_inode(inode);
4192 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4193 (S_ISLNK(inode->i_mode) &&
4194 !ext4_inode_is_fast_symlink(inode))) {
4195 /* Validate block references which are part of inode */
4196 ret = ext4_ind_check_inode(inode);
4202 if (S_ISREG(inode->i_mode)) {
4203 inode->i_op = &ext4_file_inode_operations;
4204 inode->i_fop = &ext4_file_operations;
4205 ext4_set_aops(inode);
4206 } else if (S_ISDIR(inode->i_mode)) {
4207 inode->i_op = &ext4_dir_inode_operations;
4208 inode->i_fop = &ext4_dir_operations;
4209 } else if (S_ISLNK(inode->i_mode)) {
4210 if (ext4_inode_is_fast_symlink(inode)) {
4211 inode->i_op = &ext4_fast_symlink_inode_operations;
4212 nd_terminate_link(ei->i_data, inode->i_size,
4213 sizeof(ei->i_data) - 1);
4215 inode->i_op = &ext4_symlink_inode_operations;
4216 ext4_set_aops(inode);
4218 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4219 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4220 inode->i_op = &ext4_special_inode_operations;
4221 if (raw_inode->i_block[0])
4222 init_special_inode(inode, inode->i_mode,
4223 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4225 init_special_inode(inode, inode->i_mode,
4226 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4227 } else if (ino == EXT4_BOOT_LOADER_INO) {
4228 make_bad_inode(inode);
4231 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4235 ext4_set_inode_flags(inode);
4236 unlock_new_inode(inode);
4242 return ERR_PTR(ret);
4245 static int ext4_inode_blocks_set(handle_t *handle,
4246 struct ext4_inode *raw_inode,
4247 struct ext4_inode_info *ei)
4249 struct inode *inode = &(ei->vfs_inode);
4250 u64 i_blocks = inode->i_blocks;
4251 struct super_block *sb = inode->i_sb;
4253 if (i_blocks <= ~0U) {
4255 * i_blocks can be represented in a 32 bit variable
4256 * as multiple of 512 bytes
4258 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4259 raw_inode->i_blocks_high = 0;
4260 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4263 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4266 if (i_blocks <= 0xffffffffffffULL) {
4268 * i_blocks can be represented in a 48 bit variable
4269 * as multiple of 512 bytes
4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4272 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4273 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4275 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276 /* i_block is stored in file system block size */
4277 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4278 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4279 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4285 * Post the struct inode info into an on-disk inode location in the
4286 * buffer-cache. This gobbles the caller's reference to the
4287 * buffer_head in the inode location struct.
4289 * The caller must have write access to iloc->bh.
4291 static int ext4_do_update_inode(handle_t *handle,
4292 struct inode *inode,
4293 struct ext4_iloc *iloc)
4295 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4296 struct ext4_inode_info *ei = EXT4_I(inode);
4297 struct buffer_head *bh = iloc->bh;
4298 int err = 0, rc, block;
4299 int need_datasync = 0;
4303 /* For fields not not tracking in the in-memory inode,
4304 * initialise them to zero for new inodes. */
4305 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4306 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4308 ext4_get_inode_flags(ei);
4309 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4310 i_uid = i_uid_read(inode);
4311 i_gid = i_gid_read(inode);
4312 if (!(test_opt(inode->i_sb, NO_UID32))) {
4313 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4314 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4316 * Fix up interoperability with old kernels. Otherwise, old inodes get
4317 * re-used with the upper 16 bits of the uid/gid intact
4320 raw_inode->i_uid_high =
4321 cpu_to_le16(high_16_bits(i_uid));
4322 raw_inode->i_gid_high =
4323 cpu_to_le16(high_16_bits(i_gid));
4325 raw_inode->i_uid_high = 0;
4326 raw_inode->i_gid_high = 0;
4329 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4330 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4331 raw_inode->i_uid_high = 0;
4332 raw_inode->i_gid_high = 0;
4334 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4336 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4337 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4338 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4339 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4341 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4343 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4344 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4345 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4346 cpu_to_le32(EXT4_OS_HURD))
4347 raw_inode->i_file_acl_high =
4348 cpu_to_le16(ei->i_file_acl >> 32);
4349 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4350 if (ei->i_disksize != ext4_isize(raw_inode)) {
4351 ext4_isize_set(raw_inode, ei->i_disksize);
4354 if (ei->i_disksize > 0x7fffffffULL) {
4355 struct super_block *sb = inode->i_sb;
4356 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4357 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4358 EXT4_SB(sb)->s_es->s_rev_level ==
4359 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4360 /* If this is the first large file
4361 * created, add a flag to the superblock.
4363 err = ext4_journal_get_write_access(handle,
4364 EXT4_SB(sb)->s_sbh);
4367 ext4_update_dynamic_rev(sb);
4368 EXT4_SET_RO_COMPAT_FEATURE(sb,
4369 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4370 ext4_handle_sync(handle);
4371 err = ext4_handle_dirty_super(handle, sb);
4374 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4375 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4376 if (old_valid_dev(inode->i_rdev)) {
4377 raw_inode->i_block[0] =
4378 cpu_to_le32(old_encode_dev(inode->i_rdev));
4379 raw_inode->i_block[1] = 0;
4381 raw_inode->i_block[0] = 0;
4382 raw_inode->i_block[1] =
4383 cpu_to_le32(new_encode_dev(inode->i_rdev));
4384 raw_inode->i_block[2] = 0;
4386 } else if (!ext4_has_inline_data(inode)) {
4387 for (block = 0; block < EXT4_N_BLOCKS; block++)
4388 raw_inode->i_block[block] = ei->i_data[block];
4391 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4392 if (ei->i_extra_isize) {
4393 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4394 raw_inode->i_version_hi =
4395 cpu_to_le32(inode->i_version >> 32);
4396 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4399 ext4_inode_csum_set(inode, raw_inode, ei);
4401 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4402 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4405 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4407 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4410 ext4_std_error(inode->i_sb, err);
4415 * ext4_write_inode()
4417 * We are called from a few places:
4419 * - Within generic_file_write() for O_SYNC files.
4420 * Here, there will be no transaction running. We wait for any running
4421 * transaction to commit.
4423 * - Within sys_sync(), kupdate and such.
4424 * We wait on commit, if tol to.
4426 * - Within prune_icache() (PF_MEMALLOC == true)
4427 * Here we simply return. We can't afford to block kswapd on the
4430 * In all cases it is actually safe for us to return without doing anything,
4431 * because the inode has been copied into a raw inode buffer in
4432 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4435 * Note that we are absolutely dependent upon all inode dirtiers doing the
4436 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4437 * which we are interested.
4439 * It would be a bug for them to not do this. The code:
4441 * mark_inode_dirty(inode)
4443 * inode->i_size = expr;
4445 * is in error because a kswapd-driven write_inode() could occur while
4446 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4447 * will no longer be on the superblock's dirty inode list.
4449 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4453 if (current->flags & PF_MEMALLOC)
4456 if (EXT4_SB(inode->i_sb)->s_journal) {
4457 if (ext4_journal_current_handle()) {
4458 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4464 * No need to force transaction in WB_SYNC_NONE mode. Also
4465 * ext4_sync_fs() will force the commit after everything is
4468 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4471 err = ext4_force_commit(inode->i_sb);
4473 struct ext4_iloc iloc;
4475 err = __ext4_get_inode_loc(inode, &iloc, 0);
4479 * sync(2) will flush the whole buffer cache. No need to do
4480 * it here separately for each inode.
4482 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4483 sync_dirty_buffer(iloc.bh);
4484 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4485 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4486 "IO error syncing inode");
4495 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4496 * buffers that are attached to a page stradding i_size and are undergoing
4497 * commit. In that case we have to wait for commit to finish and try again.
4499 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4503 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4504 tid_t commit_tid = 0;
4507 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4509 * All buffers in the last page remain valid? Then there's nothing to
4510 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4513 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4516 page = find_lock_page(inode->i_mapping,
4517 inode->i_size >> PAGE_CACHE_SHIFT);
4520 ret = __ext4_journalled_invalidatepage(page, offset,
4521 PAGE_CACHE_SIZE - offset);
4523 page_cache_release(page);
4527 read_lock(&journal->j_state_lock);
4528 if (journal->j_committing_transaction)
4529 commit_tid = journal->j_committing_transaction->t_tid;
4530 read_unlock(&journal->j_state_lock);
4532 jbd2_log_wait_commit(journal, commit_tid);
4539 * Called from notify_change.
4541 * We want to trap VFS attempts to truncate the file as soon as
4542 * possible. In particular, we want to make sure that when the VFS
4543 * shrinks i_size, we put the inode on the orphan list and modify
4544 * i_disksize immediately, so that during the subsequent flushing of
4545 * dirty pages and freeing of disk blocks, we can guarantee that any
4546 * commit will leave the blocks being flushed in an unused state on
4547 * disk. (On recovery, the inode will get truncated and the blocks will
4548 * be freed, so we have a strong guarantee that no future commit will
4549 * leave these blocks visible to the user.)
4551 * Another thing we have to assure is that if we are in ordered mode
4552 * and inode is still attached to the committing transaction, we must
4553 * we start writeout of all the dirty pages which are being truncated.
4554 * This way we are sure that all the data written in the previous
4555 * transaction are already on disk (truncate waits for pages under
4558 * Called with inode->i_mutex down.
4560 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4562 struct inode *inode = dentry->d_inode;
4565 const unsigned int ia_valid = attr->ia_valid;
4567 error = inode_change_ok(inode, attr);
4571 if (is_quota_modification(inode, attr))
4572 dquot_initialize(inode);
4573 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4574 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4577 /* (user+group)*(old+new) structure, inode write (sb,
4578 * inode block, ? - but truncate inode update has it) */
4579 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4580 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4581 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4582 if (IS_ERR(handle)) {
4583 error = PTR_ERR(handle);
4586 error = dquot_transfer(inode, attr);
4588 ext4_journal_stop(handle);
4591 /* Update corresponding info in inode so that everything is in
4592 * one transaction */
4593 if (attr->ia_valid & ATTR_UID)
4594 inode->i_uid = attr->ia_uid;
4595 if (attr->ia_valid & ATTR_GID)
4596 inode->i_gid = attr->ia_gid;
4597 error = ext4_mark_inode_dirty(handle, inode);
4598 ext4_journal_stop(handle);
4601 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4604 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4607 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4611 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4612 inode_inc_iversion(inode);
4614 if (S_ISREG(inode->i_mode) &&
4615 (attr->ia_size < inode->i_size)) {
4616 if (ext4_should_order_data(inode)) {
4617 error = ext4_begin_ordered_truncate(inode,
4622 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4623 if (IS_ERR(handle)) {
4624 error = PTR_ERR(handle);
4627 if (ext4_handle_valid(handle)) {
4628 error = ext4_orphan_add(handle, inode);
4631 down_write(&EXT4_I(inode)->i_data_sem);
4632 EXT4_I(inode)->i_disksize = attr->ia_size;
4633 rc = ext4_mark_inode_dirty(handle, inode);
4637 * We have to update i_size under i_data_sem together
4638 * with i_disksize to avoid races with writeback code
4639 * running ext4_wb_update_i_disksize().
4642 i_size_write(inode, attr->ia_size);
4643 up_write(&EXT4_I(inode)->i_data_sem);
4644 ext4_journal_stop(handle);
4646 ext4_orphan_del(NULL, inode);
4650 i_size_write(inode, attr->ia_size);
4653 * Blocks are going to be removed from the inode. Wait
4654 * for dio in flight. Temporarily disable
4655 * dioread_nolock to prevent livelock.
4658 if (!ext4_should_journal_data(inode)) {
4659 ext4_inode_block_unlocked_dio(inode);
4660 inode_dio_wait(inode);
4661 ext4_inode_resume_unlocked_dio(inode);
4663 ext4_wait_for_tail_page_commit(inode);
4666 * Truncate pagecache after we've waited for commit
4667 * in data=journal mode to make pages freeable.
4669 truncate_pagecache(inode, inode->i_size);
4672 * We want to call ext4_truncate() even if attr->ia_size ==
4673 * inode->i_size for cases like truncation of fallocated space
4675 if (attr->ia_valid & ATTR_SIZE)
4676 ext4_truncate(inode);
4679 setattr_copy(inode, attr);
4680 mark_inode_dirty(inode);
4684 * If the call to ext4_truncate failed to get a transaction handle at
4685 * all, we need to clean up the in-core orphan list manually.
4687 if (orphan && inode->i_nlink)
4688 ext4_orphan_del(NULL, inode);
4690 if (!rc && (ia_valid & ATTR_MODE))
4691 rc = posix_acl_chmod(inode, inode->i_mode);
4694 ext4_std_error(inode->i_sb, error);
4700 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4703 struct inode *inode;
4704 unsigned long long delalloc_blocks;
4706 inode = dentry->d_inode;
4707 generic_fillattr(inode, stat);
4710 * If there is inline data in the inode, the inode will normally not
4711 * have data blocks allocated (it may have an external xattr block).
4712 * Report at least one sector for such files, so tools like tar, rsync,
4713 * others doen't incorrectly think the file is completely sparse.
4715 if (unlikely(ext4_has_inline_data(inode)))
4716 stat->blocks += (stat->size + 511) >> 9;
4719 * We can't update i_blocks if the block allocation is delayed
4720 * otherwise in the case of system crash before the real block
4721 * allocation is done, we will have i_blocks inconsistent with
4722 * on-disk file blocks.
4723 * We always keep i_blocks updated together with real
4724 * allocation. But to not confuse with user, stat
4725 * will return the blocks that include the delayed allocation
4726 * blocks for this file.
4728 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4729 EXT4_I(inode)->i_reserved_data_blocks);
4730 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4734 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4737 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4738 return ext4_ind_trans_blocks(inode, lblocks);
4739 return ext4_ext_index_trans_blocks(inode, pextents);
4743 * Account for index blocks, block groups bitmaps and block group
4744 * descriptor blocks if modify datablocks and index blocks
4745 * worse case, the indexs blocks spread over different block groups
4747 * If datablocks are discontiguous, they are possible to spread over
4748 * different block groups too. If they are contiguous, with flexbg,
4749 * they could still across block group boundary.
4751 * Also account for superblock, inode, quota and xattr blocks
4753 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4756 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4762 * How many index blocks need to touch to map @lblocks logical blocks
4763 * to @pextents physical extents?
4765 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4770 * Now let's see how many group bitmaps and group descriptors need
4773 groups = idxblocks + pextents;
4775 if (groups > ngroups)
4777 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4778 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4780 /* bitmaps and block group descriptor blocks */
4781 ret += groups + gdpblocks;
4783 /* Blocks for super block, inode, quota and xattr blocks */
4784 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4790 * Calculate the total number of credits to reserve to fit
4791 * the modification of a single pages into a single transaction,
4792 * which may include multiple chunks of block allocations.
4794 * This could be called via ext4_write_begin()
4796 * We need to consider the worse case, when
4797 * one new block per extent.
4799 int ext4_writepage_trans_blocks(struct inode *inode)
4801 int bpp = ext4_journal_blocks_per_page(inode);
4804 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4806 /* Account for data blocks for journalled mode */
4807 if (ext4_should_journal_data(inode))
4813 * Calculate the journal credits for a chunk of data modification.
4815 * This is called from DIO, fallocate or whoever calling
4816 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4818 * journal buffers for data blocks are not included here, as DIO
4819 * and fallocate do no need to journal data buffers.
4821 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4823 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4827 * The caller must have previously called ext4_reserve_inode_write().
4828 * Give this, we know that the caller already has write access to iloc->bh.
4830 int ext4_mark_iloc_dirty(handle_t *handle,
4831 struct inode *inode, struct ext4_iloc *iloc)
4835 if (IS_I_VERSION(inode))
4836 inode_inc_iversion(inode);
4838 /* the do_update_inode consumes one bh->b_count */
4841 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4842 err = ext4_do_update_inode(handle, inode, iloc);
4848 * On success, We end up with an outstanding reference count against
4849 * iloc->bh. This _must_ be cleaned up later.
4853 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4854 struct ext4_iloc *iloc)
4858 err = ext4_get_inode_loc(inode, iloc);
4860 BUFFER_TRACE(iloc->bh, "get_write_access");
4861 err = ext4_journal_get_write_access(handle, iloc->bh);
4867 ext4_std_error(inode->i_sb, err);
4872 * Expand an inode by new_extra_isize bytes.
4873 * Returns 0 on success or negative error number on failure.
4875 static int ext4_expand_extra_isize(struct inode *inode,
4876 unsigned int new_extra_isize,
4877 struct ext4_iloc iloc,
4880 struct ext4_inode *raw_inode;
4881 struct ext4_xattr_ibody_header *header;
4883 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4886 raw_inode = ext4_raw_inode(&iloc);
4888 header = IHDR(inode, raw_inode);
4890 /* No extended attributes present */
4891 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4892 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4893 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4895 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4899 /* try to expand with EAs present */
4900 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4905 * What we do here is to mark the in-core inode as clean with respect to inode
4906 * dirtiness (it may still be data-dirty).
4907 * This means that the in-core inode may be reaped by prune_icache
4908 * without having to perform any I/O. This is a very good thing,
4909 * because *any* task may call prune_icache - even ones which
4910 * have a transaction open against a different journal.
4912 * Is this cheating? Not really. Sure, we haven't written the
4913 * inode out, but prune_icache isn't a user-visible syncing function.
4914 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4915 * we start and wait on commits.
4917 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4919 struct ext4_iloc iloc;
4920 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4921 static unsigned int mnt_count;
4925 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4926 err = ext4_reserve_inode_write(handle, inode, &iloc);
4927 if (ext4_handle_valid(handle) &&
4928 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4929 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4931 * We need extra buffer credits since we may write into EA block
4932 * with this same handle. If journal_extend fails, then it will
4933 * only result in a minor loss of functionality for that inode.
4934 * If this is felt to be critical, then e2fsck should be run to
4935 * force a large enough s_min_extra_isize.
4937 if ((jbd2_journal_extend(handle,
4938 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4939 ret = ext4_expand_extra_isize(inode,
4940 sbi->s_want_extra_isize,
4943 ext4_set_inode_state(inode,
4944 EXT4_STATE_NO_EXPAND);
4946 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4947 ext4_warning(inode->i_sb,
4948 "Unable to expand inode %lu. Delete"
4949 " some EAs or run e2fsck.",
4952 le16_to_cpu(sbi->s_es->s_mnt_count);
4958 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4963 * ext4_dirty_inode() is called from __mark_inode_dirty()
4965 * We're really interested in the case where a file is being extended.
4966 * i_size has been changed by generic_commit_write() and we thus need
4967 * to include the updated inode in the current transaction.
4969 * Also, dquot_alloc_block() will always dirty the inode when blocks
4970 * are allocated to the file.
4972 * If the inode is marked synchronous, we don't honour that here - doing
4973 * so would cause a commit on atime updates, which we don't bother doing.
4974 * We handle synchronous inodes at the highest possible level.
4976 void ext4_dirty_inode(struct inode *inode, int flags)
4980 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4984 ext4_mark_inode_dirty(handle, inode);
4986 ext4_journal_stop(handle);
4993 * Bind an inode's backing buffer_head into this transaction, to prevent
4994 * it from being flushed to disk early. Unlike
4995 * ext4_reserve_inode_write, this leaves behind no bh reference and
4996 * returns no iloc structure, so the caller needs to repeat the iloc
4997 * lookup to mark the inode dirty later.
4999 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5001 struct ext4_iloc iloc;
5005 err = ext4_get_inode_loc(inode, &iloc);
5007 BUFFER_TRACE(iloc.bh, "get_write_access");
5008 err = jbd2_journal_get_write_access(handle, iloc.bh);
5010 err = ext4_handle_dirty_metadata(handle,
5016 ext4_std_error(inode->i_sb, err);
5021 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5028 * We have to be very careful here: changing a data block's
5029 * journaling status dynamically is dangerous. If we write a
5030 * data block to the journal, change the status and then delete
5031 * that block, we risk forgetting to revoke the old log record
5032 * from the journal and so a subsequent replay can corrupt data.
5033 * So, first we make sure that the journal is empty and that
5034 * nobody is changing anything.
5037 journal = EXT4_JOURNAL(inode);
5040 if (is_journal_aborted(journal))
5042 /* We have to allocate physical blocks for delalloc blocks
5043 * before flushing journal. otherwise delalloc blocks can not
5044 * be allocated any more. even more truncate on delalloc blocks
5045 * could trigger BUG by flushing delalloc blocks in journal.
5046 * There is no delalloc block in non-journal data mode.
5048 if (val && test_opt(inode->i_sb, DELALLOC)) {
5049 err = ext4_alloc_da_blocks(inode);
5054 /* Wait for all existing dio workers */
5055 ext4_inode_block_unlocked_dio(inode);
5056 inode_dio_wait(inode);
5058 jbd2_journal_lock_updates(journal);
5061 * OK, there are no updates running now, and all cached data is
5062 * synced to disk. We are now in a completely consistent state
5063 * which doesn't have anything in the journal, and we know that
5064 * no filesystem updates are running, so it is safe to modify
5065 * the inode's in-core data-journaling state flag now.
5069 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5071 jbd2_journal_flush(journal);
5072 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5074 ext4_set_aops(inode);
5076 jbd2_journal_unlock_updates(journal);
5077 ext4_inode_resume_unlocked_dio(inode);
5079 /* Finally we can mark the inode as dirty. */
5081 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5083 return PTR_ERR(handle);
5085 err = ext4_mark_inode_dirty(handle, inode);
5086 ext4_handle_sync(handle);
5087 ext4_journal_stop(handle);
5088 ext4_std_error(inode->i_sb, err);
5093 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5095 return !buffer_mapped(bh);
5098 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5100 struct page *page = vmf->page;
5104 struct file *file = vma->vm_file;
5105 struct inode *inode = file_inode(file);
5106 struct address_space *mapping = inode->i_mapping;
5108 get_block_t *get_block;
5111 sb_start_pagefault(inode->i_sb);
5112 file_update_time(vma->vm_file);
5113 /* Delalloc case is easy... */
5114 if (test_opt(inode->i_sb, DELALLOC) &&
5115 !ext4_should_journal_data(inode) &&
5116 !ext4_nonda_switch(inode->i_sb)) {
5118 ret = __block_page_mkwrite(vma, vmf,
5119 ext4_da_get_block_prep);
5120 } while (ret == -ENOSPC &&
5121 ext4_should_retry_alloc(inode->i_sb, &retries));
5126 size = i_size_read(inode);
5127 /* Page got truncated from under us? */
5128 if (page->mapping != mapping || page_offset(page) > size) {
5130 ret = VM_FAULT_NOPAGE;
5134 if (page->index == size >> PAGE_CACHE_SHIFT)
5135 len = size & ~PAGE_CACHE_MASK;
5137 len = PAGE_CACHE_SIZE;
5139 * Return if we have all the buffers mapped. This avoids the need to do
5140 * journal_start/journal_stop which can block and take a long time
5142 if (page_has_buffers(page)) {
5143 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5145 ext4_bh_unmapped)) {
5146 /* Wait so that we don't change page under IO */
5147 wait_for_stable_page(page);
5148 ret = VM_FAULT_LOCKED;
5153 /* OK, we need to fill the hole... */
5154 if (ext4_should_dioread_nolock(inode))
5155 get_block = ext4_get_block_write;
5157 get_block = ext4_get_block;
5159 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5160 ext4_writepage_trans_blocks(inode));
5161 if (IS_ERR(handle)) {
5162 ret = VM_FAULT_SIGBUS;
5165 ret = __block_page_mkwrite(vma, vmf, get_block);
5166 if (!ret && ext4_should_journal_data(inode)) {
5167 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5168 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5170 ret = VM_FAULT_SIGBUS;
5171 ext4_journal_stop(handle);
5174 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5176 ext4_journal_stop(handle);
5177 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5180 ret = block_page_mkwrite_return(ret);
5182 sb_end_pagefault(inode->i_sb);