2 * Copyright © 2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/prime_numbers.h>
26 #include <linux/pm_qos.h>
27 #include <linux/sort.h>
29 #include "gem/i915_gem_pm.h"
30 #include "gem/selftests/mock_context.h"
32 #include "gt/intel_engine_heartbeat.h"
33 #include "gt/intel_engine_pm.h"
34 #include "gt/intel_engine_user.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_clock_utils.h"
37 #include "gt/intel_gt_requests.h"
38 #include "gt/selftest_engine_heartbeat.h"
40 #include "i915_random.h"
41 #include "i915_selftest.h"
42 #include "igt_flush_test.h"
43 #include "igt_live_test.h"
44 #include "igt_spinner.h"
45 #include "lib_sw_fence.h"
48 #include "mock_gem_device.h"
50 static unsigned int num_uabi_engines(struct drm_i915_private *i915)
52 struct intel_engine_cs *engine;
56 for_each_uabi_engine(engine, i915)
62 static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
64 return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
67 static int igt_add_request(void *arg)
69 struct drm_i915_private *i915 = arg;
70 struct i915_request *request;
72 /* Basic preliminary test to create a request and let it loose! */
74 request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
78 i915_request_add(request);
83 static int igt_wait_request(void *arg)
85 const long T = HZ / 4;
86 struct drm_i915_private *i915 = arg;
87 struct i915_request *request;
90 /* Submit a request, then wait upon it */
92 request = mock_request(rcs0(i915)->kernel_context, T);
96 i915_request_get(request);
98 if (i915_request_wait(request, 0, 0) != -ETIME) {
99 pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
103 if (i915_request_wait(request, 0, T) != -ETIME) {
104 pr_err("request wait succeeded (expected timeout before submit!)\n");
108 if (i915_request_completed(request)) {
109 pr_err("request completed before submit!!\n");
113 i915_request_add(request);
115 if (i915_request_wait(request, 0, 0) != -ETIME) {
116 pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
120 if (i915_request_completed(request)) {
121 pr_err("request completed immediately!\n");
125 if (i915_request_wait(request, 0, T / 2) != -ETIME) {
126 pr_err("request wait succeeded (expected timeout!)\n");
130 if (i915_request_wait(request, 0, T) == -ETIME) {
131 pr_err("request wait timed out!\n");
135 if (!i915_request_completed(request)) {
136 pr_err("request not complete after waiting!\n");
140 if (i915_request_wait(request, 0, T) == -ETIME) {
141 pr_err("request wait timed out when already complete!\n");
147 i915_request_put(request);
148 mock_device_flush(i915);
152 static int igt_fence_wait(void *arg)
154 const long T = HZ / 4;
155 struct drm_i915_private *i915 = arg;
156 struct i915_request *request;
159 /* Submit a request, treat it as a fence and wait upon it */
161 request = mock_request(rcs0(i915)->kernel_context, T);
165 if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
166 pr_err("fence wait success before submit (expected timeout)!\n");
170 i915_request_add(request);
172 if (dma_fence_is_signaled(&request->fence)) {
173 pr_err("fence signaled immediately!\n");
177 if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
178 pr_err("fence wait success after submit (expected timeout)!\n");
182 if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
183 pr_err("fence wait timed out (expected success)!\n");
187 if (!dma_fence_is_signaled(&request->fence)) {
188 pr_err("fence unsignaled after waiting!\n");
192 if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
193 pr_err("fence wait timed out when complete (expected success)!\n");
199 mock_device_flush(i915);
203 static int igt_request_rewind(void *arg)
205 struct drm_i915_private *i915 = arg;
206 struct i915_request *request, *vip;
207 struct i915_gem_context *ctx[2];
208 struct intel_context *ce;
211 ctx[0] = mock_context(i915, "A");
217 ce = i915_gem_context_get_engine(ctx[0], RCS0);
218 GEM_BUG_ON(IS_ERR(ce));
219 request = mock_request(ce, 2 * HZ);
220 intel_context_put(ce);
226 i915_request_get(request);
227 i915_request_add(request);
229 ctx[1] = mock_context(i915, "B");
235 ce = i915_gem_context_get_engine(ctx[1], RCS0);
236 GEM_BUG_ON(IS_ERR(ce));
237 vip = mock_request(ce, 0);
238 intel_context_put(ce);
244 /* Simulate preemption by manual reordering */
245 if (!mock_cancel_request(request)) {
246 pr_err("failed to cancel request (already executed)!\n");
247 i915_request_add(vip);
250 i915_request_get(vip);
251 i915_request_add(vip);
253 request->engine->submit_request(request);
257 if (i915_request_wait(vip, 0, HZ) == -ETIME) {
258 pr_err("timed out waiting for high priority request\n");
262 if (i915_request_completed(request)) {
263 pr_err("low priority request already completed\n");
269 i915_request_put(vip);
271 mock_context_close(ctx[1]);
273 i915_request_put(request);
275 mock_context_close(ctx[0]);
277 mock_device_flush(i915);
282 struct intel_engine_cs *engine;
283 struct i915_gem_context **contexts;
284 atomic_long_t num_waits, num_fences;
285 int ncontexts, max_batch;
286 struct i915_request *(*request_alloc)(struct intel_context *ce);
289 static struct i915_request *
290 __mock_request_alloc(struct intel_context *ce)
292 return mock_request(ce, 0);
295 static struct i915_request *
296 __live_request_alloc(struct intel_context *ce)
298 return intel_context_create_request(ce);
301 static int __igt_breadcrumbs_smoketest(void *arg)
303 struct smoketest *t = arg;
304 const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
305 const unsigned int total = 4 * t->ncontexts + 1;
306 unsigned int num_waits = 0, num_fences = 0;
307 struct i915_request **requests;
308 I915_RND_STATE(prng);
313 * A very simple test to catch the most egregious of list handling bugs.
315 * At its heart, we simply create oodles of requests running across
316 * multiple kthreads and enable signaling on them, for the sole purpose
317 * of stressing our breadcrumb handling. The only inspection we do is
318 * that the fences were marked as signaled.
321 requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
325 order = i915_random_order(total, &prng);
331 while (!kthread_should_stop()) {
332 struct i915_sw_fence *submit, *wait;
333 unsigned int n, count;
335 submit = heap_fence_create(GFP_KERNEL);
341 wait = heap_fence_create(GFP_KERNEL);
343 i915_sw_fence_commit(submit);
344 heap_fence_put(submit);
349 i915_random_reorder(order, total, &prng);
350 count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
352 for (n = 0; n < count; n++) {
353 struct i915_gem_context *ctx =
354 t->contexts[order[n] % t->ncontexts];
355 struct i915_request *rq;
356 struct intel_context *ce;
358 ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
359 GEM_BUG_ON(IS_ERR(ce));
360 rq = t->request_alloc(ce);
361 intel_context_put(ce);
368 err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
372 requests[n] = i915_request_get(rq);
373 i915_request_add(rq);
376 err = i915_sw_fence_await_dma_fence(wait,
382 i915_request_put(rq);
388 i915_sw_fence_commit(submit);
389 i915_sw_fence_commit(wait);
391 if (!wait_event_timeout(wait->wait,
392 i915_sw_fence_done(wait),
394 struct i915_request *rq = requests[count - 1];
396 pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
397 atomic_read(&wait->pending), count,
398 rq->fence.context, rq->fence.seqno,
402 intel_gt_set_wedged(t->engine->gt);
403 GEM_BUG_ON(!i915_request_completed(rq));
404 i915_sw_fence_wait(wait);
408 for (n = 0; n < count; n++) {
409 struct i915_request *rq = requests[n];
411 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
413 pr_err("%llu:%llu was not signaled!\n",
414 rq->fence.context, rq->fence.seqno);
418 i915_request_put(rq);
421 heap_fence_put(wait);
422 heap_fence_put(submit);
433 atomic_long_add(num_fences, &t->num_fences);
434 atomic_long_add(num_waits, &t->num_waits);
442 static int mock_breadcrumbs_smoketest(void *arg)
444 struct drm_i915_private *i915 = arg;
445 struct smoketest t = {
446 .engine = rcs0(i915),
449 .request_alloc = __mock_request_alloc
451 unsigned int ncpus = num_online_cpus();
452 struct task_struct **threads;
457 * Smoketest our breadcrumb/signal handling for requests across multiple
458 * threads. A very simple test to only catch the most egregious of bugs.
459 * See __igt_breadcrumbs_smoketest();
462 threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
466 t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
472 for (n = 0; n < t.ncontexts; n++) {
473 t.contexts[n] = mock_context(t.engine->i915, "mock");
474 if (!t.contexts[n]) {
480 for (n = 0; n < ncpus; n++) {
481 threads[n] = kthread_run(__igt_breadcrumbs_smoketest,
483 if (IS_ERR(threads[n])) {
484 ret = PTR_ERR(threads[n]);
489 get_task_struct(threads[n]);
492 yield(); /* start all threads before we begin */
493 msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
495 for (n = 0; n < ncpus; n++) {
498 err = kthread_stop(threads[n]);
502 put_task_struct(threads[n]);
504 pr_info("Completed %lu waits for %lu fence across %d cpus\n",
505 atomic_long_read(&t.num_waits),
506 atomic_long_read(&t.num_fences),
510 for (n = 0; n < t.ncontexts; n++) {
513 mock_context_close(t.contexts[n]);
521 int i915_request_mock_selftests(void)
523 static const struct i915_subtest tests[] = {
524 SUBTEST(igt_add_request),
525 SUBTEST(igt_wait_request),
526 SUBTEST(igt_fence_wait),
527 SUBTEST(igt_request_rewind),
528 SUBTEST(mock_breadcrumbs_smoketest),
530 struct drm_i915_private *i915;
531 intel_wakeref_t wakeref;
534 i915 = mock_gem_device();
538 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
539 err = i915_subtests(tests, i915);
541 mock_destroy_device(i915);
546 static int live_nop_request(void *arg)
548 struct drm_i915_private *i915 = arg;
549 struct intel_engine_cs *engine;
550 struct igt_live_test t;
554 * Submit various sized batches of empty requests, to each engine
555 * (individually), and wait for the batch to complete. We can check
556 * the overhead of submitting requests to the hardware.
559 for_each_uabi_engine(engine, i915) {
560 unsigned long n, prime;
561 IGT_TIMEOUT(end_time);
562 ktime_t times[2] = {};
564 err = igt_live_test_begin(&t, i915, __func__, engine->name);
568 intel_engine_pm_get(engine);
569 for_each_prime_number_from(prime, 1, 8192) {
570 struct i915_request *request = NULL;
572 times[1] = ktime_get_raw();
574 for (n = 0; n < prime; n++) {
575 i915_request_put(request);
576 request = i915_request_create(engine->kernel_context);
578 return PTR_ERR(request);
581 * This space is left intentionally blank.
583 * We do not actually want to perform any
584 * action with this request, we just want
585 * to measure the latency in allocation
586 * and submission of our breadcrumbs -
587 * ensuring that the bare request is sufficient
588 * for the system to work (i.e. proper HEAD
589 * tracking of the rings, interrupt handling,
590 * etc). It also gives us the lowest bounds
594 i915_request_get(request);
595 i915_request_add(request);
597 i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
598 i915_request_put(request);
600 times[1] = ktime_sub(ktime_get_raw(), times[1]);
604 if (__igt_timeout(end_time, NULL))
607 intel_engine_pm_put(engine);
609 err = igt_live_test_end(&t);
613 pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
615 ktime_to_ns(times[0]),
616 prime, div64_u64(ktime_to_ns(times[1]), prime));
622 static int __cancel_inactive(struct intel_engine_cs *engine)
624 struct intel_context *ce;
625 struct igt_spinner spin;
626 struct i915_request *rq;
629 if (igt_spinner_init(&spin, engine->gt))
632 ce = intel_context_create(engine);
638 rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
644 pr_debug("%s: Cancelling inactive request\n", engine->name);
645 i915_request_cancel(rq, -EINTR);
646 i915_request_get(rq);
647 i915_request_add(rq);
649 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
650 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
652 pr_err("%s: Failed to cancel inactive request\n", engine->name);
653 intel_engine_dump(engine, &p, "%s\n", engine->name);
658 if (rq->fence.error != -EINTR) {
659 pr_err("%s: fence not cancelled (%u)\n",
660 engine->name, rq->fence.error);
665 i915_request_put(rq);
667 intel_context_put(ce);
669 igt_spinner_fini(&spin);
671 pr_err("%s: %s error %d\n", __func__, engine->name, err);
675 static int __cancel_active(struct intel_engine_cs *engine)
677 struct intel_context *ce;
678 struct igt_spinner spin;
679 struct i915_request *rq;
682 if (igt_spinner_init(&spin, engine->gt))
685 ce = intel_context_create(engine);
691 rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
697 pr_debug("%s: Cancelling active request\n", engine->name);
698 i915_request_get(rq);
699 i915_request_add(rq);
700 if (!igt_wait_for_spinner(&spin, rq)) {
701 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
703 pr_err("Failed to start spinner on %s\n", engine->name);
704 intel_engine_dump(engine, &p, "%s\n", engine->name);
708 i915_request_cancel(rq, -EINTR);
710 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
711 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
713 pr_err("%s: Failed to cancel active request\n", engine->name);
714 intel_engine_dump(engine, &p, "%s\n", engine->name);
719 if (rq->fence.error != -EINTR) {
720 pr_err("%s: fence not cancelled (%u)\n",
721 engine->name, rq->fence.error);
726 i915_request_put(rq);
728 intel_context_put(ce);
730 igt_spinner_fini(&spin);
732 pr_err("%s: %s error %d\n", __func__, engine->name, err);
736 static int __cancel_completed(struct intel_engine_cs *engine)
738 struct intel_context *ce;
739 struct igt_spinner spin;
740 struct i915_request *rq;
743 if (igt_spinner_init(&spin, engine->gt))
746 ce = intel_context_create(engine);
752 rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
757 igt_spinner_end(&spin);
758 i915_request_get(rq);
759 i915_request_add(rq);
761 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
766 pr_debug("%s: Cancelling completed request\n", engine->name);
767 i915_request_cancel(rq, -EINTR);
768 if (rq->fence.error) {
769 pr_err("%s: fence not cancelled (%u)\n",
770 engine->name, rq->fence.error);
775 i915_request_put(rq);
777 intel_context_put(ce);
779 igt_spinner_fini(&spin);
781 pr_err("%s: %s error %d\n", __func__, engine->name, err);
785 static int live_cancel_request(void *arg)
787 struct drm_i915_private *i915 = arg;
788 struct intel_engine_cs *engine;
791 * Check cancellation of requests. We expect to be able to immediately
792 * cancel active requests, even if they are currently on the GPU.
795 for_each_uabi_engine(engine, i915) {
796 struct igt_live_test t;
799 if (!intel_engine_has_preemption(engine))
802 err = igt_live_test_begin(&t, i915, __func__, engine->name);
806 err = __cancel_inactive(engine);
808 err = __cancel_active(engine);
810 err = __cancel_completed(engine);
812 err2 = igt_live_test_end(&t);
822 static struct i915_vma *empty_batch(struct drm_i915_private *i915)
824 struct drm_i915_gem_object *obj;
825 struct i915_vma *vma;
829 obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
831 return ERR_CAST(obj);
833 cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB);
839 *cmd = MI_BATCH_BUFFER_END;
841 __i915_gem_object_flush_map(obj, 0, 64);
842 i915_gem_object_unpin_map(obj);
844 intel_gt_chipset_flush(to_gt(i915));
846 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
852 err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL);
856 /* Force the wait wait now to avoid including it in the benchmark */
857 err = i915_vma_sync(vma);
866 i915_gem_object_put(obj);
870 static struct i915_request *
871 empty_request(struct intel_engine_cs *engine,
872 struct i915_vma *batch)
874 struct i915_request *request;
877 request = i915_request_create(engine->kernel_context);
881 err = engine->emit_bb_start(request,
884 I915_DISPATCH_SECURE);
888 i915_request_get(request);
890 i915_request_add(request);
891 return err ? ERR_PTR(err) : request;
894 static int live_empty_request(void *arg)
896 struct drm_i915_private *i915 = arg;
897 struct intel_engine_cs *engine;
898 struct igt_live_test t;
899 struct i915_vma *batch;
903 * Submit various sized batches of empty requests, to each engine
904 * (individually), and wait for the batch to complete. We can check
905 * the overhead of submitting requests to the hardware.
908 batch = empty_batch(i915);
910 return PTR_ERR(batch);
912 for_each_uabi_engine(engine, i915) {
913 IGT_TIMEOUT(end_time);
914 struct i915_request *request;
915 unsigned long n, prime;
916 ktime_t times[2] = {};
918 err = igt_live_test_begin(&t, i915, __func__, engine->name);
922 intel_engine_pm_get(engine);
924 /* Warmup / preload */
925 request = empty_request(engine, batch);
926 if (IS_ERR(request)) {
927 err = PTR_ERR(request);
928 intel_engine_pm_put(engine);
931 i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
933 for_each_prime_number_from(prime, 1, 8192) {
934 times[1] = ktime_get_raw();
936 for (n = 0; n < prime; n++) {
937 i915_request_put(request);
938 request = empty_request(engine, batch);
939 if (IS_ERR(request)) {
940 err = PTR_ERR(request);
941 intel_engine_pm_put(engine);
945 i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
947 times[1] = ktime_sub(ktime_get_raw(), times[1]);
951 if (__igt_timeout(end_time, NULL))
954 i915_request_put(request);
955 intel_engine_pm_put(engine);
957 err = igt_live_test_end(&t);
961 pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
963 ktime_to_ns(times[0]),
964 prime, div64_u64(ktime_to_ns(times[1]), prime));
968 i915_vma_unpin(batch);
973 static struct i915_vma *recursive_batch(struct drm_i915_private *i915)
975 struct drm_i915_gem_object *obj;
976 const int ver = GRAPHICS_VER(i915);
977 struct i915_vma *vma;
981 obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
983 return ERR_CAST(obj);
985 vma = i915_vma_instance(obj, to_gt(i915)->vm, NULL);
991 err = i915_vma_pin(vma, 0, 0, PIN_USER);
995 cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
1002 *cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
1003 *cmd++ = lower_32_bits(vma->node.start);
1004 *cmd++ = upper_32_bits(vma->node.start);
1005 } else if (ver >= 6) {
1006 *cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
1007 *cmd++ = lower_32_bits(vma->node.start);
1009 *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1010 *cmd++ = lower_32_bits(vma->node.start);
1012 *cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
1014 __i915_gem_object_flush_map(obj, 0, 64);
1015 i915_gem_object_unpin_map(obj);
1017 intel_gt_chipset_flush(to_gt(i915));
1022 i915_gem_object_put(obj);
1023 return ERR_PTR(err);
1026 static int recursive_batch_resolve(struct i915_vma *batch)
1030 cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
1032 return PTR_ERR(cmd);
1034 *cmd = MI_BATCH_BUFFER_END;
1036 __i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
1037 i915_gem_object_unpin_map(batch->obj);
1039 intel_gt_chipset_flush(batch->vm->gt);
1044 static int live_all_engines(void *arg)
1046 struct drm_i915_private *i915 = arg;
1047 const unsigned int nengines = num_uabi_engines(i915);
1048 struct intel_engine_cs *engine;
1049 struct i915_request **request;
1050 struct igt_live_test t;
1051 struct i915_vma *batch;
1056 * Check we can submit requests to all engines simultaneously. We
1057 * send a recursive batch to each engine - checking that we don't
1058 * block doing so, and that they don't complete too soon.
1061 request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1065 err = igt_live_test_begin(&t, i915, __func__, "");
1069 batch = recursive_batch(i915);
1070 if (IS_ERR(batch)) {
1071 err = PTR_ERR(batch);
1072 pr_err("%s: Unable to create batch, err=%d\n", __func__, err);
1076 i915_vma_lock(batch);
1079 for_each_uabi_engine(engine, i915) {
1080 request[idx] = intel_engine_create_kernel_request(engine);
1081 if (IS_ERR(request[idx])) {
1082 err = PTR_ERR(request[idx]);
1083 pr_err("%s: Request allocation failed with err=%d\n",
1088 err = i915_request_await_object(request[idx], batch->obj, 0);
1090 err = i915_vma_move_to_active(batch, request[idx], 0);
1093 err = engine->emit_bb_start(request[idx],
1098 request[idx]->batch = batch;
1100 i915_request_get(request[idx]);
1101 i915_request_add(request[idx]);
1105 i915_vma_unlock(batch);
1108 for_each_uabi_engine(engine, i915) {
1109 if (i915_request_completed(request[idx])) {
1110 pr_err("%s(%s): request completed too early!\n",
1111 __func__, engine->name);
1118 err = recursive_batch_resolve(batch);
1120 pr_err("%s: failed to resolve batch, err=%d\n", __func__, err);
1125 for_each_uabi_engine(engine, i915) {
1128 timeout = i915_request_wait(request[idx], 0,
1129 MAX_SCHEDULE_TIMEOUT);
1132 pr_err("%s: error waiting for request on %s, err=%d\n",
1133 __func__, engine->name, err);
1137 GEM_BUG_ON(!i915_request_completed(request[idx]));
1138 i915_request_put(request[idx]);
1139 request[idx] = NULL;
1143 err = igt_live_test_end(&t);
1147 for_each_uabi_engine(engine, i915) {
1149 i915_request_put(request[idx]);
1152 i915_vma_unpin(batch);
1153 i915_vma_put(batch);
1159 static int live_sequential_engines(void *arg)
1161 struct drm_i915_private *i915 = arg;
1162 const unsigned int nengines = num_uabi_engines(i915);
1163 struct i915_request **request;
1164 struct i915_request *prev = NULL;
1165 struct intel_engine_cs *engine;
1166 struct igt_live_test t;
1171 * Check we can submit requests to all engines sequentially, such
1172 * that each successive request waits for the earlier ones. This
1173 * tests that we don't execute requests out of order, even though
1174 * they are running on independent engines.
1177 request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1181 err = igt_live_test_begin(&t, i915, __func__, "");
1186 for_each_uabi_engine(engine, i915) {
1187 struct i915_vma *batch;
1189 batch = recursive_batch(i915);
1190 if (IS_ERR(batch)) {
1191 err = PTR_ERR(batch);
1192 pr_err("%s: Unable to create batch for %s, err=%d\n",
1193 __func__, engine->name, err);
1197 i915_vma_lock(batch);
1198 request[idx] = intel_engine_create_kernel_request(engine);
1199 if (IS_ERR(request[idx])) {
1200 err = PTR_ERR(request[idx]);
1201 pr_err("%s: Request allocation failed for %s with err=%d\n",
1202 __func__, engine->name, err);
1207 err = i915_request_await_dma_fence(request[idx],
1210 i915_request_add(request[idx]);
1211 pr_err("%s: Request await failed for %s with err=%d\n",
1212 __func__, engine->name, err);
1217 err = i915_request_await_object(request[idx],
1220 err = i915_vma_move_to_active(batch, request[idx], 0);
1223 err = engine->emit_bb_start(request[idx],
1228 request[idx]->batch = batch;
1230 i915_request_get(request[idx]);
1231 i915_request_add(request[idx]);
1233 prev = request[idx];
1237 i915_vma_unlock(batch);
1243 for_each_uabi_engine(engine, i915) {
1246 if (i915_request_completed(request[idx])) {
1247 pr_err("%s(%s): request completed too early!\n",
1248 __func__, engine->name);
1253 err = recursive_batch_resolve(request[idx]->batch);
1255 pr_err("%s: failed to resolve batch, err=%d\n",
1260 timeout = i915_request_wait(request[idx], 0,
1261 MAX_SCHEDULE_TIMEOUT);
1264 pr_err("%s: error waiting for request on %s, err=%d\n",
1265 __func__, engine->name, err);
1269 GEM_BUG_ON(!i915_request_completed(request[idx]));
1273 err = igt_live_test_end(&t);
1277 for_each_uabi_engine(engine, i915) {
1283 cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj,
1286 *cmd = MI_BATCH_BUFFER_END;
1288 __i915_gem_object_flush_map(request[idx]->batch->obj,
1290 i915_gem_object_unpin_map(request[idx]->batch->obj);
1292 intel_gt_chipset_flush(engine->gt);
1295 i915_vma_put(request[idx]->batch);
1296 i915_request_put(request[idx]);
1304 static int __live_parallel_engine1(void *arg)
1306 struct intel_engine_cs *engine = arg;
1307 IGT_TIMEOUT(end_time);
1308 unsigned long count;
1312 intel_engine_pm_get(engine);
1314 struct i915_request *rq;
1316 rq = i915_request_create(engine->kernel_context);
1322 i915_request_get(rq);
1323 i915_request_add(rq);
1326 if (i915_request_wait(rq, 0, HZ) < 0)
1328 i915_request_put(rq);
1333 } while (!__igt_timeout(end_time, NULL));
1334 intel_engine_pm_put(engine);
1336 pr_info("%s: %lu request + sync\n", engine->name, count);
1340 static int __live_parallel_engineN(void *arg)
1342 struct intel_engine_cs *engine = arg;
1343 IGT_TIMEOUT(end_time);
1344 unsigned long count;
1348 intel_engine_pm_get(engine);
1350 struct i915_request *rq;
1352 rq = i915_request_create(engine->kernel_context);
1358 i915_request_add(rq);
1360 } while (!__igt_timeout(end_time, NULL));
1361 intel_engine_pm_put(engine);
1363 pr_info("%s: %lu requests\n", engine->name, count);
1367 static bool wake_all(struct drm_i915_private *i915)
1369 if (atomic_dec_and_test(&i915->selftest.counter)) {
1370 wake_up_var(&i915->selftest.counter);
1377 static int wait_for_all(struct drm_i915_private *i915)
1382 if (wait_var_event_timeout(&i915->selftest.counter,
1383 !atomic_read(&i915->selftest.counter),
1384 i915_selftest.timeout_jiffies))
1390 static int __live_parallel_spin(void *arg)
1392 struct intel_engine_cs *engine = arg;
1393 struct igt_spinner spin;
1394 struct i915_request *rq;
1398 * Create a spinner running for eternity on each engine. If a second
1399 * spinner is incorrectly placed on the same engine, it will not be
1400 * able to start in time.
1403 if (igt_spinner_init(&spin, engine->gt)) {
1404 wake_all(engine->i915);
1408 intel_engine_pm_get(engine);
1409 rq = igt_spinner_create_request(&spin,
1410 engine->kernel_context,
1411 MI_NOOP); /* no preemption */
1412 intel_engine_pm_put(engine);
1417 wake_all(engine->i915);
1421 i915_request_get(rq);
1422 i915_request_add(rq);
1423 if (igt_wait_for_spinner(&spin, rq)) {
1424 /* Occupy this engine for the whole test */
1425 err = wait_for_all(engine->i915);
1427 pr_err("Failed to start spinner on %s\n", engine->name);
1430 igt_spinner_end(&spin);
1432 if (err == 0 && i915_request_wait(rq, 0, HZ) < 0)
1434 i915_request_put(rq);
1437 igt_spinner_fini(&spin);
1441 static int live_parallel_engines(void *arg)
1443 struct drm_i915_private *i915 = arg;
1444 static int (* const func[])(void *arg) = {
1445 __live_parallel_engine1,
1446 __live_parallel_engineN,
1447 __live_parallel_spin,
1450 const unsigned int nengines = num_uabi_engines(i915);
1451 struct intel_engine_cs *engine;
1452 int (* const *fn)(void *arg);
1453 struct task_struct **tsk;
1457 * Check we can submit requests to all engines concurrently. This
1458 * tests that we load up the system maximally.
1461 tsk = kcalloc(nengines, sizeof(*tsk), GFP_KERNEL);
1465 for (fn = func; !err && *fn; fn++) {
1466 char name[KSYM_NAME_LEN];
1467 struct igt_live_test t;
1470 snprintf(name, sizeof(name), "%ps", *fn);
1471 err = igt_live_test_begin(&t, i915, __func__, name);
1475 atomic_set(&i915->selftest.counter, nengines);
1478 for_each_uabi_engine(engine, i915) {
1479 tsk[idx] = kthread_run(*fn, engine,
1482 if (IS_ERR(tsk[idx])) {
1483 err = PTR_ERR(tsk[idx]);
1486 get_task_struct(tsk[idx++]);
1489 yield(); /* start all threads before we kthread_stop() */
1492 for_each_uabi_engine(engine, i915) {
1495 if (IS_ERR(tsk[idx]))
1498 status = kthread_stop(tsk[idx]);
1502 put_task_struct(tsk[idx++]);
1505 if (igt_live_test_end(&t))
1514 max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
1516 struct i915_request *rq;
1520 * Before execlists, all contexts share the same ringbuffer. With
1521 * execlists, each context/engine has a separate ringbuffer and
1522 * for the purposes of this test, inexhaustible.
1524 * For the global ringbuffer though, we have to be very careful
1525 * that we do not wrap while preventing the execution of requests
1526 * with a unsignaled fence.
1528 if (HAS_EXECLISTS(ctx->i915))
1531 rq = igt_request_alloc(ctx, engine);
1537 ret = rq->ring->size - rq->reserved_space;
1538 i915_request_add(rq);
1540 sz = rq->ring->emit - rq->head;
1542 sz += rq->ring->size;
1544 ret /= 2; /* leave half spare, in case of emergency! */
1550 static int live_breadcrumbs_smoketest(void *arg)
1552 struct drm_i915_private *i915 = arg;
1553 const unsigned int nengines = num_uabi_engines(i915);
1554 const unsigned int ncpus = num_online_cpus();
1555 unsigned long num_waits, num_fences;
1556 struct intel_engine_cs *engine;
1557 struct task_struct **threads;
1558 struct igt_live_test live;
1559 intel_wakeref_t wakeref;
1560 struct smoketest *smoke;
1561 unsigned int n, idx;
1566 * Smoketest our breadcrumb/signal handling for requests across multiple
1567 * threads. A very simple test to only catch the most egregious of bugs.
1568 * See __igt_breadcrumbs_smoketest();
1570 * On real hardware this time.
1573 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1575 file = mock_file(i915);
1577 ret = PTR_ERR(file);
1581 smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
1587 threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
1593 smoke[0].request_alloc = __live_request_alloc;
1594 smoke[0].ncontexts = 64;
1595 smoke[0].contexts = kcalloc(smoke[0].ncontexts,
1596 sizeof(*smoke[0].contexts),
1598 if (!smoke[0].contexts) {
1603 for (n = 0; n < smoke[0].ncontexts; n++) {
1604 smoke[0].contexts[n] = live_context(i915, file);
1605 if (IS_ERR(smoke[0].contexts[n])) {
1606 ret = PTR_ERR(smoke[0].contexts[n]);
1611 ret = igt_live_test_begin(&live, i915, __func__, "");
1616 for_each_uabi_engine(engine, i915) {
1617 smoke[idx] = smoke[0];
1618 smoke[idx].engine = engine;
1619 smoke[idx].max_batch =
1620 max_batches(smoke[0].contexts[0], engine);
1621 if (smoke[idx].max_batch < 0) {
1622 ret = smoke[idx].max_batch;
1625 /* One ring interleaved between requests from all cpus */
1626 smoke[idx].max_batch /= num_online_cpus() + 1;
1627 pr_debug("Limiting batches to %d requests on %s\n",
1628 smoke[idx].max_batch, engine->name);
1630 for (n = 0; n < ncpus; n++) {
1631 struct task_struct *tsk;
1633 tsk = kthread_run(__igt_breadcrumbs_smoketest,
1634 &smoke[idx], "igt/%d.%d", idx, n);
1640 get_task_struct(tsk);
1641 threads[idx * ncpus + n] = tsk;
1647 yield(); /* start all threads before we begin */
1648 msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
1654 for_each_uabi_engine(engine, i915) {
1655 for (n = 0; n < ncpus; n++) {
1656 struct task_struct *tsk = threads[idx * ncpus + n];
1662 err = kthread_stop(tsk);
1663 if (err < 0 && !ret)
1666 put_task_struct(tsk);
1669 num_waits += atomic_long_read(&smoke[idx].num_waits);
1670 num_fences += atomic_long_read(&smoke[idx].num_fences);
1673 pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
1674 num_waits, num_fences, idx, ncpus);
1676 ret = igt_live_test_end(&live) ?: ret;
1678 kfree(smoke[0].contexts);
1686 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1691 int i915_request_live_selftests(struct drm_i915_private *i915)
1693 static const struct i915_subtest tests[] = {
1694 SUBTEST(live_nop_request),
1695 SUBTEST(live_all_engines),
1696 SUBTEST(live_sequential_engines),
1697 SUBTEST(live_parallel_engines),
1698 SUBTEST(live_empty_request),
1699 SUBTEST(live_cancel_request),
1700 SUBTEST(live_breadcrumbs_smoketest),
1703 if (intel_gt_is_wedged(to_gt(i915)))
1706 return i915_subtests(tests, i915);
1709 static int switch_to_kernel_sync(struct intel_context *ce, int err)
1711 struct i915_request *rq;
1712 struct dma_fence *fence;
1714 rq = intel_engine_create_kernel_request(ce->engine);
1718 fence = i915_active_fence_get(&ce->timeline->last_request);
1720 i915_request_await_dma_fence(rq, fence);
1721 dma_fence_put(fence);
1724 rq = i915_request_get(rq);
1725 i915_request_add(rq);
1726 if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
1728 i915_request_put(rq);
1730 while (!err && !intel_engine_is_idle(ce->engine))
1731 intel_engine_flush_submission(ce->engine);
1737 struct intel_engine_cs *engine;
1738 unsigned long count;
1744 struct perf_series {
1745 struct drm_i915_private *i915;
1746 unsigned int nengines;
1747 struct intel_context *ce[];
1750 static int cmp_u32(const void *A, const void *B)
1752 const u32 *a = A, *b = B;
1757 static u32 trifilter(u32 *a)
1762 sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
1764 sum = mul_u32_u32(a[2], 2);
1768 GEM_BUG_ON(sum > U32_MAX);
1773 static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
1775 u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles);
1777 return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
1780 static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
1782 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
1783 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
1790 static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
1792 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1800 static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
1802 *cs++ = MI_SEMAPHORE_WAIT |
1803 MI_SEMAPHORE_GLOBAL_GTT |
1813 static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
1815 return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
1818 static void semaphore_set(u32 *sema, u32 value)
1820 WRITE_ONCE(*sema, value);
1821 wmb(); /* flush the update to the cache, and beyond */
1824 static u32 *hwsp_scratch(const struct intel_context *ce)
1826 return memset32(ce->engine->status_page.addr + 1000, 0, 21);
1829 static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
1831 return (i915_ggtt_offset(ce->engine->status_page.vma) +
1832 offset_in_page(dw));
1835 static int measure_semaphore_response(struct intel_context *ce)
1837 u32 *sema = hwsp_scratch(ce);
1838 const u32 offset = hwsp_offset(ce, sema);
1839 u32 elapsed[TF_COUNT], cycles;
1840 struct i915_request *rq;
1846 * Measure how many cycles it takes for the HW to detect the change
1847 * in a semaphore value.
1849 * A: read CS_TIMESTAMP from CPU
1851 * B: read CS_TIMESTAMP on GPU
1853 * Semaphore latency: B - A
1856 semaphore_set(sema, -1);
1858 rq = i915_request_create(ce);
1862 cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
1864 i915_request_add(rq);
1869 cs = emit_store_dw(cs, offset, 0);
1870 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1871 cs = emit_semaphore_poll_until(cs, offset, i);
1872 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
1873 cs = emit_store_dw(cs, offset, 0);
1876 intel_ring_advance(rq, cs);
1877 i915_request_add(rq);
1879 if (wait_for(READ_ONCE(*sema) == 0, 50)) {
1884 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1886 cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
1887 semaphore_set(sema, i);
1890 if (wait_for(READ_ONCE(*sema) == 0, 50)) {
1895 elapsed[i - 1] = sema[i] - cycles;
1898 cycles = trifilter(elapsed);
1899 pr_info("%s: semaphore response %d cycles, %lluns\n",
1900 ce->engine->name, cycles >> TF_BIAS,
1901 cycles_to_ns(ce->engine, cycles));
1903 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
1906 intel_gt_set_wedged(ce->engine->gt);
1910 static int measure_idle_dispatch(struct intel_context *ce)
1912 u32 *sema = hwsp_scratch(ce);
1913 const u32 offset = hwsp_offset(ce, sema);
1914 u32 elapsed[TF_COUNT], cycles;
1920 * Measure how long it takes for us to submit a request while the
1921 * engine is idle, but is resting in our context.
1923 * A: read CS_TIMESTAMP from CPU
1925 * B: read CS_TIMESTAMP on GPU
1927 * Submission latency: B - A
1930 for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
1931 struct i915_request *rq;
1933 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
1937 rq = i915_request_create(ce);
1943 cs = intel_ring_begin(rq, 4);
1945 i915_request_add(rq);
1950 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
1952 intel_ring_advance(rq, cs);
1956 elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
1957 i915_request_add(rq);
1962 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
1966 for (i = 0; i < ARRAY_SIZE(elapsed); i++)
1967 elapsed[i] = sema[i] - elapsed[i];
1969 cycles = trifilter(elapsed);
1970 pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
1971 ce->engine->name, cycles >> TF_BIAS,
1972 cycles_to_ns(ce->engine, cycles));
1974 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
1977 intel_gt_set_wedged(ce->engine->gt);
1981 static int measure_busy_dispatch(struct intel_context *ce)
1983 u32 *sema = hwsp_scratch(ce);
1984 const u32 offset = hwsp_offset(ce, sema);
1985 u32 elapsed[TF_COUNT + 1], cycles;
1991 * Measure how long it takes for us to submit a request while the
1992 * engine is busy, polling on a semaphore in our context. With
1993 * direct submission, this will include the cost of a lite restore.
1995 * A: read CS_TIMESTAMP from CPU
1997 * B: read CS_TIMESTAMP on GPU
1999 * Submission latency: B - A
2002 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2003 struct i915_request *rq;
2005 rq = i915_request_create(ce);
2011 cs = intel_ring_begin(rq, 12);
2013 i915_request_add(rq);
2018 cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2019 cs = emit_semaphore_poll_until(cs, offset, i);
2020 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2022 intel_ring_advance(rq, cs);
2024 if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
2031 elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2032 i915_request_add(rq);
2034 semaphore_set(sema, i - 1);
2038 wait_for(READ_ONCE(sema[i - 1]), 500);
2039 semaphore_set(sema, i - 1);
2041 for (i = 1; i <= TF_COUNT; i++) {
2042 GEM_BUG_ON(sema[i] == -1);
2043 elapsed[i - 1] = sema[i] - elapsed[i];
2046 cycles = trifilter(elapsed);
2047 pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
2048 ce->engine->name, cycles >> TF_BIAS,
2049 cycles_to_ns(ce->engine, cycles));
2051 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2054 intel_gt_set_wedged(ce->engine->gt);
2058 static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
2061 i915_ggtt_offset(engine->status_page.vma) +
2062 offset_in_page(sema);
2063 struct i915_request *rq;
2066 rq = i915_request_create(engine->kernel_context);
2070 cs = intel_ring_begin(rq, 4);
2072 i915_request_add(rq);
2076 cs = emit_semaphore_poll(cs, mode, value, offset);
2078 intel_ring_advance(rq, cs);
2079 i915_request_add(rq);
2084 static int measure_inter_request(struct intel_context *ce)
2086 u32 *sema = hwsp_scratch(ce);
2087 const u32 offset = hwsp_offset(ce, sema);
2088 u32 elapsed[TF_COUNT + 1], cycles;
2089 struct i915_sw_fence *submit;
2093 * Measure how long it takes to advance from one request into the
2094 * next. Between each request we flush the GPU caches to memory,
2095 * update the breadcrumbs, and then invalidate those caches.
2096 * We queue up all the requests to be submitted in one batch so
2097 * it should be one set of contiguous measurements.
2099 * A: read CS_TIMESTAMP on GPU
2101 * B: read CS_TIMESTAMP on GPU
2103 * Request latency: B - A
2106 err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2110 submit = heap_fence_create(GFP_KERNEL);
2112 semaphore_set(sema, 1);
2116 intel_engine_flush_submission(ce->engine);
2117 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2118 struct i915_request *rq;
2121 rq = i915_request_create(ce);
2127 err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
2131 i915_request_add(rq);
2135 cs = intel_ring_begin(rq, 4);
2137 i915_request_add(rq);
2142 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2144 intel_ring_advance(rq, cs);
2145 i915_request_add(rq);
2147 i915_sw_fence_commit(submit);
2148 intel_engine_flush_submission(ce->engine);
2149 heap_fence_put(submit);
2151 semaphore_set(sema, 1);
2152 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2156 for (i = 1; i <= TF_COUNT; i++)
2157 elapsed[i - 1] = sema[i + 1] - sema[i];
2159 cycles = trifilter(elapsed);
2160 pr_info("%s: inter-request latency %d cycles, %lluns\n",
2161 ce->engine->name, cycles >> TF_BIAS,
2162 cycles_to_ns(ce->engine, cycles));
2164 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2167 i915_sw_fence_commit(submit);
2168 heap_fence_put(submit);
2169 semaphore_set(sema, 1);
2171 intel_gt_set_wedged(ce->engine->gt);
2175 static int measure_context_switch(struct intel_context *ce)
2177 u32 *sema = hwsp_scratch(ce);
2178 const u32 offset = hwsp_offset(ce, sema);
2179 struct i915_request *fence = NULL;
2180 u32 elapsed[TF_COUNT + 1], cycles;
2185 * Measure how long it takes to advance from one request in one
2186 * context to a request in another context. This allows us to
2187 * measure how long the context save/restore take, along with all
2188 * the inter-context setup we require.
2190 * A: read CS_TIMESTAMP on GPU
2192 * B: read CS_TIMESTAMP on GPU
2194 * Context switch latency: B - A
2197 err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2201 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2202 struct intel_context *arr[] = {
2203 ce, ce->engine->kernel_context
2205 u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
2207 for (j = 0; j < ARRAY_SIZE(arr); j++) {
2208 struct i915_request *rq;
2210 rq = i915_request_create(arr[j]);
2217 err = i915_request_await_dma_fence(rq,
2220 i915_request_add(rq);
2225 cs = intel_ring_begin(rq, 4);
2227 i915_request_add(rq);
2232 cs = emit_timestamp_store(cs, ce, addr);
2233 addr += sizeof(u32);
2235 intel_ring_advance(rq, cs);
2237 i915_request_put(fence);
2238 fence = i915_request_get(rq);
2240 i915_request_add(rq);
2243 i915_request_put(fence);
2244 intel_engine_flush_submission(ce->engine);
2246 semaphore_set(sema, 1);
2247 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2251 for (i = 1; i <= TF_COUNT; i++)
2252 elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
2254 cycles = trifilter(elapsed);
2255 pr_info("%s: context switch latency %d cycles, %lluns\n",
2256 ce->engine->name, cycles >> TF_BIAS,
2257 cycles_to_ns(ce->engine, cycles));
2259 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2262 i915_request_put(fence);
2263 semaphore_set(sema, 1);
2265 intel_gt_set_wedged(ce->engine->gt);
2269 static int measure_preemption(struct intel_context *ce)
2271 u32 *sema = hwsp_scratch(ce);
2272 const u32 offset = hwsp_offset(ce, sema);
2273 u32 elapsed[TF_COUNT], cycles;
2279 * We measure two latencies while triggering preemption. The first
2280 * latency is how long it takes for us to submit a preempting request.
2281 * The second latency is how it takes for us to return from the
2282 * preemption back to the original context.
2284 * A: read CS_TIMESTAMP from CPU
2286 * B: read CS_TIMESTAMP on GPU (in preempting context)
2288 * C: read CS_TIMESTAMP on GPU (in original context)
2290 * Preemption dispatch latency: B - A
2291 * Preemption switch latency: C - B
2294 if (!intel_engine_has_preemption(ce->engine))
2297 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2298 u32 addr = offset + 2 * i * sizeof(u32);
2299 struct i915_request *rq;
2301 rq = i915_request_create(ce);
2307 cs = intel_ring_begin(rq, 12);
2309 i915_request_add(rq);
2314 cs = emit_store_dw(cs, addr, -1);
2315 cs = emit_semaphore_poll_until(cs, offset, i);
2316 cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
2318 intel_ring_advance(rq, cs);
2319 i915_request_add(rq);
2321 if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
2326 rq = i915_request_create(ce->engine->kernel_context);
2332 cs = intel_ring_begin(rq, 8);
2334 i915_request_add(rq);
2339 cs = emit_timestamp_store(cs, ce, addr);
2340 cs = emit_store_dw(cs, offset, i);
2342 intel_ring_advance(rq, cs);
2343 rq->sched.attr.priority = I915_PRIORITY_BARRIER;
2345 elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2346 i915_request_add(rq);
2349 if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
2354 for (i = 1; i <= TF_COUNT; i++)
2355 elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
2357 cycles = trifilter(elapsed);
2358 pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
2359 ce->engine->name, cycles >> TF_BIAS,
2360 cycles_to_ns(ce->engine, cycles));
2362 for (i = 1; i <= TF_COUNT; i++)
2363 elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
2365 cycles = trifilter(elapsed);
2366 pr_info("%s: preemption switch latency %d cycles, %lluns\n",
2367 ce->engine->name, cycles >> TF_BIAS,
2368 cycles_to_ns(ce->engine, cycles));
2370 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2373 intel_gt_set_wedged(ce->engine->gt);
2378 struct dma_fence_cb base;
2382 static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
2384 struct signal_cb *s = container_of(cb, typeof(*s), base);
2386 smp_store_mb(s->seen, true); /* be safe, be strong */
2389 static int measure_completion(struct intel_context *ce)
2391 u32 *sema = hwsp_scratch(ce);
2392 const u32 offset = hwsp_offset(ce, sema);
2393 u32 elapsed[TF_COUNT], cycles;
2399 * Measure how long it takes for the signal (interrupt) to be
2400 * sent from the GPU to be processed by the CPU.
2402 * A: read CS_TIMESTAMP on GPU
2404 * B: read CS_TIMESTAMP from CPU
2406 * Completion latency: B - A
2409 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2410 struct signal_cb cb = { .seen = false };
2411 struct i915_request *rq;
2413 rq = i915_request_create(ce);
2419 cs = intel_ring_begin(rq, 12);
2421 i915_request_add(rq);
2426 cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2427 cs = emit_semaphore_poll_until(cs, offset, i);
2428 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2430 intel_ring_advance(rq, cs);
2432 dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
2433 i915_request_add(rq);
2435 intel_engine_flush_submission(ce->engine);
2436 if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
2442 semaphore_set(sema, i);
2443 while (!READ_ONCE(cb.seen))
2446 elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2450 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2454 for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2455 GEM_BUG_ON(sema[i + 1] == -1);
2456 elapsed[i] = elapsed[i] - sema[i + 1];
2459 cycles = trifilter(elapsed);
2460 pr_info("%s: completion latency %d cycles, %lluns\n",
2461 ce->engine->name, cycles >> TF_BIAS,
2462 cycles_to_ns(ce->engine, cycles));
2464 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2467 intel_gt_set_wedged(ce->engine->gt);
2471 static void rps_pin(struct intel_gt *gt)
2473 /* Pin the frequency to max */
2474 atomic_inc(>->rps.num_waiters);
2475 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
2477 mutex_lock(>->rps.lock);
2478 intel_rps_set(>->rps, gt->rps.max_freq);
2479 mutex_unlock(>->rps.lock);
2482 static void rps_unpin(struct intel_gt *gt)
2484 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
2485 atomic_dec(>->rps.num_waiters);
2488 static int perf_request_latency(void *arg)
2490 struct drm_i915_private *i915 = arg;
2491 struct intel_engine_cs *engine;
2492 struct pm_qos_request qos;
2495 if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */
2498 cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2500 for_each_uabi_engine(engine, i915) {
2501 struct intel_context *ce;
2503 ce = intel_context_create(engine);
2509 err = intel_context_pin(ce);
2511 intel_context_put(ce);
2515 st_engine_heartbeat_disable(engine);
2516 rps_pin(engine->gt);
2519 err = measure_semaphore_response(ce);
2521 err = measure_idle_dispatch(ce);
2523 err = measure_busy_dispatch(ce);
2525 err = measure_inter_request(ce);
2527 err = measure_context_switch(ce);
2529 err = measure_preemption(ce);
2531 err = measure_completion(ce);
2533 rps_unpin(engine->gt);
2534 st_engine_heartbeat_enable(engine);
2536 intel_context_unpin(ce);
2537 intel_context_put(ce);
2543 if (igt_flush_test(i915))
2546 cpu_latency_qos_remove_request(&qos);
2550 static int s_sync0(void *arg)
2552 struct perf_series *ps = arg;
2553 IGT_TIMEOUT(end_time);
2554 unsigned int idx = 0;
2557 GEM_BUG_ON(!ps->nengines);
2559 struct i915_request *rq;
2561 rq = i915_request_create(ps->ce[idx]);
2567 i915_request_get(rq);
2568 i915_request_add(rq);
2570 if (i915_request_wait(rq, 0, HZ / 5) < 0)
2572 i915_request_put(rq);
2576 if (++idx == ps->nengines)
2578 } while (!__igt_timeout(end_time, NULL));
2583 static int s_sync1(void *arg)
2585 struct perf_series *ps = arg;
2586 struct i915_request *prev = NULL;
2587 IGT_TIMEOUT(end_time);
2588 unsigned int idx = 0;
2591 GEM_BUG_ON(!ps->nengines);
2593 struct i915_request *rq;
2595 rq = i915_request_create(ps->ce[idx]);
2601 i915_request_get(rq);
2602 i915_request_add(rq);
2604 if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
2606 i915_request_put(prev);
2611 if (++idx == ps->nengines)
2613 } while (!__igt_timeout(end_time, NULL));
2614 i915_request_put(prev);
2619 static int s_many(void *arg)
2621 struct perf_series *ps = arg;
2622 IGT_TIMEOUT(end_time);
2623 unsigned int idx = 0;
2625 GEM_BUG_ON(!ps->nengines);
2627 struct i915_request *rq;
2629 rq = i915_request_create(ps->ce[idx]);
2633 i915_request_add(rq);
2635 if (++idx == ps->nengines)
2637 } while (!__igt_timeout(end_time, NULL));
2642 static int perf_series_engines(void *arg)
2644 struct drm_i915_private *i915 = arg;
2645 static int (* const func[])(void *arg) = {
2651 const unsigned int nengines = num_uabi_engines(i915);
2652 struct intel_engine_cs *engine;
2653 int (* const *fn)(void *arg);
2654 struct pm_qos_request qos;
2655 struct perf_stats *stats;
2656 struct perf_series *ps;
2660 stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
2664 ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
2670 cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2673 ps->nengines = nengines;
2676 for_each_uabi_engine(engine, i915) {
2677 struct intel_context *ce;
2679 ce = intel_context_create(engine);
2685 err = intel_context_pin(ce);
2687 intel_context_put(ce);
2693 GEM_BUG_ON(idx != ps->nengines);
2695 for (fn = func; *fn && !err; fn++) {
2696 char name[KSYM_NAME_LEN];
2697 struct igt_live_test t;
2699 snprintf(name, sizeof(name), "%ps", *fn);
2700 err = igt_live_test_begin(&t, i915, __func__, name);
2704 for (idx = 0; idx < nengines; idx++) {
2705 struct perf_stats *p =
2706 memset(&stats[idx], 0, sizeof(stats[idx]));
2707 struct intel_context *ce = ps->ce[idx];
2709 p->engine = ps->ce[idx]->engine;
2710 intel_engine_pm_get(p->engine);
2712 if (intel_engine_supports_stats(p->engine))
2713 p->busy = intel_engine_get_busy_time(p->engine,
2716 p->time = ktime_get();
2717 p->runtime = -intel_context_get_total_runtime_ns(ce);
2721 if (igt_live_test_end(&t))
2724 for (idx = 0; idx < nengines; idx++) {
2725 struct perf_stats *p = &stats[idx];
2726 struct intel_context *ce = ps->ce[idx];
2727 int integer, decimal;
2731 p->busy = ktime_sub(intel_engine_get_busy_time(p->engine,
2736 p->time = ktime_sub(now, p->time);
2738 err = switch_to_kernel_sync(ce, err);
2739 p->runtime += intel_context_get_total_runtime_ns(ce);
2740 intel_engine_pm_put(p->engine);
2742 busy = 100 * ktime_to_ns(p->busy);
2743 dt = ktime_to_ns(p->time);
2745 integer = div64_u64(busy, dt);
2746 busy -= integer * dt;
2747 decimal = div64_u64(100 * busy, dt);
2753 pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
2754 name, p->engine->name, ce->timeline->seqno,
2756 div_u64(p->runtime, 1000 * 1000),
2757 div_u64(ktime_to_ns(p->time), 1000 * 1000));
2762 for (idx = 0; idx < nengines; idx++) {
2763 if (IS_ERR_OR_NULL(ps->ce[idx]))
2766 intel_context_unpin(ps->ce[idx]);
2767 intel_context_put(ps->ce[idx]);
2771 cpu_latency_qos_remove_request(&qos);
2776 static int p_sync0(void *arg)
2778 struct perf_stats *p = arg;
2779 struct intel_engine_cs *engine = p->engine;
2780 struct intel_context *ce;
2781 IGT_TIMEOUT(end_time);
2782 unsigned long count;
2786 ce = intel_context_create(engine);
2790 err = intel_context_pin(ce);
2792 intel_context_put(ce);
2796 if (intel_engine_supports_stats(engine)) {
2797 p->busy = intel_engine_get_busy_time(engine, &p->time);
2800 p->time = ktime_get();
2806 struct i915_request *rq;
2808 rq = i915_request_create(ce);
2814 i915_request_get(rq);
2815 i915_request_add(rq);
2818 if (i915_request_wait(rq, 0, HZ) < 0)
2820 i915_request_put(rq);
2825 } while (!__igt_timeout(end_time, NULL));
2830 p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
2832 p->time = ktime_sub(now, p->time);
2834 p->time = ktime_sub(ktime_get(), p->time);
2837 err = switch_to_kernel_sync(ce, err);
2838 p->runtime = intel_context_get_total_runtime_ns(ce);
2841 intel_context_unpin(ce);
2842 intel_context_put(ce);
2846 static int p_sync1(void *arg)
2848 struct perf_stats *p = arg;
2849 struct intel_engine_cs *engine = p->engine;
2850 struct i915_request *prev = NULL;
2851 struct intel_context *ce;
2852 IGT_TIMEOUT(end_time);
2853 unsigned long count;
2857 ce = intel_context_create(engine);
2861 err = intel_context_pin(ce);
2863 intel_context_put(ce);
2867 if (intel_engine_supports_stats(engine)) {
2868 p->busy = intel_engine_get_busy_time(engine, &p->time);
2871 p->time = ktime_get();
2877 struct i915_request *rq;
2879 rq = i915_request_create(ce);
2885 i915_request_get(rq);
2886 i915_request_add(rq);
2889 if (prev && i915_request_wait(prev, 0, HZ) < 0)
2891 i915_request_put(prev);
2897 } while (!__igt_timeout(end_time, NULL));
2898 i915_request_put(prev);
2903 p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
2905 p->time = ktime_sub(now, p->time);
2907 p->time = ktime_sub(ktime_get(), p->time);
2910 err = switch_to_kernel_sync(ce, err);
2911 p->runtime = intel_context_get_total_runtime_ns(ce);
2914 intel_context_unpin(ce);
2915 intel_context_put(ce);
2919 static int p_many(void *arg)
2921 struct perf_stats *p = arg;
2922 struct intel_engine_cs *engine = p->engine;
2923 struct intel_context *ce;
2924 IGT_TIMEOUT(end_time);
2925 unsigned long count;
2929 ce = intel_context_create(engine);
2933 err = intel_context_pin(ce);
2935 intel_context_put(ce);
2939 if (intel_engine_supports_stats(engine)) {
2940 p->busy = intel_engine_get_busy_time(engine, &p->time);
2943 p->time = ktime_get();
2949 struct i915_request *rq;
2951 rq = i915_request_create(ce);
2957 i915_request_add(rq);
2959 } while (!__igt_timeout(end_time, NULL));
2964 p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
2966 p->time = ktime_sub(now, p->time);
2968 p->time = ktime_sub(ktime_get(), p->time);
2971 err = switch_to_kernel_sync(ce, err);
2972 p->runtime = intel_context_get_total_runtime_ns(ce);
2975 intel_context_unpin(ce);
2976 intel_context_put(ce);
2980 static int perf_parallel_engines(void *arg)
2982 struct drm_i915_private *i915 = arg;
2983 static int (* const func[])(void *arg) = {
2989 const unsigned int nengines = num_uabi_engines(i915);
2990 struct intel_engine_cs *engine;
2991 int (* const *fn)(void *arg);
2992 struct pm_qos_request qos;
2994 struct perf_stats p;
2995 struct task_struct *tsk;
2999 engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
3003 cpu_latency_qos_add_request(&qos, 0);
3005 for (fn = func; *fn; fn++) {
3006 char name[KSYM_NAME_LEN];
3007 struct igt_live_test t;
3010 snprintf(name, sizeof(name), "%ps", *fn);
3011 err = igt_live_test_begin(&t, i915, __func__, name);
3015 atomic_set(&i915->selftest.counter, nengines);
3018 for_each_uabi_engine(engine, i915) {
3019 intel_engine_pm_get(engine);
3021 memset(&engines[idx].p, 0, sizeof(engines[idx].p));
3022 engines[idx].p.engine = engine;
3024 engines[idx].tsk = kthread_run(*fn, &engines[idx].p,
3025 "igt:%s", engine->name);
3026 if (IS_ERR(engines[idx].tsk)) {
3027 err = PTR_ERR(engines[idx].tsk);
3028 intel_engine_pm_put(engine);
3031 get_task_struct(engines[idx++].tsk);
3034 yield(); /* start all threads before we kthread_stop() */
3037 for_each_uabi_engine(engine, i915) {
3040 if (IS_ERR(engines[idx].tsk))
3043 status = kthread_stop(engines[idx].tsk);
3047 intel_engine_pm_put(engine);
3048 put_task_struct(engines[idx++].tsk);
3051 if (igt_live_test_end(&t))
3057 for_each_uabi_engine(engine, i915) {
3058 struct perf_stats *p = &engines[idx].p;
3059 u64 busy = 100 * ktime_to_ns(p->busy);
3060 u64 dt = ktime_to_ns(p->time);
3061 int integer, decimal;
3064 integer = div64_u64(busy, dt);
3065 busy -= integer * dt;
3066 decimal = div64_u64(100 * busy, dt);
3072 GEM_BUG_ON(engine != p->engine);
3073 pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
3074 name, engine->name, p->count, integer, decimal,
3075 div_u64(p->runtime, 1000 * 1000),
3076 div_u64(ktime_to_ns(p->time), 1000 * 1000));
3081 cpu_latency_qos_remove_request(&qos);
3086 int i915_request_perf_selftests(struct drm_i915_private *i915)
3088 static const struct i915_subtest tests[] = {
3089 SUBTEST(perf_request_latency),
3090 SUBTEST(perf_series_engines),
3091 SUBTEST(perf_parallel_engines),
3094 if (intel_gt_is_wedged(to_gt(i915)))
3097 return i915_subtests(tests, i915);