2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/bootmem.h>
18 #include <linux/sysfs.h>
21 #include <asm/pgtable.h>
23 #include <linux/hugetlb.h>
26 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
28 unsigned long hugepages_treat_as_movable;
30 static int max_hstate;
31 unsigned int default_hstate_idx;
32 struct hstate hstates[HUGE_MAX_HSTATE];
34 /* for command line parsing */
35 static struct hstate * __initdata parsed_hstate;
36 static unsigned long __initdata default_hstate_max_huge_pages;
38 #define for_each_hstate(h) \
39 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
42 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
44 static DEFINE_SPINLOCK(hugetlb_lock);
47 * Region tracking -- allows tracking of reservations and instantiated pages
48 * across the pages in a mapping.
50 * The region data structures are protected by a combination of the mmap_sem
51 * and the hugetlb_instantion_mutex. To access or modify a region the caller
52 * must either hold the mmap_sem for write, or the mmap_sem for read and
53 * the hugetlb_instantiation mutex:
55 * down_write(&mm->mmap_sem);
57 * down_read(&mm->mmap_sem);
58 * mutex_lock(&hugetlb_instantiation_mutex);
61 struct list_head link;
66 static long region_add(struct list_head *head, long f, long t)
68 struct file_region *rg, *nrg, *trg;
70 /* Locate the region we are either in or before. */
71 list_for_each_entry(rg, head, link)
75 /* Round our left edge to the current segment if it encloses us. */
79 /* Check for and consume any regions we now overlap with. */
81 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
82 if (&rg->link == head)
87 /* If this area reaches higher then extend our area to
88 * include it completely. If this is not the first area
89 * which we intend to reuse, free it. */
102 static long region_chg(struct list_head *head, long f, long t)
104 struct file_region *rg, *nrg;
107 /* Locate the region we are before or in. */
108 list_for_each_entry(rg, head, link)
112 /* If we are below the current region then a new region is required.
113 * Subtle, allocate a new region at the position but make it zero
114 * size such that we can guarantee to record the reservation. */
115 if (&rg->link == head || t < rg->from) {
116 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
121 INIT_LIST_HEAD(&nrg->link);
122 list_add(&nrg->link, rg->link.prev);
127 /* Round our left edge to the current segment if it encloses us. */
132 /* Check for and consume any regions we now overlap with. */
133 list_for_each_entry(rg, rg->link.prev, link) {
134 if (&rg->link == head)
139 /* We overlap with this area, if it extends futher than
140 * us then we must extend ourselves. Account for its
141 * existing reservation. */
146 chg -= rg->to - rg->from;
151 static long region_truncate(struct list_head *head, long end)
153 struct file_region *rg, *trg;
156 /* Locate the region we are either in or before. */
157 list_for_each_entry(rg, head, link)
160 if (&rg->link == head)
163 /* If we are in the middle of a region then adjust it. */
164 if (end > rg->from) {
167 rg = list_entry(rg->link.next, typeof(*rg), link);
170 /* Drop any remaining regions. */
171 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
172 if (&rg->link == head)
174 chg += rg->to - rg->from;
181 static long region_count(struct list_head *head, long f, long t)
183 struct file_region *rg;
186 /* Locate each segment we overlap with, and count that overlap. */
187 list_for_each_entry(rg, head, link) {
196 seg_from = max(rg->from, f);
197 seg_to = min(rg->to, t);
199 chg += seg_to - seg_from;
206 * Convert the address within this vma to the page offset within
207 * the mapping, in pagecache page units; huge pages here.
209 static pgoff_t vma_hugecache_offset(struct hstate *h,
210 struct vm_area_struct *vma, unsigned long address)
212 return ((address - vma->vm_start) >> huge_page_shift(h)) +
213 (vma->vm_pgoff >> huge_page_order(h));
217 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
218 * bits of the reservation map pointer, which are always clear due to
221 #define HPAGE_RESV_OWNER (1UL << 0)
222 #define HPAGE_RESV_UNMAPPED (1UL << 1)
223 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
226 * These helpers are used to track how many pages are reserved for
227 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
228 * is guaranteed to have their future faults succeed.
230 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
231 * the reserve counters are updated with the hugetlb_lock held. It is safe
232 * to reset the VMA at fork() time as it is not in use yet and there is no
233 * chance of the global counters getting corrupted as a result of the values.
235 * The private mapping reservation is represented in a subtly different
236 * manner to a shared mapping. A shared mapping has a region map associated
237 * with the underlying file, this region map represents the backing file
238 * pages which have ever had a reservation assigned which this persists even
239 * after the page is instantiated. A private mapping has a region map
240 * associated with the original mmap which is attached to all VMAs which
241 * reference it, this region map represents those offsets which have consumed
242 * reservation ie. where pages have been instantiated.
244 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
246 return (unsigned long)vma->vm_private_data;
249 static void set_vma_private_data(struct vm_area_struct *vma,
252 vma->vm_private_data = (void *)value;
257 struct list_head regions;
260 struct resv_map *resv_map_alloc(void)
262 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
266 kref_init(&resv_map->refs);
267 INIT_LIST_HEAD(&resv_map->regions);
272 void resv_map_release(struct kref *ref)
274 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
276 /* Clear out any active regions before we release the map. */
277 region_truncate(&resv_map->regions, 0);
281 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
283 VM_BUG_ON(!is_vm_hugetlb_page(vma));
284 if (!(vma->vm_flags & VM_SHARED))
285 return (struct resv_map *)(get_vma_private_data(vma) &
290 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
292 VM_BUG_ON(!is_vm_hugetlb_page(vma));
293 VM_BUG_ON(vma->vm_flags & VM_SHARED);
295 set_vma_private_data(vma, (get_vma_private_data(vma) &
296 HPAGE_RESV_MASK) | (unsigned long)map);
299 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
301 VM_BUG_ON(!is_vm_hugetlb_page(vma));
302 VM_BUG_ON(vma->vm_flags & VM_SHARED);
304 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
307 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
309 VM_BUG_ON(!is_vm_hugetlb_page(vma));
311 return (get_vma_private_data(vma) & flag) != 0;
314 /* Decrement the reserved pages in the hugepage pool by one */
315 static void decrement_hugepage_resv_vma(struct hstate *h,
316 struct vm_area_struct *vma)
318 if (vma->vm_flags & VM_NORESERVE)
321 if (vma->vm_flags & VM_SHARED) {
322 /* Shared mappings always use reserves */
323 h->resv_huge_pages--;
324 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
326 * Only the process that called mmap() has reserves for
329 h->resv_huge_pages--;
333 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
334 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 if (!(vma->vm_flags & VM_SHARED))
338 vma->vm_private_data = (void *)0;
341 /* Returns true if the VMA has associated reserve pages */
342 static int vma_has_private_reserves(struct vm_area_struct *vma)
344 if (vma->vm_flags & VM_SHARED)
346 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
351 static void clear_huge_page(struct page *page,
352 unsigned long addr, unsigned long sz)
357 for (i = 0; i < sz/PAGE_SIZE; i++) {
359 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
363 static void copy_huge_page(struct page *dst, struct page *src,
364 unsigned long addr, struct vm_area_struct *vma)
367 struct hstate *h = hstate_vma(vma);
370 for (i = 0; i < pages_per_huge_page(h); i++) {
372 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
376 static void enqueue_huge_page(struct hstate *h, struct page *page)
378 int nid = page_to_nid(page);
379 list_add(&page->lru, &h->hugepage_freelists[nid]);
380 h->free_huge_pages++;
381 h->free_huge_pages_node[nid]++;
384 static struct page *dequeue_huge_page(struct hstate *h)
387 struct page *page = NULL;
389 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
390 if (!list_empty(&h->hugepage_freelists[nid])) {
391 page = list_entry(h->hugepage_freelists[nid].next,
393 list_del(&page->lru);
394 h->free_huge_pages--;
395 h->free_huge_pages_node[nid]--;
402 static struct page *dequeue_huge_page_vma(struct hstate *h,
403 struct vm_area_struct *vma,
404 unsigned long address, int avoid_reserve)
407 struct page *page = NULL;
408 struct mempolicy *mpol;
409 nodemask_t *nodemask;
410 struct zonelist *zonelist = huge_zonelist(vma, address,
411 htlb_alloc_mask, &mpol, &nodemask);
416 * A child process with MAP_PRIVATE mappings created by their parent
417 * have no page reserves. This check ensures that reservations are
418 * not "stolen". The child may still get SIGKILLed
420 if (!vma_has_private_reserves(vma) &&
421 h->free_huge_pages - h->resv_huge_pages == 0)
424 /* If reserves cannot be used, ensure enough pages are in the pool */
425 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
428 for_each_zone_zonelist_nodemask(zone, z, zonelist,
429 MAX_NR_ZONES - 1, nodemask) {
430 nid = zone_to_nid(zone);
431 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
432 !list_empty(&h->hugepage_freelists[nid])) {
433 page = list_entry(h->hugepage_freelists[nid].next,
435 list_del(&page->lru);
436 h->free_huge_pages--;
437 h->free_huge_pages_node[nid]--;
440 decrement_hugepage_resv_vma(h, vma);
449 static void update_and_free_page(struct hstate *h, struct page *page)
454 h->nr_huge_pages_node[page_to_nid(page)]--;
455 for (i = 0; i < pages_per_huge_page(h); i++) {
456 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
457 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
458 1 << PG_private | 1<< PG_writeback);
460 set_compound_page_dtor(page, NULL);
461 set_page_refcounted(page);
462 arch_release_hugepage(page);
463 __free_pages(page, huge_page_order(h));
466 struct hstate *size_to_hstate(unsigned long size)
471 if (huge_page_size(h) == size)
477 static void free_huge_page(struct page *page)
480 * Can't pass hstate in here because it is called from the
481 * compound page destructor.
483 struct hstate *h = page_hstate(page);
484 int nid = page_to_nid(page);
485 struct address_space *mapping;
487 mapping = (struct address_space *) page_private(page);
488 set_page_private(page, 0);
489 BUG_ON(page_count(page));
490 INIT_LIST_HEAD(&page->lru);
492 spin_lock(&hugetlb_lock);
493 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
494 update_and_free_page(h, page);
495 h->surplus_huge_pages--;
496 h->surplus_huge_pages_node[nid]--;
498 enqueue_huge_page(h, page);
500 spin_unlock(&hugetlb_lock);
502 hugetlb_put_quota(mapping, 1);
506 * Increment or decrement surplus_huge_pages. Keep node-specific counters
507 * balanced by operating on them in a round-robin fashion.
508 * Returns 1 if an adjustment was made.
510 static int adjust_pool_surplus(struct hstate *h, int delta)
516 VM_BUG_ON(delta != -1 && delta != 1);
518 nid = next_node(nid, node_online_map);
519 if (nid == MAX_NUMNODES)
520 nid = first_node(node_online_map);
522 /* To shrink on this node, there must be a surplus page */
523 if (delta < 0 && !h->surplus_huge_pages_node[nid])
525 /* Surplus cannot exceed the total number of pages */
526 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
527 h->nr_huge_pages_node[nid])
530 h->surplus_huge_pages += delta;
531 h->surplus_huge_pages_node[nid] += delta;
534 } while (nid != prev_nid);
540 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
542 set_compound_page_dtor(page, free_huge_page);
543 spin_lock(&hugetlb_lock);
545 h->nr_huge_pages_node[nid]++;
546 spin_unlock(&hugetlb_lock);
547 put_page(page); /* free it into the hugepage allocator */
550 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
554 if (h->order >= MAX_ORDER)
557 page = alloc_pages_node(nid,
558 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
559 __GFP_REPEAT|__GFP_NOWARN,
562 if (arch_prepare_hugepage(page)) {
563 __free_pages(page, HUGETLB_PAGE_ORDER);
566 prep_new_huge_page(h, page, nid);
573 * Use a helper variable to find the next node and then
574 * copy it back to hugetlb_next_nid afterwards:
575 * otherwise there's a window in which a racer might
576 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
577 * But we don't need to use a spin_lock here: it really
578 * doesn't matter if occasionally a racer chooses the
579 * same nid as we do. Move nid forward in the mask even
580 * if we just successfully allocated a hugepage so that
581 * the next caller gets hugepages on the next node.
583 static int hstate_next_node(struct hstate *h)
586 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
587 if (next_nid == MAX_NUMNODES)
588 next_nid = first_node(node_online_map);
589 h->hugetlb_next_nid = next_nid;
593 static int alloc_fresh_huge_page(struct hstate *h)
600 start_nid = h->hugetlb_next_nid;
603 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
606 next_nid = hstate_next_node(h);
607 } while (!page && h->hugetlb_next_nid != start_nid);
610 count_vm_event(HTLB_BUDDY_PGALLOC);
612 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
617 static struct page *alloc_buddy_huge_page(struct hstate *h,
618 struct vm_area_struct *vma, unsigned long address)
623 if (h->order >= MAX_ORDER)
627 * Assume we will successfully allocate the surplus page to
628 * prevent racing processes from causing the surplus to exceed
631 * This however introduces a different race, where a process B
632 * tries to grow the static hugepage pool while alloc_pages() is
633 * called by process A. B will only examine the per-node
634 * counters in determining if surplus huge pages can be
635 * converted to normal huge pages in adjust_pool_surplus(). A
636 * won't be able to increment the per-node counter, until the
637 * lock is dropped by B, but B doesn't drop hugetlb_lock until
638 * no more huge pages can be converted from surplus to normal
639 * state (and doesn't try to convert again). Thus, we have a
640 * case where a surplus huge page exists, the pool is grown, and
641 * the surplus huge page still exists after, even though it
642 * should just have been converted to a normal huge page. This
643 * does not leak memory, though, as the hugepage will be freed
644 * once it is out of use. It also does not allow the counters to
645 * go out of whack in adjust_pool_surplus() as we don't modify
646 * the node values until we've gotten the hugepage and only the
647 * per-node value is checked there.
649 spin_lock(&hugetlb_lock);
650 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
651 spin_unlock(&hugetlb_lock);
655 h->surplus_huge_pages++;
657 spin_unlock(&hugetlb_lock);
659 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
660 __GFP_REPEAT|__GFP_NOWARN,
663 spin_lock(&hugetlb_lock);
666 * This page is now managed by the hugetlb allocator and has
667 * no users -- drop the buddy allocator's reference.
669 put_page_testzero(page);
670 VM_BUG_ON(page_count(page));
671 nid = page_to_nid(page);
672 set_compound_page_dtor(page, free_huge_page);
674 * We incremented the global counters already
676 h->nr_huge_pages_node[nid]++;
677 h->surplus_huge_pages_node[nid]++;
678 __count_vm_event(HTLB_BUDDY_PGALLOC);
681 h->surplus_huge_pages--;
682 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
684 spin_unlock(&hugetlb_lock);
690 * Increase the hugetlb pool such that it can accomodate a reservation
693 static int gather_surplus_pages(struct hstate *h, int delta)
695 struct list_head surplus_list;
696 struct page *page, *tmp;
698 int needed, allocated;
700 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
702 h->resv_huge_pages += delta;
707 INIT_LIST_HEAD(&surplus_list);
711 spin_unlock(&hugetlb_lock);
712 for (i = 0; i < needed; i++) {
713 page = alloc_buddy_huge_page(h, NULL, 0);
716 * We were not able to allocate enough pages to
717 * satisfy the entire reservation so we free what
718 * we've allocated so far.
720 spin_lock(&hugetlb_lock);
725 list_add(&page->lru, &surplus_list);
730 * After retaking hugetlb_lock, we need to recalculate 'needed'
731 * because either resv_huge_pages or free_huge_pages may have changed.
733 spin_lock(&hugetlb_lock);
734 needed = (h->resv_huge_pages + delta) -
735 (h->free_huge_pages + allocated);
740 * The surplus_list now contains _at_least_ the number of extra pages
741 * needed to accomodate the reservation. Add the appropriate number
742 * of pages to the hugetlb pool and free the extras back to the buddy
743 * allocator. Commit the entire reservation here to prevent another
744 * process from stealing the pages as they are added to the pool but
745 * before they are reserved.
748 h->resv_huge_pages += delta;
751 /* Free the needed pages to the hugetlb pool */
752 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
755 list_del(&page->lru);
756 enqueue_huge_page(h, page);
759 /* Free unnecessary surplus pages to the buddy allocator */
760 if (!list_empty(&surplus_list)) {
761 spin_unlock(&hugetlb_lock);
762 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
763 list_del(&page->lru);
765 * The page has a reference count of zero already, so
766 * call free_huge_page directly instead of using
767 * put_page. This must be done with hugetlb_lock
768 * unlocked which is safe because free_huge_page takes
769 * hugetlb_lock before deciding how to free the page.
771 free_huge_page(page);
773 spin_lock(&hugetlb_lock);
780 * When releasing a hugetlb pool reservation, any surplus pages that were
781 * allocated to satisfy the reservation must be explicitly freed if they were
784 static void return_unused_surplus_pages(struct hstate *h,
785 unsigned long unused_resv_pages)
789 unsigned long nr_pages;
792 * We want to release as many surplus pages as possible, spread
793 * evenly across all nodes. Iterate across all nodes until we
794 * can no longer free unreserved surplus pages. This occurs when
795 * the nodes with surplus pages have no free pages.
797 unsigned long remaining_iterations = num_online_nodes();
799 /* Uncommit the reservation */
800 h->resv_huge_pages -= unused_resv_pages;
802 /* Cannot return gigantic pages currently */
803 if (h->order >= MAX_ORDER)
806 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
808 while (remaining_iterations-- && nr_pages) {
809 nid = next_node(nid, node_online_map);
810 if (nid == MAX_NUMNODES)
811 nid = first_node(node_online_map);
813 if (!h->surplus_huge_pages_node[nid])
816 if (!list_empty(&h->hugepage_freelists[nid])) {
817 page = list_entry(h->hugepage_freelists[nid].next,
819 list_del(&page->lru);
820 update_and_free_page(h, page);
821 h->free_huge_pages--;
822 h->free_huge_pages_node[nid]--;
823 h->surplus_huge_pages--;
824 h->surplus_huge_pages_node[nid]--;
826 remaining_iterations = num_online_nodes();
832 * Determine if the huge page at addr within the vma has an associated
833 * reservation. Where it does not we will need to logically increase
834 * reservation and actually increase quota before an allocation can occur.
835 * Where any new reservation would be required the reservation change is
836 * prepared, but not committed. Once the page has been quota'd allocated
837 * an instantiated the change should be committed via vma_commit_reservation.
838 * No action is required on failure.
840 static int vma_needs_reservation(struct hstate *h,
841 struct vm_area_struct *vma, unsigned long addr)
843 struct address_space *mapping = vma->vm_file->f_mapping;
844 struct inode *inode = mapping->host;
846 if (vma->vm_flags & VM_SHARED) {
847 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
848 return region_chg(&inode->i_mapping->private_list,
851 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
856 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
857 struct resv_map *reservations = vma_resv_map(vma);
859 err = region_chg(&reservations->regions, idx, idx + 1);
865 static void vma_commit_reservation(struct hstate *h,
866 struct vm_area_struct *vma, unsigned long addr)
868 struct address_space *mapping = vma->vm_file->f_mapping;
869 struct inode *inode = mapping->host;
871 if (vma->vm_flags & VM_SHARED) {
872 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
873 region_add(&inode->i_mapping->private_list, idx, idx + 1);
875 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
876 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
877 struct resv_map *reservations = vma_resv_map(vma);
879 /* Mark this page used in the map. */
880 region_add(&reservations->regions, idx, idx + 1);
884 static struct page *alloc_huge_page(struct vm_area_struct *vma,
885 unsigned long addr, int avoid_reserve)
887 struct hstate *h = hstate_vma(vma);
889 struct address_space *mapping = vma->vm_file->f_mapping;
890 struct inode *inode = mapping->host;
894 * Processes that did not create the mapping will have no reserves and
895 * will not have accounted against quota. Check that the quota can be
896 * made before satisfying the allocation
897 * MAP_NORESERVE mappings may also need pages and quota allocated
898 * if no reserve mapping overlaps.
900 chg = vma_needs_reservation(h, vma, addr);
904 if (hugetlb_get_quota(inode->i_mapping, chg))
905 return ERR_PTR(-ENOSPC);
907 spin_lock(&hugetlb_lock);
908 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
909 spin_unlock(&hugetlb_lock);
912 page = alloc_buddy_huge_page(h, vma, addr);
914 hugetlb_put_quota(inode->i_mapping, chg);
915 return ERR_PTR(-VM_FAULT_OOM);
919 set_page_refcounted(page);
920 set_page_private(page, (unsigned long) mapping);
922 vma_commit_reservation(h, vma, addr);
927 static __initdata LIST_HEAD(huge_boot_pages);
929 struct huge_bootmem_page {
930 struct list_head list;
931 struct hstate *hstate;
934 static int __init alloc_bootmem_huge_page(struct hstate *h)
936 struct huge_bootmem_page *m;
937 int nr_nodes = nodes_weight(node_online_map);
942 addr = __alloc_bootmem_node_nopanic(
943 NODE_DATA(h->hugetlb_next_nid),
944 huge_page_size(h), huge_page_size(h), 0);
948 * Use the beginning of the huge page to store the
949 * huge_bootmem_page struct (until gather_bootmem
950 * puts them into the mem_map).
962 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
963 /* Put them into a private list first because mem_map is not up yet */
964 list_add(&m->list, &huge_boot_pages);
969 /* Put bootmem huge pages into the standard lists after mem_map is up */
970 static void __init gather_bootmem_prealloc(void)
972 struct huge_bootmem_page *m;
974 list_for_each_entry(m, &huge_boot_pages, list) {
975 struct page *page = virt_to_page(m);
976 struct hstate *h = m->hstate;
977 __ClearPageReserved(page);
978 WARN_ON(page_count(page) != 1);
979 prep_compound_page(page, h->order);
980 prep_new_huge_page(h, page, page_to_nid(page));
984 static void __init hugetlb_init_one_hstate(struct hstate *h)
988 for (i = 0; i < MAX_NUMNODES; ++i)
989 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
991 h->hugetlb_next_nid = first_node(node_online_map);
993 for (i = 0; i < h->max_huge_pages; ++i) {
994 if (h->order >= MAX_ORDER) {
995 if (!alloc_bootmem_huge_page(h))
997 } else if (!alloc_fresh_huge_page(h))
1000 h->max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
1003 static void __init hugetlb_init_hstates(void)
1007 for_each_hstate(h) {
1008 hugetlb_init_one_hstate(h);
1012 static void __init report_hugepages(void)
1016 for_each_hstate(h) {
1017 printk(KERN_INFO "Total HugeTLB memory allocated, "
1020 1 << (h->order + PAGE_SHIFT - 20));
1024 #ifdef CONFIG_SYSCTL
1025 #ifdef CONFIG_HIGHMEM
1026 static void try_to_free_low(struct hstate *h, unsigned long count)
1030 if (h->order >= MAX_ORDER)
1033 for (i = 0; i < MAX_NUMNODES; ++i) {
1034 struct page *page, *next;
1035 struct list_head *freel = &h->hugepage_freelists[i];
1036 list_for_each_entry_safe(page, next, freel, lru) {
1037 if (count >= h->nr_huge_pages)
1039 if (PageHighMem(page))
1041 list_del(&page->lru);
1042 update_and_free_page(h, page);
1043 h->free_huge_pages--;
1044 h->free_huge_pages_node[page_to_nid(page)]--;
1049 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1054 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1055 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1057 unsigned long min_count, ret;
1059 if (h->order >= MAX_ORDER)
1060 return h->max_huge_pages;
1063 * Increase the pool size
1064 * First take pages out of surplus state. Then make up the
1065 * remaining difference by allocating fresh huge pages.
1067 * We might race with alloc_buddy_huge_page() here and be unable
1068 * to convert a surplus huge page to a normal huge page. That is
1069 * not critical, though, it just means the overall size of the
1070 * pool might be one hugepage larger than it needs to be, but
1071 * within all the constraints specified by the sysctls.
1073 spin_lock(&hugetlb_lock);
1074 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1075 if (!adjust_pool_surplus(h, -1))
1079 while (count > persistent_huge_pages(h)) {
1081 * If this allocation races such that we no longer need the
1082 * page, free_huge_page will handle it by freeing the page
1083 * and reducing the surplus.
1085 spin_unlock(&hugetlb_lock);
1086 ret = alloc_fresh_huge_page(h);
1087 spin_lock(&hugetlb_lock);
1094 * Decrease the pool size
1095 * First return free pages to the buddy allocator (being careful
1096 * to keep enough around to satisfy reservations). Then place
1097 * pages into surplus state as needed so the pool will shrink
1098 * to the desired size as pages become free.
1100 * By placing pages into the surplus state independent of the
1101 * overcommit value, we are allowing the surplus pool size to
1102 * exceed overcommit. There are few sane options here. Since
1103 * alloc_buddy_huge_page() is checking the global counter,
1104 * though, we'll note that we're not allowed to exceed surplus
1105 * and won't grow the pool anywhere else. Not until one of the
1106 * sysctls are changed, or the surplus pages go out of use.
1108 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1109 min_count = max(count, min_count);
1110 try_to_free_low(h, min_count);
1111 while (min_count < persistent_huge_pages(h)) {
1112 struct page *page = dequeue_huge_page(h);
1115 update_and_free_page(h, page);
1117 while (count < persistent_huge_pages(h)) {
1118 if (!adjust_pool_surplus(h, 1))
1122 ret = persistent_huge_pages(h);
1123 spin_unlock(&hugetlb_lock);
1127 #define HSTATE_ATTR_RO(_name) \
1128 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1130 #define HSTATE_ATTR(_name) \
1131 static struct kobj_attribute _name##_attr = \
1132 __ATTR(_name, 0644, _name##_show, _name##_store)
1134 static struct kobject *hugepages_kobj;
1135 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1137 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1140 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1141 if (hstate_kobjs[i] == kobj)
1147 static ssize_t nr_hugepages_show(struct kobject *kobj,
1148 struct kobj_attribute *attr, char *buf)
1150 struct hstate *h = kobj_to_hstate(kobj);
1151 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1153 static ssize_t nr_hugepages_store(struct kobject *kobj,
1154 struct kobj_attribute *attr, const char *buf, size_t count)
1157 unsigned long input;
1158 struct hstate *h = kobj_to_hstate(kobj);
1160 err = strict_strtoul(buf, 10, &input);
1164 h->max_huge_pages = set_max_huge_pages(h, input);
1168 HSTATE_ATTR(nr_hugepages);
1170 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1171 struct kobj_attribute *attr, char *buf)
1173 struct hstate *h = kobj_to_hstate(kobj);
1174 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1176 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1177 struct kobj_attribute *attr, const char *buf, size_t count)
1180 unsigned long input;
1181 struct hstate *h = kobj_to_hstate(kobj);
1183 err = strict_strtoul(buf, 10, &input);
1187 spin_lock(&hugetlb_lock);
1188 h->nr_overcommit_huge_pages = input;
1189 spin_unlock(&hugetlb_lock);
1193 HSTATE_ATTR(nr_overcommit_hugepages);
1195 static ssize_t free_hugepages_show(struct kobject *kobj,
1196 struct kobj_attribute *attr, char *buf)
1198 struct hstate *h = kobj_to_hstate(kobj);
1199 return sprintf(buf, "%lu\n", h->free_huge_pages);
1201 HSTATE_ATTR_RO(free_hugepages);
1203 static ssize_t resv_hugepages_show(struct kobject *kobj,
1204 struct kobj_attribute *attr, char *buf)
1206 struct hstate *h = kobj_to_hstate(kobj);
1207 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1209 HSTATE_ATTR_RO(resv_hugepages);
1211 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1212 struct kobj_attribute *attr, char *buf)
1214 struct hstate *h = kobj_to_hstate(kobj);
1215 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1217 HSTATE_ATTR_RO(surplus_hugepages);
1219 static struct attribute *hstate_attrs[] = {
1220 &nr_hugepages_attr.attr,
1221 &nr_overcommit_hugepages_attr.attr,
1222 &free_hugepages_attr.attr,
1223 &resv_hugepages_attr.attr,
1224 &surplus_hugepages_attr.attr,
1228 static struct attribute_group hstate_attr_group = {
1229 .attrs = hstate_attrs,
1232 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1236 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1238 if (!hstate_kobjs[h - hstates])
1241 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1242 &hstate_attr_group);
1244 kobject_put(hstate_kobjs[h - hstates]);
1249 static void __init hugetlb_sysfs_init(void)
1254 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1255 if (!hugepages_kobj)
1258 for_each_hstate(h) {
1259 err = hugetlb_sysfs_add_hstate(h);
1261 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1266 static void __exit hugetlb_exit(void)
1270 for_each_hstate(h) {
1271 kobject_put(hstate_kobjs[h - hstates]);
1274 kobject_put(hugepages_kobj);
1276 module_exit(hugetlb_exit);
1278 static int __init hugetlb_init(void)
1280 BUILD_BUG_ON(HPAGE_SHIFT == 0);
1282 if (!size_to_hstate(HPAGE_SIZE)) {
1283 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1284 parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
1286 default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;
1288 hugetlb_init_hstates();
1290 gather_bootmem_prealloc();
1294 hugetlb_sysfs_init();
1298 module_init(hugetlb_init);
1300 /* Should be called on processing a hugepagesz=... option */
1301 void __init hugetlb_add_hstate(unsigned order)
1304 if (size_to_hstate(PAGE_SIZE << order)) {
1305 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1308 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1310 h = &hstates[max_hstate++];
1312 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1313 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1314 huge_page_size(h)/1024);
1315 hugetlb_init_one_hstate(h);
1319 static int __init hugetlb_setup(char *s)
1324 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1325 * so this hugepages= parameter goes to the "default hstate".
1328 mhp = &default_hstate_max_huge_pages;
1330 mhp = &parsed_hstate->max_huge_pages;
1332 if (sscanf(s, "%lu", mhp) <= 0)
1337 __setup("hugepages=", hugetlb_setup);
1339 static unsigned int cpuset_mems_nr(unsigned int *array)
1342 unsigned int nr = 0;
1344 for_each_node_mask(node, cpuset_current_mems_allowed)
1350 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1351 struct file *file, void __user *buffer,
1352 size_t *length, loff_t *ppos)
1354 struct hstate *h = &default_hstate;
1358 tmp = h->max_huge_pages;
1361 table->maxlen = sizeof(unsigned long);
1362 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1365 h->max_huge_pages = set_max_huge_pages(h, tmp);
1370 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1371 struct file *file, void __user *buffer,
1372 size_t *length, loff_t *ppos)
1374 proc_dointvec(table, write, file, buffer, length, ppos);
1375 if (hugepages_treat_as_movable)
1376 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1378 htlb_alloc_mask = GFP_HIGHUSER;
1382 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1383 struct file *file, void __user *buffer,
1384 size_t *length, loff_t *ppos)
1386 struct hstate *h = &default_hstate;
1390 tmp = h->nr_overcommit_huge_pages;
1393 table->maxlen = sizeof(unsigned long);
1394 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1397 spin_lock(&hugetlb_lock);
1398 h->nr_overcommit_huge_pages = tmp;
1399 spin_unlock(&hugetlb_lock);
1405 #endif /* CONFIG_SYSCTL */
1407 int hugetlb_report_meminfo(char *buf)
1409 struct hstate *h = &default_hstate;
1411 "HugePages_Total: %5lu\n"
1412 "HugePages_Free: %5lu\n"
1413 "HugePages_Rsvd: %5lu\n"
1414 "HugePages_Surp: %5lu\n"
1415 "Hugepagesize: %5lu kB\n",
1419 h->surplus_huge_pages,
1420 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1423 int hugetlb_report_node_meminfo(int nid, char *buf)
1425 struct hstate *h = &default_hstate;
1427 "Node %d HugePages_Total: %5u\n"
1428 "Node %d HugePages_Free: %5u\n"
1429 "Node %d HugePages_Surp: %5u\n",
1430 nid, h->nr_huge_pages_node[nid],
1431 nid, h->free_huge_pages_node[nid],
1432 nid, h->surplus_huge_pages_node[nid]);
1435 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1436 unsigned long hugetlb_total_pages(void)
1438 struct hstate *h = &default_hstate;
1439 return h->nr_huge_pages * pages_per_huge_page(h);
1442 static int hugetlb_acct_memory(struct hstate *h, long delta)
1446 spin_lock(&hugetlb_lock);
1448 * When cpuset is configured, it breaks the strict hugetlb page
1449 * reservation as the accounting is done on a global variable. Such
1450 * reservation is completely rubbish in the presence of cpuset because
1451 * the reservation is not checked against page availability for the
1452 * current cpuset. Application can still potentially OOM'ed by kernel
1453 * with lack of free htlb page in cpuset that the task is in.
1454 * Attempt to enforce strict accounting with cpuset is almost
1455 * impossible (or too ugly) because cpuset is too fluid that
1456 * task or memory node can be dynamically moved between cpusets.
1458 * The change of semantics for shared hugetlb mapping with cpuset is
1459 * undesirable. However, in order to preserve some of the semantics,
1460 * we fall back to check against current free page availability as
1461 * a best attempt and hopefully to minimize the impact of changing
1462 * semantics that cpuset has.
1465 if (gather_surplus_pages(h, delta) < 0)
1468 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1469 return_unused_surplus_pages(h, delta);
1476 return_unused_surplus_pages(h, (unsigned long) -delta);
1479 spin_unlock(&hugetlb_lock);
1483 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1485 struct resv_map *reservations = vma_resv_map(vma);
1488 * This new VMA should share its siblings reservation map if present.
1489 * The VMA will only ever have a valid reservation map pointer where
1490 * it is being copied for another still existing VMA. As that VMA
1491 * has a reference to the reservation map it cannot dissappear until
1492 * after this open call completes. It is therefore safe to take a
1493 * new reference here without additional locking.
1496 kref_get(&reservations->refs);
1499 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1501 struct hstate *h = hstate_vma(vma);
1502 struct resv_map *reservations = vma_resv_map(vma);
1503 unsigned long reserve;
1504 unsigned long start;
1508 start = vma_hugecache_offset(h, vma, vma->vm_start);
1509 end = vma_hugecache_offset(h, vma, vma->vm_end);
1511 reserve = (end - start) -
1512 region_count(&reservations->regions, start, end);
1514 kref_put(&reservations->refs, resv_map_release);
1517 hugetlb_acct_memory(h, -reserve);
1522 * We cannot handle pagefaults against hugetlb pages at all. They cause
1523 * handle_mm_fault() to try to instantiate regular-sized pages in the
1524 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1527 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1533 struct vm_operations_struct hugetlb_vm_ops = {
1534 .fault = hugetlb_vm_op_fault,
1535 .open = hugetlb_vm_op_open,
1536 .close = hugetlb_vm_op_close,
1539 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1546 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1548 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1550 entry = pte_mkyoung(entry);
1551 entry = pte_mkhuge(entry);
1556 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1557 unsigned long address, pte_t *ptep)
1561 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1562 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1563 update_mmu_cache(vma, address, entry);
1568 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1569 struct vm_area_struct *vma)
1571 pte_t *src_pte, *dst_pte, entry;
1572 struct page *ptepage;
1575 struct hstate *h = hstate_vma(vma);
1576 unsigned long sz = huge_page_size(h);
1578 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1580 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1581 src_pte = huge_pte_offset(src, addr);
1584 dst_pte = huge_pte_alloc(dst, addr, sz);
1588 /* If the pagetables are shared don't copy or take references */
1589 if (dst_pte == src_pte)
1592 spin_lock(&dst->page_table_lock);
1593 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1594 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1596 huge_ptep_set_wrprotect(src, addr, src_pte);
1597 entry = huge_ptep_get(src_pte);
1598 ptepage = pte_page(entry);
1600 set_huge_pte_at(dst, addr, dst_pte, entry);
1602 spin_unlock(&src->page_table_lock);
1603 spin_unlock(&dst->page_table_lock);
1611 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1612 unsigned long end, struct page *ref_page)
1614 struct mm_struct *mm = vma->vm_mm;
1615 unsigned long address;
1620 struct hstate *h = hstate_vma(vma);
1621 unsigned long sz = huge_page_size(h);
1624 * A page gathering list, protected by per file i_mmap_lock. The
1625 * lock is used to avoid list corruption from multiple unmapping
1626 * of the same page since we are using page->lru.
1628 LIST_HEAD(page_list);
1630 WARN_ON(!is_vm_hugetlb_page(vma));
1631 BUG_ON(start & ~huge_page_mask(h));
1632 BUG_ON(end & ~huge_page_mask(h));
1634 spin_lock(&mm->page_table_lock);
1635 for (address = start; address < end; address += sz) {
1636 ptep = huge_pte_offset(mm, address);
1640 if (huge_pmd_unshare(mm, &address, ptep))
1644 * If a reference page is supplied, it is because a specific
1645 * page is being unmapped, not a range. Ensure the page we
1646 * are about to unmap is the actual page of interest.
1649 pte = huge_ptep_get(ptep);
1650 if (huge_pte_none(pte))
1652 page = pte_page(pte);
1653 if (page != ref_page)
1657 * Mark the VMA as having unmapped its page so that
1658 * future faults in this VMA will fail rather than
1659 * looking like data was lost
1661 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1664 pte = huge_ptep_get_and_clear(mm, address, ptep);
1665 if (huge_pte_none(pte))
1668 page = pte_page(pte);
1670 set_page_dirty(page);
1671 list_add(&page->lru, &page_list);
1673 spin_unlock(&mm->page_table_lock);
1674 flush_tlb_range(vma, start, end);
1675 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1676 list_del(&page->lru);
1681 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1682 unsigned long end, struct page *ref_page)
1684 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1685 __unmap_hugepage_range(vma, start, end, ref_page);
1686 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1690 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1691 * mappping it owns the reserve page for. The intention is to unmap the page
1692 * from other VMAs and let the children be SIGKILLed if they are faulting the
1695 int unmap_ref_private(struct mm_struct *mm,
1696 struct vm_area_struct *vma,
1698 unsigned long address)
1700 struct vm_area_struct *iter_vma;
1701 struct address_space *mapping;
1702 struct prio_tree_iter iter;
1706 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1707 * from page cache lookup which is in HPAGE_SIZE units.
1709 address = address & huge_page_mask(hstate_vma(vma));
1710 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1711 + (vma->vm_pgoff >> PAGE_SHIFT);
1712 mapping = (struct address_space *)page_private(page);
1714 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1715 /* Do not unmap the current VMA */
1716 if (iter_vma == vma)
1720 * Unmap the page from other VMAs without their own reserves.
1721 * They get marked to be SIGKILLed if they fault in these
1722 * areas. This is because a future no-page fault on this VMA
1723 * could insert a zeroed page instead of the data existing
1724 * from the time of fork. This would look like data corruption
1726 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1727 unmap_hugepage_range(iter_vma,
1728 address, address + HPAGE_SIZE,
1735 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1736 unsigned long address, pte_t *ptep, pte_t pte,
1737 struct page *pagecache_page)
1739 struct hstate *h = hstate_vma(vma);
1740 struct page *old_page, *new_page;
1742 int outside_reserve = 0;
1744 old_page = pte_page(pte);
1747 /* If no-one else is actually using this page, avoid the copy
1748 * and just make the page writable */
1749 avoidcopy = (page_count(old_page) == 1);
1751 set_huge_ptep_writable(vma, address, ptep);
1756 * If the process that created a MAP_PRIVATE mapping is about to
1757 * perform a COW due to a shared page count, attempt to satisfy
1758 * the allocation without using the existing reserves. The pagecache
1759 * page is used to determine if the reserve at this address was
1760 * consumed or not. If reserves were used, a partial faulted mapping
1761 * at the time of fork() could consume its reserves on COW instead
1762 * of the full address range.
1764 if (!(vma->vm_flags & VM_SHARED) &&
1765 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1766 old_page != pagecache_page)
1767 outside_reserve = 1;
1769 page_cache_get(old_page);
1770 new_page = alloc_huge_page(vma, address, outside_reserve);
1772 if (IS_ERR(new_page)) {
1773 page_cache_release(old_page);
1776 * If a process owning a MAP_PRIVATE mapping fails to COW,
1777 * it is due to references held by a child and an insufficient
1778 * huge page pool. To guarantee the original mappers
1779 * reliability, unmap the page from child processes. The child
1780 * may get SIGKILLed if it later faults.
1782 if (outside_reserve) {
1783 BUG_ON(huge_pte_none(pte));
1784 if (unmap_ref_private(mm, vma, old_page, address)) {
1785 BUG_ON(page_count(old_page) != 1);
1786 BUG_ON(huge_pte_none(pte));
1787 goto retry_avoidcopy;
1792 return -PTR_ERR(new_page);
1795 spin_unlock(&mm->page_table_lock);
1796 copy_huge_page(new_page, old_page, address, vma);
1797 __SetPageUptodate(new_page);
1798 spin_lock(&mm->page_table_lock);
1800 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1801 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1803 huge_ptep_clear_flush(vma, address, ptep);
1804 set_huge_pte_at(mm, address, ptep,
1805 make_huge_pte(vma, new_page, 1));
1806 /* Make the old page be freed below */
1807 new_page = old_page;
1809 page_cache_release(new_page);
1810 page_cache_release(old_page);
1814 /* Return the pagecache page at a given address within a VMA */
1815 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1816 struct vm_area_struct *vma, unsigned long address)
1818 struct address_space *mapping;
1821 mapping = vma->vm_file->f_mapping;
1822 idx = vma_hugecache_offset(h, vma, address);
1824 return find_lock_page(mapping, idx);
1827 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1828 unsigned long address, pte_t *ptep, int write_access)
1830 struct hstate *h = hstate_vma(vma);
1831 int ret = VM_FAULT_SIGBUS;
1835 struct address_space *mapping;
1839 * Currently, we are forced to kill the process in the event the
1840 * original mapper has unmapped pages from the child due to a failed
1841 * COW. Warn that such a situation has occured as it may not be obvious
1843 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1845 "PID %d killed due to inadequate hugepage pool\n",
1850 mapping = vma->vm_file->f_mapping;
1851 idx = vma_hugecache_offset(h, vma, address);
1854 * Use page lock to guard against racing truncation
1855 * before we get page_table_lock.
1858 page = find_lock_page(mapping, idx);
1860 size = i_size_read(mapping->host) >> huge_page_shift(h);
1863 page = alloc_huge_page(vma, address, 0);
1865 ret = -PTR_ERR(page);
1868 clear_huge_page(page, address, huge_page_size(h));
1869 __SetPageUptodate(page);
1871 if (vma->vm_flags & VM_SHARED) {
1873 struct inode *inode = mapping->host;
1875 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1883 spin_lock(&inode->i_lock);
1884 inode->i_blocks += blocks_per_huge_page(h);
1885 spin_unlock(&inode->i_lock);
1890 spin_lock(&mm->page_table_lock);
1891 size = i_size_read(mapping->host) >> huge_page_shift(h);
1896 if (!huge_pte_none(huge_ptep_get(ptep)))
1899 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1900 && (vma->vm_flags & VM_SHARED)));
1901 set_huge_pte_at(mm, address, ptep, new_pte);
1903 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1904 /* Optimization, do the COW without a second fault */
1905 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1908 spin_unlock(&mm->page_table_lock);
1914 spin_unlock(&mm->page_table_lock);
1920 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1921 unsigned long address, int write_access)
1926 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1927 struct hstate *h = hstate_vma(vma);
1929 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1931 return VM_FAULT_OOM;
1934 * Serialize hugepage allocation and instantiation, so that we don't
1935 * get spurious allocation failures if two CPUs race to instantiate
1936 * the same page in the page cache.
1938 mutex_lock(&hugetlb_instantiation_mutex);
1939 entry = huge_ptep_get(ptep);
1940 if (huge_pte_none(entry)) {
1941 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1942 mutex_unlock(&hugetlb_instantiation_mutex);
1948 spin_lock(&mm->page_table_lock);
1949 /* Check for a racing update before calling hugetlb_cow */
1950 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1951 if (write_access && !pte_write(entry)) {
1953 page = hugetlbfs_pagecache_page(h, vma, address);
1954 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1960 spin_unlock(&mm->page_table_lock);
1961 mutex_unlock(&hugetlb_instantiation_mutex);
1966 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1967 struct page **pages, struct vm_area_struct **vmas,
1968 unsigned long *position, int *length, int i,
1971 unsigned long pfn_offset;
1972 unsigned long vaddr = *position;
1973 int remainder = *length;
1974 struct hstate *h = hstate_vma(vma);
1976 spin_lock(&mm->page_table_lock);
1977 while (vaddr < vma->vm_end && remainder) {
1982 * Some archs (sparc64, sh*) have multiple pte_ts to
1983 * each hugepage. We have to make * sure we get the
1984 * first, for the page indexing below to work.
1986 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
1988 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1989 (write && !pte_write(huge_ptep_get(pte)))) {
1992 spin_unlock(&mm->page_table_lock);
1993 ret = hugetlb_fault(mm, vma, vaddr, write);
1994 spin_lock(&mm->page_table_lock);
1995 if (!(ret & VM_FAULT_ERROR))
2004 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2005 page = pte_page(huge_ptep_get(pte));
2009 pages[i] = page + pfn_offset;
2019 if (vaddr < vma->vm_end && remainder &&
2020 pfn_offset < pages_per_huge_page(h)) {
2022 * We use pfn_offset to avoid touching the pageframes
2023 * of this compound page.
2028 spin_unlock(&mm->page_table_lock);
2029 *length = remainder;
2035 void hugetlb_change_protection(struct vm_area_struct *vma,
2036 unsigned long address, unsigned long end, pgprot_t newprot)
2038 struct mm_struct *mm = vma->vm_mm;
2039 unsigned long start = address;
2042 struct hstate *h = hstate_vma(vma);
2044 BUG_ON(address >= end);
2045 flush_cache_range(vma, address, end);
2047 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2048 spin_lock(&mm->page_table_lock);
2049 for (; address < end; address += huge_page_size(h)) {
2050 ptep = huge_pte_offset(mm, address);
2053 if (huge_pmd_unshare(mm, &address, ptep))
2055 if (!huge_pte_none(huge_ptep_get(ptep))) {
2056 pte = huge_ptep_get_and_clear(mm, address, ptep);
2057 pte = pte_mkhuge(pte_modify(pte, newprot));
2058 set_huge_pte_at(mm, address, ptep, pte);
2061 spin_unlock(&mm->page_table_lock);
2062 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2064 flush_tlb_range(vma, start, end);
2067 int hugetlb_reserve_pages(struct inode *inode,
2069 struct vm_area_struct *vma)
2072 struct hstate *h = hstate_inode(inode);
2074 if (vma && vma->vm_flags & VM_NORESERVE)
2078 * Shared mappings base their reservation on the number of pages that
2079 * are already allocated on behalf of the file. Private mappings need
2080 * to reserve the full area even if read-only as mprotect() may be
2081 * called to make the mapping read-write. Assume !vma is a shm mapping
2083 if (!vma || vma->vm_flags & VM_SHARED)
2084 chg = region_chg(&inode->i_mapping->private_list, from, to);
2086 struct resv_map *resv_map = resv_map_alloc();
2092 set_vma_resv_map(vma, resv_map);
2093 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2099 if (hugetlb_get_quota(inode->i_mapping, chg))
2101 ret = hugetlb_acct_memory(h, chg);
2103 hugetlb_put_quota(inode->i_mapping, chg);
2106 if (!vma || vma->vm_flags & VM_SHARED)
2107 region_add(&inode->i_mapping->private_list, from, to);
2111 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2113 struct hstate *h = hstate_inode(inode);
2114 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2116 spin_lock(&inode->i_lock);
2117 inode->i_blocks -= blocks_per_huge_page(h);
2118 spin_unlock(&inode->i_lock);
2120 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2121 hugetlb_acct_memory(h, -(chg - freed));