1 // SPDX-License-Identifier: MIT
3 * Copyright © 2020 Intel Corporation
8 #include "intel_gt_clock_utils.h"
10 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
12 u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
13 u32 base_freq, frac_freq;
15 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
16 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
19 frac_freq = ((ts_override &
20 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
21 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
22 frac_freq = 1000000 / (frac_freq + 1);
24 return base_freq + frac_freq;
27 static u32 gen10_get_crystal_clock_freq(struct intel_uncore *uncore,
30 u32 f19_2_mhz = 19200000;
31 u32 f24_mhz = 24000000;
33 (rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
34 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
36 switch (crystal_clock) {
37 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
39 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
42 MISSING_CASE(crystal_clock);
47 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
50 u32 f19_2_mhz = 19200000;
51 u32 f24_mhz = 24000000;
52 u32 f25_mhz = 25000000;
53 u32 f38_4_mhz = 38400000;
55 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
56 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
58 switch (crystal_clock) {
59 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
61 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
63 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
65 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
68 MISSING_CASE(crystal_clock);
73 static u32 read_clock_frequency(struct intel_uncore *uncore)
75 u32 f12_5_mhz = 12500000;
76 u32 f19_2_mhz = 19200000;
77 u32 f24_mhz = 24000000;
79 if (INTEL_GEN(uncore->i915) <= 4) {
83 * "The value in this register increments once every 16
84 * hclks." (through the “Clocking Configuration”
85 * (“CLKCFG”) MCHBAR register)
87 return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000 / 16;
88 } else if (INTEL_GEN(uncore->i915) <= 8) {
92 * "The PCU TSC counts 10ns increments; this timestamp
93 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
94 * rolling over every 1.5 hours).
97 } else if (INTEL_GEN(uncore->i915) <= 9) {
98 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
101 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
102 freq = read_reference_ts_freq(uncore);
104 freq = IS_GEN9_LP(uncore->i915) ? f19_2_mhz : f24_mhz;
107 * Now figure out how the command stream's timestamp
108 * register increments from this frequency (it might
109 * increment only every few clock cycle).
111 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
112 CTC_SHIFT_PARAMETER_SHIFT);
116 } else if (INTEL_GEN(uncore->i915) <= 12) {
117 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
121 * First figure out the reference frequency. There are 2 ways
122 * we can compute the frequency, either through the
123 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
124 * tells us which one we should use.
126 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
127 freq = read_reference_ts_freq(uncore);
129 u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
131 if (INTEL_GEN(uncore->i915) <= 10)
132 freq = gen10_get_crystal_clock_freq(uncore, c0);
134 freq = gen11_get_crystal_clock_freq(uncore, c0);
137 * Now figure out how the command stream's timestamp
138 * register increments from this frequency (it might
139 * increment only every few clock cycle).
141 freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
142 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
148 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
152 void intel_gt_init_clock_frequency(struct intel_gt *gt)
155 * Note that on gen11+, the clock frequency may be reconfigured.
156 * We do not, and we assume nobody else does.
158 gt->clock_frequency = read_clock_frequency(gt->uncore);
159 if (gt->clock_frequency)
160 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
163 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
164 gt->clock_frequency / 1000,
166 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
171 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
172 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
174 if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
175 dev_err(gt->i915->drm.dev,
176 "GT clock frequency changed, was %uHz, now %uHz!\n",
178 read_clock_frequency(gt->uncore));
183 static u64 div_u64_roundup(u64 nom, u32 den)
185 return div_u64(nom + den - 1, den);
188 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
190 return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
193 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
195 return intel_gt_clock_interval_to_ns(gt, 16 * count);
198 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
200 return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
203 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
208 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
209 * 8300) freezing up around GPU hangs. Looks as if even
210 * scheduling/timer interrupts start misbehaving if the RPS
211 * EI/thresholds are "bad", leading to a very sluggish or even
214 val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
215 if (IS_GEN(gt->i915, 6))
216 val = div_u64_roundup(val, 25) * 25;