2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 __initdata LIST_HEAD(huge_boot_pages);
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
76 spin_lock_init(&spool->lock);
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
106 spin_unlock(&spool->lock);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg -= rg->to - rg->from;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
248 if (&rg->link == head)
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
262 chg += rg->to - rg->from;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
321 hstate = hstate_vma(vma);
323 return 1UL << (hstate->order + PAGE_SHIFT);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
376 vma->vm_private_data = (void *)value;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
442 if (vma->vm_flags & VM_NORESERVE)
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 * Only the process that called mmap() has reserves for
453 h->resv_huge_pages--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
468 if (vma->vm_flags & VM_MAYSHARE)
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
475 static void copy_gigantic_page(struct page *dst, struct page *src)
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < pages_per_huge_page(h); ) {
484 copy_highpage(dst, src);
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 void copy_huge_page(struct page *dst, struct page *src)
495 struct hstate *h = page_hstate(src);
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
503 for (i = 0; i < pages_per_huge_page(h); i++) {
505 copy_highpage(dst + i, src + i);
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 int nid = page_to_nid(page);
512 list_move(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 if (list_empty(&h->hugepage_freelists[nid]))
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_move(&page->lru, &h->hugepage_activelist);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
541 unsigned int cpuset_mems_cookie;
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
566 decrement_hugepage_resv_vma(h, vma);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
582 static void update_and_free_page(struct hstate *h, struct page *page)
586 VM_BUG_ON(h->order >= MAX_ORDER);
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
596 VM_BUG_ON(hugetlb_cgroup_from_page(page));
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
599 arch_release_hugepage(page);
600 __free_pages(page, huge_page_order(h));
603 struct hstate *size_to_hstate(unsigned long size)
608 if (huge_page_size(h) == size)
614 static void free_huge_page(struct page *page)
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
620 struct hstate *h = page_hstate(page);
621 int nid = page_to_nid(page);
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
625 set_page_private(page, 0);
626 page->mapping = NULL;
627 BUG_ON(page_count(page));
628 BUG_ON(page_mapcount(page));
630 spin_lock(&hugetlb_lock);
631 hugetlb_cgroup_uncharge_page(hstate_index(h),
632 pages_per_huge_page(h), page);
633 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 /* remove the page from active list */
635 list_del(&page->lru);
636 update_and_free_page(h, page);
637 h->surplus_huge_pages--;
638 h->surplus_huge_pages_node[nid]--;
640 enqueue_huge_page(h, page);
642 spin_unlock(&hugetlb_lock);
643 hugepage_subpool_put_pages(spool, 1);
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648 INIT_LIST_HEAD(&page->lru);
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
651 set_hugetlb_cgroup(page, NULL);
653 h->nr_huge_pages_node[nid]++;
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
669 set_page_count(p, 0);
670 p->first_page = page;
674 int PageHuge(struct page *page)
676 compound_page_dtor *dtor;
678 if (!PageCompound(page))
681 page = compound_head(page);
682 dtor = get_compound_page_dtor(page);
684 return dtor == free_huge_page;
686 EXPORT_SYMBOL_GPL(PageHuge);
688 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
692 if (h->order >= MAX_ORDER)
695 page = alloc_pages_exact_node(nid,
696 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697 __GFP_REPEAT|__GFP_NOWARN,
700 if (arch_prepare_hugepage(page)) {
701 __free_pages(page, huge_page_order(h));
704 prep_new_huge_page(h, page, nid);
711 * common helper functions for hstate_next_node_to_{alloc|free}.
712 * We may have allocated or freed a huge page based on a different
713 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714 * be outside of *nodes_allowed. Ensure that we use an allowed
715 * node for alloc or free.
717 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
719 nid = next_node(nid, *nodes_allowed);
720 if (nid == MAX_NUMNODES)
721 nid = first_node(*nodes_allowed);
722 VM_BUG_ON(nid >= MAX_NUMNODES);
727 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
729 if (!node_isset(nid, *nodes_allowed))
730 nid = next_node_allowed(nid, nodes_allowed);
735 * returns the previously saved node ["this node"] from which to
736 * allocate a persistent huge page for the pool and advance the
737 * next node from which to allocate, handling wrap at end of node
740 static int hstate_next_node_to_alloc(struct hstate *h,
741 nodemask_t *nodes_allowed)
745 VM_BUG_ON(!nodes_allowed);
747 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
753 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
760 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761 next_nid = start_nid;
764 page = alloc_fresh_huge_page_node(h, next_nid);
769 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770 } while (next_nid != start_nid);
773 count_vm_event(HTLB_BUDDY_PGALLOC);
775 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
781 * helper for free_pool_huge_page() - return the previously saved
782 * node ["this node"] from which to free a huge page. Advance the
783 * next node id whether or not we find a free huge page to free so
784 * that the next attempt to free addresses the next node.
786 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
790 VM_BUG_ON(!nodes_allowed);
792 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
799 * Free huge page from pool from next node to free.
800 * Attempt to keep persistent huge pages more or less
801 * balanced over allowed nodes.
802 * Called with hugetlb_lock locked.
804 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
811 start_nid = hstate_next_node_to_free(h, nodes_allowed);
812 next_nid = start_nid;
816 * If we're returning unused surplus pages, only examine
817 * nodes with surplus pages.
819 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820 !list_empty(&h->hugepage_freelists[next_nid])) {
822 list_entry(h->hugepage_freelists[next_nid].next,
824 list_del(&page->lru);
825 h->free_huge_pages--;
826 h->free_huge_pages_node[next_nid]--;
828 h->surplus_huge_pages--;
829 h->surplus_huge_pages_node[next_nid]--;
831 update_and_free_page(h, page);
835 next_nid = hstate_next_node_to_free(h, nodes_allowed);
836 } while (next_nid != start_nid);
841 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
846 if (h->order >= MAX_ORDER)
850 * Assume we will successfully allocate the surplus page to
851 * prevent racing processes from causing the surplus to exceed
854 * This however introduces a different race, where a process B
855 * tries to grow the static hugepage pool while alloc_pages() is
856 * called by process A. B will only examine the per-node
857 * counters in determining if surplus huge pages can be
858 * converted to normal huge pages in adjust_pool_surplus(). A
859 * won't be able to increment the per-node counter, until the
860 * lock is dropped by B, but B doesn't drop hugetlb_lock until
861 * no more huge pages can be converted from surplus to normal
862 * state (and doesn't try to convert again). Thus, we have a
863 * case where a surplus huge page exists, the pool is grown, and
864 * the surplus huge page still exists after, even though it
865 * should just have been converted to a normal huge page. This
866 * does not leak memory, though, as the hugepage will be freed
867 * once it is out of use. It also does not allow the counters to
868 * go out of whack in adjust_pool_surplus() as we don't modify
869 * the node values until we've gotten the hugepage and only the
870 * per-node value is checked there.
872 spin_lock(&hugetlb_lock);
873 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874 spin_unlock(&hugetlb_lock);
878 h->surplus_huge_pages++;
880 spin_unlock(&hugetlb_lock);
882 if (nid == NUMA_NO_NODE)
883 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884 __GFP_REPEAT|__GFP_NOWARN,
887 page = alloc_pages_exact_node(nid,
888 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
891 if (page && arch_prepare_hugepage(page)) {
892 __free_pages(page, huge_page_order(h));
896 spin_lock(&hugetlb_lock);
898 INIT_LIST_HEAD(&page->lru);
899 r_nid = page_to_nid(page);
900 set_compound_page_dtor(page, free_huge_page);
901 set_hugetlb_cgroup(page, NULL);
903 * We incremented the global counters already
905 h->nr_huge_pages_node[r_nid]++;
906 h->surplus_huge_pages_node[r_nid]++;
907 __count_vm_event(HTLB_BUDDY_PGALLOC);
910 h->surplus_huge_pages--;
911 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
913 spin_unlock(&hugetlb_lock);
919 * This allocation function is useful in the context where vma is irrelevant.
920 * E.g. soft-offlining uses this function because it only cares physical
921 * address of error page.
923 struct page *alloc_huge_page_node(struct hstate *h, int nid)
927 spin_lock(&hugetlb_lock);
928 page = dequeue_huge_page_node(h, nid);
929 spin_unlock(&hugetlb_lock);
932 page = alloc_buddy_huge_page(h, nid);
938 * Increase the hugetlb pool such that it can accommodate a reservation
941 static int gather_surplus_pages(struct hstate *h, int delta)
943 struct list_head surplus_list;
944 struct page *page, *tmp;
946 int needed, allocated;
947 bool alloc_ok = true;
949 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
951 h->resv_huge_pages += delta;
956 INIT_LIST_HEAD(&surplus_list);
960 spin_unlock(&hugetlb_lock);
961 for (i = 0; i < needed; i++) {
962 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
967 list_add(&page->lru, &surplus_list);
972 * After retaking hugetlb_lock, we need to recalculate 'needed'
973 * because either resv_huge_pages or free_huge_pages may have changed.
975 spin_lock(&hugetlb_lock);
976 needed = (h->resv_huge_pages + delta) -
977 (h->free_huge_pages + allocated);
982 * We were not able to allocate enough pages to
983 * satisfy the entire reservation so we free what
984 * we've allocated so far.
989 * The surplus_list now contains _at_least_ the number of extra pages
990 * needed to accommodate the reservation. Add the appropriate number
991 * of pages to the hugetlb pool and free the extras back to the buddy
992 * allocator. Commit the entire reservation here to prevent another
993 * process from stealing the pages as they are added to the pool but
994 * before they are reserved.
997 h->resv_huge_pages += delta;
1000 /* Free the needed pages to the hugetlb pool */
1001 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1005 * This page is now managed by the hugetlb allocator and has
1006 * no users -- drop the buddy allocator's reference.
1008 put_page_testzero(page);
1009 VM_BUG_ON(page_count(page));
1010 enqueue_huge_page(h, page);
1013 spin_unlock(&hugetlb_lock);
1015 /* Free unnecessary surplus pages to the buddy allocator */
1016 if (!list_empty(&surplus_list)) {
1017 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1021 spin_lock(&hugetlb_lock);
1027 * When releasing a hugetlb pool reservation, any surplus pages that were
1028 * allocated to satisfy the reservation must be explicitly freed if they were
1030 * Called with hugetlb_lock held.
1032 static void return_unused_surplus_pages(struct hstate *h,
1033 unsigned long unused_resv_pages)
1035 unsigned long nr_pages;
1037 /* Uncommit the reservation */
1038 h->resv_huge_pages -= unused_resv_pages;
1040 /* Cannot return gigantic pages currently */
1041 if (h->order >= MAX_ORDER)
1044 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1047 * We want to release as many surplus pages as possible, spread
1048 * evenly across all nodes with memory. Iterate across these nodes
1049 * until we can no longer free unreserved surplus pages. This occurs
1050 * when the nodes with surplus pages have no free pages.
1051 * free_pool_huge_page() will balance the the freed pages across the
1052 * on-line nodes with memory and will handle the hstate accounting.
1054 while (nr_pages--) {
1055 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1061 * Determine if the huge page at addr within the vma has an associated
1062 * reservation. Where it does not we will need to logically increase
1063 * reservation and actually increase subpool usage before an allocation
1064 * can occur. Where any new reservation would be required the
1065 * reservation change is prepared, but not committed. Once the page
1066 * has been allocated from the subpool and instantiated the change should
1067 * be committed via vma_commit_reservation. No action is required on
1070 static long vma_needs_reservation(struct hstate *h,
1071 struct vm_area_struct *vma, unsigned long addr)
1073 struct address_space *mapping = vma->vm_file->f_mapping;
1074 struct inode *inode = mapping->host;
1076 if (vma->vm_flags & VM_MAYSHARE) {
1077 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078 return region_chg(&inode->i_mapping->private_list,
1081 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1086 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087 struct resv_map *reservations = vma_resv_map(vma);
1089 err = region_chg(&reservations->regions, idx, idx + 1);
1095 static void vma_commit_reservation(struct hstate *h,
1096 struct vm_area_struct *vma, unsigned long addr)
1098 struct address_space *mapping = vma->vm_file->f_mapping;
1099 struct inode *inode = mapping->host;
1101 if (vma->vm_flags & VM_MAYSHARE) {
1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1105 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 struct resv_map *reservations = vma_resv_map(vma);
1109 /* Mark this page used in the map. */
1110 region_add(&reservations->regions, idx, idx + 1);
1114 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115 unsigned long addr, int avoid_reserve)
1117 struct hugepage_subpool *spool = subpool_vma(vma);
1118 struct hstate *h = hstate_vma(vma);
1122 struct hugetlb_cgroup *h_cg;
1124 idx = hstate_index(h);
1126 * Processes that did not create the mapping will have no
1127 * reserves and will not have accounted against subpool
1128 * limit. Check that the subpool limit can be made before
1129 * satisfying the allocation MAP_NORESERVE mappings may also
1130 * need pages and subpool limit allocated allocated if no reserve
1133 chg = vma_needs_reservation(h, vma, addr);
1135 return ERR_PTR(-ENOMEM);
1137 if (hugepage_subpool_get_pages(spool, chg))
1138 return ERR_PTR(-ENOSPC);
1140 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1142 hugepage_subpool_put_pages(spool, chg);
1143 return ERR_PTR(-ENOSPC);
1145 spin_lock(&hugetlb_lock);
1146 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147 spin_unlock(&hugetlb_lock);
1150 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1152 hugetlb_cgroup_uncharge_cgroup(idx,
1153 pages_per_huge_page(h),
1155 hugepage_subpool_put_pages(spool, chg);
1156 return ERR_PTR(-ENOSPC);
1160 set_page_private(page, (unsigned long)spool);
1162 vma_commit_reservation(h, vma, addr);
1163 /* update page cgroup details */
1164 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1168 int __weak alloc_bootmem_huge_page(struct hstate *h)
1170 struct huge_bootmem_page *m;
1171 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1176 addr = __alloc_bootmem_node_nopanic(
1177 NODE_DATA(hstate_next_node_to_alloc(h,
1178 &node_states[N_HIGH_MEMORY])),
1179 huge_page_size(h), huge_page_size(h), 0);
1183 * Use the beginning of the huge page to store the
1184 * huge_bootmem_page struct (until gather_bootmem
1185 * puts them into the mem_map).
1195 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1196 /* Put them into a private list first because mem_map is not up yet */
1197 list_add(&m->list, &huge_boot_pages);
1202 static void prep_compound_huge_page(struct page *page, int order)
1204 if (unlikely(order > (MAX_ORDER - 1)))
1205 prep_compound_gigantic_page(page, order);
1207 prep_compound_page(page, order);
1210 /* Put bootmem huge pages into the standard lists after mem_map is up */
1211 static void __init gather_bootmem_prealloc(void)
1213 struct huge_bootmem_page *m;
1215 list_for_each_entry(m, &huge_boot_pages, list) {
1216 struct hstate *h = m->hstate;
1219 #ifdef CONFIG_HIGHMEM
1220 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1221 free_bootmem_late((unsigned long)m,
1222 sizeof(struct huge_bootmem_page));
1224 page = virt_to_page(m);
1226 __ClearPageReserved(page);
1227 WARN_ON(page_count(page) != 1);
1228 prep_compound_huge_page(page, h->order);
1229 prep_new_huge_page(h, page, page_to_nid(page));
1231 * If we had gigantic hugepages allocated at boot time, we need
1232 * to restore the 'stolen' pages to totalram_pages in order to
1233 * fix confusing memory reports from free(1) and another
1234 * side-effects, like CommitLimit going negative.
1236 if (h->order > (MAX_ORDER - 1))
1237 totalram_pages += 1 << h->order;
1241 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1245 for (i = 0; i < h->max_huge_pages; ++i) {
1246 if (h->order >= MAX_ORDER) {
1247 if (!alloc_bootmem_huge_page(h))
1249 } else if (!alloc_fresh_huge_page(h,
1250 &node_states[N_HIGH_MEMORY]))
1253 h->max_huge_pages = i;
1256 static void __init hugetlb_init_hstates(void)
1260 for_each_hstate(h) {
1261 /* oversize hugepages were init'ed in early boot */
1262 if (h->order < MAX_ORDER)
1263 hugetlb_hstate_alloc_pages(h);
1267 static char * __init memfmt(char *buf, unsigned long n)
1269 if (n >= (1UL << 30))
1270 sprintf(buf, "%lu GB", n >> 30);
1271 else if (n >= (1UL << 20))
1272 sprintf(buf, "%lu MB", n >> 20);
1274 sprintf(buf, "%lu KB", n >> 10);
1278 static void __init report_hugepages(void)
1282 for_each_hstate(h) {
1284 printk(KERN_INFO "HugeTLB registered %s page size, "
1285 "pre-allocated %ld pages\n",
1286 memfmt(buf, huge_page_size(h)),
1287 h->free_huge_pages);
1291 #ifdef CONFIG_HIGHMEM
1292 static void try_to_free_low(struct hstate *h, unsigned long count,
1293 nodemask_t *nodes_allowed)
1297 if (h->order >= MAX_ORDER)
1300 for_each_node_mask(i, *nodes_allowed) {
1301 struct page *page, *next;
1302 struct list_head *freel = &h->hugepage_freelists[i];
1303 list_for_each_entry_safe(page, next, freel, lru) {
1304 if (count >= h->nr_huge_pages)
1306 if (PageHighMem(page))
1308 list_del(&page->lru);
1309 update_and_free_page(h, page);
1310 h->free_huge_pages--;
1311 h->free_huge_pages_node[page_to_nid(page)]--;
1316 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1317 nodemask_t *nodes_allowed)
1323 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1324 * balanced by operating on them in a round-robin fashion.
1325 * Returns 1 if an adjustment was made.
1327 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1330 int start_nid, next_nid;
1333 VM_BUG_ON(delta != -1 && delta != 1);
1336 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1338 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1339 next_nid = start_nid;
1345 * To shrink on this node, there must be a surplus page
1347 if (!h->surplus_huge_pages_node[nid]) {
1348 next_nid = hstate_next_node_to_alloc(h,
1355 * Surplus cannot exceed the total number of pages
1357 if (h->surplus_huge_pages_node[nid] >=
1358 h->nr_huge_pages_node[nid]) {
1359 next_nid = hstate_next_node_to_free(h,
1365 h->surplus_huge_pages += delta;
1366 h->surplus_huge_pages_node[nid] += delta;
1369 } while (next_nid != start_nid);
1374 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1375 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1376 nodemask_t *nodes_allowed)
1378 unsigned long min_count, ret;
1380 if (h->order >= MAX_ORDER)
1381 return h->max_huge_pages;
1384 * Increase the pool size
1385 * First take pages out of surplus state. Then make up the
1386 * remaining difference by allocating fresh huge pages.
1388 * We might race with alloc_buddy_huge_page() here and be unable
1389 * to convert a surplus huge page to a normal huge page. That is
1390 * not critical, though, it just means the overall size of the
1391 * pool might be one hugepage larger than it needs to be, but
1392 * within all the constraints specified by the sysctls.
1394 spin_lock(&hugetlb_lock);
1395 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1396 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1400 while (count > persistent_huge_pages(h)) {
1402 * If this allocation races such that we no longer need the
1403 * page, free_huge_page will handle it by freeing the page
1404 * and reducing the surplus.
1406 spin_unlock(&hugetlb_lock);
1407 ret = alloc_fresh_huge_page(h, nodes_allowed);
1408 spin_lock(&hugetlb_lock);
1412 /* Bail for signals. Probably ctrl-c from user */
1413 if (signal_pending(current))
1418 * Decrease the pool size
1419 * First return free pages to the buddy allocator (being careful
1420 * to keep enough around to satisfy reservations). Then place
1421 * pages into surplus state as needed so the pool will shrink
1422 * to the desired size as pages become free.
1424 * By placing pages into the surplus state independent of the
1425 * overcommit value, we are allowing the surplus pool size to
1426 * exceed overcommit. There are few sane options here. Since
1427 * alloc_buddy_huge_page() is checking the global counter,
1428 * though, we'll note that we're not allowed to exceed surplus
1429 * and won't grow the pool anywhere else. Not until one of the
1430 * sysctls are changed, or the surplus pages go out of use.
1432 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1433 min_count = max(count, min_count);
1434 try_to_free_low(h, min_count, nodes_allowed);
1435 while (min_count < persistent_huge_pages(h)) {
1436 if (!free_pool_huge_page(h, nodes_allowed, 0))
1439 while (count < persistent_huge_pages(h)) {
1440 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1444 ret = persistent_huge_pages(h);
1445 spin_unlock(&hugetlb_lock);
1449 #define HSTATE_ATTR_RO(_name) \
1450 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1452 #define HSTATE_ATTR(_name) \
1453 static struct kobj_attribute _name##_attr = \
1454 __ATTR(_name, 0644, _name##_show, _name##_store)
1456 static struct kobject *hugepages_kobj;
1457 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1459 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1461 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1465 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1466 if (hstate_kobjs[i] == kobj) {
1468 *nidp = NUMA_NO_NODE;
1472 return kobj_to_node_hstate(kobj, nidp);
1475 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1476 struct kobj_attribute *attr, char *buf)
1479 unsigned long nr_huge_pages;
1482 h = kobj_to_hstate(kobj, &nid);
1483 if (nid == NUMA_NO_NODE)
1484 nr_huge_pages = h->nr_huge_pages;
1486 nr_huge_pages = h->nr_huge_pages_node[nid];
1488 return sprintf(buf, "%lu\n", nr_huge_pages);
1491 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1492 struct kobject *kobj, struct kobj_attribute *attr,
1493 const char *buf, size_t len)
1497 unsigned long count;
1499 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1501 err = strict_strtoul(buf, 10, &count);
1505 h = kobj_to_hstate(kobj, &nid);
1506 if (h->order >= MAX_ORDER) {
1511 if (nid == NUMA_NO_NODE) {
1513 * global hstate attribute
1515 if (!(obey_mempolicy &&
1516 init_nodemask_of_mempolicy(nodes_allowed))) {
1517 NODEMASK_FREE(nodes_allowed);
1518 nodes_allowed = &node_states[N_HIGH_MEMORY];
1520 } else if (nodes_allowed) {
1522 * per node hstate attribute: adjust count to global,
1523 * but restrict alloc/free to the specified node.
1525 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1526 init_nodemask_of_node(nodes_allowed, nid);
1528 nodes_allowed = &node_states[N_HIGH_MEMORY];
1530 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1532 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1533 NODEMASK_FREE(nodes_allowed);
1537 NODEMASK_FREE(nodes_allowed);
1541 static ssize_t nr_hugepages_show(struct kobject *kobj,
1542 struct kobj_attribute *attr, char *buf)
1544 return nr_hugepages_show_common(kobj, attr, buf);
1547 static ssize_t nr_hugepages_store(struct kobject *kobj,
1548 struct kobj_attribute *attr, const char *buf, size_t len)
1550 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1552 HSTATE_ATTR(nr_hugepages);
1557 * hstate attribute for optionally mempolicy-based constraint on persistent
1558 * huge page alloc/free.
1560 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1561 struct kobj_attribute *attr, char *buf)
1563 return nr_hugepages_show_common(kobj, attr, buf);
1566 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1567 struct kobj_attribute *attr, const char *buf, size_t len)
1569 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1571 HSTATE_ATTR(nr_hugepages_mempolicy);
1575 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1576 struct kobj_attribute *attr, char *buf)
1578 struct hstate *h = kobj_to_hstate(kobj, NULL);
1579 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1582 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1583 struct kobj_attribute *attr, const char *buf, size_t count)
1586 unsigned long input;
1587 struct hstate *h = kobj_to_hstate(kobj, NULL);
1589 if (h->order >= MAX_ORDER)
1592 err = strict_strtoul(buf, 10, &input);
1596 spin_lock(&hugetlb_lock);
1597 h->nr_overcommit_huge_pages = input;
1598 spin_unlock(&hugetlb_lock);
1602 HSTATE_ATTR(nr_overcommit_hugepages);
1604 static ssize_t free_hugepages_show(struct kobject *kobj,
1605 struct kobj_attribute *attr, char *buf)
1608 unsigned long free_huge_pages;
1611 h = kobj_to_hstate(kobj, &nid);
1612 if (nid == NUMA_NO_NODE)
1613 free_huge_pages = h->free_huge_pages;
1615 free_huge_pages = h->free_huge_pages_node[nid];
1617 return sprintf(buf, "%lu\n", free_huge_pages);
1619 HSTATE_ATTR_RO(free_hugepages);
1621 static ssize_t resv_hugepages_show(struct kobject *kobj,
1622 struct kobj_attribute *attr, char *buf)
1624 struct hstate *h = kobj_to_hstate(kobj, NULL);
1625 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1627 HSTATE_ATTR_RO(resv_hugepages);
1629 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1630 struct kobj_attribute *attr, char *buf)
1633 unsigned long surplus_huge_pages;
1636 h = kobj_to_hstate(kobj, &nid);
1637 if (nid == NUMA_NO_NODE)
1638 surplus_huge_pages = h->surplus_huge_pages;
1640 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1642 return sprintf(buf, "%lu\n", surplus_huge_pages);
1644 HSTATE_ATTR_RO(surplus_hugepages);
1646 static struct attribute *hstate_attrs[] = {
1647 &nr_hugepages_attr.attr,
1648 &nr_overcommit_hugepages_attr.attr,
1649 &free_hugepages_attr.attr,
1650 &resv_hugepages_attr.attr,
1651 &surplus_hugepages_attr.attr,
1653 &nr_hugepages_mempolicy_attr.attr,
1658 static struct attribute_group hstate_attr_group = {
1659 .attrs = hstate_attrs,
1662 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1663 struct kobject **hstate_kobjs,
1664 struct attribute_group *hstate_attr_group)
1667 int hi = hstate_index(h);
1669 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1670 if (!hstate_kobjs[hi])
1673 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1675 kobject_put(hstate_kobjs[hi]);
1680 static void __init hugetlb_sysfs_init(void)
1685 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1686 if (!hugepages_kobj)
1689 for_each_hstate(h) {
1690 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1691 hstate_kobjs, &hstate_attr_group);
1693 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1701 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1702 * with node devices in node_devices[] using a parallel array. The array
1703 * index of a node device or _hstate == node id.
1704 * This is here to avoid any static dependency of the node device driver, in
1705 * the base kernel, on the hugetlb module.
1707 struct node_hstate {
1708 struct kobject *hugepages_kobj;
1709 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1711 struct node_hstate node_hstates[MAX_NUMNODES];
1714 * A subset of global hstate attributes for node devices
1716 static struct attribute *per_node_hstate_attrs[] = {
1717 &nr_hugepages_attr.attr,
1718 &free_hugepages_attr.attr,
1719 &surplus_hugepages_attr.attr,
1723 static struct attribute_group per_node_hstate_attr_group = {
1724 .attrs = per_node_hstate_attrs,
1728 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1729 * Returns node id via non-NULL nidp.
1731 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1735 for (nid = 0; nid < nr_node_ids; nid++) {
1736 struct node_hstate *nhs = &node_hstates[nid];
1738 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1739 if (nhs->hstate_kobjs[i] == kobj) {
1751 * Unregister hstate attributes from a single node device.
1752 * No-op if no hstate attributes attached.
1754 void hugetlb_unregister_node(struct node *node)
1757 struct node_hstate *nhs = &node_hstates[node->dev.id];
1759 if (!nhs->hugepages_kobj)
1760 return; /* no hstate attributes */
1762 for_each_hstate(h) {
1763 int idx = hstate_index(h);
1764 if (nhs->hstate_kobjs[idx]) {
1765 kobject_put(nhs->hstate_kobjs[idx]);
1766 nhs->hstate_kobjs[idx] = NULL;
1770 kobject_put(nhs->hugepages_kobj);
1771 nhs->hugepages_kobj = NULL;
1775 * hugetlb module exit: unregister hstate attributes from node devices
1778 static void hugetlb_unregister_all_nodes(void)
1783 * disable node device registrations.
1785 register_hugetlbfs_with_node(NULL, NULL);
1788 * remove hstate attributes from any nodes that have them.
1790 for (nid = 0; nid < nr_node_ids; nid++)
1791 hugetlb_unregister_node(&node_devices[nid]);
1795 * Register hstate attributes for a single node device.
1796 * No-op if attributes already registered.
1798 void hugetlb_register_node(struct node *node)
1801 struct node_hstate *nhs = &node_hstates[node->dev.id];
1804 if (nhs->hugepages_kobj)
1805 return; /* already allocated */
1807 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1809 if (!nhs->hugepages_kobj)
1812 for_each_hstate(h) {
1813 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1815 &per_node_hstate_attr_group);
1817 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1819 h->name, node->dev.id);
1820 hugetlb_unregister_node(node);
1827 * hugetlb init time: register hstate attributes for all registered node
1828 * devices of nodes that have memory. All on-line nodes should have
1829 * registered their associated device by this time.
1831 static void hugetlb_register_all_nodes(void)
1835 for_each_node_state(nid, N_HIGH_MEMORY) {
1836 struct node *node = &node_devices[nid];
1837 if (node->dev.id == nid)
1838 hugetlb_register_node(node);
1842 * Let the node device driver know we're here so it can
1843 * [un]register hstate attributes on node hotplug.
1845 register_hugetlbfs_with_node(hugetlb_register_node,
1846 hugetlb_unregister_node);
1848 #else /* !CONFIG_NUMA */
1850 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858 static void hugetlb_unregister_all_nodes(void) { }
1860 static void hugetlb_register_all_nodes(void) { }
1864 static void __exit hugetlb_exit(void)
1868 hugetlb_unregister_all_nodes();
1870 for_each_hstate(h) {
1871 kobject_put(hstate_kobjs[hstate_index(h)]);
1874 kobject_put(hugepages_kobj);
1876 module_exit(hugetlb_exit);
1878 static int __init hugetlb_init(void)
1880 /* Some platform decide whether they support huge pages at boot
1881 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1882 * there is no such support
1884 if (HPAGE_SHIFT == 0)
1887 if (!size_to_hstate(default_hstate_size)) {
1888 default_hstate_size = HPAGE_SIZE;
1889 if (!size_to_hstate(default_hstate_size))
1890 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1892 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1893 if (default_hstate_max_huge_pages)
1894 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1896 hugetlb_init_hstates();
1898 gather_bootmem_prealloc();
1902 hugetlb_sysfs_init();
1904 hugetlb_register_all_nodes();
1908 module_init(hugetlb_init);
1910 /* Should be called on processing a hugepagesz=... option */
1911 void __init hugetlb_add_hstate(unsigned order)
1916 if (size_to_hstate(PAGE_SIZE << order)) {
1917 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1920 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1922 h = &hstates[hugetlb_max_hstate++];
1924 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1925 h->nr_huge_pages = 0;
1926 h->free_huge_pages = 0;
1927 for (i = 0; i < MAX_NUMNODES; ++i)
1928 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1929 INIT_LIST_HEAD(&h->hugepage_activelist);
1930 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1931 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1932 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1933 huge_page_size(h)/1024);
1935 * Add cgroup control files only if the huge page consists
1936 * of more than two normal pages. This is because we use
1937 * page[2].lru.next for storing cgoup details.
1939 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1940 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1945 static int __init hugetlb_nrpages_setup(char *s)
1948 static unsigned long *last_mhp;
1951 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1952 * so this hugepages= parameter goes to the "default hstate".
1954 if (!hugetlb_max_hstate)
1955 mhp = &default_hstate_max_huge_pages;
1957 mhp = &parsed_hstate->max_huge_pages;
1959 if (mhp == last_mhp) {
1960 printk(KERN_WARNING "hugepages= specified twice without "
1961 "interleaving hugepagesz=, ignoring\n");
1965 if (sscanf(s, "%lu", mhp) <= 0)
1969 * Global state is always initialized later in hugetlb_init.
1970 * But we need to allocate >= MAX_ORDER hstates here early to still
1971 * use the bootmem allocator.
1973 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1974 hugetlb_hstate_alloc_pages(parsed_hstate);
1980 __setup("hugepages=", hugetlb_nrpages_setup);
1982 static int __init hugetlb_default_setup(char *s)
1984 default_hstate_size = memparse(s, &s);
1987 __setup("default_hugepagesz=", hugetlb_default_setup);
1989 static unsigned int cpuset_mems_nr(unsigned int *array)
1992 unsigned int nr = 0;
1994 for_each_node_mask(node, cpuset_current_mems_allowed)
2000 #ifdef CONFIG_SYSCTL
2001 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2002 struct ctl_table *table, int write,
2003 void __user *buffer, size_t *length, loff_t *ppos)
2005 struct hstate *h = &default_hstate;
2009 tmp = h->max_huge_pages;
2011 if (write && h->order >= MAX_ORDER)
2015 table->maxlen = sizeof(unsigned long);
2016 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2021 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2022 GFP_KERNEL | __GFP_NORETRY);
2023 if (!(obey_mempolicy &&
2024 init_nodemask_of_mempolicy(nodes_allowed))) {
2025 NODEMASK_FREE(nodes_allowed);
2026 nodes_allowed = &node_states[N_HIGH_MEMORY];
2028 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2030 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2031 NODEMASK_FREE(nodes_allowed);
2037 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2038 void __user *buffer, size_t *length, loff_t *ppos)
2041 return hugetlb_sysctl_handler_common(false, table, write,
2042 buffer, length, ppos);
2046 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2047 void __user *buffer, size_t *length, loff_t *ppos)
2049 return hugetlb_sysctl_handler_common(true, table, write,
2050 buffer, length, ppos);
2052 #endif /* CONFIG_NUMA */
2054 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2055 void __user *buffer,
2056 size_t *length, loff_t *ppos)
2058 proc_dointvec(table, write, buffer, length, ppos);
2059 if (hugepages_treat_as_movable)
2060 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2062 htlb_alloc_mask = GFP_HIGHUSER;
2066 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2067 void __user *buffer,
2068 size_t *length, loff_t *ppos)
2070 struct hstate *h = &default_hstate;
2074 tmp = h->nr_overcommit_huge_pages;
2076 if (write && h->order >= MAX_ORDER)
2080 table->maxlen = sizeof(unsigned long);
2081 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2086 spin_lock(&hugetlb_lock);
2087 h->nr_overcommit_huge_pages = tmp;
2088 spin_unlock(&hugetlb_lock);
2094 #endif /* CONFIG_SYSCTL */
2096 void hugetlb_report_meminfo(struct seq_file *m)
2098 struct hstate *h = &default_hstate;
2100 "HugePages_Total: %5lu\n"
2101 "HugePages_Free: %5lu\n"
2102 "HugePages_Rsvd: %5lu\n"
2103 "HugePages_Surp: %5lu\n"
2104 "Hugepagesize: %8lu kB\n",
2108 h->surplus_huge_pages,
2109 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2112 int hugetlb_report_node_meminfo(int nid, char *buf)
2114 struct hstate *h = &default_hstate;
2116 "Node %d HugePages_Total: %5u\n"
2117 "Node %d HugePages_Free: %5u\n"
2118 "Node %d HugePages_Surp: %5u\n",
2119 nid, h->nr_huge_pages_node[nid],
2120 nid, h->free_huge_pages_node[nid],
2121 nid, h->surplus_huge_pages_node[nid]);
2124 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2125 unsigned long hugetlb_total_pages(void)
2127 struct hstate *h = &default_hstate;
2128 return h->nr_huge_pages * pages_per_huge_page(h);
2131 static int hugetlb_acct_memory(struct hstate *h, long delta)
2135 spin_lock(&hugetlb_lock);
2137 * When cpuset is configured, it breaks the strict hugetlb page
2138 * reservation as the accounting is done on a global variable. Such
2139 * reservation is completely rubbish in the presence of cpuset because
2140 * the reservation is not checked against page availability for the
2141 * current cpuset. Application can still potentially OOM'ed by kernel
2142 * with lack of free htlb page in cpuset that the task is in.
2143 * Attempt to enforce strict accounting with cpuset is almost
2144 * impossible (or too ugly) because cpuset is too fluid that
2145 * task or memory node can be dynamically moved between cpusets.
2147 * The change of semantics for shared hugetlb mapping with cpuset is
2148 * undesirable. However, in order to preserve some of the semantics,
2149 * we fall back to check against current free page availability as
2150 * a best attempt and hopefully to minimize the impact of changing
2151 * semantics that cpuset has.
2154 if (gather_surplus_pages(h, delta) < 0)
2157 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2158 return_unused_surplus_pages(h, delta);
2165 return_unused_surplus_pages(h, (unsigned long) -delta);
2168 spin_unlock(&hugetlb_lock);
2172 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2174 struct resv_map *reservations = vma_resv_map(vma);
2177 * This new VMA should share its siblings reservation map if present.
2178 * The VMA will only ever have a valid reservation map pointer where
2179 * it is being copied for another still existing VMA. As that VMA
2180 * has a reference to the reservation map it cannot disappear until
2181 * after this open call completes. It is therefore safe to take a
2182 * new reference here without additional locking.
2185 kref_get(&reservations->refs);
2188 static void resv_map_put(struct vm_area_struct *vma)
2190 struct resv_map *reservations = vma_resv_map(vma);
2194 kref_put(&reservations->refs, resv_map_release);
2197 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2199 struct hstate *h = hstate_vma(vma);
2200 struct resv_map *reservations = vma_resv_map(vma);
2201 struct hugepage_subpool *spool = subpool_vma(vma);
2202 unsigned long reserve;
2203 unsigned long start;
2207 start = vma_hugecache_offset(h, vma, vma->vm_start);
2208 end = vma_hugecache_offset(h, vma, vma->vm_end);
2210 reserve = (end - start) -
2211 region_count(&reservations->regions, start, end);
2216 hugetlb_acct_memory(h, -reserve);
2217 hugepage_subpool_put_pages(spool, reserve);
2223 * We cannot handle pagefaults against hugetlb pages at all. They cause
2224 * handle_mm_fault() to try to instantiate regular-sized pages in the
2225 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2228 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2234 const struct vm_operations_struct hugetlb_vm_ops = {
2235 .fault = hugetlb_vm_op_fault,
2236 .open = hugetlb_vm_op_open,
2237 .close = hugetlb_vm_op_close,
2240 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2247 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2249 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2251 entry = pte_mkyoung(entry);
2252 entry = pte_mkhuge(entry);
2253 entry = arch_make_huge_pte(entry, vma, page, writable);
2258 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2259 unsigned long address, pte_t *ptep)
2263 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2264 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2265 update_mmu_cache(vma, address, ptep);
2269 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2270 struct vm_area_struct *vma)
2272 pte_t *src_pte, *dst_pte, entry;
2273 struct page *ptepage;
2276 struct hstate *h = hstate_vma(vma);
2277 unsigned long sz = huge_page_size(h);
2279 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2281 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2282 src_pte = huge_pte_offset(src, addr);
2285 dst_pte = huge_pte_alloc(dst, addr, sz);
2289 /* If the pagetables are shared don't copy or take references */
2290 if (dst_pte == src_pte)
2293 spin_lock(&dst->page_table_lock);
2294 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2295 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2297 huge_ptep_set_wrprotect(src, addr, src_pte);
2298 entry = huge_ptep_get(src_pte);
2299 ptepage = pte_page(entry);
2301 page_dup_rmap(ptepage);
2302 set_huge_pte_at(dst, addr, dst_pte, entry);
2304 spin_unlock(&src->page_table_lock);
2305 spin_unlock(&dst->page_table_lock);
2313 static int is_hugetlb_entry_migration(pte_t pte)
2317 if (huge_pte_none(pte) || pte_present(pte))
2319 swp = pte_to_swp_entry(pte);
2320 if (non_swap_entry(swp) && is_migration_entry(swp))
2326 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2330 if (huge_pte_none(pte) || pte_present(pte))
2332 swp = pte_to_swp_entry(pte);
2333 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2339 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2340 unsigned long start, unsigned long end,
2341 struct page *ref_page)
2343 int force_flush = 0;
2344 struct mm_struct *mm = vma->vm_mm;
2345 unsigned long address;
2349 struct hstate *h = hstate_vma(vma);
2350 unsigned long sz = huge_page_size(h);
2352 WARN_ON(!is_vm_hugetlb_page(vma));
2353 BUG_ON(start & ~huge_page_mask(h));
2354 BUG_ON(end & ~huge_page_mask(h));
2356 tlb_start_vma(tlb, vma);
2357 mmu_notifier_invalidate_range_start(mm, start, end);
2359 spin_lock(&mm->page_table_lock);
2360 for (address = start; address < end; address += sz) {
2361 ptep = huge_pte_offset(mm, address);
2365 if (huge_pmd_unshare(mm, &address, ptep))
2368 pte = huge_ptep_get(ptep);
2369 if (huge_pte_none(pte))
2373 * HWPoisoned hugepage is already unmapped and dropped reference
2375 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2378 page = pte_page(pte);
2380 * If a reference page is supplied, it is because a specific
2381 * page is being unmapped, not a range. Ensure the page we
2382 * are about to unmap is the actual page of interest.
2385 if (page != ref_page)
2389 * Mark the VMA as having unmapped its page so that
2390 * future faults in this VMA will fail rather than
2391 * looking like data was lost
2393 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2396 pte = huge_ptep_get_and_clear(mm, address, ptep);
2397 tlb_remove_tlb_entry(tlb, ptep, address);
2399 set_page_dirty(page);
2401 page_remove_rmap(page);
2402 force_flush = !__tlb_remove_page(tlb, page);
2405 /* Bail out after unmapping reference page if supplied */
2409 spin_unlock(&mm->page_table_lock);
2411 * mmu_gather ran out of room to batch pages, we break out of
2412 * the PTE lock to avoid doing the potential expensive TLB invalidate
2413 * and page-free while holding it.
2418 if (address < end && !ref_page)
2421 mmu_notifier_invalidate_range_end(mm, start, end);
2422 tlb_end_vma(tlb, vma);
2425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2426 unsigned long end, struct page *ref_page)
2428 struct mm_struct *mm;
2429 struct mmu_gather tlb;
2433 tlb_gather_mmu(&tlb, mm, 0);
2434 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2435 tlb_finish_mmu(&tlb, start, end);
2439 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2440 * mappping it owns the reserve page for. The intention is to unmap the page
2441 * from other VMAs and let the children be SIGKILLed if they are faulting the
2444 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2445 struct page *page, unsigned long address)
2447 struct hstate *h = hstate_vma(vma);
2448 struct vm_area_struct *iter_vma;
2449 struct address_space *mapping;
2450 struct prio_tree_iter iter;
2454 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2455 * from page cache lookup which is in HPAGE_SIZE units.
2457 address = address & huge_page_mask(h);
2458 pgoff = vma_hugecache_offset(h, vma, address);
2459 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2462 * Take the mapping lock for the duration of the table walk. As
2463 * this mapping should be shared between all the VMAs,
2464 * __unmap_hugepage_range() is called as the lock is already held
2466 mutex_lock(&mapping->i_mmap_mutex);
2467 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2468 /* Do not unmap the current VMA */
2469 if (iter_vma == vma)
2473 * Unmap the page from other VMAs without their own reserves.
2474 * They get marked to be SIGKILLed if they fault in these
2475 * areas. This is because a future no-page fault on this VMA
2476 * could insert a zeroed page instead of the data existing
2477 * from the time of fork. This would look like data corruption
2479 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2480 unmap_hugepage_range(iter_vma, address,
2481 address + huge_page_size(h), page);
2483 mutex_unlock(&mapping->i_mmap_mutex);
2489 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2490 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2491 * cannot race with other handlers or page migration.
2492 * Keep the pte_same checks anyway to make transition from the mutex easier.
2494 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2495 unsigned long address, pte_t *ptep, pte_t pte,
2496 struct page *pagecache_page)
2498 struct hstate *h = hstate_vma(vma);
2499 struct page *old_page, *new_page;
2501 int outside_reserve = 0;
2503 old_page = pte_page(pte);
2506 /* If no-one else is actually using this page, avoid the copy
2507 * and just make the page writable */
2508 avoidcopy = (page_mapcount(old_page) == 1);
2510 if (PageAnon(old_page))
2511 page_move_anon_rmap(old_page, vma, address);
2512 set_huge_ptep_writable(vma, address, ptep);
2517 * If the process that created a MAP_PRIVATE mapping is about to
2518 * perform a COW due to a shared page count, attempt to satisfy
2519 * the allocation without using the existing reserves. The pagecache
2520 * page is used to determine if the reserve at this address was
2521 * consumed or not. If reserves were used, a partial faulted mapping
2522 * at the time of fork() could consume its reserves on COW instead
2523 * of the full address range.
2525 if (!(vma->vm_flags & VM_MAYSHARE) &&
2526 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2527 old_page != pagecache_page)
2528 outside_reserve = 1;
2530 page_cache_get(old_page);
2532 /* Drop page_table_lock as buddy allocator may be called */
2533 spin_unlock(&mm->page_table_lock);
2534 new_page = alloc_huge_page(vma, address, outside_reserve);
2536 if (IS_ERR(new_page)) {
2537 long err = PTR_ERR(new_page);
2538 page_cache_release(old_page);
2541 * If a process owning a MAP_PRIVATE mapping fails to COW,
2542 * it is due to references held by a child and an insufficient
2543 * huge page pool. To guarantee the original mappers
2544 * reliability, unmap the page from child processes. The child
2545 * may get SIGKILLed if it later faults.
2547 if (outside_reserve) {
2548 BUG_ON(huge_pte_none(pte));
2549 if (unmap_ref_private(mm, vma, old_page, address)) {
2550 BUG_ON(huge_pte_none(pte));
2551 spin_lock(&mm->page_table_lock);
2552 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2553 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2554 goto retry_avoidcopy;
2556 * race occurs while re-acquiring page_table_lock, and
2564 /* Caller expects lock to be held */
2565 spin_lock(&mm->page_table_lock);
2567 return VM_FAULT_OOM;
2569 return VM_FAULT_SIGBUS;
2573 * When the original hugepage is shared one, it does not have
2574 * anon_vma prepared.
2576 if (unlikely(anon_vma_prepare(vma))) {
2577 page_cache_release(new_page);
2578 page_cache_release(old_page);
2579 /* Caller expects lock to be held */
2580 spin_lock(&mm->page_table_lock);
2581 return VM_FAULT_OOM;
2584 copy_user_huge_page(new_page, old_page, address, vma,
2585 pages_per_huge_page(h));
2586 __SetPageUptodate(new_page);
2589 * Retake the page_table_lock to check for racing updates
2590 * before the page tables are altered
2592 spin_lock(&mm->page_table_lock);
2593 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2594 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2596 mmu_notifier_invalidate_range_start(mm,
2597 address & huge_page_mask(h),
2598 (address & huge_page_mask(h)) + huge_page_size(h));
2599 huge_ptep_clear_flush(vma, address, ptep);
2600 set_huge_pte_at(mm, address, ptep,
2601 make_huge_pte(vma, new_page, 1));
2602 page_remove_rmap(old_page);
2603 hugepage_add_new_anon_rmap(new_page, vma, address);
2604 /* Make the old page be freed below */
2605 new_page = old_page;
2606 mmu_notifier_invalidate_range_end(mm,
2607 address & huge_page_mask(h),
2608 (address & huge_page_mask(h)) + huge_page_size(h));
2610 page_cache_release(new_page);
2611 page_cache_release(old_page);
2615 /* Return the pagecache page at a given address within a VMA */
2616 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2617 struct vm_area_struct *vma, unsigned long address)
2619 struct address_space *mapping;
2622 mapping = vma->vm_file->f_mapping;
2623 idx = vma_hugecache_offset(h, vma, address);
2625 return find_lock_page(mapping, idx);
2629 * Return whether there is a pagecache page to back given address within VMA.
2630 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2632 static bool hugetlbfs_pagecache_present(struct hstate *h,
2633 struct vm_area_struct *vma, unsigned long address)
2635 struct address_space *mapping;
2639 mapping = vma->vm_file->f_mapping;
2640 idx = vma_hugecache_offset(h, vma, address);
2642 page = find_get_page(mapping, idx);
2645 return page != NULL;
2648 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2649 unsigned long address, pte_t *ptep, unsigned int flags)
2651 struct hstate *h = hstate_vma(vma);
2652 int ret = VM_FAULT_SIGBUS;
2657 struct address_space *mapping;
2661 * Currently, we are forced to kill the process in the event the
2662 * original mapper has unmapped pages from the child due to a failed
2663 * COW. Warn that such a situation has occurred as it may not be obvious
2665 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2667 "PID %d killed due to inadequate hugepage pool\n",
2672 mapping = vma->vm_file->f_mapping;
2673 idx = vma_hugecache_offset(h, vma, address);
2676 * Use page lock to guard against racing truncation
2677 * before we get page_table_lock.
2680 page = find_lock_page(mapping, idx);
2682 size = i_size_read(mapping->host) >> huge_page_shift(h);
2685 page = alloc_huge_page(vma, address, 0);
2687 ret = PTR_ERR(page);
2691 ret = VM_FAULT_SIGBUS;
2694 clear_huge_page(page, address, pages_per_huge_page(h));
2695 __SetPageUptodate(page);
2697 if (vma->vm_flags & VM_MAYSHARE) {
2699 struct inode *inode = mapping->host;
2701 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2709 spin_lock(&inode->i_lock);
2710 inode->i_blocks += blocks_per_huge_page(h);
2711 spin_unlock(&inode->i_lock);
2714 if (unlikely(anon_vma_prepare(vma))) {
2716 goto backout_unlocked;
2722 * If memory error occurs between mmap() and fault, some process
2723 * don't have hwpoisoned swap entry for errored virtual address.
2724 * So we need to block hugepage fault by PG_hwpoison bit check.
2726 if (unlikely(PageHWPoison(page))) {
2727 ret = VM_FAULT_HWPOISON |
2728 VM_FAULT_SET_HINDEX(hstate_index(h));
2729 goto backout_unlocked;
2734 * If we are going to COW a private mapping later, we examine the
2735 * pending reservations for this page now. This will ensure that
2736 * any allocations necessary to record that reservation occur outside
2739 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2740 if (vma_needs_reservation(h, vma, address) < 0) {
2742 goto backout_unlocked;
2745 spin_lock(&mm->page_table_lock);
2746 size = i_size_read(mapping->host) >> huge_page_shift(h);
2751 if (!huge_pte_none(huge_ptep_get(ptep)))
2755 hugepage_add_new_anon_rmap(page, vma, address);
2757 page_dup_rmap(page);
2758 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2759 && (vma->vm_flags & VM_SHARED)));
2760 set_huge_pte_at(mm, address, ptep, new_pte);
2762 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2763 /* Optimization, do the COW without a second fault */
2764 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2767 spin_unlock(&mm->page_table_lock);
2773 spin_unlock(&mm->page_table_lock);
2780 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2781 unsigned long address, unsigned int flags)
2786 struct page *page = NULL;
2787 struct page *pagecache_page = NULL;
2788 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2789 struct hstate *h = hstate_vma(vma);
2791 address &= huge_page_mask(h);
2793 ptep = huge_pte_offset(mm, address);
2795 entry = huge_ptep_get(ptep);
2796 if (unlikely(is_hugetlb_entry_migration(entry))) {
2797 migration_entry_wait(mm, (pmd_t *)ptep, address);
2799 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2800 return VM_FAULT_HWPOISON_LARGE |
2801 VM_FAULT_SET_HINDEX(hstate_index(h));
2804 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2806 return VM_FAULT_OOM;
2809 * Serialize hugepage allocation and instantiation, so that we don't
2810 * get spurious allocation failures if two CPUs race to instantiate
2811 * the same page in the page cache.
2813 mutex_lock(&hugetlb_instantiation_mutex);
2814 entry = huge_ptep_get(ptep);
2815 if (huge_pte_none(entry)) {
2816 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2823 * If we are going to COW the mapping later, we examine the pending
2824 * reservations for this page now. This will ensure that any
2825 * allocations necessary to record that reservation occur outside the
2826 * spinlock. For private mappings, we also lookup the pagecache
2827 * page now as it is used to determine if a reservation has been
2830 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2831 if (vma_needs_reservation(h, vma, address) < 0) {
2836 if (!(vma->vm_flags & VM_MAYSHARE))
2837 pagecache_page = hugetlbfs_pagecache_page(h,
2842 * hugetlb_cow() requires page locks of pte_page(entry) and
2843 * pagecache_page, so here we need take the former one
2844 * when page != pagecache_page or !pagecache_page.
2845 * Note that locking order is always pagecache_page -> page,
2846 * so no worry about deadlock.
2848 page = pte_page(entry);
2850 if (page != pagecache_page)
2853 spin_lock(&mm->page_table_lock);
2854 /* Check for a racing update before calling hugetlb_cow */
2855 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2856 goto out_page_table_lock;
2859 if (flags & FAULT_FLAG_WRITE) {
2860 if (!pte_write(entry)) {
2861 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2863 goto out_page_table_lock;
2865 entry = pte_mkdirty(entry);
2867 entry = pte_mkyoung(entry);
2868 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2869 flags & FAULT_FLAG_WRITE))
2870 update_mmu_cache(vma, address, ptep);
2872 out_page_table_lock:
2873 spin_unlock(&mm->page_table_lock);
2875 if (pagecache_page) {
2876 unlock_page(pagecache_page);
2877 put_page(pagecache_page);
2879 if (page != pagecache_page)
2884 mutex_unlock(&hugetlb_instantiation_mutex);
2889 /* Can be overriden by architectures */
2890 __attribute__((weak)) struct page *
2891 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2892 pud_t *pud, int write)
2898 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2899 struct page **pages, struct vm_area_struct **vmas,
2900 unsigned long *position, int *length, int i,
2903 unsigned long pfn_offset;
2904 unsigned long vaddr = *position;
2905 int remainder = *length;
2906 struct hstate *h = hstate_vma(vma);
2908 spin_lock(&mm->page_table_lock);
2909 while (vaddr < vma->vm_end && remainder) {
2915 * Some archs (sparc64, sh*) have multiple pte_ts to
2916 * each hugepage. We have to make sure we get the
2917 * first, for the page indexing below to work.
2919 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2920 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2923 * When coredumping, it suits get_dump_page if we just return
2924 * an error where there's an empty slot with no huge pagecache
2925 * to back it. This way, we avoid allocating a hugepage, and
2926 * the sparse dumpfile avoids allocating disk blocks, but its
2927 * huge holes still show up with zeroes where they need to be.
2929 if (absent && (flags & FOLL_DUMP) &&
2930 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2936 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2939 spin_unlock(&mm->page_table_lock);
2940 ret = hugetlb_fault(mm, vma, vaddr,
2941 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2942 spin_lock(&mm->page_table_lock);
2943 if (!(ret & VM_FAULT_ERROR))
2950 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2951 page = pte_page(huge_ptep_get(pte));
2954 pages[i] = mem_map_offset(page, pfn_offset);
2965 if (vaddr < vma->vm_end && remainder &&
2966 pfn_offset < pages_per_huge_page(h)) {
2968 * We use pfn_offset to avoid touching the pageframes
2969 * of this compound page.
2974 spin_unlock(&mm->page_table_lock);
2975 *length = remainder;
2978 return i ? i : -EFAULT;
2981 void hugetlb_change_protection(struct vm_area_struct *vma,
2982 unsigned long address, unsigned long end, pgprot_t newprot)
2984 struct mm_struct *mm = vma->vm_mm;
2985 unsigned long start = address;
2988 struct hstate *h = hstate_vma(vma);
2990 BUG_ON(address >= end);
2991 flush_cache_range(vma, address, end);
2993 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2994 spin_lock(&mm->page_table_lock);
2995 for (; address < end; address += huge_page_size(h)) {
2996 ptep = huge_pte_offset(mm, address);
2999 if (huge_pmd_unshare(mm, &address, ptep))
3001 if (!huge_pte_none(huge_ptep_get(ptep))) {
3002 pte = huge_ptep_get_and_clear(mm, address, ptep);
3003 pte = pte_mkhuge(pte_modify(pte, newprot));
3004 set_huge_pte_at(mm, address, ptep, pte);
3007 spin_unlock(&mm->page_table_lock);
3008 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3010 flush_tlb_range(vma, start, end);
3013 int hugetlb_reserve_pages(struct inode *inode,
3015 struct vm_area_struct *vma,
3016 vm_flags_t vm_flags)
3019 struct hstate *h = hstate_inode(inode);
3020 struct hugepage_subpool *spool = subpool_inode(inode);
3023 * Only apply hugepage reservation if asked. At fault time, an
3024 * attempt will be made for VM_NORESERVE to allocate a page
3025 * without using reserves
3027 if (vm_flags & VM_NORESERVE)
3031 * Shared mappings base their reservation on the number of pages that
3032 * are already allocated on behalf of the file. Private mappings need
3033 * to reserve the full area even if read-only as mprotect() may be
3034 * called to make the mapping read-write. Assume !vma is a shm mapping
3036 if (!vma || vma->vm_flags & VM_MAYSHARE)
3037 chg = region_chg(&inode->i_mapping->private_list, from, to);
3039 struct resv_map *resv_map = resv_map_alloc();
3045 set_vma_resv_map(vma, resv_map);
3046 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3054 /* There must be enough pages in the subpool for the mapping */
3055 if (hugepage_subpool_get_pages(spool, chg)) {
3061 * Check enough hugepages are available for the reservation.
3062 * Hand the pages back to the subpool if there are not
3064 ret = hugetlb_acct_memory(h, chg);
3066 hugepage_subpool_put_pages(spool, chg);
3071 * Account for the reservations made. Shared mappings record regions
3072 * that have reservations as they are shared by multiple VMAs.
3073 * When the last VMA disappears, the region map says how much
3074 * the reservation was and the page cache tells how much of
3075 * the reservation was consumed. Private mappings are per-VMA and
3076 * only the consumed reservations are tracked. When the VMA
3077 * disappears, the original reservation is the VMA size and the
3078 * consumed reservations are stored in the map. Hence, nothing
3079 * else has to be done for private mappings here
3081 if (!vma || vma->vm_flags & VM_MAYSHARE)
3082 region_add(&inode->i_mapping->private_list, from, to);
3090 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3092 struct hstate *h = hstate_inode(inode);
3093 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3094 struct hugepage_subpool *spool = subpool_inode(inode);
3096 spin_lock(&inode->i_lock);
3097 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3098 spin_unlock(&inode->i_lock);
3100 hugepage_subpool_put_pages(spool, (chg - freed));
3101 hugetlb_acct_memory(h, -(chg - freed));
3104 #ifdef CONFIG_MEMORY_FAILURE
3106 /* Should be called in hugetlb_lock */
3107 static int is_hugepage_on_freelist(struct page *hpage)
3111 struct hstate *h = page_hstate(hpage);
3112 int nid = page_to_nid(hpage);
3114 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3121 * This function is called from memory failure code.
3122 * Assume the caller holds page lock of the head page.
3124 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3126 struct hstate *h = page_hstate(hpage);
3127 int nid = page_to_nid(hpage);
3130 spin_lock(&hugetlb_lock);
3131 if (is_hugepage_on_freelist(hpage)) {
3132 list_del(&hpage->lru);
3133 set_page_refcounted(hpage);
3134 h->free_huge_pages--;
3135 h->free_huge_pages_node[nid]--;
3138 spin_unlock(&hugetlb_lock);