]> Git Repo - linux.git/blob - arch/x86/kvm/xen.c
Linux 6.14-rc3
[linux.git] / arch / x86 / kvm / xen.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "irq.h"
14
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
18
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
25
26 #include <asm/xen/cpuid.h>
27 #include <asm/pvclock.h>
28
29 #include "cpuid.h"
30 #include "trace.h"
31
32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
35
36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
37
38 static int kvm_xen_shared_info_init(struct kvm *kvm)
39 {
40         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
41         struct pvclock_wall_clock *wc;
42         u32 *wc_sec_hi;
43         u32 wc_version;
44         u64 wall_nsec;
45         int ret = 0;
46         int idx = srcu_read_lock(&kvm->srcu);
47
48         read_lock_irq(&gpc->lock);
49         while (!kvm_gpc_check(gpc, PAGE_SIZE)) {
50                 read_unlock_irq(&gpc->lock);
51
52                 ret = kvm_gpc_refresh(gpc, PAGE_SIZE);
53                 if (ret)
54                         goto out;
55
56                 read_lock_irq(&gpc->lock);
57         }
58
59         /*
60          * This code mirrors kvm_write_wall_clock() except that it writes
61          * directly through the pfn cache and doesn't mark the page dirty.
62          */
63         wall_nsec = kvm_get_wall_clock_epoch(kvm);
64
65         /* Paranoia checks on the 32-bit struct layout */
66         BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
67         BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
68         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
69
70 #ifdef CONFIG_X86_64
71         /* Paranoia checks on the 64-bit struct layout */
72         BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
73         BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
74
75         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
76                 struct shared_info *shinfo = gpc->khva;
77
78                 wc_sec_hi = &shinfo->wc_sec_hi;
79                 wc = &shinfo->wc;
80         } else
81 #endif
82         {
83                 struct compat_shared_info *shinfo = gpc->khva;
84
85                 wc_sec_hi = &shinfo->arch.wc_sec_hi;
86                 wc = &shinfo->wc;
87         }
88
89         /* Increment and ensure an odd value */
90         wc_version = wc->version = (wc->version + 1) | 1;
91         smp_wmb();
92
93         wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
94         wc->sec = (u32)wall_nsec;
95         *wc_sec_hi = wall_nsec >> 32;
96         smp_wmb();
97
98         wc->version = wc_version + 1;
99         read_unlock_irq(&gpc->lock);
100
101         kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
102
103 out:
104         srcu_read_unlock(&kvm->srcu, idx);
105         return ret;
106 }
107
108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
109 {
110         if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
111                 struct kvm_xen_evtchn e;
112
113                 e.vcpu_id = vcpu->vcpu_id;
114                 e.vcpu_idx = vcpu->vcpu_idx;
115                 e.port = vcpu->arch.xen.timer_virq;
116                 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
117
118                 kvm_xen_set_evtchn(&e, vcpu->kvm);
119
120                 vcpu->arch.xen.timer_expires = 0;
121                 atomic_set(&vcpu->arch.xen.timer_pending, 0);
122         }
123 }
124
125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
126 {
127         struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
128                                              arch.xen.timer);
129         struct kvm_xen_evtchn e;
130         int rc;
131
132         if (atomic_read(&vcpu->arch.xen.timer_pending))
133                 return HRTIMER_NORESTART;
134
135         e.vcpu_id = vcpu->vcpu_id;
136         e.vcpu_idx = vcpu->vcpu_idx;
137         e.port = vcpu->arch.xen.timer_virq;
138         e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
139
140         rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
141         if (rc != -EWOULDBLOCK) {
142                 vcpu->arch.xen.timer_expires = 0;
143                 return HRTIMER_NORESTART;
144         }
145
146         atomic_inc(&vcpu->arch.xen.timer_pending);
147         kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
148         kvm_vcpu_kick(vcpu);
149
150         return HRTIMER_NORESTART;
151 }
152
153 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs,
154                                 bool linux_wa)
155 {
156         int64_t kernel_now, delta;
157         uint64_t guest_now;
158
159         /*
160          * The guest provides the requested timeout in absolute nanoseconds
161          * of the KVM clock — as *it* sees it, based on the scaled TSC and
162          * the pvclock information provided by KVM.
163          *
164          * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW
165          * so use CLOCK_MONOTONIC. In the timescales covered by timers, the
166          * difference won't matter much as there is no cumulative effect.
167          *
168          * Calculate the time for some arbitrary point in time around "now"
169          * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the
170          * delta between the kvmclock "now" value and the guest's requested
171          * timeout, apply the "Linux workaround" described below, and add
172          * the resulting delta to the CLOCK_MONOTONIC "now" value, to get
173          * the absolute CLOCK_MONOTONIC time at which the timer should
174          * fire.
175          */
176         if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock &&
177             static_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
178                 uint64_t host_tsc, guest_tsc;
179
180                 if (!IS_ENABLED(CONFIG_64BIT) ||
181                     !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) {
182                         /*
183                          * Don't fall back to get_kvmclock_ns() because it's
184                          * broken; it has a systemic error in its results
185                          * because it scales directly from host TSC to
186                          * nanoseconds, and doesn't scale first to guest TSC
187                          * and *then* to nanoseconds as the guest does.
188                          *
189                          * There is a small error introduced here because time
190                          * continues to elapse between the ktime_get() and the
191                          * subsequent rdtsc(). But not the systemic drift due
192                          * to get_kvmclock_ns().
193                          */
194                         kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */
195                         host_tsc = rdtsc();
196                 }
197
198                 /* Calculate the guest kvmclock as the guest would do it. */
199                 guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc);
200                 guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock,
201                                                   guest_tsc);
202         } else {
203                 /*
204                  * Without CONSTANT_TSC, get_kvmclock_ns() is the only option.
205                  *
206                  * Also if the guest PV clock hasn't been set up yet, as is
207                  * likely to be the case during migration when the vCPU has
208                  * not been run yet. It would be possible to calculate the
209                  * scaling factors properly in that case but there's not much
210                  * point in doing so. The get_kvmclock_ns() drift accumulates
211                  * over time, so it's OK to use it at startup. Besides, on
212                  * migration there's going to be a little bit of skew in the
213                  * precise moment at which timers fire anyway. Often they'll
214                  * be in the "past" by the time the VM is running again after
215                  * migration.
216                  */
217                 guest_now = get_kvmclock_ns(vcpu->kvm);
218                 kernel_now = ktime_get();
219         }
220
221         delta = guest_abs - guest_now;
222
223         /*
224          * Xen has a 'Linux workaround' in do_set_timer_op() which checks for
225          * negative absolute timeout values (caused by integer overflow), and
226          * for values about 13 days in the future (2^50ns) which would be
227          * caused by jiffies overflow. For those cases, Xen sets the timeout
228          * 100ms in the future (not *too* soon, since if a guest really did
229          * set a long timeout on purpose we don't want to keep churning CPU
230          * time by waking it up).  Emulate Xen's workaround when starting the
231          * timer in response to __HYPERVISOR_set_timer_op.
232          */
233         if (linux_wa &&
234             unlikely((int64_t)guest_abs < 0 ||
235                      (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
236                 delta = 100 * NSEC_PER_MSEC;
237                 guest_abs = guest_now + delta;
238         }
239
240         /*
241          * Avoid races with the old timer firing. Checking timer_expires
242          * to avoid calling hrtimer_cancel() will only have false positives
243          * so is fine.
244          */
245         if (vcpu->arch.xen.timer_expires)
246                 hrtimer_cancel(&vcpu->arch.xen.timer);
247
248         atomic_set(&vcpu->arch.xen.timer_pending, 0);
249         vcpu->arch.xen.timer_expires = guest_abs;
250
251         if (delta <= 0)
252                 xen_timer_callback(&vcpu->arch.xen.timer);
253         else
254                 hrtimer_start(&vcpu->arch.xen.timer,
255                               ktime_add_ns(kernel_now, delta),
256                               HRTIMER_MODE_ABS_HARD);
257 }
258
259 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
260 {
261         hrtimer_cancel(&vcpu->arch.xen.timer);
262         vcpu->arch.xen.timer_expires = 0;
263         atomic_set(&vcpu->arch.xen.timer_pending, 0);
264 }
265
266 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
267 {
268         struct kvm_vcpu_xen *vx = &v->arch.xen;
269         struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
270         struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
271         size_t user_len, user_len1, user_len2;
272         struct vcpu_runstate_info rs;
273         unsigned long flags;
274         size_t times_ofs;
275         uint8_t *update_bit = NULL;
276         uint64_t entry_time;
277         uint64_t *rs_times;
278         int *rs_state;
279
280         /*
281          * The only difference between 32-bit and 64-bit versions of the
282          * runstate struct is the alignment of uint64_t in 32-bit, which
283          * means that the 64-bit version has an additional 4 bytes of
284          * padding after the first field 'state'. Let's be really really
285          * paranoid about that, and matching it with our internal data
286          * structures that we memcpy into it...
287          */
288         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
289         BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
290         BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
291 #ifdef CONFIG_X86_64
292         /*
293          * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
294          * so each subsequent field is shifted by 4, and it's 4 bytes longer.
295          */
296         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
297                      offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
298         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
299                      offsetof(struct compat_vcpu_runstate_info, time) + 4);
300         BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
301 #endif
302         /*
303          * The state field is in the same place at the start of both structs,
304          * and is the same size (int) as vx->current_runstate.
305          */
306         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
307                      offsetof(struct compat_vcpu_runstate_info, state));
308         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
309                      sizeof(vx->current_runstate));
310         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
311                      sizeof(vx->current_runstate));
312
313         /*
314          * The state_entry_time field is 64 bits in both versions, and the
315          * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
316          * is little-endian means that it's in the last *byte* of the word.
317          * That detail is important later.
318          */
319         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
320                      sizeof(uint64_t));
321         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
322                      sizeof(uint64_t));
323         BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
324
325         /*
326          * The time array is four 64-bit quantities in both versions, matching
327          * the vx->runstate_times and immediately following state_entry_time.
328          */
329         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
330                      offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
331         BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
332                      offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
333         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
334                      sizeof_field(struct compat_vcpu_runstate_info, time));
335         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
336                      sizeof(vx->runstate_times));
337
338         if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
339                 user_len = sizeof(struct vcpu_runstate_info);
340                 times_ofs = offsetof(struct vcpu_runstate_info,
341                                      state_entry_time);
342         } else {
343                 user_len = sizeof(struct compat_vcpu_runstate_info);
344                 times_ofs = offsetof(struct compat_vcpu_runstate_info,
345                                      state_entry_time);
346         }
347
348         /*
349          * There are basically no alignment constraints. The guest can set it
350          * up so it crosses from one page to the next, and at arbitrary byte
351          * alignment (and the 32-bit ABI doesn't align the 64-bit integers
352          * anyway, even if the overall struct had been 64-bit aligned).
353          */
354         if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
355                 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
356                 user_len2 = user_len - user_len1;
357         } else {
358                 user_len1 = user_len;
359                 user_len2 = 0;
360         }
361         BUG_ON(user_len1 + user_len2 != user_len);
362
363  retry:
364         /*
365          * Attempt to obtain the GPC lock on *both* (if there are two)
366          * gfn_to_pfn caches that cover the region.
367          */
368         if (atomic) {
369                 local_irq_save(flags);
370                 if (!read_trylock(&gpc1->lock)) {
371                         local_irq_restore(flags);
372                         return;
373                 }
374         } else {
375                 read_lock_irqsave(&gpc1->lock, flags);
376         }
377         while (!kvm_gpc_check(gpc1, user_len1)) {
378                 read_unlock_irqrestore(&gpc1->lock, flags);
379
380                 /* When invoked from kvm_sched_out() we cannot sleep */
381                 if (atomic)
382                         return;
383
384                 if (kvm_gpc_refresh(gpc1, user_len1))
385                         return;
386
387                 read_lock_irqsave(&gpc1->lock, flags);
388         }
389
390         if (likely(!user_len2)) {
391                 /*
392                  * Set up three pointers directly to the runstate_info
393                  * struct in the guest (via the GPC).
394                  *
395                  *  • @rs_state   → state field
396                  *  • @rs_times   → state_entry_time field.
397                  *  • @update_bit → last byte of state_entry_time, which
398                  *                  contains the XEN_RUNSTATE_UPDATE bit.
399                  */
400                 rs_state = gpc1->khva;
401                 rs_times = gpc1->khva + times_ofs;
402                 if (v->kvm->arch.xen.runstate_update_flag)
403                         update_bit = ((void *)(&rs_times[1])) - 1;
404         } else {
405                 /*
406                  * The guest's runstate_info is split across two pages and we
407                  * need to hold and validate both GPCs simultaneously. We can
408                  * declare a lock ordering GPC1 > GPC2 because nothing else
409                  * takes them more than one at a time. Set a subclass on the
410                  * gpc1 lock to make lockdep shut up about it.
411                  */
412                 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
413                 if (atomic) {
414                         if (!read_trylock(&gpc2->lock)) {
415                                 read_unlock_irqrestore(&gpc1->lock, flags);
416                                 return;
417                         }
418                 } else {
419                         read_lock(&gpc2->lock);
420                 }
421
422                 if (!kvm_gpc_check(gpc2, user_len2)) {
423                         read_unlock(&gpc2->lock);
424                         read_unlock_irqrestore(&gpc1->lock, flags);
425
426                         /* When invoked from kvm_sched_out() we cannot sleep */
427                         if (atomic)
428                                 return;
429
430                         /*
431                          * Use kvm_gpc_activate() here because if the runstate
432                          * area was configured in 32-bit mode and only extends
433                          * to the second page now because the guest changed to
434                          * 64-bit mode, the second GPC won't have been set up.
435                          */
436                         if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
437                                              user_len2))
438                                 return;
439
440                         /*
441                          * We dropped the lock on GPC1 so we have to go all the
442                          * way back and revalidate that too.
443                          */
444                         goto retry;
445                 }
446
447                 /*
448                  * In this case, the runstate_info struct will be assembled on
449                  * the kernel stack (compat or not as appropriate) and will
450                  * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
451                  * rs pointers accordingly.
452                  */
453                 rs_times = &rs.state_entry_time;
454
455                 /*
456                  * The rs_state pointer points to the start of what we'll
457                  * copy to the guest, which in the case of a compat guest
458                  * is the 32-bit field that the compiler thinks is padding.
459                  */
460                 rs_state = ((void *)rs_times) - times_ofs;
461
462                 /*
463                  * The update_bit is still directly in the guest memory,
464                  * via one GPC or the other.
465                  */
466                 if (v->kvm->arch.xen.runstate_update_flag) {
467                         if (user_len1 >= times_ofs + sizeof(uint64_t))
468                                 update_bit = gpc1->khva + times_ofs +
469                                         sizeof(uint64_t) - 1;
470                         else
471                                 update_bit = gpc2->khva + times_ofs +
472                                         sizeof(uint64_t) - 1 - user_len1;
473                 }
474
475 #ifdef CONFIG_X86_64
476                 /*
477                  * Don't leak kernel memory through the padding in the 64-bit
478                  * version of the struct.
479                  */
480                 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
481 #endif
482         }
483
484         /*
485          * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
486          * state_entry_time field, directly in the guest. We need to set
487          * that (and write-barrier) before writing to the rest of the
488          * structure, and clear it last. Just as Xen does, we address the
489          * single *byte* in which it resides because it might be in a
490          * different cache line to the rest of the 64-bit word, due to
491          * the (lack of) alignment constraints.
492          */
493         entry_time = vx->runstate_entry_time;
494         if (update_bit) {
495                 entry_time |= XEN_RUNSTATE_UPDATE;
496                 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
497                 smp_wmb();
498         }
499
500         /*
501          * Now assemble the actual structure, either on our kernel stack
502          * or directly in the guest according to how the rs_state and
503          * rs_times pointers were set up above.
504          */
505         *rs_state = vx->current_runstate;
506         rs_times[0] = entry_time;
507         memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
508
509         /* For the split case, we have to then copy it to the guest. */
510         if (user_len2) {
511                 memcpy(gpc1->khva, rs_state, user_len1);
512                 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
513         }
514         smp_wmb();
515
516         /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
517         if (update_bit) {
518                 entry_time &= ~XEN_RUNSTATE_UPDATE;
519                 *update_bit = entry_time >> 56;
520                 smp_wmb();
521         }
522
523         if (user_len2) {
524                 kvm_gpc_mark_dirty_in_slot(gpc2);
525                 read_unlock(&gpc2->lock);
526         }
527
528         kvm_gpc_mark_dirty_in_slot(gpc1);
529         read_unlock_irqrestore(&gpc1->lock, flags);
530 }
531
532 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
533 {
534         struct kvm_vcpu_xen *vx = &v->arch.xen;
535         u64 now = get_kvmclock_ns(v->kvm);
536         u64 delta_ns = now - vx->runstate_entry_time;
537         u64 run_delay = current->sched_info.run_delay;
538
539         if (unlikely(!vx->runstate_entry_time))
540                 vx->current_runstate = RUNSTATE_offline;
541
542         /*
543          * Time waiting for the scheduler isn't "stolen" if the
544          * vCPU wasn't running anyway.
545          */
546         if (vx->current_runstate == RUNSTATE_running) {
547                 u64 steal_ns = run_delay - vx->last_steal;
548
549                 delta_ns -= steal_ns;
550
551                 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
552         }
553         vx->last_steal = run_delay;
554
555         vx->runstate_times[vx->current_runstate] += delta_ns;
556         vx->current_runstate = state;
557         vx->runstate_entry_time = now;
558
559         if (vx->runstate_cache.active)
560                 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
561 }
562
563 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
564 {
565         struct kvm_lapic_irq irq = { };
566
567         irq.dest_id = v->vcpu_id;
568         irq.vector = v->arch.xen.upcall_vector;
569         irq.dest_mode = APIC_DEST_PHYSICAL;
570         irq.shorthand = APIC_DEST_NOSHORT;
571         irq.delivery_mode = APIC_DM_FIXED;
572         irq.level = 1;
573
574         kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL);
575 }
576
577 /*
578  * On event channel delivery, the vcpu_info may not have been accessible.
579  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
580  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
581  * Do so now that we can sleep in the context of the vCPU to bring the
582  * page in, and refresh the pfn cache for it.
583  */
584 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
585 {
586         unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
587         struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
588         unsigned long flags;
589
590         if (!evtchn_pending_sel)
591                 return;
592
593         /*
594          * Yes, this is an open-coded loop. But that's just what put_user()
595          * does anyway. Page it in and retry the instruction. We're just a
596          * little more honest about it.
597          */
598         read_lock_irqsave(&gpc->lock, flags);
599         while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
600                 read_unlock_irqrestore(&gpc->lock, flags);
601
602                 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
603                         return;
604
605                 read_lock_irqsave(&gpc->lock, flags);
606         }
607
608         /* Now gpc->khva is a valid kernel address for the vcpu_info */
609         if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
610                 struct vcpu_info *vi = gpc->khva;
611
612                 asm volatile(LOCK_PREFIX "orq %0, %1\n"
613                              "notq %0\n"
614                              LOCK_PREFIX "andq %0, %2\n"
615                              : "=r" (evtchn_pending_sel),
616                                "+m" (vi->evtchn_pending_sel),
617                                "+m" (v->arch.xen.evtchn_pending_sel)
618                              : "0" (evtchn_pending_sel));
619                 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
620         } else {
621                 u32 evtchn_pending_sel32 = evtchn_pending_sel;
622                 struct compat_vcpu_info *vi = gpc->khva;
623
624                 asm volatile(LOCK_PREFIX "orl %0, %1\n"
625                              "notl %0\n"
626                              LOCK_PREFIX "andl %0, %2\n"
627                              : "=r" (evtchn_pending_sel32),
628                                "+m" (vi->evtchn_pending_sel),
629                                "+m" (v->arch.xen.evtchn_pending_sel)
630                              : "0" (evtchn_pending_sel32));
631                 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
632         }
633
634         kvm_gpc_mark_dirty_in_slot(gpc);
635         read_unlock_irqrestore(&gpc->lock, flags);
636
637         /* For the per-vCPU lapic vector, deliver it as MSI. */
638         if (v->arch.xen.upcall_vector)
639                 kvm_xen_inject_vcpu_vector(v);
640 }
641
642 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
643 {
644         struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
645         unsigned long flags;
646         u8 rc = 0;
647
648         /*
649          * If the global upcall vector (HVMIRQ_callback_vector) is set and
650          * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
651          */
652
653         /* No need for compat handling here */
654         BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
655                      offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
656         BUILD_BUG_ON(sizeof(rc) !=
657                      sizeof_field(struct vcpu_info, evtchn_upcall_pending));
658         BUILD_BUG_ON(sizeof(rc) !=
659                      sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
660
661         read_lock_irqsave(&gpc->lock, flags);
662         while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
663                 read_unlock_irqrestore(&gpc->lock, flags);
664
665                 /*
666                  * This function gets called from kvm_vcpu_block() after setting the
667                  * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
668                  * from a HLT. So we really mustn't sleep. If the page ended up absent
669                  * at that point, just return 1 in order to trigger an immediate wake,
670                  * and we'll end up getting called again from a context where we *can*
671                  * fault in the page and wait for it.
672                  */
673                 if (in_atomic() || !task_is_running(current))
674                         return 1;
675
676                 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
677                         /*
678                          * If this failed, userspace has screwed up the
679                          * vcpu_info mapping. No interrupts for you.
680                          */
681                         return 0;
682                 }
683                 read_lock_irqsave(&gpc->lock, flags);
684         }
685
686         rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
687         read_unlock_irqrestore(&gpc->lock, flags);
688         return rc;
689 }
690
691 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
692 {
693         int r = -ENOENT;
694
695
696         switch (data->type) {
697         case KVM_XEN_ATTR_TYPE_LONG_MODE:
698                 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
699                         r = -EINVAL;
700                 } else {
701                         mutex_lock(&kvm->arch.xen.xen_lock);
702                         kvm->arch.xen.long_mode = !!data->u.long_mode;
703
704                         /*
705                          * Re-initialize shared_info to put the wallclock in the
706                          * correct place. Whilst it's not necessary to do this
707                          * unless the mode is actually changed, it does no harm
708                          * to make the call anyway.
709                          */
710                         r = kvm->arch.xen.shinfo_cache.active ?
711                                 kvm_xen_shared_info_init(kvm) : 0;
712                         mutex_unlock(&kvm->arch.xen.xen_lock);
713                 }
714                 break;
715
716         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
717         case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: {
718                 int idx;
719
720                 mutex_lock(&kvm->arch.xen.xen_lock);
721
722                 idx = srcu_read_lock(&kvm->srcu);
723
724                 if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) {
725                         gfn_t gfn = data->u.shared_info.gfn;
726
727                         if (gfn == KVM_XEN_INVALID_GFN) {
728                                 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
729                                 r = 0;
730                         } else {
731                                 r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache,
732                                                      gfn_to_gpa(gfn), PAGE_SIZE);
733                         }
734                 } else {
735                         void __user * hva = u64_to_user_ptr(data->u.shared_info.hva);
736
737                         if (!PAGE_ALIGNED(hva)) {
738                                 r = -EINVAL;
739                         } else if (!hva) {
740                                 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
741                                 r = 0;
742                         } else {
743                                 r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache,
744                                                          (unsigned long)hva, PAGE_SIZE);
745                         }
746                 }
747
748                 srcu_read_unlock(&kvm->srcu, idx);
749
750                 if (!r && kvm->arch.xen.shinfo_cache.active)
751                         r = kvm_xen_shared_info_init(kvm);
752
753                 mutex_unlock(&kvm->arch.xen.xen_lock);
754                 break;
755         }
756         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
757                 if (data->u.vector && data->u.vector < 0x10)
758                         r = -EINVAL;
759                 else {
760                         mutex_lock(&kvm->arch.xen.xen_lock);
761                         kvm->arch.xen.upcall_vector = data->u.vector;
762                         mutex_unlock(&kvm->arch.xen.xen_lock);
763                         r = 0;
764                 }
765                 break;
766
767         case KVM_XEN_ATTR_TYPE_EVTCHN:
768                 r = kvm_xen_setattr_evtchn(kvm, data);
769                 break;
770
771         case KVM_XEN_ATTR_TYPE_XEN_VERSION:
772                 mutex_lock(&kvm->arch.xen.xen_lock);
773                 kvm->arch.xen.xen_version = data->u.xen_version;
774                 mutex_unlock(&kvm->arch.xen.xen_lock);
775                 r = 0;
776                 break;
777
778         case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
779                 if (!sched_info_on()) {
780                         r = -EOPNOTSUPP;
781                         break;
782                 }
783                 mutex_lock(&kvm->arch.xen.xen_lock);
784                 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
785                 mutex_unlock(&kvm->arch.xen.xen_lock);
786                 r = 0;
787                 break;
788
789         default:
790                 break;
791         }
792
793         return r;
794 }
795
796 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
797 {
798         int r = -ENOENT;
799
800         mutex_lock(&kvm->arch.xen.xen_lock);
801
802         switch (data->type) {
803         case KVM_XEN_ATTR_TYPE_LONG_MODE:
804                 data->u.long_mode = kvm->arch.xen.long_mode;
805                 r = 0;
806                 break;
807
808         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
809                 if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache))
810                         data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
811                 else
812                         data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
813                 r = 0;
814                 break;
815
816         case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA:
817                 if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache))
818                         data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva;
819                 else
820                         data->u.shared_info.hva = 0;
821                 r = 0;
822                 break;
823
824         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
825                 data->u.vector = kvm->arch.xen.upcall_vector;
826                 r = 0;
827                 break;
828
829         case KVM_XEN_ATTR_TYPE_XEN_VERSION:
830                 data->u.xen_version = kvm->arch.xen.xen_version;
831                 r = 0;
832                 break;
833
834         case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
835                 if (!sched_info_on()) {
836                         r = -EOPNOTSUPP;
837                         break;
838                 }
839                 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
840                 r = 0;
841                 break;
842
843         default:
844                 break;
845         }
846
847         mutex_unlock(&kvm->arch.xen.xen_lock);
848         return r;
849 }
850
851 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
852 {
853         int idx, r = -ENOENT;
854
855         mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
856         idx = srcu_read_lock(&vcpu->kvm->srcu);
857
858         switch (data->type) {
859         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
860         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
861                 /* No compat necessary here. */
862                 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
863                              sizeof(struct compat_vcpu_info));
864                 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
865                              offsetof(struct compat_vcpu_info, time));
866
867                 if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) {
868                         if (data->u.gpa == KVM_XEN_INVALID_GPA) {
869                                 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
870                                 r = 0;
871                                 break;
872                         }
873
874                         r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
875                                              data->u.gpa, sizeof(struct vcpu_info));
876                 } else {
877                         if (data->u.hva == 0) {
878                                 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
879                                 r = 0;
880                                 break;
881                         }
882
883                         r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache,
884                                                  data->u.hva, sizeof(struct vcpu_info));
885                 }
886
887                 if (!r)
888                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
889
890                 break;
891
892         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
893                 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
894                         kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
895                         r = 0;
896                         break;
897                 }
898
899                 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
900                                      data->u.gpa,
901                                      sizeof(struct pvclock_vcpu_time_info));
902                 if (!r)
903                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
904                 break;
905
906         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
907                 size_t sz, sz1, sz2;
908
909                 if (!sched_info_on()) {
910                         r = -EOPNOTSUPP;
911                         break;
912                 }
913                 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
914                         r = 0;
915                 deactivate_out:
916                         kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
917                         kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
918                         break;
919                 }
920
921                 /*
922                  * If the guest switches to 64-bit mode after setting the runstate
923                  * address, that's actually OK. kvm_xen_update_runstate_guest()
924                  * will cope.
925                  */
926                 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
927                         sz = sizeof(struct vcpu_runstate_info);
928                 else
929                         sz = sizeof(struct compat_vcpu_runstate_info);
930
931                 /* How much fits in the (first) page? */
932                 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
933                 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
934                                      data->u.gpa, sz1);
935                 if (r)
936                         goto deactivate_out;
937
938                 /* Either map the second page, or deactivate the second GPC */
939                 if (sz1 >= sz) {
940                         kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
941                 } else {
942                         sz2 = sz - sz1;
943                         BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
944                         r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
945                                              data->u.gpa + sz1, sz2);
946                         if (r)
947                                 goto deactivate_out;
948                 }
949
950                 kvm_xen_update_runstate_guest(vcpu, false);
951                 break;
952         }
953         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
954                 if (!sched_info_on()) {
955                         r = -EOPNOTSUPP;
956                         break;
957                 }
958                 if (data->u.runstate.state > RUNSTATE_offline) {
959                         r = -EINVAL;
960                         break;
961                 }
962
963                 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
964                 r = 0;
965                 break;
966
967         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
968                 if (!sched_info_on()) {
969                         r = -EOPNOTSUPP;
970                         break;
971                 }
972                 if (data->u.runstate.state > RUNSTATE_offline) {
973                         r = -EINVAL;
974                         break;
975                 }
976                 if (data->u.runstate.state_entry_time !=
977                     (data->u.runstate.time_running +
978                      data->u.runstate.time_runnable +
979                      data->u.runstate.time_blocked +
980                      data->u.runstate.time_offline)) {
981                         r = -EINVAL;
982                         break;
983                 }
984                 if (get_kvmclock_ns(vcpu->kvm) <
985                     data->u.runstate.state_entry_time) {
986                         r = -EINVAL;
987                         break;
988                 }
989
990                 vcpu->arch.xen.current_runstate = data->u.runstate.state;
991                 vcpu->arch.xen.runstate_entry_time =
992                         data->u.runstate.state_entry_time;
993                 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
994                         data->u.runstate.time_running;
995                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
996                         data->u.runstate.time_runnable;
997                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
998                         data->u.runstate.time_blocked;
999                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
1000                         data->u.runstate.time_offline;
1001                 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
1002                 r = 0;
1003                 break;
1004
1005         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1006                 if (!sched_info_on()) {
1007                         r = -EOPNOTSUPP;
1008                         break;
1009                 }
1010                 if (data->u.runstate.state > RUNSTATE_offline &&
1011                     data->u.runstate.state != (u64)-1) {
1012                         r = -EINVAL;
1013                         break;
1014                 }
1015                 /* The adjustment must add up */
1016                 if (data->u.runstate.state_entry_time !=
1017                     (data->u.runstate.time_running +
1018                      data->u.runstate.time_runnable +
1019                      data->u.runstate.time_blocked +
1020                      data->u.runstate.time_offline)) {
1021                         r = -EINVAL;
1022                         break;
1023                 }
1024
1025                 if (get_kvmclock_ns(vcpu->kvm) <
1026                     (vcpu->arch.xen.runstate_entry_time +
1027                      data->u.runstate.state_entry_time)) {
1028                         r = -EINVAL;
1029                         break;
1030                 }
1031
1032                 vcpu->arch.xen.runstate_entry_time +=
1033                         data->u.runstate.state_entry_time;
1034                 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
1035                         data->u.runstate.time_running;
1036                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
1037                         data->u.runstate.time_runnable;
1038                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
1039                         data->u.runstate.time_blocked;
1040                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
1041                         data->u.runstate.time_offline;
1042
1043                 if (data->u.runstate.state <= RUNSTATE_offline)
1044                         kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1045                 else if (vcpu->arch.xen.runstate_cache.active)
1046                         kvm_xen_update_runstate_guest(vcpu, false);
1047                 r = 0;
1048                 break;
1049
1050         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1051                 if (data->u.vcpu_id >= KVM_MAX_VCPUS)
1052                         r = -EINVAL;
1053                 else {
1054                         vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
1055                         r = 0;
1056                 }
1057                 break;
1058
1059         case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1060                 if (data->u.timer.port &&
1061                     data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
1062                         r = -EINVAL;
1063                         break;
1064                 }
1065
1066                 /* Stop the timer (if it's running) before changing the vector */
1067                 kvm_xen_stop_timer(vcpu);
1068                 vcpu->arch.xen.timer_virq = data->u.timer.port;
1069
1070                 /* Start the timer if the new value has a valid vector+expiry. */
1071                 if (data->u.timer.port && data->u.timer.expires_ns)
1072                         kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false);
1073
1074                 r = 0;
1075                 break;
1076
1077         case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1078                 if (data->u.vector && data->u.vector < 0x10)
1079                         r = -EINVAL;
1080                 else {
1081                         vcpu->arch.xen.upcall_vector = data->u.vector;
1082                         r = 0;
1083                 }
1084                 break;
1085
1086         default:
1087                 break;
1088         }
1089
1090         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1091         mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1092         return r;
1093 }
1094
1095 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
1096 {
1097         int r = -ENOENT;
1098
1099         mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
1100
1101         switch (data->type) {
1102         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
1103                 if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache))
1104                         data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
1105                 else
1106                         data->u.gpa = KVM_XEN_INVALID_GPA;
1107                 r = 0;
1108                 break;
1109
1110         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
1111                 if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache))
1112                         data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva;
1113                 else
1114                         data->u.hva = 0;
1115                 r = 0;
1116                 break;
1117
1118         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
1119                 if (vcpu->arch.xen.vcpu_time_info_cache.active)
1120                         data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
1121                 else
1122                         data->u.gpa = KVM_XEN_INVALID_GPA;
1123                 r = 0;
1124                 break;
1125
1126         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
1127                 if (!sched_info_on()) {
1128                         r = -EOPNOTSUPP;
1129                         break;
1130                 }
1131                 if (vcpu->arch.xen.runstate_cache.active) {
1132                         data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1133                         r = 0;
1134                 }
1135                 break;
1136
1137         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1138                 if (!sched_info_on()) {
1139                         r = -EOPNOTSUPP;
1140                         break;
1141                 }
1142                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1143                 r = 0;
1144                 break;
1145
1146         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1147                 if (!sched_info_on()) {
1148                         r = -EOPNOTSUPP;
1149                         break;
1150                 }
1151                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1152                 data->u.runstate.state_entry_time =
1153                         vcpu->arch.xen.runstate_entry_time;
1154                 data->u.runstate.time_running =
1155                         vcpu->arch.xen.runstate_times[RUNSTATE_running];
1156                 data->u.runstate.time_runnable =
1157                         vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1158                 data->u.runstate.time_blocked =
1159                         vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1160                 data->u.runstate.time_offline =
1161                         vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1162                 r = 0;
1163                 break;
1164
1165         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1166                 r = -EINVAL;
1167                 break;
1168
1169         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1170                 data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1171                 r = 0;
1172                 break;
1173
1174         case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1175                 /*
1176                  * Ensure a consistent snapshot of state is captured, with a
1177                  * timer either being pending, or the event channel delivered
1178                  * to the corresponding bit in the shared_info. Not still
1179                  * lurking in the timer_pending flag for deferred delivery.
1180                  * Purely as an optimisation, if the timer_expires field is
1181                  * zero, that means the timer isn't active (or even in the
1182                  * timer_pending flag) and there is no need to cancel it.
1183                  */
1184                 if (vcpu->arch.xen.timer_expires) {
1185                         hrtimer_cancel(&vcpu->arch.xen.timer);
1186                         kvm_xen_inject_timer_irqs(vcpu);
1187                 }
1188
1189                 data->u.timer.port = vcpu->arch.xen.timer_virq;
1190                 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1191                 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1192
1193                 /*
1194                  * The hrtimer may trigger and raise the IRQ immediately,
1195                  * while the returned state causes it to be set up and
1196                  * raised again on the destination system after migration.
1197                  * That's fine, as the guest won't even have had a chance
1198                  * to run and handle the interrupt. Asserting an already
1199                  * pending event channel is idempotent.
1200                  */
1201                 if (vcpu->arch.xen.timer_expires)
1202                         hrtimer_start_expires(&vcpu->arch.xen.timer,
1203                                               HRTIMER_MODE_ABS_HARD);
1204
1205                 r = 0;
1206                 break;
1207
1208         case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1209                 data->u.vector = vcpu->arch.xen.upcall_vector;
1210                 r = 0;
1211                 break;
1212
1213         default:
1214                 break;
1215         }
1216
1217         mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1218         return r;
1219 }
1220
1221 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1222 {
1223         struct kvm *kvm = vcpu->kvm;
1224         u32 page_num = data & ~PAGE_MASK;
1225         u64 page_addr = data & PAGE_MASK;
1226         bool lm = is_long_mode(vcpu);
1227         int r = 0;
1228
1229         mutex_lock(&kvm->arch.xen.xen_lock);
1230         if (kvm->arch.xen.long_mode != lm) {
1231                 kvm->arch.xen.long_mode = lm;
1232
1233                 /*
1234                  * Re-initialize shared_info to put the wallclock in the
1235                  * correct place.
1236                  */
1237                 if (kvm->arch.xen.shinfo_cache.active &&
1238                     kvm_xen_shared_info_init(kvm))
1239                         r = 1;
1240         }
1241         mutex_unlock(&kvm->arch.xen.xen_lock);
1242
1243         if (r)
1244                 return r;
1245
1246         /*
1247          * If Xen hypercall intercept is enabled, fill the hypercall
1248          * page with VMCALL/VMMCALL instructions since that's what
1249          * we catch. Else the VMM has provided the hypercall pages
1250          * with instructions of its own choosing, so use those.
1251          */
1252         if (kvm_xen_hypercall_enabled(kvm)) {
1253                 u8 instructions[32];
1254                 int i;
1255
1256                 if (page_num)
1257                         return 1;
1258
1259                 /* mov imm32, %eax */
1260                 instructions[0] = 0xb8;
1261
1262                 /* vmcall / vmmcall */
1263                 kvm_x86_call(patch_hypercall)(vcpu, instructions + 5);
1264
1265                 /* ret */
1266                 instructions[8] = 0xc3;
1267
1268                 /* int3 to pad */
1269                 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1270
1271                 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1272                         *(u32 *)&instructions[1] = i;
1273                         if (kvm_vcpu_write_guest(vcpu,
1274                                                  page_addr + (i * sizeof(instructions)),
1275                                                  instructions, sizeof(instructions)))
1276                                 return 1;
1277                 }
1278         } else {
1279                 /*
1280                  * Note, truncation is a non-issue as 'lm' is guaranteed to be
1281                  * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1282                  */
1283                 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1284                                      : kvm->arch.xen_hvm_config.blob_addr_32;
1285                 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1286                                   : kvm->arch.xen_hvm_config.blob_size_32;
1287                 u8 *page;
1288                 int ret;
1289
1290                 if (page_num >= blob_size)
1291                         return 1;
1292
1293                 blob_addr += page_num * PAGE_SIZE;
1294
1295                 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1296                 if (IS_ERR(page))
1297                         return PTR_ERR(page);
1298
1299                 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1300                 kfree(page);
1301                 if (ret)
1302                         return 1;
1303         }
1304         return 0;
1305 }
1306
1307 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1308 {
1309         /* Only some feature flags need to be *enabled* by userspace */
1310         u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1311                 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1312                 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1313         u32 old_flags;
1314
1315         if (xhc->flags & ~permitted_flags)
1316                 return -EINVAL;
1317
1318         /*
1319          * With hypercall interception the kernel generates its own
1320          * hypercall page so it must not be provided.
1321          */
1322         if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1323             (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1324              xhc->blob_size_32 || xhc->blob_size_64))
1325                 return -EINVAL;
1326
1327         mutex_lock(&kvm->arch.xen.xen_lock);
1328
1329         if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1330                 static_branch_inc(&kvm_xen_enabled.key);
1331         else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1332                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
1333
1334         old_flags = kvm->arch.xen_hvm_config.flags;
1335         memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1336
1337         mutex_unlock(&kvm->arch.xen.xen_lock);
1338
1339         if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1340                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1341
1342         return 0;
1343 }
1344
1345 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1346 {
1347         kvm_rax_write(vcpu, result);
1348         return kvm_skip_emulated_instruction(vcpu);
1349 }
1350
1351 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1352 {
1353         struct kvm_run *run = vcpu->run;
1354
1355         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1356                 return 1;
1357
1358         return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1359 }
1360
1361 static inline int max_evtchn_port(struct kvm *kvm)
1362 {
1363         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1364                 return EVTCHN_2L_NR_CHANNELS;
1365         else
1366                 return COMPAT_EVTCHN_2L_NR_CHANNELS;
1367 }
1368
1369 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1370                                evtchn_port_t *ports)
1371 {
1372         struct kvm *kvm = vcpu->kvm;
1373         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1374         unsigned long *pending_bits;
1375         unsigned long flags;
1376         bool ret = true;
1377         int idx, i;
1378
1379         idx = srcu_read_lock(&kvm->srcu);
1380         read_lock_irqsave(&gpc->lock, flags);
1381         if (!kvm_gpc_check(gpc, PAGE_SIZE))
1382                 goto out_rcu;
1383
1384         ret = false;
1385         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1386                 struct shared_info *shinfo = gpc->khva;
1387                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1388         } else {
1389                 struct compat_shared_info *shinfo = gpc->khva;
1390                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1391         }
1392
1393         for (i = 0; i < nr_ports; i++) {
1394                 if (test_bit(ports[i], pending_bits)) {
1395                         ret = true;
1396                         break;
1397                 }
1398         }
1399
1400  out_rcu:
1401         read_unlock_irqrestore(&gpc->lock, flags);
1402         srcu_read_unlock(&kvm->srcu, idx);
1403
1404         return ret;
1405 }
1406
1407 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1408                                  u64 param, u64 *r)
1409 {
1410         struct sched_poll sched_poll;
1411         evtchn_port_t port, *ports;
1412         struct x86_exception e;
1413         int i;
1414
1415         if (!lapic_in_kernel(vcpu) ||
1416             !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1417                 return false;
1418
1419         if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1420                 struct compat_sched_poll sp32;
1421
1422                 /* Sanity check that the compat struct definition is correct */
1423                 BUILD_BUG_ON(sizeof(sp32) != 16);
1424
1425                 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1426                         *r = -EFAULT;
1427                         return true;
1428                 }
1429
1430                 /*
1431                  * This is a 32-bit pointer to an array of evtchn_port_t which
1432                  * are uint32_t, so once it's converted no further compat
1433                  * handling is needed.
1434                  */
1435                 sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1436                 sched_poll.nr_ports = sp32.nr_ports;
1437                 sched_poll.timeout = sp32.timeout;
1438         } else {
1439                 if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1440                                         sizeof(sched_poll), &e)) {
1441                         *r = -EFAULT;
1442                         return true;
1443                 }
1444         }
1445
1446         if (unlikely(sched_poll.nr_ports > 1)) {
1447                 /* Xen (unofficially) limits number of pollers to 128 */
1448                 if (sched_poll.nr_ports > 128) {
1449                         *r = -EINVAL;
1450                         return true;
1451                 }
1452
1453                 ports = kmalloc_array(sched_poll.nr_ports,
1454                                       sizeof(*ports), GFP_KERNEL);
1455                 if (!ports) {
1456                         *r = -ENOMEM;
1457                         return true;
1458                 }
1459         } else
1460                 ports = &port;
1461
1462         if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1463                                 sched_poll.nr_ports * sizeof(*ports), &e)) {
1464                 *r = -EFAULT;
1465                 return true;
1466         }
1467
1468         for (i = 0; i < sched_poll.nr_ports; i++) {
1469                 if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1470                         *r = -EINVAL;
1471                         goto out;
1472                 }
1473         }
1474
1475         if (sched_poll.nr_ports == 1)
1476                 vcpu->arch.xen.poll_evtchn = port;
1477         else
1478                 vcpu->arch.xen.poll_evtchn = -1;
1479
1480         set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1481
1482         if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1483                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1484
1485                 if (sched_poll.timeout)
1486                         mod_timer(&vcpu->arch.xen.poll_timer,
1487                                   jiffies + nsecs_to_jiffies(sched_poll.timeout));
1488
1489                 kvm_vcpu_halt(vcpu);
1490
1491                 if (sched_poll.timeout)
1492                         del_timer(&vcpu->arch.xen.poll_timer);
1493
1494                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1495         }
1496
1497         vcpu->arch.xen.poll_evtchn = 0;
1498         *r = 0;
1499 out:
1500         /* Really, this is only needed in case of timeout */
1501         clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1502
1503         if (unlikely(sched_poll.nr_ports > 1))
1504                 kfree(ports);
1505         return true;
1506 }
1507
1508 static void cancel_evtchn_poll(struct timer_list *t)
1509 {
1510         struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1511
1512         kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1513         kvm_vcpu_kick(vcpu);
1514 }
1515
1516 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1517                                    int cmd, u64 param, u64 *r)
1518 {
1519         switch (cmd) {
1520         case SCHEDOP_poll:
1521                 if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1522                         return true;
1523                 fallthrough;
1524         case SCHEDOP_yield:
1525                 kvm_vcpu_on_spin(vcpu, true);
1526                 *r = 0;
1527                 return true;
1528         default:
1529                 break;
1530         }
1531
1532         return false;
1533 }
1534
1535 struct compat_vcpu_set_singleshot_timer {
1536     uint64_t timeout_abs_ns;
1537     uint32_t flags;
1538 } __attribute__((packed));
1539
1540 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1541                                   int vcpu_id, u64 param, u64 *r)
1542 {
1543         struct vcpu_set_singleshot_timer oneshot;
1544         struct x86_exception e;
1545
1546         if (!kvm_xen_timer_enabled(vcpu))
1547                 return false;
1548
1549         switch (cmd) {
1550         case VCPUOP_set_singleshot_timer:
1551                 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1552                         *r = -EINVAL;
1553                         return true;
1554                 }
1555
1556                 /*
1557                  * The only difference for 32-bit compat is the 4 bytes of
1558                  * padding after the interesting part of the structure. So
1559                  * for a faithful emulation of Xen we have to *try* to copy
1560                  * the padding and return -EFAULT if we can't. Otherwise we
1561                  * might as well just have copied the 12-byte 32-bit struct.
1562                  */
1563                 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1564                              offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1565                 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1566                              sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1567                 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1568                              offsetof(struct vcpu_set_singleshot_timer, flags));
1569                 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1570                              sizeof_field(struct vcpu_set_singleshot_timer, flags));
1571
1572                 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1573                                         sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1574                         *r = -EFAULT;
1575                         return true;
1576                 }
1577
1578                 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false);
1579                 *r = 0;
1580                 return true;
1581
1582         case VCPUOP_stop_singleshot_timer:
1583                 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1584                         *r = -EINVAL;
1585                         return true;
1586                 }
1587                 kvm_xen_stop_timer(vcpu);
1588                 *r = 0;
1589                 return true;
1590         }
1591
1592         return false;
1593 }
1594
1595 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1596                                        u64 *r)
1597 {
1598         if (!kvm_xen_timer_enabled(vcpu))
1599                 return false;
1600
1601         if (timeout)
1602                 kvm_xen_start_timer(vcpu, timeout, true);
1603         else
1604                 kvm_xen_stop_timer(vcpu);
1605
1606         *r = 0;
1607         return true;
1608 }
1609
1610 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1611 {
1612         bool longmode;
1613         u64 input, params[6], r = -ENOSYS;
1614         bool handled = false;
1615         u8 cpl;
1616
1617         input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1618
1619         /* Hyper-V hypercalls get bit 31 set in EAX */
1620         if ((input & 0x80000000) &&
1621             kvm_hv_hypercall_enabled(vcpu))
1622                 return kvm_hv_hypercall(vcpu);
1623
1624         longmode = is_64_bit_hypercall(vcpu);
1625         if (!longmode) {
1626                 params[0] = (u32)kvm_rbx_read(vcpu);
1627                 params[1] = (u32)kvm_rcx_read(vcpu);
1628                 params[2] = (u32)kvm_rdx_read(vcpu);
1629                 params[3] = (u32)kvm_rsi_read(vcpu);
1630                 params[4] = (u32)kvm_rdi_read(vcpu);
1631                 params[5] = (u32)kvm_rbp_read(vcpu);
1632         }
1633 #ifdef CONFIG_X86_64
1634         else {
1635                 params[0] = (u64)kvm_rdi_read(vcpu);
1636                 params[1] = (u64)kvm_rsi_read(vcpu);
1637                 params[2] = (u64)kvm_rdx_read(vcpu);
1638                 params[3] = (u64)kvm_r10_read(vcpu);
1639                 params[4] = (u64)kvm_r8_read(vcpu);
1640                 params[5] = (u64)kvm_r9_read(vcpu);
1641         }
1642 #endif
1643         cpl = kvm_x86_call(get_cpl)(vcpu);
1644         trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1645                                 params[3], params[4], params[5]);
1646
1647         /*
1648          * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1649          * are permitted in guest userspace can be handled by the VMM.
1650          */
1651         if (unlikely(cpl > 0))
1652                 goto handle_in_userspace;
1653
1654         switch (input) {
1655         case __HYPERVISOR_xen_version:
1656                 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1657                         r = vcpu->kvm->arch.xen.xen_version;
1658                         handled = true;
1659                 }
1660                 break;
1661         case __HYPERVISOR_event_channel_op:
1662                 if (params[0] == EVTCHNOP_send)
1663                         handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1664                 break;
1665         case __HYPERVISOR_sched_op:
1666                 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1667                                                  params[1], &r);
1668                 break;
1669         case __HYPERVISOR_vcpu_op:
1670                 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1671                                                 params[2], &r);
1672                 break;
1673         case __HYPERVISOR_set_timer_op: {
1674                 u64 timeout = params[0];
1675                 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1676                 if (!longmode)
1677                         timeout |= params[1] << 32;
1678                 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1679                 break;
1680         }
1681         default:
1682                 break;
1683         }
1684
1685         if (handled)
1686                 return kvm_xen_hypercall_set_result(vcpu, r);
1687
1688 handle_in_userspace:
1689         vcpu->run->exit_reason = KVM_EXIT_XEN;
1690         vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1691         vcpu->run->xen.u.hcall.longmode = longmode;
1692         vcpu->run->xen.u.hcall.cpl = cpl;
1693         vcpu->run->xen.u.hcall.input = input;
1694         vcpu->run->xen.u.hcall.params[0] = params[0];
1695         vcpu->run->xen.u.hcall.params[1] = params[1];
1696         vcpu->run->xen.u.hcall.params[2] = params[2];
1697         vcpu->run->xen.u.hcall.params[3] = params[3];
1698         vcpu->run->xen.u.hcall.params[4] = params[4];
1699         vcpu->run->xen.u.hcall.params[5] = params[5];
1700         vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1701         vcpu->arch.complete_userspace_io =
1702                 kvm_xen_hypercall_complete_userspace;
1703
1704         return 0;
1705 }
1706
1707 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1708 {
1709         int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1710
1711         if ((poll_evtchn == port || poll_evtchn == -1) &&
1712             test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1713                 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1714                 kvm_vcpu_kick(vcpu);
1715         }
1716 }
1717
1718 /*
1719  * The return value from this function is propagated to kvm_set_irq() API,
1720  * so it returns:
1721  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1722  *  = 0   Interrupt was coalesced (previous irq is still pending)
1723  *  > 0   Number of CPUs interrupt was delivered to
1724  *
1725  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1726  * only check on its return value is a comparison with -EWOULDBLOCK'.
1727  */
1728 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1729 {
1730         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1731         struct kvm_vcpu *vcpu;
1732         unsigned long *pending_bits, *mask_bits;
1733         unsigned long flags;
1734         int port_word_bit;
1735         bool kick_vcpu = false;
1736         int vcpu_idx, idx, rc;
1737
1738         vcpu_idx = READ_ONCE(xe->vcpu_idx);
1739         if (vcpu_idx >= 0)
1740                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1741         else {
1742                 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1743                 if (!vcpu)
1744                         return -EINVAL;
1745                 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1746         }
1747
1748         if (xe->port >= max_evtchn_port(kvm))
1749                 return -EINVAL;
1750
1751         rc = -EWOULDBLOCK;
1752
1753         idx = srcu_read_lock(&kvm->srcu);
1754
1755         read_lock_irqsave(&gpc->lock, flags);
1756         if (!kvm_gpc_check(gpc, PAGE_SIZE))
1757                 goto out_rcu;
1758
1759         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1760                 struct shared_info *shinfo = gpc->khva;
1761                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1762                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1763                 port_word_bit = xe->port / 64;
1764         } else {
1765                 struct compat_shared_info *shinfo = gpc->khva;
1766                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1767                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1768                 port_word_bit = xe->port / 32;
1769         }
1770
1771         /*
1772          * If this port wasn't already set, and if it isn't masked, then
1773          * we try to set the corresponding bit in the in-kernel shadow of
1774          * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1775          * already set, then we kick the vCPU in question to write to the
1776          * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1777          */
1778         if (test_and_set_bit(xe->port, pending_bits)) {
1779                 rc = 0; /* It was already raised */
1780         } else if (test_bit(xe->port, mask_bits)) {
1781                 rc = -ENOTCONN; /* Masked */
1782                 kvm_xen_check_poller(vcpu, xe->port);
1783         } else {
1784                 rc = 1; /* Delivered to the bitmap in shared_info. */
1785                 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1786                 read_unlock_irqrestore(&gpc->lock, flags);
1787                 gpc = &vcpu->arch.xen.vcpu_info_cache;
1788
1789                 read_lock_irqsave(&gpc->lock, flags);
1790                 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1791                         /*
1792                          * Could not access the vcpu_info. Set the bit in-kernel
1793                          * and prod the vCPU to deliver it for itself.
1794                          */
1795                         if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1796                                 kick_vcpu = true;
1797                         goto out_rcu;
1798                 }
1799
1800                 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1801                         struct vcpu_info *vcpu_info = gpc->khva;
1802                         if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1803                                 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1804                                 kick_vcpu = true;
1805                         }
1806                 } else {
1807                         struct compat_vcpu_info *vcpu_info = gpc->khva;
1808                         if (!test_and_set_bit(port_word_bit,
1809                                               (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1810                                 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1811                                 kick_vcpu = true;
1812                         }
1813                 }
1814
1815                 /* For the per-vCPU lapic vector, deliver it as MSI. */
1816                 if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1817                         kvm_xen_inject_vcpu_vector(vcpu);
1818                         kick_vcpu = false;
1819                 }
1820         }
1821
1822  out_rcu:
1823         read_unlock_irqrestore(&gpc->lock, flags);
1824         srcu_read_unlock(&kvm->srcu, idx);
1825
1826         if (kick_vcpu) {
1827                 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1828                 kvm_vcpu_kick(vcpu);
1829         }
1830
1831         return rc;
1832 }
1833
1834 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1835 {
1836         bool mm_borrowed = false;
1837         int rc;
1838
1839         rc = kvm_xen_set_evtchn_fast(xe, kvm);
1840         if (rc != -EWOULDBLOCK)
1841                 return rc;
1842
1843         if (current->mm != kvm->mm) {
1844                 /*
1845                  * If not on a thread which already belongs to this KVM,
1846                  * we'd better be in the irqfd workqueue.
1847                  */
1848                 if (WARN_ON_ONCE(current->mm))
1849                         return -EINVAL;
1850
1851                 kthread_use_mm(kvm->mm);
1852                 mm_borrowed = true;
1853         }
1854
1855         /*
1856          * It is theoretically possible for the page to be unmapped
1857          * and the MMU notifier to invalidate the shared_info before
1858          * we even get to use it. In that case, this looks like an
1859          * infinite loop. It was tempting to do it via the userspace
1860          * HVA instead... but that just *hides* the fact that it's
1861          * an infinite loop, because if a fault occurs and it waits
1862          * for the page to come back, it can *still* immediately
1863          * fault and have to wait again, repeatedly.
1864          *
1865          * Conversely, the page could also have been reinstated by
1866          * another thread before we even obtain the mutex above, so
1867          * check again *first* before remapping it.
1868          */
1869         do {
1870                 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1871                 int idx;
1872
1873                 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1874                 if (rc != -EWOULDBLOCK)
1875                         break;
1876
1877                 idx = srcu_read_lock(&kvm->srcu);
1878                 rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1879                 srcu_read_unlock(&kvm->srcu, idx);
1880         } while(!rc);
1881
1882         if (mm_borrowed)
1883                 kthread_unuse_mm(kvm->mm);
1884
1885         return rc;
1886 }
1887
1888 /* This is the version called from kvm_set_irq() as the .set function */
1889 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1890                          int irq_source_id, int level, bool line_status)
1891 {
1892         if (!level)
1893                 return -EINVAL;
1894
1895         return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1896 }
1897
1898 /*
1899  * Set up an event channel interrupt from the KVM IRQ routing table.
1900  * Used for e.g. PIRQ from passed through physical devices.
1901  */
1902 int kvm_xen_setup_evtchn(struct kvm *kvm,
1903                          struct kvm_kernel_irq_routing_entry *e,
1904                          const struct kvm_irq_routing_entry *ue)
1905
1906 {
1907         struct kvm_vcpu *vcpu;
1908
1909         if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1910                 return -EINVAL;
1911
1912         /* We only support 2 level event channels for now */
1913         if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1914                 return -EINVAL;
1915
1916         /*
1917          * Xen gives us interesting mappings from vCPU index to APIC ID,
1918          * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1919          * to find it. Do that once at setup time, instead of every time.
1920          * But beware that on live update / live migration, the routing
1921          * table might be reinstated before the vCPU threads have finished
1922          * recreating their vCPUs.
1923          */
1924         vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1925         if (vcpu)
1926                 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1927         else
1928                 e->xen_evtchn.vcpu_idx = -1;
1929
1930         e->xen_evtchn.port = ue->u.xen_evtchn.port;
1931         e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1932         e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1933         e->set = evtchn_set_fn;
1934
1935         return 0;
1936 }
1937
1938 /*
1939  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1940  */
1941 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1942 {
1943         struct kvm_xen_evtchn e;
1944         int ret;
1945
1946         if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1947                 return -EINVAL;
1948
1949         /* We only support 2 level event channels for now */
1950         if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1951                 return -EINVAL;
1952
1953         e.port = uxe->port;
1954         e.vcpu_id = uxe->vcpu;
1955         e.vcpu_idx = -1;
1956         e.priority = uxe->priority;
1957
1958         ret = kvm_xen_set_evtchn(&e, kvm);
1959
1960         /*
1961          * None of that 'return 1 if it actually got delivered' nonsense.
1962          * We don't care if it was masked (-ENOTCONN) either.
1963          */
1964         if (ret > 0 || ret == -ENOTCONN)
1965                 ret = 0;
1966
1967         return ret;
1968 }
1969
1970 /*
1971  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1972  */
1973 struct evtchnfd {
1974         u32 send_port;
1975         u32 type;
1976         union {
1977                 struct kvm_xen_evtchn port;
1978                 struct {
1979                         u32 port; /* zero */
1980                         struct eventfd_ctx *ctx;
1981                 } eventfd;
1982         } deliver;
1983 };
1984
1985 /*
1986  * Update target vCPU or priority for a registered sending channel.
1987  */
1988 static int kvm_xen_eventfd_update(struct kvm *kvm,
1989                                   struct kvm_xen_hvm_attr *data)
1990 {
1991         u32 port = data->u.evtchn.send_port;
1992         struct evtchnfd *evtchnfd;
1993         int ret;
1994
1995         /* Protect writes to evtchnfd as well as the idr lookup.  */
1996         mutex_lock(&kvm->arch.xen.xen_lock);
1997         evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1998
1999         ret = -ENOENT;
2000         if (!evtchnfd)
2001                 goto out_unlock;
2002
2003         /* For an UPDATE, nothing may change except the priority/vcpu */
2004         ret = -EINVAL;
2005         if (evtchnfd->type != data->u.evtchn.type)
2006                 goto out_unlock;
2007
2008         /*
2009          * Port cannot change, and if it's zero that was an eventfd
2010          * which can't be changed either.
2011          */
2012         if (!evtchnfd->deliver.port.port ||
2013             evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
2014                 goto out_unlock;
2015
2016         /* We only support 2 level event channels for now */
2017         if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2018                 goto out_unlock;
2019
2020         evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2021         if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
2022                 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2023                 evtchnfd->deliver.port.vcpu_idx = -1;
2024         }
2025         ret = 0;
2026 out_unlock:
2027         mutex_unlock(&kvm->arch.xen.xen_lock);
2028         return ret;
2029 }
2030
2031 /*
2032  * Configure the target (eventfd or local port delivery) for sending on
2033  * a given event channel.
2034  */
2035 static int kvm_xen_eventfd_assign(struct kvm *kvm,
2036                                   struct kvm_xen_hvm_attr *data)
2037 {
2038         u32 port = data->u.evtchn.send_port;
2039         struct eventfd_ctx *eventfd = NULL;
2040         struct evtchnfd *evtchnfd;
2041         int ret = -EINVAL;
2042
2043         evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
2044         if (!evtchnfd)
2045                 return -ENOMEM;
2046
2047         switch(data->u.evtchn.type) {
2048         case EVTCHNSTAT_ipi:
2049                 /* IPI  must map back to the same port# */
2050                 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
2051                         goto out_noeventfd; /* -EINVAL */
2052                 break;
2053
2054         case EVTCHNSTAT_interdomain:
2055                 if (data->u.evtchn.deliver.port.port) {
2056                         if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
2057                                 goto out_noeventfd; /* -EINVAL */
2058                 } else {
2059                         eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
2060                         if (IS_ERR(eventfd)) {
2061                                 ret = PTR_ERR(eventfd);
2062                                 goto out_noeventfd;
2063                         }
2064                 }
2065                 break;
2066
2067         case EVTCHNSTAT_virq:
2068         case EVTCHNSTAT_closed:
2069         case EVTCHNSTAT_unbound:
2070         case EVTCHNSTAT_pirq:
2071         default: /* Unknown event channel type */
2072                 goto out; /* -EINVAL */
2073         }
2074
2075         evtchnfd->send_port = data->u.evtchn.send_port;
2076         evtchnfd->type = data->u.evtchn.type;
2077         if (eventfd) {
2078                 evtchnfd->deliver.eventfd.ctx = eventfd;
2079         } else {
2080                 /* We only support 2 level event channels for now */
2081                 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2082                         goto out; /* -EINVAL; */
2083
2084                 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
2085                 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2086                 evtchnfd->deliver.port.vcpu_idx = -1;
2087                 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2088         }
2089
2090         mutex_lock(&kvm->arch.xen.xen_lock);
2091         ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
2092                         GFP_KERNEL);
2093         mutex_unlock(&kvm->arch.xen.xen_lock);
2094         if (ret >= 0)
2095                 return 0;
2096
2097         if (ret == -ENOSPC)
2098                 ret = -EEXIST;
2099 out:
2100         if (eventfd)
2101                 eventfd_ctx_put(eventfd);
2102 out_noeventfd:
2103         kfree(evtchnfd);
2104         return ret;
2105 }
2106
2107 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
2108 {
2109         struct evtchnfd *evtchnfd;
2110
2111         mutex_lock(&kvm->arch.xen.xen_lock);
2112         evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
2113         mutex_unlock(&kvm->arch.xen.xen_lock);
2114
2115         if (!evtchnfd)
2116                 return -ENOENT;
2117
2118         synchronize_srcu(&kvm->srcu);
2119         if (!evtchnfd->deliver.port.port)
2120                 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2121         kfree(evtchnfd);
2122         return 0;
2123 }
2124
2125 static int kvm_xen_eventfd_reset(struct kvm *kvm)
2126 {
2127         struct evtchnfd *evtchnfd, **all_evtchnfds;
2128         int i;
2129         int n = 0;
2130
2131         mutex_lock(&kvm->arch.xen.xen_lock);
2132
2133         /*
2134          * Because synchronize_srcu() cannot be called inside the
2135          * critical section, first collect all the evtchnfd objects
2136          * in an array as they are removed from evtchn_ports.
2137          */
2138         idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2139                 n++;
2140
2141         all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2142         if (!all_evtchnfds) {
2143                 mutex_unlock(&kvm->arch.xen.xen_lock);
2144                 return -ENOMEM;
2145         }
2146
2147         n = 0;
2148         idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2149                 all_evtchnfds[n++] = evtchnfd;
2150                 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2151         }
2152         mutex_unlock(&kvm->arch.xen.xen_lock);
2153
2154         synchronize_srcu(&kvm->srcu);
2155
2156         while (n--) {
2157                 evtchnfd = all_evtchnfds[n];
2158                 if (!evtchnfd->deliver.port.port)
2159                         eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2160                 kfree(evtchnfd);
2161         }
2162         kfree(all_evtchnfds);
2163
2164         return 0;
2165 }
2166
2167 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2168 {
2169         u32 port = data->u.evtchn.send_port;
2170
2171         if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2172                 return kvm_xen_eventfd_reset(kvm);
2173
2174         if (!port || port >= max_evtchn_port(kvm))
2175                 return -EINVAL;
2176
2177         if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2178                 return kvm_xen_eventfd_deassign(kvm, port);
2179         if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2180                 return kvm_xen_eventfd_update(kvm, data);
2181         if (data->u.evtchn.flags)
2182                 return -EINVAL;
2183
2184         return kvm_xen_eventfd_assign(kvm, data);
2185 }
2186
2187 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2188 {
2189         struct evtchnfd *evtchnfd;
2190         struct evtchn_send send;
2191         struct x86_exception e;
2192
2193         /* Sanity check: this structure is the same for 32-bit and 64-bit */
2194         BUILD_BUG_ON(sizeof(send) != 4);
2195         if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2196                 *r = -EFAULT;
2197                 return true;
2198         }
2199
2200         /*
2201          * evtchnfd is protected by kvm->srcu; the idr lookup instead
2202          * is protected by RCU.
2203          */
2204         rcu_read_lock();
2205         evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2206         rcu_read_unlock();
2207         if (!evtchnfd)
2208                 return false;
2209
2210         if (evtchnfd->deliver.port.port) {
2211                 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2212                 if (ret < 0 && ret != -ENOTCONN)
2213                         return false;
2214         } else {
2215                 eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2216         }
2217
2218         *r = 0;
2219         return true;
2220 }
2221
2222 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2223 {
2224         vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2225         vcpu->arch.xen.poll_evtchn = 0;
2226
2227         timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2228         hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
2229         vcpu->arch.xen.timer.function = xen_timer_callback;
2230
2231         kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm);
2232         kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm);
2233         kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm);
2234         kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm);
2235 }
2236
2237 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2238 {
2239         if (kvm_xen_timer_enabled(vcpu))
2240                 kvm_xen_stop_timer(vcpu);
2241
2242         kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2243         kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2244         kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2245         kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2246
2247         del_timer_sync(&vcpu->arch.xen.poll_timer);
2248 }
2249
2250 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2251 {
2252         struct kvm_cpuid_entry2 *entry;
2253         u32 function;
2254
2255         if (!vcpu->arch.xen.cpuid.base)
2256                 return;
2257
2258         function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2259         if (function > vcpu->arch.xen.cpuid.limit)
2260                 return;
2261
2262         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2263         if (entry) {
2264                 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2265                 entry->edx = vcpu->arch.hv_clock.tsc_shift;
2266         }
2267
2268         entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2269         if (entry)
2270                 entry->eax = vcpu->arch.hw_tsc_khz;
2271 }
2272
2273 void kvm_xen_init_vm(struct kvm *kvm)
2274 {
2275         mutex_init(&kvm->arch.xen.xen_lock);
2276         idr_init(&kvm->arch.xen.evtchn_ports);
2277         kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm);
2278 }
2279
2280 void kvm_xen_destroy_vm(struct kvm *kvm)
2281 {
2282         struct evtchnfd *evtchnfd;
2283         int i;
2284
2285         kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2286
2287         idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2288                 if (!evtchnfd->deliver.port.port)
2289                         eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2290                 kfree(evtchnfd);
2291         }
2292         idr_destroy(&kvm->arch.xen.evtchn_ports);
2293
2294         if (kvm->arch.xen_hvm_config.msr)
2295                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
2296 }
This page took 0.165664 seconds and 4 git commands to generate.