2 * Copyright © 2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/prime_numbers.h>
26 #include <linux/pm_qos.h>
27 #include <linux/sort.h>
29 #include "gem/i915_gem_internal.h"
30 #include "gem/i915_gem_pm.h"
31 #include "gem/selftests/mock_context.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_engine_pm.h"
35 #include "gt/intel_engine_user.h"
36 #include "gt/intel_gt.h"
37 #include "gt/intel_gt_clock_utils.h"
38 #include "gt/intel_gt_requests.h"
39 #include "gt/selftest_engine_heartbeat.h"
41 #include "i915_random.h"
42 #include "i915_selftest.h"
43 #include "igt_flush_test.h"
44 #include "igt_live_test.h"
45 #include "igt_spinner.h"
46 #include "lib_sw_fence.h"
49 #include "mock_gem_device.h"
51 static unsigned int num_uabi_engines(struct drm_i915_private *i915)
53 struct intel_engine_cs *engine;
57 for_each_uabi_engine(engine, i915)
63 static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
65 return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
68 static int igt_add_request(void *arg)
70 struct drm_i915_private *i915 = arg;
71 struct i915_request *request;
73 /* Basic preliminary test to create a request and let it loose! */
75 request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
79 i915_request_add(request);
84 static int igt_wait_request(void *arg)
86 const long T = HZ / 4;
87 struct drm_i915_private *i915 = arg;
88 struct i915_request *request;
91 /* Submit a request, then wait upon it */
93 request = mock_request(rcs0(i915)->kernel_context, T);
97 i915_request_get(request);
99 if (i915_request_wait(request, 0, 0) != -ETIME) {
100 pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
104 if (i915_request_wait(request, 0, T) != -ETIME) {
105 pr_err("request wait succeeded (expected timeout before submit!)\n");
109 if (i915_request_completed(request)) {
110 pr_err("request completed before submit!!\n");
114 i915_request_add(request);
116 if (i915_request_wait(request, 0, 0) != -ETIME) {
117 pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
121 if (i915_request_completed(request)) {
122 pr_err("request completed immediately!\n");
126 if (i915_request_wait(request, 0, T / 2) != -ETIME) {
127 pr_err("request wait succeeded (expected timeout!)\n");
131 if (i915_request_wait(request, 0, T) == -ETIME) {
132 pr_err("request wait timed out!\n");
136 if (!i915_request_completed(request)) {
137 pr_err("request not complete after waiting!\n");
141 if (i915_request_wait(request, 0, T) == -ETIME) {
142 pr_err("request wait timed out when already complete!\n");
148 i915_request_put(request);
149 mock_device_flush(i915);
153 static int igt_fence_wait(void *arg)
155 const long T = HZ / 4;
156 struct drm_i915_private *i915 = arg;
157 struct i915_request *request;
160 /* Submit a request, treat it as a fence and wait upon it */
162 request = mock_request(rcs0(i915)->kernel_context, T);
166 if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
167 pr_err("fence wait success before submit (expected timeout)!\n");
171 i915_request_add(request);
173 if (dma_fence_is_signaled(&request->fence)) {
174 pr_err("fence signaled immediately!\n");
178 if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
179 pr_err("fence wait success after submit (expected timeout)!\n");
183 if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
184 pr_err("fence wait timed out (expected success)!\n");
188 if (!dma_fence_is_signaled(&request->fence)) {
189 pr_err("fence unsignaled after waiting!\n");
193 if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
194 pr_err("fence wait timed out when complete (expected success)!\n");
200 mock_device_flush(i915);
204 static int igt_request_rewind(void *arg)
206 struct drm_i915_private *i915 = arg;
207 struct i915_request *request, *vip;
208 struct i915_gem_context *ctx[2];
209 struct intel_context *ce;
212 ctx[0] = mock_context(i915, "A");
218 ce = i915_gem_context_get_engine(ctx[0], RCS0);
219 GEM_BUG_ON(IS_ERR(ce));
220 request = mock_request(ce, 2 * HZ);
221 intel_context_put(ce);
227 i915_request_get(request);
228 i915_request_add(request);
230 ctx[1] = mock_context(i915, "B");
236 ce = i915_gem_context_get_engine(ctx[1], RCS0);
237 GEM_BUG_ON(IS_ERR(ce));
238 vip = mock_request(ce, 0);
239 intel_context_put(ce);
245 /* Simulate preemption by manual reordering */
246 if (!mock_cancel_request(request)) {
247 pr_err("failed to cancel request (already executed)!\n");
248 i915_request_add(vip);
251 i915_request_get(vip);
252 i915_request_add(vip);
254 request->engine->submit_request(request);
258 if (i915_request_wait(vip, 0, HZ) == -ETIME) {
259 pr_err("timed out waiting for high priority request\n");
263 if (i915_request_completed(request)) {
264 pr_err("low priority request already completed\n");
270 i915_request_put(vip);
272 mock_context_close(ctx[1]);
274 i915_request_put(request);
276 mock_context_close(ctx[0]);
278 mock_device_flush(i915);
283 struct intel_engine_cs *engine;
284 struct i915_gem_context **contexts;
285 atomic_long_t num_waits, num_fences;
286 int ncontexts, max_batch;
287 struct i915_request *(*request_alloc)(struct intel_context *ce);
290 static struct i915_request *
291 __mock_request_alloc(struct intel_context *ce)
293 return mock_request(ce, 0);
296 static struct i915_request *
297 __live_request_alloc(struct intel_context *ce)
299 return intel_context_create_request(ce);
302 struct smoke_thread {
303 struct kthread_worker *worker;
304 struct kthread_work work;
310 static void __igt_breadcrumbs_smoketest(struct kthread_work *work)
312 struct smoke_thread *thread = container_of(work, typeof(*thread), work);
313 struct smoketest *t = thread->t;
314 const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
315 const unsigned int total = 4 * t->ncontexts + 1;
316 unsigned int num_waits = 0, num_fences = 0;
317 struct i915_request **requests;
318 I915_RND_STATE(prng);
323 * A very simple test to catch the most egregious of list handling bugs.
325 * At its heart, we simply create oodles of requests running across
326 * multiple kthreads and enable signaling on them, for the sole purpose
327 * of stressing our breadcrumb handling. The only inspection we do is
328 * that the fences were marked as signaled.
331 requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
333 thread->result = -ENOMEM;
337 order = i915_random_order(total, &prng);
343 while (!READ_ONCE(thread->stop)) {
344 struct i915_sw_fence *submit, *wait;
345 unsigned int n, count;
347 submit = heap_fence_create(GFP_KERNEL);
353 wait = heap_fence_create(GFP_KERNEL);
355 i915_sw_fence_commit(submit);
356 heap_fence_put(submit);
361 i915_random_reorder(order, total, &prng);
362 count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
364 for (n = 0; n < count; n++) {
365 struct i915_gem_context *ctx =
366 t->contexts[order[n] % t->ncontexts];
367 struct i915_request *rq;
368 struct intel_context *ce;
370 ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
371 GEM_BUG_ON(IS_ERR(ce));
372 rq = t->request_alloc(ce);
373 intel_context_put(ce);
380 err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
384 requests[n] = i915_request_get(rq);
385 i915_request_add(rq);
388 err = i915_sw_fence_await_dma_fence(wait,
394 i915_request_put(rq);
400 i915_sw_fence_commit(submit);
401 i915_sw_fence_commit(wait);
403 if (!wait_event_timeout(wait->wait,
404 i915_sw_fence_done(wait),
406 struct i915_request *rq = requests[count - 1];
408 pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
409 atomic_read(&wait->pending), count,
410 rq->fence.context, rq->fence.seqno,
414 intel_gt_set_wedged(t->engine->gt);
415 GEM_BUG_ON(!i915_request_completed(rq));
416 i915_sw_fence_wait(wait);
420 for (n = 0; n < count; n++) {
421 struct i915_request *rq = requests[n];
423 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
425 pr_err("%llu:%llu was not signaled!\n",
426 rq->fence.context, rq->fence.seqno);
430 i915_request_put(rq);
433 heap_fence_put(wait);
434 heap_fence_put(submit);
445 atomic_long_add(num_fences, &t->num_fences);
446 atomic_long_add(num_waits, &t->num_waits);
451 thread->result = err;
454 static int mock_breadcrumbs_smoketest(void *arg)
456 struct drm_i915_private *i915 = arg;
457 struct smoketest t = {
458 .engine = rcs0(i915),
461 .request_alloc = __mock_request_alloc
463 unsigned int ncpus = num_online_cpus();
464 struct smoke_thread *threads;
469 * Smoketest our breadcrumb/signal handling for requests across multiple
470 * threads. A very simple test to only catch the most egregious of bugs.
471 * See __igt_breadcrumbs_smoketest();
474 threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
478 t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
484 for (n = 0; n < t.ncontexts; n++) {
485 t.contexts[n] = mock_context(t.engine->i915, "mock");
486 if (!t.contexts[n]) {
492 for (n = 0; n < ncpus; n++) {
493 struct kthread_worker *worker;
495 worker = kthread_run_worker(0, "igt/%d", n);
496 if (IS_ERR(worker)) {
497 ret = PTR_ERR(worker);
502 threads[n].worker = worker;
504 threads[n].stop = false;
505 threads[n].result = 0;
507 kthread_init_work(&threads[n].work,
508 __igt_breadcrumbs_smoketest);
509 kthread_queue_work(worker, &threads[n].work);
512 msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
514 for (n = 0; n < ncpus; n++) {
517 WRITE_ONCE(threads[n].stop, true);
518 kthread_flush_work(&threads[n].work);
519 err = READ_ONCE(threads[n].result);
523 kthread_destroy_worker(threads[n].worker);
525 pr_info("Completed %lu waits for %lu fence across %d cpus\n",
526 atomic_long_read(&t.num_waits),
527 atomic_long_read(&t.num_fences),
531 for (n = 0; n < t.ncontexts; n++) {
534 mock_context_close(t.contexts[n]);
542 int i915_request_mock_selftests(void)
544 static const struct i915_subtest tests[] = {
545 SUBTEST(igt_add_request),
546 SUBTEST(igt_wait_request),
547 SUBTEST(igt_fence_wait),
548 SUBTEST(igt_request_rewind),
549 SUBTEST(mock_breadcrumbs_smoketest),
551 struct drm_i915_private *i915;
552 intel_wakeref_t wakeref;
555 i915 = mock_gem_device();
559 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
560 err = i915_subtests(tests, i915);
562 mock_destroy_device(i915);
567 static int live_nop_request(void *arg)
569 struct drm_i915_private *i915 = arg;
570 struct intel_engine_cs *engine;
571 struct igt_live_test t;
575 * Submit various sized batches of empty requests, to each engine
576 * (individually), and wait for the batch to complete. We can check
577 * the overhead of submitting requests to the hardware.
580 for_each_uabi_engine(engine, i915) {
581 unsigned long n, prime;
582 IGT_TIMEOUT(end_time);
583 ktime_t times[2] = {};
585 err = igt_live_test_begin(&t, i915, __func__, engine->name);
589 intel_engine_pm_get(engine);
590 for_each_prime_number_from(prime, 1, 8192) {
591 struct i915_request *request = NULL;
593 times[1] = ktime_get_raw();
595 for (n = 0; n < prime; n++) {
596 i915_request_put(request);
597 request = i915_request_create(engine->kernel_context);
599 return PTR_ERR(request);
602 * This space is left intentionally blank.
604 * We do not actually want to perform any
605 * action with this request, we just want
606 * to measure the latency in allocation
607 * and submission of our breadcrumbs -
608 * ensuring that the bare request is sufficient
609 * for the system to work (i.e. proper HEAD
610 * tracking of the rings, interrupt handling,
611 * etc). It also gives us the lowest bounds
615 i915_request_get(request);
616 i915_request_add(request);
618 i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
619 i915_request_put(request);
621 times[1] = ktime_sub(ktime_get_raw(), times[1]);
625 if (__igt_timeout(end_time, NULL))
628 intel_engine_pm_put(engine);
630 err = igt_live_test_end(&t);
634 pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
636 ktime_to_ns(times[0]),
637 prime, div64_u64(ktime_to_ns(times[1]), prime));
643 static int __cancel_inactive(struct intel_engine_cs *engine)
645 struct intel_context *ce;
646 struct igt_spinner spin;
647 struct i915_request *rq;
650 if (igt_spinner_init(&spin, engine->gt))
653 ce = intel_context_create(engine);
659 rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
665 pr_debug("%s: Cancelling inactive request\n", engine->name);
666 i915_request_cancel(rq, -EINTR);
667 i915_request_get(rq);
668 i915_request_add(rq);
670 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
671 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
673 pr_err("%s: Failed to cancel inactive request\n", engine->name);
674 intel_engine_dump(engine, &p, "%s\n", engine->name);
679 if (rq->fence.error != -EINTR) {
680 pr_err("%s: fence not cancelled (%u)\n",
681 engine->name, rq->fence.error);
686 i915_request_put(rq);
688 intel_context_put(ce);
690 igt_spinner_fini(&spin);
692 pr_err("%s: %s error %d\n", __func__, engine->name, err);
696 static int __cancel_active(struct intel_engine_cs *engine)
698 struct intel_context *ce;
699 struct igt_spinner spin;
700 struct i915_request *rq;
703 if (igt_spinner_init(&spin, engine->gt))
706 ce = intel_context_create(engine);
712 rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
718 pr_debug("%s: Cancelling active request\n", engine->name);
719 i915_request_get(rq);
720 i915_request_add(rq);
721 if (!igt_wait_for_spinner(&spin, rq)) {
722 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
724 pr_err("Failed to start spinner on %s\n", engine->name);
725 intel_engine_dump(engine, &p, "%s\n", engine->name);
729 i915_request_cancel(rq, -EINTR);
731 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
732 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
734 pr_err("%s: Failed to cancel active request\n", engine->name);
735 intel_engine_dump(engine, &p, "%s\n", engine->name);
740 if (rq->fence.error != -EINTR) {
741 pr_err("%s: fence not cancelled (%u)\n",
742 engine->name, rq->fence.error);
747 i915_request_put(rq);
749 intel_context_put(ce);
751 igt_spinner_fini(&spin);
753 pr_err("%s: %s error %d\n", __func__, engine->name, err);
757 static int __cancel_completed(struct intel_engine_cs *engine)
759 struct intel_context *ce;
760 struct igt_spinner spin;
761 struct i915_request *rq;
764 if (igt_spinner_init(&spin, engine->gt))
767 ce = intel_context_create(engine);
773 rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
778 igt_spinner_end(&spin);
779 i915_request_get(rq);
780 i915_request_add(rq);
782 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
787 pr_debug("%s: Cancelling completed request\n", engine->name);
788 i915_request_cancel(rq, -EINTR);
789 if (rq->fence.error) {
790 pr_err("%s: fence not cancelled (%u)\n",
791 engine->name, rq->fence.error);
796 i915_request_put(rq);
798 intel_context_put(ce);
800 igt_spinner_fini(&spin);
802 pr_err("%s: %s error %d\n", __func__, engine->name, err);
807 * Test to prove a non-preemptable request can be cancelled and a subsequent
808 * request on the same context can successfully complete after cancellation.
810 * Testing methodology is to create a non-preemptible request and submit it,
811 * wait for spinner to start, create a NOP request and submit it, cancel the
812 * spinner, wait for spinner to complete and verify it failed with an error,
813 * finally wait for NOP request to complete verify it succeeded without an
814 * error. Preemption timeout also reduced / restored so test runs in a timely
817 static int __cancel_reset(struct drm_i915_private *i915,
818 struct intel_engine_cs *engine)
820 struct intel_context *ce;
821 struct igt_spinner spin;
822 struct i915_request *rq, *nop;
823 unsigned long preempt_timeout_ms;
826 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT ||
827 !intel_has_reset_engine(engine->gt))
830 preempt_timeout_ms = engine->props.preempt_timeout_ms;
831 engine->props.preempt_timeout_ms = 100;
833 if (igt_spinner_init(&spin, engine->gt))
836 ce = intel_context_create(engine);
842 rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
848 pr_debug("%s: Cancelling active non-preemptable request\n",
850 i915_request_get(rq);
851 i915_request_add(rq);
852 if (!igt_wait_for_spinner(&spin, rq)) {
853 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
855 pr_err("Failed to start spinner on %s\n", engine->name);
856 intel_engine_dump(engine, &p, "%s\n", engine->name);
861 nop = intel_context_create_request(ce);
864 i915_request_get(nop);
865 i915_request_add(nop);
867 i915_request_cancel(rq, -EINTR);
869 if (i915_request_wait(rq, 0, HZ) < 0) {
870 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
872 pr_err("%s: Failed to cancel hung request\n", engine->name);
873 intel_engine_dump(engine, &p, "%s\n", engine->name);
878 if (rq->fence.error != -EINTR) {
879 pr_err("%s: fence not cancelled (%u)\n",
880 engine->name, rq->fence.error);
885 if (i915_request_wait(nop, 0, HZ) < 0) {
886 struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
888 pr_err("%s: Failed to complete nop request\n", engine->name);
889 intel_engine_dump(engine, &p, "%s\n", engine->name);
894 if (nop->fence.error != 0) {
895 pr_err("%s: Nop request errored (%u)\n",
896 engine->name, nop->fence.error);
901 i915_request_put(nop);
903 i915_request_put(rq);
905 intel_context_put(ce);
907 igt_spinner_fini(&spin);
909 engine->props.preempt_timeout_ms = preempt_timeout_ms;
911 pr_err("%s: %s error %d\n", __func__, engine->name, err);
915 static int live_cancel_request(void *arg)
917 struct drm_i915_private *i915 = arg;
918 struct intel_engine_cs *engine;
921 * Check cancellation of requests. We expect to be able to immediately
922 * cancel active requests, even if they are currently on the GPU.
925 for_each_uabi_engine(engine, i915) {
926 struct igt_live_test t;
929 if (!intel_engine_has_preemption(engine))
932 err = igt_live_test_begin(&t, i915, __func__, engine->name);
936 err = __cancel_inactive(engine);
938 err = __cancel_active(engine);
940 err = __cancel_completed(engine);
942 err2 = igt_live_test_end(&t);
948 /* Expects reset so call outside of igt_live_test_* */
949 err = __cancel_reset(i915, engine);
953 if (igt_flush_test(i915))
960 static struct i915_vma *empty_batch(struct intel_gt *gt)
962 struct drm_i915_gem_object *obj;
963 struct i915_vma *vma;
967 obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
969 return ERR_CAST(obj);
971 cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
977 *cmd = MI_BATCH_BUFFER_END;
979 __i915_gem_object_flush_map(obj, 0, 64);
980 i915_gem_object_unpin_map(obj);
982 intel_gt_chipset_flush(gt);
984 vma = i915_vma_instance(obj, gt->vm, NULL);
990 err = i915_vma_pin(vma, 0, 0, PIN_USER);
994 /* Force the wait now to avoid including it in the benchmark */
995 err = i915_vma_sync(vma);
1002 i915_vma_unpin(vma);
1004 i915_gem_object_put(obj);
1005 return ERR_PTR(err);
1008 static int emit_bb_start(struct i915_request *rq, struct i915_vma *batch)
1010 return rq->engine->emit_bb_start(rq,
1011 i915_vma_offset(batch),
1012 i915_vma_size(batch),
1016 static struct i915_request *
1017 empty_request(struct intel_engine_cs *engine,
1018 struct i915_vma *batch)
1020 struct i915_request *request;
1023 request = i915_request_create(engine->kernel_context);
1024 if (IS_ERR(request))
1027 err = emit_bb_start(request, batch);
1031 i915_request_get(request);
1033 i915_request_add(request);
1034 return err ? ERR_PTR(err) : request;
1037 static int live_empty_request(void *arg)
1039 struct drm_i915_private *i915 = arg;
1040 struct intel_engine_cs *engine;
1041 struct igt_live_test t;
1045 * Submit various sized batches of empty requests, to each engine
1046 * (individually), and wait for the batch to complete. We can check
1047 * the overhead of submitting requests to the hardware.
1050 for_each_uabi_engine(engine, i915) {
1051 IGT_TIMEOUT(end_time);
1052 struct i915_request *request;
1053 struct i915_vma *batch;
1054 unsigned long n, prime;
1055 ktime_t times[2] = {};
1057 batch = empty_batch(engine->gt);
1059 return PTR_ERR(batch);
1061 err = igt_live_test_begin(&t, i915, __func__, engine->name);
1065 intel_engine_pm_get(engine);
1067 /* Warmup / preload */
1068 request = empty_request(engine, batch);
1069 if (IS_ERR(request)) {
1070 err = PTR_ERR(request);
1071 intel_engine_pm_put(engine);
1074 i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
1076 for_each_prime_number_from(prime, 1, 8192) {
1077 times[1] = ktime_get_raw();
1079 for (n = 0; n < prime; n++) {
1080 i915_request_put(request);
1081 request = empty_request(engine, batch);
1082 if (IS_ERR(request)) {
1083 err = PTR_ERR(request);
1084 intel_engine_pm_put(engine);
1088 i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
1090 times[1] = ktime_sub(ktime_get_raw(), times[1]);
1092 times[0] = times[1];
1094 if (__igt_timeout(end_time, NULL))
1097 i915_request_put(request);
1098 intel_engine_pm_put(engine);
1100 err = igt_live_test_end(&t);
1104 pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
1106 ktime_to_ns(times[0]),
1107 prime, div64_u64(ktime_to_ns(times[1]), prime));
1109 i915_vma_unpin(batch);
1110 i915_vma_put(batch);
1118 static struct i915_vma *recursive_batch(struct intel_gt *gt)
1120 struct drm_i915_gem_object *obj;
1121 const int ver = GRAPHICS_VER(gt->i915);
1122 struct i915_vma *vma;
1126 obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
1128 return ERR_CAST(obj);
1130 vma = i915_vma_instance(obj, gt->vm, NULL);
1136 err = i915_vma_pin(vma, 0, 0, PIN_USER);
1140 cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
1147 *cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
1148 *cmd++ = lower_32_bits(i915_vma_offset(vma));
1149 *cmd++ = upper_32_bits(i915_vma_offset(vma));
1150 } else if (ver >= 6) {
1151 *cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
1152 *cmd++ = lower_32_bits(i915_vma_offset(vma));
1154 *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1155 *cmd++ = lower_32_bits(i915_vma_offset(vma));
1157 *cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
1159 __i915_gem_object_flush_map(obj, 0, 64);
1160 i915_gem_object_unpin_map(obj);
1162 intel_gt_chipset_flush(gt);
1167 i915_gem_object_put(obj);
1168 return ERR_PTR(err);
1171 static int recursive_batch_resolve(struct i915_vma *batch)
1175 cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
1177 return PTR_ERR(cmd);
1179 *cmd = MI_BATCH_BUFFER_END;
1181 __i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
1182 i915_gem_object_unpin_map(batch->obj);
1184 intel_gt_chipset_flush(batch->vm->gt);
1189 static int live_all_engines(void *arg)
1191 struct drm_i915_private *i915 = arg;
1192 const unsigned int nengines = num_uabi_engines(i915);
1193 struct intel_engine_cs *engine;
1194 struct i915_request **request;
1195 struct igt_live_test t;
1200 * Check we can submit requests to all engines simultaneously. We
1201 * send a recursive batch to each engine - checking that we don't
1202 * block doing so, and that they don't complete too soon.
1205 request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1209 err = igt_live_test_begin(&t, i915, __func__, "");
1214 for_each_uabi_engine(engine, i915) {
1215 struct i915_vma *batch;
1217 batch = recursive_batch(engine->gt);
1218 if (IS_ERR(batch)) {
1219 err = PTR_ERR(batch);
1220 pr_err("%s: Unable to create batch, err=%d\n",
1225 i915_vma_lock(batch);
1226 request[idx] = intel_engine_create_kernel_request(engine);
1227 if (IS_ERR(request[idx])) {
1228 err = PTR_ERR(request[idx]);
1229 pr_err("%s: Request allocation failed with err=%d\n",
1233 GEM_BUG_ON(request[idx]->context->vm != batch->vm);
1235 err = i915_vma_move_to_active(batch, request[idx], 0);
1238 err = emit_bb_start(request[idx], batch);
1240 request[idx]->batch = batch;
1242 i915_request_get(request[idx]);
1243 i915_request_add(request[idx]);
1246 i915_vma_unlock(batch);
1252 for_each_uabi_engine(engine, i915) {
1253 if (i915_request_completed(request[idx])) {
1254 pr_err("%s(%s): request completed too early!\n",
1255 __func__, engine->name);
1263 for_each_uabi_engine(engine, i915) {
1264 err = recursive_batch_resolve(request[idx]->batch);
1266 pr_err("%s: failed to resolve batch, err=%d\n",
1274 for_each_uabi_engine(engine, i915) {
1275 struct i915_request *rq = request[idx];
1278 timeout = i915_request_wait(rq, 0,
1279 MAX_SCHEDULE_TIMEOUT);
1282 pr_err("%s: error waiting for request on %s, err=%d\n",
1283 __func__, engine->name, err);
1287 GEM_BUG_ON(!i915_request_completed(rq));
1288 i915_vma_unpin(rq->batch);
1289 i915_vma_put(rq->batch);
1290 i915_request_put(rq);
1291 request[idx] = NULL;
1295 err = igt_live_test_end(&t);
1299 for_each_uabi_engine(engine, i915) {
1300 struct i915_request *rq = request[idx];
1306 i915_vma_unpin(rq->batch);
1307 i915_vma_put(rq->batch);
1309 i915_request_put(rq);
1317 static int live_sequential_engines(void *arg)
1319 struct drm_i915_private *i915 = arg;
1320 const unsigned int nengines = num_uabi_engines(i915);
1321 struct i915_request **request;
1322 struct i915_request *prev = NULL;
1323 struct intel_engine_cs *engine;
1324 struct igt_live_test t;
1329 * Check we can submit requests to all engines sequentially, such
1330 * that each successive request waits for the earlier ones. This
1331 * tests that we don't execute requests out of order, even though
1332 * they are running on independent engines.
1335 request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
1339 err = igt_live_test_begin(&t, i915, __func__, "");
1344 for_each_uabi_engine(engine, i915) {
1345 struct i915_vma *batch;
1347 batch = recursive_batch(engine->gt);
1348 if (IS_ERR(batch)) {
1349 err = PTR_ERR(batch);
1350 pr_err("%s: Unable to create batch for %s, err=%d\n",
1351 __func__, engine->name, err);
1355 i915_vma_lock(batch);
1356 request[idx] = intel_engine_create_kernel_request(engine);
1357 if (IS_ERR(request[idx])) {
1358 err = PTR_ERR(request[idx]);
1359 pr_err("%s: Request allocation failed for %s with err=%d\n",
1360 __func__, engine->name, err);
1363 GEM_BUG_ON(request[idx]->context->vm != batch->vm);
1366 err = i915_request_await_dma_fence(request[idx],
1369 i915_request_add(request[idx]);
1370 pr_err("%s: Request await failed for %s with err=%d\n",
1371 __func__, engine->name, err);
1376 err = i915_vma_move_to_active(batch, request[idx], 0);
1379 err = emit_bb_start(request[idx], batch);
1381 request[idx]->batch = batch;
1383 i915_request_get(request[idx]);
1384 i915_request_add(request[idx]);
1386 prev = request[idx];
1390 i915_vma_unlock(batch);
1396 for_each_uabi_engine(engine, i915) {
1399 if (i915_request_completed(request[idx])) {
1400 pr_err("%s(%s): request completed too early!\n",
1401 __func__, engine->name);
1406 err = recursive_batch_resolve(request[idx]->batch);
1408 pr_err("%s: failed to resolve batch, err=%d\n",
1413 timeout = i915_request_wait(request[idx], 0,
1414 MAX_SCHEDULE_TIMEOUT);
1417 pr_err("%s: error waiting for request on %s, err=%d\n",
1418 __func__, engine->name, err);
1422 GEM_BUG_ON(!i915_request_completed(request[idx]));
1426 err = igt_live_test_end(&t);
1430 for_each_uabi_engine(engine, i915) {
1436 cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj,
1439 *cmd = MI_BATCH_BUFFER_END;
1441 __i915_gem_object_flush_map(request[idx]->batch->obj,
1443 i915_gem_object_unpin_map(request[idx]->batch->obj);
1445 intel_gt_chipset_flush(engine->gt);
1448 i915_vma_put(request[idx]->batch);
1449 i915_request_put(request[idx]);
1457 struct parallel_thread {
1458 struct kthread_worker *worker;
1459 struct kthread_work work;
1460 struct intel_engine_cs *engine;
1464 static void __live_parallel_engine1(struct kthread_work *work)
1466 struct parallel_thread *thread =
1467 container_of(work, typeof(*thread), work);
1468 struct intel_engine_cs *engine = thread->engine;
1469 IGT_TIMEOUT(end_time);
1470 unsigned long count;
1474 intel_engine_pm_get(engine);
1476 struct i915_request *rq;
1478 rq = i915_request_create(engine->kernel_context);
1484 i915_request_get(rq);
1485 i915_request_add(rq);
1488 if (i915_request_wait(rq, 0, HZ) < 0)
1490 i915_request_put(rq);
1495 } while (!__igt_timeout(end_time, NULL));
1496 intel_engine_pm_put(engine);
1498 pr_info("%s: %lu request + sync\n", engine->name, count);
1499 thread->result = err;
1502 static void __live_parallel_engineN(struct kthread_work *work)
1504 struct parallel_thread *thread =
1505 container_of(work, typeof(*thread), work);
1506 struct intel_engine_cs *engine = thread->engine;
1507 IGT_TIMEOUT(end_time);
1508 unsigned long count;
1512 intel_engine_pm_get(engine);
1514 struct i915_request *rq;
1516 rq = i915_request_create(engine->kernel_context);
1522 i915_request_add(rq);
1524 } while (!__igt_timeout(end_time, NULL));
1525 intel_engine_pm_put(engine);
1527 pr_info("%s: %lu requests\n", engine->name, count);
1528 thread->result = err;
1531 static bool wake_all(struct drm_i915_private *i915)
1533 if (atomic_dec_and_test(&i915->selftest.counter)) {
1534 wake_up_var(&i915->selftest.counter);
1541 static int wait_for_all(struct drm_i915_private *i915)
1546 if (wait_var_event_timeout(&i915->selftest.counter,
1547 !atomic_read(&i915->selftest.counter),
1548 i915_selftest.timeout_jiffies))
1554 static void __live_parallel_spin(struct kthread_work *work)
1556 struct parallel_thread *thread =
1557 container_of(work, typeof(*thread), work);
1558 struct intel_engine_cs *engine = thread->engine;
1559 struct igt_spinner spin;
1560 struct i915_request *rq;
1564 * Create a spinner running for eternity on each engine. If a second
1565 * spinner is incorrectly placed on the same engine, it will not be
1566 * able to start in time.
1569 if (igt_spinner_init(&spin, engine->gt)) {
1570 wake_all(engine->i915);
1571 thread->result = -ENOMEM;
1575 intel_engine_pm_get(engine);
1576 rq = igt_spinner_create_request(&spin,
1577 engine->kernel_context,
1578 MI_NOOP); /* no preemption */
1579 intel_engine_pm_put(engine);
1584 wake_all(engine->i915);
1588 i915_request_get(rq);
1589 i915_request_add(rq);
1590 if (igt_wait_for_spinner(&spin, rq)) {
1591 /* Occupy this engine for the whole test */
1592 err = wait_for_all(engine->i915);
1594 pr_err("Failed to start spinner on %s\n", engine->name);
1597 igt_spinner_end(&spin);
1599 if (err == 0 && i915_request_wait(rq, 0, HZ) < 0)
1601 i915_request_put(rq);
1604 igt_spinner_fini(&spin);
1605 thread->result = err;
1608 static int live_parallel_engines(void *arg)
1610 struct drm_i915_private *i915 = arg;
1611 static void (* const func[])(struct kthread_work *) = {
1612 __live_parallel_engine1,
1613 __live_parallel_engineN,
1614 __live_parallel_spin,
1617 const unsigned int nengines = num_uabi_engines(i915);
1618 struct parallel_thread *threads;
1619 struct intel_engine_cs *engine;
1620 void (* const *fn)(struct kthread_work *);
1624 * Check we can submit requests to all engines concurrently. This
1625 * tests that we load up the system maximally.
1628 threads = kcalloc(nengines, sizeof(*threads), GFP_KERNEL);
1632 for (fn = func; !err && *fn; fn++) {
1633 char name[KSYM_NAME_LEN];
1634 struct igt_live_test t;
1637 snprintf(name, sizeof(name), "%ps", *fn);
1638 err = igt_live_test_begin(&t, i915, __func__, name);
1642 atomic_set(&i915->selftest.counter, nengines);
1645 for_each_uabi_engine(engine, i915) {
1646 struct kthread_worker *worker;
1648 worker = kthread_run_worker(0, "igt/parallel:%s",
1650 if (IS_ERR(worker)) {
1651 err = PTR_ERR(worker);
1655 threads[idx].worker = worker;
1656 threads[idx].result = 0;
1657 threads[idx].engine = engine;
1659 kthread_init_work(&threads[idx].work, *fn);
1660 kthread_queue_work(worker, &threads[idx].work);
1665 for_each_uabi_engine(engine, i915) {
1668 if (!threads[idx].worker)
1671 kthread_flush_work(&threads[idx].work);
1672 status = READ_ONCE(threads[idx].result);
1676 kthread_destroy_worker(threads[idx++].worker);
1679 if (igt_live_test_end(&t))
1688 max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
1690 struct i915_request *rq;
1694 * Before execlists, all contexts share the same ringbuffer. With
1695 * execlists, each context/engine has a separate ringbuffer and
1696 * for the purposes of this test, inexhaustible.
1698 * For the global ringbuffer though, we have to be very careful
1699 * that we do not wrap while preventing the execution of requests
1700 * with a unsignaled fence.
1702 if (HAS_EXECLISTS(ctx->i915))
1705 rq = igt_request_alloc(ctx, engine);
1711 ret = rq->ring->size - rq->reserved_space;
1712 i915_request_add(rq);
1714 sz = rq->ring->emit - rq->head;
1716 sz += rq->ring->size;
1718 ret /= 2; /* leave half spare, in case of emergency! */
1724 static int live_breadcrumbs_smoketest(void *arg)
1726 struct drm_i915_private *i915 = arg;
1727 const unsigned int nengines = num_uabi_engines(i915);
1728 const unsigned int ncpus = /* saturate with nengines * ncpus */
1729 max_t(int, 2, DIV_ROUND_UP(num_online_cpus(), nengines));
1730 unsigned long num_waits, num_fences;
1731 struct intel_engine_cs *engine;
1732 struct smoke_thread *threads;
1733 struct igt_live_test live;
1734 intel_wakeref_t wakeref;
1735 struct smoketest *smoke;
1736 unsigned int n, idx;
1741 * Smoketest our breadcrumb/signal handling for requests across multiple
1742 * threads. A very simple test to only catch the most egregious of bugs.
1743 * See __igt_breadcrumbs_smoketest();
1745 * On real hardware this time.
1748 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1750 file = mock_file(i915);
1752 ret = PTR_ERR(file);
1756 smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
1762 threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
1768 smoke[0].request_alloc = __live_request_alloc;
1769 smoke[0].ncontexts = 64;
1770 smoke[0].contexts = kcalloc(smoke[0].ncontexts,
1771 sizeof(*smoke[0].contexts),
1773 if (!smoke[0].contexts) {
1778 for (n = 0; n < smoke[0].ncontexts; n++) {
1779 smoke[0].contexts[n] = live_context(i915, file);
1780 if (IS_ERR(smoke[0].contexts[n])) {
1781 ret = PTR_ERR(smoke[0].contexts[n]);
1786 ret = igt_live_test_begin(&live, i915, __func__, "");
1791 for_each_uabi_engine(engine, i915) {
1792 smoke[idx] = smoke[0];
1793 smoke[idx].engine = engine;
1794 smoke[idx].max_batch =
1795 max_batches(smoke[0].contexts[0], engine);
1796 if (smoke[idx].max_batch < 0) {
1797 ret = smoke[idx].max_batch;
1800 /* One ring interleaved between requests from all cpus */
1801 smoke[idx].max_batch /= ncpus + 1;
1802 pr_debug("Limiting batches to %d requests on %s\n",
1803 smoke[idx].max_batch, engine->name);
1805 for (n = 0; n < ncpus; n++) {
1806 unsigned int i = idx * ncpus + n;
1807 struct kthread_worker *worker;
1809 worker = kthread_run_worker(0, "igt/%d.%d", idx, n);
1810 if (IS_ERR(worker)) {
1811 ret = PTR_ERR(worker);
1815 threads[i].worker = worker;
1816 threads[i].t = &smoke[idx];
1818 kthread_init_work(&threads[i].work,
1819 __igt_breadcrumbs_smoketest);
1820 kthread_queue_work(worker, &threads[i].work);
1826 msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
1832 for_each_uabi_engine(engine, i915) {
1833 for (n = 0; n < ncpus; n++) {
1834 unsigned int i = idx * ncpus + n;
1837 if (!threads[i].worker)
1840 WRITE_ONCE(threads[i].stop, true);
1841 kthread_flush_work(&threads[i].work);
1842 err = READ_ONCE(threads[i].result);
1843 if (err < 0 && !ret)
1846 kthread_destroy_worker(threads[i].worker);
1849 num_waits += atomic_long_read(&smoke[idx].num_waits);
1850 num_fences += atomic_long_read(&smoke[idx].num_fences);
1853 pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
1854 num_waits, num_fences, idx, ncpus);
1856 ret = igt_live_test_end(&live) ?: ret;
1858 kfree(smoke[0].contexts);
1866 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1871 int i915_request_live_selftests(struct drm_i915_private *i915)
1873 static const struct i915_subtest tests[] = {
1874 SUBTEST(live_nop_request),
1875 SUBTEST(live_all_engines),
1876 SUBTEST(live_sequential_engines),
1877 SUBTEST(live_parallel_engines),
1878 SUBTEST(live_empty_request),
1879 SUBTEST(live_cancel_request),
1880 SUBTEST(live_breadcrumbs_smoketest),
1883 if (intel_gt_is_wedged(to_gt(i915)))
1886 return i915_live_subtests(tests, i915);
1889 static int switch_to_kernel_sync(struct intel_context *ce, int err)
1891 struct i915_request *rq;
1892 struct dma_fence *fence;
1894 rq = intel_engine_create_kernel_request(ce->engine);
1898 fence = i915_active_fence_get(&ce->timeline->last_request);
1900 i915_request_await_dma_fence(rq, fence);
1901 dma_fence_put(fence);
1904 rq = i915_request_get(rq);
1905 i915_request_add(rq);
1906 if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
1908 i915_request_put(rq);
1910 while (!err && !intel_engine_is_idle(ce->engine))
1911 intel_engine_flush_submission(ce->engine);
1917 struct intel_engine_cs *engine;
1918 unsigned long count;
1924 struct perf_series {
1925 struct drm_i915_private *i915;
1926 unsigned int nengines;
1927 struct intel_context *ce[] __counted_by(nengines);
1930 static int cmp_u32(const void *A, const void *B)
1932 const u32 *a = A, *b = B;
1937 static u32 trifilter(u32 *a)
1942 sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
1944 sum = mul_u32_u32(a[2], 2);
1948 GEM_BUG_ON(sum > U32_MAX);
1953 static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
1955 u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles);
1957 return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
1960 static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
1962 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
1963 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
1970 static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
1972 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1980 static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
1982 *cs++ = MI_SEMAPHORE_WAIT |
1983 MI_SEMAPHORE_GLOBAL_GTT |
1993 static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
1995 return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
1998 static void semaphore_set(u32 *sema, u32 value)
2000 WRITE_ONCE(*sema, value);
2001 wmb(); /* flush the update to the cache, and beyond */
2004 static u32 *hwsp_scratch(const struct intel_context *ce)
2006 return memset32(ce->engine->status_page.addr + 1000, 0, 21);
2009 static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
2011 return (i915_ggtt_offset(ce->engine->status_page.vma) +
2012 offset_in_page(dw));
2015 static int measure_semaphore_response(struct intel_context *ce)
2017 u32 *sema = hwsp_scratch(ce);
2018 const u32 offset = hwsp_offset(ce, sema);
2019 u32 elapsed[TF_COUNT], cycles;
2020 struct i915_request *rq;
2026 * Measure how many cycles it takes for the HW to detect the change
2027 * in a semaphore value.
2029 * A: read CS_TIMESTAMP from CPU
2031 * B: read CS_TIMESTAMP on GPU
2033 * Semaphore latency: B - A
2036 semaphore_set(sema, -1);
2038 rq = i915_request_create(ce);
2042 cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
2044 i915_request_add(rq);
2049 cs = emit_store_dw(cs, offset, 0);
2050 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2051 cs = emit_semaphore_poll_until(cs, offset, i);
2052 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2053 cs = emit_store_dw(cs, offset, 0);
2056 intel_ring_advance(rq, cs);
2057 i915_request_add(rq);
2059 if (wait_for(READ_ONCE(*sema) == 0, 50)) {
2064 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2066 cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2067 semaphore_set(sema, i);
2070 if (wait_for(READ_ONCE(*sema) == 0, 50)) {
2075 elapsed[i - 1] = sema[i] - cycles;
2078 cycles = trifilter(elapsed);
2079 pr_info("%s: semaphore response %d cycles, %lluns\n",
2080 ce->engine->name, cycles >> TF_BIAS,
2081 cycles_to_ns(ce->engine, cycles));
2083 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2086 intel_gt_set_wedged(ce->engine->gt);
2090 static int measure_idle_dispatch(struct intel_context *ce)
2092 u32 *sema = hwsp_scratch(ce);
2093 const u32 offset = hwsp_offset(ce, sema);
2094 u32 elapsed[TF_COUNT], cycles;
2100 * Measure how long it takes for us to submit a request while the
2101 * engine is idle, but is resting in our context.
2103 * A: read CS_TIMESTAMP from CPU
2105 * B: read CS_TIMESTAMP on GPU
2107 * Submission latency: B - A
2110 for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2111 struct i915_request *rq;
2113 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2117 rq = i915_request_create(ce);
2123 cs = intel_ring_begin(rq, 4);
2125 i915_request_add(rq);
2130 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2132 intel_ring_advance(rq, cs);
2136 elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2137 i915_request_add(rq);
2142 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2146 for (i = 0; i < ARRAY_SIZE(elapsed); i++)
2147 elapsed[i] = sema[i] - elapsed[i];
2149 cycles = trifilter(elapsed);
2150 pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
2151 ce->engine->name, cycles >> TF_BIAS,
2152 cycles_to_ns(ce->engine, cycles));
2154 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2157 intel_gt_set_wedged(ce->engine->gt);
2161 static int measure_busy_dispatch(struct intel_context *ce)
2163 u32 *sema = hwsp_scratch(ce);
2164 const u32 offset = hwsp_offset(ce, sema);
2165 u32 elapsed[TF_COUNT + 1], cycles;
2171 * Measure how long it takes for us to submit a request while the
2172 * engine is busy, polling on a semaphore in our context. With
2173 * direct submission, this will include the cost of a lite restore.
2175 * A: read CS_TIMESTAMP from CPU
2177 * B: read CS_TIMESTAMP on GPU
2179 * Submission latency: B - A
2182 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2183 struct i915_request *rq;
2185 rq = i915_request_create(ce);
2191 cs = intel_ring_begin(rq, 12);
2193 i915_request_add(rq);
2198 cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2199 cs = emit_semaphore_poll_until(cs, offset, i);
2200 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2202 intel_ring_advance(rq, cs);
2204 if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
2211 elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2212 i915_request_add(rq);
2214 semaphore_set(sema, i - 1);
2218 wait_for(READ_ONCE(sema[i - 1]), 500);
2219 semaphore_set(sema, i - 1);
2221 for (i = 1; i <= TF_COUNT; i++) {
2222 GEM_BUG_ON(sema[i] == -1);
2223 elapsed[i - 1] = sema[i] - elapsed[i];
2226 cycles = trifilter(elapsed);
2227 pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
2228 ce->engine->name, cycles >> TF_BIAS,
2229 cycles_to_ns(ce->engine, cycles));
2231 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2234 intel_gt_set_wedged(ce->engine->gt);
2238 static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
2241 i915_ggtt_offset(engine->status_page.vma) +
2242 offset_in_page(sema);
2243 struct i915_request *rq;
2246 rq = i915_request_create(engine->kernel_context);
2250 cs = intel_ring_begin(rq, 4);
2252 i915_request_add(rq);
2256 cs = emit_semaphore_poll(cs, mode, value, offset);
2258 intel_ring_advance(rq, cs);
2259 i915_request_add(rq);
2264 static int measure_inter_request(struct intel_context *ce)
2266 u32 *sema = hwsp_scratch(ce);
2267 const u32 offset = hwsp_offset(ce, sema);
2268 u32 elapsed[TF_COUNT + 1], cycles;
2269 struct i915_sw_fence *submit;
2273 * Measure how long it takes to advance from one request into the
2274 * next. Between each request we flush the GPU caches to memory,
2275 * update the breadcrumbs, and then invalidate those caches.
2276 * We queue up all the requests to be submitted in one batch so
2277 * it should be one set of contiguous measurements.
2279 * A: read CS_TIMESTAMP on GPU
2281 * B: read CS_TIMESTAMP on GPU
2283 * Request latency: B - A
2286 err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2290 submit = heap_fence_create(GFP_KERNEL);
2292 semaphore_set(sema, 1);
2296 intel_engine_flush_submission(ce->engine);
2297 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2298 struct i915_request *rq;
2301 rq = i915_request_create(ce);
2307 err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
2311 i915_request_add(rq);
2315 cs = intel_ring_begin(rq, 4);
2317 i915_request_add(rq);
2322 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2324 intel_ring_advance(rq, cs);
2325 i915_request_add(rq);
2327 i915_sw_fence_commit(submit);
2328 intel_engine_flush_submission(ce->engine);
2329 heap_fence_put(submit);
2331 semaphore_set(sema, 1);
2332 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2336 for (i = 1; i <= TF_COUNT; i++)
2337 elapsed[i - 1] = sema[i + 1] - sema[i];
2339 cycles = trifilter(elapsed);
2340 pr_info("%s: inter-request latency %d cycles, %lluns\n",
2341 ce->engine->name, cycles >> TF_BIAS,
2342 cycles_to_ns(ce->engine, cycles));
2344 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2347 i915_sw_fence_commit(submit);
2348 heap_fence_put(submit);
2349 semaphore_set(sema, 1);
2351 intel_gt_set_wedged(ce->engine->gt);
2355 static int measure_context_switch(struct intel_context *ce)
2357 u32 *sema = hwsp_scratch(ce);
2358 const u32 offset = hwsp_offset(ce, sema);
2359 struct i915_request *fence = NULL;
2360 u32 elapsed[TF_COUNT + 1], cycles;
2365 * Measure how long it takes to advance from one request in one
2366 * context to a request in another context. This allows us to
2367 * measure how long the context save/restore take, along with all
2368 * the inter-context setup we require.
2370 * A: read CS_TIMESTAMP on GPU
2372 * B: read CS_TIMESTAMP on GPU
2374 * Context switch latency: B - A
2377 err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
2381 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2382 struct intel_context *arr[] = {
2383 ce, ce->engine->kernel_context
2385 u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
2387 for (j = 0; j < ARRAY_SIZE(arr); j++) {
2388 struct i915_request *rq;
2390 rq = i915_request_create(arr[j]);
2397 err = i915_request_await_dma_fence(rq,
2400 i915_request_add(rq);
2405 cs = intel_ring_begin(rq, 4);
2407 i915_request_add(rq);
2412 cs = emit_timestamp_store(cs, ce, addr);
2413 addr += sizeof(u32);
2415 intel_ring_advance(rq, cs);
2417 i915_request_put(fence);
2418 fence = i915_request_get(rq);
2420 i915_request_add(rq);
2423 i915_request_put(fence);
2424 intel_engine_flush_submission(ce->engine);
2426 semaphore_set(sema, 1);
2427 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2431 for (i = 1; i <= TF_COUNT; i++)
2432 elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
2434 cycles = trifilter(elapsed);
2435 pr_info("%s: context switch latency %d cycles, %lluns\n",
2436 ce->engine->name, cycles >> TF_BIAS,
2437 cycles_to_ns(ce->engine, cycles));
2439 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2442 i915_request_put(fence);
2443 semaphore_set(sema, 1);
2445 intel_gt_set_wedged(ce->engine->gt);
2449 static int measure_preemption(struct intel_context *ce)
2451 u32 *sema = hwsp_scratch(ce);
2452 const u32 offset = hwsp_offset(ce, sema);
2453 u32 elapsed[TF_COUNT], cycles;
2459 * We measure two latencies while triggering preemption. The first
2460 * latency is how long it takes for us to submit a preempting request.
2461 * The second latency is how it takes for us to return from the
2462 * preemption back to the original context.
2464 * A: read CS_TIMESTAMP from CPU
2466 * B: read CS_TIMESTAMP on GPU (in preempting context)
2468 * C: read CS_TIMESTAMP on GPU (in original context)
2470 * Preemption dispatch latency: B - A
2471 * Preemption switch latency: C - B
2474 if (!intel_engine_has_preemption(ce->engine))
2477 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2478 u32 addr = offset + 2 * i * sizeof(u32);
2479 struct i915_request *rq;
2481 rq = i915_request_create(ce);
2487 cs = intel_ring_begin(rq, 12);
2489 i915_request_add(rq);
2494 cs = emit_store_dw(cs, addr, -1);
2495 cs = emit_semaphore_poll_until(cs, offset, i);
2496 cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
2498 intel_ring_advance(rq, cs);
2499 i915_request_add(rq);
2501 if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
2506 rq = i915_request_create(ce->engine->kernel_context);
2512 cs = intel_ring_begin(rq, 8);
2514 i915_request_add(rq);
2519 cs = emit_timestamp_store(cs, ce, addr);
2520 cs = emit_store_dw(cs, offset, i);
2522 intel_ring_advance(rq, cs);
2523 rq->sched.attr.priority = I915_PRIORITY_BARRIER;
2525 elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2526 i915_request_add(rq);
2529 if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
2534 for (i = 1; i <= TF_COUNT; i++)
2535 elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
2537 cycles = trifilter(elapsed);
2538 pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
2539 ce->engine->name, cycles >> TF_BIAS,
2540 cycles_to_ns(ce->engine, cycles));
2542 for (i = 1; i <= TF_COUNT; i++)
2543 elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
2545 cycles = trifilter(elapsed);
2546 pr_info("%s: preemption switch latency %d cycles, %lluns\n",
2547 ce->engine->name, cycles >> TF_BIAS,
2548 cycles_to_ns(ce->engine, cycles));
2550 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2553 intel_gt_set_wedged(ce->engine->gt);
2558 struct dma_fence_cb base;
2562 static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
2564 struct signal_cb *s = container_of(cb, typeof(*s), base);
2566 smp_store_mb(s->seen, true); /* be safe, be strong */
2569 static int measure_completion(struct intel_context *ce)
2571 u32 *sema = hwsp_scratch(ce);
2572 const u32 offset = hwsp_offset(ce, sema);
2573 u32 elapsed[TF_COUNT], cycles;
2579 * Measure how long it takes for the signal (interrupt) to be
2580 * sent from the GPU to be processed by the CPU.
2582 * A: read CS_TIMESTAMP on GPU
2584 * B: read CS_TIMESTAMP from CPU
2586 * Completion latency: B - A
2589 for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2590 struct signal_cb cb = { .seen = false };
2591 struct i915_request *rq;
2593 rq = i915_request_create(ce);
2599 cs = intel_ring_begin(rq, 12);
2601 i915_request_add(rq);
2606 cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2607 cs = emit_semaphore_poll_until(cs, offset, i);
2608 cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2610 intel_ring_advance(rq, cs);
2612 dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
2613 i915_request_add(rq);
2615 intel_engine_flush_submission(ce->engine);
2616 if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
2622 semaphore_set(sema, i);
2623 while (!READ_ONCE(cb.seen))
2626 elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2630 err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2634 for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2635 GEM_BUG_ON(sema[i + 1] == -1);
2636 elapsed[i] = elapsed[i] - sema[i + 1];
2639 cycles = trifilter(elapsed);
2640 pr_info("%s: completion latency %d cycles, %lluns\n",
2641 ce->engine->name, cycles >> TF_BIAS,
2642 cycles_to_ns(ce->engine, cycles));
2644 return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2647 intel_gt_set_wedged(ce->engine->gt);
2651 static void rps_pin(struct intel_gt *gt)
2653 /* Pin the frequency to max */
2654 atomic_inc(>->rps.num_waiters);
2655 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
2657 mutex_lock(>->rps.lock);
2658 intel_rps_set(>->rps, gt->rps.max_freq);
2659 mutex_unlock(>->rps.lock);
2662 static void rps_unpin(struct intel_gt *gt)
2664 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
2665 atomic_dec(>->rps.num_waiters);
2668 static int perf_request_latency(void *arg)
2670 struct drm_i915_private *i915 = arg;
2671 struct intel_engine_cs *engine;
2672 struct pm_qos_request qos;
2675 if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */
2678 cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2680 for_each_uabi_engine(engine, i915) {
2681 struct intel_context *ce;
2683 ce = intel_context_create(engine);
2689 err = intel_context_pin(ce);
2691 intel_context_put(ce);
2695 st_engine_heartbeat_disable(engine);
2696 rps_pin(engine->gt);
2699 err = measure_semaphore_response(ce);
2701 err = measure_idle_dispatch(ce);
2703 err = measure_busy_dispatch(ce);
2705 err = measure_inter_request(ce);
2707 err = measure_context_switch(ce);
2709 err = measure_preemption(ce);
2711 err = measure_completion(ce);
2713 rps_unpin(engine->gt);
2714 st_engine_heartbeat_enable(engine);
2716 intel_context_unpin(ce);
2717 intel_context_put(ce);
2723 if (igt_flush_test(i915))
2726 cpu_latency_qos_remove_request(&qos);
2730 static int s_sync0(void *arg)
2732 struct perf_series *ps = arg;
2733 IGT_TIMEOUT(end_time);
2734 unsigned int idx = 0;
2737 GEM_BUG_ON(!ps->nengines);
2739 struct i915_request *rq;
2741 rq = i915_request_create(ps->ce[idx]);
2747 i915_request_get(rq);
2748 i915_request_add(rq);
2750 if (i915_request_wait(rq, 0, HZ / 5) < 0)
2752 i915_request_put(rq);
2756 if (++idx == ps->nengines)
2758 } while (!__igt_timeout(end_time, NULL));
2763 static int s_sync1(void *arg)
2765 struct perf_series *ps = arg;
2766 struct i915_request *prev = NULL;
2767 IGT_TIMEOUT(end_time);
2768 unsigned int idx = 0;
2771 GEM_BUG_ON(!ps->nengines);
2773 struct i915_request *rq;
2775 rq = i915_request_create(ps->ce[idx]);
2781 i915_request_get(rq);
2782 i915_request_add(rq);
2784 if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
2786 i915_request_put(prev);
2791 if (++idx == ps->nengines)
2793 } while (!__igt_timeout(end_time, NULL));
2794 i915_request_put(prev);
2799 static int s_many(void *arg)
2801 struct perf_series *ps = arg;
2802 IGT_TIMEOUT(end_time);
2803 unsigned int idx = 0;
2805 GEM_BUG_ON(!ps->nengines);
2807 struct i915_request *rq;
2809 rq = i915_request_create(ps->ce[idx]);
2813 i915_request_add(rq);
2815 if (++idx == ps->nengines)
2817 } while (!__igt_timeout(end_time, NULL));
2822 static int perf_series_engines(void *arg)
2824 struct drm_i915_private *i915 = arg;
2825 static int (* const func[])(void *arg) = {
2831 const unsigned int nengines = num_uabi_engines(i915);
2832 struct intel_engine_cs *engine;
2833 int (* const *fn)(void *arg);
2834 struct pm_qos_request qos;
2835 struct perf_stats *stats;
2836 struct perf_series *ps;
2840 stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
2844 ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
2850 cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2853 ps->nengines = nengines;
2856 for_each_uabi_engine(engine, i915) {
2857 struct intel_context *ce;
2859 ce = intel_context_create(engine);
2865 err = intel_context_pin(ce);
2867 intel_context_put(ce);
2873 GEM_BUG_ON(idx != ps->nengines);
2875 for (fn = func; *fn && !err; fn++) {
2876 char name[KSYM_NAME_LEN];
2877 struct igt_live_test t;
2879 snprintf(name, sizeof(name), "%ps", *fn);
2880 err = igt_live_test_begin(&t, i915, __func__, name);
2884 for (idx = 0; idx < nengines; idx++) {
2885 struct perf_stats *p =
2886 memset(&stats[idx], 0, sizeof(stats[idx]));
2887 struct intel_context *ce = ps->ce[idx];
2889 p->engine = ps->ce[idx]->engine;
2890 intel_engine_pm_get(p->engine);
2892 if (intel_engine_supports_stats(p->engine))
2893 p->busy = intel_engine_get_busy_time(p->engine,
2896 p->time = ktime_get();
2897 p->runtime = -intel_context_get_total_runtime_ns(ce);
2901 if (igt_live_test_end(&t))
2904 for (idx = 0; idx < nengines; idx++) {
2905 struct perf_stats *p = &stats[idx];
2906 struct intel_context *ce = ps->ce[idx];
2907 int integer, decimal;
2911 p->busy = ktime_sub(intel_engine_get_busy_time(p->engine,
2916 p->time = ktime_sub(now, p->time);
2918 err = switch_to_kernel_sync(ce, err);
2919 p->runtime += intel_context_get_total_runtime_ns(ce);
2920 intel_engine_pm_put(p->engine);
2922 busy = 100 * ktime_to_ns(p->busy);
2923 dt = ktime_to_ns(p->time);
2925 integer = div64_u64(busy, dt);
2926 busy -= integer * dt;
2927 decimal = div64_u64(100 * busy, dt);
2933 pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
2934 name, p->engine->name, ce->timeline->seqno,
2936 div_u64(p->runtime, 1000 * 1000),
2937 div_u64(ktime_to_ns(p->time), 1000 * 1000));
2942 for (idx = 0; idx < nengines; idx++) {
2943 if (IS_ERR_OR_NULL(ps->ce[idx]))
2946 intel_context_unpin(ps->ce[idx]);
2947 intel_context_put(ps->ce[idx]);
2951 cpu_latency_qos_remove_request(&qos);
2957 struct perf_stats p;
2958 struct kthread_worker *worker;
2959 struct kthread_work work;
2960 struct intel_engine_cs *engine;
2964 static void p_sync0(struct kthread_work *work)
2966 struct p_thread *thread = container_of(work, typeof(*thread), work);
2967 struct perf_stats *p = &thread->p;
2968 struct intel_engine_cs *engine = p->engine;
2969 struct intel_context *ce;
2970 IGT_TIMEOUT(end_time);
2971 unsigned long count;
2975 ce = intel_context_create(engine);
2977 thread->result = PTR_ERR(ce);
2981 err = intel_context_pin(ce);
2983 intel_context_put(ce);
2984 thread->result = err;
2988 if (intel_engine_supports_stats(engine)) {
2989 p->busy = intel_engine_get_busy_time(engine, &p->time);
2992 p->time = ktime_get();
2998 struct i915_request *rq;
3000 rq = i915_request_create(ce);
3006 i915_request_get(rq);
3007 i915_request_add(rq);
3010 if (i915_request_wait(rq, 0, HZ) < 0)
3012 i915_request_put(rq);
3017 } while (!__igt_timeout(end_time, NULL));
3022 p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3024 p->time = ktime_sub(now, p->time);
3026 p->time = ktime_sub(ktime_get(), p->time);
3029 err = switch_to_kernel_sync(ce, err);
3030 p->runtime = intel_context_get_total_runtime_ns(ce);
3033 intel_context_unpin(ce);
3034 intel_context_put(ce);
3035 thread->result = err;
3038 static void p_sync1(struct kthread_work *work)
3040 struct p_thread *thread = container_of(work, typeof(*thread), work);
3041 struct perf_stats *p = &thread->p;
3042 struct intel_engine_cs *engine = p->engine;
3043 struct i915_request *prev = NULL;
3044 struct intel_context *ce;
3045 IGT_TIMEOUT(end_time);
3046 unsigned long count;
3050 ce = intel_context_create(engine);
3052 thread->result = PTR_ERR(ce);
3056 err = intel_context_pin(ce);
3058 intel_context_put(ce);
3059 thread->result = err;
3063 if (intel_engine_supports_stats(engine)) {
3064 p->busy = intel_engine_get_busy_time(engine, &p->time);
3067 p->time = ktime_get();
3073 struct i915_request *rq;
3075 rq = i915_request_create(ce);
3081 i915_request_get(rq);
3082 i915_request_add(rq);
3085 if (prev && i915_request_wait(prev, 0, HZ) < 0)
3087 i915_request_put(prev);
3093 } while (!__igt_timeout(end_time, NULL));
3094 i915_request_put(prev);
3099 p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3101 p->time = ktime_sub(now, p->time);
3103 p->time = ktime_sub(ktime_get(), p->time);
3106 err = switch_to_kernel_sync(ce, err);
3107 p->runtime = intel_context_get_total_runtime_ns(ce);
3110 intel_context_unpin(ce);
3111 intel_context_put(ce);
3112 thread->result = err;
3115 static void p_many(struct kthread_work *work)
3117 struct p_thread *thread = container_of(work, typeof(*thread), work);
3118 struct perf_stats *p = &thread->p;
3119 struct intel_engine_cs *engine = p->engine;
3120 struct intel_context *ce;
3121 IGT_TIMEOUT(end_time);
3122 unsigned long count;
3126 ce = intel_context_create(engine);
3128 thread->result = PTR_ERR(ce);
3132 err = intel_context_pin(ce);
3134 intel_context_put(ce);
3135 thread->result = err;
3139 if (intel_engine_supports_stats(engine)) {
3140 p->busy = intel_engine_get_busy_time(engine, &p->time);
3143 p->time = ktime_get();
3149 struct i915_request *rq;
3151 rq = i915_request_create(ce);
3157 i915_request_add(rq);
3159 } while (!__igt_timeout(end_time, NULL));
3164 p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
3166 p->time = ktime_sub(now, p->time);
3168 p->time = ktime_sub(ktime_get(), p->time);
3171 err = switch_to_kernel_sync(ce, err);
3172 p->runtime = intel_context_get_total_runtime_ns(ce);
3175 intel_context_unpin(ce);
3176 intel_context_put(ce);
3177 thread->result = err;
3180 static int perf_parallel_engines(void *arg)
3182 struct drm_i915_private *i915 = arg;
3183 static void (* const func[])(struct kthread_work *) = {
3189 const unsigned int nengines = num_uabi_engines(i915);
3190 void (* const *fn)(struct kthread_work *);
3191 struct intel_engine_cs *engine;
3192 struct pm_qos_request qos;
3193 struct p_thread *engines;
3196 engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
3200 cpu_latency_qos_add_request(&qos, 0);
3202 for (fn = func; *fn; fn++) {
3203 char name[KSYM_NAME_LEN];
3204 struct igt_live_test t;
3207 snprintf(name, sizeof(name), "%ps", *fn);
3208 err = igt_live_test_begin(&t, i915, __func__, name);
3212 atomic_set(&i915->selftest.counter, nengines);
3215 for_each_uabi_engine(engine, i915) {
3216 struct kthread_worker *worker;
3218 intel_engine_pm_get(engine);
3220 memset(&engines[idx].p, 0, sizeof(engines[idx].p));
3222 worker = kthread_run_worker(0, "igt:%s",
3224 if (IS_ERR(worker)) {
3225 err = PTR_ERR(worker);
3226 intel_engine_pm_put(engine);
3229 engines[idx].worker = worker;
3230 engines[idx].result = 0;
3231 engines[idx].p.engine = engine;
3232 engines[idx].engine = engine;
3234 kthread_init_work(&engines[idx].work, *fn);
3235 kthread_queue_work(worker, &engines[idx].work);
3240 for_each_uabi_engine(engine, i915) {
3243 if (!engines[idx].worker)
3246 kthread_flush_work(&engines[idx].work);
3247 status = READ_ONCE(engines[idx].result);
3251 intel_engine_pm_put(engine);
3253 kthread_destroy_worker(engines[idx].worker);
3257 if (igt_live_test_end(&t))
3263 for_each_uabi_engine(engine, i915) {
3264 struct perf_stats *p = &engines[idx].p;
3265 u64 busy = 100 * ktime_to_ns(p->busy);
3266 u64 dt = ktime_to_ns(p->time);
3267 int integer, decimal;
3270 integer = div64_u64(busy, dt);
3271 busy -= integer * dt;
3272 decimal = div64_u64(100 * busy, dt);
3278 GEM_BUG_ON(engine != p->engine);
3279 pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
3280 name, engine->name, p->count, integer, decimal,
3281 div_u64(p->runtime, 1000 * 1000),
3282 div_u64(ktime_to_ns(p->time), 1000 * 1000));
3287 cpu_latency_qos_remove_request(&qos);
3292 int i915_request_perf_selftests(struct drm_i915_private *i915)
3294 static const struct i915_subtest tests[] = {
3295 SUBTEST(perf_request_latency),
3296 SUBTEST(perf_series_engines),
3297 SUBTEST(perf_parallel_engines),
3300 if (intel_gt_is_wedged(to_gt(i915)))
3303 return i915_subtests(tests, i915);