1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
13 #include <linux/kvm_host.h>
14 #include <linux/sched/stat.h>
16 #include <trace/events/kvm.h>
17 #include <xen/interface/xen.h>
18 #include <xen/interface/vcpu.h>
19 #include <xen/interface/event_channel.h>
23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
27 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
28 struct pvclock_wall_clock *wc;
29 gpa_t gpa = gfn_to_gpa(gfn);
34 int idx = srcu_read_lock(&kvm->srcu);
36 if (gfn == GPA_INVALID) {
37 kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
42 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, KVM_HOST_USES_PFN,
48 * This code mirrors kvm_write_wall_clock() except that it writes
49 * directly through the pfn cache and doesn't mark the page dirty.
51 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
53 /* It could be invalid again already, so we need to check */
54 read_lock_irq(&gpc->lock);
59 read_unlock_irq(&gpc->lock);
62 /* Paranoia checks on the 32-bit struct layout */
63 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
64 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
65 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
68 /* Paranoia checks on the 64-bit struct layout */
69 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
70 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
72 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
73 struct shared_info *shinfo = gpc->khva;
75 wc_sec_hi = &shinfo->wc_sec_hi;
80 struct compat_shared_info *shinfo = gpc->khva;
82 wc_sec_hi = &shinfo->arch.wc_sec_hi;
86 /* Increment and ensure an odd value */
87 wc_version = wc->version = (wc->version + 1) | 1;
90 wc->nsec = do_div(wall_nsec, 1000000000);
91 wc->sec = (u32)wall_nsec;
92 *wc_sec_hi = wall_nsec >> 32;
95 wc->version = wc_version + 1;
96 read_unlock_irq(&gpc->lock);
98 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
101 srcu_read_unlock(&kvm->srcu, idx);
105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
107 struct kvm_vcpu_xen *vx = &v->arch.xen;
108 u64 now = get_kvmclock_ns(v->kvm);
109 u64 delta_ns = now - vx->runstate_entry_time;
110 u64 run_delay = current->sched_info.run_delay;
112 if (unlikely(!vx->runstate_entry_time))
113 vx->current_runstate = RUNSTATE_offline;
116 * Time waiting for the scheduler isn't "stolen" if the
117 * vCPU wasn't running anyway.
119 if (vx->current_runstate == RUNSTATE_running) {
120 u64 steal_ns = run_delay - vx->last_steal;
122 delta_ns -= steal_ns;
124 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
126 vx->last_steal = run_delay;
128 vx->runstate_times[vx->current_runstate] += delta_ns;
129 vx->current_runstate = state;
130 vx->runstate_entry_time = now;
133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
135 struct kvm_vcpu_xen *vx = &v->arch.xen;
136 struct gfn_to_hva_cache *ghc = &vx->runstate_cache;
137 struct kvm_memslots *slots = kvm_memslots(v->kvm);
138 bool atomic = (state == RUNSTATE_runnable);
139 uint64_t state_entry_time;
140 int __user *user_state;
141 uint64_t __user *user_times;
143 kvm_xen_update_runstate(v, state);
145 if (!vx->runstate_set)
148 if (unlikely(slots->generation != ghc->generation || kvm_is_error_hva(ghc->hva)) &&
149 kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len))
152 /* We made sure it fits in a single page */
153 BUG_ON(!ghc->memslot);
159 * The only difference between 32-bit and 64-bit versions of the
160 * runstate struct us the alignment of uint64_t in 32-bit, which
161 * means that the 64-bit version has an additional 4 bytes of
162 * padding after the first field 'state'.
164 * So we use 'int __user *user_state' to point to the state field,
165 * and 'uint64_t __user *user_times' for runstate_entry_time. So
166 * the actual array of time[] in each state starts at user_times[1].
168 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
169 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
170 user_state = (int __user *)ghc->hva;
172 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
174 user_times = (uint64_t __user *)(ghc->hva +
175 offsetof(struct compat_vcpu_runstate_info,
178 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
179 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
180 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
181 offsetof(struct compat_vcpu_runstate_info, time) + 4);
183 if (v->kvm->arch.xen.long_mode)
184 user_times = (uint64_t __user *)(ghc->hva +
185 offsetof(struct vcpu_runstate_info,
189 * First write the updated state_entry_time at the appropriate
190 * location determined by 'offset'.
192 state_entry_time = vx->runstate_entry_time;
193 state_entry_time |= XEN_RUNSTATE_UPDATE;
195 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
196 sizeof(state_entry_time));
197 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
198 sizeof(state_entry_time));
200 if (__put_user(state_entry_time, user_times))
205 * Next, write the new runstate. This is in the *same* place
206 * for 32-bit and 64-bit guests, asserted here for paranoia.
208 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
209 offsetof(struct compat_vcpu_runstate_info, state));
210 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
211 sizeof(vx->current_runstate));
212 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
213 sizeof(vx->current_runstate));
215 if (__put_user(vx->current_runstate, user_state))
219 * Write the actual runstate times immediately after the
220 * runstate_entry_time.
222 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
223 offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
224 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
225 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
226 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
227 sizeof_field(struct compat_vcpu_runstate_info, time));
228 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
229 sizeof(vx->runstate_times));
231 if (__copy_to_user(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times)))
236 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
237 * runstate_entry_time field.
239 state_entry_time &= ~XEN_RUNSTATE_UPDATE;
240 __put_user(state_entry_time, user_times);
244 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
250 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
252 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
253 bool atomic = in_atomic() || !task_is_running(current);
258 * If the global upcall vector (HVMIRQ_callback_vector) is set and
259 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
261 struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
262 struct kvm_memslots *slots = kvm_memslots(v->kvm);
263 bool ghc_valid = slots->generation == ghc->generation &&
264 !kvm_is_error_hva(ghc->hva) && ghc->memslot;
266 unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
268 /* No need for compat handling here */
269 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
270 offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
271 BUILD_BUG_ON(sizeof(rc) !=
272 sizeof_field(struct vcpu_info, evtchn_upcall_pending));
273 BUILD_BUG_ON(sizeof(rc) !=
274 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
277 * For efficiency, this mirrors the checks for using the valid
278 * cache in kvm_read_guest_offset_cached(), but just uses
279 * __get_user() instead. And falls back to the slow path.
281 if (!evtchn_pending_sel && ghc_valid) {
284 err = __get_user(rc, (u8 __user *)ghc->hva + offset);
293 * This function gets called from kvm_vcpu_block() after setting the
294 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
295 * from a HLT. So we really mustn't sleep. If the page ended up absent
296 * at that point, just return 1 in order to trigger an immediate wake,
297 * and we'll end up getting called again from a context where we *can*
298 * fault in the page and wait for it.
304 err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
305 if (err || !ghc->memslot) {
307 * If this failed, userspace has screwed up the
308 * vcpu_info mapping. No interrupts for you.
315 * Now we have a valid (protected by srcu) userspace HVA in
316 * ghc->hva which points to the struct vcpu_info. If there
317 * are any bits in the in-kernel evtchn_pending_sel then
318 * we need to write those to the guest vcpu_info and set
319 * its evtchn_upcall_pending flag. If there aren't any bits
320 * to add, we only want to *check* evtchn_upcall_pending.
322 if (evtchn_pending_sel) {
323 bool long_mode = v->kvm->arch.xen.long_mode;
325 if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
328 if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
329 struct vcpu_info __user *vi = (void __user *)ghc->hva;
331 /* Attempt to set the evtchn_pending_sel bits in the
332 * guest, and if that succeeds then clear the same
333 * bits in the in-kernel version. */
334 asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
336 "\t" LOCK_PREFIX "andq %0, %2\n"
338 _ASM_EXTABLE_UA(1b, 2b)
339 : "=r" (evtchn_pending_sel),
340 "+m" (vi->evtchn_pending_sel),
341 "+m" (v->arch.xen.evtchn_pending_sel)
342 : "0" (evtchn_pending_sel));
344 struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
345 u32 evtchn_pending_sel32 = evtchn_pending_sel;
347 /* Attempt to set the evtchn_pending_sel bits in the
348 * guest, and if that succeeds then clear the same
349 * bits in the in-kernel version. */
350 asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
352 "\t" LOCK_PREFIX "andl %0, %2\n"
354 _ASM_EXTABLE_UA(1b, 2b)
355 : "=r" (evtchn_pending_sel32),
356 "+m" (vi->evtchn_pending_sel),
357 "+m" (v->arch.xen.evtchn_pending_sel)
358 : "0" (evtchn_pending_sel32));
361 unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
366 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
368 __get_user(rc, (u8 __user *)ghc->hva + offset);
374 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
378 mutex_lock(&kvm->lock);
380 switch (data->type) {
381 case KVM_XEN_ATTR_TYPE_LONG_MODE:
382 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
385 kvm->arch.xen.long_mode = !!data->u.long_mode;
390 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
391 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
394 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
395 if (data->u.vector && data->u.vector < 0x10)
398 kvm->arch.xen.upcall_vector = data->u.vector;
407 mutex_unlock(&kvm->lock);
411 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
415 mutex_lock(&kvm->lock);
417 switch (data->type) {
418 case KVM_XEN_ATTR_TYPE_LONG_MODE:
419 data->u.long_mode = kvm->arch.xen.long_mode;
423 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
424 if (kvm->arch.xen.shinfo_cache.active)
425 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
427 data->u.shared_info.gfn = GPA_INVALID;
431 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
432 data->u.vector = kvm->arch.xen.upcall_vector;
440 mutex_unlock(&kvm->lock);
444 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
446 int idx, r = -ENOENT;
448 mutex_lock(&vcpu->kvm->lock);
449 idx = srcu_read_lock(&vcpu->kvm->srcu);
451 switch (data->type) {
452 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
453 /* No compat necessary here. */
454 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
455 sizeof(struct compat_vcpu_info));
456 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
457 offsetof(struct compat_vcpu_info, time));
459 if (data->u.gpa == GPA_INVALID) {
460 vcpu->arch.xen.vcpu_info_set = false;
465 /* It must fit within a single page */
466 if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_info) > PAGE_SIZE) {
471 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
472 &vcpu->arch.xen.vcpu_info_cache,
474 sizeof(struct vcpu_info));
476 vcpu->arch.xen.vcpu_info_set = true;
477 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
481 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
482 if (data->u.gpa == GPA_INVALID) {
483 vcpu->arch.xen.vcpu_time_info_set = false;
488 /* It must fit within a single page */
489 if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct pvclock_vcpu_time_info) > PAGE_SIZE) {
494 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
495 &vcpu->arch.xen.vcpu_time_info_cache,
497 sizeof(struct pvclock_vcpu_time_info));
499 vcpu->arch.xen.vcpu_time_info_set = true;
500 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
504 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
505 if (!sched_info_on()) {
509 if (data->u.gpa == GPA_INVALID) {
510 vcpu->arch.xen.runstate_set = false;
515 /* It must fit within a single page */
516 if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_runstate_info) > PAGE_SIZE) {
521 r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
522 &vcpu->arch.xen.runstate_cache,
524 sizeof(struct vcpu_runstate_info));
526 vcpu->arch.xen.runstate_set = true;
530 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
531 if (!sched_info_on()) {
535 if (data->u.runstate.state > RUNSTATE_offline) {
540 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
544 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
545 if (!sched_info_on()) {
549 if (data->u.runstate.state > RUNSTATE_offline) {
553 if (data->u.runstate.state_entry_time !=
554 (data->u.runstate.time_running +
555 data->u.runstate.time_runnable +
556 data->u.runstate.time_blocked +
557 data->u.runstate.time_offline)) {
561 if (get_kvmclock_ns(vcpu->kvm) <
562 data->u.runstate.state_entry_time) {
567 vcpu->arch.xen.current_runstate = data->u.runstate.state;
568 vcpu->arch.xen.runstate_entry_time =
569 data->u.runstate.state_entry_time;
570 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
571 data->u.runstate.time_running;
572 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
573 data->u.runstate.time_runnable;
574 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
575 data->u.runstate.time_blocked;
576 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
577 data->u.runstate.time_offline;
578 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
582 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
583 if (!sched_info_on()) {
587 if (data->u.runstate.state > RUNSTATE_offline &&
588 data->u.runstate.state != (u64)-1) {
592 /* The adjustment must add up */
593 if (data->u.runstate.state_entry_time !=
594 (data->u.runstate.time_running +
595 data->u.runstate.time_runnable +
596 data->u.runstate.time_blocked +
597 data->u.runstate.time_offline)) {
602 if (get_kvmclock_ns(vcpu->kvm) <
603 (vcpu->arch.xen.runstate_entry_time +
604 data->u.runstate.state_entry_time)) {
609 vcpu->arch.xen.runstate_entry_time +=
610 data->u.runstate.state_entry_time;
611 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
612 data->u.runstate.time_running;
613 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
614 data->u.runstate.time_runnable;
615 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
616 data->u.runstate.time_blocked;
617 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
618 data->u.runstate.time_offline;
620 if (data->u.runstate.state <= RUNSTATE_offline)
621 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
629 srcu_read_unlock(&vcpu->kvm->srcu, idx);
630 mutex_unlock(&vcpu->kvm->lock);
634 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
638 mutex_lock(&vcpu->kvm->lock);
640 switch (data->type) {
641 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
642 if (vcpu->arch.xen.vcpu_info_set)
643 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
645 data->u.gpa = GPA_INVALID;
649 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
650 if (vcpu->arch.xen.vcpu_time_info_set)
651 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
653 data->u.gpa = GPA_INVALID;
657 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
658 if (!sched_info_on()) {
662 if (vcpu->arch.xen.runstate_set) {
663 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
668 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
669 if (!sched_info_on()) {
673 data->u.runstate.state = vcpu->arch.xen.current_runstate;
677 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
678 if (!sched_info_on()) {
682 data->u.runstate.state = vcpu->arch.xen.current_runstate;
683 data->u.runstate.state_entry_time =
684 vcpu->arch.xen.runstate_entry_time;
685 data->u.runstate.time_running =
686 vcpu->arch.xen.runstate_times[RUNSTATE_running];
687 data->u.runstate.time_runnable =
688 vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
689 data->u.runstate.time_blocked =
690 vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
691 data->u.runstate.time_offline =
692 vcpu->arch.xen.runstate_times[RUNSTATE_offline];
696 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
704 mutex_unlock(&vcpu->kvm->lock);
708 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
710 struct kvm *kvm = vcpu->kvm;
711 u32 page_num = data & ~PAGE_MASK;
712 u64 page_addr = data & PAGE_MASK;
713 bool lm = is_long_mode(vcpu);
715 /* Latch long_mode for shared_info pages etc. */
716 vcpu->kvm->arch.xen.long_mode = lm;
719 * If Xen hypercall intercept is enabled, fill the hypercall
720 * page with VMCALL/VMMCALL instructions since that's what
721 * we catch. Else the VMM has provided the hypercall pages
722 * with instructions of its own choosing, so use those.
724 if (kvm_xen_hypercall_enabled(kvm)) {
731 /* mov imm32, %eax */
732 instructions[0] = 0xb8;
734 /* vmcall / vmmcall */
735 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
738 instructions[8] = 0xc3;
741 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
743 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
744 *(u32 *)&instructions[1] = i;
745 if (kvm_vcpu_write_guest(vcpu,
746 page_addr + (i * sizeof(instructions)),
747 instructions, sizeof(instructions)))
752 * Note, truncation is a non-issue as 'lm' is guaranteed to be
753 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
755 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
756 : kvm->arch.xen_hvm_config.blob_addr_32;
757 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
758 : kvm->arch.xen_hvm_config.blob_size_32;
761 if (page_num >= blob_size)
764 blob_addr += page_num * PAGE_SIZE;
766 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
768 return PTR_ERR(page);
770 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
778 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
780 if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
784 * With hypercall interception the kernel generates its own
785 * hypercall page so it must not be provided.
787 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
788 (xhc->blob_addr_32 || xhc->blob_addr_64 ||
789 xhc->blob_size_32 || xhc->blob_size_64))
792 mutex_lock(&kvm->lock);
794 if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
795 static_branch_inc(&kvm_xen_enabled.key);
796 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
797 static_branch_slow_dec_deferred(&kvm_xen_enabled);
799 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
801 mutex_unlock(&kvm->lock);
805 void kvm_xen_init_vm(struct kvm *kvm)
809 void kvm_xen_destroy_vm(struct kvm *kvm)
811 kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
813 if (kvm->arch.xen_hvm_config.msr)
814 static_branch_slow_dec_deferred(&kvm_xen_enabled);
817 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
819 kvm_rax_write(vcpu, result);
820 return kvm_skip_emulated_instruction(vcpu);
823 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
825 struct kvm_run *run = vcpu->run;
827 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
830 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
833 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
836 u64 input, params[6];
838 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
840 /* Hyper-V hypercalls get bit 31 set in EAX */
841 if ((input & 0x80000000) &&
842 kvm_hv_hypercall_enabled(vcpu))
843 return kvm_hv_hypercall(vcpu);
845 longmode = is_64_bit_hypercall(vcpu);
847 params[0] = (u32)kvm_rbx_read(vcpu);
848 params[1] = (u32)kvm_rcx_read(vcpu);
849 params[2] = (u32)kvm_rdx_read(vcpu);
850 params[3] = (u32)kvm_rsi_read(vcpu);
851 params[4] = (u32)kvm_rdi_read(vcpu);
852 params[5] = (u32)kvm_rbp_read(vcpu);
856 params[0] = (u64)kvm_rdi_read(vcpu);
857 params[1] = (u64)kvm_rsi_read(vcpu);
858 params[2] = (u64)kvm_rdx_read(vcpu);
859 params[3] = (u64)kvm_r10_read(vcpu);
860 params[4] = (u64)kvm_r8_read(vcpu);
861 params[5] = (u64)kvm_r9_read(vcpu);
864 trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
865 params[3], params[4], params[5]);
867 vcpu->run->exit_reason = KVM_EXIT_XEN;
868 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
869 vcpu->run->xen.u.hcall.longmode = longmode;
870 vcpu->run->xen.u.hcall.cpl = static_call(kvm_x86_get_cpl)(vcpu);
871 vcpu->run->xen.u.hcall.input = input;
872 vcpu->run->xen.u.hcall.params[0] = params[0];
873 vcpu->run->xen.u.hcall.params[1] = params[1];
874 vcpu->run->xen.u.hcall.params[2] = params[2];
875 vcpu->run->xen.u.hcall.params[3] = params[3];
876 vcpu->run->xen.u.hcall.params[4] = params[4];
877 vcpu->run->xen.u.hcall.params[5] = params[5];
878 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
879 vcpu->arch.complete_userspace_io =
880 kvm_xen_hypercall_complete_userspace;
885 static inline int max_evtchn_port(struct kvm *kvm)
887 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
888 return EVTCHN_2L_NR_CHANNELS;
890 return COMPAT_EVTCHN_2L_NR_CHANNELS;
894 * This follows the kvm_set_irq() API, so it returns:
895 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
896 * = 0 Interrupt was coalesced (previous irq is still pending)
897 * > 0 Number of CPUs interrupt was delivered to
899 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
902 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
903 struct kvm_vcpu *vcpu;
904 unsigned long *pending_bits, *mask_bits;
907 bool kick_vcpu = false;
911 vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
915 if (!vcpu->arch.xen.vcpu_info_set)
918 if (e->xen_evtchn.port >= max_evtchn_port(kvm))
922 read_lock_irqsave(&gpc->lock, flags);
924 idx = srcu_read_lock(&kvm->srcu);
925 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
928 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
929 struct shared_info *shinfo = gpc->khva;
930 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
931 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
932 port_word_bit = e->xen_evtchn.port / 64;
934 struct compat_shared_info *shinfo = gpc->khva;
935 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
936 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
937 port_word_bit = e->xen_evtchn.port / 32;
941 * If this port wasn't already set, and if it isn't masked, then
942 * we try to set the corresponding bit in the in-kernel shadow of
943 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
944 * already set, then we kick the vCPU in question to write to the
945 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
947 if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
948 rc = 0; /* It was already raised */
949 } else if (test_bit(e->xen_evtchn.port, mask_bits)) {
950 rc = -1; /* Masked */
952 rc = 1; /* Delivered. But was the vCPU waking already? */
953 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
958 srcu_read_unlock(&kvm->srcu, idx);
959 read_unlock_irqrestore(&gpc->lock, flags);
962 kvm_make_request(KVM_REQ_EVENT, vcpu);
969 /* This is the version called from kvm_set_irq() as the .set function */
970 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
971 int irq_source_id, int level, bool line_status)
973 bool mm_borrowed = false;
979 rc = kvm_xen_set_evtchn_fast(e, kvm);
980 if (rc != -EWOULDBLOCK)
983 if (current->mm != kvm->mm) {
985 * If not on a thread which already belongs to this KVM,
986 * we'd better be in the irqfd workqueue.
988 if (WARN_ON_ONCE(current->mm))
991 kthread_use_mm(kvm->mm);
996 * For the irqfd workqueue, using the main kvm->lock mutex is
997 * fine since this function is invoked from kvm_set_irq() with
998 * no other lock held, no srcu. In future if it will be called
999 * directly from a vCPU thread (e.g. on hypercall for an IPI)
1000 * then it may need to switch to using a leaf-node mutex for
1001 * serializing the shared_info mapping.
1003 mutex_lock(&kvm->lock);
1006 * It is theoretically possible for the page to be unmapped
1007 * and the MMU notifier to invalidate the shared_info before
1008 * we even get to use it. In that case, this looks like an
1009 * infinite loop. It was tempting to do it via the userspace
1010 * HVA instead... but that just *hides* the fact that it's
1011 * an infinite loop, because if a fault occurs and it waits
1012 * for the page to come back, it can *still* immediately
1013 * fault and have to wait again, repeatedly.
1015 * Conversely, the page could also have been reinstated by
1016 * another thread before we even obtain the mutex above, so
1017 * check again *first* before remapping it.
1020 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1023 rc = kvm_xen_set_evtchn_fast(e, kvm);
1024 if (rc != -EWOULDBLOCK)
1027 idx = srcu_read_lock(&kvm->srcu);
1028 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, PAGE_SIZE);
1029 srcu_read_unlock(&kvm->srcu, idx);
1032 mutex_unlock(&kvm->lock);
1035 kthread_unuse_mm(kvm->mm);
1040 int kvm_xen_setup_evtchn(struct kvm *kvm,
1041 struct kvm_kernel_irq_routing_entry *e,
1042 const struct kvm_irq_routing_entry *ue)
1045 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1048 /* We only support 2 level event channels for now */
1049 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1052 e->xen_evtchn.port = ue->u.xen_evtchn.port;
1053 e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
1054 e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1055 e->set = evtchn_set_fn;