]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c
Merge tag 'mips_5.12_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux.git] / drivers / gpu / drm / i915 / gt / intel_gt_clock_utils.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "intel_gt.h"
8 #include "intel_gt_clock_utils.h"
9
10 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
11 {
12         u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
13         u32 base_freq, frac_freq;
14
15         base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
16                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
17         base_freq *= 1000000;
18
19         frac_freq = ((ts_override &
20                       GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
21                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
22         frac_freq = 1000000 / (frac_freq + 1);
23
24         return base_freq + frac_freq;
25 }
26
27 static u32 gen10_get_crystal_clock_freq(struct intel_uncore *uncore,
28                                         u32 rpm_config_reg)
29 {
30         u32 f19_2_mhz = 19200000;
31         u32 f24_mhz = 24000000;
32         u32 crystal_clock =
33                 (rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
34                 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
35
36         switch (crystal_clock) {
37         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
38                 return f19_2_mhz;
39         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
40                 return f24_mhz;
41         default:
42                 MISSING_CASE(crystal_clock);
43                 return 0;
44         }
45 }
46
47 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
48                                         u32 rpm_config_reg)
49 {
50         u32 f19_2_mhz = 19200000;
51         u32 f24_mhz = 24000000;
52         u32 f25_mhz = 25000000;
53         u32 f38_4_mhz = 38400000;
54         u32 crystal_clock =
55                 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
56                 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
57
58         switch (crystal_clock) {
59         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
60                 return f24_mhz;
61         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
62                 return f19_2_mhz;
63         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
64                 return f38_4_mhz;
65         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
66                 return f25_mhz;
67         default:
68                 MISSING_CASE(crystal_clock);
69                 return 0;
70         }
71 }
72
73 static u32 read_clock_frequency(struct intel_uncore *uncore)
74 {
75         u32 f12_5_mhz = 12500000;
76         u32 f19_2_mhz = 19200000;
77         u32 f24_mhz = 24000000;
78
79         if (INTEL_GEN(uncore->i915) <= 4) {
80                 /*
81                  * PRMs say:
82                  *
83                  *     "The value in this register increments once every 16
84                  *      hclks." (through the “Clocking Configuration”
85                  *      (“CLKCFG”) MCHBAR register)
86                  */
87                 return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000 / 16;
88         } else if (INTEL_GEN(uncore->i915) <= 8) {
89                 /*
90                  * PRMs say:
91                  *
92                  *     "The PCU TSC counts 10ns increments; this timestamp
93                  *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
94                  *      rolling over every 1.5 hours).
95                  */
96                 return f12_5_mhz;
97         } else if (INTEL_GEN(uncore->i915) <= 9) {
98                 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
99                 u32 freq = 0;
100
101                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
102                         freq = read_reference_ts_freq(uncore);
103                 } else {
104                         freq = IS_GEN9_LP(uncore->i915) ? f19_2_mhz : f24_mhz;
105
106                         /*
107                          * Now figure out how the command stream's timestamp
108                          * register increments from this frequency (it might
109                          * increment only every few clock cycle).
110                          */
111                         freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
112                                       CTC_SHIFT_PARAMETER_SHIFT);
113                 }
114
115                 return freq;
116         } else if (INTEL_GEN(uncore->i915) <= 12) {
117                 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
118                 u32 freq = 0;
119
120                 /*
121                  * First figure out the reference frequency. There are 2 ways
122                  * we can compute the frequency, either through the
123                  * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
124                  * tells us which one we should use.
125                  */
126                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
127                         freq = read_reference_ts_freq(uncore);
128                 } else {
129                         u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
130
131                         if (INTEL_GEN(uncore->i915) <= 10)
132                                 freq = gen10_get_crystal_clock_freq(uncore, c0);
133                         else
134                                 freq = gen11_get_crystal_clock_freq(uncore, c0);
135
136                         /*
137                          * Now figure out how the command stream's timestamp
138                          * register increments from this frequency (it might
139                          * increment only every few clock cycle).
140                          */
141                         freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
142                                       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
143                 }
144
145                 return freq;
146         }
147
148         MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
149         return 0;
150 }
151
152 void intel_gt_init_clock_frequency(struct intel_gt *gt)
153 {
154         /*
155          * Note that on gen11+, the clock frequency may be reconfigured.
156          * We do not, and we assume nobody else does.
157          */
158         gt->clock_frequency = read_clock_frequency(gt->uncore);
159         if (gt->clock_frequency)
160                 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
161
162         GT_TRACE(gt,
163                  "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
164                  gt->clock_frequency / 1000,
165                  gt->clock_period_ns,
166                  div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
167                          USEC_PER_SEC));
168
169 }
170
171 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
172 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
173 {
174         if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
175                 dev_err(gt->i915->drm.dev,
176                         "GT clock frequency changed, was %uHz, now %uHz!\n",
177                         gt->clock_frequency,
178                         read_clock_frequency(gt->uncore));
179         }
180 }
181 #endif
182
183 static u64 div_u64_roundup(u64 nom, u32 den)
184 {
185         return div_u64(nom + den - 1, den);
186 }
187
188 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
189 {
190         return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
191 }
192
193 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
194 {
195         return intel_gt_clock_interval_to_ns(gt, 16 * count);
196 }
197
198 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
199 {
200         return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
201 }
202
203 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
204 {
205         u64 val;
206
207         /*
208          * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
209          * 8300) freezing up around GPU hangs. Looks as if even
210          * scheduling/timer interrupts start misbehaving if the RPS
211          * EI/thresholds are "bad", leading to a very sluggish or even
212          * frozen machine.
213          */
214         val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
215         if (IS_GEN(gt->i915, 6))
216                 val = div_u64_roundup(val, 25) * 25;
217
218         return val;
219 }
This page took 0.055133 seconds and 4 git commands to generate.